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We propose a new type of quantum liquids, dubbed Stiefel liquids, based on (2þ 1)-dimensional
nonlinear sigma models on target space SOðNÞ=SOð4Þ, supplemented with Wess-Zumino-Witten terms.
We argue that the Stiefel liquids form a class of critical quantum liquids with extraordinary properties, such
as large emergent symmetries, a cascade structure, and nontrivial quantum anomalies. We show that the
well-known deconfined quantum critical point and Uð1Þ Dirac spin liquid are unified as two special
examples of Stiefel liquids, N ¼ 5 and N ¼ 6, respectively. Furthermore, we conjecture that Stiefel liquids
with N > 6 are non-Lagrangian, in the sense that under renormalization group they flow to infrared
(conformally invariant) fixed points that cannot be described by any renormalizable continuum Lagrangian.
Such non-Lagrangian states are beyond the paradigm of parton gauge mean-field theory familiar in the
study of exotic quantum liquids in condensed matter physics. The intrinsic absence of (conventional or
partonlike) mean-field construction also means that, within the traditional approaches, will be difficult to
decide whether a non-Lagrangian state can actually emerge from a specific UV system (such as a lattice
spin system). For this purpose we hypothesize that a quantum state is emergible from a lattice system if its
quantum anomalies match with the constraints from the (generalized) Lieb-Schultz-Mattis theorems. Based
on this hypothesis, we find that some of the non-Lagrangian Stiefel liquids can indeed be realized in
frustrated quantum spin systems, for example, on triangular or kagome lattice, through the intertwinement
between noncoplanar magnetic orders and valence-bond-solid orders.

DOI: 10.1103/PhysRevX.11.031043 Subject Areas: Condensed Matter Physics
Particles and Fields, Statistical Physics

I. INTRODUCTION

The richness of quantum phases and phase transitions
never ceases to surprise us. Over the years many interesting
many-body states have been discovered or proposed in
various systems, such as different symmetry-breaking
orders, topological orders, and even exotic quantum criti-
cality. One lesson [1] we have learned is that the vicinity of
several competing (or intertwining [2]) orders may be a
natural venue to look for exotic quantum criticality. For
example, it is proposed that the deconfined quantum critical
point (DQCP) may arise as a transition between a Neel
antiferromagnet (AFM) and a valance bond solid (VBS)
[3,4], and a Uð1Þ Dirac spin liquid (DSL) may arise in the
vicinity of various intertwined orders [5–11]. The physics
of DQCP and Uð1Þ DSL, which will be discussed in more
detail later, have shed important light on the study of
quantum matter. So a natural question is, can one find more

intriguing quantum criticality, possibly again around the
vicinity of some competing orders?
On the conceptual front, by now quantum states with

low-energy excitations described by well-defined quasi-
particles and/or quasistrings are relatively well understood.
These include Landau symmetry-breaking orders, various
types of topological phases, and conventional Fermi
liquids. Such states are tractable because at sufficiently
low energies they become weakly coupled and admit
simple effective descriptions, even if the system may be
complicated at the lattice scale. In contrast, understanding
quantum states that remain strongly coupled even at the
lowest energies—and therefore do not admit descriptions in
terms of quasiparticles—remains a great challenge, espe-
cially in dimensions greater than (1þ 1) due to the lack of
exact analytic results. The widely held mentality, when
dealing with such states, is to start from a noninteracting
mean-field theory, and introduce fluctuations that are weak
at some energy scale. The fluctuations may grow under
renormalization group (RG) flow, in which case the low-
energy theory will eventually become strongly coupled and
describe the nonquasiparticle dynamics. Here the mean-
field theory can be formulated in terms of the original
physical degrees of freedom (d.o.f.), like spins, as is done
for Landau symmetry-breaking orders. It can also be
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formulated in terms of more interesting objects called
partons, which are “fractions” of local d.o.f.—examples
include composite bosons or fermions in fractional quan-
tum Hall effects and spinons in spin liquids. Fluctuations
on top of a parton mean-field theory typically lead to a
gauge theory, which forms the theoretical basis of a large
number of exotic quantum phases in modern condensed
matter physics [12]. Most (if not all) states in condensed
matter physics are understood within the mean-field men-
tality. In fact, this mentality is so deeply rooted in
condensed matter physics that very often a state can be
considered “understood” only if a mean-field picture is
obtained.
Although most (if not all) states theoretically studied in

condensed matter physics can be described by a mean field
plus some weak fluctuations at some scale, a priori, there is
no reason to assume that all nonquasiparticle states admit
some mean-field descriptions. One may therefore wonder if
there is an approach that can complement the mean-field
theory, and whether one can use this approach to study
quantum phases or phase transitions that cannot be
described by any mean-field theory plus weak fluctuations.
This question can also be formulated in the realm of
quantum field theories. The universal properties of a field
theory are characterized by a fixed point under RG, and
such a fixed point usually allows a description in terms of a
weakly coupled renormalizable continuum Lagrangian at
certain energy scale. Such a renormalizable-Lagrangian
description of a fixed point is essentially the field-theoretic
version of the mean-field description of a quantum phase or
phase transition. In this language, a mean field formulated
in terms of partons corresponds to a gauge theory that is
renormalizable, i.e., weakly coupled at the UV scale [13].
So one may similarly wonder if there are interesting RG
fixed points that are intrinsically nonrenormalizable, i.e.,
cannot be described by any weakly coupled renormalizable
continuum Lagrangian at any scale, a property sometimes
refered to as “non-Lagrangian.” Some examples of such
non-Lagrangian theories have been discussed in the string
theory and supersymmetric field theory literature over the
years (see, for example, Refs. [16–18] for some recent
exploration and Ref. [19] for a review), but it is not clear
whether those examples could be directly relevant in the
context of condensed matter physics. In particular, we are
interested in nonsupersymmetric theories realizable in
relatively low dimensions such as (2þ 1). If such non-
Lagrangian theories can be identified, they also enrich our
understanding of the landscape of quantum field theories in
an intriguing way.
So the following important questions arise.
(i) In condensed matter systems, are there exotic

quantum phases and phase transitions beyond the
paradigm of mean field plus weak fluctuations?
Equivalently, are there non-Lagrangian RG fixed
points relevant in condensed matter physics?

