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The groundbreaking success of deep learning in many real-world tasks has triggered an intense effort to
theoretically understand the power and limitations of deep learning in the training and generalization of
complex tasks, so far with limited progress. In this work, we study the statistical mechanics of learning in
deep linear neural networks (DLNNs) in which the input-output function of an individual unit is linear.
Despite the linearity of the units, learning in DLNNs is highly nonlinear; hence, studying its properties
reveals some of the essential features of nonlinear deep neural networks (DNNs). Importantly, we exactly
solve the network properties following supervised learning using an equilibrium Gibbs distribution in the
weight space. To do this, we introduce the backpropagating kernel renormalization (BPKR), which allows
for the incremental integration of the network weights layer by layer starting from the network output layer
and progressing backward until the first layer’s weights are integrated out. This procedure allows us to
evaluate important network properties, such as its generalization error, the role of network width and depth,
the impact of the size of the training set, and the effects of weight regularization and learning stochasticity.
BPKR does not assume specific statistics of the input or the task’s output. Furthermore, by performing
partial integration of the layers, the BPKR allows us to compute the emergent properties of the neural
representations across the different hidden layers. We propose a heuristic extension of the BPKR to
nonlinear DNNs with rectified linear units (ReLU). Surprisingly, our numerical simulations reveal that
despite the nonlinearity, the predictions of our theory are largely shared by ReLU networks of modest
depth, in a wide regime of parameters. Our work is the first exact statistical mechanical study of learning in
a family of deep neural networks, and the first successful theory of learning through the successive
integration of degrees of freedom in the learned weight space.
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I. INTRODUCTION

Gradient-based learning in multilayered neural networks
has achieved surprising success in many real-world problems
including machine vision, speech recognition, natural lan-
guage processing, and multi-agent games [1–4]. Deep
learning (DL) has been applied successfully to basic and
applied problems in physical, social, and biomedical scien-
ces and has inspired new neural circuit models of informa-
tion processing and cognitive functions in animals and
humans [5,6]. These exciting developments have generated
a widespread interest in advancing the theoretical under-
standing of the success and limitations of DL and, more

generally, in computation with deep neural networks
(DNNs). Nevertheless, many fundamental questions remain
unresolved, including the puzzling ability of gradient-based
optimization to avoid being trapped in poor local minima,
and the surprising ability of complex networks to generalize
well despite the fact that they are usually heavily over-
parametrized; namely, the number of learned weights far
exceeds the minimal number required for perfectly fitting the
training data [7,8]. These problems have fascinating ram-
ifications for statistical mechanics, such as energy land-
scapes in high dimensions, glassy dynamics, and the role
of degeneracy, symmetry, and invariances [9–12]. Indeed,
statistical mechanics has been one of the most fruitful
theoretical approaches to learning in neural networks
[13–16]. However, its classical phenomenology of capacity,
learning curves, and phase transitions was formulated largely
in the context of single-layer or shallow architectures.
In this work, we develop a new statistical mechanical

theory, appropriate for learning in deep architectures.
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We focus on the statistical mechanics of weight space
in deep linear neural networks (DLNNs) in which single
neurons have a linear input-output transfer function.
DLNNs do not possess superior computational power over
a single-layer linear perceptron [17]. However, because
the input-output function of the network depends on
products of weights, learning is a highly nonlinear process,
and it exhibits some of the salient features of the nonlinear
networks. Indeed, in very interesting recent work [18,19],
the authors investigated the nonlinear gradient descent
dynamics of DLNNs. These studies focused on the proper-
ties of the dynamic trajectories of gradient-based learning.
To tackle the problem analytically, they had to rely on
restrictive assumptions about initial weights and on simpli-
fying assumptions about the data statistics. In contrast, we
focus on the equilibrium properties of the distribution in
weight space induced by learning, allowing us to address
some of the fundamental problems in DL, such as the
features determining the DNN’s ability to generalize despite
overparametrization, the role of depth and width, as well as
the size of the training set, and the effect of regularization
and learning stochasticity (akin to temperature).
To analyze the property of the weight distribution, we

consider the posterior probability distribution in the weight
space after learning with a Gaussian prior under a Bayesian
framework [20–22]. As introduced in Sec. II, the posterior
distribution of the weights can also be formulated as a
Gibbs distribution with a cost function consisting of
the training error and an L2 weight regularization term.
The Bayesian formulation and the Gibbs distribution of the
weights have become standard framework for analyzing
statistical properties of neural network models and have
been applied in various studies on the statistical mechanics of

learning [14,23–27]. In most of our analysis, we constrain
ourselves to the zero-temperature limit, in which case, the
network attains zero training error when operating below
capacity, and the Gaussian prior introduces bias to theweight
distribution to favor weights with smaller L2 norms within
the weight space that yields zero training error.
We evaluate statistical properties in weight space induced

by DL by successive backward integration of the weights
layer by layer starting from the output layer. As shown in
Fig. 1, each stage of the successive integration of a layer
of weights yields an effective Hamiltonian of the
remaining upstream weights. As Sec. II shows, this effective
Hamiltonian is expressed in terms of a renormalized kernel
matrix Kl, which is the P × P matrix of the overlaps of all
pairs of vectors of activations of the lth layer induced by the
P inputs of the training set. This matrix is a function of all
upstream weights, and in the successive integration process,
it is renormalized by a scalar renormalization variable that
summarizes the effect of the integrated downstream weights
on the effective Hamiltonian of the remaining weights.
Therefore, we refer to the successive backward integration
process as backpropagating kernel renormalization (BPKR).
Using mean field techniques, this scalar renormalization
variable can be evaluated by a self-consistent equation,
which is exact in the thermodynamic limit. Thus, our theory
is the first exact statistical mechanical study of the weight
space properties of DNNs and the first discovery of kernel
renormalization of the learned degrees of freedom (d.o.f.).
Our BPKR is schematically explained in Fig. 1 and
described in detail in Sec. II.
Our work is closely related to the interesting recent

research on infinitely wide DNNs [28,29]. It is well known
that the ensemble of input-output functions implemented
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FIG. 1. Schematics of the backpropagating kernel renormalization. (a) Integrating out the readout weights of the network yields a
partial partition function ZL in the weight space with an effective Hamiltonian HL, which is a function of all the hidden-layer weights
through its dependence on the Lth layer kernel matrix [see panel (e)] (with an additional L2 regularization on the remaining weights
neglected here). (b) Integrating out layer L yields a partial partition function ZL−1 in the remaining weight space with an effective
Hamiltonian HL−1, which has the same structure asHL except that the (L − 1)th layer kernel is multiplied by an order parameter uL−1, a
scalar renormalization variable that summarizes the effect of the Lth layer weights on the effective Hamiltonian. (c) Similarly, integrating
out all weights downstream of layer L − l yields a partial partition function ZL−l with an effective Hamiltonian with an order parameter
uL−l, summarizing the effect of all l upstream integrated layers. (d) Integrating out all the weights in the network yields the total partition
function Z with the total free energy of the system H0 with an order parameter u0, which depends only on the training inputs
Xμ; μ ¼ 1;…; P. (e) The lth layer kernel matrix is the similarity matrix of this layer’s responses to the P training inputs up to a
normalization factor, and it is a function of all upstream weights.
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by infinitely wide networks is equivalent to a Gaussian
process (GP) in function space with a covariance matrix
defined by a Gaussian kernel, which is the kernel matrix
averaged over weights sampled from the Gaussian distri-
bution. This GP limit holds when the network width (the
number of neurons in each layer, N) approaches infinity
while the size of the training data, P, is held constant,
severely limiting its applicability to most realistic con-
ditions. In contrast, our theory holds in the thermodynamic
limit assumed in most statistical mechanical studies of
neural computation [24,25,30–32], namely, letting both N
and P approach infinity while keeping the load α ¼ P=N
fixed. As we show here, the behavior of the system at finite
α is often qualitatively different from the infinite width
limit, and our theory correctly predicts network behavior in
a much wider range of parameters that are more relevant in
real learning tasks, providing much richer insight into the
complex properties of DL in large networks and into the
role of the training data in shaping the network perfor-
mance and emergent representations. Our theory applies
to the entire range of 0 ≤ α ≤ ∞. We introduce the new
notions of wide and narrow networks depending on
whether α is smaller or larger than 1. Narrow networks,
in particular, deviate qualitatively from the α → 0 limit of
the GP theory. This is because when α > 1, a zero training
error solution cannot be achieved just by optimizing the
readout weights but necessarily requires appropriate
changes in the hidden-layer weights.
In Sec. III, we apply our theory to derive the network

generalization performance and its dependence on the
architectural parameters of width and depth as well as
the size and statistics of the training data set. We calculate
the system’s phase diagram and show the important role
of the L2 weight regularization parameter σ. In Sec. IV,
we present two important extensions. First, we extend our
network architecture to include multiple outputs (denoted
as m > 1) and show that, in this case, the BPKR is
characterized by an m ×m kernel renormalization matrix.
Interestingly, theirm eigenvalues are independent and obey
self-consistent equations similar to the single-output case.
While most of our study focuses on the zero-temperature
limit of the weight space Gibbs distribution, taking into
account only the portion of weight space that yields zero
training error, we show in Sec. IV that our BPKR is readily
applicable to the finite-temperature case and discuss the
way kernel renormalization affects the effect of temperature
for networks of different depths.
The power of the BPKR is that it allows the computation

of not only the system’s performance as a whole but also
the representation of the data at each layer, readily captured
by the statistics of the mean layerwise kernel matrices.
We show in Sec. V how both the input and the task statistics
affect these representations, for instance, revealing under-
lying block structures of the task. In Sec. VI, we present
a heuristic extension of the BPKR to nonlinear deep

networks and numerically test its predictions for rectified
linear units (ReLU) networks. Surprisingly, we find that
this approximation nicely predicts the behavior of ReLU
networks with modest depth and not too small width, N.
Our results are discussed in the last section.

II. BACKPROPAGATING KERNEL
RENORMALIZATION FOR DLNNs

A. Statistical mechanics of learning
in deep networks

We consider a multilayer network with L hidden layers
whose input-output mapping is given by

fðx;ΘÞ ¼ 1ffiffiffiffiffiffiffi
NL

p
XNL

i¼1

aiϕiðx;WÞ; ð1Þ

where x ∈ RN0 is an input vector of dimensionN0, and ϕi is
the response of a neuron in the top hidden layer (of sizeNL)
to that input. In general, ϕ is a nonlinear function of x and
the network’s hidden weights, denoted byW. The output of
the network is a scalar that linearly sums the top layer
activations weighted by the readout weights ai. We denote
all network weights by Θ ¼ ða;WÞ.
We assume supervised learning with the following cost

function,

EðΘÞ ¼ 1

2

XP
μ¼1

ðfðxμ;ΘÞ − yμÞ2 þ T
2σ2

Θ⊤Θ: ð2Þ

The first term is the mean-squared deviation of the network
outputs on a set of P training input vectors xμ, μ ¼ 1;…; P,
from their target labels yμ. The second term, with amplitude
Tσ−2, is a regularization term that favors weights with small
L2 norm. The temperature parameter T in this term means
that the L2 regularization acts as an entropic term. In
particular, in the regime we are mostly interested in, T → 0,
the first term will enforce minimization of the training error
while the L2 term shapes the statistical measure of the
weight vectors that minimize the training error, biasing it in
favor of weights with small norms. Without this term, all
weights that minimize the error would have the same
probability. On the other hand, the L2 term is irrelevant at
low T if the minimum of the error is unique. We call the
parameter σ the weight noise parameter as it controls the
amount of fluctuation in the weights at zero T.
We investigate the properties of the equilibrium

distribution of the weights, defined by the Gibbs distribu-
tion, PðΘÞ ¼ Z−1 expð−E=TÞ, where Z is the partition
function, Z ¼ R

dΘ expð−E=TÞ. The Gibbs distribution is
equivalent to the posterior distribution of the weights with a
Gaussian prior.
The fundamental statistical mechanical properties of the

system can be derived from the partition function and its
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extensions as shown below. However, calculating Z exactly
is intractable, but integrating out the readout weights is
straightforward; by doing this, we write Z ¼ R

dWZLðWÞ,
ZLðWÞ¼R

daexpð−E=TÞ¼ exp½−HLðWÞ�, where HLðWÞ
is the effective Hamiltonian of the hidden-layer weights W
after integrating out the readout weights a [Fig. 1(a), see
details in the Appendix A],

HLðWÞ ¼ 1

2σ2
TrW⊤W þ 1

2
Y⊤ðKLðWÞ þ TIÞ−1Y

þ 1

2
log detðKLðWÞ þ TIÞ; ð3Þ

where Y is the P × 1 column vector of the training target
labels. The matrix KL is a P × P kernel matrix of the top
layer. We assume, for simplicity, that all the hidden layers
have equal width N. For each layer, we define its kernel
matrix by

Kl ¼
σ2

N
X⊤
l Xl; ð4Þ

where Xl is the N × P matrix of activation of the lth layer
in response to the training inputs, Xμ

i;l ¼ ϕl
iðxμ;W0Þ, and

W0 ¼ fWkgk<lþ1 denotes all the weights upstream of l.
[Importantly, unlike other uses of kernels (e.g., in SVMs
and DNNs [28,29]), here we define kernels as simply the
unaveraged dot products of the representations at the
corresponding layers; hence, the lth kernel matrix is a
function of all the weights upstream of Xl, and, in
particular, KL depends on all the hidden-layer weights W.]
The results we derive throughout this work are exact in the

thermodynamic limit, which is defined as N;N0; P → ∞,
while α ¼ P=N and α0 ¼ P=N0 remain finite. Aside from
these limits, we do not make any assumptions about the
training inputs xμ or the target outputs Y.
Although our theory is developed for all temperatures

(Sec. IV B and Appendix A), our primary focus is on the
limit of zero temperature, exploring the statistical proper-
ties of the solution weight space, namely, the space of all Θ
that yields zero training error. The zero T theory is
particularly simple for α < 1, in which case the kernel
matrices in Eq. (4) are full rank. Substituting the zero-
temperature limit, HLðWÞ reduces to

HLðWÞ ¼ 1

2σ2
TrW⊤W þ 1

2
Y⊤KLðWÞ−1Y

þ 1

2
log det½KLðWÞ�: ð5Þ

We call networks with N > P wide networks. Narrow
networks (α > 1) will be discussed at the end of this
section.
Integrating over the weight matrices fWkgk≤L is an

intractable problem, in general. Here, we focus on the

simple case where all the input-output functions ϕ are
linear, so xi;l ¼ ð1= ffiffiffiffi

N
p Þwi⊤

l xl−1.

