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Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to
be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in
the cooling of a mechanical resonator to its ground state, driving phonon lasing, the generation of entangled
states, and observation of the optical-spring effect. In certain magnetic materials, mechanical vibrations can
interact with magnetic excitations (magnons) via the magnetostrictive interaction, resulting in an analogous
magnon-induced dynamical backaction. In this article, we directly observe the impact of magnon-induced
dynamical backaction on a spherical magnetic sample’s mechanical vibrations. Moreover, dynamical
backaction effects play a crucial role in many recent theoretical proposals; thus, our work provides the
foundation for future experimental work pursuing many of these theoretical proposals.
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I. INTRODUCTION

Hybrid cavity systems hold great promise for exploring a
wide variety of physical phenomena. One broad example of
this is the rapid maturation of cavity optomechanics, i.e.,
coupling electromagnetic cavities with mechanical degrees
of freedom [1]. The coupling of electromagnetic cavities
with magnonic systems has also generated significant
interest [2–4], with theoretical proposals for magnetometry
[5] and axion detection [6–8], and experiments demon-
strating strong coupling [9–13], magnon Fock state detec-
tion [14,15], coupling to superconducting qubits [16,17],
bidirectional microwave to optical conversion [18,19],
Floquet electromagnonics [20], and nonreciprocity [21].
Combining these concepts yields the field of cavity

magnomechanics: coupling of magnetic excitations (mag-
nons) with both an electromagnetic cavity as well as a
mechanical resonator [22], as illustrated in Fig. 1(b).
Furthermore, an important triple-resonance condition is
possible, where the phonon frequency matches the differ-
ence in frequencies between the hybrid cavity-magnon
modes [22], allowing selective cavity enhancement of
scattering processes. This triple-resonance system has
sparked significant interest, resulting in theoretical

proposals for the generation of nonclassical entangled
states [23–28], squeezed states [29–31], classical and
quantum information processing [32–36], quantum corre-
lation thermometry [37], and exploring PT symmetry
[38–41]. Many of these proposals rely on the ability of
the external drive to act on the mechanical motion, so-
called dynamical backaction. Yet, despite the large number
of theoretical papers, there remains to date a single
experimental observation of cavity magnomechanics [22].
Here, we report cavity magnomechanical detection of all

of the fundamental dynamical backaction effects, i.e.,
dynamical heating (amplification) and cooling (damping)
—leading to phonon lasing [42,43] and noise squashing
[44]—and the first observation of the magnonic spring
effect [37]. These results are enabled, in part, by homodyne
detection of the mechanics, with reduced clamping and
viscous damping. Our observations of dynamical back-
action in a cavity magnomechanical system open the door
for many of the above theoretical proposals, in particular
those that involve entanglement [23–28], squeezed states
[29–31], and thermometry [37]. With reasonable improve-
ments, future experiments could realize, for example,
magnon-mediated cooling of the mechanics into the ground
state, which would achieve the largest mechanical system
to date to be taken into its quantum ground state, and
possibly allow tests of gravitational decoherence currently
being pursued with levitated spheres [45–48].

II. THEORETICAL BACKGROUND

Hybrid magnomechanical systems are composed of three
parts: the electromagnetic field (confined in the microwave
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cavity), the magnetic excitations of a dielectric, and its
mechanical vibrations (both hosted in the dielectric YIG
sphere). To study the dynamical response of the coupled
cavity magnomechanical system, we consider three inter-
acting bosonic modes, as shown in Fig. 1, with annihilation
operators â (microwave cavity mode), m̂ (magnon mode),
and b̂ (phonon mode), with frequencies ωa, ωm, and Ωb,
respectively. It should be noted while we have used a
quantum description of the theory, all experimental results
presented in the article are classical.
Before tackling the full interacting Hamiltonian, we first

study the microwave-magnon interaction. The linear inter-
action between magnons and microwaves is the hallmark of
cavity magnonic systems [9–11], and the Hamiltonian
describing a magnon mode interacting with a single driven
microwave cavity mode reads (in the frame rotating with
the driving frequency) [10,11]

H ¼ −ℏΔaâ†â − ℏΔmm̂†m̂

þ ℏgamðâm̂† þ â†m̂Þ þ iℏϵd
ffiffiffiffiffiffiffi
κext

p ðâ − â†Þ: ð1Þ

The magnon-photon coupling rate is given by gam, the
external drive is ϵd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=ℏωd

p
(where P is the external

drive power at the device), κext is the external coupling rate,
and ℏ is the reduced Planck’s constant. The cavity and
magnon detunings are defined as Δa ¼ ωd − ωa and
Δm ¼ ωd − ωm, respectively, where ωd is the external drive
frequency. The magnon frequency is given by ωm ¼ γjB0j,
where γ=2π ¼ 28 GHz=T is the gyromagnetic ratio, andB0

is the applied static magnetic field [49]. The first two terms
in the Hamiltonian represent the occupancy of the photon
and magnon modes, respectively. The third term describes
the linear magnon-photon coupling, and the final term
describes the external drive.
Because of the linear coupling, microwaves and mag-

nons hybridize: the normal modes of the interacting
Hamiltonian Eq. (1) are superpositions of magnons and
photons. We label these modes as þ and −, and the
difference between their frequencies is given by

ωþ − ω− ≡ Δω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2am þ Δ2

am

q
; ð2Þ

where Δam ¼ ωa − ωm is the magnon-photon detuning.
Since an externally applied bias field can tune the magnon
frequency, the hybridization of the modes is controllable,
e.g., by varying the current through a solenoid providing
the bias field. Furthermore, when the cavity is resonant
with the magnon mode, ωa ¼ ωm, the normal modes
are a maximal hybridization of magnons and photons.
Otherwise, the normal modes describe partial hybridiza-
tion; one of the modes is “magnonlike” and the other
“photonlike.” The normal mode splitting can be directly
measured via the reflected microwave signal. This can be
seen in Fig. 2, which depicts the normal mode splitting in
our experiment.
The value of the coupling rate can be extracted

by performing a fit to the normal modes presented in
Fig. 2(a), using the theory from Ref. [10]. For our exper-
imental configuration we extract a coupling rate gam=2π ¼
5.43 MHz. Furthermore, both the magnon and microwave
modes are subject to decay. Themicrowave cavity decay rate
is composed of both an intrinsic cavity decay and the
coupling to external coaxial cables (used to drive or measure
the cavity). The main source of magnon damping is intrinsic
Gilbert damping [50], which includes dissipation processes
associated with electron-lattice coupling. Other possible
sources of damping include two-magnon scattering proc-
esses between the magnetostatic mode and the spin-wave
continuum [51]. Those processes yield an inhomogeneous
broadening of the magnon linewidths for different magnon
modes [52], which are less prominent in well-polished
spheres. From the measured data we extract the magnon
decay rate γm=2π ¼ 1.01 MHz and the total cavity decay
rate κ=2π ¼ 3.87 MHz, placing our experiment well within
the strong-coupling regime, gam > fκ; γmg.
Besides the coupling to microwave photons, magnons

couple to the mechanical vibrations of the material. The
magnon-phonon coupling is mediated by the magnetostric-
tive interaction [22,53,54], which couples magnetization to
mechanical strain. The magnetoelastic coupling originates
from the effects of lattice strain combined with exchange
interactions, dipole-dipole interactions, and spin-orbit cou-
pling [55]. Under strain, the distance between magnetic
atoms or ions changes and, as a consequence of the