(ii) If the answers to the above questions are yes, how
can we tell in which systems such RG fixed points
can emerge? How can we predict the physical
properties of these states?

Besides the conceptual importance, these questions may
also be practically relevant. If the quantum phases and
phase transitions envisioned above do exist, they should be
included as candidate theories for many of the elusive
experimental and numerical systems, for example, in spin
liquid physics [20–22].
In this paper, we focus on critical quantum states (phases

or phase transitions) that are effectively described by some
conformal field theories (CFTs) at low energies. We also
focus on bosonic systems such as spin models. We shall
first look for inspiration from two well-known exotic
quantum critical states: the DQCP and the Uð1Þ DSL—
we review these two states in Sec. III. The effective theory
of DQCP is usually formulated in terms of some gauge
theories that flow to strong coupling in the IR. However,
there is a nonrenormalizable description of DQCP based
purely on local (gauge invariant) d.o.f., formulated as a
nonlinear sigma model (NLSM) supplemented with a
topological Wess-Zumino-Witten (WZW) term [1,23–25]
(see Ref. [26]). This description comes with some virtues
such as the locality of all d.o.f. and a manifest emergent
SOð5Þ symmetry. The fact that this description is strongly
coupled in both UVand IR is usually viewed as a drawback.
However, since we are now aiming to study non-
Lagrangian theories that do not have weak-coupling
descriptions anyway, it seems natural to try to turn this
“bug” into a “feature,” by generalizing the NLSM con-
struction to some non-Lagrangian critical states. To achieve
this, it turns out to be useful to consider the Uð1Þ DSL,
which is known to be closely related to the DQCP
[10,11,25]. If we can extend the NLSM construction to
the Uð1Þ DSL, we may then “extrapolate” the two theories
to obtain an entire series of theories, some of which could
possibly go beyond any mean field plus weak fluctuations
description.
With these motivations, we study a special type of ð2þ

1ÞD quantum many-body states, each labeled by two
integers ðN; kÞ, with N ≥ 5 and k ≠ 0. Their effective
theories are formulated purely in terms of local d.o.f.,
described by a NLSM defined on a target space
SOðNÞ=SOð4Þ, supplemented with a WZW term at level
k [27,28]. The manifold SOðNÞ=SOð4Þ is known as a
Stiefel manifold (e.g., see Ref. [29]), so we dub these states
“Stiefel liquids” (SLs), and we refer to a SL labeled by
ðN; kÞ as SLðN;kÞ, and SLðN;k¼1Þ may also be simply written
as SLðNÞ. These SLs have many interesting properties, such
as a large emergent symmetry. Furthermore, there is a
cascade structure among them: for each k, a SL with a
smaller N can be obtained from a SL with a larger N by
appropriately perturbing the latter and focusing on the
resulting low-energy sector.
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We propose that these SLs form cascades of extraordi-
nary critical quantum liquids. In fact, SLð5Þ is precisely the
effective field theory for the DQCP mentioned above.
Furthermore, we argue that SLð6Þ describes the Uð1Þ
DSL discussed above, and is thus a dual description of
the latter purely based on local d.o.f. Because of the
cascade structure, SLðN>6Þ can be viewed as extrapolating
theories of the DQCP and Uð1Þ DSL. We argue that
SLðN>6Þ can flow to conformally invariant RG fixed points
in the IR. Furthermore, they appear to have no obvious
(renormalizable) gauge-theoretic description, and we con-
jecture that they are in fact non-Lagrangian. We provide
various reasonable arguments to support this conjecture,
although a rigorous proof is currently lacking, and it is
unclear if such a proof is possible at all. However, as we
argue, even if this conjecture can be disproved, one has to
necessarily invoke novel ingredients of renormalizable field
theories that have not been appreciated so far, and in this
way new general insights can still be gained.
SLð5Þ and SLð6Þ, namely, the DQCP and the Uð1Þ DSL,

can both emerge in some lattice spin systems. The standard
way to establish the emergibility of these states is to
construct their corresponding mean-field theory on the
lattice, based on the parton trick. For their non-Lagrangian
counterparts with N > 6, we do not have any known mean-
field construction, and some alternative approach has to be
adopted. In Sec. VII, we propose an approach, which is
complementary to the traditional mean-field approach, to
study in which systems they may emerge. This approach is

based on the hypothesis that a quantum state described by
some effective field theory is emergible from a lattice
system if and only if the quantum anomalies of the field
theory match that of the lattice system.
Quantum anomalies, in particular, ’t Hooft anomalies,