B. Backpropagating kernel renormalization

Even in the linear case, the Hamiltonian Eq. (5) is not
quadratic in the weights; thus, integrating out the weights is
highly nontrivial. Instead, we compute the full partition
function Z by successive integrations; in each of them, only
a single-layer weight matrix is integrated, and it yields a
partial partition function of the remaining d.o.f. in the
“weight space” (see schematics in Fig. 1). Starting from
the top-layer WL, we can move backward until all weights
are integrated out. Integrating the top hidden-layer
weight matrix WL yields a partial partition function,
ZL−1 ¼

R
dWLZLðWÞ ¼ exp½−HL−1�,

HL−1ðW0; uL−1Þ ¼
1

2σ2
TrW0⊤W0 þ 1

2uL−1
Y⊤K−1

L−1Y

þ 1

2
log detðKL−1uL−1Þ −

N
2
log uL−1

þ 1

2σ2
NuL−1; ð6Þ

where W0 ¼ fWkgk<L denotes all the weights upstream
of WL [schematically shown in Fig. 1(b)]. The first three
terms are similar in form to HL, Eq. (5), with KL−1ðW0Þ
denoting the P × P kernel matrix of the L − 1 layer [Eq. (4)
with l ¼ L − 1], which is now a function ofW0. The kernel
terms in HL−1 are renormalized by a scalar uL−1, represent-
ing the effect of the integrated WL on the effective
Hamiltonian of W0. While uL−1 originally appears as an
auxiliary integration variable (Appendix A), in the thermo-
dynamic limit, it is an order parameter determined self-
consistently by minimizing HL−1,

1 − σ−2uL−1 ¼ αð1 − u−1L−1rL−1Þ; ð7Þ

where we have denoted, for general l,

rl ¼
1

P
Y⊤K−1

l Y: ð8Þ

We call this quantity the lth layer mean-squared readout
since it equals the squared mean of the vector of output
weights that read out the target labels directly from layer l
(after training the full network) (see Appendix A). As will
be shown, the mean-squared readouts are key parameters
that capture the effect of the task on the properties of the
trained network.
To proceed, we note that apart from scaling by the

order parameter uL−1, Eq. (6) has exactly the same form as
Eq. (5); hence, the steps of integration of the remaining
weights can be repeated layer by layer. After the lth
iteration, we obtain [Fig. 1(c)]
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HL−lðW0Þ ¼ 1

2σ2
TrW0⊤W0 þ 1

2ulL−l
Y⊤K−1

L−lY

þ 1

2
log detðKL−lulL−lÞ −

lN
2
log uL−l

þ lN
2σ2

uL−l; ð9Þ

which is a function of W0 ¼ fWkgk<L−lþ1 [note that the
superscript in ukL−l denotes a power, ukL−l ≡ ðuL−lÞk].
Thus, at each stage, a scalar kernel renormalization appears,
uL−l, summarizing the effect of the downstream layers that
have been integrated out. This order parameter obeys the
mean field equation

1 − σ−2uL−l ¼ αð1 − u−lL−lrL−lÞ; ð10Þ

the solution of which depends on the remaining weightsW0
and the task, through the layerwise mean-squared read-
out, Eq. (8).
Finally, integrating out all the weights yields an equation

for the network scalar renormalization factor u0,

1 − σ−2u0 ¼ αð1 − u−L0 r0Þ; ð11Þ

with the input layer’s mean-squared readout

r0 ¼
1

P
Y⊤K−1

0 Y: ð12Þ

Here,K0 ¼ ðσ2=N0ÞX⊤X is the input kernel, where X is the
N × P input data matrix.
Standard techniques using the partition function as a

generating functional allow for the derivation of important
statistics of the system, in particular, its generalization
performance. While the statistics of the performance of the
system are evaluated by completing the integration over
all weights, i.e., l ¼ L as in Eqs. (11) and (12) above, the
results of partial weight integration are important in
evaluating the properties of the representations in individ-
ual layers (Sec. V).
We compare our results to that of the GP theory [28]

for infinitely wide networks. In the GP theory, the kernels
Kl, Eq. (4), are self-averaged, and furthermore, the weight
distribution is Gaussian, so the weight-dependent kernels
can be replaced by their average over Gaussian weights
(with variances σ2=N or σ2=N0 for the first layer). For
a linear network, this amounts to having the kernel of
layer l being simply σ2 times the kernel of layer l − 1;
hence, Kl ¼ σ2lK0.
Importantly, unlike the predictions of the GP theory, we

show below that the statistics of the kernel matrices induced
by learning are complex, and the relation between kernel
statistics at one stage of integration and the next cannot be
fully captured by a simple renormalization of the entire

matrix by a scalar factor. Instead, different statistics change
differently upon integrating the degrees of freedom.
Nevertheless, several quantities depending on the kernel

undergo a simple renormalization. In particular, the layer-
wise mean-squared readout rl undergoes a simple scaling
under weight averaging, i.e.,

rl−1 ¼ ul−1hrlil ð13Þ

for all 1 ≤ l ≤ L. The subscript in h·il denotes averaging
over the upstream weights from l to L so that l − 1 is the top
unintegrated layer.
Likewise, upon successive integrations of all weights,

we have r0 ¼ ul0hrli.
This relation is important as it provides an operational

definition of the order parameters ul, which can be used for
their direct evaluation in numerical simulations. Also, we
show below that the mean and variance of the network
predictor transform simply by renormalizing the associated
kernels with u0 [see Eqs. (21) and (20)].
As can be seen from Eq. (11), our results hold when the

input kernel is full rank, which implies α0 ¼ P=N0 < 1.
This condition is understandable since for α0 > 1 there
is no W that achieves zero training error (in the linear
networks). We denote α0 ¼ 1 as the interpolation threshold
of our network (below which the training data can be
exactly matched). This threshold holds for generic input
[i.e., such that the rank of K0 is minðP;N0Þ] and for a target
function that is not perfectly realized by a linear input-
output mapping (otherwise zero error can be achieved for
all α0). In most of our work, we focus on the properties of
zero error solution space; i.e., we assume α0 < 1.

C. BPKR for narrow architectures

As stated above, the BPKR at finite temperatures is well
defined for all α. However, the zero-temperature limit is
subtle when α > 1 since the P × P kernel matrices, Eq. (4),
of the hidden layers are of rank N < P, while we have
assumed above that the kernel matrices are invertible.
Indeed, the above results, Eqs. (6)–(10) and (13) hold only
for α < 1.
This difference between wide and narrow architectures

reflects the difference in the impact of learning onW in the
two regimes. While in the wide regime, even for generic
untrained W, the training data can be perfectly fit by an
appropriate choice of readout weights a, in the narrow
regime, a perfect learning of the task cannot be achieved
without an appropriate modification of W. Specifically, at
every stage of the integration, after averaging out the
weights upstream from the lth layer, the remaining weights
must ensure that Y is in the N-dimensional subspace of RP

spanned by the N (P-dimensional) vectors Xi;l;i¼1;…;N,
induced by the P training inputs.
As shown in Appendix A, these constraints lead to

replacement for Eq. (10) by
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ulþ1
L−l ¼ ασ2rL−l; ð14Þ

where the layer mean-squared readout at zero temperature,
rL−l, is given by

rL−l ¼
1

P
Y⊤Kþ

L−lY ð15Þ

for 1 ≤ l < L. Here,KL−l is the kernel of the (L − l)th layer
for a set of weightsWL−l that yields zero training error, and
Kþ

L−l denotes the pseudo-inverse of KL−l. In addition, the
scaling relationship, Eq. (13), which provides an opera-
tional definition of the kernel renormalization OPs, still
holds for 1 ≤ l < L. However, for the average of rl over all
hidden weights, the relation with r0 is given by

hrli ¼ u−l0 r0 − 1þ 1

α
; ð16Þ

where r0 is given by Eq. (12) (see Appendix A and Sec. IA
in the Supplemental Material [33] for details). Thus, hrli
has a cusp as a function of α at α ¼ 1 (see Fig. 1
in Ref. [33]).
Importantly, Eqs. (11) and (12) between u0 and r0 hold

for 0 ≤ α < ∞, as K0 is full rank as long as α0 < 1. Hence,
many important system properties, such as the generaliza-
tion error and the predictor statistics which depend on α
through u0, are smooth functions of α for all α (Sec. III).

D. Predictor statistics

The generalization performance is closely related to the
learning-induced statistics of the predictor, Eq. (1), for a
new input vector x. First, we note that when the hidden-
layer weights W are fixed, the predictor fðxÞ obeys
Gaussian statistics (from the fluctuations in the readout
weights a) with

hfðxÞia ¼ k⊤L ðxLÞK−1
L Y; ð17Þ

h½δfðxÞ�2ia ¼ KðxL; xLÞ − k⊤L ðxLÞK−1
L kLðxLÞ; ð18Þ

where xL is the vector of top-layer activations in response
to the new input x; kLðxLÞ is the P × 1 vector given by
kμLðxLÞ ¼ KðxL; xμLÞ, where for any two vectors x, y,

Kðx; yÞ ¼ N−1σ2x⊤y: ð19Þ

The subscript a in Eqs. (17) and (18) denotes averaging
with respect to a only. Thus, the moments of the predictor
depend on W through the P × P kernel matrix KL and
through xL and xμL. Evaluating its first two moments with
respect to the full averaging (overΘ), we find (Appendix B)

hfðxÞi ¼ k⊤0 ðxÞK−1
0 Y; ð20Þ

with k0 the P × 1 vector given by kμ0 ¼ K0ðx; xμÞ, where for
any two input vectors x, y, K0ðx; yÞ ¼ N−1

0 σ2x⊤y. Thus, at
zero temperature, the mean predictor is independent of the
network architecture or noise level σ and retains its value
predicted by the GP limit. This makes sense as, at zero
temperature, multiplying the kernels in the numerator and
denominator by a scalar cancels out. The variance of the
predictor takes into account the W average of Eq. (18),
which is the mean contribution from the fluctuations in a as
well as the variance of the conditioned mean Eq. (17).
These contributions produce the following simple result,

h½δfðxÞ�2i ¼ uL0 ½K0ðx; xÞ − k⊤0 ðxÞK−1
0 k0ðxÞ� ð21Þ

(Appendix B). Thus, the predictor variance equals the
variance of the L ¼ 0 network [Eq. (18) for L ¼ 0] scaled
by the kernel renormalization factor uL0 , which makes sense
since the variance scales linearly with the kernel. This
variance renormalization due to the presence of hidden
layers has an important impact on the generalization error,
which depends on both moments of f and can be written as
εgðxÞ ¼ h½fðxÞ − yðxÞ�2i ¼ ½hfðxÞi − yðxÞ�2 þ h½δfðxÞ�2i,
where yðxÞ is the target label of the new input x.
The network properties after integrating the weights of

all hidden layers depend on the kernel renormalization
factor u0 but not the intermediate renormalization factors ul
(1 ≤ l < L). We summarize below several important
expressions for the renormalization factor u0 and the
equations for the predictor statistics that depend on u0,
which holds for 0 ≤ α < ∞. These results are the main
conclusions from this section, and they will be useful for
analyzing the generalization performance and how it
depends on various network parameters in Sec. III.
Kernel renormalization factor u0:
u0 relates the average of the top-layer mean-squared

readout rL (over all L weight matrices) to the input-layer
mean-squared readout r0

rL ¼ 1

P
Y⊤Kþ

LY ð22Þ

and

r0 ¼
1

P
Y⊤K−1

0 Y ð23Þ

through

r0 ¼ uL0

�
hrLi −max

�
1 −

1

α
; 0

��
: ð24Þ

The matrix Kþ
L is the (psuedo) inverse of the top-layer

representation, KL ¼ ðσ2=NÞX⊤
LXL, and K0 is the input-

layer kernel.
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The predictor statistics for an input x is

hfðxÞi ¼ k⊤0 ðxÞK−1
0 Y; ð25Þ

h½δfðxÞ�2i ¼ uL0 ½K0ðx; xÞ − k⊤0 ðxÞK−1
0 k0ðxÞ�; ð26Þ

where k0ðxÞ ¼ K0ðx; X0Þ and X0 stands for the P training
vectors.
The self-consistent equation for u0 is

1 − σ−2u0 ¼ αð1 − u−L0 r0Þ: ð27Þ

E. Qualitative differences between wide
and narrow architectures

To highlight the qualitative differences between wide
and narrow architectures, we use the equation for u0 given
by Eq. (27) and show in Figs. 2(a) and 2(b) u0 vs σ for
different α (see Sec. IIA in Ref. [33]). Note because K0

scales with σ2, when we vary σ, we hold σ2r0 constant. The
limit of infinite width corresponds to α → 0. In this limit,
Eq. (27) yields u0 ¼ σ2, which is the prediction of the GP
theory for a linear network. First, in contrast to the GP
theory, for finite α, u0 attains a nonzero value for σ → 0.
Furthermore, the dependence of u0 on σ is qualitatively
different in the wide and narrow regimes. For α < 1, u0

increases monotonically with σ, diverging for large σ,
u0 → σ2ð1 − αÞ. Importantly, the behavior is reversed
for α > 1. Here, u0 decreases monotonically with σ and
vanishes for large σ as uL0 → σ−2½ασ2r0=ðα − 1Þ�. This
difference in behavior, particularly for large σ, reflects
the differences in the effect of learning on the weight space,
as discussed at the beginning of Sec. II C. Learning
imposes more constraints on W in the narrow regime,
and only a small fraction of W have nonzero Gibbs
probability, deviating strongly from the predictions of
the GP limit.

III. GENERALIZATION

In a linear network, the mapping between input and
output is given by an N0-dimensional effective weight
vector proportional to a⊤WLWL−1 � � �W1. As mentioned
above, here we assume the system is below the interpo-
lation threshold, i.e., α0 ¼ P=N0 < 1; hence, our network
perfectly learns the training input-output relations as
T → 0, even without hidden layers (i.e., L ¼ 0). Thus,
our deep network [with L ≥ 1 and α ¼ P=N of Oð1Þ] is
always in the heavily overparametrized regime, where the
number of modifiable parameters is much larger than the
number of parameters needed to satisfy the training data.
Naively, this would imply that the system is extremely poor
in generalization. However, as we will show, this is not
necessarily the case due to the presence of “inductive bias”
in the form of L2 regularization. In this section, we discuss
how the generalization error depends on various network
parameters, including the noise parameter σ, the network
width N, and the network depth L, which may provide
helpful insights for selecting network parameters during
training.

A. Dependence of generalization on noise

From the predictor statistics, Eqs. (25) and (26),
we conclude that the contribution of the squared bias
½hfðxÞi − yðxÞ�2 to εg is constant, independent of the
network parameters N, L, and σ. As for the contribution
from the variance, this tracks the behavior of uL0 σ

2 (the
factor σ2 stems from the noise dependence of the kernels).
Thus, from our previous analysis of u0 in Sec. II C, we can
predict the generalization error’s dependence on the
noise, as shown schematically in Fig. 2(c) for wide and
in Fig. 2(d) for narrow networks. In both regimes, the
variance grows monotonically with noise, but for large
noise, in the narrow regime, the generalization error does
not diverge but saturates to a finite value αr0σ2=ðα − 1Þ (r0
scales as σ−2), while in the wide regime, the generalization
error diverges as σ4ð1 − αÞ (see Ref. [33], Sec. IIA).

B. Dependence of generalization on width

We now consider in detail the dependence of εg on α for
different levels of noise. A detailed analysis (see Ref. [33],
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0

0.5

1

0 2 4 6 8 0 2 4 6 8
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FIG. 2. (a,b) Dependence of the order parameter u0 on the noise
parameter σ in wide [(a); α ¼ 0.8] and narrow networks [(b);
α ¼ 1.1]. Blue solid lines: theory. Blue dashed lines: the prediction
of GP theory (u0 ¼ σ2Þ. In both panels (a) and (b), u0 is finite for
low σ. Additionally, in panel (a), (α < 1) u0 diverges as σ2ð1 − αÞ
for σ → ∞, slower than in the GP theory. In panel (b), for α > 1,
u0 vanishes as σ → ∞, which is drastically different from the GP.
(c,d) Dependence of the generalization error on σ for wide
(α ¼ 0.8) and wide (α ¼ 1.1) regimes. The change with σ is
due to the change in variance, which scales as σ2u0 [Eq. (26)]. The
bias contribution is independent of σ, Eq. (25) and black dashed
lines. (c) Generalization error diverging slower than in GP theory
for α < 1 as σ → ∞. (d) Generalization error increasing and
approaching a finite limit as σ → ∞ for α > 1, in stark contrast to
the divergence predicted by the GP theory.
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Sec. IIB) shows that when other parameters are fixed,
the generalization error varies monotonically with width,
increasing if

σ2ðLþ1Þ > σ2r0: ð28Þ

Otherwise, it decreases with width. The latter case is an
example where, despite increasing model complexity
through increasing N, generalization performance improves,
as shown in Fig. 3. In the example shown, we use normally
distributed training input vectors and training labels Y
generated by a noisy linear teacher. The generalization error
is measured here on the network outputs generated by inputs,
which are corrupted versions of the training vectors (detailed
in Appendix E). Thus, this example corresponds to the case
where the training data play the role of P templates and the
test inputs are sampled from Gaussian noise around these
templates [34]. The model introduces a relation between
target outputs and data statistics, which is a more realistic
situation than vanilla, normally distributed test data, where
there is no inherent relation between inputs and outputs
(aside from weak correlation induced by the random teacher
weights). We emphasize that although we choose a specific
example to present our numerics, our theory is not limited to
any specific type of input-output distribution.