(b)(a)

FIG. 1. Experimental setup. (a) Photograph of half of the
microwave cavity, made from oxygen-free copper. The YIG
sphere is placed—free to move—within a glass capillary, inner
dimension of approximately 300 μm. A set of permanent neo-
dymium magnets attached to a pure iron yoke provides the bias
magnetic field, and a solenoid (not shown) allows the bias field to
be varied dynamically. Inset: Optical micrograph of the YIG
sphere inside of the glass capillary. Scale bar is 500 μm.
(b) Schematic of the coupled magnomechanical system. â,
numerical simulation of the TE101 microwave magnetic field
distribution. m̂, schematic representation of the Kittel magnon
mode within the spherical YIG sample. b̂, numerically simulated
displacement of the mechanical mode that has the strongest
magnomechanical coupling to the Kittel mode. The solid line
indicates linear magnon-photon coupling, while the dashed line
represents parametric magnon-phonon coupling.
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aforementioned interactions, the orbital and spin configu-
rations are modified. The overall effect is a coupling
between magnetic order and strain or stress, which is
obtained from the magnetic anisotropy energy density
[53,55]. For small vibrations and magnetization oscilla-
tions, this energy density term yields two types of magnon-
phonon couplings: a linear coupling, relevant for resonant
excitations, and a parametric coupling [22]. Our experi-
ments investigate the latter, which has a form analogous to
the photon-phonon coupling in optomechanical cavities,
where the optical cavity frequency is modulated by
mechanical vibrations, for example, of a movable mirror
[1]. In our experiment, the magnetic element is a YIG
sphere, which acts as both the magnon and phonon
resonator. YIG is the material of choice for magnomechan-
ical experiments since it possesses excellent magnetic [9–
11] and mechanical properties [56]. In fact, YIG spheres
have mechanical decay rates similar to spheres of silicon
and quartz [57].
The parametric magnetostrictive coupling is described

by a radiation-pressure-like parametric Hamiltonian [22]:

Hint ¼ ℏg0mbm̂
†m̂ðb̂þ b̂†Þ: ð3Þ

Here, the single magnon-phonon coupling strength is given
by g0mb. The exact value of the coupling rate depends on the
mode overlap between the specific magnon and phonon
modes. The lowest-order spherical modes are described by
S1;l;m, where l and m are the angular and azimuthal mode
numbers, respectively. For this work, we specifically focus
on the spherical S1;2;0 mode, shown in Fig. 1(b), since it
possesses the largest magnon-phonon coupling rate. We
used a commercial YIG sphere, nominally 250 μm in
diameter [58]. The phonon frequency and magnon-phonon
coupling rate can be estimated numerically using COMSOL

Multiphysics. For the mode of interest, for a 269-μm
diameter sphere, the coupling rate is predicted to be
g0mb=2π ≈ 4.73 mHz, and the phonon frequency is esti-
mated to be Ωb=2π ¼ 12.66 MHz. Note that the coupling
rate could be increased by decreasing the YIG sphere’s
diameter; however, this has the effect of decreasing the
magnon-photon coupling rate.
In our experiment, the resonant normal mode splitting

(for ωa ¼ ωm) and the phonon frequency are not perfectly
matched; indeed, the phonon frequency is slightly larger
than the normal mode splitting, Fig. 2(b). However, by
detuning the magnon frequency slightly from the bare
microwave cavity frequency (i.e., Δam ≠ 0), the normal
mode splitting can be tuned to exactly match the phonon
frequency; see Figs. 2(c) and 2(d). This results in the
system becoming triply resonant, which significantly
enhances the magnon-phonon coupling. Indeed, it has
been shown in Ref. [22] when compared with off-
resonance driving the cooperativity of a fully hybridized
triple-resonant system will be enhanced by a factor of

F ¼ 16

�
Ωb

κ þ γm

�
2

: ð4Þ

Finally, when the magnon-phonon interaction
Hamiltonian Eq. (3) is combined with the microwave-
magnon Hamiltonian, Eq. (1), a more complex scenario
occurs. Since the magnon-phonon coupling is weak com-
pared to the microwave-magnon coupling, we can describe
the magnon mode as a superposition of the normal modes
discussed above. The magnon-phonon Hamiltonian can
then be understood as describing a scattering process
between the normal modes, mediated by a phonon. For
example, a drive photon resonant with the higher-frequency
normal mode is scattered into the lower-frequency normal
mode and a phonon is generated. Such a process is resonant
if the phonon frequency matches the normal mode splitting,
fulfilling the triple-resonance condition. The sphere diam-
eter was specifically chosen for our system to operate near
the triple resonance.

III. EXPERIMENTAL CONFIGURATION

The system used in our experiment consists of a three-
dimensional microwave cavity machined from oxygen-free

FIG. 2. Normal mode spectrum. (a) Measured normal mode
spectrum as a function of static magnetic field. Dashed lines
correspond to the spectrum in (b)–(d). (b) Cavity reflection
spectrum when the magnon is resonant with the bare-cavity
mode. The normal mode splitting 2gam is smaller than the phonon
frequency, Ωb ¼ 2π × 12.6278 MHz. (c) Cavity reflection spec-
trum when the magnon frequency is smaller than the bare-cavity
resonance frequency. The system was set up such that the normal
mode spacing matches the mechanical frequency. Here the lower
mode is “magnonlike” and the upper mode is “photonlike.”
(d) Cavity reflection spectrum when the magnon frequency is
larger than the bare-cavity resonance frequency, similar to the
detuning in (c). Here the upper mode is magnonlike and the lower
mode is photonlike.
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high-conductivity copper, seen in Fig. 1(a). The microwave
cavity has inner dimensions 30 × 30 × 6 mm3, resulting in
the TE101 mode having a frequency ofωa=2π ¼ 7.074 GHz.
The intrinsic decay rate of the microwave cavity is
κint=2π ¼ 1.56 MHz. Coupling to the cavity is achieved
through a pair of coaxial cables with external coupling rates
of κ1=2π ¼ 1.11 MHz and κ2=2π ¼ 1.20 MHz, resulting
in a total cavity linewidth of κ=2π ¼ ðκint þ κ1 þ κ2Þ=
2π ¼ 3.87 MHz.
The single crystal YIG sphere is placed free to move—to

