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How fast must an oriented collection of extensile swimmers swim to escape the instability of viscous
active suspensions? We show that the answer lies in the dimensionless combination R ¼ ρv20=2σa, where ρ
is the suspension mass density, v0 the swim speed, and σa the active stress. Linear stability analysis shows
that, for small R, disturbances grow at a rate linear in their wave number q and that the dominant instability
mode involves twist. The resulting steady state in our numerical studies is isotropic hedgehog-defect
turbulence. Past a first threshold R of order unity, we find a slower growth rate, of Oðq2Þ; the numerically
observed steady state is phase turbulent: noisy but aligned on average. We present numerical evidence in
three and two dimensions that this inertia-driven flocking transition is continuous, with a correlation length
that grows on approaching the transition. For much larger R, we find an aligned state linearly stable to
perturbations at all q. Our predictions should be testable in suspensions of mesoscale swimmers [D. Klotsa,
Soft Matter 15, 8946 (2019)].
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I. INTRODUCTION

The theory of active matter [1–9]—systems whose
constituents convert a sustained supply of fuel into
movement—is the framework of choice for understanding
the collective behavior of motile particles. Like condensed
matter in general, active systems display many types of
order and operate in a variety of dynamical regimes. Our
interest in this paper is in groups of motile organisms in a
bulk fluid medium, spontaneously organized into a flock in
which their tail-to-head vectors on average point in a
common direction. In now-standard terminology [2], we
consider polar, wet active matter, described by a vector
order parameter characterizing the degree and direction of
common orientation and movement.
In the world of Stokesian hydrodynamics, where inertia

is absent and viscosity holds sway, an ordered flock in bulk
fluid is impossible [10]. Indeed, this limit shapes the
defining image of active suspensions as inescapably unsta-
ble, dissolving via spontaneous flow [10,11] and defect

proliferation [12–27] into a kind of turbulence [19,28–37].
We remind the reader of the instability mechanism [1,2,10]:
An aligned state of active particles is a state of uniform
uniaxial stress; perturbing this state—through bend or
splay, respectively, for “pusher” or “puller” particles—
creates spatially varying stresses; force balance requires
that these are accompanied by flow; this flow rotates the
alignment further in the direction of the perturbation. Note
that this description refers neither to the directed motion of
the particles nor to acceleration. Stresses and flows are
uniaxial but apolar, that is, fore-aft symmetric, and flow
responds instantaneously to active stress in the Stokesian
approximation. Improved descriptions including polar
order alone [10,15,16,38] or inertia alone [10] do not
mitigate the instability.
Stable flocks in bulk fluid are, of course, widely

observed in the form of fish schools [39,40], which are
very polar and very far from Stokesian. We do not venture
into the regime of schooling at high Reynolds number,
governed by purely inviscid hydrodynamic interactions
[41,42], but consider weak inertial effects, which are know
to alter significantly the viscous hydrodynamic interaction
between slow swimmers [43,44]. A recent perspective [45]
makes a persuasive case for the study of active fluids with
small but non-negligible inertia, the regime we explore
here. A result from Ref. [10] is relevant in this context: A
linearized treatment retaining only acceleration and active
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stresses finds a parameter domain in which flocks in fluid
are neutrally stable to first order in wave number, with a
wavelike dynamic response. Interestingly, such waves of
bend excitations have an analog in models without momen-
tum conservation, i.e., “dry” flocking models, when rota-
tional inertia is taken into account [46–49]; the coupled
dynamics of classical spin angular momentum and ori-
entation in such models is formally similar to that of
hydrodynamic vorticity and orientation in Ref. [10] and the
present work. Staying close to viscous hydrodynamics and
the force-dipole picture of swimmers, we ask: Can inertia
and polar order together defeat the Stokesian instability of
flocks?

A. Summary of results

In this article, focusing on extensile or “pusher” [50]
suspensions, we show that the introduction of inertia
qualitatively alters our understanding of the viscous hydro-
dynamics of polar active matter, that is, flocking in fluids.
Here are our main results. We show that speed matters: The
dimensionless combination R≡ ρv20=2σa, where ρ is the
suspension mass density, σa the scale of active stress, and
v0 the self-advection speed, governs the stability of active
suspensions. Flocks in fluid are stable for large R, and their

inexorable Stokesian instability [10] is the R ¼ 0 limit of a
far richer picture (Fig. 1). For small R, perturbations about
the aligned state grow at a rate ∝ q for wave number q → 0,
while, for moderate R, the linear instability persists but with
a growth rate ∝ q2. Crucially, direct numerical simulations
of the hydrodynamic equations reveal that the two regimes
correspond to qualitatively distinct statistical steady states
separated by a nonequilibrium phase transition. The small-
R regime is isotropic hedgehog-defect turbulence, while
that at moderate R is a phase-turbulent [51–54] but ordered
flock. Our numerical results suggest a continuous order-
parameter onset and a growing correlation length upon
approaching the transition.
This paper is organized as follows. In Sec. II, we present

the equations of hydrodynamics for polar active suspen-
sions and investigate the linear stability of the uniaxially
ordered state. Section III describes our numerical studies,
the flocking transition from defect to phase turbulence, and
the properties of the turbulent states. We close in Sec. IV
with a summary, suggestions for experiment, and open
questions.

II. GOVERNING EQUATIONS AND
STABILITY ANALYSIS

A. Hydrodynamics of active suspensions

We begin by constructing, from general principles, the
hydrodynamic equations of motion for a flock in fluid. We
do not employ the language of forces and fluxes or display
the dependence of “active” coefficients on a maintained
chemical driving force [2,5,55]. We adopt the general,
symmetry-based approach of Ref. [10], but our treatment is
self-contained and does not presuppose familiarity with that
work. The reader sees the results of Ref. [10] emerge as a
limiting case in Sec. II B 2. We emphasize that our
equations constitute a general effective description on
length scales much larger than a swimmer (as we call
our self-propelled particles hereafter). They contain para-
meters such as viscosity and elastic constants; these are
phenomenological coefficients in our coarse-grained
description of this internally driven system and are named
based on the form of the terms they govern. Their values
cannot, in principle, be estimated from a near-equilibrium
hydrodynamic theory of the suspension. For example, we
imagine the viscosity in our equations receives “eddy”
contributions from flows on scales of a few swimmers, and
we expect that the elastic constants encoding the aligning
tendency are at least partly behavioral rather than mechani-
cal. Provided interactions are local in space and time, these
features do not limit the validity of our approach, which
depends only on conservation laws and symmetries.
For a steady state such as a flock, which spontaneously

breaks a continuous invariance, the slow or hydrodynamic
variables [56] are the local densities of conserved quantities
and the broken-symmetry or Nambu-Goldstone [57,58]

β

FIG. 1. R-β phase diagram of a polar active suspension. The
lines at R ¼ R1 and R ¼ R2, obtained from linear stability
analysis, mark the phase boundaries. For R < R1, an aligned
state is OðqÞ unstable, which leads to statistically stationary
defect turbulence. In general, a parameter range (R1 < R < R2Þ
where perturbations with small wave number q grow at a rate of
Oðq2Þ intervenes between the stable regime (R > R2) and the
highly unstable regime of OðqÞ growth but is squeezed out of
existence if β ¼ 1; that is, orientation and vorticity have identical
diffusivities. The red stars and blue pentagons mark the (R, β)
values used in our DNS. Insets: order parameter vector
field for defect turbulence (R < R1) with asters (blue dot) and
saddles (red square), phase turbulence with orientational order
(R1 < R < R2), and a quiescent linearly stable state of complete
alignment (R > R2).
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fields. At a continuous transition to such an ordered state,
the amplitude of the order parameter is an additional slow
variable. In the absence of reproduction, death, and external
forces, the conserved quantities are the total number of
swimmers, the total amount of fluid, and the total momen-
tum of swimmers plus fluid. Energy conservation does not
play a role, as each swimmer is endowed with a built-in
power source. The slow variables corresponding to these
conservation laws are then the densities ρ and g ¼ ρu of
mass and momentum of swimmers plus fluid (defining the
suspension velocity field u), respectively, and the number
density c of swimmers. The broken-symmetry modes and
the magnitude of order are jointly contained in the polar
order parameter field p, which is the local average of the
orientation unit vectors of the particles [10]. It is interesting
to note that an equilibrium liquid crystal with macroscopic
vectorial, i.e., polar, order has only very recently been
discovered [59].
As the order parameter is a space vector, our description

is invariant under the joint inversion of p and the spatial
coordinate r, but not p alone. The absence of p → −p
symmetry is central to our narrative. We, therefore, include
at this stage, at leading order in gradients, all terms that
break this symmetry in the equations of motion [60,61] (see
also Refs. [2,15,16,62–64]), although we shortly pass to a
more economical description. The equations read