C. Dependence of generalization on depth

First, we discuss the limit of large L, analyzing the fixed
point of Eq. (11), i.e., the solution for u0ðL → ∞Þ.
We recall that in the GP limit, u0ðLÞ ¼ u0 ¼ σ2L; hence,

if σ < 1, u0 → 0, and the entire deep network collapses to a
single-layer network, or if σ > 1, u0 diverges. Thus, in
order to obtain a nontrivial behavior, the noise needs to be

fine-tuned to σ ¼ 1. Similar fine-tuning is required, in the
GP theory, in nonlinear networks in the limit of large L.
As we show below, the behavior of our networks is
strikingly different. In fact, we show that in the low-noise
regime, the system is self-tuned in that u0 approaches a
finite fixed-point value.
Specifically, Eq. (11) predicts that, in the low-noise

regime, defined by

σ2ð1 − αÞ < 1; ð29Þ

u0→u∞¼1, independent of σ. Furthermore, the approach
to this limit is inversely proportional to L, u0 ≈ 1 − ðv0=LÞ,
where the prefactor v0 obeys

exp−v0 ¼
ασ2r0

½1 − σ2ð1 − αÞ� : ð30Þ

Thus, there are two subregimes. If ασ2r0 < 1 − σ2ð1 − αÞ,
then v0 > 0, implying that u0ðLÞ < 1 and increases with L
toward its fixed-point value 1. If this inequality does not
hold, u0 decreases with L towards its fixed point. Note that
narrow networks in which α > 1 are always in the low-
noise regime given by Eq. (29), for all values of σ.
In contrast, in the high-noise regime σ2ð1 − αÞ > 1,

the fixed-point value is u0 → u∞ ¼ σ2ð1 − αÞ > 1. These
results have important implications for the predictor vari-
ance and the generalization error. Inspecting Eq. (21), we
conclude that in the low-noise regime, the predictor
variance and the generalization error reach a finite value
since uL0 → exp−v0, which depends on α, σ, and r0. On the
other hand, in the high-noise limit, uL0 diverges exponen-
tially with L, yielding a divergent generalization error.
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FIG. 3. Dependence of network behavior on hidden-layer width N. (a) Schematics of inputs in the template model: N0-dimensional
vectors clustered around P templates (shown as black dots), which are used as training vectors. The testing data (shown as red dots) are
sampled from the P clusters by adding Gaussian noise to the templates (see Appendix E). (b) Target labels are outputs of a single-layer
linear teacher network with weight vector w0 and additive output noise. (c)–(j) Behavior of a linear network with a single hidden layer
(L ¼ 1) vs hidden-layer size (width) N: generalization error (c,g), variance (d,h), and bias (e,i) of the predictor averaged over the test
data, and normalized by the amplitude of the labels, and the order parameter u0 (f,j). We performed the same averaging and
normalization for all the following results. Black solid lines: theory. Blue dots: simulation. Black dashed lines: GP limit (N ¼ ∞). Top
row: parameter regime with small noise where the generalization error increases with α (i.e., decreases with N). Bottom row: parameter
regime with large noise where the generalization error decreases with α (i.e., increases with N). (See detailed parameters for the
simulation in Appendix E.)
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Further analysis shows that when all other parameters are
held fixed, the generalization error is monotonic with L (see
Ref. [33], Sec. IIC). In the low-noise regime, it saturates to
a finite value, decreasing when ν0 > 0 (because uL0 is
inversely related to u0) and increasing otherwise. These
three behaviors are illustrated in Fig. 4 for the same
template model and the noisy linear teacher task as
illustrated in Fig. 3. The phase diagram of the generaliza-
tion error depicting its different behaviors is shown in
Fig. 5. In Fig. 5(a), we show the trend with respect to the
width (equivalently, α) in the plane of noise (σ2Þ and input
mean-squared readout (σ2r0Þ (scaled so that it is indepen-
dent of noise), where the boundaries are given by
σ2ðLþ1Þ ¼ σ2r0. In Fig. 5(b), we show the behaviors with
respect to the depth in the plane of σ2 and α (for

σ2r0 ¼ 0.8). Note that in the GP limit (α → 0), the behavior
of the generalization error with respect to L is either
decreasing and goes to 0 or it is divergent.

D. Varying the size of the training set

Until now, we have considered the dependence of εg on
network parameters for a fixed training set, in particular,
fixed training set size P. Here, we consider the effect of
varying P. In addition to varying α, α0, changes in the
training set affect r0, as well as the kernels appearing in
Eqs. (20) and (21). The exact effect of changing P depends,
of course, on the details of the input and output data. Here,
we address what happens near and above the interpolation
threshold, α0 ¼ 1. For α0 > 1, the minimal training error is
nonzero. However, there is a huge degeneracy of weights
that minimize this error, defined by all values of Θ that
yield the same input-output linear mapping, given by input-
output effective weights (see Ref. [33], Sec. IID) that obey

1ffiffiffiffiffiffi
N0

p 1ffiffiffiffiffiffiffi
NL

p a⊤WLWL−1 � � �W1 ¼ ðXX⊤Þ−1XY; ð31Þ

which implies that the predictor is uniquely given by

fðxÞ ¼ x⊤ðXX⊤Þ−1XY ð32Þ

for all x (whether belonging to the training set or not).
Hence, the training and the generalization error in the deep
network is identical to that of a single-layer network. The
generalization error is given by the bias component of the
error, as the predictor variance is zero.
The singularity of the input kernel at α0 ¼ 1 gives rise to

a simple example of a double descent in the generalization
error. The divergence at the interpolation threshold is
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FIG. 5. Summary plot showing different parameter regimes for
the dependence of the generalization error on width (N) and depth
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is normalized by σ2 so that σ2r0 is independent of σ). Above the
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(α > 1), εg never diverges, consistent with Eq. (29).
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known to be suppressed by the addition of L2 regularizers
[16]. The reason for the persistence of this divergence in
our theory is the fact that our L2 regularization term is
scaled by the temperature T [see Eq. (2), which means that,
at zero T, it does not lift the degeneracy of the solutions
(and the concentration of the solution space in large norm
weights at α0 ¼ 1). Indeed, this degeneracy is halted, in our
theory, only by finite temperature, as shown in Sec. IV B.
The singularity may drastically affect the behavior near it

on both sides of the interpolation threshold. For instance, if
the input is sampled from a standard Gaussian independent
identically distribution (IID), then r0 diverges when α0 → 1

as ∝ j1 − α0j−1, leading to vanishing of the variance of
the predictor (averaged over the testing example) as
ð1 − α0Þ1=L. The sample average of the squared mean,
hfðxÞi2, diverges as ∝ j1 − α0j−1 (see Appendix B for the
assumptions made here and additional analysis in Ref. [33],
Sec. IID). Hence, the generalization error on both sides of
α0 ¼ 1 is dominated by the bias and diverges as j1 − α0j−1.
This nonmonotonicity of εg is reminiscent of double
descent [35,36]. However, genuine double descent, namely,
nonmonotonicity of εg when increasing the number of
network parameters for a fixed training set does not occur
in our system since the error is always monotonic with α (as
shown in Fig. 3). In Fig. 6, we show these results for the
template model where the inputs are clustered, with two
rules for the labels: a noisy linear teacher as in Fig. 3 and
random labels where the label for each cluster is binary and
drawn randomly (both detailed in Appendix E).
For the noisy linear teacher task, the minimum gener-

alization error is achieved on the right-hand side (rhs) of the
interpolation threshold. Because of the linearity of the task,
we do not need a large number of parameters (i.e., small α0)
to generalize well. However, for the random labeling
task, the minimum generalization error is achieved on

the left-hand side (lhs) of the interpolation threshold.
Because of the nonlinearity of the task itself, having
N0 > P is required for good performance.

IV. EXTENSIONS

A. Multiple outputs

We now consider the case where there are m > 1 linear
outputs, with the N ×m readout weight matrix A. The rest
of the architecture is the same as above, with L hidden
layers of width N. Extending our theory, we obtain, instead
of scalar renormalization factors ulðm¼1Þ,m ×m renorm-
alization matrices U l per layer (see details in Appendix C).
Here, we focus on the zero-temperature limit. We first
consider α < 1. We define the hidden-layer m ×m readout
covariance matrix Rl ¼ ð1=PÞY⊤K−1

l Y. This matrix is
diagonalized via

Rl ¼
1

P
Y⊤K−1

l Y ¼ Vldiagðr1l;…; rkl;…; rmlÞV⊤
l : ð33Þ

Here, diagðr1l;…; rkl;…; rmlÞ denotes a diagonal matrix
with components frklgk¼1;…;m, and Vl is the unitary matrix
diagonalizing Rl and it depends on the specific realization
of fWkgk<lþ1. We find that the matrix U l is diagonalized
by the same unitary matrix Vl, i.e., U l ¼ Vldiagðu1l;…;
ukl;…; umlÞV⊤

l . Each layerwise renormalization factor
ukl obeys the same equation as single-output scalar
renormalization,

1 − α ¼ σ−2ukl − αu−ðL−lÞkl rkl; 1 ≤ k ≤ m: ð34Þ

Similarly, the matrix U0 is diagonalized by the unitary
matrix V0, which diagonalizes the input-layer m ×m
readout covariance matrix,
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FIG. 6. Dependence of the generalization error on the training set sizeP for a single hidden-layer (L ¼ 1) network. (a,e) Generalization
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R0 ¼
1

P
Y⊤K−1

0 Y ¼ V0diagðr10;…; rk0;…; rm0ÞV⊤
0 : ð35Þ

The renormalization matrix U0 obeys U0 ¼ V0diagðu10;
u20;…; umlÞV⊤

0 , with uk0 obeying similar equations as
Eq. (11), i.e.,

1 − α ¼ σ−2uk0 − αu−Lk0 rk0; 1 ≤ k ≤ m: ð36Þ

Similarly to the single-output case, Rl ¼ Y⊤K−1
l Y under-

goes a matrix product renormalization under weight aver-
aging (Appendix C and Ref. [33], Sec. IIIA), i.e.,

Rl−1 ¼ U l−1hRlil: ð37Þ

The average of them-dimensional vector fðxÞ has the same
form as in the single-output case, hfðxÞi ¼ k⊤0 ðxÞK−1

0 Y.
The covariance matrix of the predictor is

hδfðxÞδfðxÞ⊤i ¼ UL
0 ½K0ðx; xÞ − k⊤0 ðxÞK−1

0 k0ðxÞ�
¼ V0diagðuL10;…; uLk0;…; uLm0Þ
× V⊤

0 ½K0ðx; xÞ − k⊤0 ðxÞK−1
0 k0ðxÞ�: ð38Þ

Thus, the fluctuations in the predictor of each mode
(eigenvectors in V0) are independent and are given as in
the scalar output case. However, the overall behavior may
be different than in the m ¼ 1 case since individual outputs
typically consist of contributions from multiple modes. For
instance, the generalization error may not be monotonic
with either α or with L.
Similar to BPKR for the single-output case, for α > 1,

the zero-temperature limit is affected by the singularity of
the kernel matrices Kl. Equations (33), (34), and (37) hold
only for α < 1, and they need to be modified for α > 1,
as we show here. We find (Appendix C and Ref. [33],
Sec. IIIB) that the renormalization matrices U l are still
diagonalized by the unitary matrix Vl, which diagonalizes
the m ×m readout covariance readout matrices, Rl; for
α > 1, they are given as

Rl ¼
1

P
Y⊤Kþ

l Y ¼ Vldiagðr1l;…; rkl;…; rmlÞV⊤
l ; ð39Þ

where the rkl’s are the eigenvalues of Rl and Kþ
l is the

pseudo-inverse of Kl. The renormalization eigenvalues ukl
of the matrix U l are related to the eigenvalues of Rl by

uL−lþ1
kl ¼ ασ2rkl: ð40Þ

The relation given in Eq. (37), which provides an opera-
tional definition of the matrix kernel renormalization OPs,
still holds for 1 ≤ l < L. However, for the full average over
weights, it is replaced by

hRli ¼ U−l
0 R0 −

�
1 −

1

α

�
I ð41Þ

(see Appendix C and Ref. [33], Sec. IIIC for details).
As in the single-output case, Eqs. (35) and (36) hold for

0 ≤ α < ∞, as K0 is full rank as long as α0 < 1. Hence, U0

and other quantities, such as the generalization error, are
smooth functions of α for all α.
Similarly as for the single-output case in Sec. II, the

network properties after integrating the weights of all
hidden layers depend on the kernel renormalization matrix
U0 but not the intermediate renormalization factors U l
(1 ≤ l < L). We summarize below several important
expressions for the renormalization matrix U0 and the
equations for the predictor statistics that depend on U0.
These expressions hold for 0 ≤ α < ∞.
Kernel renormalization mxm matrix U0 for a network

with m outputs:
The renormalization matrix U0 relates the average mean-

squared top-layer and the input-layer readout covariance
matrices via

R0 ¼ UL
0

�
hRLi −max

�
1 −

1

α
; 0

�
I

�
; ð42Þ

whereRL ¼ ð1=PÞY⊤Kþ
LY andR0 ¼ ð1=PÞY⊤K−1

0 Y. The
predictor statistics is

hfðxÞi ¼ k⊤0 ðxÞK−1
0 YhδfðxÞδfðxÞ⊤i

¼ UL
0 ½K0ðx; xÞ − k⊤0 ðxÞK−1

0 k0ðxÞ�: ð43Þ
Using the diagonal form of R0, R0 ¼ V0diagðr10;…;
rk0;…; rm0ÞV⊤

0 , the self-consistent equation of U0 is

U0 ¼ V0diagðu10;…; uk0;…; um0ÞV⊤
0 ;

1 − α ¼ σ−2uk0 − αu−Lk0 rk0: ð44Þ

B. Finite temperature

Until now, we focused on the limit of zero temperature.
We now consider briefly the effect of finite temperature,
i.e., when the training error is not strictly minimized (see
details in Appendix A). Our BPKR framework holds for
general temperatures as well, where the sole effect of
temperature is to add to the renormalized W-dependent
kernel matrix, a regularizing diagonal term, TI [see
Eq. (3)]. In particular, after l successive integration of
layer weights, the effective Hamiltonian becomes

HL−lðW0Þ ¼ 1

2σ2
TrW0⊤W0 þ 1

2
Y⊤½ulL−lKL−l þ TI�−1Y

þ 1

2
log detðulL−lKL−l þ TIÞ

−
lN
2
log uL−l þ

lN
2σ2

uL−l; ð45Þ
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where the kernel still undergoes kernel renormalization
with the scalar renormalization factor ulL−l.
After integration of all the weights, the equations for the

kernel renormalization factor u0 become

1 − σ−2u0 ¼ −
1

N
Y⊤ðuL0K0 þ TIÞ−2uL0K0Y

þ 1

N
TrððuL0K0 þ TIÞ−1uL0K0Þ: ð46Þ

Furthermore, at finite T, the predictor mean and var-
iances are given as

hfðxÞi ¼ uL0 k
⊤
0 ðxÞðuL0K0 þ TIÞ−1Y; ð47Þ

h½δfðxÞ�2i ¼ uL0 ½K0ðx; xÞ − uL0 k
⊤
0 ðxÞðuL0K0 þ TIÞ−1k0ðxÞ�:

ð48Þ

Thus, at finite temperature, both the mean and the variance
of the predictor differ from their GP counterparts, by
renormalization of all kernels by the factor uL0 .
Although the predictor value for xμ in the training set is

not yμ [as is evident from Eq. (47)], the regularization
provided by finite temperature may improve the generali-
zation error, in particular, in the neighborhood of α0 ¼ 1
where otherwise it would diverge. Indeed, for any specific
task, there is an optimal temperature that minimizes the
generalization, as shown in the example of Fig. 7(a).
Depending on the specific training task and parameters,
there exist cases where the optimal temperature is zero
and also where the optimal temperature is above zero, in
which case the training error for optimal generalization is
nonzero. The existence of an optimal T with minimum

generalization error may provide guidance for choosing an
appropriate regularization strength during training.
The effect of temperature is analogous to the effect of

early stopping in the gradient descent dynamics (see
Ref. [16] and Ref. [33], Sec. VIII for more details).
Finally, we discuss how the effect of temperature changes
with the depth of the network. From Eq. (21), we observe
that the effect of temperature on generalization perfor-
mance is controlled by the relative strength between the
temperature term TI and the renormalized kernel uL0K0. For
finite temperature, both TI and K0 are of Oð1Þ, and the
relative strength between the temperature term and the
renormalized kernel is thus controlled by λ≡ u−L0 ; if λ is
small, the effect of temperature is also small. The finite-
temperature order parameter u0 behaves, in the limit of
large L, similarly to that at zero temperature. In the low-
noise regime σ2ð1 − αÞ < 1, u0 approaches unity for large
L as u0 ≈ 1 − ðv0=LÞ; hence, λ approaches the finite value
T exp v0, as shown in Fig. 7(b) [see Eq. (A34) in
Appendix A]. On the other hand, in the high-noise regime,
σ2ð1 − αÞ > 1, u0 approaches a limit larger than 1; hence, λ
goes to zero for deep networks for all finite T [Fig. 7(c)], as
L → ∞, implying that the temperature term given by TI
can be neglected compared to the renormalized kernel, and
the behavior of the network becomes similar to the zero-
temperature behavior. In Fig. 7(d), we look at the effect of
temperature on the generalization performance for net-
works with different depth L in the large-noise regime.
Since the temperature term TI becomes more negligible
compared to the renormalized kernel as L increases, we see
that the curve becomes shallower as L increases, suggesting
the behavior at finite T becomes more similar to T ¼ 0;
also for larger L, larger T is required to compensate for the
small λ to achieve optimal performance.
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FIG. 7. Finite-temperature theory according to Eqs. (47) and (48) for a network trained on the template model with random labels
(see parameters in Appendix E) with finite temperature. (a) Generalization error against the temperature for three different α0’s.
Dashed lines: optimal temperature for each α0. For this specific type of input data, for small α0 (α0 ¼ 0.1, 0.25), the optimal
temperature is at T ¼ 0; for α0 close to 1 (α0 ¼ 0.75, 0.875, 1), the minimum generalization error is achieved at T > 0. (b) For
σ2ð1 − αÞ < 1, u0 approaches 1 and λ ¼ u−L0 approaches the finite value exp v0 (black dashed line). (c) In another regime where
σ2ð1 − αÞ > 1, u0 approaches a limit larger than 1 and λ → 0 as L → ∞. (d) Generalization error vs T for five different L’s. Dashed
lines: optimal temperature for each L. In the regime σ2ð1 − αÞ > 1, since λ goes to 0 and the temperature term TI becomes more
negligible compared to the renormalized kernel uL0K0 as L increases, larger T is required to compensate for the small λ to obtain an
optimal generalization error.
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V. CHANGES IN REPRESENTATIONS
ACROSS LAYERS

Until now, we have discussed the behavior of the
network output for different parameter regimes. We now
turn to how the representation of the data changes across
the different layers.

A. Layerwise mean kernels

The kernel matrices of the hidden layers are an important
indicator of the stimulus features represented by these
layers, similar to the role of similarity matrices [37,38].
Hence, it is interesting to consider the statistics of the
layerwise kernels in our system. We find that the weight-
averaged kernel matrices are, to leading order in N,
identical to those resulting from Gaussian weights (i.e.,
as in the GP limit). The non-Gaussianity appears in mean
kernels only in the Oð1=NÞ corrections. Specifically, for
the single-output case,

hKlil ¼ σ2
�
1 −

1

N

�
Kl−1 þ

σ2

NuL−lþ1
l−1

YY⊤: ð49Þ

The subscript l emphasizes that the average is over Wl
and the upstream weights, i.e., fWkgk>l−1. Proceeding to
successively integrate all upstream weights, the fully
averaged kernel of the lth layer (1 ≤ l ≤ L) is given by

hKli ¼ σ2l
�
1 −

1

N

�
l
K0 þ

ml

N
YY⊤; ð50Þ

where the amplitudes ml consist of the sum of the geo-
metric series with terms such as in Eq. (49), yielding
ml ¼ σ2lu−L0 ½ðul0σ−2l − 1Þ=ðu0σ−2 − 1Þ� (see Appendix D
and Ref. [33], Sec. VA). Thus, the correction term in
Eq. (50) encodes the output task via the output similarity
matrix YY⊤ (and u0). In the following analysis and
examples, we consider the regime σ ≪ 1, where the second
term in Eq. (50) becomes evident compared to the first
term. The shape of this correction is the same in all layers;
however, its relative strength compared to the GP term
increases with the depth of the layer (see Appendix D and
Ref. [33], Sec. VB).
The situation is richer in the case of multiple outputs.

Here, the layerwise mean kernels are (1 ≤ l ≤ L)

hKli ¼ σ2l
�
1 −

m
N

�
l
K0 þ

1

N
YV0MlV⊤

0 Y
⊤; ð51Þ

whereMl is the diagonal matrixMl whose kth eigenvalue is
mkl ¼ σ2lu−Lk0 ½ðσ−2lulk0 − 1Þ=ðσ−2uk0 − 1Þ�. For all l, the
maximal eigenvalue of Ml corresponds to the mode with
the smallest eigenvalue of R0, and this mode may dominate
the correction to the mean kernel matrix (Appendix D and
Ref. [33], Sec. VB). Note that with multiple outputs, the

corrections represented by the last term in Eq. (51) are not
simply proportional to the output similarity matrix as in
the single-output case. The difference is pronounced if the
spectrum of U0 (or, equivalently, that of R0) departs
substantially from uniformity.
A synthetic example is shown in Fig. 8, in which the P

input vectors xμ are linear combinations of P orthogonal
vectors zi with zTi zj ¼ δij,

xμ ¼
XP−1
i¼1

wμ⊤
i zi þ wμ⊤

P zP: ð52Þ

The linear coefficients wμ
i are sampled IID fromN ð0; IÞ for

i ≤ P − 1 but from N ð0; 1
10
IÞ for i ¼ P. The output is two

dimensional, classifying the inputs according to the sign
of their projections on the (P − 1)th and the Pth basis
vectors, respectively [i.e., Y ¼ sgnð½zP−1; zP�⊤XÞ þ σ0η].
As a result, the output similarity matrix ð1=mÞYY⊤ shows
four blocks corresponding to the four categories [Fig. 8(b)].
However, because the input is not fully aligned with the
output, and the output direction corresponding to zP has
smaller variance than that corresponding to zP−1, the block
corresponding to the Pth classification direction is sup-
pressed in the non-GP correction to the kernel of the hidden
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FIG. 8. Hidden representations with multiple outputs. Results
for a single hidden-layer network (L ¼ 1) trained on the synthetic
example described by Eq. (52). In this figure and Fig. 9, to
enhance the relative strength of the task-relevant structure, we
choose small σ, corresponding to strong regularization. (a) Input
similarity matrix. (b) Output similarity matrix, showing four
diagonal blocks corresponding to the four categories of the two
labels [positive or negative projection onto the (P − 1)th or Pth
dimension]. (c) Simulation result corresponding to the non-GP
correction term in Eq. (51), showing only two blocks corre-
sponding to the classification into two categories along the
(P − 1)th direction. The structure of blocks corresponding to
the Pth classification direction as shown in panel (b) is now
suppressed. (d) Theory for the non-GP correction term, Eq. (51).
(See Appendix E for details.)
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layer, Eq. (51) [Figs. 8(c) and (d)]. Note that the observed
similarity pattern is not a linear combination of the input
similarity ð1=NÞX⊤X matrix [which is almost structureless,
Fig. 8(a)] and the output similarity matrix [Fig. 8(b)].
Another example shown in Fig. 9 considers a linear

network with three hidden layers and six output units
each performing a binary classification task on MNIST
input images of four digits (see details of this task in
Appendix E). Here, the input similarity matrix ð1=NÞX⊤X
shows a weak but noticeable four-block structure
[Fig. 9(a)] corresponding to four different digits. The
output similarity matrix ð1=mÞYY⊤ exhibits a pronounced
hierarchical block structure [Fig. 9(b)]. We look at how
the block structure is modified in the different hidden-
layer kernels (Fig. 9).
We observe three major effects of the changes in the

average kernels across layers. First, the magnitude of the
task-related contribution to the mean kernel increases as l
increases, as expected from the theory (Appendix D and
Ref. [33], Sec. VB). Second, in this example, we find that
the finer-scale structure becomes more pronounced in the
mean layer kernel than in the output similarity matrix, as
can be seen from comparing Figs. 9(b) and 9(c). Third,
the contributions from finer-scale structure become less

pronounced for deeper layers, as seen in Fig. 9(c). The
second and third points can also be observed more
straightforwardly in Fig. 9(d), where we show the ratio
between the mean of the second and third largest eigen-
values (corresponding to the four smaller blocks) and the
largest eigenvalue (corresponding to the two larger blocks)
of the non-GP correction terms in the layerwise mean
kernels. This ratio decreases with l, suggesting that the finer
structure becomes less pronounced for large l, and this ratio
for all hidden layers is larger than that for the output layer.
The origin for agreement of the mean kernels with their
GP limit to leading order in N is that the second-order
statistics of hidden-layer weights are just their GP values
to leading order in N. Their renormalization appears only
in the Oð1=NÞ corrections to their covariance matrix
(Appendix D) because the learning-induced terms in the
effective Hamiltonians, such as Eq. (9), are of order P (as
there are P training constraints), which is of the order of N,
while the L2 Gaussian term is of the order of the number of
weights in each layer, which is N2. On the other hand,
the leading term and the correction terms scale differently
with σ, such that in the low-noise limit, the strength of
the correction relative to the GP term grows as σ−2l=N (see
Ref. [33], Sec. VB).

B. Mean inverse kernels

While the average kernel retains, to leading order, its GP
value, the average inverse kernel does not. In fact, to
leading order in N, we obtain

hK−1
l i ¼ 1

σ2lð1 − αÞl K
−1
0 : ð53Þ

However, similar to the mean, the average inverse kernels
encode the target outputs only in the correction terms.
Equation (53) implies that the mean inverse kernel matrix
diverges as α → 1 at zero temperature (Fig. 10). In fact,
its trace for all α > 1 is proportional to 1=T for small T
(see Fig. 10 and Ref. [33], Sec. VI). This divergence of
the zero-temperature mean inverse kernels in narrow
networks is expected, as discussed in Sec. II. Note that
because of averaging over weights, the mean kernel,
Eq. (50), has a rank of P, even when N < P. Furthermore,
the divergence of the mean inverse kernels when α ≥ 1
does not lead to divergence of the mean-squared readout
parameters rl and the renormalization scalars ul, as
observed above (and explained in Appendix A and
Ref. [33], Secs. IA and IB).
Concluding this section, we note that even though the

second-order weight statistics and the related mean kernel
are, to leading order, equal to their GP limit, other statistics
of the weights and kernels, and, in particular, the predictor
statistics and the generalization error, deviate from the GP
limit already to leading order, for all α ¼ Oð1Þ, as shown
here and in Sec. III.
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FIG. 9. Simulation and theory for the mean kernel for binary
classification tasks on MNIST. The network is trained on four
different MNIST digits, which are grouped into two higher-order
categories (see Appendix E). The output of the network is six
dimensional: Four of the output units are one-hot representations
of the four digits; the other two outputs label the inputs according
to their high-order category. (a) Input similarity matrix. (b) Output
similarity matrix. (c) Average kernel of the hidden layer for l ¼ 1,
2, 3. Top: simulation. Bottom: theory. (d) Ratio between the mean
of the second and third largest eigenvalues (corresponding to the
magnitude of the four smaller blocks) and the largest eigenvalue
(corresponding to the magnitude of the two larger blocks) of the
non-GP correction terms in the layerwise mean kernel, mono-
tonically decreasing with l.
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VI. BPKR IN DEEP RELU NETWORKS

A. Approximate BPKR for ReLU networks

Our theory applies to deep networks with linear units,
which are limited in their expressive power. To enhance
the system’s expressivity, one might adopt an architecture
comprising a fixed (nonlearned) nonlinear mapping of the
input to a shallow layer that then projects to the deep
linear networks with learned synapses, as has been studied
extensively in recent years (e.g., inputs projecting to a
nonlinear kernel representation or to a layer of nonlinear
neurons via random weights [36,39,40]). Since our
theory does not rely on specific assumptions about the
input statistics, our BPKR applies readily to this archi-
tecture, with the input vectors and the associated input
kernel defined by the nonlinear representation of the
shallow layer.
Our theory is not expected to hold for architectures

where the learned weights project to nonlinear units, as is
the case in most applications of DNNs. In such cases,
integration of even one layer of synapses is hard. Here, we
ask to what extent our theory can be adapted to nonlinear
networks to yield a reasonable approximation in some
parameter regimes. For simplicity, we assume a single
linear output unit.
We recall that in the GP limit, the properties of DNNs are

accounted for by the GP kernels appropriate for the chosen
nonlinearity [29]. For example, infinitely wide deep net-
works with ReLU nonlinearity, which will be studied here,
yield GP kernels for the lth layer of the form

hKGP
l ðx; yÞi ¼ σ2

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hKGP

l−1ðx; xÞihKGP
l−1ðy; yÞi

q
Jðθl−1Þ;

Jðθl−1Þ ¼ sinðθl−1Þ þ ðπ − θl−1Þ cosðθl−1Þ; ð54Þ

θl−1 ¼ arccos

0
B@ hKGP

l−1ðx; yÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hKGP

l−1ðx; xÞihKGP
l−1ðy; yÞi

q
1
CA; ð55Þ

where θl−1 represents the angle between the l − 1 repre-
sentations of x and y, and the superscript GP in KGP

l
specifies the GP kernel of the lth layer, differentiating from
the Kl we previously defined in Eq. (4), which represents
the dot product of activations of the network. These
equations can be solved by iteration from the initial
condition KGP

0 ðx; yÞ ¼ K0ðx; yÞ ¼ ðσ2=N0Þx⊤y, for a pair
of input vectors x and y.
The average symbol is the result of (self-)averaging with

respect to Gaussian weights. In the GP limit, the predictor
statistics of a network with L layers are given in terms of
these kernels as

hfðxÞi ¼ hkGP⊤L ðxÞihKGP
L i−1Y; ð56Þ

h½δfðxÞ�2i ¼ hKGP
L ðx; xÞi − hkGP⊤L ðxÞihKGP

L i−1hkGPL ðxÞi;
ð57Þ

where hkGPμL ðxÞi ¼ hKGP
L ðx; xμÞi.

To extend the BPKR to ReLU networks with finite α, we
make the ansatz that the weight statistics are modified
relative to their GP value by a scalar kernel renormalization
u0. Because in the ReLU nonlinearityKl is a linear function
of the amplitude of Kl−1, we reason that the iterative
equation has a similar structure to the linear network case,
culminating in

1 − σ−2u0 ¼ αð1 − u−L0 r0Þ; ð58Þ

r0 ¼
σ2L

P
Y⊤hKGP

L i−1Y; ð59Þ

and, consequently, the mean predictor is unchanged from
Eq. (56), while the variance is given by

h½δfðxÞ�2i ¼ uL0 σ
−2LðhKGP

L ðx; xÞi
− hkGP⊤L ðxÞihKGP

L i−1hkGPL ðxÞiÞ: ð60Þ

Note that in the linear case, the Gaussian-averaged
hKGP

L i ¼ σ2LK0, which reduces the above equations to
the exact BPKR equations [see Eqs. (20) and (21)]. Also,
for α ¼ 0, Eq. (58) yields u0 ¼ σ2, and the theory reduces
to the GP limit for ReLU networks.

