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Multiple aspects of an economy can be regulated, tampered with, or left to chance. Economic actors can
exploit these degrees of freedom, at a cost, to bend the flow of wealth in their favor. If intervention becomes
widespread, microeconomic strategies of different actors can build into emergent macroeconomic effects.
How viable is a “rigged” economy? How do growing economic complexity and wealth affect it? We study
rigged economies with a toy model. In it, economic degrees of freedom progress from minority to
coordination games as intervention increases. Growing economic complexity spontaneously defuses
cartels. But excessive complexity leads to large-fluctuations regimes, threatening the system’s stability.
Simulations suggest that wealth must grow faster than linearly with economic complexity to avoid this
regime and keep economies viable in the long run. We discuss a real-case scenario of multiple economic
actors coordinated to result in an emergent upset of the stock market.
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I. INTRODUCTION

At the end of January 2021, a “short squeeze” on Game
Stop shares (GME) caused an upset in the stock market [1].
By that time, GME was devalued with a negative prospect;
thus, hedge funds invested in “short” options (which make
profits if prices drop but are exposed if prices rise). Users of
the r/wallstreetbets forum in the Reddit website speculated
that GME was artificially undervalued and invested in
“long” options (e.g., simply buying and holding stocks,
making profits if prices increase). In a short squeeze,
traders with short positions must rebuy at higher prices
to limit their exposure, which in turn drives stocks further
up. Thus, during speculative runs, investors in long options
factually pay to increase the likelihood that an economic
game favors them and harms others. Short squeezes may
result in their orchestrators being charged with market
manipulation. This kind of situation is not new—the
novelty includes the actors involved (users of a social
network), their communication channels, and their access

to technology (facilitated by trading apps) that allows a
large number of small investors to manipulate the market
[2]. As losses for hedge funds mounted up, trading apps
limited access to sensitive stocks (while professional
brokers could still trade them freely), which prompted
class suits amid accusations that the system is “rigged.”
What dynamics can we expect of rigged markets—
especially as large numbers of small investors move “in
sync and en masse” [2] to coalesce in emerging dynamics?
The existence of rigged economic scenarios is amply

acknowledged. Most notable examples are noncompetitive
markets [3,4], legal or illegal, such as cartels, or natural
monopolies [5]. In these examples, all actors usually
cooperate to secure similar profits, which entails “hand-
crafting” some aspects of the economic games in which
they engage. In competitive markets, we also find illegal
schemes (e.g., insider trading) or innovative, often border-
line legal, enterprises to explore unprecedented economic
possibilities—e.g., anticipating a broker’s moves with
faster internet cables [6]. Such out-of-the-box thinking
is part of the economy’s open-ended nature [7,8], by
which the rules of the game are continuously bent, and
a sentiment that “the market is rigged” [6] easily emerges.
Even if all actors stick to the norms and do not innovate,
competitive markets are strongly regulated. Some condi-
tions (e.g., demanding a minimum equity to participate)
are designed by governments or international institutions.
They might change because of democratic consensus or

*Corresponding author.
brigan@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 031058 (2021)
Featured in Physics

2160-3308=21=11(3)=031058(21) 031058-1 Published by the American Physical Society

https://orcid.org/0000-0003-0045-8145
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.031058&domain=pdf&date_stamp=2021-09-15
https://doi.org/10.1103/PhysRevX.11.031058
https://doi.org/10.1103/PhysRevX.11.031058
https://doi.org/10.1103/PhysRevX.11.031058
https://doi.org/10.1103/PhysRevX.11.031058
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


lobbying. If powerful firms bend the rules systematically,
regulatory capture happens [9–11], threatening democracy
at large [12,13]. As transnational markets grow ever more
complex and faster, slow public bureaucracies might lag
behind and abdicate into nimbler private regulators [14,15].
All these regulations exemplify how, through and through,

economies are rigged. Available games are somehow manu-
factured. Once established, they remain open to manipula-
tions that might (i) impact the costs and rewards of economic
games, (ii) cap the information available, or (iii) limit the
number of players allowed to partake. These manipulations
can be achieved through publicity, bribes, threats, imposing
tariffs, etc. More abstractly, we can think of degrees of
freedom that can be harnessed in economic systems. Each
degree of freedom is a pocket of opportunity that can be
exploited (contested or uncontested) at some cost. Envelope
theorems assess changes of likely payoffs when a game is
altered externally [16–18]. Wolpert and Grana [19] recently
built on such theorems to find howmuch an agent should pay
if she (and no other actor involved) could “rig” a game before
playing it. The decision boils down to a positive payoff
balance with versus without intervention.
InRef. [19], a single agent is offered control, at a cost, over

a single economic degree of freedom. Here, we study what
happens when multiple actors are allowed, also at a cost, to
manipulate several economic degrees of freedom. Different
effortsmight align or not, yielding uncertain returns.A single
agent’s decision to rig one game (as per Ref. [19])might be of
limited consequence in isolation. But effects may be ampli-
fied, mitigated, or produce other emergent phenomena when
coupled across games and players. We are interested in how
microscopic fates scale up to macroeconomic trends (as was
the case in the GME short squeeze), so we adopt a systemic
perspective. More available degrees of freedom result in
more complex economies—intervention possibilities grow
combinatorially, and more external variables become rel-
evant if extra degrees of freedom are left unchecked. How do
system-wide dynamics of a rigged economy depend on its
complexity? How much can such economies grow—open-
endedly, perhaps? Do they collapse, unable to sustain their
participants? How is this affected by the amount of wealth
generated and distributed? What is a natural level of
intervention depending on these aspects?
We could tackle these questions rigorously through

utility functions that discount intervention costs, as in
Ref. [19], extended to multiple agents and games; but this
quickly becomes untreatable. Instead, inspired by agent-
based models and complex adaptive systems [20–25], we
model a toy economy that captures essential elements
affecting our research questions. We assume a population
of agents who engage in n economic games. Each game has
a rule that randomly determines its winning strategy.
Agents can pay to intervene each game’s rule, affecting
the winning strategy for all [Fig. 1(a)]. These games
constitute available degrees of freedom; thus, n is
a proxy for the economy’s complexity. An amount of

wealth, B, is distributed among winners. Since wealth is
divided in this way, it might be wise to play the minority
strategy, so the earnings are split between less winners.
Games in which being in the minority is the winning
strategy are called “minority games.” Majority games, on
the other hand, are situations in which it pays off to play the
strategy played by the majority. We will see how the chance
to rig economic games shifts between these options as the
amount of wealth distributed, B, changes. This parameter,
B, may remind us of a GDP and is a proxy for our
economy’s size. The model is described in detail in Sec. II.
Alternative ways in which economies can be manipulated,
not captured by the model, are discussed in Sec. IV.
We write complete payoff matrices for some simple

scenarios. Their analysis (Sec. III A) shows that increasing
intervention switches isolated degrees of freedom from
minority to coordination games. Between both extremes,
Nash equilibria are mixed strategies, anticipating dynamic
struggles.We explore increasing economy size and complex-
ity with simulations based on agents of bounded rationality
and Darwinian dynamics to select successful strategies. We
argue (Sec. IV) that our results should not depend critically
on the agent’s rationality and the choice of Darwinism in the
model. We simulate model dynamics for a small, fixed
number of degrees of freedom as the economy size grows
(Sec. III B). This approach reveals the same progression:
from minority, through dynamic, to coordinating regimes.
The latter remind us of cartels. Adding degrees of freedom
abruptly halts within-game coordination, suggesting an
empirical test: Increased economic complexity should dis-
solve cartels spontaneously. We study our toy economy’s
viability as its complexity grows large and its size scales
appropriately (Sec. III C). Economies whose sizes do not
grow fast enough with their complexity fall in a large-
fluctuations regime that threatens their viability—thus, non-
competitive actions can have negative spillovers as agents and
degrees of freedom become coupled enmasse. Our toymodel
allows us to find limit regimes (e.g., within-game co-
ordination, large fluctuations, etc.) that emerge from essential
elements potentially common to any rigged economy.We lay
out comprehensive maps of such regimes (Sec. III D). Their
occurrence is tied to a few abstract parameters. Finally, a brief
discussion of the GME short squeeze from the perspective of
our results is included (Sec. III E).

II. METHODS

A. Model description

Our toy economy [Fig. 1(a)] consists of a fixed number
of games, n, and a population of NðtÞ ∈ ½0; Nmax� agents
that changes over time. At each iteration, every agent has to
play all games, which admit strategies 0 or 1. The strategies
played by agent Ai are collected in an array: ai ≡ ½aik;
k ¼ 1;…; n�. Besides, a second array ri ≡ ½rik; k ¼ 1;…; n�
codifies whether Ai attempts to rig game k (rik ¼ 1) or not
(rik ¼ 0). The combination ðaik; rikÞ constitutes the full
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strategy of agent Ai towards game k. However, to aid the
model’s discussion, we use the word “strategy” only to
name aik.
At each iteration, a rule exists, common to all agents,

that determines the winning strategy for each game: RðtÞ≡
½RkðtÞ ∈ f0; 1g; k ¼ 1;…; n�. If any agents attempt to rig
game k, RkðtÞ takes the most common strategy among
those rigging agents [Fig. 1(a4)]:

RkðtÞ ¼ argmax
ā∈f0;1g

ðjjfAi; aik ¼ ā; rik ¼ 1gjjÞ: ð1Þ

In the case of a draw (including no intervention), RkðtÞ is
set randomly [Figs. 1(a2)–(a3)]. Each agent pays an
amount CR for each intervention attempt—successful or
not. If Ai has a wealth wiðtÞ at the beginning of a round,
after setting RðtÞ, this becomes

wiðtþ ΔtrigÞ ¼ wiðtÞ − CR

X

k

rik: ð2Þ

Each round, an amount b is raffled at each game—a total
wealth B ¼ nb is potentially distributed. The amount
allocated to game k is split between all agents who played
the winning strategy, RkðtÞ. After this split in allocation has
happened, each agent’s wealth reads

wiðtþ ΔtplayÞ ¼ wiðtþ ΔtrigÞ þ b
X

k

δ(aik; RkðtÞ)
Nw

k ðtÞ
; ð3Þ

where δð·; ·Þ is Kronecker’s delta and Nw
k ðtÞ is the number

of winners of game k. If wiðtþ ΔtplayÞ < 0, the ith agent is
removed, decreasing the population by 1.
If wiðtþ ΔtplayÞ > CC, Ai has a child, and an amount CC

is subtracted from wi. A new agent is generated, which
inherits ai and ri. We introduce some variability through
mutation: There is an independent probability pμ that each
of the bits in the new agent flips with respect to that of her
mother. If a game is not rigged (rik ¼ 0), there is a chance
pμ that the child will attempt to rig it and vice versa. This
mutation chance is resolved independently for each bit in rik
and aik. After this mutation step, both arrays remain fixed
throughout the new agent’s lifetime. We generate an integer
number j ∈ ½1; Nmax� to allocate the new individual. If
j ≤ NðtÞ, the new agent becomes Aj. The former agent in
that position is removed, its wealth is lost, and the
population size remains unchanged. If j > NðtÞ, the new
individual is appended at the end of the pool, and the
population grows by 1.
For some context, we might compare our model with the

approach in Ref. [19], which also features games that can
be intervened at a cost. As noted above, the combination
ðai; riÞ constitutes the proper “strategy” of each agent
(while we opted to use this word only to refer to ai), which
reveals a duality about rigged economic games, as if two
different modules were available. This case is solved in
Ref. [19] by playing two sequential stages: In the first one,
a single agent plays a game on its own, as she is given the
option to change the payoff matrix (this reminds us of our
ri); and in the second one, all agents play the actual game,
choosing their strategies according to the information that
they have (this maps into our ai).
The intervening agent in Ref. [19] is free to make any

alteration of the payoff matrix, and it is always guaranteed
that such intervention is carried out. Hence, the research
question becomes as follows: Which modifications are
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FIG. 1. Rigged economy and its dynamics. (a) Three agents
choosing (red shade) whether to rig each game (black boxes) or
not (empty boxes), and (gray shade) what to play in each game
(aik ¼ 1 or 0). (b)–(d) Dynamics of model measurements for
CC ¼ 10, n ¼ 20, and B ¼ 100 (thus b ¼ 5). (b) Population
(black, left scale) and wealth (red, right scale).
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satisfactory enough such that it pays off to change the
game? In our implementation, any agent is allowed to
intervene (as we put the stress on emergent properties), but
the interventions allowed are much more limited and
probabilistic in nature (as they might not be enforced if
enough agents push in the opposite direction). We need
these simplifications to get some insight on an issue
that quickly becomes complex enough. We hope that both
our approach and that in Ref. [19] will be important in
furthering this line of research.