ρð∂tuþ u ·∇uÞ ¼ −∇Pþ μ∇2uþ∇ · ðΣa þ ΣrÞ; ð1Þ

∂tpþ ðuþ v0pÞ ·∇p ¼ λS · pþΩ · pþ Γhþ l∇2u; ð2Þ

and

∂tcþ∇ · ½ðuþ v1pÞc� ¼ 0: ð3Þ

Equation (3) expresses number conservation; the active
particles self-propel with velocity v1p in the frame of the
suspension and, hence, uþ v1p in the laboratory frame. In
Eq. II A, the polar order parameter p is carried by the
hydrodynamic velocity u and by its self-advection v0 [not
related by any symmetry [49,65] to v1 in Eq. (3)], S and Ω
are the symmetric and antisymmetric parts, respectively, of
the velocity gradient tensor ∇u which couple orientation to
flow as in ordinary nematic liquid crystals [66], Γ is the
kinetic coefficient governing relaxation in the local molecu-
lar field h to be discussed below, and l is the polar
flow coupling at leading order in a gradient expansion.
The v0, v1, and l terms are polar: Their presence implies
that the equations are not invariant under p → −p. In
Eq. (1), the hydrodynamic pressure P enforces incom-
pressibility ∇ · u ¼ 0.

Σa ≡ −σapp − γað∇pþ∇pTÞ ð4Þ

is the intrinsic stress associated with swimming activity,
which we display up to first subleading order in gradients.
In Eq. (4), σa is the force-dipole density [2,10,67]. In
microscopic terms, the forces exerted by a swimmer and the
ambient fluid on each other add to zero, so the associated
force density has zero monopole moment. The minimal
model for a swimmer is, thus, a point dipolar force density.
A collection of such swimmers, each with dipole strength
W, local concentration c, and mean local alignment given
by the polar order parameter p, can readily be seen
[2,10,67] to have force density −W∇ · ðcppÞ. W > 0 and
W < 0 correspond, respectively, to extensile swimmers,
that push fluid back with their tails and move forward, and
contractile swimmers, that advance by pulling fluid toward
themselves from the front. Thus, in Eq. (4), σa ¼ Wc. The
polar contribution to the active stress, given at leading order
in a gradient expansion by the γa term in Eq. (4), arises
[62,67] if the force dipole on each particle is displaced with
respect to the center of drag of the particle, as it must be to
achieve locomotion. From the foregoing, it is plausible that
γa should be proportional to σa, with the proportionality
factor being a length that measures the fore-aft asymmetry
of the active particles. In principle, all parameters in our
equations should be functions of the local concentration c.
Phenomenologically, σa and γa are tied to the presence of
active particles and should, therefore, be proportional to c
for c → 0. In the simple microscopic picture discussed
above, ifW is treated as an intrinsic single-particle property
and, therefore, independent of c, the proportionality is
exact. The contribution

Σr ¼ 1 − λ

2
ph −

1þ λ

2
hp − lð∇hþ∇hTÞ ð5Þ

is the reversible thermodynamic stress for an equilibrium
polar liquid crystal. The expression (5) extends the form
found in Refs. [2,68] to include the leading-order polar l
term, which is the Onsager counterpart of the polar flow-
coupling term l∇2u in Eq. II A, discussed in Refs. [60,61].
h ¼ −δF=δp is the molecular field conjugate to p, derived
from a free-energy functional

F ¼
Z

d3r

�
1

4
ðp · p − 1Þ2 þ K

2
ð∇pÞ2 − Ep · ∇c

�
ð6Þ

favoring a p field of uniform magnitude [69] which we
rescale to unity. A single Frank constant [70–72] K
penalizes gradients in p, and E promotes alignment of p
up or down gradients of c, according to its sign. μ is the
shear viscosity of the suspension, and Γ, the collective
rotational mobility for the relaxation of the polar order
parameter field, is expected to be of the order of 1=μ. λ is
the nematic flow-alignment parameter [73,74], and l,
with units of length, governs the lowest-order polar
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flow-coupling term [60,61]. If our equations were derived
from a microscopic model of particles in a fluid, we expect
that both l and the length γa=σa would be related to a fore-
aft asymmetry in the dimensions of the active particles.

1. Essential and incidental polar contributions

Equations (1)–(3) are endowed with a surfeit of param-
eters originating in the polar character of our system—the
speeds v0 and v1 at which the orientation advects itself and
the concentration, respectively, the polar active stress
coefficient γa and the passive polar flow-coupling length
scale l. In the work [10] that initiated the study of the
hydrodynamics of active liquid crystals, the polar character
of the order parameter of a flock plays an important role,
combining with inertia to yield a propagative mode
structure. As this structure is a leading-order feature in a
gradient expansion, neither γa nor l, which enter at next-to-
leading order relative to σa in Eq. (4) and 1� λ in Eqs. (5)
and II A, respectively, were considered, and polar effects
thus enter [10] only through v0 and v1. The instability of
active liquid crystals in the Stokesian domain—the other
major finding of Ref. [10]—commands much greater
interest in the field thanks to its connection to experimental
realizations in cellular and microbial settings. An analysis
that ignores polarity altogether and works only with the
axis of orientation offers a satisfactory conceptual under-
standing of that instability [2,30], though interesting com-
plexities arise [15] in a Stokesian setting through the polar
parameters γa, v0, and v1. A final remark in this context is
that polarity asserts its presence in any formulation in terms
of a vector order parameter p, even if the equations of
motion are invariant under p → −p, through the nature of
topological defects [20,75].
For the purposes of the present work, what matters is that

the self-advection speed v0 plays a distinct—and crucial—
role. The other polar parameters contribute in an incidental
manner. First, we are concerned here only with the
extensile case σa > 0, for which the instability mode is
bend, which decouples from concentration in the linear
theory. In what follows, we therefore ignore the concen-
tration field, and, hence, v1 drops out of our analysis.
Next, as we show in the Appendix B, it is only through
v0—in the form ρv20 and its competition with σa—that the
stabilizing effects of inertia enter our treatment. γa and l
leave unaltered both the coefficient of the OðqÞ contri-
bution to the mode frequency and the parameter value at
which the instability growth rate changes from OðqÞ to
Oðq2Þ. They simply shift the coefficients of the Oðq2Þ
piece of the mode frequency by amounts of relative order
unity. We, therefore, work with an economical description
in which γa and l are zero and polar effects enter only
through v0 and, of course, the nature of the allowed
topological defects. Crucially, v0 and σa are independent
quantities in our coarse-grained treatment, a point we
return to later in the paper.