B. Generalization in ReLU networks

Our approximate BPKR predicts that the generalization
error increases with α for low σ and decreases for high σ.
We have checked these predictions for a ReLU network of a
single hidden-layer network trained for the noisy linear
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FIG. 10. Trace of the average inverse kernel of a single
hidden-layer network. Lines: theory. Circles: simulations.
Simulations are done with the same model and parameters
as Fig. 6, described in Appendix E. Left: The mean inverse
kernel diverges as α → 1 at zero temperature. Right: The trace
of the average inverse kernel for the single hidden-layer
network multiplied by T, showing the divergence of the trace
for all α > 1 as 1=T as T → 0.
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teacher task described in Appendix E. Results are shown in
Fig. 11. We have also checked these predictions for a ReLU
network of a single hidden layer trained for the MNIST
binary classification task (see details in Appendix E) as
shown in Fig. 12.
The simulation behaves qualitatively the same as pre-

dicted by the theory; εg in the ReLU network increases with
α for small noise and decreases at high noise. Furthermore,
surprisingly, there is also a good quantitative agreement
between the simulations and the approximate BPKR for
ReLU networks, even for small N (i.e., α ∼ 10). The mean
predictor contributing to the bias component of the gen-
eralization error is constant, and its value fits the prediction
given by Eq. (56). The predictor variance, as well as εg,
varies with N, in close agreement with the approximate
BPKR prediction. Furthermore, the order parameter u0
defined by uL0 ¼ ½ðσ2LY⊤hKGP

L i−1YÞ=ðY⊤hK−1
L iYÞ� varies

with N, in close agreement with Eq. (58).
In the examples above, α0 < 1. In the linear network, we

found a divergence of the bias and the generalization error
at α0 ¼ 1 and vanishing of the predictive variance for
α0 > 1. These features are not expected to hold for the

nonlinear network because of the stronger expressivity
contributed by the trained nonlinear hidden layer. We look
at whether our ansatz also serves as a good approximation
in the regime of α0 > 1, where the nonlinearity plays a
crucial role in allowing for zero training error. The results
are shown in Fig. 13. Surprisingly, even here, results for
both the predictor statistics and the order parameter are in
good agreement with the theory.
In all previous examples, we did not observe double

descent in εg because we are in the regime where the
network achieves zero training error for all N ≥ 2 (because
our N0 is sufficiently large). We therefore test our results
with small N0, pushing the network closer to its interpo-
lation threshold, which is roughly when N ∼ α0, i.e.,
P ∼ NN0 (i.e., the number of learned parameters equals
the number of training data [41]). Indeed, we see significant
deviation from the approximate BPKR as N decreases and
approaches α0, which suggests that the scalar renormaliza-
tion of the kernel becomes inadequate as the network
approaches its expressivity capacity. While the simulation
shows a double-descent behavior, our theoretical ansatz
does not (Fig. 14). The theoretical results agree with the
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FIG. 11. Single hidden-layer (L ¼ 1) ReLU network trained on the template model with labels generated by a noisy linear teacher with
details of parameters in Appendix E. (a,e) Generalization error, (b,f) variance, (c,g) bias of the predictor, and (d,h) the order parameter u0
as a function of N. Black solid lines: theory. Blue dots: simulation. Black dashed lines: GP limit (N ¼ ∞). (a)–(d) Results in the small-
noise regime where the generalization error decreases with N. (e)–(h) Results in the large-noise regime where the generalization error
increases with N.
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FIG. 12. Single hidden-layer (L ¼ 1) ReLU network trained on MNIST binary classification of two digits (0 and 1) with details of the
parameters in Appendix E. (a,e) Generalization error, (b,f) variance, (c,g) squared bias of the predictor, and (d,h) order parameter u0 as a
function of N. Black solid lines: theory. Blue dots: simulation. Black dashed lines: GP limit (N → ∞). (a)–(d) Results in the small-noise
regime where the generalization error decreases with N. (e)–(h) Results in the large-noise regime where the generalization error
increases with N.
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simulations only on the rhs of the interpolation threshold,
i.e., larger N, and they fit the simulations significantly
better than the GP approximation, as shown in Figs. 14(b),
14(g), and 14(l). Incidentally, it is interesting to compare
the generalization behavior in the three tasks, which differ
in their complexity. In the linear teacher task (Appendix E),
the minimum generalization error is on the lhs of the
interpolation threshold. However, for the random labeling
task (Appendix E) and classification of MNIST data
(Appendix E), because of the nonlinearity of the task, a
large number of network parameters are required in order to
generalize well, and the minimum generalization error is
achieved on the rhs of the interpolation threshold, which is

similar to the linear network (Fig. 6). Importantly, for N
below the interpolation threshold while the training error is
nonzero, the minimal training error solution is not unique,
and this degeneracy in the weights induces variability in
the input-output mapping of the network, as shown by the
nonvanishing of the predictor variance in the left side of the
peak in Fig. 14, except at N ¼ 1. This case is different from
the linear case, where for α0 > 1 the predictor variance
vanishes [see Eq. (21) and Fig. 6].
All the examples above were for a single hidden layer.

We also test our ansatz against the simulation results for the
ReLU network with multiple hidden layers. As we see in
Fig. 15, our approximate BPKR agrees reasonably well
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FIG. 13. Single hidden-layer (L ¼ 1) ReLU network trained on the template model linear teacher example with details of the
parameters in Appendix E, in the α0 > 1 regime. (a,e) Generalization error, (b,f) variance, (c,g) squared bias of the predictor, and
(d,h) the order parameter u0 as a function of N. Black solid lines: theory. Blue dots: simulation. Black dashed lines: GP limit (N ¼ ∞).
(a)–(d) Results in the small-noise regime where the generalization error decreases with N. (e)–(h) Results in the large-noise regime
where the generalization error increases with N.
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FIG. 14. Single hidden-layer ReLU network with smaller N0 to push the network closer to its capacity. Black solid lines: theory. Blue
lines: simulation. Black dashed lines: GP limit. (a,f,k) Generalization error [(b,g,l) zooming in on the large N part of (a,f,k) to show the
convergence to the theory and to compare our ansatz with the GP approximation], (c,h,m) variance, and (d,i,n) bias of the predictor, and
(e,j,o) the order parameter u0. (a)–(e) Trained on the linear teacher task with detailed parameters in Appendix E. The minimum
generalization error is observed at small N, on the lhs of the interpolation threshold due to the linearity of the task. (f)–(j) Trained on the
template model with random labeling of each cluster (see detailed parameters in Appendix E). The task itself requires nonlinearity, and
the minimum generalization error is achieved in the overparametrized regime. (k)–(o) Trained on the randomly projected MNIST data of
two digits (see Appendix E). This task also requires nonlinearity, and the minimum generalization error is achieved in the
overparametrized regime. [In this figure, we also use the finite T ansatz (see Ref. [33], Sec. VII) for the theory curves.]
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with the simulation for L ¼ 1–5 and is significantly
better than the predictions of the GP limit, but the agree-
ment fails for large L. Thus, for finite α, when L becomes
larger, renormalization of the kernel just by a scalar
becomes inadequate.

VII. DISCUSSION

A. Summary

Since the seminal work of Gardner [42,43], statistical
mechanics has served as one of the major theoretical
frameworks for understanding the complexity of supervised
learning. However, so far, it has focused mostly on shallow
architectures and addressed the classical bias-variance trade-
off where calculated learning curves displayed improvement
of generalization when the number of examples was large
compared to the system size [44,45]. Statistical mechanics
has also focused on phase transitions, local minima, and
spin-glass properties due to the underlying nonlinearity of
the learning cost function and the quenched randomness of
the training data [26,31]. It is well known that deep learning
challenges many of the above intuitions, calling for a new
theory of learning in deep architectures. In this work, we
have developed a new statistical mechanics framework of
learning in a family of networks with deep architectures. To
make the theory analytically tractable, we have focused on
networks with linear units. Despite their limited expressive
power, they do share important aspects of nonlinear deep
networks, as is highlighted in our work. Importantly, unlike
most previous statistical mechanical theories of learning,
which resorted to extremely simplifying assumptions about
the input statistics and the target labels, our theory general
fully exposed the relation between network properties and
task details.
DLNNs have been the focus of several studies.

References [46,47] prove the absence of suboptimal local
minima under mild conditions, a result that is consistent
with our results. A very interesting work [18] studied the

gradient descent dynamics of learning in DLNNs, with
results that depended critically on the initial conditions
(small random weights) and only became tractable with
simplifying assumptions about the data (XX⊤ ¼ I and
P > N). Keeping N and P fixed for most of the simulation
and analysis, Ref. [18] addressed the changes in repre-
sentation during training and across different layers. Under
the restricted assumptions, they found that (when there are
multiple outputs) the learning dynamics can be decom-
posed into multiple modes, which evolve independently,
qualitatively similar to the multiple modes found in our
analysis (see further below). However, they did not address
the basic question of the system’s performance such as the
predictor statistics and the generalization error and its
critical dependence on various network parameters. Here,
we studied the nature of the Gibbs distribution in the weight
space induced by learning with the training mean-squared
error as the Hamiltonian. We have focused mainly (but not
exclusively) on the properties of the feasible weight space
consisting of weight vectors that yield zero training error,
which is the case in many real-world applications of DNNs,
with the well-known L2 regularization (with an amplitude
parametrized by inverse noise, σ−2).
Because of the highly nonlinear nature of the training

Hamiltonian, evaluating the statistical mechanical proper-
ties of DLNNs seems intractable. Here, we developed the
BPKR method to integrate out the weight matrices layer by
layer, allowing us to derive equations for the system’s
properties that are exact in the thermodynamic limit.
Importantly, in contrast to most kernel-based theories of
deep networks, our thermodynamic limit is defined by
letting both the width N and training size P diverge while
the load α ¼ P=N remains of order one, extending the well-
known thermodynamic limit of statistical mechanics of
learning to deep architectures [16,25]. We have shown that
the effect of the finite load is to change the effective
Hamiltonians through an α-dependent kernel renormaliza-
tion at each successive step of weight integration.
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FIG. 15. Generalization error of deep ReLU networks as a function of depth L. Blue dots: simulation. Black solid lines: theoretical
approximation. Black dashed lines: GP limit. (a,e) Generalization error, (b,f) variance, and (c,g) bias of the predictor, and (d,h) the order
parameter u0. (a)–(d) Results for the template model with noisy linear teacher labels, with the parameters in Appendix E. (e)–(h) Results
for a binary MNIST classification task with parameters in Appendix E.
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In addition to load α, depth L, and weight noise
parameter σ2. Inputs and their labels in the training data
affect the properties of the system through the mean-squared
input-layer readout parameter, σ2r0, Eq. (12). Our results
yield rich phase diagrams specifying the dependence of the
generalization error on the width and the depth of the
network, Figs. 3–5. Importantly, depending on σ2 and
σ2r0, the generalization error may decrease upon increasing
width (i.e., decreasing α) and increasing depth (i.e., increas-
ing L). Since this occurs within the overparametrized regime
where the training error is zero throughout, our results prove
that, in an exactly solvable deep network, increasing network
complexity may lead to a substantial improvement in
generalization. We were also able to identify the parameter
regimes where this improvement happens.
Importantly, the BPKR also enabled us to evaluate the

posterior properties of each layer’s weights imposed by
learning. We leveraged this to explore the effect of input and
output data on the layerwise similarity matrices induced
through learning and showed that because of different
renormalization strengths, amplification of modes in the
layer representations is not uniform, as demonstrated in the
examples in Figs. 8 and 9. Recent studies have analyzed
the similarity matrices of neuronal activities for structured
tasks and compared them with the representations in the
hidden layers of DNNs [48–50]. Therefore, our work may
provide a theoretical understanding of how neuronal repre-
sentations are constrained by the task structure.

B. BPKR and GD learning

In the case of multiple outputs, we show in Sec. IVA
that the layerwise renormalization order parameters are
not scalars but matrices. The renormalization order
parameter after full averaging is diagonalized by the
unitary matrix, which diagonalizes the input-layer readout
covariance matrix, Eq. (33). Different eigenvalues corre-
sponding to different modes obey an independent set of
equations, analogous to Ref. [18], which shows modes
evolving independently with time during GD learning.
However, our renormalization modes are defined by
diagonalizing input-layer mean-squared readout matrices
and not by a fixed input-output covariance matrix as in
Ref. [18]. As stated above, our results rely on the
equilibrium assumption but not on the special structure
of the data nor on an initial condition.
It is interesting to explore the similarity of the behavior

of our system with the properties of gradient descent, with
implicit regularization induced by early stopping, starting
from random initial conditions [16,51,52]. As we show in
Sec. VIII of Ref. [33], the generalization properties of the
early stopping dynamics may exhibit qualitatively similar
features to those predicted by our theory for Gibbs learning,
with the initial variance of the weights in the early stopping
dynamics playing the role of our noise parameter σ2. For
example, the generalization error of weights learned

through the early stopping dynamics increases with the
network width for large initial weight variance and
decreases with the network width for small initial weight
variance, which qualitatively agrees with the behavior of
the generalization error in our BPKR theory in different
regimes of the noise parameter σ. Extending our theory to
the learning dynamics is an interesting ongoing study.

C. Nonlinear DNNs

We have extended our theory to ReLU networks by
applying a scalar kernel renormalization scheme on the GP
nonlinear kernels [Sec. VI, Eqs. (56)–(59)]. Testing this
approximation against numerical simulations of a few
learning tasks with ReLU networks with a moderate number
of layers revealed strikingly good qualitative and quantitative
agreement regarding thewidth and noise dependencies of the
predictor statistics and the generalization error, as well as the
layerwise mean-squared readout order parameters, with
much greater accuracy than the GP theory.
Importantly, this BPKR approximate theory for ReLU

networks holds, even in cases where, for a linear network,
the system would be in a highly underparametrized regime
(Fig. 13), such that the neuronal nonlinearity plays a crucial
role in the ability of the system to yield zero training and low
generalization error (Fig. 15). The failure of the approxi-
mation for deeper networks (L ≥ 5) is expected. The GP
theory for nonlinear networks predicts that, as L → ∞, not
only does the magnitude of the kernel matrices converge to a
(finite or infinite) fixed point, but its matrix structure also
converges to a fixed point, implying the loss of information
about the structure of the inputs in deep networks with
infinite width. Thus, when the width is finite, i.e., α ¼ Oð1Þ,
we expect to see a renormalization not only in the kernels’
magnitudes (as in our scalar renormalization) but also in
their shape. In addition, in nonlinear networks with finite
width, the basic description of the system may depend on
higher-order statistics than the kernel matrices, as suggested
by the recent work of Refs. [53,54].
Even for shallow nonlinear networks, the approximate

nonlinear BPKR breaks down in the underparametrized
regime, on the left side of the interpolation threshold at
N ≈ α0. Thus, if α0 is large, there is a substantial range of
small N for which the system is in the underparametrized
regime, and this gives rise to a peak in the generalization
error (as a function of NÞ near the interpolation threshold,
a genuine “double-descent” phenomena as studied in
Refs. [35,36]. Naturally, our approximate theory predicts
monotonic dependence in N; hence, it is valid only on the
right side of the double-descent peak, i.e., in the over-
parametrized regime, Fig. 14.

D. Relation to other methods

Successive integration of random variables of joint
distributions is used in belief propagation algorithms
[15,55–60]. However, despite the Markovian property of
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the distribution of the deep network activations, the
posterior distribution of the weights takes a complicated
form, as described in Sec. II A [Eqs. (3) and (5)], rendering
the layerwise weight integration intractable in general, and
even in linear networks, it can be performed only in the
thermodynamic limit, as shown here. Therefore, although
Bayesian inference algorithms such as message passing are
commonly applied to study the distribution of hidden-layer
activations of Bayesian neural networks [61–63], they are
not directly applicable for computing the posterior dis-
tribution of the weights. Recent works on inference of the
posterior weight distribution have proposed to extend
backprop learning algorithms to also update the variances
of the weights, by approximating the weight distribution
as an independent Gaussian distribution [64,65]. As our
work shows, the posterior distribution is far from being
IID Gaussian. Importantly, backprop learning algorithms
do not necessarily provide insight into the final solutions.
In contrast, our work is a theoretical study of the
properties of the posterior distribution of weights after
learning.
Our BPKR also has some analogy with the renormal-

ization group (RG) approach in physics. Similar to BPKR,
RG evaluates properties of high-dimensional systems by
successive integration of subsets of the systems’ d.o.f. [66].
However, the analogy is limited because in contrast to RG,
here there is no obvious notion of coarse graining of d.o.f.
Our system combines properties of layered physical sys-
tems [67–70] with the mean field aspect arising from
the full layer-to-layer connectivity. The latter is demon-
strated by the fact that the behavior at the critical point
σ2ð1 − αÞ ¼ 1 is mean-field-like [see Eq. (30)].