avoid mechanical clamping losses—within a 300-μm inner
diameter capillary [57]. The sphere is located near the
magnetic field maximum of the microwave cavity and is
held in place, and oriented along its easy axis, by the applied
static magnetic field. A pair of neodymiummagnets provide
the static magnetic field, seen in Fig. 1(a). Tunability of the
static magnetic field is provided via a ∼104 turn solenoid,
wrapped around a pure iron core and connected to the
permanent magnets using an iron yoke [16].
To determine the mechanical frequency, and ensure

constancy of the magnomechanical coupling rate g0mb
between various measurement techniques, we first
performed a series of magnomechanically induced

transparency (MMIT) measurements similar to that pre-
sented in Ref. [22]. From this set of measurements
(described in the Appendix A) we are able to extract a
phonon frequency Ωb=2π ¼ 12.6270 MHz, a single mag-
non-phonon coupling rate of g0mb=2π ¼ 4.38 mHz, and an
intrinsic mechanical linewidth of Γb=2π ¼ 286 Hz.
In the rest of the experiment, we measure the YIG

sphere’s mechanical vibrations without resorting to the
MMITwindow, which more easily enables the observation
of dynamical backaction effects. In this scheme, a micro-
wave signal was sent to the hybrid magnomechanical
system, as shown in Fig. 3(a). The transmitted signal
was demodulated using an IQ mixer, and the low-frequency
mechanical signal was digitized using an analog-to-digital
(ADC) converter. The reflected signal was passed through a
directional coupler and measured using a vector network
analyzer (VNA) to characterize the normal mode spectrum.
During the mechanical measurements, the VNA was not
exciting the cavity to avoid potential beat frequencies from
obfuscating the mechanics. To balance the homodyne
circuit, the dc component of the demodulated signal was
continually measured and locked dynamically—at a rate of
1 kHz—by adjusting the local oscillator phase. Data were

(a) (b) (d)

(c) (e)

FIG. 3. Homodyne mechanical detection. (a) Simplified schematic of the measurement setup: VNA, vector network analyzer; RF and
LO, microwave generators; ADC, analog-to-digital converter; IQ, IQ mixer, both the in-phase and quadrature ports were connected to
the ADC. (b) Power spectral density of the mechanical motion. The normal mode spectrum was tuned to Fig. 2(d). The probe was tuned
directly on resonance with the upper normal mode. With increasing drive power, a frequency shift and linewidth narrowing can be
observed. (c) Power spectral density of the mechanical motion, offset for clarity. The normal mode spectrum was tuned to Fig. 2(c). The
probe was tuned directly on resonance with the lower normal mode. Because of interference between scattered excitations and
the thermal magnon bath, the power spectrum lies below the noise floor, known as noise squashing. (d) Power spectral density of the
mechanical motion, the drive tone was detuned one mechanical frequency above the upper normal mode. (e) Power spectral density of
the mechanical motion, the drive tone was detuned one mechanical frequency below the lower normal mode. For both (d) and (e), the
drive power was held constant at 12 mW. All data presented were obtained with the experimental setup in a partial pressure of
helium gas.
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taken in three atmospheric conditions: ambient pressure,
a partial pressure of pure helium gas (∼15 Torr), and
vacuum (< 1 mTorr).

IV. HOMODYNE MECHANICAL DETECTION

As mentioned, one remarkable aspect of this hybrid
magnomechanical system is that it can be brought into
triple resonance. In this case, the red mechanical sideband
of the upper normal mode has the same frequency as the
lower normal mode and vice versa. Therefore, not only is
the drive tone cavity enhanced, but one of the two
mechanical sidebands is simultaneously cavity enhanced.
The Stokes (anti-Stokes) scattering process is strongly
preferred, resulting in effective magnomechanical back-
action heating (cooling). These two specific scenarios are
discussed in more detail in the following sections.
The mechanical power spectrum under the triple-reso-

nance condition is shown in Figs. 3(b) and 3(c). The normal
mode spectrum for Fig. 3(b) is shown in Fig. 2(d), and the
drive is tuned on resonance with the upper normal mode.
With increasing drive power, two effects can be seen in
Fig. 3(b): the frequency of the mode decreases, we attribute
this to parasitic thermal effects that are discussed in
Appendix C, and a narrowing of the linewidth, which
ultimately results in phonon lasing discussed in Sec. IV B.
Conversely, for Fig. 3(c), the normal mode spectrum is
shown in Fig. 2(c), and the drive is tuned on resonance with
the lower normal mode. Again we observe a power-
dependent frequency shift resulting from parasitic thermal
effects. We further see a phenomena known as noise
squashing resulting from interference between the thermal
magnon bath and excitations scattered via the magnome-
chanical interaction, which we discuss further in Sec. IV C.
Furthermore, it is possible to observe mechanical motion

without relying on the triple-resonance condition; one can
apply the drive tone on the blue sideband of the upper
normal mode (or the red sideband of the lower normal
mode). Although this sideband driving has some similar-
ities with procedures commonly adopted in cavity opto-
mechanics [1], the composition of the normal modes can be
changed by varying the magnon-photon detuning. This in
turn results in each normal mode experiencing a detuning-
dependent coupling rate, decay rate, and effective phonon
coupling rate. Therefore, there exists an optimal detuning
for mechanical measurements. The magnon and photon
components of the normal mode provide two distinct
operations: the magnonlike component couples directly to
the mechanical motion, whereas the applied microwave tone
can drive the photon component. Thus, the competition
between these two effects needs to be balanced for optimal
mechanical detection. Themechanical power spectrumwhile
driving above (below) the upper (lower) normal mode, with
optimal detunings, is shown in Figs. 3(d) and 3(e), respec-
tively. Because of the small magnomechanical coupling
(compared to the microwave-magnon coupling), a drive

power of ∼5 mW was required to resolve the mechanical
spectrum. All powers in this article are quoted as power at the
device, which were carefully calibrated for each experi-
mental configuration.
It should be noted that unlike many optomechanical

measurements, the observed mechanical motion is not
thermomechanical in nature. Because of the high drive
powers, there is considerable backaction in the form of
heating (cooling) of the mechanical mode. However, the
intrinsic mechanical properties can be extracted by con-
sidering the data presented in Fig. 3(b) and extrapolating to
zero drive power. As a result, within a partial helium
environment, we find the mechanical mode has a resonance
frequency Ωb ¼ 12.6278 MHz and intrinsic mechanical
decay rate Γb=2π ¼ 98 Hz.
Finally, to confirm the observedmechanical signalwas not

a result of direct electromechanical coupling (i.e., coupling
between photons and phonons), measurements were per-
formed, shifting the magnon frequency far from the micro-
wave resonance frequency. In this scenario, the normalmode
spectrumdisappears, andwe are leftwith only themicrowave
cavity resonance. Both optomechanically induced transpar-
ency and homodyne measurements were performed; no
evidence of the mechanical motion was observed in either
of these scenarios. Therefore, we are confident the magnon
indeed mediates the phonon interaction.