B. Linear stability analysis

Defining the ordering direction to be x̂ and directions in
the yz plane as ⊥, we investigate the stability of a uniform
ordered flock (c ¼ c0, u ¼ 0, and p ¼ x̂), which is a
stationary solution of Eqs. (1)–(3) to small perturbations
(δu⊥; δp⊥; δc), where the presence of only the ⊥ compo-
nents is a result of incompressibility and the “fast” nature of
px. We present here the results for the case where the
concentration field c is removed from the analysis. This
case is sufficient for our purposes, because c does not
participate significantly in the linear instabilities of rel-
evance, as we now argue. Taking the curl with respect to
∇⊥ eliminates c from the ⊥ component of Eq. (II A).
A similar curl removes it from the ⊥ component of Eq. (1)
as well. Thus, concentration does not participate in the
linear dynamics of the twist-bend mode [10]. The three-
dimensional instability of extensile active fluids is known,
numerically, to be twist dominated [76], an observation
for which our linear stability analysis below provides the
natural explanation. A description without a concentration
field should, thus, be a reasonable guide to instabilities
and active turbulence in our system. It is important to note
that the neglect of the concentration field in our treatment
does not amount to an incompressibility constraint on the
polar order parameter field. A formal connection between
the complete equations and those without a concentration
field can be achieved by introducing birth and death of
particles so that c becomes “fast” [77] and can be
eliminated in favor of the slow variables p⊥ and u⊥, with
at most a finite shift in parameter values in the equations
for the slow variables. Changes in the linear stability
analysis upon inclusion of the concentration are quanti-
tative, not qualitative, and can be found in the
Appendix A. Defining the projector

Tq ≡ I − q̂ q̂ ð7Þ

transverse to q and linearizing Eqs. (1) and II A about the
ordered state, we find

ðρ∂t þ μq2Þδu⊥q ¼ −iTq ·

��
σa þ

λ − 1

2
Kq2

�
x̂q⊥

þ qx

�
σa þ

λþ 1

2
Kq2

�
I
�
· δp⊥q; ð8Þ

∂tδp⊥q ¼ þi

�
λþ 1

2
qxI −

λ − 1

2

q⊥q⊥
qx

�
· δu⊥q

− ðiv0qx þ ΓKq2Þδp⊥q: ð9Þ

As in Ref. [10], the divergence and curl of Eqs. (8) and (9)
describe, respectively, the dynamics of splay and twist,
with an admixture of bend in each case for qx ≠ 0.
Defining ϕ to be the angle between the wave vector q
and the alignment (x̂) direction, the resulting dispersion
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relations for the frequency ω, valid for all q, for modes of
the form eiðq·r−ωtÞ, are

ω ¼ ωs
� ¼ 1

2
v0q cosϕ − i

μþ
2ρ

q2 �
�
σa
2ρ

�
1=2

× ½AðϕÞq2 þ iBðϕÞq3 þGðϕÞq4�1=2 ð10Þ

for the splay-bend modes and

ωt
� ¼ 1

2
v0qcosϕ− i

μþ
2ρ

q2�
�
σa
2ρ

�
1=2

× ½Að0Þcos2ϕq2þ iBð0Þcosϕq3þ ḠðϕÞq4�1=2 ð11Þ

for the twist-bend modes. In Eqs. (10) and (11), we
define AðϕÞ≡ R cos2 ϕ − cos 2ϕð1þ λ cos 2ϕÞ, BðϕÞ≡
ðv0μ−=σaÞ cos ϕ, GðϕÞ ¼ −ðμ2−=2ρσaÞ þ ðK=2σaÞð1þ
λ cos 2ϕÞ2, and ḠðϕÞ ≡ −ðμ2−=2ρσaÞ þ ðK=2σaÞð1 þ
λÞ2 cos2 ϕ [78] with

R≡ ρv20=2σa; ð12Þ

and μ� ≡ μð1� βÞ, where β≡ ΓKρ=μ should be of the
same order as α≡ Kρ=μ2 because the mobility Γ ∼ 1=μ.
For conventional liquid crystals α, β ≪ 1.
When R ¼ 0, the extensile (σa > 0) systems of interest

here present a bend instability [see Eqs. (10) and (11)] with
invasion speed

ffiffiffiffiffiffiffiffiffiffi
σa=ρ

p
. For v0 > 0, disturbances can out-

run this invasive growth. The dimensionless combination R
describes this competition. Note that the contribution of R
vanishes for pure splay, Eq. (10) at ϕ ¼ π=2, so motility
cannot stabilize contractile (σa < 0) flocks in fluid.

1. Small-q behavior: The OðqÞ and Oðq2Þ instabilities
Let us first examine the small-q behavior. Expanding

Eqs. (10) and (11) up to order q2, we then find

ω ¼ ωs
� ¼ q

2

�
v0 cosϕ�

�
2σa
ρ

AðϕÞ
�
1=2

�

−
i
2

μ

ρ
q2
�
1þ β ∓ ð1 − βÞ

�
Rcos2ϕ
AðϕÞ

�
1=2

�
ð13Þ

for the splay-bend modes and

ω ¼ ωt
� ¼ q

2
cosϕ

�
v0 �

�
2σa
ρ

Að0Þ
�
1=2

�

−
i
2

μ

ρ
q2
�
1þ β ∓ ð1 − βÞ

�
R

Að0Þ
�
1=2

�
ð14Þ

for the twist-bend modes. Here, Að0Þ ¼ Aðϕ ¼ 0Þ ¼
R − ð1þ λÞ. One note of caution: The small-q expansion
that leads to Eq. (14) assumes v0q cosϕ > q2μ=ρ, which
means that it does not apply for ϕ ¼ π=2, i.e., pure twist.

It does, however, hold for any ϕ ∈ ½0; π=2Þ, but the closer ϕ
is to π=2, the smaller q must be for the result to apply.
Two of our main results now follow. If R < 1þ λ,

Eq. (14) signals a bend instability with small-q growth
rate ∼q. This result is discussed in the strictly apolar case
v0 ¼ 0 in Ref. [10] and can be viewed as the small-q
extension of the Stokesian bend instability [10]. However,
if R > 1þ λ, so that the OðqÞ instability is averted,
0 < 1 − ð1þ λÞ=R < 1. If R is not too large, this result
means the coefficient of iq2 in Eqs. (13) and (14) is
positive, signaling a small-q instability with diffusive
growth. This Oðq2Þ instability exists for R between
R1 ¼ 1þ λ and

R2 ¼
μ2þ

μ2þ − μ2−
R1 ¼

1þ λ

4β
ð1þ βÞ2: ð15Þ

For R > R2, the flock is linearly stable. If β ≪ 1 as in
molecular systems, R2 ≫ R1, and the Oðq2Þ instability
occupies a large range of R. In the β ¼ 0 limit, the
uniformly ordered flock is always linearly unstable, with
small-q growth rate ∼q for R < 1þ λ and ∼q2 for
R > 1þ λ. Figure 1 summarizes the small-q stability
behavior.
Note that the Oðq2Þ instability can be eliminated in the

special case β ¼ 1, i.e., μ=ρ ¼ ΓK. Noting that Γ should be
roughly 1=μ, this condition implies K ¼ μ2=ρ, an interest-
ing condition that equates a Frank constant (which, recall,
has units of force in three dimensions) to Purcell’s intrinsic
force scale [79] μ2=ρ for three-dimensional viscous fluids.
As we remark above, β in molecular or colloidal systems is
about 10−4 [66,80], so requiring it to be of the order of unity
amounts to insisting that the swimmers have an excep-
tionally strong aligning interaction. This possibility cannot
be ruled out a priori, as alignment in living systems is
likely to be active and behavioral, not a passive mechanical
torque.

2. Large-q dynamics and the Stokesian limit

Having established the general linearized behavior of
active extensile liquid crystals in the true hydrodynamic
regime of small wave numbers, we turn our attention to
large wave numbers. Two length scales are important here:

lv ≡ μ=v0ρ and lσ ≡ μ=
ffiffiffiffiffiffiffi
ρσa

p ¼ R1=2lv; ð16Þ

below which viscosity overwhelms the inertial effects of
self-advection, and

lK ≡ ffiffiffiffiffiffiffiffiffiffiffi
K=σa

p
; ð17Þ

below which Frank elasticity dominates active stresses. For
molecular or colloidal systems, for which, as we remark
earlier, α is exceedingly small [66,80], lK=lv ¼

ffiffiffiffiffiffi
αR

p
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should be small too except in the unlikely condition
of ultrahigh self-advection speeds. The wave number
range maxðl−1

v ;l−1
σ Þ ≪ q ≪ l−1

K should be substantial.
Expanding Eqs. (10) and (11) for q ≫ maxðl−1

v ;l−1
σ Þ,

we find, to leading order in α and β, that the splay-bend
mode that goes unstable at small R has the form