E. Extensions of present work

There are several paths for extending our theory to
deeper nonlinear networks. Exact mean-field equations are
possible for specific forms of nonlinearities. For a generic
nonlinearity, approximate methods might be possible.
These methods would likely involve renormalization not
only of kernels but also of other terms in the effective
Hamiltonian, such as fourth-order kernels [53]. These are
topics of ongoing work.
Our theory applies to fully connected networks without

additional constraints on the network structure, while in
practice, other types of neural networks such as convolu-
tional neural networks (CNNs) are commonlyused for image
processing, speech recognition, and various tasks. Recent
workdiscussedextensionof theGP theory toCNNs [71–73].
Incorporating such architectural restrictions into our theory
induces shape renormalization of the kernel (i.e., not simply
renormalization by a scalar) and is a topic of ongoing work.
Other extensions of our theory include loss functions other
than MSE and regularization terms other than L2.
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APPENDIX A: BACKPROPAGATING KERNEL RENORMALIZATION FOR DLNNS

We begin with the partition function

Z ¼
Z

dΘ exp

�
−

β

2N

XP
μ¼1

�XN
i¼1

aiϕiðxμ;WÞ − yμ
�

2

−
1

2σ2
ΘTΘ

�
ðA1Þ

and introduce P auxiliary integration variables, tμðμ ¼ 1;…; PÞ, to linearize the quadratic training error,

Z ¼
Z

dΘ
Z

ΠP
μdtμ exp

�
−

1

2σ2
Θ⊤Θ −

XP
μ¼1

itμ

�
1ffiffiffiffi
N

p
XN
i¼1

aiϕiðxμ;WÞ − yμ
�
−
T
2
t⊤t

�
: ðA2Þ

Integrating over a, we have Z ¼ R
dWZLðWÞ with

ZLðWÞ ¼
Z

dt exp

�
−
1

2
t⊤ðKL þ TIÞtþ it⊤Y −

1

2σ2
TrðW⊤WÞ

�
; ðA3Þ

where the kernel matrix KL is defined in Eq. (4) with l ¼ L. Integrating over t yields
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ZL ¼ exp

�
−
1

2
Y⊤ðKL þ TIÞ−1Y −

1

2
log detðKL þ TIÞ − 1

2σ2
TrðW⊤WÞ

�
: ðA4Þ

To make further progress, we assume all the units are linear, so the hidden units are xi;l ¼ ð1= ffiffiffiffi
N

p Þwi⊤
l xl−1 (and the

first layer units are xi;1 ¼ ð1= ffiffiffiffiffiffi
N0

p Þwi⊤
1 x). We evaluate Z ¼ R

dWZLðWÞ by successive integrations of weight
matrices one at a time, starting from the top layer. Integrating the top hidden-layer weights to compute
ZL−1ðW0Þ ¼ R

dWLZLðWÞ ¼ exp½−HL−1�, where the weights W0 consist of all weight matrices upstream of WL,
W0 ¼ fWkgk<L, we obtain

ZL−1ðW0Þ ¼
Z

ΠNL
i¼1dw

i
L

Z
dt exp

�
−
1

2
t⊤ðKL þ TIÞt − 1

2σ2
TrðW⊤WÞ þ it⊤Y −

1

2σ2
TrðW0⊤W0Þ

�

¼
Z

dt exp

�
it⊤Y þ NGðtÞ − T

2
t⊤t − 1

2σ2
TrðW0⊤W0Þ

�
; ðA5Þ

GðtÞ ¼ log

�
exp−

1

2N
t⊤KL

wt

�
w
; ðA6Þ

where the average is with respect to a single N-dimensional weight vector wi
L with IID N ð0; σÞ components, and

KL;μν
w ¼ σ2xμi;Lx

ν
i;L ¼ ðσ2=NÞxμ⊤L−1wi

Lw
i⊤
L xνL−1. Performing the average in Eq. (A6) yields GðtÞ ¼ − 1

2
logð1þ hL−1Þ, where

hL−1 ¼
σ2

N
t⊤KL−1t: ðA7Þ

To integrate over t, we enforce the identity Eq. (A7), by Fourier representation of the delta function, introducing the
auxiliary variable uL−1,

ZL−1 ¼
Z

duL−1

Z
−1

dhL−1

Z
dt exp

�
it⊤Y −

N
2
logð1þ hL−1Þ þ

NL

2σ2
uL−1hL−1

−
1

2
t⊤ðuL−1KL−1 þ TIÞt − 1

2σ2
TrðW0⊤W0Þ

�
; ðA8Þ

and integrating over t,

ZL−1 ¼
Z

duL−1

Z
−1

dhL−1 exp

�
−
N
2
logð1þ hL−1Þ þ

1

2σ2
NuL−1hL−1 −

1

2
YTðuL−1KL−1 þ TIÞ−1Y

−
1

2
log detðuL−1KL−1 þ TIÞ − 1

2σ2
TrðW0⊤W0Þ

�
: ðA9Þ

In the limit of N → ∞, P → ∞, and fixed α, we solve this integral with the saddle-point method. One of the saddle-point
equations yields uL−1 ¼ ½ðσ2Þ=ð1þ hL−1Þ�; plugging back in Eq. (A9), we obtain

ZL−1ðW0Þ ¼
Z

duL−1 exp−HL−1ðW0; uL−1Þ ðA10Þ

with the effective Hamiltonian

HL−1ðW0; uL−1Þ ¼
1

2
Y⊤ðuL−1KL−1 þ TIÞ−1Y −

N
2
log uL−1 þ

1

2
log detðKL−1uL−1 þ TIÞ þ 1

2σ2
TrW0⊤W0 þ 1

2σ2
NuL−1:

ðA11Þ

Thus, integrating over WL, results in the presence of an auxiliary scalar DOF, uL−1. Finally, we eliminate uL−1 through a
saddle-point equation,
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Nð1 − σ−2uL−1Þ ¼ −YTðuL−1KL−1 þ TIÞ−2uL−1KL−1Y þ TrðuL−1KL−1 þ TIÞ−1uL−1KL−1: ðA12Þ

At the T → 0 limit, we obtain Eq. (7).
This procedure can be iterated layer by layer. We demonstrate it by computing HL−2ðW0Þ defined via ZL−2ðW00Þ ¼R
dWL−1ZL−1ðW0Þ ¼ exp½−HL−2ðW00Þ�, where W00 denotes all weight matrices upstream of WL−1,

ZL−2ðW00Þ ¼
Z

duL−1

Z
dWL−1 exp

�
N
2
log uL−1 −

1

2σ2
NuL−1 −

1

2
YTðuL−1KL−1 þ TIÞ−1Y

−
1

2
log detðuL−1KL−1 þ TIÞ − 1

2σ2
TrðW0⊤W0Þ

�

¼
Z

duL−1

Z
dt exp

�
it⊤Y þ NGðtÞ − T

2
t⊤t − 1

2σ2
TrðW00⊤W00Þ þ N

2
loguL−1 −

1

2σ2
NuL−1

�
; ðA13Þ

GðtÞ ¼ log
�
exp−

uL−1
2N

t⊤KL−1
w t

�
w
; ðA14Þ

where the average is with respect to a single N-dimensional Gaussian vector with IID N ð0; σÞ components.
Performing this average yields GðtÞ ¼ − logð1þ hL−2Þ with

hL−2 ¼
σ2uL−1
NL−1

t⊤KL−2t: ðA15Þ

Similar to above, we introduce two additional scalar integration variables uL−2 and hL−2,

ZL−2 ¼
Z

duL−2

Z
−1

dhL−2

Z
duL−1

Z
dt exp

�
it⊤Y −

N
2
logð1þ hL−2Þ þ

N
2σ2

uL−2hL−2

−
1

2
t⊤ðuL−1uL−2KL−1 þ TIÞtþ N

2
log uL−1 −

1

2σ2
NuL−1 −

1

2σ2
TrðW00⊤W00Þ

�
: ðA16Þ

Integrating over t and plugging in the saddle point
of hL−2 [uL−2 ¼ ðσ2Þ=ðhL−2 þ 1Þ], we have the effective
Hamiltonian

HL−2ðW00; uL−1; uL−2Þ

¼ −
N
2
loguL−1 þ

1

2σ2
TrW00⊤W00 þ 1

2σ2
NuL−1

þ 1

2
Y⊤ðuL−1uL−2KL−2 þ TIÞ−1Y −

N
2
loguL−2

þ 1

2
log detðKL−2uL−1uL−2 þ TIÞ þ 1

2σ2
NuL−2:

ðA17Þ

Finally, uL−1 and uL−2 are computed via saddle-point
equations

Nð1 − uL−1σ−2Þ
¼ −uL−1uL−2YTðuL−1uL−2KL−2 þ TIÞ−2KL−2Y

þ uL−1uL−2TrðuL−1uL−2KL−2 þ TIÞ−1KL−2 ðA18Þ

Nð1 − uL−2σ−2Þ
¼ −uL−1uL−2YTðuL−1uL−2KL−2 þ TIÞ−2KL−2Y

þ uL−1uL−2TrðuL−1uL−2KL−2 þ TIÞ−1KL−2: ðA19Þ

The solution obeys uL−1 ¼ uL−2, and we now have

Z ¼
Z

dW00
Z

duL−2 exp−HL−2ðW00; uL−2Þ ðA20Þ

with

HL−2ðW00;uL−2Þ ¼−N loguL−2þ
1

2σ2
TrW00⊤W00

þ 1

σ2
NuL−2þ

1

2
Y⊤ðu2L−2KL−2þTIÞ−1Y

þ 1

2
logdetðKL−1u2L−2þTIÞ: ðA21Þ

Evaluating uL−2 via the saddle-point equation yields
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Nð1 − uL−2σ−2Þ ¼ −YTðu2L−2KL−2 þ TIÞ−2u2L−2KL−2Y

þ Tr½ðu2L−2KL−2 þ TIÞ−1u2L−2KL−2�;
ðA22Þ

where the kernelKL−2 is renormalized by u2L−2. Note that in
the integration of WL−2, both uL−1 and uL−2 are auxiliary
integration variables (hence, independent of weights) and
are determined at the last step by the new saddle-point
equation (A22) as functions of W00. In contrast, the saddle-
point value of uL−1 in the first renormalization step,
Eq. (A12), is a function of W0. In fact, the average of
uL−1 of the first renormalization step over WL−1 obeys
uL−1 ¼ uL−2 of the second renormalization step (see para-
graph below on renormalization of order parameters).
Similarly, iterating this renormalization l times yields

Eqs. (45) and (46).

1. Narrow network at zero temperature

At finite temperature, the above derivation holds for all
α. However, in the zero-temperature limit, we need to
address the singularity of the hidden layers’ kernel matrices
when α > 1. We begin with the partition function after
integrating the readout layer at zero temperature,

ZLðWÞ ¼
Z

dt exp

�
−
1

2
t⊤KLtþ it⊤Y −

1

2σ2
TrðW⊤WÞ

�
:

ðA23Þ

With eigenvalue decomposition of KL, KL ¼ VΣV⊤,
where V is a unitary P × P matrix, and Σ is a P × P
diagonal matrix with elements ðΣ1;…;ΣN; 0;…; 0Þ, and
orthogonal transformation of variables V⊤t → t, we have

ZLðWÞ ¼
Z

dtexp

�
−
1

2
t⊤Σtþ it⊤V⊤Y −

1

2σ2
TrðW⊤WÞ

�
:

ðA24Þ

We introduce notations tjj ¼ ½t1; � � � ; tN �⊤ ∈ RN , t⊥ ¼
½tNþ1;…; tP�⊤ ∈ RN−P, V jj ¼ ½V1;…; VN � ∈ RP×N , V⊥ ¼
½VNþ1;…; VP� ∈ RP×ðP−NÞ, and Σjj ¼ diagðΣ1;…;ΣNÞ ∈
RN×N . With these notations, we can write

ZLðWÞ ¼
Z

dtk

Z
dt⊥ exp

�
−
1

2
t⊤jj Σjjtjj þ it⊤jj V⊤

jj Y

þ it⊤⊥V⊤⊥Y −
1

2σ2
TrðW⊤WÞ

�
: ðA25Þ

Integrating over t⊥ yields δðV⊤⊥YÞ. The δ function forces
the projection of Y onto the directions perpendicular to XL
to vanish. In the zero-temperature limit, this constraint on
the weights ensures zero training error; therefore, Y must lie
in the subspace spanned by XL. We next integrate tjj and
obtain ZLðWÞ ¼ δðV⊥YÞ exp½−HLðWÞ�, with

HLðWÞ ¼ 1

2
Y⊤Kþ

LY þ 1

2
log detðCLÞ þ

1

2σ2
TrðW⊤WÞ;

ðA26Þ

where Kþ
L ¼ V jjΣ−1

jj V
⊤
jj is the pseudo-inverse of KL, and

CL ¼ ðσ2=NÞXLX⊤
L has the same determinant as Σjj.

Similarly, we have ZL−lðWÞ ¼ δðV⊥YÞ exp½−HL−lðWÞ�;
here, V⊥ are the eigenvectors of KL−l spanning its null
space, and

HL−lðW0Þ ¼ 1

2ulL−l
Y⊤Kþ

L−lY þ 1

2
log detðu−lL−lCL−lÞ

þ 1

2σ2
TrðW0⊤W0Þ: ðA27Þ

Differentiating Eq. (A27) with respect to uL−l, we obtain
Eqs. (14) and (15).

2. Properties of the order parameters

Here, we show that the order parameters ul undergo a
trivial renormalization upon averaging. For any function
of ul, we can write

hfðulÞil ¼
1

Zl−1

Z
dulfðulÞ

Z
dWl

Z
dt exp

�
it⊤Y −

1

2
t⊤ðuL−ll Kl þ TIÞtþ NðL − lÞ

2
logul

−
NðL − lÞ

2σ2
ul þ

1

2σ2
TrðW0⊤W0Þ

�

¼ 1

Zl−1

Z
dul

Z
dul−1

Z
dtfðulÞ exp

�
it⊤Y −

1

2
t⊤ðul−1uL−ll Kl−1 þ TIÞtþ NðL − lÞ

2
logul

−
NðL − lÞ

2σ2
ul þ

1

2σ2
TrðW00⊤W00Þ þ N

2
log ul−1 −

N
2σ2

ul−1

�
; ðA28Þ

which is equal to the saddle-point value of fðulÞ. Since ul ¼ ul−1 at the saddle point, where ul−1 obeys the saddle point
Eq. (46) appropriate for L − lþ 1 iterations, we have
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hfðulÞil ¼ fðul−1Þ; ðA29Þ

which holds for all 0 ≤ α < ∞ and all T.
The order parameters ul have a simple interpretation given by Eq. (13) for 1 ≤ l ≤ L at zero temperature for α < 1

(see Ref. [33], Sec. IVA for the derivation at finite temperature). We evaluate
1

P
hY⊤K−1

l Yil ¼
1

Zl−1

Z
dWl

1

P
Y⊤K−1

l Y
Z

dt exp

�
it⊤Y −

1

2
t⊤uL−ll Kltþ

1

2σ2
TrðW0⊤W0Þ

�

¼ −
1

Zl−1

Z
dWl

1

P
Y⊤

Z
dtituL−ll exp

�
it⊤Y −

1

2
t⊤uL−ll Kltþ

1

2σ2
TrðW0⊤W0Þ

�
: ðA30Þ

Performing integration overWl with the same approach we
used to compute the partition function Zl−1 above, and
introducing the same order parameter ul−1, we reduce the
above expression to

−
1

Zl−1

Z
dul−1

1

P
Y⊤

Z
dtituL−ll−1

exp

�
it⊤Y þ NðL − lþ 1Þ

2
logul−1

−
1

2
t⊤uL−lþ1

l−1 Kl−1t −
NðL − lþ 1Þ

2σ2
ul−1

�

¼ 1

P
u−1l−1Y

⊤K−1
l−1Y: ðA31Þ

At zero temperature for α < 1, the expression leads to
Eq. (13) for all l (1 ≤ l ≤ L). Note that this result is
conditioned on the upstream weights fWkgk<l.
For α > 1 at zero temperature, the OP obeys Eq. (13)

for 1 ≤ l < L (partial averaging of the weights), but the
relation is replaced by Eq. (16) for averaging over all
hidden weights. The details of these results are delegated to
Sec. IA of Ref. [33].
From Eq. (A2), it follows that the W-dependent average

of the readout weights is

hai ¼ −
σ2ffiffiffiffi
N

p iΦ⊤hti: ðA32Þ

The statistics of t can be obtained from Eq. (A3),

hti ¼ iðKL þ TIÞ−1Y: ðA33Þ

Therefore, we have hai ¼ ðσ2= ffiffiffiffi
N

p ÞΦ⊤ðKL þ TIÞ−1Y, and
hai⊤hai ¼ σ2PrL ¼ σ2Y⊤ðKL þ TIÞ−2KLY. In the zero-
temperature limit, for α < 1, hai⊤hai ¼ σ2Y⊤K−1

L Y, and
for α > 1, hai⊤hai ¼ σ2Y⊤Kþ

LY.
Similarly, we can define al as the readout weight

vector trained with inputs from the lth layer of the trained
network to produce the target output Y, and we can
obtain the statistics of al by simply replacing the KL
in the above equations with Kl. At zero tempera-
ture, we have hali⊤hali ¼ σ2Y⊤K−1

l Y for α < 1, and

hali⊤hali ¼ σ2YKþ
l Y for α > 1. In Eqs. (8) and (15), the

definition of rl is equivalent to rl ¼ ðσ−2=PÞhali⊤hali;
therefore, we name rl as the mean-squared layer readout.
The second-order statistics of al, including its vari-

ance and its norm, are discussed further in Ref. [33],
Sec. IB.
Earlier in this section, we introduced the detailed deriva-

tion of the self-consistent equation for the order parameter at
finite temperature, given by Eq. (46). At the L → ∞ limit, in
the low-noise regime σ2ð1 − αÞ < 1, u0 approaches 1. We
assume that u0 goes to 1 as u0≈1−ðv0=LÞ, as we discussed
in Sec. III for zero temperature. Plugging in Eq. (46),
we have

1 − σ−2 ¼ −
1

N
Y⊤ðexpð−v0ÞK0 þ TIÞ−2 expð−v0ÞK0Y

ðA34Þ

þ 1

N
Trððexpð−v0ÞK0 þ TIÞ−1 expð−v0ÞK0Þ:

ðA35Þ
This self-consistent equation determines expðv0Þ, which is
the limit of λ as L → ∞, as we present in Figs. 7(b) and 7(c)
in Sec. IVB.