were originally introduced as an obstruction to consistently
coupling a system with certain global symmetry to a gauge
field corresponding to this symmetry [30], and recently it
has been realized that they are also related to whether this
symmetry can be realized in an on-site fashion [31]. That is,
the anomaly detects the structure of locality and/or the
interplay between symmetry and locality of a system.
Furthermore, quantum anomaly is a RG invariant, and it
is powerful in constraining the IR fate of a system based on
its UV information, in that a theory with a nontrivial
anomaly is forbidden to have a symmetric short-range
entangled ground state [30]. For a lattice system, the ’t
Hooft anomaly is intimately related [32–35] to the Lieb-
Schutz-Mattis-type theorems [36–39] for quantum matters
on lattice systems.
In this paper, matching the anomalies of two seemingly

different theories motivates us to propose that these two
theories can emerge in the same physical setup. In addition,
anomaly-based considerations also enable us to make
specific concrete predictions of a system, without referring
to the details of its theory (such as its Hamiltonian). For
example, we propose that SLð7Þ can be realized in spin-1=2
triangular and kagome lattice systems, and we are able to
predict some of its detailed physical properties, such as the

Noncoplanar magnetic order

(N=7, k=1) Stiefel liquid

Valence bond solid

(c)

Noncollinear 
magnetic order

(N=6, k=1) Stiefel liquid
also known as

U(1) Dirac spin liquid

Valence
bond solid

(b)

Collinear 
magnetic order

Valence
bond solid

(N=5, k=1) Stiefel liquid
also known as

Deconfined phase 
transition

(a)

FIG. 1. The Stiefel liquid out of intertwined orders in quantum magnets. (a) ðN ¼ 5; k ¼ 1Þ SL is the widely studied deconfined phase
transition, which can arise from the intertwinement of collinear magnetic order (e.g., Néel state) and valence bond solid.
(b) ðN ¼ 6; k ¼ 1Þ SL is the widely studied Uð1Þ Dirac spin liquid, which can arise from the intertwinement of noncollinear
magnetic order (but coplanar) and valence bond solid. (c) ðN ¼ 7; k ¼ 1Þ SL is a new critical quantum liquid, which can arise from the
intertwinement of noncoplanar magnetic order and valence bond solid. On triangular lattice the noncoplanar order is known as the
tetrahedral order. On kagome lattice the noncoplanar order is known as the cuboctahedral order, in which the magnetizations on the three
sublattices are SA ¼ −Q3 cosðnπÞ − Q1 cos½ðmþ nÞπ�, SB ¼ Q3 cosðnπÞ − Q2 cosðmπÞ, SC ¼ Q2 cosðmπÞ þ Q1 cos½ðmþ nÞπ�, with
Q1;2;3 being orthogonal to each other.

STIEFEL LIQUIDS: POSSIBLE NON-LAGRANGIAN QUANTUM … PHYS. REV. X 11, 031043 (2021)

031043-3



crystal momenta of gapless modes in this realization. One
interesting observation is that SLð7Þ can naturally arise in
the vicinity of competing noncoplanar magnetic order and
VBS, which is a natural generalization of that SLð5Þ
(DQCP) can naturally arise in the vicinity of competing
collinear magnetic order and VBS, and SLð6Þ [Uð1Þ DSL]
can naturally arise in the vicinity of competing noncollinear
but coplanar magnetic order and VBS. We illustrate these
in Fig. 1.
Thinking more broadly, the absence of mean-field con-

structions or renormalizable continuum Lagrangians forces
us to focus on more universal aspects of the critical states.
The natural goal here is to obtain an intrinsic characteriza-
tion of universal many-body physics: a complete charac-
terization of the universal properties of amany-body system,
without explicitly referring to anyHamiltonian, Lagrangian,
or wave function. This goal is also motivated by the
observation that, although often useful, a Hamiltonian,
Lagrangian or wave function is just a specific UV regulari-
zation of the universal physics of the underlying quantum
phase or phase transition. Therefore, it is conceptually and
aesthetically desirable to find such an intrinsic characteri-
zation. (Of course, to obtain nonuniversal details of a many-
body system, its Hamiltonian, Lagrangian or wave function
is needed.) In fact, such an intrinsic characterization has
been (partly) achieved in various systems, such as CFTs in
ð1þ 1ÞD [40], a large class of gapped phases in various
dimensions [41–53], and symmetry-enrichedUð1Þ quantum
spin liquids in ð3þ 1ÞD [54–59]. The present work can be
viewed as a small step toward this ambitious goal for more
complicated critical states of matter.

II. SUMMARY OF RESULTS

The main results of this paper are summarized below.
This part also serves as a map for this paper.
(1) We propose a class of exotic ð2þ 1ÞD quantum

many-body states dubbed Stiefel liquids, each in-
dexed by two integers, N ≥ 5 and k ≠ 0. The effec-
tive theory of a SL with index ðN; kÞ, SLðN;kÞ, is
formulated as a nonlinear sigma model on target
manifold SOðNÞ=SOð4Þ, supplementedwith aWess-
Zumino-Witten term at level k. The target manifold is
also known as Stifel manifold VN;N−4 (or simply VN

in this paper), hence the name Stiefel liquid. The
Stiefel manifold can be parametrized using an N ×
ðN − 4Þ matrix nji satisfying nTn ¼ IN−4, where
IN−4 is the (N − 4)-dimensional identity matrix.
The NLSM is defined using the action

SðN;kÞ½n� ¼ 1

2g

Z
d2þ1xTrð∂μnT∂μnÞ þ k · SðNÞ

WZW:

The first term is a standard kinetic term, and the
WZW term is well defined since π4ðVNÞ ¼ Z and

πiðVNÞ are trivial for i < 4. The detailed form of the
WZW term is discussed in Sec. IVA. As we are
mainly interested in k ¼ 1, we also use SLðNÞ to
denote SLðN;1Þ.
The above NLSM is nonrenormalizable, so its

dynamics at strong coupling (g not small) is not
clearly defined on face value. We can nevertheless
argue, as we do in Sec. IV D, that for each k ≠ 0 there
is a criticalNcðkÞ, such that forN > NcðkÞ the theory
can flow to a stable CFT fixed point at strong
coupling. The stable fixed point is separated from
the spontaneous symmetry-breaking phase in the
weak-coupling regime (small g) by a critical point.
Those stable fixed points represent the critical Stiefel
liquids which are the main focus of this paper. We
argue, based on existing numerical results, that for
k ¼ 1 it is likely that 5 < Nc < 6.