ωs ¼ −i
σa
2μ

AðϕÞ þ v0q cosϕ

− i

�
Γμþ 1

4
ð1þ λ cos 2ϕÞ2

�
K
μ
q2

¼ −
i
2μ

�
ρv20
2

cos2ϕ − σa cos 2ϕð1þ λ cos 2ϕÞ
�

þOðq;−iq2Þ ð18Þ

and the corresponding twist-bend mode has frequency

ωt ¼ −i
σa
2μ

Að0Þcos2ϕþ v0q cosϕ

− i

�
Γμþ 1

4
ð1þ λÞ2cos2ϕ

�
K
μ
q2

¼ −
i
2μ

�
ρv20
2

− ð1þ λÞσa
�
cos2ϕþOðq;−iq2Þ; ð19Þ

where AðϕÞ is as defined in Eqs. (10) and (11). The
Stokesian instability of active liquid crystals [2,10,11], with
a single growth-rate scale σa=μ, emerges from Eqs. (18)
and (19) if ρ is set to zero. For σa < 0, contractile or pusher
suspensions, which is not the case we are focusing on in
this work, Eq. (18) predicts an instability for ϕ > π=4,
which is splay dominated. For σa > 0, the extensile or
pusher case, Eq. (18) predicts an instability for ϕ < π=4,
which is bend dominated. More importantly, Eq. (19)
predicts an bend instability for all directions other than
pure twist ϕ ¼ π=2, although, of course, the value of q
below which the instability is seen approaches 0 as
ϕ → π=2. In general, however, Eqs. (18) and (19) are
not Stokesian expressions but short-wavelength limits
of the linearized dynamics of a polar active suspension
with inertia, which enters through R. We see, in particular,
that the stability criteria in this large-q regime are
identical to those for the OðqÞ mode at small q. Thus, a
twist-bend instability, with a growth rate ∼σa=μ for
maxðl−1

v ;l−1
σ Þ ≪ q ≪ l−1

K , takes place if R < 1þ λ.
This result establishes our claim that the OðqÞ instability
is the small-q extension of the Stokesian instability [10] of
active suspensions. The Oðq2Þ instability that intervenes at
small q as R is increased does not reflect itself in the large-q
dynamics. Figure 2 displays the growth or decay rates of
the twist-bend mode as a function of the wave number as R
is varied at β ¼ 10−4.
It is important to keep in mind that the active stress σa is

a partial description of the mechanics of self-propulsion

based on an estimate of the force-dipole concentration and
is not a priori determined by v0. To take an extreme case,
Stokesian swimmers with no force dipole exist, e.g., the
pure quadrupole [79,81,82]. Assuming a volume fraction of
the order of unity, let us nonetheless try to estimate R for
typical swimmers of speed v0 (the distinction between the
speeds of self-propulsion and self-advection being unim-
portant for this discussion) and size b (although we must
remember that this size is notional in our coarse-grained
description). For Reynolds number Re small at the scale of
the individual organism, it is plausible that σa ∼ μv0=b. In
that case, R≡ ρv20=2σa ∼ ρv0b=μ ¼ Re ≪ 1, so we can
replace Eqs. (18) and (19) by their Stokesian approxima-
tions. For swimmers at a nonzero Reynolds number, it is
less obvious how to estimate σa. If we take it still to be a
viscous stress, then R ¼ Re continues to hold, so now R
dominates in Eqs. (18) and (19), or in Eqs. (10) and (11),
guaranteeing stability. Even if σa ∼ ρv20, R ∼ 1 and it is
plausible that the instability is averted [83].

Dominance of twist in the three-dimensional extensile
instability.—A noteworthy feature, to our knowledge not
discussed in the literature, emerges in our three-
dimensional analysis: There are two families of bend
instability—mixed with splay as in Eqs. (13) and (18)
and twist as in Eqs. (14) and (19). Interpolation with bend
mitigates the instability in Eqs. (13) and (18), crossing over
to stability for large enough ϕ, but twist in Eqs. (14) and
(19) has no such effect. The twist-bend instability Eqs. (14)
and (19) should thus dominate, as it occurs for all ϕ except
precisely π=2. This abundance of twisted unstable modes in
Eqs. (14) and (19), independent of the roles of polarity and

FIG. 2. Growth rate versus wave number. Gray line,
Stokesian limit; black dotted line, OðqÞ unstable, lv ¼ 1,
and R ¼ 5 × 10−2; black dash-dotted line, Oðq2Þ unstable,
lv ¼ 3 × 10−3, and R ¼ 4.5 × 103; black dashed line, stable,
lv ¼ 3 × 10−4, and R ¼ 4.5 × 105. Arrows indicate the wave
number corresponding to lv for the unstable cases. For all the
dispersion curves, we use ϕ ¼ 55° and K ¼ 10−6, which sets
lK ¼ 3.2 × 10−3.
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inertia, is doubtless the explanation of the numerical
observations of Shendruk et al. [76] in their study of
three-dimensional extensile active nematics.
We summarize this section by noting that, when inertia is

taken into account, orientable active suspensions can have
two types of linear instability at small wave number q,
governed by the dimensionless parameter R [Eq. (12)]. The
instability growth rates are OðqÞ for R < R1 ¼ 1þ λ,
where λ is a flow-alignment parameter, and Oðq2Þ for
R1 < R < R2 ∼ R1=β, where β is defined in Eqs. (10) and
(11). Linearly stable behavior is found for R > R2. As
β ∼ 10−4 in molecular systems, the Oðq2Þ-unstable regime
occupies a rather large range in parameter space. Indeed,
one could argue that the typical behavior is that corre-
sponding to the β ¼ 0 limit, in which the aligned state is
always linearly unstable, either at OðqÞ or at Oðq2Þ. In
Sec. III, we gain insight beyond this linear analysis through
a detailed numerical study to discover the long-time fate of
the system in these unstable regimes.

III. NUMERICAL STUDIES OF ACTIVE
HYDRODYNAMICS WITH INERTIA

In the following section, we describe detailed numeri-
cal solutions of our equations, with an emphasis on the
changes in behavior as R is varied. We first verify the
predictions of our linear stability analysis. Next, for
extensile suspensions, we reveal an inertia-driven non-
equilibrium phase transition from a disordered defect-
turbulent state for 0 < R < R1 to an ordered phase-
turbulent state for R1 ≤ R < R2. We characterize these
using the polar order parameter, that is, the macroscopic
steady-state average of p, correlation functions, and
energy spectra.

A. Direct numerical simulations (DNS)

We numerically integrate Eqs. (1) and II A in square and
cubic domains of volume Ld in dimensions d ¼ 2 and 3.
Spatial discretization, with Nd collocation points, is
conducted by employing a pseudospectral method [84]
for Eq. (1) and a fourth-order central finite-difference
scheme for Eq. II A. For temporal integration, we use a
second-order Adams-Bashforth scheme [85]. Consistent
with the linear stability analysis conducted earlier,
we choose a uniform ordered state with transverse
monochromatic perturbation as the initial condition, i.e.,
u ¼ 0þ Aê⊥ cos q · r, p ¼ x̂þ Bê⊥ cos q · r, where ê⊥ ≡
ðŷþ ẑÞ= ffiffiffi

2
p

is a unit vector in the plane perpendicular to the
ordering direction, and we make the arbitrary but accept-
able choice A ¼ B ¼ 10−3.
We monitor the time evolution of perturbations and, in

the turbulent steady state, investigate the statistical proper-
ties of the velocity and the director fields. In Table I, we
summarize the parameters used in our DNS.

B. Initial growth of instabilities

We now present a comparison between the short-time
growth obtained from the DNS with the analytical pre-
dictions of the linear stability analysis. The plot of the
bend-twist dispersion curve given by Eq. (11) for ϕ ¼ 55°
is shown in Fig. 3. The black dots indicate the initial
temporal growth rate of perturbations obtained from our
DNS, which shows excellent agreement with the analytical

TABLE I. Spatial dimension D of the domain and parameters
L, N, v0, K, and R used in our direct numerical simulations. The
suspension density ρ ¼ 1, λ ¼ 0.1, and μ ¼ 0.1 and the rotational
mobility Γ ¼ 1 are kept fixed for all the runs. Note that as R
approaches R2 the range of linearly unstable modes shrinks and is
restricted to small wave numbers, i.e., large length scales. To
resolve these unstable modes as well as the small-scale fluctua-
tions that arise because of the nonlinear couplings, for R ¼ 8 we
use a square domain with each side of length 160π and discretize
it with 40962 collocation points.