APPENDIX B: GENERALIZATION

The mean-squared generalization error depends only on
the mean and variance of the predictor, and they can be
computed using the following generating function:

ZðtPþ1Þ¼
Z

DΘexp
�
−
β

2

XP
μ¼1

�
1ffiffiffiffi
N

p
XN
i¼1

aiϕiðxμ;WÞ−yμ
�

2

þ itPþ1

1ffiffiffiffi
N

p
XN
i¼1

aiϕðW;xÞ− T
2σ2

Θ⊤Θ
�
; ðB1Þ

where x is an arbitrary new point. The statistics of the
predictor are given by

hfðxÞi ¼ ∂itPþ1
logZjtPþ1¼0; ðB2Þ

hδ2fðxÞi ¼ ∂2
itPþ1

logZjtPþ1¼0: ðB3Þ
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The integral can be performed similarly as in Appendix A by introducing P auxiliary integration variables, tμðμ ¼ 1;…; PÞ,
integrating over W, and introducing order parameters ul layer by layer.
After integrating the weights of the entire network, we obtain

Zðtpþ1Þ ¼
Z

du0 exp

�
NL
2

logu0 −
NL
2σ2

u0 þ
1

2
½iY þ t⊤Pþ1u

L
0 k0ðxÞ�⊤ðuL0K0 þ TIÞ−1½iY þ t⊤Pþ1u

L
0 k0ðxÞ�

−
1

2
log detðuL0K0 þ TIÞ − 1

2
t⊤Pþ1u

L
0K0ðx; xÞtPþ1

�
; ðB4Þ

where T0 ¼ u−L0 T, as defined in Sec. IV B. Differentiating
Z, we obtain

hfðxÞi ¼ ∂itpþ1
logZjtpþ1¼0 ¼ uL0 k

⊤
0 ðxÞðuL0K0 þ TIÞ−1Y:

ðB5Þ

Because the derivative is evaluated at tPþ1 ¼ 0, the saddle
point u0 satisfies the same equation as Eq. (46) for l ¼ L.
Similarly, we calculate the second-order statistics

hδ2fðxÞi ¼ ∂2
itPþ1

logZjtpþ1¼0

¼ uL0K0ðx; xÞ − uL0 k
⊤
0 ðxÞðuL0K0 þ TIÞ−1uL0 k0ðxÞ:

ðB6Þ

Taking the T → 0 limit, we obtain Eqs. (20) and (21).
The dependence of the generalization error with respect

to σ, N, and L is determined by the behavior of σ2u0 with
respect to σ, N, and L, which is shown in Secs. IIA–IIC of
Ref. [33]. The dependence on P (which affects both α and
α0) hinges on the specific statistics of input and output.
Here, we analyze the relatively simple case of input
sampled from IID Gaussian distribution and target output
generated by a linear teacher with additive noise, and we
focus on the behavior near α0 ¼ 1.
For P < N0, we first consider r0, averaged over the

linear teacher noise. Near α0 ¼ 1, since TrK−1
0 diverges as

ð1 − α0Þ−1 (see Ref. [74]), r0 is dominated by the con-
tribution from the noise term in the target noisy teacher
output Y, and it yields r0 ∼ σ20ð1 − α0Þ−1, where σ0 denotes
the amplitude of the teacher’s noise.
Since r0 is divergent as α0 → 1, keeping the dominant

terms in Eq. (11), we obtain u0 ∼ ðσ2αr0Þ1=Lþ1 ∼ α1=Lþ1

ð1 − α0Þ−1=Lþ1; thus, uL0 diverges as αL=Lþ1ð1 − α0Þ−L=Lþ1.
The contribution of the squared mean predictor hfðxÞi2

to εg averaged over the test sample x and the linear teacher
noise is given by the corresponding averages of
Y⊤K−1

0 k0k⊤0 K−1
0 Y. Assuming hxx⊤i ¼ γI, then the diver-

gent contribution, similar to r0, comes from the noise in the
linear teacher and is given by γσ20α0ð1 − α0Þ−1.
Since Trðσ2N−1

0 XK−1
0 X⊤Þ scales with the rank of K0 and

grows as α0, theK0ðx; xÞ − k⊤0 K−1
0 k0 term in the variance of

the predictor vanishes as 1 − α0, and thus, the variance
vanishes as αL=Lþ1ð1 − α0Þ1=Lþ1, as α0 → 1. Therefore, the
generalization error is dominated by the divergent bias as
α0 → 1, and it diverges as α0=ð1 − α0Þ.
For P > N0, because now the network cannot achieve

zero training error, we replace the Y in r0 with
X⊤ðXX⊤Þ−1XY, which is the output the network actually
learns on the training data. Near α0 ¼ 1, since
ð1=PÞTrððXX⊤Þ−1Þ diverges as α−10 ðα0 − 1Þ−1 [74], r0 is
also dominated by the contribution from the noise term
in Y, and it is given by σ20α

−1
0 ðα0 − 1Þ−1. Similarly, we

obtain u0 ∼ ðσ2½N0=N�r0Þ1=Lþ1 ∼ ½α0ðα0 − 1Þ�−1=Lþ1 and
hhfðxÞi2i∼γσ20ðα0−1Þ−1. The generalization error is domi-
nated by the divergent bias as α0 → 1, and it diverges
as ðα0 − 1Þ−1.
The case of clustered inputs, as in our template model, is

treated analytically in Sec. IID of Ref. [33].

APPENDIX C: MULTIPLE OUTPUTS

1. BPKR for multiple outputs

Here, we extend the calculations in Appendix A to
multiple outputs (m > 1) in the zero-temperature limit for
α < 1. For m > 1, we introduce the integration variables t
from a P ×m matrix; hence,

ZL−1 ¼
Z

ΠNL
i¼1dw

i
L

Z
dt exp

�
−
1

2
Trðt⊤KLtÞ

þ iTrðt⊤YÞ − 1

2σ2
TrðW⊤WÞ

�

¼
Z

dt exp

�
iTrðt⊤YÞ þ NGðtÞ − 1

2σ2
TrðW0⊤W0Þ

�

ðC1Þ

GðtÞ ¼ log

�
exp−

1

2N
Trðt⊤KwtÞ

�
w
: ðC2Þ

Integrating over w yields GðtÞ ¼ − 1
2
log detðI þHL−1Þ,

where the mxm dim matrix is HL−1 ¼ ðσ2=NÞt⊤KL−1t, a
relation that is enforced by an auxiliary matrix variable
UL−1. With t̂ ¼ K1=2

L−1t, we have

STATISTICAL MECHANICS OF DEEP LINEAR NEURAL … PHYS. REV. X 11, 031059 (2021)

031059-25



ZL−1 ¼
Z

dUL−1

Z
dHL−1

Z
dt exp

�
iTrðt⊤YÞ − N

2
log detðI þHL−1Þ þ

N
2σ2

TrðUL−1HL−1Þ

−
1

2
TrðUL−1t⊤KL−1tÞ −

1

2σ2
TrðW0⊤W0Þ

�

¼
Z

dUL−1

Z
dHL−1

Z
dt̂ exp

�
it̂⊤K−1=2

L−1 Y −
N
2
log detðI þHL−1Þ þ

N
2σ2

TrðUL−1HL−1Þ

−
m
2
log detKL−1 −

1

2
Trðt̂UL−1 t̂⊤Þ −

1

2σ2
TrðW0⊤W0Þ

�
: ðC3Þ

For α < 1, we can integrate over t̂, yielding

ZL−1 ¼
Z

dUL−1

Z
dHL−1 exp

�
−
N
2
log detðI þHL−1Þ

þ N
2σ2

TrðUL−1HL−1Þ −
1

2
TrðU−1

L−1Y
⊤K−1

L−1YÞ

−
m
2
log detKL−1 −

P
2
log detðUL−1Þ

−
1

2σ2
TrðW0⊤W0Þ

�
: ðC4Þ

Again substituting the saddle point of HL−1, i.e.,
I þHL−1 ¼ σ2U−1

L−1, yields

ZL−1 ¼
Z

dUL−1 exp

�
N
2
log detUL−1 −

N
2σ2

TrðUL−1Þ

−
1

2
TrðU−1

L−1Y
⊤K−1

L−1YÞ −
m
2
log detKL−1

−
P
2
log detðUL−1Þ −

1

2σ2
TrðW0⊤W0Þ

�
: ðC5Þ

Differentiating with respect to UL−1, we obtain the self-
consistent equation for UL−1,

I − σ−2UL−1 ¼ α

�
I −

1

P
Y⊤K−1

L−1YU
−1
L−1

�
: ðC6Þ

A similar conclusion can be extended to the following
integration steps, and we have

I − σ−2UL−l ¼ α

�
I −

1

P
Y⊤K−1

L−lYU
−l
L−l

�
: ðC7Þ

From these equations, it follows that for all l, UL−l can be
diagonalized with the eigenvectors of the mean-squared
readout matrix. Writing the eigenvalue matrix of the
readout matrix as diagðr1;L−l;…; rk;L−l;…; rm;L−lÞ ¼
V⊤
L−lð½1=P�Y⊤K−1

L−lYÞVL−l, the renormalization eigenvalue
matrix can be written as diagðu1;L−l;…; uk;L−l;…;

um;L−lÞ ¼ V⊤
L−lUL−lVL−l, and Eq. (C7) can be reduced

to independent equations for the eigenvalues uk;L−l1≤k≤m, as
given by Eq. (34). However, Eq. (C7) holds only for α < 1;
because of the singularity of KL−l for l < L at α > 1,
the equation for the eigenvalues of UL−l is replaced by
Eq. (14) for narrow networks. (See Sec. IIIB of Ref. [33]
for details.)
For wide networks, we can calculate the statistics of

Y⊤K−1
l Y, with an approach similar to that for the single-

output case, by relating it to the average of t (see Sec. IIIA
of Ref. [33] for details), obtaining Eq. (37). For narrow
networks, we calculate the statistics of Y⊤Kþ

l Y; for the
same reason as in the single-output calculations, we need to
relate the quantity to the second-order moment of t; the
procedure is also similar to the single-output case in
Appendix A, and we obtain Eqs. (37) and (41) (see details
in Sec. IIIC of Ref. [33]).
Iterating the integration steps until all weights are inte-

grated, we obtain the equation for the eigenvalues of U0,

I − σ−2uk0 ¼ αð1 − u−Lk0 rk0Þ; ðC8Þ

where U0 ¼ V0diagðu10;…; uk0;…; um0ÞV⊤
0 , V0 is

defined through the input readout covariance matrix,
ð1=PÞY⊤K−1

0 Y ¼ V0diagðr10;…; rk0;…; rm0ÞV⊤
0 , prov-

ing Eq. (36).
Equation (C8) holds for all α as long as α0 < 1. We also

note that a straightforward generalization of Eq. (A29)
leads to

hfðU lÞil ¼ fðU l−1Þ; ðC9Þ

which also holds for all 0 ≤ α < ∞.

2. Generalization for multiple outputs

The generalization error and related quantities can be
calculated similarly as in Appendix B, replacing the scalar
order parameter with a matrix,
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ZL−lðtPþ1Þ ¼
Z

dUL−l

Z
dt exp

�
iTrðt⊤YÞ þ ðN − PÞl

2
log detUL−l −

Nl
2σ2

TrðUL−lÞ −
1

2
TrðU l

L−lt
⊤KL−ltÞ

−
1

2σ2
TrðW0⊤W0Þ þ TrðU l

L−lt
⊤
Pþ1k

⊤
L−ltÞ −

1

2
TrðU l

L−lt
⊤
Pþ1KL−lðx; xÞtPþ1Þ

�
: ðC10Þ

Integrating over t and taking l ¼ L, we obtain

Zðtpþ1Þ ¼
Z

dU0 exp

�ðN − PÞL
2

log detU0 −
NL
2σ2

TrðU0Þ −
1

2
TrðUL

0 t
⊤
Pþ1K0ðx; xÞtPþ1Þ

þ 1

2
Tr½ðiK−1=2

0 Y þ K−1=2
0 k0ðxÞtPþ1UL

0 ÞU−L
0 ðiK−1=2

0 Y þ K−1=2
0 k0ðxÞtPþ1UL

0 Þ⊤
�
: ðC11Þ

Taking the derivative with respect to tPþ1,

hfðxÞi ¼ ∂itpþ1
logZjtpþ1¼0 ¼

∂Trðit⊤Pþ1k
⊤
0 ðxÞK−1

0 YÞ
∂itPþ1

¼ k⊤0 ðxÞK−1
0 Y; ðC12Þ

hδfiðxÞδfjðxÞi ¼ ∂itiPþ1
∂itjPþ1

logZjtpþ1¼0 ¼
1
2
∂TrðUL

0 t
⊤
Pþ1tPþ1Þ

∂tiPþ1
∂tjPþ1

½K0ðx; xÞ − k⊤0 ðxÞK−1
0 k0ðxÞ�

¼ UL
0i;j½K0ðx; xÞ − k⊤0 ðxÞK−1

0 k0ðxÞ�; ðC13Þ

we obtain the predictor statistics as described in Sec. IVA.