B. Measurements on model dynamics

For each simulation, we set model parameters (CR ¼ 1,
CC ¼ 10, pμ ¼ 0.1, and Nmax ¼ 1000; but variations are
explored in the Appendix C to show the generality of our
results). We explore ranges of n and B to address the main
questions—i.e., how do rigged economies behave as their
complexity and size change?
Model simulations start with a single agent A1 with

random strategies and no interventions (r1k ¼ 0; ∀ k). On
average, A1 accrues half of the distributed wealth until
w1ðtÞ > CC. As new descents fill the population, reinforcing
or competing strategies unfold. After a rapid initial growth,
population size and wealth reach an attractor [Fig. 1(b)]. We
assess these attractors numerically. Simulations run for 5000
iterations. We take averages (denoted h·i) of diverse quan-
tities over the last 500 iterations—for example, population
size hNi, for which we also report normalized fluctuations
σðNÞ=hNi, where σð·Þ indicates standard deviation.UnlessB
is very small, 5000 iterations suffice to observe convergence
(Figs. 9–11).
To measure the heterogeneity of strategies in the pop-

ulation, we take the fraction fkðtÞ of agents with ak ¼ 1:

fkðtÞ ¼
XNðtÞ

i¼1

δðaik; 1Þ
NðtÞ ; ð4Þ

from which we compute the entropy:

hakðtÞ ¼ −½fkðtÞlog2(fkðtÞ)
þ ð1 − fkðtÞÞlog2(1 − fkðtÞ)�: ð5Þ

If hakðtÞ ¼ 0, all agents are playing the same strategy in
game k. This quantity is maximal [hakðtÞ ¼ 1] if the
population is split in half around that game. We also
compute a mean entropy across games [Fig. 1(c)]:

haðtÞ ¼ 1

n

Xn

k¼1

hakðtÞ: ð6Þ

If haðtÞ ¼ 0, agents play the same strategy in each game but
not necessarily the same one across games. If haðtÞ ¼ 1,
agents are split in half at each game, but this split is not
necessarily consistent across games.

Finally, we introduce the rigging pressure on a game:

rkðtÞ ¼
1

NðtÞ
XNðtÞ

i¼1

rik; rkðtÞ ∈ ½0; 1�: ð7Þ

This is the fraction of agents attempting to rig that game.
Total rigging pressure across games [Fig. 1(d)],

rðtÞ ¼
Xn

k¼1

rkðtÞ; rðtÞ ∈ ½0; n�; ð8Þ

and average rigging pressure per game, rðtÞ=n ∈ ½0; 1�, are
also reported.

III. RESULTS

A. Intervention turns minority into majority games

Before looking at model dynamics, we can gain some
insight from payoff matrices in simple cases. Population size
affects these matrices because earnings are split among
winners. Also, more agents imply more distinct, possi-
ble correlations between strategies and rigging choices.
Hence, utility functions rapidly become very complex. In
Appendix A, we discuss payoff matrices for a single game
and one player (Table II) and for one game and three players
(Tables III–V). All matrices show average earnings over time
if strategies, rigging choices, and population size are fixed.
Table I presents the payoff matrix for one game with two

players. If CR > b=2, rigging the game is prohibitive. Then,
the system has the Nash equilibria marked in gray—both
agents try to follow opposite strategies a1 ≠ a2. With no
intervention, we are dealingwith a minority game. For larger
populations, it pays even more to be in the minority
(Table III). These equilibria disappear if intervention is
cheap enough (CR < b=2 for one game and two players).
Then, it becomes more profitable for one player to rig
the game while playing a minority strategy. But it also
becomes beneficial, for the other agent, to parasitize the
other’s effort—turning thewinning strategy into amajority. If
the game is played sequentially, a dynamic scenario ensues,
alternating minority and majority configurations (gray cir-
cuits in Table I). As more players are added, the stakes
become higher and the situation more complex. Each player
that is not attempting to rig the game wants to play the same
strategy as the majority among those who are rigging the
outcome. Instead, those paying to change the rule of a game
prefer that their option is asminority as possible among those
who do not pay to intervene. For n > 3, if all agents are
intervening (red frame, Table V), the subgame’s Nash
equilibrium is a full coordination. This is not a global
equilibrium, but large coordinations emerge in our simu-
lations for rising intervention levels (see next section). Note
how all agents colluding to rig a game resemble a cartel.
Payoff matrices are equal for all games. If n games are

played in isolation (i.e., wealth earned by manipulating a
game could not be invested into another), we would
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observe the same transition to within-game coordination for
each degree of freedom as intervention takes hold. What
happens when we lift such compartmentalization?

B. Fixed complexity and growing wealth

We now study model dynamics and stability for a fixed
number of games and varying economy size. A discussion
of the rich behavior uncovered is given in Appendix B.
Figure 2(a) shows hNi for n ¼ 2 games. Circles over the

plots indicate values of B for which a stretch of the
dynamics is plotted in Fig. 15 in Supplemental Material
[26]. Generally, hNi increases with the economy size—i.e.,
as more money becomes available to sustain more agents or
to invest into rigging more games. Indeed, the rigging
pressure per game [Fig. 2(b)] grows, more or less, monoto-
nously. Note that hNi is not so parsimonious. For roughly
B < 750, it grows steadily. At B ≃ 750, it jumps swiftly,
then remains similar but slightly declining up until
B ≃ 1600, when it undergoes another abrupt increase.
These population boosts seem to be associated with

varying coordination. Figure 2(c) shows that the strategy
entropy hhai drops sharply before the first boost (shaded
area). Before that drop, resources are scarce and rigging the
economy is difficult. Either strategy is equally likely to win,
so agents playing either option are equally abundant
[Fig. 15(a) in Supplemental Material [26] ]. As B grows,

more resources become available to rig the games. Either 1
or 0 becomes the winning strategy over longer time
stretches, resulting in temporary selective preferences for
one strategy over the other, and oscillatory dynamics ensue
[Figs. 15(b) and 15(c) in Supplemental Material [26] ]. As
hhai falls definitely, agents coordinate their strategies
[Figs. 15(d) and 15(e) in Supplemental Material [26] ].
These shifts between dynamics happen simultaneously in
all games—as if, so far, payoff matrices were essentially
independent for each degree of freedom. By B ≃ 1000, we
have exhausted all within-game regimes uncovered in
payoff matrices: from minority games to a mostly majority
game and, in between, through ill-defined Nash equilibria
that appear as a dynamic struggle in the agent-based model,
with winning strategies changing (erratically at first, cycli-
cally at last) as games are played sequentially. The final
population boost at B ≃ 1600 must entail emerging corre-
lations across games—e.g., clustering agents that play the
minority-vs-majority strategies in both games.
Figures 9 and 10 compare hNi, hri=n, and hhai as the

economy size grows for different, fixed n. With more games,
more discrete jumps in hNi appear. These jumps arise, poten-
tially, from the combinatorially growing coordination pos-
sibilities across games. They happen after the oscillatory
phases [Figs. 8 and Figs. 16(c)–16(e) in Supplemental
Material [26] for n ¼ 3], which again suggests that within-
game coordination happens first, simultaneously for all

TABLE I. Payoff matrix of one game with two players. Table entries are labeled by each agent’s strategy a1 ¼ 0, 1
and rigging choice r1 ¼ 0, 1. Each cell displays the average payoff with no death or reproduction for fixed
options. Gray cells are Nash equilibria if CR > b=2. Gray circuits indicate possible dynamic situations that emerge
for CR < b=2.
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FIG. 2. Model behavior for n ¼ 2 games and growing wealth, B. (a) hNi, (b) hri=n, and (c) hhai. Open circles indicate B values for
which we plot sample dynamics in Fig. 10 in Supplemental Material [26]. Red vertical lines loosely indicate discrete jumps in hNi.
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games; then, degrees of freedom start coupling with each
other. Some regimes have similar hNi for different n
[horizontal dashed lines, Fig. 9(a)], suggesting that they
are effectively similar—i.e., that some economic degrees
of freedom in the casewith larger nmight have collapsed into
a single one. Population boosts succeed each other more
rapidly for larger n, approaching a continuous buildup instead
of discrete jumps [Fig. 10(a)]. This continuous buildup is not
accompanied by a decrease in hhai, which only drops once
because of within-game coordination. The hhai plateau is
higher for larger n [Fig. 10(c)], indicating that across-game
correlations weaken or interrupt within-game coordination.
Above, we compared such coordination to cartels: Games are
consensually rigged to favor most actors. The higher hhai
plateaus for larger n suggest that increasing economic
complexity prevents the formation of such consensus, defus-
ing cartels, even with rising intervention levels. Exploration
of a variant of the model (Appendix C) suggests that, for
this strategy to work properly, the degrees of freedom added
to the system must be of similar importance to the one
whose consensus we wish to prevent—otherwise, the
approach can backfire. All of these conclusions of the model
are testable.

C. Growing wealth and economic complexity

We now change the number of games as wealth scales as
B ¼ BðB0; nÞ. The constant B0 is a normalizing factor to
facilitate comparisons. We explore four cases:

(I) A fixed wealth BI ¼ B0 is split evenly between all
games: bI ¼ B0=n. Returns per game drop as the
economy becomes more complex.

(II) Each game distributes a fixed amount bII ¼ B0, such
that total wealth grows linearly BII ¼ B0 · n. Returns
per game remain constant against growing complexity.

(III) Each degree of freedom revalues previously existing
games logarithmically: bIII ¼ B0ðlogðnÞ þ 1Þ. Total
wealth grows as BIII ∼ B0 · nðlogðnÞ þ 1Þ.