D L N v0ð×10−2Þ Kð×10−3Þ R≡ ρv20=2σa

SPP1 3 2π 128 3.16 1 0.02,0.0625
SPP2 3 10π 160 0.7,13.4 2 0.01,4
SPP3 3 10π 320 3.16 1 0.1–2
SPP4 2 20π 1024 3.16 1 0.05–2.0
SPP5 2 32π 1024 3.16 1 0.15,0.20
SPP6 2 40π 2048 3.16 1 0.25,0.30,0.35
SPP7 2 64π 3072 3.16 1 0.4–0.6
SPP8 2 80π 4096 3.16 1 0.7
SPP9 2 80π 2048 3.16 1 1.25
SPP10 2 160π 4096 3.16 1 8.0
SPP11 2 128π 8192 3.16 1 0.01

FIG. 3. Comparison of the growth rates obtained from
dispersion relation Eq. (11) with those from DNS (black dots).
Inset: initial time evolution of the perturbation amplitude
jq⊥ × δp⊥qj forOðqÞ: R ¼ 10−2 (a) andOðq2Þ: R ¼ 4 (b) growth
rates (run SPP2). Note that we choose ϕ ¼ 55° for the initial
perturbations.
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results. Furthermore, our simulations correctly capture the
exponential and oscillatory characters of the growth for
R < R1 and R1 < R < R2, respectively. Note that, for
R < R1, the exponential growth rate of perturbations is
much faster than the oscillatory kinematic contribution
Re½ω� ¼ v0q cosϕ. For R1 < R < R2, Re½ω� has contribu-
tions from both the kinematic and the inertial terms.
Therefore, we observe an exponential growth of
jq⊥ × δp⊥qj for R < R1 [see Fig. 3(a)] but oscillatory
growth for R1 < R < R2 [see Fig. 3(b)].

C. A flocking phase transition

We now investigate the morphology and statistical
properties of the orientation and flow emerging from the

instabilities discussed above. Figure 4 shows the typical
flow structures observed in our DNS with increasing R in
the statistically steady state. For 0 < R < R1, we observe
hedgehog defects. The interdefect spacing grows with
increasing R. Unexpectedly, when R increases past the
first threshold R1, a fluctuating but on average aligned
state emerges. As we remarked in the introduction, this
state is clear numerical evidence that R ¼ R1 marks a
nonequilibrium phase transition from a statistically iso-
tropic state to a flock or, in the terminology of spatiotem-
poral chaos, from defect turbulence to phase turbulence
[51,86,87]. In the latter state, long-wavelength statistical
variation of the broken-symmetry variable is present, but
the amplitude of the order parameter is not destroyed by
defects. We do not, however, measure the system-size

FIG. 4. Increasing interdefect distance as a function of R. Order parameter streamlines for 2D (runs SPP4, SPP6, and SPP9):
(a) R ¼ 0.1, (b) R ¼ 0.25, (c) R ¼ 8, and (d) R > 12; streamlines in y ¼ 0 plane for 3D (runs SPP1 and SPP3): (e) R ¼ 0.02,
(f) R ¼ 0.0625, (g) R ¼ 1.25, and (h) R > 12. Typical hedgehogs are marked with filled black circles, and red squares indicate saddles.
(i) Enlarged view of the three-dimensional order parameter streamlines showing the complex patterns between a hedgehog-saddle-
hedgehog configuration in (f). (j) Three-dimensional nearly ordered configuration in the phase-turbulent regime in (g).
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dependence of the positive Lyapunov spectrum to establish
spatiotemporal chaos quantitatively. We do not know the
mechanism that serves to preserve macroscopic flocking
order despite the Oðq2Þ instability. It appears that the
growing amplitude of perturbations at small wave number
q triggers nonlinear effects which couple to large q where
the dynamics is stable. The behavior is reminiscent of that
reported by Jayaprakash, Hayot, and Pandit [87] for the
Kuramoto-Sivashinsky (KS) equation. The KS equation is
a deterministic partial differential equation (PDE) with a
negative diffusivity and, hence, a linear instability with
growth rate ∝ q2 at small wave number q, peaking at a
wave number q�, stable behavior at large q thanks to terms
at higher order in q, and a nonlinearity that transfers weight
from small to large q. Jayaprakash, Hayot, and Pandit [87]
carry out a numerical coarse-graining, i.e., a spatial low-
pass filtering, on the two-dimensional KS equation to show
that the effective equations of motion for the modes with
q < q� are those of a stochastic PDE with a positive
diffusivity. It is possible that such a mechanism is at work
in our case, but to settle this issue will require a treatment
analogous to that of Ref. [87] for our substantially more
complicated equations.
We now focus on the properties of the nonequilibrium

phase transition. In Fig. 5(a), we plot the magnitude jhpij of
the polar order parameter in the statistically steady state
with increasing R, where angle brackets h·i denote spatio-
temporal averaging. For R < R1, jhpij is consistent with
zero. We observe an onset of polar order once R increases
beyond R1 ≡ 1þ λ. Figure 5(a) shows the order parameter
for the largest system sizes studied; at large R, the values at
half that system size are very similar. However, a detailed
finite-size scaling analysis needs to be undertaken to find
the correct scaling near the critical region [88].
In the defect-turbulence regime, we study the steady-

state correlation functionCðrÞ ¼ hpðxþ rÞ · pðxÞi=hpð0Þ2i,
where the angular brackets denote spatial averaging.We plot

the correlation function CðrÞ versus r in Fig. 5(b) and
evaluate the correlation length by fitting an exponential
decay expð−r=ξÞ to the numerical data [89]. We see that the
correlation functions for different values of R < R1 fall on a
single curve plotted against r=ξ. Moreover, from Fig. 5(c), ξ
grows and possibly diverges as R → R1; our limited data
points are consistent with an exponent of unity. Further
progress requires finite-size scaling studies and measure-
ments of order-parameter correlations at asymptotically
small wave numbers [88] for R > R1 to test the nature of
the ordered state.

D. Energy spectrum

A state of complex, correlated but disorderly flow is seen
in a wide variety of suspensions of motile organisms and
motorized biofilaments. It is termed active turbulence and
analyzed through the study of energy spectra as in conven-
tional turbulence [16–18,26,29,32,34,36,90–93]. However,
these studies all consider systems with negligible inertia.
Here, we examine numerically the spatial power spectral
densities for the polar order parameter and the hydrody-
namic velocity field, in the defect- and phase-turbulent
regimes—the latter owing its existence to inertia. In keeping
with typical turbulence studies, we use the shell-averaged
energy spectra of the velocity and the order parameter

EuðqÞ ¼
X

q−1=2≤jmj<qþ1=2

jumj2 and

EpðqÞ ¼
X

q−1=2≤jmj<qþ1=2

jpmj2; ð20Þ

whereum and pm are the Fourier coefficients of thevelocityu
and order parameter p fields.
Among the features of interest are Porod’s law regimes

corresponding to the fields of topological defects. In
addition, for R < R1, we find velocity correlations of

(a) (b) (c)

FIG. 5. (a) Variation of the order parameter jhpij with R for our 2D and 3D simulations (see Table I), with the shaded region indicating
the transition regime around R ¼ R1 as predicted by the linear stability analysis. For each data point, the spatiotemporal average is
calculated from about 60 statistically independent realizations, and the standard deviation about the average is shown as the error bar.
(b) Semilog plot of the correlation function CðrÞ versus r for R ¼ 0.3, 0.5, and 0.7 (R < R1, runs SPP6–8). Dashed black lines indicate
the exponential fit. Inset: collapse of steady-state correlation function when distance is scaled with the correlation length. (c) Plot of
inverse correlation length 1=ξ versus 1=R. The continuous purple line shows the linear fit to 2D data. Note that from the intercept of the
linear fit on the horizontal axis we conclude that the correlation length diverges around R ¼ R1.
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Ornstein-Zernike form, with a correlation length much
larger than that of the order parameter, whose origin we
discuss below. For R > R1, the phase-turbulent but ordered
state, we present preliminary evidence of fluctuations of the
broken-symmetry or Nambu-Goldstone mode. The behav-
iors of EpðqÞ and EuðqÞ for a range of values of R are
displayed in Figs. 6 and 7.