A. Magnon-spring effect

The magnomechanical interaction is given by the inter-
action Hamiltonian Eq. (3). As seen above, this results in
the formation of sidebands that carry information about the
mechanical vibrations. However, the interaction also results
in a modification of the mechanical susceptibility due to
dynamical backaction from the interaction with magnons.
We have previously described the full linear theory of the
magnomechanical interaction in Ref. [37] and derived the
following expression for the phonon self-energy:

Σ½ω� ¼ ijgmbj2ðΞ½ω� − Ξ�½−ω�Þ: ð5Þ

Here, gmb ¼ g0mbhmi is the cavity enhanced magnon-pho-
non coupling rate, jhmij2 is the coherent steady-state
magnon population, and Ξ½ω� ¼ ½χ−1m ½ω� þ g2amχa½ω��−1.
The magnon and cavity susceptibilities are given by,
χm½ω� ¼ ½−iðΔm þ ωÞ þ γm=2� and χa½ω� ¼ ½−iðΔaþωÞþ
κ=2�, respectively. In the weak coupling limit, when
gmb ≪ κ; γm—which holds for all data presented in this
article and would only break down for the highest on-
resonance drive powers—the real and imaginary parts of
the self-energy describe a mechanical frequency shift
δΩb ¼ −ReΣ½ω�, the magnon-spring effect, and an addi-
tional magnomechanical damping rate Γmag ¼ 2ImΣ½ω�.
In order to observe the small magnon-induced frequency

shift, parasitic heating needed to be eliminated (see
Appendix C). To reduce heating of the sphere, a low drive
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power was required; however, reducing the drive power
simultaneously reduces the frequency shift. Therefore, this
experimental run was performed in a low pressure
(∼15 Torr) of pure helium gas to reduce the mechanical
linewidth, allowing the small frequency shift to be resolved.
Helium was used because it possesses high thermal
conductivity; therefore, it provides good thermalization
while limiting the mechanical damping of the sphere.
Secondly, heating of the sphere was primarily due to
magnon decay and not microwave photon absorption.
Thus, unlike in Fig. 3(b), the drive tone was applied to
the photonlike normal mode and the interaction with
phonons scattered excitations into the magnonlike normal
mode. This indeed resulted in less heating of the YIG
sphere; however, it has the unwanted secondary effect of
reducing the detection efficiency due to the reduced
external coupling of the magnonlike mode.
Figure 4 shows the mechanical power spectrum,

revealing the magnon-induced frequency shift. To avoid
complicating effects from heating or a slow drift of the
magnetic field, the magnet was readjusted between each
drive frequency, and the drive frequencies were applied in a
randomized order. These data were taken with a drive
power of 0.13 mW; at this power and drive detuning we
observed negligible frequency shift due to heating. The
white curve is a theoretical prediction from Eq. (5), where
the only fit parameter used was the intrinsic mechanical
frequency, which increased slightly in the partial pressure
of helium, Ωb=2π ¼ 12.6278 MHz. All other parameters
were extracted using a fit to the reflected normal mode
spectrum and the magnomechanical damping measurement
discussed below. The theoretical prediction and the exper-
imentally measured shift are in agreement, confirming the
direct observation of the magnon-spring effect.

B. Magnomechanical antidamping

We can consider the effect magnon backaction has on the
mechanical decay rate. As described above, the interaction
with magnons causes additional damping of the mechanical
mode, Γmag ¼ 2ImΣ½ω�, which results in an effective
mechanical damping rate,

Γtot ¼ Γb þ Γmag: ð6Þ

Just as in cavity optomechanics, Γmag can be positive or
negative [1], thus either increasing or decreasing the total
mechanical damping rate. The backaction enhancement of
damping is discussed in the next section; here, we focus on
the case of antidamping.
We now consider the data presented in Fig. 3(b): the

drive tone is on resonance with the upper normal mode, and
the splitting between the normal modes is tuned to exactly
one mechanical frequency. The additional magnomechan-
ical antidamping is thus maximized due to the triple-
resonance enhancement and the total mechanical damping
should decrease linearly with drive power as predicted by
Eq. (5). This behavior is confirmed by the experimental
points shown in Fig. 5(a). Furthermore, fits to the total
linewidth allow extraction of the intrinsic linewidth, Γb, as
well as g0mb. Extrapolating to zero drive power yields,
Γb=2π ¼ 247 Hz in air, Γb=2π ¼ 98 Hz in a partial pres-
sure of helium (∼15 Torr), and Γb=2π ¼ 59 Hz in vacuum,
suggesting the primary damping mechanism was viscous
air damping. The magnomechanical coupling rate can be
determined using Eqs. (5) and (6) as well as the slope of the
data presented in Fig. 5(a) resulting in a value g0mb=2π ¼
4.58 mHz. As expected, the magnon-phonon coupling rate
is independent of the intrinsic decay rate and is in good
agreement with our numerical prediction and the result
from the MMIT measurement (Appendix A).
As the drive power is increased, a threshold will be

reached where Γb þ Γmag becomes negative. In this sit-
uation, the mechanical oscillations will grow exponentially
in time and will ultimately be limited by higher-order
nonlinear effects. This parametric instability is analogous
to lasing and is often referred to as phonon lasing
[42,43,59,60]. The onset of lasing can clearly be seen in
Fig. 5(a) as the total decay rate approaches zero above a
threshold drive power. Furthermore, the inset of Fig. 5(a)
shows the mechanical power spectrum above (orange) and
below (green) the threshold power. The onset of mechanical
lasing results in 4 orders of magnitude increase of the
mechanical power spectrum. The additional noise peaks in
the lasing spectrum are a result of 60 Hz line noise captured
by the solenoid being transduced via the mechanical mode.
Finally, we observe the onset of mechanical lasing directly
in the time domain. The time-domain signal captured by the
ADC is plotted in Figs. 5(b) and 5(c). Below the lasing
threshold, the signal is mainly composed of noise; how-
ever, above lasing threshold, coherent oscillations at the

FIG. 4. Magnon-spring effect. Power spectral density of the
mechanical motion within a partial pressure of helium gas and a
constant probe power of 0.13 mW. The microwave drive was
tuned to the normal mode shown in the inset. White curve is the
theoretical prediction for the magnon-spring effect [37], where
the only fit parameter was the intrinsic mechanical frequency.
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mechanical frequency are visible [56,61]. The time-domain
and power spectrum data provide unambiguous evidence
of phonon lasing, which could be used for stable clock
signals [62], or as the basis of sensitive mass and force
sensors [63].