(IV) Each degree of freedom revalues previously existing
games linearly: bIV ¼ B0 · n. Total wealth grows
quadratically: BIV ¼ B0 · n2.

Figures 3(a) and 3(b) show hNi for each scenario.
Extreme cases I (black curves) and IV (green) are relatively
uninteresting: Stable population size declines quickly for I.
As the economic complexity grows and returns per game
drop, more intervention is needed to secure the same
earnings. Such rigged economies collapse if they become
too complex. For IV, wealth grows so quickly with n that,
promptly, population saturates.
Intermediate cases II (blue curves) and III (red) are

more interesting. With B0 ¼ 50 [Fig. 3(a)] and B0 ¼ 100
[Fig. 3(b)], hNi declines slowly for II. Thus, in general, a
rigged economy’s wealth must grow faster than linearly
with its complexity to remain viable. In case III, hNi
saturates for B0 ¼ 100 but not for B0 ¼ 50, for which
population seems stagnant.
For case II, and case III with B0 ¼ 50, fluctuations in

population size reveal the existence of thresholds,
n�II=IIIðB0Þ, at which system dynamics change abruptly
[Figs. 3(c) and 3(d)]. This change affects hNi marginally
[arrows in Figs. 3(a) and 3(b)], but the increase in
σðNÞ=hNi is always salient. For n < n�, fluctuations are
small (< 5%). For n > n�ðB0Þ, large fluctuations (about
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25% for case II and about 15% for case III) set in. There is
an absorbing state at NðtÞ ¼ 0; thus, fluctuations of 15%–
25% of the system size can compromise its viability.
We explore the transition to large fluctuations by

simulating case II below (n ¼ 40, 60) and above
(n ¼ 80, 100) their onset at n�. We ran the model for
5000 iterations and discarded the first 1000. Figure 3(e)
shows the probability of finding the system with popu-
lation N. Below n�, we see a neat Gaußian; above, the
distribution presents two balanced modes. Transition
between both modes contribute to the large fluctuations.
We also plot total wealth [Fig. 3(f)] and wealth per agent
[Fig. 3(g)]. Their averages fall first, and grow, eventually, as
n increases. Below n�, clear Gaußians appear again. Above,
we observe broad tails, indicating large inequality. Despite
risking collapse, the average agent can be wealthier in the
large-fluctuations regime.

D. Charting rigged economies

We run simulations of case I (BI ≡ B0, bI ≡ B0=n) for
ranges of economic complexity n and distributed wealth
B0. This process renders maps (Fig. 4) where the four
scalings above can be read as curved sections. Trivially,
case I traces a horizontal line (solid, red; bottom of each
map). Case II traces a line with slope B0 (dashed black
lines). Cases III (dotted black) and IV (dash-dotted black)
trace curves growing faster than linearly. By reading hNi
[Fig. 4(a)] or σðNÞ=hNi [Figs. 4(b) and (c)] along such
curves, we get the plots from Figs. 3(a)–3(d). Results for
fixed n and growing B from Fig. 2 result from vertical cuts
of the map. Other possible progressions B ¼ BðnÞ can be
charted similarly.
The large-fluctuations regime is a salient feature

[Figs. 4(b) and 4(c)] expanding upwards and rightwards
(perhaps unboundedly) over a broad range of ðn; BÞ values.
Its contour constrains dependencies, B ¼ BðnÞ, that could
avoid this regime. Its upper bound seems to grow faster
than n · logðnÞ, suggesting that case III with B0 ¼ 50 will
not escape large fluctuations despite sustained growth.
Figure 11 shows maps for hhai and hri=n. The dent of

low hhai due to within-game coordination in simple yet
wealthy setups is notable [Fig. 11(a)]. We argue that such

cartel-like cases could be defused by increasing complex-
ity. But this map shows that, if n grows too much without
increasing B, hhai drops gradually—consensus strategies
build up again. It is intuitive that rigging pressure per game
(hri=n) grows alongside B [Fig. 11(b)] since more available
resources can be dedicated to rigging the games. Less
intuitively, our map shows hri=n growing with n as well,
even if returns per game diminish. We speculate that, for
low n, different agents meddling are likely to collide—
resulting in uncertain returns and less incentive to inter-
vene. With larger n, different agents can focus on rigging
different degrees of freedom, lowering the chance of mutual
frustration—thus resulting in higher rigging pressure per
game as more become available.

E. A real case unfolds—Game Stop short squeeze

Our model is thought of as a conceptual tool to chart
emerging phenomena in rigged economies. It is not
designed to predict specific trends. However, we can
discuss real cases, outlining similarities, differences, and
expected outcomes based on model parameters. Here, we
look briefly and qualitatively at the GME short squeeze
from early 2021 (Fig. 5). In Appendix D, we discuss a
series of markets from the perspective of “rigged” games.
In that speculative exercise, we try to find features that
might be useful to model from this same viewpoint.
In late 2020, prospects for GME were negative, and

numerous hedge funds had adopted short positions. To do
this, they “borrowed” GME stock from shareholders and
sold them in the stock market. Since GME was expected to
lose value, they would later rebuy shares at a lower price
before returning them to the original borrowers, allowing
traders to profit from a drop in price. Within our toy model,
such devaluation could be the outcome RGME ¼ 0 in this
economic game. If GME had actually devalued, traders that
had played the strategy aGME ¼ 0 (i.e., “short” speculation)
would have reaped and shared the corresponding profits.
But throughout January 2021, users of the forum r/wall-
streetbets on the website Reddit invested on GME en masse
[Fig. 5(b)]. Within our model, simply holding shares
(instead of selling and rebuying) is equivalent to playing
strategy aGME ¼ 1, which pays off if the prices increase in
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FIG. 4. Comprehensive maps of hNi and σðNÞ=hNi. Maps result from simulating case I (i.e., BI ¼ B0, bI ¼ B0=n) for ranges of
economic complexity n and distributed wealth, B0. Black curves represent trajectories B ¼ BðB0 ¼ 50; nÞ for cases II, III, and IV
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the long term (RGME ¼ 1). Furthermore, given the specu-
lation following discussions in r/wallstreetbets, each share
purchased raised GME prices. Thus, buying additional
GME stock is equivalent to exerting a rigging pressure
(rGME ¼ 1) in this economic game to favor the outcome
aGME ¼ 1. As traders with short positions had to return
their borrowed shares, they needed to rebuy—now at a
much higher price—which would drive the prices further
up, thus exerting further rigging pressure. Differently from
our model, agents playing aGME ¼ 1 forced agents playing
aGME ¼ 0 to manipulate RGME in a direction opposed to
their own strategy.
But there are additional ways to rig this economic game.

The pressure towards higher GME values came from
thousands of small investors trading through online apps.
Blocking access to app users would stop the trend—as
effectively happened. Within our model, this would be a
rigging pressure towards RGME ¼ 0. The cost of this
strategy is potentially higher since trading apps that
blocked GME later faced class suits for alleged market
manipulation, as well as threats of political investigations.
The affected entities dismissed the charges, arguing that
GME trading was halted because of technical reasons (e.g.,
to protect app users from high volatility or to provide
additional collateral demanded by the unexpected price
surges). The case was still unfolding as of the writing of
this paper.
In parallel with GME, AMC Entertainment Holdings

(AMC) and the technology firm BlackBerry (BB) were
the subject of similar speculation in online forums, result-
ing in short squeezes of much smaller magnitude. Small
investors diverting their efforts to more than one stock
remind us of increased degrees of freedom in our toy

model, which, as we saw, promptly degrades established
consensus [Figs. 9(c) and 10(c)]. Some apps halted trading
of AMC and BB shares as well. Attending to our model, a
more effective (and potentially cheaper) strategy to defuse
the consensus could have been to facilitate (even promote)
access to these and other stocks. Part of the effort by small
investors was to “hold” their positions in GME; thus, their
ability to coordinate across several games might have been
limited.
This real case presents important departures from our

model, which suggest future lines of research. In our
model, all agents pay CR to attempt to rig each game. In
reality, the effort to drive prices up can vary, as investors
choose how many shares to buy. Our model can be
modified to allow agents to decide how much they want
to invest in each intervention, with their influence being
weighted accordingly, perhaps reproducing a heterogeneity
of strategies observed in actual markets. On the other hand,
professional traders and stock markets have the upper hand
in trying less orthodox interventions (such as halting trade),
the cost of which is difficult to assess. Opposed to our
model, profits also depend on the invested effort. In our
model, agents must play all games available, while GME
investors could decide whether to enter additional games
(e.g., AMC) or not. Modeling these features might uncover
additional phenomenology for games in rigged economies,
but the regimes described in this paper stand as limit cases
and a sample of what can be expected. In Appendix C, we
illustrate how the relevant regimes are found in one of
several model variations in which we tried to check that the
uncovered phenomenology is robust.

IV. DISCUSSION

It is difficult to pinpoint what an “unrigged” economy is.
We model economies as containing degrees of freedom that
can be controlled at a cost by its actors. Unchecked degrees
favor economic agents at random. An economy with more
“riggable” facets is more complex. We studied the dynam-
ics, stability, and viability of a rigged economy toy model
as its complexity and total wealth changed.
Simple scenarios allow a study of equilibria in payoff

matrices. We find that individual degrees of freedom turn
from minority into majority games (through a dynamical
phase) as intervention increases. Agent-based simulations
confirm these regimes. They also show new behaviors as
synergies develop between degrees of freedom. These new
behaviors (difficult to capture with payoff matrices) halt
within-game coordination. Within-game coordination in
simple yet wealthy markets resembles cartels: Most eco-
nomic actors with decision power bend the rules homo-
geneously in their favor. Our results suggest that this
consensus is spontaneously defused if the system becomes
complex enough, which can be empirically tested.
We study our toy economies as their complexity

increases and the wealth they distribute remains constant

(a)

(b)