1. Energy spectra of the order parameter

We observe that, for R < R1, the spectrum peaks around
qξ ∼ 1. At moderate values of R, 0.1 < R < 1, because of
exponential decay in orientational correlations, we expect
EpðqÞ ∼ 1=ð1þ ξ2q2Þ for qξ > 1. On the other hand, for
R ≪ 1, because of defects, we expect a Porod’s scaling [94]
EpðqÞ ¼ q−3 in two dimensions and EpðqÞ ¼ q−4 in three
dimensions for qξ ≫ 1. Recent studies on dry active matter
[75] using a scale-by-scale budget analysis reveal that, even

in the presence of defects, the nonlinear transfer mecha-
nisms could lead to a non-Porod scaling. Unfortunately,
we do not have sufficient scaling range—due to modest
grid resolution at R ≪ R1—to undertake such analysis. We
emphasize that the quoted exponent values are empirically
determined by conservatively selecting an appropriate
dynamic range of wave numbers away from the smallest
(approximately 1=L) and the largest, viz., qK ≡ 2π=lK ,
beyond which Frank elasticity dominates.
In the phase-turbulent regime R1 < R < R2, we observe

EpðqÞ ∼ q−3 for R close to R1. As R approaches R2, the
range of linearly unstable modes shrinks and is restricted to
wave numbers close to large scales [small q; see Fig. 6(b)].
For the linearly unstable modes, we observe a weak q
dependence, whereas for wave numbers outside the linearly
unstable regime, the nonlinearities lead to a transfer of
order-parameter fluctuations to small scales with a power-
law spectrum EpðqÞ ∼ q−3.8 [see Figs. 6(b) and 6(d)].

(a) (b)

(c) (d)

FIG. 6. Order parameter energy spectrum EpðqÞ for different values of R for (a),(b) two-dimensional [runs SPP4, SPP6, SPP9, and
SPP10] and (c),(d) three-dimensional [run SPP3] active suspension. For R < R1 and qξ > 1, we observe a Porod’s tail due to defects,
i.e., EpðqÞ ∼ q−3 in 2D and EpðqÞ ∼ q−4 in 3D. As R approaches R1, we find EpðqÞ ∼ 1=½1þ ðqξÞ2� consistent with the exponential
decay of the correlation function. For R1 < R < R2, EpðqÞ ∼ q−2.6 for R ¼ 1.25, and the slope increases to q−3.8 for R ¼ 8. For different
values of R, dashed vertical lines (with the same color as markers) indicate the largest q which is linearly unstable. Insets (a1), (b1), (c1),
and (d1) show the spectra Epk for components of p along the mean ordering direction and Ep⊥ for a representative direction orthogonal

to it. For R < R1, fluctuations are isotropic, whereas for R > R1, transverse fluctuations dominate, with Ep⊥ ≈ 102Epk . Note that,
although the mean order parameter is, of course, consistent with zero for R < R1, we use the numerically measured mean ordering
direction to define jj and ⊥. Inset (b2) shows the growth rate for R ¼ 8. Note that only a small number of modes between q ¼ 0 and
q ¼ 0.5 are linearly unstable.
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2. Energy spectra of the velocity

In Eq. (1), we expect the dominant balance to be between
acceleration and activity, as the Reynolds number obtained
by comparing the advective and viscous terms, based on
the root-mean-square hydrodynamic velocity, is small
(Re≡ ρurmsξ=μ ≤ 0.5) [95]. We, therefore, expect, for
small q, ωuq ∼ σaq

P
k pkpq−k. If we assume that the

dominant contribution to the convolution comes from terms
with jkj ¼ jq − kj ¼ q, i.e., on the same shell in Fourier
space, we get ωuq ∼ σaqEpðqÞ. Using ω ∼ v0q [see
Eq. (10)], we get EuðqÞ ∼ ðσa=v0Þ2EpðqÞ2. The plot in
Fig. 7(a) shows good agreement between EuðqÞ obtained
from our DNS and the conjecture above for small q.
For large q > 2π=lσ , we expect viscous dissipation to
be dominant, and, therefore, similar to the dissipation range
in hydrodynamic turbulence, we expect an exponential
decay in the energy spectrum EuðqÞ ∼ expð−akδÞ [96,97].
From our numerical simulations, we find δ ¼ 1.
It is worth noting that, although turbulence in an apolar

active suspension is controlled by half-integer defects in 2D
[17,18] and disclination loops or line defects in 3D [98,99],
the flow energy spectrum EuðqÞ ∼ q−3.5–q−5 reported in
those works on active nematics does not differ drastically
from our observation EuðqÞ ∼ q−4.8–q−6 for defect turbu-
lence in the R < R1 regime in our polar system.

3. Energy spectra for R ≪ R1

For R ≪ R1, the interdefect separation ξ is comparable to
lσ; however, for length scalesmuch larger than ξ, the system
should in effect be an unsteady Stokes fluid with fluctuating
stresses with short-ranged spatial correlation and with a
correlation time τ. In such a scenario, it is straightforward to
show [100,101] that the equal-time velocity correlator has
Ornstein-Zernike form, so that EuðqÞ ∼ qD−1=½ðqlτÞ2 þ 1�

for qξ ≪ 1, where lτ ¼
ffiffiffiffiffiffiffiffiffiffi
μτ=ρ

p
is the distance vorticity

diffuses in a time τ. Note: (a) although the analysis of
Ref. [100] contains this result, they do not emphasize the
distinct roles of ξ and lτ. (b) The power-law correlations
discussed in the inertialess treatment of Refs. [93,102]
amount to the qlτ ≫ 1 regime of the above.
To investigate this regime, we perform high-resolution

simulations in two dimensions with large system size and
small R ¼ 0.01 (run SPP11) to ensure L ≫ ξ. The plot in
Fig. 8(a) shows that EpðqÞ ∼ q for qξ ≪ 1, indicating that
order parameter fluctuations are uncorrelated. We, there-
fore, expect the active stresses to be spatially uncorrelated.
Consistent with the arguments above, the plot in Fig. 8(b)
shows that the kinetic energy spectrum follows EuðqÞ ∼
q=½ðqlτÞc þ 1� with c ≈ 2.3 (obtained from a least-squares
fit) close to the theoretically predicted value c ¼ 2. Note
that the length scale lτ is larger than the interdefect
separation, lτ=ξ ≈ 3. As R → 0, we expect ξ → 0 and
lτ ≫ ξ; therefore, the peak of spectra in Fig. 8(b) would
shift to very small q ∼ 1=lτ. Thus, our analysis naturally
recovers and explains the recently observed EuðqÞ ∼ q−1

scaling of active nematic turbulence in the Stokesian
regime [93].