(2) In Sec. IV B, we carefully discuss the symmetries of
the Stiefel liquids. It turns out that the SLðN;kÞ theory
has a rather nontrivial symmetry group. The con-
tinuous symmetry is SOðNÞ × SOðN − 4Þ if N is
odd, and for N even it is ½SOðNÞ × SOðN − 4Þ�=Z2.
A SL also has discrete C, R, and T symmetries.
These discrete symmetries turn out to act non-
trivially in the SOðNÞ and SOðN − 4Þ internal
spaces, so they form semidirect products (⋊) with
the continuous symmetries—we discuss this care-
fully in Sec. IV B. The SL theory also has the
standard Poincaré symmetry group. The full sym-
metry is therefore the Poincaré plus

½SOðNÞ×SOðN−4Þ�⋊ðZC
2 ×ZT

2 Þ; N¼ 2nþ1;�
SOðNÞ×SOðN−4Þ

Z2

�
⋊ðZC

2 ×ZT
2 Þ; N¼ 2n:

(3) In Sec. IV C, we discuss a cascade structure of the
SLs: for each k, by appropriately breaking the
symmetry of SLðN;kÞ with a larger N, the low-energy
sector of the resulting theory is another SL with the
same k but a smaller N. In particular, if we condense
the first column of the nji matrix to a fixed unit
vector, say nj1 ¼ ð1; 0; 0;…ÞT, we break the
∼SOðNÞ × SOðN − 4Þ symmetry of SLðN;kÞ down
to ∼SOðN − 1Þ × SOðN − 5Þ and obtain the
SLðN−1;kÞ theory.

(4) The SLð5Þ theory turns out to be nothing but the
sigma-model description of the DQCP. In Appen-
dix B, we extend this correspondence to general
k > 0 and propose that SLð5;kÞ can be described by a
USpð2kÞ gauge theory with Nf ¼ 2 flavors of
fermions—the case with k ¼ 1 and USpð2Þ ¼
SUð2Þ is a familiar result.

(5) In Sec. V, we argue that SLð6;kÞ is equivalent to the
UðkÞ DSL, i.e., 4 flavors of gapless Dirac fermions
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coupled to a UðkÞ gauge field. The field nji on the
Stiefel manifold SOð6Þ=SOð4Þ corresponds to the
monopoles in the UðkÞ gauge theory. In particular,
for k ¼ 1 this gives an SL description of the familiar
Uð1Þ Dirac spin liquid. In Appendix G, we further
support this correspondence by explicitly matching
the anomalies of the Uð1Þ Dirac spin liquid with the
SLð6Þ theory. In particular, we verify that various
probe monopoles in the Uð1Þ DSL theory do have
the nontrivial properties required by the anomalies.

(6) In Sec. IVA, we conjecture that SLðNÞ with N > 6 is
non-Lagrangian; i.e., its conformally invariant fixed
point has no description in terms of a weakly
coupled renormalizable continuum Lagrangian at
any scale. Equivalently, SLðNÞ with N > 6 cannot be
accessed using any mean-field theory plus weak
fluctuations. In particular, they are beyond the
standard parton (mean-field) construction and gauge
theory. We further elaborate on the arguments
underlying this conjecture in Sec. VIII.

(7) In Sec. VI, we analyze the quantum anomalies of the
SLs. One way to characterize the anomaly is to view
our ð2þ 1ÞD system as the boundary of a ð3þ 1ÞD
bulk, and the bulk has a nontrivial topological
response when coupled to background gauge
fields. We can couple the SLðN;kÞ theory to a
background gauge field with gauge symmetry
½SOðNÞ × SOðN − 4Þ�⋊ðZC

2 × ZT
2 Þ, which turns

out (as we discuss carefully in Sec. VI) to be
equivalent to coupling to an OðNÞ ×OðN − 4Þ
gauge field, with the following restriction on the
gauge bundles:

wOðNÞ
1 þ wOðN−4Þ

1 þ wTM
1 ¼ 0 ðmod 2Þ:

The three terms are the first Stiefel-Whitney (SW)
classes of the OðNÞ, OðN − 4Þ, and ð3þ 1ÞD
spacetime tangent bundles, respectively. The
anomaly is then given by the bulk topological
response (see Sec. VI for the derivation):

ikπ
Z
X4

fwOðNÞ
4 þ wOðN−4Þ

4

þ ½wOðN−4Þ
2 þ ðwOðN−4Þ

1 Þ2�ðwOðNÞ
2 þ wOðN−4Þ

2 Þ
þ ðwOðN−4Þ

1 Þ4g:

Herew1,w2, andw4 are the first, second, and fourth
SW classes of the corresponding bundles, respec-
tively, and all the products involved are cup products.
This anomaly isZ2 classified and only SLswith odd k
are nontrivial. The above bulk response gives the
complete anomaly of SLðNÞ with an odd N. The case
with an even N is more complicated, and the above

result is just a partial characterization in this case. To
improve this result, in Sec. VI D we characterize the
anomaly for the even-N case by studying the monop-
oles corresponding to the global symmetry of the
theory. This characterization, although still partial,
contains physics beyond that in the above bulk action.
In particular, SLðN;kÞ with an even N and k ¼ 2
(mod4) turns out to also be anomalous, which cannot
be detected by the above bulk action.
The above anomaly of SLðN;kÞwith odd k cannot be

saturated by a gapped topological order—the IR
theory has to be either gapless or symmetry breaking.
In Sec. VI E, we show that if time-reversal and space-
reflection symmetries are broken, the anomalies of
SLðNÞ can be realized by a semion (or antisemion)
topological order, for all N ≥ 5.