C. Magnomechanical cooling

When driving on the red sideband in our system, for
example, Figs. 3(c) and 3(e), the mechanical spectrum dips
below the measurement noise floor, a phenomenon known
as noise squashing [1]. Noise squashing has been observed
in optomechanics, primarily in the context of feedback
cooling [64,65]. In feedback cooling, noise squashing
results from the detector noise and the noise-driven
mechanical motion becoming correlated.

In our experiment, the detector noise was not fed into the
system and cannot correlate with the mechanical motion.
There was no feedback, and as a result, the noise squashing
we have observed has a different origin. Indeed, it has a
backaction-cooling origin, which has been observed in a
microwave optomechanical nanobeam device [44]; how-
ever, it has not been observed in magnomechanics. Notably,
because our experiment was performed at room temper-
ature, there exists a large number of thermally excited
gigahertz magnons and photons, āth ≈ m̄th ≈ 800. This
thermal population produces a broad peak in the power
spectrum, corresponding to the hybrid system’s normal
modes. In the triply resonant situation, the mechanical
mode lies directly in the center of this broad peak in the
power spectrum. Noise squashing results from destructive
interference between up-converted drive excitations and the
thermal excitations, causing the mechanical peak to appear
below the detection noise floor. However, since the
thermal peak is approximately constant over the mechani-
cal mode’s width, it is possible to extract the mechanical
linewidth by performing a fit to an inverted power spectral
density. The extracted linewidth from the data in Figs. 3(b)
and 3(c) is shown in Fig. 6(a). Extrapolating to zero
drive power, the intrinsic linewidth in vacuum from the
damping and antidamping data were Γb=2π ¼ 58.5 Hz and
Γb=2π ¼ 59.7 Hz, respectively, which are in excellent
agreement.
Finally, since our experiment lies well within the side-

band resolved regime (i.e., fκ; γmg ≪ Ωb), and the number
of thermal excitations is small compared to the phonon
population, we can extract the effective mode temperature
due to magnomechanical cooling. The effective phonon
mode temperature is given by an expression similar to that
for driven cavity optomechanical systems [1]:

Tfinal ¼ T init

�
Γb½1þ βðPÞ�

Γtot

�
: ð7Þ

FIG. 5. Parametric instability. (a) Mechanical linewidth as a
function of drive power in air (blue squares), heliumpartial pressure
∼15 mTorr (purple triangles), and vacuum (red circles). The
single magnon-phonon coupling rate extracted from these curves
was g0mb=2π ¼ 4.65, 4.66, 4.43 mHz, respectively. For these data
the normal mode spectrum was tuned to Fig. 2(d), and the probe
tone was tuned on resonance with the magnonlike mode. Inset:
Power spectral density of the mechanical motion for the green
(drive power ¼ 0.54 mW) and orange (drive power ¼ 0.68 mW)
markers, respectively. (b) Phase coherent oscillations are visible
within the time-domain signal; here, the drivepower is set above the
parametric instability threshold. (c)With the drive power set below
the parametric instability threshold, the time-domain signal is
comprised primarily of phase-incoherent mechanical noise.

FIG. 6. Magnomechanical cooling. (a) Mechanical linewidth as
a function of drive power in vacuum. Red circles demonstrate
magnomechanical antidamping and includes the data from
Fig. 3(b), green crosses demonstrate magnomechanical damping
and includes the data from Fig. 3(c). (b) Effective mode temper-
ature of the mechanical mode determined from Eq. (7).
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Here, βðPÞ is a drive-dependant variable; for derivation, see
Appendix D. The effective mode temperature is defined in a
consistent way for a driven system via the power spectrum
of the mode [66]. The effective mode temperature is shown
in Fig. 6(b); at the highest drive power the mechanical
mode was cooled to approximately 65 K from room
temperature. With improvements to the experimental setup,
such as smaller YIG spheres, and precooling the experi-
ment via cryogenics, which improves κ, Γb, and reduces
thermal noise, it may be possible to achieve ground-state
cooling of the mechanical vibrations. Furthermore, with
our current experimental values Eq. (4) predicts a triple-
resonance cooperativity enhancement of F ≈ 100. Thus at
cryogenic temperatures a cooperativity of C ≥ 1000 is
expected, placing our triply resonant system among the
state-of-the-art electromechanical experiments that recently
have demonstrated macroscopic entanglement [67].

V. CONCLUSION

The magnomechanical interaction has in recent years
been the focus of considerable theoretical work, yet
experimental progress has been surprisingly limited.
Here, we demonstrated the direct detection of mechanical
vibration within a submillimeter YIG sphere and explored
the full suite of dynamical backaction effects. We have
shown that the magnomechanical interaction can amplify
and cool the mechanical vibrations of the material effec-
tively. As a consequence, we have observed phenomena
such as microwave-driven phonon lasing, and noise
squashing due to correlations with thermal noise. Unlike
previous investigations, our experiment eases the observa-
tion of such dynamical backaction effects due to both the
detection scheme and the specific configuration of the
setup, in which the magnetic element is free to move in
vacuum. These improvements have allowed the detection
of magnon-induced mechanical frequency shifts, i.e., the
magnon-spring effect. The experimental results agree
well with our previous theoretical description of cavity
magnomechanics and highlight the potential of cavity
magnomechanical systems. With further improvement,
microwave-driven magnomechanical cooling may be used
to reach effective temperatures low enough to reach the
ground state of the mechanics. This would not only allow
the observation of quantum effects in a relatively massive
system, but also have applications in quantum technologies
such as quantum memories.
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APPENDIX A: MAGNOMECHANICALLY
INDUCED TRANSPARENCY