FIG. 5. GME short squeeze. (a) GME value at closing. (b) Daily
traded volume of GME stock. Users of r/wallstreetbets built the
foundation for the short squeeze during the month of January
2021 [1], as noted by the increased traded volume up until
January 27. The share price rose eventually over 1500% on Jan 27
(with respect to the value two weeks earlier). Afterwards, trade
volume returned to a low level as small investors played their
“hold” strategy. Despite their efforts, the bubble seemed to be
deflating by February 4.
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(case I), grows linearly (case II), or grows faster than
linearly (cases III and IV) with the number of economic
degrees of freedom. In general, wealth should grow faster
than linearly. Against rising complexity, stagnant or slowly
growing wealth only sustains a decreasing ensemble of
actors sharing ever more meager resources. An unlucky
fluctuation can kill them off. This becomes more pressing
as our model predicts that large fluctuations build up
abruptly above a complexity threshold. These large fluc-
tuations remind us of chaotic regimes in the El Farol and
similar problems [20–23]. In them, agents with sufficient
rationality anticipate a market, but their own success makes
the market unpredictable. In our model, above a complexity
threshold, noncompetitive intervention choices become
intertwined across games. Birth and death of agents ripple
system wide, making successful strategies hard to track.
Even though agents are exploring noncompetitive strate-
gies, large fluctuations (15%–20% population size) ensue,
compromising the system’s viability—thus, noncompeti-
tive actions can result in negative spillover by sheer market
complexity, which is another testable conclusion.
Behavioral economics offers a prominent chance to test

our findings. We see stable states with rising rigging
pressure as expected returns grow. This result is consistent
with empirical data on experiments that allow cheating:
People with different profiles exist (including those who are
hardly dishonest), but in such experiments, cheating
eventually ensues for large enough rewards [27], especially
after removing the concern of being caught [28]. Further
experiments reveal that cheating is more likely done as a
partnership [29]. This resounds with our model’s “cartels”
in simple yet wealthy economies. Such simple experiments
are perfect to test our predictions for growing complexity:
Does coordination fall apart swiftly? Does rigging pressure
grow with complexity in the long run? More ambitiously,
we could emulate recent implementations of Prisoner’s
dilemmas and other simple games [30–39].
In this work, we did not aim at specific realism but at

capturing elements that we find essential about rigged
economies. From these elements, we derive qualitative
regimes and wealth-complexity scalings that keep our toy
economies viable. Exploring lesser model parameters
(Appendix C) and several variations of the original model
(one of which is reported in Appendix C as well), the same
phenomenology is consistently featured. This suggests that
we are unveiling general results of rigged economies.
However, we made important simplifications to keep our
model tractable. All agents participate in all games, while
real economic actors might walk out or be banned from a
specific market. We model all degrees of freedom with a
similar game. Real manipulations might treat agents with
the same strategy differently. Some real games pay off only
if you are the first to intervene; in others, the reward grows
(even nonlinearly) with the investment on rigging the
outcome. Exploring these and other alternatives is easy

and might uncover new systemic regimes. Our results
constitute solid limit behaviors that should be recovered
under appropriate circumstances.
In our model, wealth is generated externally—the eco-

nomic games merely distribute it. An important variation
should create wealth organically, depending on population
size, strategies explored, and degrees of freedom available.
In such organically growing economies, additional available
games would develop and be sustained at a cost. Rigged
economies might then correct themselves by losing com-
plexity if necessary. Similar feedback can poise com-
plex systems near critical regimes [40–47], which proved
relevant to rationalize some phenomenology in economics
[23,25,48]—at criticality, we observe fat tails in wealth
distributions or dynamic turnover of complex markets.
An important design choice is the Darwinian dynamics,

which propagates successful strategies. We could have
modeled boundedly rational agents that learn—similarly
spreading successful behaviors. A key parameter would
then be the learning rate, instead of our replication cost
CC. Similar models show that certain regimes depend tan-
gentially on the cognitive mechanism [20–23]. Different
implementations might have a different key parameter that
changes the onset of large-fluctuations regimes (as CC does,
Fig. 12).When unpredictability is intrinsic to the phenomena
studied, unboundedly rational agents cannot perform better
either. Our results suggest that rigged economies might be
intrinsically uncomputable in certain limits.
Our work is designed in economic terms, but it has an

obvious political reading—e.g., construction and control of
power structures. More pragmatically, in our model, wealth
redistribution is achieved through low rigging pressures.
Empirical measurements of redistributionmight help usmap
real economies into our framework (similarly to how real
economies were mapped into other toy models [24,25]). In
general, applying our model to politics could help us assess
the evolutionary stability of fair governance [15]. In eco-
systems that bring together wealth, people, and economic
games, all subjected to Darwinism, what lasting structures
emerge, do fair rules survive, and underwhich circumstances
does unfairness prevail?

Code needed to simulate the model is provided through a
public repository [49].
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APPENDIX A: PAYOFF MATRICES FOR
SIMPLE CASES

Let us take one game (n ¼ 1), a fixed population of one
player NðtÞ ¼ 1, and no life and death dynamics (i.e., even
if the agent accumulates wealth, she does not have
descendants, so she never pays CC; she is not removed
from the population either if her wealth becomes negative).
Table II shows the average payoff for such an agent with
fixed behavior (i.e., fixed strategy a11 and rigging choice
r11). With no intervention (r11 ¼ 0), RðtÞ is set randomly at
each iteration, and the expected payoff per round is b=2. If
the agent attempts to rig the game (r11 ¼ 1), she always
succeeds (because there is no opposition). Note that RðtÞ is
set to her own strategy [RðtÞ ← a11], securing average b
earnings per round from which CR must be subtracted. The
optimal strategy is to intervene if CR < b=2.
In Table I of the main text, we show the case with two

agents [NðtÞ ¼ 2] and one game (n ¼ 1). There are three
scenarios worth considering separately: (i) No player
intervenes (upper-left block matrix in Table I): RðtÞ is
set randomly; both players win half of the time. If they play
the same strategy, whenever they win, they must split the
earnings. Playing different strategies, each agent still wins
half of the time but always keeps all the earnings. Thus, the
model reduces to a minority game: It is preferable to play
distinct strategies. (ii) Only one of the players attempts to
intervene (off-diagonal block matrices in Table I): That
agent pays CR and sets RðtÞ to her own strategy. If only one
agent is given the option to intervene, it always becomes

favorable if CR < b=4, disregarding the other agent’s
behavior. If b=4<CR<b=2, intervention is favorable only
if both agents play different strategies. IfCR > b=2, it never
becomes favorable to intervene. (iii) Both agents attempt to
rig the game (bottom-right block matrix in Table I): Both
agents pay CR, but they only succeed in setting RðtÞ if they
play the same strategy. This case turns the original minority
game into a neutral one: If both attempt to rig the game,
they always earn the same, regardless of whether their
strategies match. This payoff is always less than the best
scenario with no intervention—but, if CR < b=4, it is
greater than the case with no intervention and matching
strategies.
The payoff matrix for NðtÞ ¼ 3 and one game is split

between Tables III–V. Note that either all players choose
the same strategy or one differs. In such a case, we assume
that agent 1 is in the minority (and we call her the minority
player) without loss of generality. Agents 2 and 3 are called
majority players.
Table III shows payoffs when only the minority player is

allowed to intervene. If she does not intervene (left half of
Table III), we are, again, dealing with a minority game. The
Nash equilibria of this subgame (ri1 ¼ 0 ∀ i and a11 ≠ a2;31 ,
gray in Table III) are Nash equilibria of the whole game if
CR > b=4. For cheaper rigging costs, the global Nash
equilibria disappear as it becomes favorable for one of the
majority agents to rig the game (Table IV). This prompts a
dynamic situation similar to the one discussed in the main
text. Finally, Table V shows both majority players success-
fully rigging the game. Interestingly, if all three agents try
to manipulate RðtÞ (red frame), the model turns into a
majority game. With full intervention, an agent in the
minority would earn nothing: Thus, full coordination is a
Nash equilibrium of that subgame, which always happens if
NðtÞ ≥ 3; therefore, in general, when everybody is inter-
vening, the minority game is turned into a majority one.
However, full coordination is not a global Nash

TABLE II. Payoff matrix for one gamewith one player. The agent’s behavior is coded by two bits. The first one (a)
indicates the agent’s strategy (0 or 1). The second bit (r) indicates whether the agent attempts to rig the game or not.

Player’s behavior a ¼ 0, r ¼ 0 a ¼ 1, r ¼ 0 a ¼ 0, r ¼ 1 a ¼ 1, r ¼ 1

Payoff b=2 b=2 b − CR b − CR

TABLE III. Payoff matrix of one game with three players—only the minority player can rig the game. We assume
that player 1 is in the minority when there is no consensus. In this table, only player 1 is allowed to rig the game, so
she always succeeds. Entries marked in gray are global Nash equilibria when rigging is very expensive CR ≫ b.

LUÍS F. SEOANE PHYS. REV. X 11, 031058 (2021)

031058-10



equilibrium. If such coordination would happen, it pays off
to any of the agents to stop trying to rig the game. Her
earnings would still be guaranteed by the efforts of the
others. This result suggests that our model reaches large
levels of coordination (as discussed in the main text) in a
tragedy-of-the-commons scenario.
In the cases just described, population is fixed and

behaviors do not change. Hence, games are independent
of each other, and we can use these payoff matrices
to approximate averages over many games. The situa-
tion becomes more difficult as dynamics are included:
Behaviors change as agents are renewed, and averages over
time involve complex, recurrent feedback. For example,
agent 1 may rig games to favor agent 3 who, in turn, is
securing another game for agent 1. Thus, the RkðtÞ become
coupled with each other, resulting in much more compli-
cated payoff matrices.

APPENDIX B: SUPPORTING PLOTS AND
DISCUSSION FOR INCREASING ECONOMY

SIZE AND FIXED COMPLEXITY

Despite its simplicity, the model turns out to have very
rich dynamics. Its behavior changes, sometimes drastically,
with the economy complexity (as measured by the number
of games, n) or with its size (as measured by distributed
wealth per round, B). We now expand the discussion for
fixed complexity and growing economy size.
The simplest case with one game (n ¼ 1) is summarized

in Fig. 6, which shows the average population size in the

steady state, rigging pressure, and strategy entropy as the
economy size grows. Circles over these plots show values
of B for which we display 1000 iterations of the dynamics
in Fig. 14 in Supplemental Material [26].
If B is small, little wealth is distributed per round, and it is

not favored to expend the few available resources in
intervening with the economy. Thus, RðtÞ is randomly set
to 0 or 1 each time step, and the steady population does not
settle for either strategy. The second row of Fig. 14(a) in
Supplemental Material [26] shows f1 (the fraction of agents
with strategy ai1 ¼ 1) over time, which fluctuates close to
f1 ¼ 0.5. This results in a high strategy entropy hha1i, as
shown in the third row of Fig. 14(a) in Supplemental
Material [26]. The fourth row shows that, indeed, the rigging
pressure is negligible for low values of B.
Above some amount of available resources, some

rigging pressure builds up periodically [lower row of
Figs. 14(b) and 14(c) in Supplemental Material [26] ].
Let us assume a situation in which no agent is intervening.
Then, a mutation results in a single agent that alters the
game. She secures the next rounds played, and all agents
playing her same strategy consequently benefit. The latter
will have a slightly higher payoff since they do not expend
CR in rigging the game. Darwinian dynamics amplify these
slight differences exponentially, so the rigging agents will
eventually be driven off to extinction. Some agents playing
the minority strategy might have survived this process
(perhaps because they had some savings), or they might
reappear through mutation. After all rigging agents are

TABLE IV. Payoff matrix of one game with three players—only one of the majority players (player 2) rigs the
game. This is the only situation in which the symmetry between the majority players is broken.