(8) In Sec. VII, we discuss possible lattice realizations
of Stiefel liquids with N > 6, which as we discussed
are likely non-Lagrangian. The intrinsic absence of a
mean-field construction for these states makes it
challenging to decide whether a Stiefel liquid, say
with N ¼ 7, can emerge out of a lattice system. We
therefore propose an approach based on anomaly
matching: we hypothesize that a state (like SLð7Þ) is
emergible from a lattice system if and only if the ’t
Hooft anomalies of the state match that of the lattice
system. The anomalies of the lattice system come
from the generalized Lieb-Schultz-Mattis theorems.
The necessity of this condition is actually known, so
we only hypothesize the sufficiency part.
We then find that SLð7Þ, the simplest non-

Lagrangian SL, can indeed be realized on lattice
spin systems if the microscopic physical symmetries
are properly implemented in the low-energy theory.
Here the “microscopic symmetries” include the
SOð3Þ rotation, time-reversal and lattice symmetries.
Specifically, we identify two realizations of the SLð7Þ
theory on triangular and kagome lattices, respec-
tively, both with one spin-1=2 moment sitting on
each lattice site. Many observable properties of these
specific realization of SLð7Þ are discussed. In par-
ticular, we find that this state can naturally arise in
the vicinity of competing noncoplanar magnetic
order and valance-bond solid. The corresponding
noncoplaner magnetic orders are known as the
tetrahedral order on triangular lattice and the cu-
boctahedral order on kagome lattice, respectively.
These realizations of the SLð7Þ state are very natural
generalizations of the realizations of SLð5Þ (DQCP)
and SLð6Þ (Uð1Þ DSL), since the DQCP arises in the
vicinity of competing collinear magnetic order and
VBS, and the Uð1Þ DSL arises in the vicinity of
competing coplanar magnetic orders and VBS (as
illustrated in Fig. 1).
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We finish with some discussions in Sec. VIII. Various
appendixes contain additional details, as well as some
general results.
Before proceeding, we first briefly review the physics of

the deconfined quantum critical point and the Uð1Þ Dirac
spin liquid in Sec. III.

III. REVIEW OF BACKGROUND

In this section, we first review some aspects of the DQCP
and Uð1Þ DSL, which partly motivate the present work.

A. Deconfined quantum critical point

The classic DQCP was proposed as a critical theory for a
quantum phase transition between a Néel AFM and a VBS
on a square lattice [3,4]. Because the symmetry respected
by either of these two phases is not a subgroup of the
symmetry of the other, such a transition is considered to be
beyond the Landau-Ginzburg-Wilson-Fisher paradigm if it
is continuous. The original formulation of the DQCP is in
terms of two flavors of bosons coupled to a dynamicalUð1Þ
gauge field, and over the years many dual formulations
have been proposed [1,25].
The formulation that is most relevant for our purpose is

written in terms of a five-component unit vector n, whose
first 3 and last 2 components can be thought of as the order
parameters of the AFM and the VBS, respectively. So this
is a formulation directly based on local d.o.f. The low-
energy effective theory at the DQCP is a NLSM with a
WZW term:

Sð5;kÞ ¼ S0 þ k · Sð5ÞWZW: ð1Þ

The meaning of the superscripts ð5; kÞ will be clear later.
For the DQCP, k ¼ 1, and this seemingly redundant factor
is inserted for later convenience. The first term S0 ¼R
d3xð1=2gÞð∂μnÞ2 is the action of the usual NLSM. To

define the WZW term, Sð5ÞWZW, one first needs to add one
more dimension to the physical spacetime and extend the
unit vector n into this extra dimension. We denote the
coordinate of this extra dimension by u, and the extended
unit vector by ne, such that neðx; y; t; u ¼ 0Þ ¼ nðx; y; tÞ
and neðx; y; t; u ¼ 1Þ ¼ nr, with nr being an arbitrary fixed
reference vector, which, for example, can be taken to be
nr ¼ ð1; 0; 0; 0; 0ÞT . For notational brevity, in the following
we drop the superscript e in the extended vector and simply
write it as n, and the meaning of n should be clear from the
context. In terms of the extended vector, the WZW term is

Sð5ÞWZW ¼ 2π

Ω4

Z
1

0

du
Z

d3x detðñÞ; ð2Þ

whereΩ4 ¼ 8π2=3 is the volume of S4 with unit radius, and
ñ is a 5-by-5 matrix defined as

ñ≡ ðn; ∂xn; ∂yn; ∂tn; ∂unÞ:

Namely, the first column of ñ is n, and its last 4 columns are
derivatives of n arranged in the above way. More explicitly,

detðñÞ ¼ ϵi1i2i3i4i5ni1∂xni2∂yni3∂tni4∂uni5 :