Since the mechanical mode probed in our experiment is
different than in Ref. [22], to determine the mechanical
frequency and extract the magnomechanical coupling rate,
we calibrate the system using MMIT. MMIT is analogous
to optomechanically induced transparency [68,69], and is a
consequence of the interference of sidebands generated by
the parametric coupling to phonons. Besides the natural
response of the system at the normal mode frequencies,
each mode has sidebands shifted by the phonon frequency.
MMIT is observed by driving the cavity resonant with the
red sideband of one of the normal modes while sweeping
the probe through the normal mode resonance. The
interference between the weak probe and the up-converted
excitations via the annihilation of a phonon generates a
transparency window.
Figure 7(a) illustrates a schematic of our MMIT meas-

urement apparatus. A two-port microwave cavity was used,
with the microwave drive at frequency ωd connected to
coupling port one and driven with a power between 1 and
50 mW. The vector network analyzer probe, at frequency
ωp, was connected to coupling port two, and the probe tone
was held at a constant power of 0.03 mW.
To simplify our analysis, we decided to apply a red-

detuned drive tone on the lower normal mode. The
reflection spectrum as a function of the two-photon
detuning Δdp ¼ ωd − ωp is shown in Figs. 7(b) and 7(c).
A sharp peak can be seen at Δdp ¼ −Ωb resulting from the
coherent magnomechanical interaction. A series of data
were taken at atmospheric pressure for various pump
powers and magnon-photon detunings, and fit using the
theory presented in Ref. [22], described in Appendix B.
From this we were able to extract the single magnon-
phonon coupling rate g0mb=2π ¼ 4.38 mHz, the mechanical
frequency Ωb ¼ 12.6270 MHz, and the intrinsic mechani-
cal decay rate Γb=2π ¼ 286 Hz.
Figure 7(c) shows that there exists a second, higher-

frequency mechanical mode. This mode was not observed
in the homodyne mechanical detection scheme, described
in the main text, except at the highest drive powers.
However, at those drive powers magnon nonlinearities
resulted in the system becoming bistable and are therefore
not included in our analysis [70]. The second mechanical
mode has a frequency Ωb ¼ 12.637 MHz and a coupling
rate g0mb=2π ¼ 2.41 mHz. The difference in the transpar-
ency window height can be attributed to the increased
damping rate, which is approximately an order of

C. A. POTTS et al. PHYS. REV. X 11, 031053 (2021)

031053-8



magnitude larger than the lower-frequency mode.
Numerical simulations reveal that clamping causes the
S1;2;0 mode to split into two nearly degenerate modes,
resulting in the two modes observed here.

APPENDIX B: MMIT THEORY

Here, we outline the equations used to fit the magno-
mechanically induced transparency data; however, for a full
description of this theory, see the supplementary material
included with Ref. [22]. For the data presented in
Appendix A, the drive was detuned from the lower normal
mode by the phonon frequency, ωd ¼ ω− −Ωb. In this
scenario the transparency window will have a peak reflec-
tivity defined as

r ¼
1 − 2

κ−;e
κ−

þ C

1þ C
: ðB1Þ

The transparency window can be seen in Figs. 7(b) and 7(c).
Here, κ− and κ−;e are the linewidth and external coupling rate
of the lower normal mode, respectively, and C is the
cooperativity.

The cooperativity can be shown to have the form

C ≈
4Pðg0mbÞ2
ℏωdΩ2

bΓb

κ1 sin4ðθÞ cos2ðθÞ
κ cos2ðθÞ þ γm sin2ðθÞ ; ðB2Þ

where P is the microwave power at the experimental
device. All losses have been carefully calibrated to ensure
the accurate determination of the power reaching the device
from the microwave sources. All other variables have been
defined in the main text except θ ∈ ½0; π=2�, which is
defined as

tanð2θÞ ¼ 2gam
ωm − ωa

; ðB3Þ

where θ describes the hybridization of the normal modes;
for maximally hybridized modes, θ ¼ π=4.
By varying the static magnetic field, and therefore the

magnon-photon detuning, and measuring the cooperativity
at each detuning using Eq. (B1), it is possible to determine
the magnon-phonon coupling rate. The cooperativity as a
function of the lower normal mode frequency is shown
in Fig. 8.

APPENDIX C: MAGNON HEATING

In Fig. 9, we observe a drive-dependent phonon fre-
quency shift; however, this frequency is not entirely due to
dynamical magnon backaction. The observed frequency
shift is mainly influenced by the heating of the YIG sample
by the microwave drive. This is supported by the results
plotted in Figs. 3(b) and 3(c); for zero drive detuning in the
triple-resonance scenario, Eq. (5) predicts zero frequency
shift. However, both cases result in a softening of the

FIG. 8. Magnomechanical cooperativity as a function of the
lower normal mode frequency. For each measurement the drive
tone is detuned by the phonon frequency from the lower normal
mode, ωd ¼ ω− −Ωb. Blue circles are experimentally deter-
mined using Eq. (B1), and the dotted orange line is a numerical
fit using Eq. (B2), where g0mb is the only fit parameter.

FIG. 7. Magnomechanically induced transparency. (a) Sche-
matic illustration of the measurement setup: VNA, vector net-
work analyzer; RF, microwave generator. The VNA and source
are synced using a 10 MHz clock signal. Included is a rendering
of the microwave cavity and magnetic yoke assembly. The
frequency axis is negative due to the relative detuning between
the drive tone and the normal mode. (b) Normalized reflection
spectrum centered around the lower-normal mode, the system is
tuned near spectrum (c) from Fig. 2, but at a larger solenoid
current to isolate the magnonlike normal mode. A narrow
transparency window opens as Δdp ¼ −Ωb due to the magno-
mechanical coupling. (c) Enlargement of (b) showing a detailed
spectrum of the magnomechanical-induced transparency.
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mechanical motion, likely due to a modification of the
Young’s modulus due to heating [71]. Magnetostrictive
materials have been shown to exhibit a magnetic field
dependant Young’s modulus due to the ΔE effect [72,73].
Therefore, temperature-dependent modifications of the
saturation magnetization and therefore internal static mag-
netic field may cause the observed frequency shift [74].
Furthermore, for all detunings presented in Fig. 9, we
observe a softening of the effective spring constant.
However, dynamical backaction does not predict softening
in all cases. Specifically, in Fig. 9(c), we expect the
magnon-spring effect to result in a hardening of the
mechanics.
In all cases, the frequency shift follows the normal mode

shape; as the normal mode depth increases, the circulating
power increases, and the frequency shift increases.
Moreover, the amplitude of the frequency shift is much
larger than what is predicted by the calculated phonon self-
energy in Eq. (5) (see also Ref. [37]). The maximum
frequency shift predicted is approximately an order of
magnitude smaller than the one observed. Thus, in this
situation, any frequency shift resulting from the magnon-
spring effect is overwhelmed by the additional frequency
shift resulting from heating.
The temperature dependence of the mechanical fre-

quency was measured by heating the experimental setup.
We observe a dependence of approximately −715 Hz=K
for the frequency shift, suggesting that at the highest drive
powers, the temperature of the sphere was increased by
approximately 1 K due to the microwave drive. As

described in the main text, this heating can be mitigated
by using lower drive powers, placing the sphere in a partial
pressure helium environment, and by applying the drive
tone to the photonlike normal mode.
Additionally, in Fig. 9 one may expect that the signal-to-