3. Multiple outputs at finite temperature

In Sec. IVA, we focused on results for multiple outputs at zero temperature. Here, we introduce the results for multiple
outputs at finite T (see Sec. IVB of Ref. [33] for detailed derivations). The partition function after integrating over l layers is
given by

ZL−l ¼
Z

dUL−l exp

�
Nl
2
log detUL−l −

Nl
2σ2

TrðUL−lÞ −
1

2
Ŷ⊤ðU l

L−l ⊗ KL−l þ TIÞ−1Ŷ

−
1

2
log detðU l

L−l ⊗ KL−l þ TIÞ − 1

2σ2
TrðW0⊤W0Þ

�
; ðC14Þ

where Ŷ is an mP-dimensional vector that denotes the vectorized Y. The corresponding saddle-point equation for UL−l for
1 ≤ l ≤ L is given as

I − σ−2UL−l ¼
1

N
TrP½ðU l

L−l ⊗ KL−l þ TIÞ−1ðU l
L−l ⊗ KL−lÞ�

þ 1

N
TrP½ðU l

L−l ⊗ KL−l þ TIÞ−1ŶŶ⊤ðU l
L−l ⊗ KL−l þ TIÞ−1ðU l

L−l ⊗ KL−lÞ�; ðC15Þ

where the matrices on the rhs before taking the trace are of dimensionmP ×mP, and TrP denotes summing the P diagonal
blocks of sizem ×m. Unlike the zero-temperature case, we cannot obtain saddle-point equations for each of the eigenvalues
of UL−l. The kernel undergoes renormalization in the form of a Kronecker product with the renormalization matrix U l.
The predictor statistics of the multiple output case at finite temperature is given by

hfðxPþ1Þi ¼ ½UL
0 ⊗ k⊤0 ðxÞ�ðUL

0 ⊗ K0 þ TIÞ−1Ŷ; ðC16Þ

hδfðxPþ1ÞδfðxPþ1Þ⊤i ¼ UL
0K0ðx; xÞ − ½UL

0 ⊗ k⊤0 ðxÞ�ðUL
0 ⊗ K0 þ TIÞ−1½UL

0 ⊗ k0ðxÞ�: ðC17Þ

See another formulation of the results without the Kronecker product in Sec. IVB of Ref. [33].
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APPENDIX D: WEIGHT COVARIANCE AND
MEAN LAYER KERNELS

We derive the mean layer kernels for the multiple output
network, starting from calculating hwLw⊤

L iL, where wL is
the weight vector corresponding to a single node in the Lth
hidden layer, conditioned on the weights of the previous
L − 1 layers. Using Eqs. (C1) and (C2), this quantity can be
expressed as

hwLw⊤
L iL ¼ 1

ZL−1

Z
dtAðtÞ exp

�
iTrðt⊤YÞ þ NGðtÞ

−
1

2σ2
TrðW0⊤W0Þ

�
; ðD1Þ

where

AðtÞ ¼ hwLw⊤
L exp− 1

2N Trðt⊤KL
wtÞiwL

hexp− 1
2N Trðt⊤KL

wtÞiwL

¼ 1

z

Z
dwLwLw⊤

L

× exp

�
−

1

2σ2
w⊤
L

�
I þ σ4

NNL−1
XL−1tt⊤X⊤

L−1

�
wL

�

¼ σ2
�
I þ σ4

NNL−1
XL−1tt⊤X⊤

L−1

�
−1

¼ σ2
�
I −

σ4

NNL−1
XL−1t

�
I þ σ2

N
t⊤KL−1t

�
−1
t⊤X⊤

L−1

�
:

ðD2Þ

Plugging AðtÞ back in, we have

hwLwT
LiL¼σ2I−

σ6

NNL−1ZL−1

Z
dtexp

�
iTrðt⊤YÞ

−
N
2
logdet

�
Iþσ2

N
t⊤KL−1t

�
−

1

2σ2
TrðW0⊤W0Þ

�

×XL−1t

�
Iþσ2

N
t⊤KL−1t

�
−1
t⊤X⊤

L−1: ðD3Þ

The term TrðW0⊤W0Þ does not depend on t; therefore, we
ignore it for simplicity below.
We first compute the integral over t by introducing

OPs UL−1 and HL−1 as in Appendix C, and with a
change of variable t̂ ¼ K1=2

L−1t, and the saddle-point relation
UL−1ðI þHL−1Þ ¼ σ2I, we write the integration over t as

Z
dt̂ exp

�
iTrðt̂⊤K−1=2

L−1 YÞ −
1

2
Trðt̂UL−1 t̂⊤Þ

�

× K−1=2
L−1 t̂½I þHL−1�−1t⊤K−1=2

L−1

¼ K−1=2
L−1 ½TrðU−1

L−1ðI þHL−1Þ−1ÞI
− σ−2ðK−1=2

L−1 YU
−1
L−1ÞUL−1ðK−1=2

L−1 YU
−1
L−1Þ⊤�K−1=2

L−1

¼ σ−2ðmK−1
L−1 − K−1

L−1YU
−1
L−1Y

⊤K−1
L−1Þ: ðD4Þ

Plugging back in Eq. (D3) yields

hwLw⊤
L iL ¼ σ2I −

σ4

NNL−1
½mXL−1K−1

L−1X
⊤
L−1

− XL−1K−1
L−1YU

−1
L−1Y

⊤K−1
L−1X

⊤
L−1�: ðD5Þ

In particular, the weight variance hw⊤
LwLiL equals

hw⊤
LwLiL ¼ TrhwLw⊤

L i ¼ σ2N − σ2αðm − u−1L−1rL−1Þ;
ðD6Þ

implying that while the GP term is ofOðNÞ as expected, the
non-GP correction term is of Oð1Þ.
Using similar methods, we can derive, for all layers,

hwL−lw⊤
L−liL−l¼σ2I−

σ4

NNL−l−1
½mXL−l−1K−1

L−l−1X
⊤
L−l−1

−XL−l−1K−1
L−l−1YU

−ðlþ1Þ
L−l−1 Y

⊤K−1
L−l−1X

⊤
L−l−1�:
ðD7Þ

Since hKL−li ¼ ðσ2=NL−l−1ÞX⊤
L−l−1hwL−lw⊤

L−liXL−l−1,

hKL−li ¼ σ2
��

1 −
m
N

�
KL−l−1 þ

1

N
YU−ðlþ1Þ

L−l−1 Y
⊤
�
: ðD8Þ

Using Eqs. (C9) and (D8), we derive Eqs. (50) and (51)
through iterations. The above result holds for all α. For
derivation of this result in narrow networks, see Sec. VA
of Ref. [33].

APPENDIX E: DETAILS OF
NUMERICAL STUDIES

1. Examples

a. Template model

Instead of having the standard input statistics in many
synthetic models, namely, sampled IID from a normal
distribution, we assume a template model, in which inputs
are clustered and the target rule largely obeys this structure,
in order to introduce a strong correlation between input
structure and target outputs, as explained below. These
types of examples are common in practice, for instance,
in MNIST and CIFAR-10, where the network is trained
on clustered input data and the target labels exhibit
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significant correlations with the cluster structure [see
Figs. 9, 12, 14(k)–14(o) for results on the MNIST exam-
ple]. Because of these input-output correlations, the tem-
plate model can yield good generalization performance
even well below the interpolation threshold. (The predicted
dependence of the system’s properties on the various
parameters is general.) In principle, both training and test
data would be sampled from the same cluster statistics. To
simplify the analysis, instead we assume that training
inputs consist of the cluster centers, or what we call the
templates. The test inputs are sampled by adding Gaussian
noise to the training inputs, such that the test data are
clustered around the training data, as illustrated in Fig. 3(a),

xμtest ¼
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
xμ þ ffiffiffi

γ
p

η: ðE1Þ

We consider two types of labeling of the data, which
differ in task complexity. One is a noisy linear teacher task,
where the labels are generated by a noisy linear teacher
network, y ¼ ð1= ffiffiffiffiffiffi

N0

p Þw⊤
0 xþ σ0η. Here, w0 ∼N ð0; σ2wIÞ,

η ∼N ð0; IÞ are both Gaussian IID, σw represents the
amplitude of the linear teacher weights, and σ0 represents
the noise level of the linear teacher. Here, the optimal
weights of the linear DNNs are those that yield a linear
input-output mapping identical to that given by the teacher
weights. Because of the linearity of the rule, if σ0 is small
the system can yield a small training error even when
P > N0. If γ is also small, the system will again yield a
good generalization error approaching its minimum on
the rhs of the interpolation threshold (α0 > 1), when the
network is in the underparametrized regime, converging to
the optimal error for α0 ≫ 1 [see Figs. 6(a)–6(d)]. The
second task is a random labeling of the data clusters that are
centered around the templates. We assign random binary
labels to the data xμ, Yμ ∈ f−1; 1g. For the test data, we
assign label Yμ to it if it is generated by adding noise to the
training data xμ. Here, for P > N0, the task is inherently
nonlinear (even for small γ), and the minimum generali-
zation error is achieved on the lhs of the interpolation
threshold (α0 < 1) because small P implies not only small
sizes of training data but also an easier task.
Parameters for the noisy linear teacher.—In Fig. 3, the

parameters are N0 ¼ 1000, P ¼ 300, γ ¼ 0.05, σ0 ¼ 0.1,
and σw ¼ 1. The top panels (c)–(f) show the small-noise
regime where the generalization error decreases with N;
here, we choose σ ¼ 0.5. The bottom panels (g)–(j) show
the larger noise regime where the generalization error
increases with N, with σ ¼ 1.3.
In Fig. 4, the parameters are N0 ¼ 200, P ¼ 100,

γ ¼ 0.05, and σ0 ¼ 0.1. The top panels (a)–(d) show the
subregime where the generalization error decreases with L;
here, the parameters are σw ¼ 0.3, σ ¼ 1.1, and α ¼ 0.5.
The middle panels (e)–(h) show the subregime where the
generalization error increases with L but goes to a finite
limit as L → ∞; here, the parameters are σw ¼ 0.9,

σ ¼ 1.35, and α ¼ 0.5. The bottom panels (i)–(l) show
the high-noise regime where the generalization error
increases with L and diverges as L → ∞; here, the
parameters are σw ¼ 0.9, σ ¼ 1.35, and α ¼ 0.4.
In Figs. 6(a)–6(d), the parameters are N0¼500, N¼200,

γ ¼ 0.1, σ0 ¼ 0.3, σw ¼ 1, and σ ¼ 1.
In Fig. 11, the parameters are N0 ¼ 400, P ¼ 100,

γ ¼ 0.05, σ0 ¼ 0.1, and σw ¼ 1. The top panels (a)–(d)
show the small-noise regime where the generalization error
decreases with N; here, σ ¼ 1. The bottom panels (e)–(h)
show the high-noise regime where the generalization error
increases with N; here, σ ¼ 2.
In Fig. 13, the parameters are N0 ¼ 100, P ¼ 200,

γ ¼ 0.05, σ0 ¼ 0.1, and σw ¼ 1. The top panels (a)–(d)
show the small-noise regime where the generalization error
decreases with N; here, σ ¼ 1. The bottom panels (e)–(h)
show the high-noise regime where the generalization error
increases with N; here, σ ¼ 1.3.
In Figs. 14(a)–(e), the simulation parameters are N0¼20,

P ¼ 300, γ ¼ 0.05, σ0 ¼ 0.3, σw ¼ 1, and σ ¼ 1.
In Figs. 15(a)–(d), the simulation parameters areN0¼200,

P ¼ 100, γ ¼ 0.05,α ¼ 0.7,σ0 ¼ 0.1,σw ¼ 0.3, andσ ¼ 1.
Parameters for the random cluster labeling.—In

Figs. 6(e)–6(h), the parameters are N0 ¼ 500, N ¼ 200,
γ ¼ 0.1, and σ ¼ 1.
In Fig. 7(a), the parameters are N0 ¼ 400, N ¼ 800,

γ ¼ 0.1, and σ ¼ 0.5. In Fig. 7(d), the parameters are
N0 ¼ 400, P ¼ 300, N ¼ 600, γ ¼ 0.1, and σ ¼ 1.5.
In Figs. 14(e)–14(h), the simulation parameters are

N0 ¼ 20, P ¼ 300, γ ¼ 0.1, and σ ¼ 1.

b. Synthetic example with block structure

In Fig. 8, we present the layerwise mean kernels trained
on a synthetic example with an output similarity matrix that
exhibits a block structure. The parameters used in the
simulation are N ¼ N0 ¼ 100, P ¼ 80, and σ0 ¼ 0.1. We
choose σ ¼ 0.1, so the non-GP correction term (∼σ2=N) is
of the same order as the input term (∼σ4) for the single
hidden-layer network we consider. In Figs. 8(c) and 8(d),
we show the simulation and theoretical results for the non-
GP correction given by ðσ2=NÞYVU1VTYT.

c. Binary classification of randomly
projected MNIST data

The example we show in Fig. 9 is trained on a binary
classification task on a subset of randomly projected
MNIST data. For MNIST, the input dimension is fixed
to 784, the number of pixels in the images. In the example
we show, we first appropriately normalize and center the
data, such that it has zero mean and standard deviation 1;
then, we randomly project the MNIST data to N0 dimen-
sions with a Gaussian IID weight matrix W0 ∈ RN0×784,
W0 ∼N ð0; IÞ, and add a ReLU nonlinearity to the pro-
jected data,
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x ¼ ReLU

�
1ffiffiffiffiffiffiffiffi
784

p W0xMNIST

�
: ðE2Þ

We then further train the network with the input xμðμ ¼
1;…; PÞ and their corresponding labels.
In Fig. 9, the network is trained on a subset of the

MNIST data with four different digits (1,5,6,7). The output
of the network is six dimensional (y ∈ f1;−1g6), designed
to have hierarchical block structure; four of the binary
outputs are one-hot vectors each encoding one digit. The
four digits are divided into two categories [(1,7) and (5,6)];
the other two binary outputs each classify one of the two
categories. The parameters are N ¼ N0 ¼ 1000 and
P ¼ 100. We again choose small σðσ ¼ 0.1Þ so that the
non-GP correction term becomes evident in the layerwise
mean kernels.
In Fig. 14, we use the same example to train a ReLU

network with a single output to perform binary classifica-
tion on two digits, 0 and 1. The parameters are N0 ¼ 20,
P ¼ 300, and σ ¼ 1.

d. Binary classification on subsets
of the MNIST data

We show in Fig. 12 the result for a ReLU network trained
on a binary classification task on a subset of MNIST data
directly. The MNIST data determine the input dimension
N0 ¼ 784. We properly normalize and center the data, such
that they have zero mean and standard deviation 1. We train
on a subset of MNIST data with digits 0 and 1, and the
network outputs y ∈ 1;−1. The parameters are N0 ¼ 784
and P ¼ 100. The top panels (a)–(d) show the small-noise
regime where the generalization error decreases with N;
here, σ ¼ 0.8. The bottom panels (e)–(h) show the large-
noise regime where the generalization error increases with
N, and σ ¼ 1.3.
In Figs. 15(e)–15(h), we use the same example with

parameters N0 ¼ 784, P ¼ 100, α ¼ 0.5, and σ ¼ 1.3.

2. Langevin dynamics

We run simulations to sample from the Gibbs distribu-
tion corresponding to the energy E given by Eq. (2),
defined in Sec. II, and compute the statistics from the
distribution to compare with our theory. We use the well-
known result, that the Langevin dynamics

ΔΘ ¼ −ϵ∂ΘEþ
ffiffiffiffiffiffiffiffi
2ϵT

p
η ðE3Þ

generates a time-dependent distribution on the state space
that converges at long times to the Gibbs distribution.
We perform the Langevin dynamics; at each iteration, we
compute the predictor on a set of new points and rl for the
current weight, and we obtain samples of the predictor and
rl from the underlying Gibbs distribution. We can then
calculate statistics of the predictor, including hfðxÞi,

hδfðxÞ2i, and hrli=r0, and compare them with our theo-
retical results. Because we focus mostly on T → 0, in
our simulations we also choose small T [T ¼ 0.001 for
results presented in all figures except for Figs. 8 and 9,
where because of the small σ values, we need to use
T ¼ 0.0001].

3. Finite T effects

In the simulations of Langevin dynamics, we choose
small T in order to compare with the T → 0 theoretical
results. In most cases presented in this paper, choosing
T ¼ 0.001 (or, in Sec. VA, with T ¼ 0.0001) is sufficient
to approximate the T → 0 limit. However, in Fig. 6 where
we consider the dependence of the generalization error on
P, as α0 → 1, the kernel K0 becomes singular, and the
closer α0 is to α0 ¼ 1, the lower the temperature needs to be
to approximate the zero T limit. For this reason, in Fig. 6,
the solid curves show the theory for finite T with T ¼ 0.001
as in the simulation, with the mean predictor and the
variance hδfðxÞ2i as given by Eqs. (47) and (48), and the
order parameter u0 given by Eq. (46) with l ¼ L. In
Sec. IIE of Ref. [33], we show the same results as in
Fig. 6 but now with an extra curve plotting the theoretical
result for zero temperature. We see that T ¼ 0.001 is a good
approximation to the zero T theory when α0 is not close to
the interpolation threshold α0 ¼ 1, but it deviates from it as
α0 approaches this threshold.
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