Geometrically, the WZW term (apart from the factor of 2π)
is the ratio of the volume swept by n (as its coordinates
vary) and Ω4, the total volume of S4 with unit radius.
Physically, the WZW term intertwines the Néel and VBS
orders [1,25] (see also earlier related works [60,61]).
The theory Eq. (1) enjoys an Ið5Þ ¼ SOð5Þ symmetry,

under which n transforms in its vector representation. The
purpose for the notation Ið5Þ will be clear later. It is useful to
imagine enlarging the SOð5Þ symmetry group into Oð5Þ.
Because of the WZW term, the improper Z2 rotation of this
Oð5Þ group is not a symmetry of Eq. (1), but when it
combines with the reversal of a space or time coordinate, it
becomes the reflection or time-reversal symmetry. We
denote this symmetry as Oð5ÞT .
The Néel-VBS transition is driven by a rank-2 anisotropy

term λðn21 þ n22 þ n23 − n24 − n25Þ, with λ < 0 favoring the
Néel order and λ > 0 favoring the VBS order. At weak
coupling the sigma model orders spontaneously and the
Néel-VBS transition driven by the anisotropy will be first
order. The DQCP, as a continuous Néel-VBS transition,
then requires a nontrivial fixed point at strong coupling.
The strong-coupling dynamics, strictly speaking, is not
well defined just from the sigma-model Lagrangian since
the theory is not renormalizable. Nevertheless, if such a
strong-coupling fixed point exists, several nontrivial prop-
erties of this fixed point can be readily inferred.
(1) The theory has the full Oð5ÞT symmetry.
(2) Local operators that transform trivially under Oð5ÞT

must be RG irrelevant.
(3) The theory has a ’t Hooft anomaly, characterized by

the topological action of a ð3þ 1ÞD symmetry-
protected topological phase (SPT) whose boundary
can host the DQCP:

Zð5Þ
bulk ¼ exp

�
iπ
Z
X4

wOð5Þ
4

�
; ð3Þ

where X4 is the four-dimensional spacetime mani-

fold that the bulk SPT lives in, and wOð5Þ
4 is the fourth

Stiefel-Whitney class of the probe Oð5ÞT gauge
bundle that couples to the SPT. This topological

response theory is subject to a constraint, wOð5Þ
1 ¼

wTM
1 (mod2), with wTM

1 the first SW class of the
tangent bundle of X4. This constraint guarantees that
the orientation-reversal symmetry (i.e., reflection
and time reversal) is accompanied by an improper
Z2 rotation of the Oð5Þ. The SOð5Þ anomaly has
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been derived in Ref. [25], and in Appendix C we
extend it to the full Oð5ÞT .

Below we collect some further results on the anomaly
that are relevant to the present paper.
(1) The anomaly is Z2 classified; i.e., they disappear if

two copies of this theory are stacked together. This
means that the anomalies of the theory described by
Eq. (1) remain the same if k is changed by any even
integer.

(2) In many cases, the anomaly of a ð2þ 1ÞD theory can
be realized by a symmetric gapped topological order,
but the anomaly of the DQCP cannot, if the system
preserves both the SOð5Þ and an orientation-reversal
symmetry. In other words, due to this anomaly, as
long as the system preserves the SOð5Þ symmetry
together with any orientation-reversal symmetry, it
has to be gapless. This is an example of symmetry-
enforced gaplessness [62].

(3) A physical way to characterize the anomaly of this
theory is to gauge the SOð5Þ symmetry and examine
the structure of the monopoles of the resulting
SOð5Þ gauge field. An SOð5Þ monopole can be
obtained by embedding aUð1Þmonopole into one of
the generators of the SOð5Þ gauge group [63], and
the field configuration of this monopole breaks the
SOð5Þ into SOð3Þ × SOð2Þ. Then it is meaningful to
ask what representation this SOð5Þmonopole carries
under the remaining SOð3Þ × SOð2Þ. It turns out
that it carries a spinor representation under SOð3Þ
and no charge under SOð2Þ [up to binding the
original matter fields in the fundamental represen-
tation of the SOð5Þ].

Finally, we comment on the current status of the
numerical studies on the actual IR dynamics of the
DQCP. The emergence of the SOð5Þ symmetry that rotates
between Néel and VBS orders has been observed numeri-
cally [24]. On the other hand, the seemingly continuous
transition [64–83] shows some puzzling features, including
unconventional finite-size behavior [64,78,80] and mea-
sured critical exponents that violate bounds from conformal
bootstrap [84,85]. One plausible explanation is that the
DQCP is pseudo-critical, i.e., it is not a truly continuous
phase transition, but its correlation length is very large. A
universal mechanism for such pseudo-criticality based on
the notion of complex fixed points [25,86] has been
proposed. In terms of the WZW sigma model Eq. (1), this
means that the hypothesized strong-coupling fixed point
does not really exist and the theory flows all the way to the
weakly coupled, first-order transition regime. However,
there is a region, around some nontrivial coupling strength
g�, in which the RG flow is slow (also known as “walking”
[87]). As a result the system behaves almost like a critical
point up to some large length scale. A theory for the
walking behavior in the sigma model has been put forward
in Refs. [88,89].