noise ratio should be symmetric about zero detuning, with
variations resulting from the homodyne detection sensitivity.
However, the primary determining factor of the signal-to-
noise ratio is related to the triple-resonance condition. For
example, inFigs. 9(a), and9(c), themagnon-photondetuning
was zero, such that the normal modes were fully hybridized;
see Fig. 2(b). In this situation, the normal mode spacing is
slightly smaller than the phonon frequency 2gam=2π ¼
10.86 MHz and Ωb=2π ¼ 12.627 MHz. The asymmetry
in the signal-to-noise ratio in Fig. 9(a) can be understood
by considering the mechanical sideband created on the
microwave carrier. For negative drive detunings—relative
to the normal mode central frequency, i.e., Δd < 0—the
mechanical sideband is at a lower frequency than the lower
normal mode and is therefore not resonantly enhanced.
Conversely, a positive drive detuning (Δd > 0) results in
the lower mechanical sideband lying directly within the
lower normal mode, resonantly enhancing this scatting
process and improving the signal-to-noise ratio. A similar
argument can be made for the scattering process regarding
Fig. 9(c), resulting in a resonant enhancement of the
scattering process for negative detunings.

APPENDIX D: PHONON TEMPERATURE

We now derive the effective phonon temperature and the
approximations that lead to Eq. (7). The first step is to
consider the linearized theory by writing the total
Hamiltonian in terms of the fluctuations defined as
â ¼ hai þ δâ, m̂ ¼ hmi þ δm̂, and b̂ ¼ hbi þ δb̂, where
the terms h·i denote the steady-state average values. We
then discard terms in the Hamiltonian containing more than
two fluctuation terms and obtain the time-domain Langevin
equations of motion, which in the frequency domain
read [37]:

χ−1a ½ω�δâ½ω� ¼ −igamδm̂½ω� þ
X

j¼int;1;2

ffiffiffiffi
κj

p
ξ̂j½ω�;

χ−1m ½ω�δm̂½ω� ¼ −igamδâ½ω� − igmbðδb̂½ω� þ δb̂†½ω�Þ
þ ffiffiffiffiffi

γm
p

η̂½ω�
χ−1b ½ω�δb̂½ω� ¼ −iðgmbδm̂†½ω� þ g�mbδm̂½ω�Þ

þ
ffiffiffiffiffi
Γb

p
ζ̂½ω�; ðD1Þ

where the constants are defined within the main text. The
total cavity decay rate κ ¼ κint þ κ1 þ κ2 is a sum of an
intrinsic cavity decay κint and the decay rates into each of
the ports κ1;2. Accordingly, the total noise acting in the
cavity is given by the terms ffiffiffiffi

κj
p

ξ̂j, which includes the

FIG. 9. Mechanical spectrum. (a)–(d) Mechanical power spec-
tral density. Detuning is relative to the specific mode shown
within the inset. In plots (a) and (c) the probe power is held
constant at 0.54 mW. In plots (b) and (d) the probe power is held
constant at 0.27 mW. All data presented were obtained with the
experimental setup in atmospheric conditions.
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noises from each of the possible decay channels ξ̂int;1;2.
Within our convention, the relation between time-
domain and frequency-domain operators is ÔðtÞ ¼R
dωe−iωtÔ½ω�, and it should be noted that Ô†½ω�≡R
dteiωtÔ†ðtÞ ¼ ðÔ½−ω�Þ†.
For our analysis it is sufficient to consider a white

thermal noise model described by the correlations [66]:

hξ̂†i ½ω0�ξ̂i½ω�i ¼ 2πnth;aδðωþ ω0Þ;
hξ̂i½ω0�ξ̂†i ½ω�i ¼ 2πðnth;a þ 1Þδðωþ ω0Þ;
hη̂†½ω0�η̂½ω�i ¼ 2πnth;mδðωþ ω0Þ;
hη̂½ω0�η̂†½ω�i ¼ 2πðnth;m þ 1Þδðωþ ω0Þ;
hζ̂†½ω0�ζ̂½ω�i ¼ 2πnth;bδðωþ ω0Þ;
hζ̂½ω0�ζ̂†½ω�i ¼ 2πðnth;b þ 1Þδðωþ ω0Þ: ðD2Þ

The thermal occupancy of the baths is given by Bose-
Einstein distributions:

nth;ða;mÞ ¼
1

exp
h
ℏωða;mÞ
kBTbath

i
− 1

;

nth;ðbÞ ¼
1

exp
h

ℏΩb
kBTbath

i
− 1

; ðD3Þ

where kB is the Boltzmann constant, Tbath is the bath
temperature (assumed to be the same for all the modes), and
we have assumed that the occupancy of the baths for all
decay channels is the same and given in terms of the cavity
frequency ωa. This last assumption can be readily
generalized.
Before deriving the effective temperature of the phonon

mode in the coupled and driven system described by
Eq. (D1), let us first consider why the noise spectral
density of the phonon mode provides information about
that mode’s temperature. For that, we consider the simpler
problem in which there is no magnon-phonon coupling. In
this case the phonon mode is driven only by thermal noise,
and the phonon component of Eq. (D1) reads:

δb̂½ω� ¼ χb½ω�
ffiffiffiffiffi
Γb

p
ζ̂½ω�;

δb̂†½ω� ¼ χ�b½−ω�
ffiffiffiffiffi
Γb

p
ζ̂†½ω�: ðD4Þ

We then can consider the spectral density given by

Sδb†δb½ω� ¼
Z

∞

−∞
dteiωthδb̂†ðtÞb̂ð0Þi

¼
Z

∞

−∞

dω0

2π
hδb̂†½ω�δb̂½ω0�i: ðD5Þ

For the simple uncoupled case, the solutions of the
frequency-domain equations combined with the noise
correlations Eq. (D2) yield the simple relation,

Sδb†δb½ω� ¼
Γbnth;b

ðωþΩbÞ2 þ Γ2
b
4

; ðD6Þ

which is given in terms of the bath occupancy nth;b and thus
the temperature of the mode. The noise spectral density
Sδb†δb½−Ωb� and its counterpart Sδbδb† ½Ωb� are linked to the
ability of the oscillator to emit or absorb energy [66,75].
Turning our attention to the full problem, we solve the

linear Langevin equations (D1) and obtain for the phonon
mode,

ðχ−1b ½ω� − iΣ½ω�Þδb̂½ω�
¼ A½ω�

X
i

ffiffiffiffi
κi

p
ξ̂i½ω� þ Ã½ω�

X
i

ffiffiffiffi
κi

p
ξ̂†½ω�

þ B½ω� ffiffiffiffiffi
γm

p
η̂½ω� þ B̃½ω� ffiffiffiffiffi

γm
p

η̂†½ω�
þ

ffiffiffiffiffi
Γb

p
ζ̂½ω� þ C̃½ω�

ffiffiffiffiffi
Γb

p
ζ̂†½ω�; ðD7Þ

where Σ½ω� is the self-energy given in the main text Eq. (5)
whose derivation is discussed in detail in Ref. [37]. The
frequency-dependent coefficients have complicated and not
elucidating forms that depend on the susceptibilities and on
the couplings. We then rewrite the above expression as