TABLE V. Payoff matrix of one game with three players—both majority players rig the game. Since they are in the
majority, they always succeed in their attempt to set the winning rule. If all three players rig the game simultaneously
(red frame), the model turns into a majority game—i.e., the best strategy is to play what everybody else is playing.
Gray squares indicate Nash equilibria of this subgame.
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removed from the population, those playing the minority
strategy will have a greater payoff (since they share less of
their earnings) and start making a come back. A mutation in
their descendants might produce an agent rigging the game
to further favor the minority, which might become the
majority option over time, thus starting a cycle all over
again. Figures 14(b) and 14(c) in Supplemental Material
[26] show that this oscillating behavior takes place for a
range of economy sizes B.
Vertical dashed blue lines in this figure show the point at

which population reaches a maximum, which happens as

the rigging pressure peaks as well. Interestingly, this is also
the point at which the proportion of agents playing either
strategy is well balanced. The population minimum (indi-
cated by vertical dashed red lines) happens when the
rigging pressure is minimal as well, and the population
presents a more homogeneous strategy.
Increasing the economy size results in longer alternating

cycles of this nature. Eventually, these cycles become
infinitely long so that most of the population converges
to a consensus strategy [Fig. 14(d) in Supplemental
Material [26] ]. This homogeneous state supports a larger
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FIG. 7. Fixed economy complexity n ¼ 2 and growing distributed wealth B. (a) Average population size in the steady state.
(b) Average rigging pressure per game. (c) Average strategy entropy over the two games. Circles over the curves indicate values of B for
which we show samples of the dynamics in Fig. 10 in Supplemental Material [26]. Error bars indicate the standard deviation over the last
500 iterations of the corresponding simulation.
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population than the cyclic or fully random regimes.
Convergence to the consensus is not full. A reservoir of
minority agents survives, suggesting that they occasionally
succeed in rigging the game and upsetting the majority.
We now extend the discussion of the case with n ¼ 2

games from the main text. Figure 7 reproduces the first
three panels of Fig. 2 but with added error bars (1 standard
deviation over the last 500 time steps) to illustrate typical
fluctuations. Such fluctuations are comparable in other,
similar plots (Fig. 6 for n ¼ 1 and Fig. 8 for n ¼ 3, as well
as Figs. 9 and 10, which compare several n), where they are
omitted for clarity. Figures 2 and 7 both show a transition
(similar to the one observed for n ¼ 1) from unintervened
games [sample dynamics are shown in Fig. 15(a) in
Supplemental Material [26] ], through cycles of growing
and declining coordination [Figs. 15(b) and 15(c) in
Supplemental Material [26] ], to more homogeneous states
[Figs. 15(d)–15(g) in Supplemental Material [26] ].
In the main text, we indicate that the cyclic regime is

transited simultaneously for both games, but there are some
nuances. Figures 15(b) and 15(c) in Supplemental Material
[26] show that rigging pressure is synchronized for both
games (bottom row), but this synchronization is broken
when we look at the consensus in each game. For B ¼ 500
[Fig. 15(b) in Supplemental Material [26] ], on average, the
population does not converge on persistent homogeneous
strategies for either of the games. But the strategies do not
stay divided roughly in half either [as it happens for

B ¼ 300, Fig. 15(a) in Supplemental Material [26] ]. For
a larger economy size with cyclic behavior [B ¼ 700,
Fig. 15(c) in Supplemental Material [26] ], on average,
the population reaches a stable, broad consensus in one
of the games, while agreement in the other game rises
and falls. Both games take turns being the one with a
consensus, but a simultaneous consensus in both games
never lasts.
Further increasing B, the cyclic behavior is subdued, and

two more regimes are revealed, each separated by a large
boost in stable population size [Fig. 7(a)]. As noted in the
main text, these last regime shifts are not accompanied by
large changes in strategy entropy, hhaki. We conclude that
within-game coordination has been exhausted and that new
kinds of correlations, now across games, take place.
Figures 15(d)–15(g) in Supplemental Material [26] sample
the dynamics in those extra regimes. Panels (d) and (e) of
Fig. 15 in Supplemental Material [26] sample between B ≃
800 and 1600, and panels (f) and (g) sample for B > 1700.
The second row shows large consensuses around the
strategies of both games (a reservoir of minority agents
always survives). The level of consensus (as indicated by
fk and hhaki) remains similar in both regimes. We note that
population size fluctuates more in the regime between B ≃
800 and 1600, while the regime for B > 1700 supports a
larger, more stable population. Rigging pressure is also
notably higher in this last case, suggesting a more effi-
cient coordination between rigging efforts across games.
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This feature would allow the population to extract more
wealth on average. For example, consider the reservoir of
minority agents for each game. Those minority agents might
not be the same for both games. A transition to a higher
across-game coordinationmight happen if the agents playing
the minority in both games become the same.
Finally, Fig. 8 summarizes different regimes for n ¼ 3

games. We observe more shifts (as identified by boosts
in population size) than for n ¼ 2, which is compatible
with more available across-game coordination options.
Figure 16 in Supplemental Material [26] samples the
dynamics for these various regimes. In the cyclic scenario
[Fig. 16(b) in Supplemental Material [26] ], rigging pres-
sure across all games again appears synchronized, while
this synchronization is lost in the consensus around each
game’s strategy. In this example, two out of three games
reach consensus simultaneously, and they take turns being
in and out of consensus. For other values of B (not shown),
consensus was reached for at most one game. For larger B,
the cyclic behavior is subdued again. Extra regime shifts (as
revealed by boosts in hNi) happen after within-game
coordination has been exhausted, which is again consistent
with the idea that more games bring in more possible
across-game coordination.
Adding more games appears to have two different

effects: On the one hand, more regimes seem to become
available; on the other hand, more consecutive regimes

seem to be visited within a smaller range of B. Thus, as we
increase B, regimes progress more rapidly into each other
(Fig. 9). This effect is exaggerated if even more games are
available (Fig. 10)—so much so that, instead of regime
shifts, we approximate a continuous progression. The
increase in rigging pressure per game becomes parsimo-
nious as well (while for a small number of games it presents
a few discrete boosts associated with regime shifts).
Figure 9(c) shows that exhausting the within-game

coordination results in a drop of strategy entropy, hhai.
We see that this drop becomes less accentuated for larger n
[Fig. 10(c)], which suggests that the onset of interactions
across games thwarts within-game coordination. In other
words, a more complex economy seems to enable pop-
ulations with more diverse strategies within single games.

APPENDIX C: ROBUSTNESS OF RESULTS
AGAINST MODEL VARIATIONS

Similarly to the maps built for hNi and σðNÞ=hNi in
Fig. 4, we can chart other quantities such as average
strategy entropy [hhai, Fig. 11(a)] and the rigging
pressure per game [hri=n, Fig. 11(b)]. These maps reveal
the model’s regimes, but how general is the uncovered
phenomenology? Does it depend critically on model
parameters?
We have six independent parameters: The first one sets n,

the number of games—thus the economy’s complexity. The
second one sets the economy size (all b, B, and B0 become
fixed by setting one of them and the number of games).
Two additional parameters set up costs (of attempting to rig
a game, CR; and of producing descent, CC). Finally, we
have the mutation rate pμ and Nmax, which sets an external
upper limit to the population. We designed our model with
the hope of pinning down essential features of rigged
economies. We hope that the elements involved in the
model introduce as few additional effects as possible. In
that sense, an abundance of parameters is not desired.
Furthermore, we hope that the most interesting phenom-
enology depends on B and n, which are at the center of our
research questions. Toying around with variations on model
parameters, we have found that the observed phenomenol-
ogy is robustly reproduced, which is strongly in favor of the
minimalism of our approach. Let us look at some model
variations in action:
First, we note that the cost of rigging a game CR sets a

scale with respect to the wealth allotted to each game
b ¼ B=n. In our simulations, we set CR ¼ 1. If we try a
different value of CR, we could normalize b̃≡ b=CR and
C̃C ≡ CC=CR, thus remapping our model back to a case
with C̃R ≡ CR=CR ¼ 1. Hence, we just need to explore
three free parameters others than n and B.
Figure 12 shows what happens to hNi and σðNÞ=hNi

as CC changes. The effect in hNi seems negligible for
the values explored [Figs. 7(a)–7(c)]. More notably, this
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FIG. 11. Comprehensive maps of strategy entropy and rigging
pressure. (a) Average strategy entropy hhaðtÞi, showing a dent for
small n and large B—a situation that we compared to cartels in
the main text. This coordination regime falls apart swiftly as
complexity grows a little bit. If we move to very large n without
increasing B, coordination starts to build up again—yet very
smoothly. (b) Rigging pressure per game, hrðtÞ=ni. Unsurpris-
ingly, it grows with the amount of wealth distributed. More
interestingly, it also grows with the number of degrees of freedom
in the system.
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parameter displaces the onset of the large-fluctuations
regime [Figs. 7(d)–7(f)]. If CC is smaller, this regime
ensues for a lower economy complexity n. CC tells us how
cheap it is to have descendants. When it is cheaper, it is
easier to trigger large fluctuations—a large descent
explores more behaviors simultaneously, as well as dis-
placing a bigger proportion of former agents. Both of these
actions result in major disruptions of RðtÞ. Thus, cheaper
descent more easily brings up a scenario in which agents
are continuously deceiving each other into bankruptcy. If
this is correct, other parameters that promote behavior
diversity or population renewal should displace the onset of
the large-fluctuations regime in a similar manner.
We ran simulations (not shown) to check how varying

the mutation rate pμ prompts this expected outcome,
too. Indeed, increasing pμ advances the large-fluctuations
regime, as expected from a parameter that increases
behavioral diversity. Other variables (rigging pressure
and strategy entropy) behave as reported above as either
CC or pμ are changed. Importantly, the consensus for low n
and large B is reproduced; and this consensus is also
prevented as complexity is increased.
The model parameter Nmax sets a maximum population

size, which makes sense as an external constraint—e.g., the
amount of people that can occupy a territory. It could also
be seen as a manufactured (rigged) limit to participants in a
market. This kind of economic manipulation is important,
but we do not address it here; thus, it should be studied in
the future. Note that Nmax also parsimoniously induces a
finite lifespan. If Nmax → ∞, agents who do not attempt
any rigging never pay CR and never end up with negative
wealth and hence never die. This situation is unrealistic and
undesired. Through Nmax, long-lasting agents are naturally

and randomly replaced by newborns. We explored model
alternatives without Nmax (e.g., enforcing a maximum
lifetime), and the same phenomenology has been robustly
recovered.
We ran additional simulations with Nmax ¼ 100, 5000,

and 10 000 (the latter took more than ten days in a
fairly powerful cluster). These tests resulted in qualita-
tively similar overall structures of the hNi and σðNÞ=hNi
charts (not shown). Quantitatively, the onset of the large-
fluctuations regime changed as expected. Increasing Nmax,
this regime starts for notably larger values of n. A lower
Nmax results in an earlier onset of large fluctuations.
Above, we argued that the onset of this regime was
advanced by (i) mechanisms that result in more diverse
strategies competing closer together or (ii) a higher pop-
ulation turnover. Thus, lower CC (cheaper reproduction)
and higher pμ (increased mutation) both advance the onset
of the regime. A larger Nmax has the effect of diluting
the competence. Oppositely, smaller Nmax results in tighter
competence.
Regarding the other relevant regime, plots of strategy

entropy for different Nmax (not shown) again indicate how
consensus is reached when enough wealth is present and
the number of games is small. This consensus, again,
breaks apart swiftly as the number of games is increased.
Some modeling choices might introduce ad hoc results