B. Uð1Þ Dirac spin liquid

The Uð1Þ DSL was introduced as a critical quantum
liquid that can emerge in certain spin systems [5,6], and its
contemporary standard model is formulated in terms of 4
flavors of gapless Dirac fermions minimally coupled to a
dynamical Uð1Þ gauge field, with the Lagrangian

L ¼
X4
i¼1

ψ̄ iiDaψ i þ
1

4e2
fμνfμν; ð4Þ

where Da is the covariant derivative of the Dirac fermions
ψ , which are coupled to the dynamical Uð1Þ gauge field a,
whose field strength is fμν ¼ ∂μaν − ∂νaμ. The Dirac
fermion ψ is not a local (gauge invariant) excitation here.
Naively the simplest local operators are fermion bilinears
like ψ̄ iψ j. It turns out that the most important local
operators are the monopole operators [90,91]—these are
operators that insertUð1Þ gauge flux, in units of 2π, into the
system.
The symmetries of the DSL are discussed in detail in

Refs. [10,90,91]. In particular, it has an Ið6Þ ¼ ½SOð6Þ ×
Uð1Þtop�=Z2 symmetry, and the purpose for the notation Ið6Þ

will be clear later. The Dirac fermions transform under a
flavor SUð4Þ which is the spinor group of the SOð6Þ. The
fermion bilinears ψ̄ iψ j form a singlet ⊕ an adjoint
representation under SOð6Þ. The Uð1Þtop corresponds to
the conservation of gauge flux, with conserved current jμ ¼
ϵμνλ∂νaλ=ð2πÞ (the subscript “top” is due to the fact that this
current conservation does not rely on the detailed equations
of motion and is therefore “topological”). By definition
only monopole operators are charged under the Uð1Þtop. It
turns out [90] that the most fundamental monopoles also
transform as a vector under the SOð6Þ. More concretely, the
monopole can be represented by a six-component complex
bosonic field Φ, such that the SOð6Þ rotates the compo-
nents of Φ, and the Uð1Þtop acts by multiplying Φ by a
phase factor.
Besides Ið6Þ, this theory also enjoys discrete charge

conjugation C, reflection R, and time-reversal T sym-
metries. To describe the actions of these discrete sym-
metries, it is useful to imagine enlarging the SOð6Þ and
Uð1Þtop symmetries toOð6Þ andOð2Þ, respectively. Then it
turns out [10] that the improper Z2 rotation of neither Oð6Þ
norOð2Þ is a symmetry of the DSL, but the C symmetry can
be viewed as the combination of these two improper Z2

rotations. The R and T symmetries can be viewed as a
combination of spacetime orientation reversal and the
improper Z2 rotation of either Oð6Þ or Oð2Þ (but not both).
The Φ operators are the most fundamental local oper-

ators in the theory, in the sense that any other local operator
can be built up using theΦ’s. Let us look at some examples.
The SUð4Þ-singlet mass operator ψ̄ψ is identified as
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ψ̄ iψ i ∼ iϵabcdefðΦ†
aΦb −ΦaΦ

†
bÞðΦ†

cΦd −ΦcΦ
†
dÞ

× ðΦ†
eΦf −ΦeΦ

†
fÞ;

where a, b, c, d, e, f ¼ 1, 2, 3, 4, 5, 6. The SUð4Þ-adjoint
mass operator (i.e., ψ̄ iψ j − ψ̄kψkδij=4) is identified as the
rank-2 antisymmetric tensor of Φ that is neutral under the
Uð1Þtop, i.e., iðΦ†

aΦb −Φ†
bΦaÞ. One can construct more of

such identifications of operators. Here two operators are
identified if they transform identically under all global
symmetries (including both continuous and discrete
symmetries).
The quantum anomalies of the Uð1Þ DSL have been

partially analyzed in Ref. [10] and more recently in
Ref. [92], and we study them further in this paper.
The following facts about the nearby phases of the Uð1Þ

DSL are extremely useful for our later developments (see
Refs. [10,11,25] for details).
(1) By condensing one component of Φ in the Uð1Þ

DSL, the resulting state has the same symmetries
and anomalies as the DQCP. It may even be possible
that the theory indeed flows to DQCP once the
monopole perturbation is turned on.

(2) Because of the above, just like the DQCP, the Uð1Þ
DSL also enjoys symmetry-enforced gaplessness.
One way to gap it out is to turn on an SUð4Þ-singlet
mass of the Dirac fermions, which will drive the
system into a semion (or antisemion) topological
order that breaks the orientation-reversal symmetries.

(3) By turning on a proper SUð4Þ-adjoint mass of the
Dirac fermions, a condensate of Φ will be automati-
cally induced, such that the remaining continuous
symmetry of the system is ½SOð4Þ × SOð2Þ�=Z2,
where the SOð4Þ ⊂ SOð6Þ ⊂ Ið6Þ acts only on 4
components ofΦ, and the SOð2Þ is a combination of
Uð1Þtop and the SOð2Þ ⊂ SOð6Þ ⊂ Ið6Þ acting on the
other 2 components of Φ. There are also remaining
discrete C,R, and T symmetries. The anomalies are
completely removed in this case. For Uð1Þ DSLs
realized on lattice spin systems, this “chiral sym-
metry breaking” is the mechanism for realizing
conventional Landau symmetry-breaking orders
from the DSL—examples include the coplanar
(120°) magnetic orders on triangular and kagome
lattices and various VBS orders [11].

The Uð1Þ DSL is likely to be realized in spin-1=2
Heisenberg magnets on kagome and triangular lattices
[93–96]. Furthermore, lattice Monte Carlo simulations
support that the gauge theory Eq. (4) indeed flows to a
CFT [97,98].