�
iðΩ̃b½ω� − ωÞ þ Γtot½ω�

2

�
δb̂½ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γtot½ω�

p
ϒ̂½ω�; ðD8Þ

where

Ω̃b½ω� ¼ Ωb þ δΩb½ω� ¼ Ωb − ReΣ½ω�;
Γtot½ω� ¼ Γb þ Γmag½ω� ¼ Γb þ 2ImΣ½ω� ðD9Þ

are the phonon frequency and decay rates corrected by the
self-energy, and ϒ̂½ω� is the combination of noises appear-
ing in the right-hand side of Eq. (D7) divided by the total
phonon decay rate.
Recalling the relation of the spectral density Sδb†δb½ω� to

the thermal number of phonons and using the noise
relations Eq. (D2), we obtain [76]

Sδb†δb½ω� ¼
Γtot½ω�neff;b½ω�

ðωþ Ω̃b½ω�Þ2 þ Γ2
tot½ω�
4

; ðD10Þ

where the effective phonon number is given in terms of the
frequency-dependent coefficients of Eq. (D7) and of the
thermal occupancy of the baths as
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Γtot½ω�neff;b½ω� ¼ κjA½−ω�j2nth;a
þ κjÃ½−ω�j2ðnth;aþ1Þþ γmjB½−ω�j2nth;m
þ γmjB̃½−ω�j2ðnth;mþ1Þ
þΓbnth;bþΓbjC̃½−ω�j2ðnth;bþ1Þ: ðD11Þ

In deriving the above formula we have assumed that all the
decay channels of the cavity mode are related to thermal
baths at the same temperature. The effective temperature
for the phonon mode is then given by

Teff;b½ω� ¼
ℏΩ̃b½ω�
kB

�
ln

�
neff;b½ω� þ 1

neff;b½ω�
��

−1
: ðD12Þ

We can make further approximations to the effective
temperature formula. Sinceωða;mÞ are 3 orders of magnitude
larger than the phonon frequency, nth;ða;mÞ ≪ nth;b, and we
can discard the terms ∝ nth;ða;mÞ and ∝ nth;ða;mÞ þ 1.
Furthermore, at room temperature nth;b ≫ 1, and
Eq. (D11) simplifies to

Γtot½ω�neff;b½ω� ¼ Γbð1þ jC̃½−ω�j2Þnth;b: ðD13Þ

The remaining frequency-dependent coefficient is given
explicitly by

C̃½ω� ¼ jgmbj2χ�b½−ω�ðΞ�½−ω� − Ξ½ω�Þ
1þ jgmbj2χ�b½−ω�ðΞ�½−ω� − Ξ½ω�Þ ; ðD14Þ

where Ξ½ω� ¼ ½χ−1m ½ω� þ g2amχa½ω��−1, and Eq. (D14)
depends on the driving power only through jgmbj2 ¼
jg0mbhmij2, where [37]

hmi ¼ iϵd
ffiffiffiffiffiffiffi
κext

p
ðiΔa − κ=2ÞðiΔm − γm=2Þ þ g2am

: ðD15Þ

At low powers, the contribution ∝ jC̃½−ω�j2 can be safely
discarded, but as the power increases, since χb½ω� is sharply
peaked aroundΩb, this contribution becomes prominent. In
fact, jC̃½−ω�j2 goes from zero to its maximum value of one.
In the limit kBT ≫ ℏωa;b;m, valid for our room temperature
experiment, we can write

neff;b½ω� ∼
kBTeff;b½ω�
ℏΩ̃b½ω�

;

nth;ðbÞ ∼
kBTbath

ℏΩb
; ðD16Þ

and since the phonon frequency shift δΩb ≪ Ωb, we can
take Ω̃b ∼Ωb. Within those approximations, the phonon
mode effective temperature reads:

Teff;b½ω� ≈
ΓbTbathð1þ jC̃½−ω�j2Þ

Γtot½ω�
: ðD17Þ

A rough estimate of the effective temperature can be made
by discarding the term ∝ jC̃½−ω�j2, such that

Teff;b½ω� ≈
ΓbTbath

Γtot½ω�
: ðD18Þ

This has a familiar form of the effective phonon temper-
ature in driven optomechanical systems (cf. Refs. [1,76]),
and in our case it is valid for low driving powers only. This
can be seen in Fig. 10, which shows the effective temper-
ature at the phonon frequency for the red-detuning scheme
(driving at the lower normal mode) as given by Eq. (D12)
and as given by Eq. (D18) for the parameter values
corresponding to Fig. 6. The approximation is good for
small driving powers, but at powers larger than 0.1 mW the
difference between the full formula and the rough approxi-
mation can be ∼40 K. Thus, even though Eq. (D18) is a
simple and practical approximation, it leads to an under-
estimate of the phonon effective temperature.
The improved approximation Eq. (D17) adds the con-

tribution ∝ jC̃½−ω�j2 which, for a given detuning and at Ωb,
is a function of the driving power P given by
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FIG. 10. Comparison between the full formula for the effective
temperature Eq. (D12) and the approximate estimate Eq. (D18).
(a) Effective temperature as given by Eq. (D12) (dashed line) and
as given by Eq. (D18) (continuous line) as a function of the
driving power. (b) Difference between the effective temperatures
[Eq. (D12)−Eq. (D18)] as a function of the driving powers. For
both plots we use the experimental parameters and driving
scheme corresponding to the results of Fig. 6, and the bath
temperature is Tbath ¼ 295 K.
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jC̃½−Ωb�j2 ¼
P2jCj2

1þ 2PRe½C� þ P2jCj2 ; ðD19Þ

where C is a complex number that can be calculated with
Eqs. (D14) and (D15) for a given set of parameters. For
conciseness, in the main text we define jC̃½−Ωb�j2 as βðPÞ.
Figure 11 shows the difference between the effective
temperature obtained by the full formula Eq. (D12) and
the approximation including the aforementioned power-
dependent factor Eq. (D17). In this case, the maximum
difference is now ∼0.08 K, for driving powers correspond-
ing to temperatures of ∼150 K, and thus this approximation
is more suitable for analyzing the experimental data.
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