independent of model parameters. We can never be
exhaustive, but we have tried some model alternatives to
make sure that our results are robust. Some of the variants
extend the model in ways that might allow us to tackle new
questions around rigged economies in the future. The
variations we explored include the following: (i) We
eliminated Nmax. Instead, we set a fixed chance that
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FIG. 12. Comprehensive maps of hNi and σðNÞ=hNi for varying replication cost CC. Maps result from simulating case I (i.e.,
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newborn agents would substitute an older one (otherwise,
they were appended to the population pool, making it grow).
In such model variation, population might grow unbound-
edly or reach a steady state. In another alternative to suppress
Nmax, we never replaced older agents at all. We prevented
unbounded growth by setting a maximum lifespan (agents
who reached it were removed). (ii) We explored biased
games and games with momentum. In the former, one
strategy was favored. More agents were needed to rig the
game against it. In the latter, the bias would shift to favor the
last winning strategy (i.e., once an option is preferred, it
becomes more difficult to overturn). (iii) We broke the
symmetry between games by (i) making some of them more
profitable than others (see below) or (ii) cheaper to rig than
others, and (iii) connecting games in a dependency network,
thus affecting each other’s winning strategies. (iv) We
allowed agents to choose what games to play. These model
variations will be reported in future papers—as some of them
illuminate questions beyond the scope of this work. In all of
these variants, we reliably observed the main regimes
discussed in this paper (i.e., large fluctuations for large n,
and consensus for wealthy, simple economies that breaks
apart swiftly as complexity increases). The exact onset and
size of large fluctuations (as a function of n) and some
quantitative aspects of the consensus regime depended on the
model variation and associated parameters. But, qualita-
tively, our results are very robust, thus strengthening the idea
that the uncovered phenomenology should show up for other
models of rigged economies.
One of these variants provides a nuance to one of our

results. Let us have a closer look at it:
Our original model assumes an extreme symmetry: All

economic games are equivalent—all of them are equally
costly to rig and report the same benefit if the correct
strategy is played. But real-world economies present a
variety of assets into which to invest, jobs to perform, deals
to strike, etc. Statistical distributions in economics are
usually heavy tailed, meaning that outliers often dominate
the scene. In terms of games, this means that some of them
are overwhelmingly much more important than others—
e.g., because they deal out much more wealth.
Given a fixed economy sizeB0, let thekth gamedeal out an

amount of wealth bk with the constraint
P

k bk ¼ B0. We
tried random, uniformly distributed bk, obtaining results
similar to the original model. This result is expected: While
some fluctuations are introduced, a uniformdistribution does
not present great biases towards any game—they all turn out
to be, on average, fairly equivalent. To break this symmetry,
we explore starkly biased distributions for bk. Let one of the
games deal out 90% of all wealth.Without loss of generality,
let this be the first game—thus, b1 ¼ 0.9B0 and bk ¼
0.1B0=ðn − 1Þ for all k ≠ 1.
Figure 13(a) shows that the large-fluctuations regime still

exists for this scenario. For case II (economy size grows
linearly with economic complexity), the size of fluctuations
is quite similar to the original model, and their onset occurs

for a complexity just slightly higher. For case III (economy
size grows faster than linearly with economic complexity),
compared to the original model, large fluctuations are
smaller, and their onset happens for fairly higher complexity
than for the original model. We speculate that the stark
asymmetry results in an effective number of games ñ < n,
suggesting an explanation as to why the onset of large
fluctuations happens at higher complexity. The gross amount
ofwealth in the system seems to be a relevant factor aswell—
as the differences between cases II and III show. Note that the
first game handles 90% of thewealth; it is interesting that the
(n − 1) remaining games can throw the system in the large-
fluctuations regimewhile controlling just 10% of thewealth.
Figure 13(b) shows the broad consensus regime for

wealthy, yet simple economies. We find a counterintuitive
result with implications for the strategy of increasing
complexity to defuse cartels. Solid, dark-colored curves
plot strategy entropy averaged over all games (including the

(a)

(b)

FIG. 13. Charting a model of rigged economic games of
different importance. In these simulations, one game deals out
90% of the wealth in each round. All other games deal out the rest
of the wealth in equal amounts. (a) Illustration of the large-
fluctuations regime for cases II and III. For comparison, lighter
colors show the same curves from the original model. (b) Illus-
tration of the regime with relatively broad consensus. Dark colors
indicate the average of strategy entropy across all games
(including the main one). Light colors indicate strategy entropy
for the main game.
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first one). This entropy becomes larger with n, and it does
so faster than in the original model [compare to Fig. 9(c)],
suggesting that the consensus is more easily abandoned.
However, looking at the strategy entropy of the first game
alone (dashed, light-colored curves), the consensus around
this game actually grows as the economy becomes more
complex. Thus, in order to defuse consensus, the degrees of
freedom added to our economy must be of relevance.
Adding rather low-paying games might have the opposite
effect—reinforcing the main consensus.
There are other possibilities to model asymmetrically

rigged games. For example, we set up the bk to follow
Zipf’s law such that the kth gamewould deal out b1=kwealth
per round (always with

P
k bk ¼ B0). In this version, we

observed less differences (with respect to the original model)
regarding large fluctuations, but we again found the strength-
ened consensus around the first game illustrated inFig. 13(b).
Alternatively, some games could be cheaper to manipulate
than others. Actually, if all games are equally costly to rig
(despite some of them having much lower bk), it might
contribute to the robustness of large fluctuations. Finally, we
can conceive that games depend on each other, such that the
winning strategy in one of them affects the best strategy in
others. A network of influences between games is another
way to introduce asymmetries. Results from these variants
will be presented in future studies.

APPENDIX D: FURTHER DISCUSSION OF
REAL-WORLD RIGGED ECONOMIES

In Sec. III E, we discussed the GME short squeeze from
the viewpoint of rigged games. It was intended as an exercise
to finddifferences and similaritieswith a real-world casewith
apparentmarketmanipulation. Themain goal of ourmodel is
to uncover large-scale trends that might emerge as economy
size and complexity grow. The phenomenauncovered should
be seen as limit cases and a starting point from which to
proceed towards more realism. Aiming at modeling actual
markets, the symmetry between games will likely be broken
(beyond what we just explored), as will the symmetry
between agents (introducing different allowed behaviors,
restricting the access of some agents to certain games or
strategies, etc.). To achieve this goal, the approach in
Ref. [19] (in which payoff matrices are less restricted),
combined with ours, should be much more useful. In this
Appendix, we explore a series of additional situations in
which the economy appears to be rigged. In each case, we try
to locate relevant variables or possibilities, some enabled by
new technology.Alongside,we try to figure out how to tackle
these issues with our approach.

1. Massively accessible markets through
trading apps

We mentioned the unusual communication channels
through which the GME short squeeze was organized

(Reddit or Twitter). Furthermore, GME went viral,
promptly reaching huge audiences. Another important
ingredient was the widespread use of trading apps.
These platforms are truly disruptive, making very complex
financial products available to a large body of (often
unexperienced) investors. Thus, the engagement with such
products becomes incredibly simple and cheap.
Traditional brokers trade mostly with complete shares,

which might be prohibitive for small investors if their price
is too high. Trading apps offer fractional shares and
contracts for differences (contracts within the platform to
bet that a commodity will gain or lose value but through
which the investor never actually acquires the asset), which
enables very low entry points. From a rigged games
perspective, in a situation such as the GME short squeeze
(in which buying stock also “manipulates” the winning
strategy), the simplicity and inexpensiveness of trading
apps lowers the rigging cost CR in our model. These
platforms usually offer leverage mechanisms as well. They
lend money to investors so they can make a greater return
on their positions—with a much higher exposure, too. We
can model this as nonlinear effects of trading options.
Agents would choose how much to invest in their “rigging”
(i.e., we move beyond one agent, one vote), and this
investment could be weighted nonlinearly.
On top of these financial aspects, trading apps often look

like social networks. Some of them showcase their users’
portfolios, making it simple to follow, copy, or merge
successful profiles. These options come as close as possible
to implementing our evolutionary dynamics or to how
successful rules are copied in the El Farol problem. Social
network dynamics are thus embedded directly into stock
markets—potentially at a massive scale. Viral memes,
polarization, or echo chambers might become relevant.
Popular profiles might act as a “coarse graining” of the
assets in their portfolio, introducing correlations between
unrelated products. Widespread correlation, as we know,
can trigger market crashes and might be undesired [23].
This social network structure adds interesting possibil-

ities from the rigged games viewpoint. “Influencer”
accounts could be traded (popular Twitter or Instagram
profiles are already marketed for targeted advertising).
Successful small investors could be “bought” to tilt stocks
in a given direction. However big an influencer might
become, officially they are small investors without much
liability. Current regulations might become blurred,
allowing these users some behaviors that are forbidden
for professional brokers. As a case in point, the Reddit user
Keith Patrick Gill (Ref. [50], one of the GME short-squeeze
leaders) opened his testimony in front of the U.S. Congress
with the following claim: “A few things I am not: I’m not a
cat. I’m not an institutional investor, nor am I a hedge
fund.” He then proceeded to argue that his posting in social
media, however influential, did not constitute investment
advice. His testimony triggered yet another surge of GME
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trade. This case can be incorporated in our model through
networks of influences between agents, which would affect
the strategies and rigging choices of each other.

2. Cryptocurrencies and internal complexity of
economic games

Cryptocurrencies are a favorite asset in trading apps. They
were also heavily involved in the GME short squeeze:
Bitcoin and Dogecoin became a refuge for small investors
whennumerous platformshalted the trading ofGME[1]. The
issues around social dynamics just discussed became rel-
evant as small investors became coordinated online—but
also, notably, as Elon Musk endorsed Dogecoin through
Twitter. Given his reach and influence,with that single act, he
might have tilted a whole game in his preferred direction at a
very low cost.
Cryptocurrencies were created to articulate decentralized

financial relationships, which might make them more
vulnerable to manipulations similar to the ones in our
model (i.e., emergent and, like this technology, decentral-
ized). The financial protocols defining certain cryptocur-
rencies (e.g., Dai [51]) are literally voted on by holders of
“governance tokens,” which comes as close as possible to
our model. Similar decision systems exist in more tradi-
tional institutions (e.g., shareholders vote on a company’s
strategies), but decisions are now made online, which is
faster and within a less centralized structure; they can alter
the very design and behavior of the currency.
The technology behind cryptocurrencies has been

expanded to create smart contracts, non-fungible tokens
(NFT), and potentially any imaginable financial product.
Besides some very loose standards, the behavior of these
products is programmed by their designers. This program is
literally computer code that defines what each product
does. For example, NFTs are non-fungible because a piece
of code dictates that there is only a unique instance of each
token and that they are not interchangeable. Other behav-
iors of these products might include the following: auto-
mated transactions of cryptocurrencies and other assets,
generation of obligations, calls to other smart contracts, etc.
Since their code is relentlessly executed, smart contracts are
enforced in a decentralized manner.
Cryptocurrencies and derived products offer economic