4. Evidence for the broken-symmetry mode?

We close our discussion of energy spectra with a
speculation backed by qualitative numerical measurements.
In any noisy ordered state in which a continuous symmetry
has been spontaneously broken, the spatial power spectral
density should contain information about the broken-
symmetry modes, i.e., the components of the order param-
eter field perpendicular to the mean ordering direction,
whose variance should diverge at a small wave number
[56,103,104]. This variance should be seen in the energy
spectrum in the ordered but noisy phase-turbulent state we

(a) (b)

FIG. 7. Kinetic energy spectrum EuðqÞ (filled symbols) for different values of R for 2D active suspension [runs SPP4, SPP9, and
SPP10] for (a) R < R1 and (b) R > R1. Similar to the order parameter spectrum, we observe power-law behavior for 1 < qξ < qσξ,
where qσ ≡ 2π=lσ . For small q, we find a good agreement between the energy spectrum and the prediction EuðqÞ ∼ ½EpðqÞ�2 (unfilled
symbols). For R > R1 and large q (q > qσ), the energy spectrum shows an exponential decay EuðqÞ ∼ expð−0.31qÞ (black line). For
different values of R, dashed vertical lines (with the same color as the markers) are drawn at q ¼ qσ .
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observe for R1 < R < R2. We offer preliminary evidence
for such fluctuations. Insets (b1) and (d1) in Fig. 6 show
that for R > R1 the contributions to the energy spectrum
from components of p in a representative (⊥) direction
perpendicular to the mean direction of ordering far out-
weigh those from components in the ordering direction,
especially at small q. This result is consistent with the
expectations of an enhanced variance mentioned above. We
check for consistency that the spectra for the disordered
phase for R < R1 [insets (a1) and (c1) in Fig. 6] show no
such anisotropy.
A quantitative study of the spectrum of fluctuations at

small wave number, to test whether the regime R1 < R <
R2 has the classic features of a broken-symmetry phase,
makes high computational demands. The wavelength at
which the linear instability growth rate is maximum can be
viewed as the scale of energy injection and, therefore, as
the small-scale cutoff for a long-wavelength study of the
ordered phase. At the same time, scales substantially
smaller than this cutoff must be resolved so that the
instability and the nonlinear effects leading to phase
turbulence can operate. If such a simulation is realized,
the approach of choice would be to emulate [87] and
construct an effective stochastically forced theory for the
small-q modes via numerical coarse-graining.

IV. SUMMARY AND PROSPECT

We have shown that extensile active polar liquid crystals
and swimmer suspensions can outswim their viscous
instability. Their fate is governed by a control parameter
R, the ratio of the inertia of self-advection to the scale of
active stress. Our stability analysis and numerical studies
find evidence for a continuous flocking transition with a
growing correlation length as R increases past a threshold
of the order of unity, from hedgehog-defect turbulence to a
noisy but ordered phase-turbulent state. A quiescent,
linearly stable ordered state sets in at larger R. These

dramatic advances in the theory of flocks in fluid, whose
instability [10] can now be seen as simply the Stokesian
limit of a rich phase diagram, should stimulate a new wave
of experiments on swimmers at nonzero Reynolds number.
Important directions for the near future are studies of finite-
size scaling and long-wavelength order-parameter correla-
tions for R > R1 to establish the nature of the ordered
phase; the construction of an effective stochastic theory for
the long-wavelength modes, as carried out [87] for the
Kuramoto-Sivashinsky [105,106] equation; the inclusion of
active-particle concentration; the contribution of other polar
terms to the dynamics; and the effect of added random
forcing on our phase diagram. Meanwhile, we look forward
to tests of our theory in experiments on collections of
swimmers at small but nonzero Reynolds number [45], as
well as particle-based numerical simulations featuring, for
example, collections of “spherobots” [107,108].
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APPENDIX A: STABILITY ANALYSIS WITH
CONCENTRATION

We now present the linear stability analysis in presence
of the concentration field. Linearizing Eqs. (1)–(3) about
the base state ðu ¼ 0; p ¼ x̂; c ¼ 1Þ, we get

(a) (b)

FIG. 8. Energy spectra for R ¼ 0.01. (a) Order parameter energy spectra EpðqξÞ. The black dashed line indicates EpðqÞ ∼ q scaling.
(b) Kinetic energy spectra EuðqξÞ. A least-squares fit to the curve aq=½ðqlτÞc þ 1� gives a ¼ 1.6 × 10−5, c ¼ 2.3, and lτ ¼ 1.
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ðρ∂t þ μq2Þδu⊥q ¼ −iTq ·

��
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λ − 1

2
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�
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þ qx

�
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�
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�
· δp⊥q

− iTq · ðσaqxx̂Þδcq; ðA1Þ

∂tδp⊥q ¼ þi

�
λþ 1

2
qxI −

λ − 1

2

q⊥q⊥
qx

�
· δu⊥q

− ðiv0qx þ ΓKq2Þδp⊥q þ iq⊥Eδcq; ðA2Þ

ð∂t þ iv1qxÞδcq ¼ −iv1q⊥ · δp⊥q: ðA3Þ

The dispersion relations for Eqs. (A1)–(A3) are obtained
using the same procedure as highlighted in Sec. II B. The
growth rate of the twist-bend modes is the same as Eq. (11),
because the terms containing concentration fluctuations in
Eqs. (A1) and (A2) point in the direction of q⊥. The growth
rate of the splay-bend modes is identical to Eq. (10) for
v1 ¼ 0, because concentration fluctuations decouple from
the orientation and velocity distortions. For v1 ≠ 0, the
splay-bend modes couple to the concentration fluctuations
and are obtained by taking in-plane divergence (∇⊥·) on
Eqs. (A1) and (A2). We compare the most unstable growth
rate in Fig. 9 and show that the OðqÞ and the Oðq2Þ
behavior at remains unaltered small q.

APPENDIX B: STABILITY ANALYSIS
INCLUDING THE NEGLECTED POLAR TERMS

We now explain the role of the additional polar terms on
the stability thresholds. We first recall the complete Eqs. (1)
and II A with the polar terms:

ρð∂tuþu ·∇uÞ¼−∇Pþμ∇2uþ∇ · ðΣaþΣrÞ and

∂tpþðuþv0pÞ ·∇p¼ λS ·pþΩ ·pþΓhþl∇2u;

where Σa ≡ −σapp − γað∇pþ∇pTÞ, Σr ≡ ½ð1 − λÞph−
ðλþ 1Þhp�=2 − lð∇hþ∇hTÞ, and h ¼ −δF=δp. These
are sufficient for our current purpose, because we already
establish in Sec. II B 1 that for extensile systems, which is
our main focus, the dominant failure modes are the twist-
bend modes which are always decoupled from concen-
tration fluctuations. The dispersion relation for these modes
with these terms is

ωt
� ¼ 1

2
v0q cosϕ − i

μþ
2ρ

q2 �
�
σa
2ρ

�
1=2

�
Að0Þcos2ϕq2

þ iBð0Þ
�
1 −

γað1þ λÞ þ 2lσa
v0μ−

�
cosϕq3

þ
�
ḠðϕÞ þ 2γal

σa

�
q4
�
1=2

; ðB1Þ

where R≡ ρv20=2σa, μ� ¼ μð1� βÞ, β ¼ ΓKρ=μ, BðϕÞ ¼
ðv0μ−=σaÞ cos ϕ, GðϕÞ ¼ −ðμ2−=2ρσaÞ þ ðK=2σaÞð1þ
λ cos 2ϕÞ2, and ḠðϕÞ ¼ −ðμ2−=2ρσaÞ þ ðK=2σaÞð1þ
λÞ2 cos2 ϕ. Comparing Eq. (B1) to the dispersion relation
for γa;l ¼ 0 [Eq. (11) of the main text]

ωt
� ¼ 1

2
v0qcosϕ− i

μþ
2ρ

q2�
�
σa
2ρ

�
1=2

× ½Að0Þcos2ϕq2þ iBð0Þcosϕq3þ ḠðϕÞq4�1=2; ðB2Þ

and working to order q2 we see that the transition between
OðqÞ and Oðq2Þ instabilities, which is determined by Að0Þ,
remains unchanged and that the relative shifts of the
coefficients of q2 in the mode frequencies are of the
order of

D1 ¼ γa=μv0; D2 ¼ lσa=μv0; ðB3Þ

which resemble inverse capillary numbers given that γa and
lσa have units of surface tension. The length l controls

   

FIG. 9. Maximum growth rate of the unstable splay-bend modes for different values of v0 and v1 for (a) OðqÞ∶ R ¼ 0.1 and
(b) Oðq2Þ∶ R ¼ 5 regimes. Note that the dispersion relation for v1 ¼ 0 is identical to Eq. (10) (see the discussion below). The other
parameters are ϕ ¼ 15°, μ ¼ 10−1, ΓK ¼ 10−3, λ ¼ 0.1, and E ¼ 0.05.