games in which people might decide to engage. The
consequence of their behavior being programmed in a
code is that changing this code is equivalent to changing the
payoff matrix of the game. Changing the code is usually,
but not necessarily, prevented. Writing code for these kinds
of products can be thought of as a sort of “economic game
engineering,” which also implies that bugs in the code
translate into bugs in the payoff matrix. These are unex-
pected degrees of freedom that can also be exploited to
harness the flow of wealth in a specific direction—just as
we explore in this paper. This exploitation of a badly-
egineered code is precisely what happened to the

short-lived Decentralized Autonomous Organization
(DAO) [52,53]. DAO was institutionalized as a self-
regulated venture capital organization. The way in which
DAO was supposed to work was hard-coded into its smart
contract, which binded its participants. After raising
about 150 million dollars in a matter of weeks, a bug in
the code enabled about 50 million dollars worth of Ether
(the cryptocurrency of the Ethereum platform, on which
DAO ran) to be diverted to a hacker’s wallet. This case is by
no means unique [54].
Using simple models such as ours, we conjecture that we

could extract valuable insights about expected bugs in
complex payoff matrices. For instance, say we quantify the
complexity of smart contracts (e.g., through their number
of lines of code, functions, or recursive calls, etc.). Then,
given contracts of a certain complexity, what is the like-
lihood that they contain a harmful bug? What is the
likelihood that it will be exploited by any of N user agents?
What is the cost of fixing such bugs? Note that changes to
some parts of the code might affect others, potentially
triggering avalanches of changes across the payoff matrix
(as beautifully captured by Per Bak’s avalanche model for
similar complex systems [40]).
While our model captures external complexity, this new

problem would require us to model internal complexity. An
economic game is not an atomic, irreducible object;
instead, it contains distinct mechanisms that make it work,
and each of them might be manipulated to rig the game’s
outcome. How stable are these systems as their number of
internal, “riggable” degrees of freedom grows? And as the
wealth dependent on these mechanisms changes? And as
the number of users (and potential “riggers”) grows?
Should economic games based on cryptotechnology guar-
antee a collateral that grows with their complexity to ensure
a stable value? Should this collateral grow linearly or faster
with complexity? To address these questions, we could
apply our approach, only now inwards, towards the internal
complexity of each game. For example, in this paper, each
game deals out earnings independently if each right
strategy is played. Instead, to tackle internal complexity,
agents might need to play all (or a majority of) the correct
strategies to earn the profits of a complex game. How does
this alter the evolutionary dynamics of our model?
Like other software projects, the crypto ecosystem reuses

pieces of code continuously. Thus, the internal complexity
of a game might be replicated or exapted, creating a literal
network of dependencies. For example, both Dai and DAO
run on Ether. Manipulation of the Ethereum network
(which might be as simple as overloading it to slow down
transactions) might affect several tokens. These aspects
could be incorporated into our model as networks of games
affecting each other.

3. Value of information

Many classic schemes of market manipulation during the
20th century can be tracked down to espionage, leakage of
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merger agreements, or plain insider trading. In all of these
cases, we identify information as the key asset. The owners
of privileged information could anticipate market move-
ments, knowing that a certain stock was about to increase or
drop, and thus play the correct strategy. Information
pervades all other aspects of economy and has been amply
discussed in the literature [55–57].
Can we modify our approach to better account for

access, use, and abuse of information? As the model
stands, there are three relevant information sources, which
constitute degrees of freedom that can be harnessed and
exploited. The most obvious and less certain one is the
winning rule when no intervention is taking place. The
other two sources are the strategies and rigging choices
wielded by other agents in the system. Let us take a closer
look at each of these.
When it is not manipulated, our winning rule is a

uniform, random variable with a value of 0 or 1. This
variable represents an unpredictable external signal that
dictates how wealth will flow. In realistic setups, this
variable could represent movements in a stock market.
Then, while its direction (0 or 1) would emerge out of
human activity, it should remain unpredictable, provided
we have ideal and fair market conditions. Access to
privileged information (as in classic insider trading) would
reveal this signal’s value before the market could react to it.
The informed agent could correlate her strategy with the
likely movement of the market. Unlike in our model, this
intervention leaves the winning rule unaltered (and unpre-
dictable for other agents). We would not incur the CR cost,
but information might be expensive to obtain; there is also a
risk of being penalized by regulators.
From the game-theoretic perspective, it is easy to revise

our payoff matrices to include these effects. Assuming that
no other form of rigging takes place (i.e., winning rules are
set at random), we should include an agent whose strategy
often correlates with that winning rule, thus altering the
likelihood that she and others need to share the earnings.
From the agent-based model perspective, we could allow
“insider” agents to change their strategy after reducing the
uncertainty around the winning rule [e.g., let them know
that RkðtÞ ¼ 1, with a 0.8 chance]. In both cases, the costs
and risks just mentioned (of gathering information and
being penalized) should be factored out from the payoff.
What might the interplay be between both sources of
market manipulation (the one explored in our model and
the one related to privileged information)? Altering the
payoff matrix of a game might be unfeasible or very costly;
thus, such an intervention might not be convenient if the
agent can, instead, change her strategy to the correct one,
nevertheless. Under what combination of costs and penal-
ties is one form of manipulation preferred over the other?
The other two sources of information in the model are the

strategies and rigging choices of each agent. As our model
functions, this information can be exploited in evolutionary

terms, as correct responses are slowly selected for. For
example, assume several agents are rigging a game in the
same direction. For any of them, it would be convenient to
stop their intervention attempt as long as at least one of the
others keeps rigging the game in the desired way. Over
evolutionary time, new agents with such mutation are more
likely to persist. But we do not want to wait an evolutionary
time. We wish to react immediately—e.g., to position
ourselves in the minority if we know that the market is
unrigged. Wolpert and Grana’s work on whether to change
a payoff matrix [19] comes closer to modeling this
situation. In one of their model variations, agents might
change their strategy because they suspect that a game has
been meddled with.

4. Pareto-rigged games

The financial field of mergers and acquisitions offers a
last example of market manipulation that suggests further,
useful extensions for our model. This field is ripe with
tactics, deceptions, and an array of strategies wielded by
any side to reach a favorable agreement (e.g., for a buyer, to
acquire a company at a price below its market value). Any
of these tactics might deserve a lengthy discussion in terms
of rigged games. We focus on the ploy popularly known as
“greenmailing.”
Greenmailing starts as a corporate raid in which a buyer

seeks to acquire a target company—often one that works
inefficiently or whose assets might be stripped by the buyer
for profit. The buyer might also threaten to replace employ-
ees andmanagers. Once the buyer’s position is strong and the
threat becomes evident, the owners and leaders of the target
company might feel compelled to react, for which they need
to acquire stock (now held by the buyer) at a pricewell above
market value.Rather than rigging an existing game, the buyer
“engineers” an economic scenario for its own profit. Why
does this tactic work? Why would the company’s leadership
not allow the buyer to acquire it at the market’s trade value,
thus leaving the buyer stuck with an allegedly inefficient
business? What are the degrees of freedom that the buyer
exploits in this engineered game?
The threat in greenmailing is to strip the target company

of its assets and replace its managers, who are often
stakeholders as well. These assets and positions (jobs)
are valued differently by the market, the buyer, and the
company leadership (who might have an emotional attach-
ment as well). For the buyer, managers can be cheaply
replaced. But this would affect the replaced employees in
ways that the market cannot fairly factor in. The conflict
arises from measuring the operation with different utility
functions that cannot be compared to each other—issues of
Pareto optimality enter the scene.
In our model, we could include games that deal out

different assets that cannot be compared to each other,
which each agent values differently. An agent’s perfor-
mance would not be measured by an absolute wealth
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anymore. Instead, each agent would rely on its utility
function to determine her strategy in a given game, her
choice to attempt to rig that game, and her ability to have
descent. Within our model’s evolutionary setup, it is
possible to incorporate tools from multi-objective genetic
algorithms for Pareto optimality [58–60]. Assets that are
not convertible into each other add a new dimension of
complexity that is strictly different from the number of
games that we explore in this work.

[1] Wikipedia, Game Stop short squeeze, https://en.wikipedia
.org/wiki/GameStop_short_squeeze.

[2] J. Zweig, The Real Force Driving the GameStop Revolu-
tion, https://www.wsj.com/articles/the-real-force-driving-
the-gamestop-amc-blackberry-revolution-11611965586#
selection-3170.0-3170.3.

[3] J. Tirole, The Theory of Industrial Organization (MIT Press,
Cambridge, MA, 1988).

[4] R. D. Willig and R. Schmalensee, Handbook of Industrial
Organization (Elsevier, New York, 1989).

[5] J. J. Laffont and J. Tirole, A Theory of Incentives in
Procurement and Regulation (MIT Press, Cambridge,
MA, 1993).

[6] M. Lewis, Flash Boys: A Wall Street Revolt (W. W. Norton
Company, New York, NY, USA, 2015).

[7] J. A. Schumpeter, Capitalism, Socialism and Democracy
(Routledge, Oxfordshire, England, United Kingdom, 1942).

[8] N. Ferguson, The Ascent of Money: A Financial History of
the World (Penguin, City of Westminster, London, England,
2008).

[9] G. J. Stigler, The Theory of Economic Regulation, Bell J.
Econ. Manage. Sci. 2, 3 (1971).

[10] J. Tirole, Hierarchies and Bureaucracies: On the Role
of Collusion in Organizations, J. L. Econ. Org. 2, 181
(1986), https://heinonline.org/HOL/LandingPage?handle=
hein.journals/jleo2&div=16&id=&page=.

[11] J. J. Laffont and J. Tirole, The Politics of Government
Decision-Making: A Theory of Regulatory Capture, Q. J.
Econ. 106, 1089 (1991).

[12] D. Acemoglu, S. Johnson, and J. A. Robinson, Institutions
as a Fundamental Cause of Long-Run Growth, in Hand-
book of Economic Growth 1, edited by P. Aghion and S.
Durlauf (Elsevier B.V., Amsterdam, Netherlands, 2005),
pp. 385–472.

[13] D. Acemoglu, S. Naidu, P. Restrepo, and J. A. Robinson,
Democracy Does Cause Growth, J. Polit. Econ. 127, 47
(2019).

[14] M. Draghi, Sovereignty in a Globalised World, Speech on
the Award of Laurea Honoris Causa in Law, University of
Bologna, 2019.

[15] P. Barucca, A Fair Governance: On Inequality, Power and
Democracy, Topoi 2020, 1 (2020).

[16] P. Milgrom and C. Shannon, Monotone Comparative
Statics, Econometrica 62, 157 (1994).

[17] M. R. Caputo, The Envelope Theorem and Comparative
Statics of Nash Equilibria, Games Econ. Behav. 13, 201
(1996).

[18] D. Acemoglu and M. K. Jensen, Aggregate Comparative
Statics, Games Econ. Behav. 81, 27 (2013).

[19] D. Wolpert and J. Grana, How Much Would You Pay to
Change a Game Before Playing It?, Entropy 21, 686 (2019).

[20] H. Gintis, Game Theory Evolving: A Problem-Centered
Introduction to Modeling Strategic Behavior (Princeton
University, Princeton, NJ, 2000).