INERTIA DRIVES A FLOCKING PHASE TRANSITION IN … PHYS. REV. X 11, 031063 (2021)

031063-13



polar couplings of orientation to flow in the passive theory
and, as such, should be related, in a microscopic theory, to a
geometrical measure of polarity of the constituent particles,
such as a fore-aft size difference. γa, with units of force per
unit length, governs polar active contributions to the stress
tensor. It is then reasonable to expect that γa ∼ σal and,
thus, that D1 and D2 are similar in magnitude. For particles
of size b, the viscosity-based estimate σa ∼ μv0=b implies
D1; D2 ∼ l=b, while an inertia-based estimate σa ∼ ρv20
yields D1; D2 ∼ lRe=b, where Re ¼ ρv0b=μ is the
Reynolds number at the particle scale. With either estimate,
D1 and D2 should typically be small, because l=b is the
ratio of a fore-aft size difference to an overall size.
Figure 10 shows the results of linear stability analysis
for nonzero D1 ¼ D2. The OðqÞ-unstable, Oðq2Þ-unstable,
and linearly stable regimes exist over the entire range; for
D1; D2 ≪ 1 the linear stability analysis differs negligibly
from that with γa;l ¼ 0; and the Oðq2Þ-unstable regime
shrinks in extent as D1 and D2 grow to values of the order
of unity. We therefore expect the qualitative features of the
dynamical phase diagram as seen in our numerical studies
to persist for nonzero γa and l, but we have not carried out
the corresponding direct numerical solutions of the hydro-
dynamic equations.
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[54] H. Chaté and P. Manneville, Phase Diagram of the Two-
Dimensional Complex Ginzburg-Landau Equation, Phys-
ica (Amsterdam) 224A, 348 (1996), dynamics of complex
systems.

[55] L. P. Dadhichi, A. Maitra, and S. Ramaswamy,Origins and
Diagnostics of the Nonequilibrium Character of Active
Systems, J. Stat. Mech. (2018) 123201.

[56] P. C. Martin, O. Parodi, and P. S. Pershan, Unified Hydro-
dynamic Theory for Crystals, Liquid Crystals, and Normal
Fluids, Phys. Rev. A 6, 2401 (1972).

[57] Y. Nambu and G. Jona-Lasinio, Dynamical Model of
Elementary Particles Based on an Analogy with Super-
conductivity. I, Phys. Rev. 122, 345 (1961).

[58] J. Goldstone, Field Theories with ⟪Superconductor⟫
Solutions, Nuovo Cimento 19, 154 (1961).

[59] X. Chen, E. Korblova, D. Dong, X. Wei, R. Shao, L.
Radzihovsky, M. A. Glaser, J. E. Maclennan, D. Bedrov,
D. M. Walba, and N. A. Clark, First-Principles Experi-
mental Demonstration of Ferroelectricity in a Thermo-
tropic Nematic Liquid Crystal: Polar Domains and
Striking Electro-Optics, Proc. Natl. Acad. Sci. U.S.A.
117, 14021 (2020).

[60] A. Maitra, P. Srivastava, M. Rao, and S. Ramaswamy,
Activating Membranes, Phys. Rev. Lett. 112, 258101
(2014) (Supplemental Material, Sec. II).

[61] A. Maitra, P. Srivastava, M. C. Marchetti, S. Ramaswamy,
and M. Lenz, Swimmer Suspensions on Substrates:
Anomalous Stability and Long-Range Order, Phys. Rev.
Lett. 124, 028002 (2020).

INERTIA DRIVES A FLOCKING PHASE TRANSITION IN … PHYS. REV. X 11, 031063 (2021)

031063-15

https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nmat4387
https://doi.org/10.1103/PhysRevLett.99.058102
https://doi.org/10.1529/biophysj.107.118257
https://doi.org/10.1038/s41467-018-05666-8
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.107.028102
https://doi.org/10.1103/PhysRevLett.107.028102
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1063/PT.3.4292
https://doi.org/10.1063/PT.3.4292
https://doi.org/10.1039/c1sm05396e
https://doi.org/10.1039/c1sm05396e
https://doi.org/10.1038/scientificamerican0682-114
https://doi.org/10.1038/241290a0
https://doi.org/10.1038/241290a0
https://doi.org/10.1038/ncomms9514
https://doi.org/10.1103/PhysRevLett.120.198101
https://doi.org/10.1017/jfm.2012.177
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1039/C9SM01019J
https://doi.org/10.1039/C9SM01019J
https://doi.org/10.1038/nphys3035
https://doi.org/10.1103/PhysRevLett.114.218101
https://doi.org/10.1103/PhysRevLett.114.218101
https://doi.org/10.1103/PhysRevLett.114.168001
https://doi.org/10.1103/PhysRevE.101.052601
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1016/0167-2789(92)90001-4
https://doi.org/10.1016/0167-2789(96)00045-0
https://doi.org/10.1016/0167-2789(96)00045-0
https://doi.org/10.1016/0378-4371(95)00361-4
https://doi.org/10.1016/0378-4371(95)00361-4
https://doi.org/10.1088/1742-5468/aae852
https://doi.org/10.1103/PhysRevA.6.2401
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1007/BF02812722
https://doi.org/10.1073/pnas.2002290117
https://doi.org/10.1073/pnas.2002290117
https://doi.org/10.1103/PhysRevLett.112.258101
https://doi.org/10.1103/PhysRevLett.112.258101
https://doi.org/10.1103/PhysRevLett.124.028002
https://doi.org/10.1103/PhysRevLett.124.028002


[62] M. C. Marchetti and T. N. Liverpool, in Cell Motility,
edited by P. Lenz (Springer-Verlag, Berlin, 2007).

[63] W. Kung, M. C. Marchetti, and K. Saunders, Hydrody-
namics of Polar Liquid Crystals, Phys. Rev. E 73, 031708
(2006).

[64] E. Tjhung, D. Marenduzzo, and M. E. Cates, Spontaneous
Symmetry Breaking in Active Droplets Provides a Generic
Route to Motility, Proc. Natl. Acad. Sci. U.S.A. 109, 12381
(2012).

[65] J. Toner and Y. Tu, Flocks, Herds, and Schools: A
Quantitative Theory of Flocking, Phys. Rev. E 58, 4828
(1998).

[66] P. de Gennes and J. Prost, The Physics of Liquid Crystals,
International Series of Monographs on Physics (Claren-
don, Oxford, 1993).

[67] Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha,
Rheology of Active-Particle Suspensions, Phys. Rev. Lett.
92, 118101 (2004).

[68] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K.
Sekimoto,Generic Theory of Active Polar Gels: A Paradigm
for Cytoskeletal Dynamics, Eur. Phys. J. E 16, 5 (2005).

[69] We assume that concentrations are high enough that F
globally favors a nonzero magnitude for p. We, therefore,
ignore c dependence in the polynomial part of F.

[70] F. C. Frank, I. Liquid Crystals. On the Theory of Liquid
Crystals, Discuss. Faraday Soc. 25, 19 (1958).

[71] H. Zocher, The Effect of a Magnetic Field on the Nematic
State, Trans. Faraday Soc. 29, 945 (1933).

[72] C. W. Oseen, The Theory of Liquid Crystals, Trans. Fara-
day Soc. 29, 883 (1933).

[73] D. Forster, Microscopic Theory of Flow Alignment in
Nematic Liquid Crystals, Phys. Rev. Lett. 32, 1161 (1974).

[74] H. Stark and T. C. Lubensky, Poisson-Bracket Approach to
the Dynamics of Nematic Liquid Crystals, Phys. Rev. E 67,
061709 (2003).

[75] N. Rana and P. Perlekar, Coarsening in the Two-Dimen-
sional Incompressible Toner-Tu Equation: Signatures of
Turbulence, Phys. Rev. E 102, 032617 (2020).

[76] T. N. Shendruk, K. Thijssen, J. M. Yeomans, and A.
Doostmohammadi, Twist-Induced Crossover from Two-
Dimensional to Three-Dimensional Turbulence in Active
Nematics, Phys. Rev. E 98, 010601(R) (2018).

[77] Formally, we could justify this neglect by introducing birth
and death so that the concentration becomes a fast variable;
see J. Toner, Birth, Death and Flight: A Theory of
Malthusian Flocks, Phys. Rev. Lett. 108, 088102 (2012).

[78] In molecular or colloidal systems, μ=ρ ≫ K=μ. Assuming
this inequality holds for the systems of interest here as
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