[21] D. Whitehead, The El Farol Bar Problem Revisited:
Reinforcement Learning in a Potential Game, ESE Dis-
cussion Papers, 186 (2008), https://www.pure.ed.ac.uk/ws/
portalfiles/portal/20037196/The_El_Farol_Bar_Problem_
Revisited.pdf.

[22] M. Buchanan, The Social Atom: Why the Rich Get Richer,
Cheaters Get Caught, and Your Neighbor Usually Looks
Like You (Bloomsbury Publishing USA, New York, NY,
USA, 2008).

[23] D. Sornette, Why Stock Markets Crash: Critical Events in
Complex Financial Systems (Princeton University Press,
Princeton, NJ, USA, 2017).

[24] A. Devitt-Lee, H. Wang, J. Li, and B. Boghosian, A Non-
standard Description of Wealth Concentration in Large-
Scale Economies, SIAM J. Appl. Math. 78, 996 (2018).

[25] J. Li, B. M. Boghosian, and C. Li, The Affine Wealth Model:
An Agent-Based Model of Asset Exchange That Allows for
Negative-Wealth Agents and Its Empirical Validation,
Physica (Amsterdam) 516A, 423 (2019).

[26] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.11.031058 for Figs. 9–
111.

[27] B. E. Hilbig and I. Thielmann, Does Everyone Have a
Price? On the Role of Payoff Magnitude for Ethical
Decision Making, Cognition 163, 15 (2017).

[28] A. Kajackaite and U. Gneezy, Incentives and Cheating,
Games Econ. Behav. 102, 433 (2017).

[29] O. Weisel and S. Shalvi, The Collaborative Roots of Cor-
ruption, Proc. Natl. Acad. Sci. U.S.A. 112, 10651 (2015).

[30] A. Cassar, Coordination and Cooperation in Local, Ran-
dom and Small World Networks: Experimental Evidence,
Games Econ. Behav. 58, 209 (2007).

[31] O. Kirchkamp and R. Nagel, Naive Learning and Co-
operation in Network Experiments, Games Econ. Behav. 58,
269 (2007).

[32] A. Traulsen, D. Semmann, R. D. Sommerfeld, H. J. Kram-
beck, and M. Milinski, Human Strategy Updating in
Evolutionary Games, Proc. Natl. Acad. Sci. U.S.A. 107,
2962 (2010).

[33] J. Grujić, C. Fosco, L. Araujo, J. A. Cuesta, and A. Sánchez,
Social Experiments in the Mesoscale: Humans Playing a
Spatial Prisoner’s Dilemma, PLoS One 5, e13749 (2010).

[34] S. Suri and D. J. Watts, Cooperation and Contagion in Web-
Based, Networked Public Goods Experiments, PLoS One 6,
e16836 (2011).

[35] C. Gracia-Lázaro, A. Ferrer, G. Ruiz, A. Tarancón, J. A.
Cuesta, A. Sánchez, and Y. Moreno, Heterogeneous Net-
works Do Not Promote Cooperation When Humans Play a
Prisoner’s Dilemma, Proc. Natl. Acad. Sci. U.S.A. 109,
12922 (2012).

[36] J. Grujić, C. Gracia-Lázaro, M. Milinski, D. Semmann, A.
Traulsen, J. A. Cuesta, Y. Moreno, and A. Sánchez, A
Comparative Analysis of Spatial Prisoner’s Dilemma

LUÍS F. SEOANE PHYS. REV. X 11, 031058 (2021)

031058-20

https://en.wikipedia.org/wiki/GameStop_short_squeeze
https://en.wikipedia.org/wiki/GameStop_short_squeeze
https://en.wikipedia.org/wiki/GameStop_short_squeeze
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://www.wsj.com/articles/the-real-force-driving-the-gamestop-amc-blackberry-revolution-11611965586#selection-3170.0-3170.3
https://doi.org/10.2307/3003160
https://doi.org/10.2307/3003160
https://heinonline.org/HOL/LandingPage?handle=hein.journals/jleo2&div=16&id=&page=
https://heinonline.org/HOL/LandingPage?handle=hein.journals/jleo2&div=16&id=&page=
https://heinonline.org/HOL/LandingPage?handle=hein.journals/jleo2&div=16&id=&page=
https://heinonline.org/HOL/LandingPage?handle=hein.journals/jleo2&div=16&id=&page=
https://doi.org/10.2307/2937958
https://doi.org/10.2307/2937958
https://doi.org/10.1086/700936
https://doi.org/10.1086/700936
https://doi.org/10.1007/s11245-020-09697-z
https://doi.org/10.2307/2951479
https://doi.org/10.1006/game.1996.0034
https://doi.org/10.1006/game.1996.0034
https://doi.org/10.1016/j.geb.2013.03.009
https://doi.org/10.3390/e21070686
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://www.pure.ed.ac.uk/ws/portalfiles/portal/20037196/The_El_Farol_Bar_Problem_Revisited.pdf
https://doi.org/10.1137/17M1119627
https://doi.org/10.1016/j.physa.2018.10.042
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031058
https://doi.org/10.1016/j.cognition.2017.02.011
https://doi.org/10.1016/j.geb.2017.01.015
https://doi.org/10.1073/pnas.1423035112
https://doi.org/10.1016/j.geb.2006.03.008
https://doi.org/10.1016/j.geb.2006.04.002
https://doi.org/10.1016/j.geb.2006.04.002
https://doi.org/10.1073/pnas.0912515107
https://doi.org/10.1073/pnas.0912515107
https://doi.org/10.1371/journal.pone.0013749
https://doi.org/10.1371/journal.pone.0016836
https://doi.org/10.1371/journal.pone.0016836
https://doi.org/10.1073/pnas.1206681109
https://doi.org/10.1073/pnas.1206681109


Experiments: Conditional Cooperation and Payoff Irrel-
evance, Sci. Rep. 4, 4615 (2014).

[37] D. G. Rand, M. A. Nowak, J. H. Fowler, and N. A.
Christakis, Static Network Structure Can Stabilize Human
Cooperation, Proc. Natl. Acad. Sci. U.S.A. 111, 17093
(2014).

[38] A. Mao, L. Dworkin, S. Suri, and D. J. Watts, Resilient
Cooperators Stabilize Long-Run Cooperation in the Fi-
nitely Repeated Prisoner’s Dilemma, Nat. Commun. 8,
13800 (2017).

[39] A. Sánchez, Physics of Human Cooperation: Experimental
Evidence and Theoretical Models, J. Stat. Mech. (2018)
P024001.

[40] P. Bak, C. Tang, and K. Wiesenfeld, Self-Organized
Criticality: An Explanation of the 1=f Noise, Phys. Rev.
Lett. 59, 381 (1987).

[41] P. Bak, C. Tang, and K. Wiesenfeld, Self-Organized
Criticality, Phys. Rev. A 38, 364 (1988).

[42] P. Bak and K. Sneppen, Punctuated Equilibrium and
Criticality in a Simple Model of Evolution, Phys. Rev. Lett.
71, 4083 (1993).

[43] S. A. Kauffman, The Origins of Order: Self-Organization
and Selection in Evolution (Oxford University, New York,
1993).

[44] S. Kauffman, At Home in the Universe: The Search for the
Laws of Self-Organization and Complexity (Oxford Uni-
versity, New York, 1996).

[45] P. Bak, How Nature Works: The Science of Self-Organized
Criticality (Springer Science & Business Media, New York,
1996).

[46] R. Dickman, M. A. Muñoz, A. Vespignani, and S. Zapperi,
Paths to Self-Organized Criticality, Braz. J. Phys. 30, 27
(2000).

[47] M. A. Munoz, Colloquium: Criticality and Dynamical Scal-
ing in Living Systems, Rev. Mod. Phys. 90, 031001 (2018).

[48] D. Sornette, Critical Phenomena in Natural Sciences:
Chaos, Fractals, Self-Organization and Disorder: Concepts
and Tools (Springer Science & Business Media, New York,
2006).

[49] https://github.com/brigan/RiggedEconomies
[50] https://en.wikipedia.org/wiki/Keith_Gill.
[51] Wikipedia, Dai, https://en.wikipedia.org/wiki/Dai_

(cryptocurrency).
[52] Wikipedia, Decentralized Autonomous Organization, en

.wikipedia.org/wiki/Decentralized_autonomous_organization.
[53] Q. DuPont, Experiments in Algorithmic Governance: A

History and Ethnography of “The DAO,” a Failed Decen-
tralized Autonomous Organization, Bitcoin and Beyond
157 (2017), https://doi.org/10.4324/9781315211909-8.

[54] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, Security
Analysis Methods on Ethereum Smart Contract Vulnerabil-
ities: A Survey, arXiv:1908.08605.

[55] G. J. Stigler, The Economics of Information, J. Polit. Econ.
69, 213 (1961).

[56] K. J. Arrow, The Economics of Information (Harvard
University, Cambridge, MA, 1984), Vol. 4.

[57] K. J. Arrow, The Economics of Information: An Exposition,
Empirica 23, 119 (1996).

[58] C. C. Coello, Evolutionary Multi-Objective Optimization: A
Historical View of the Field, IEEE Comput. Intell. Mag. 1,
28 (2006).

[59] P. Schuster, Optimization of Multiple Criteria: Pareto
Efficiency and Fast Heuristics Should Be More Popular
than They Are, Complexity 18, 5 (2012).

[60] L. F. Seoane, Ph.D. dissertation, Universitat Pompeu Fabra,
2016.

GAMES IN RIGGED ECONOMIES PHYS. REV. X 11, 031058 (2021)

031058-21

https://doi.org/10.1038/srep04615
https://doi.org/10.1073/pnas.1400406111
https://doi.org/10.1073/pnas.1400406111
https://doi.org/10.1038/ncomms13800
https://doi.org/10.1038/ncomms13800
https://doi.org/10.1088/1742-5468/aaa388
https://doi.org/10.1088/1742-5468/aaa388
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1103/PhysRevLett.71.4083
https://doi.org/10.1103/PhysRevLett.71.4083
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1103/RevModPhys.90.031001
https://github.com/brigan/RiggedEconomies
https://github.com/brigan/RiggedEconomies
https://en.wikipedia.org/wiki/Keith_Gill
https://en.wikipedia.org/wiki/Keith_Gill
https://en.wikipedia.org/wiki/Keith_Gill
https://en.wikipedia.org/wiki/Dai_(cryptocurrency)
https://en.wikipedia.org/wiki/Dai_(cryptocurrency)
https://en.wikipedia.org/wiki/Dai_(cryptocurrency)
https://en.wikipedia.org/wiki/Dai_(cryptocurrency)
en.wikipedia.org/wiki/Decentralized_autonomous_organization
en.wikipedia.org/wiki/Decentralized_autonomous_organization
en.wikipedia.org/wiki/Decentralized_autonomous_organization
https://doi.org/10.4324/9781315211909-8
https://arXiv.org/abs/1908.08605
https://doi.org/10.1086/258464
https://doi.org/10.1086/258464
https://doi.org/10.1007/BF00925335
https://doi.org/10.1109/MCI.2006.1597059
https://doi.org/10.1109/MCI.2006.1597059
https://doi.org/10.1002/cplx.21426