IV. STIEFEL LIQUIDS: GENERALITY

In this section, we introduce the general theory of SLs
and discuss some of their interesting properties. Recall that

each Stiefel liquid will be labeled by two integers ðN; kÞ,
with N ≥ 5 and k ≠ 0. We denote a SL corresponding to
ðN; kÞ by SLðN;kÞ. Since we mostly focus on the case
with k ¼ 1, we also use the shorthand SLðNÞ to denote
SLðN;k¼1Þ.

A. Wess-Zumino-Witten sigma model on Stiefel
manifold SOðNÞ=SOð4Þ

The d.o.f. of SLðN;kÞ is characterized by an N-by-(N − 4)
real matrix, denoted by n, such that the columns of n are
orthonormal, i.e., nTn ¼ IN−4, with IN−4 the (N − 4)-
dimensional identity matrix. In mathematical terms, this
matrix n defines an (N − 4) frame in the N-dimensional
Euclidean space. These (N − 4) frames live in a manifold
VN ≡ SOðNÞ=SOð4Þ, known as a Stiefel manifold [29].
Taking the Stiefel manifold as the target space, a NLSM
with the following action can be defined in any dimension:

S0½n� ¼
1

2g

Z
ddþ1xTrð∂μnT∂μnÞ; ð5Þ

where the n in the square bracket indicates the dependence
of the action on the configuration of n.
It is known that the homotopy groups of VN with any

N ≥ 5 satisfy that πnðVNÞ ¼ 0 for n < 4, and π4ðVNÞ ¼ Z,
so a WZW term based on a closed 4-form on VN can be
defined for any N ≥ 5 in three spacetime dimensions
[27,28,99]. To define this WZW term, we first add one more
dimension to the physical spacetime and extend the matrix n
into this extra dimension. Denote the coordinate of the extra
dimension by u, and the extended matrix by ne, such that
neðx; y; t; u ¼ 0Þ ¼ nðx; y; tÞ and neðx; y; t; u ¼ 1Þ ¼ nr,
with nr a fixed reference matrix with entries ðnrÞji ¼ δji,
where ð·Þji represents the entry in the jth row and ith column
of the relevantmatrix. For notational brevity, in the following
we drop the superscript e in the extended matrix and simply
write it as n, and the meaning of the matrix n should be clear
from the context.
To the best of our knowledge, the expression for such a

WZW term or closed 4-form on VN with N ≥ 6 is
unavailable in the previous literature. We propose that
the WZW term on VN is given by the following (real-time)
action:

SðNÞ
WZW½n� ¼

2π

Ω4

Z
1

0

du
Z

d3x
XN−4

i;i0¼1

detðñðii0ÞÞ; ð6Þ

where the N-by-N matrix ñðii0Þ is given by

ñðii0Þ ¼ ðn; ∂xni; ∂yni; ∂tni0 ; ∂uni0 Þ; ð7Þ

where ni represents the ith column of n [the repeated
indices i and i0 are not summed over in the right-hand side
of Eq. (7)]. That is, the first N − 4 columns of ñii0 are just n,
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and its last 4 columns are derivatives of the columns of n
arranged in the above way. More explicitly,

detðñðii0ÞÞ ¼
1

ðN − 4Þ! ϵ
i1i2���iN−4ϵj1j2���jNnj1i1nj2i2 � � �

njN−4iN−4
∂xnjN−3i∂ynjN−2i∂tnjN−1i0∂unjNi0 ; ð8Þ

where the ϵ’s are the fully antisymmetric symbols with rank
N − 4 and N, respectively. More comments on the math-
ematical aspects of this action are given in Appendix A.
Taken together, the effective action of SLðNÞ is given by

SðNÞ½n� ¼ S0½n� þ SðNÞ
WZW½n�: ð9Þ

The effective action of SLðN;kÞ is the level-k generalization
of Eq. (9):

SðN;kÞ ¼ S0 þ k · SðNÞ
WZW: ð10Þ

We remark that the ð2þ 1ÞD WZW NLSM is non-
renormalizable at strong couplings, so these theories should
be defined with an explicit UV regularization. However, a
symmetry-preserving local UV regularization should not
affect the quantum anomalies of the theory. As for the IR
dynamics of the theory, strictly speaking, it depends on the
specific UV regularization, which is similar to the situation
where a quantum phase or phase transition is described by a
lattice Hamiltonian. In Sec. IV D, we argue that there
should exist UV regularizations under which SðN;kÞ flows to
a conformally invariant fixed point under RG if N is larger
than a k-dependent critical value, NcðkÞ, and thus describes
a critical quantum liquid. If N < NcðkÞ, SðN;kÞ does not
flow to a nontrivial CFT; instead, its most likely fate is to
flow to a Goldstone phase. In general, NcðkÞ increases with
k, and we will argue that Ncð1Þ < 6.
Notice when N ¼ 5, n is just a column vector that can be

identified as the vector n in Sec. III A, and Eq. (9) is
precisely Eq. (1). So SLð5Þ is precisely the DQCP. Since the
DQCP, or SLð5Þ, can be described by (renormalizable)
gauge theories [25], it is natural to ask if other SLs can also
be reformulated in terms of a renormalizable field theory,
such as a gauge theory. In Appendix B, we provide an
alternative description of SLð5;kÞ in terms of a USpð2kÞ
gauge theory [100], and in Sec. V we provide a UðkÞ-
gauge-theoretic description of SLð6;kÞ.
However, we cannot find any gauge-theoretic formu-

lation for SLðNÞ with N > 6. In fact, due to their delicate
symmetry structure (discussed below) and intricate
anomaly properties (discussed in Sec. VI), we conjecture
that the conformally invariant fixed points corresponding to
SLðN>6Þ are non-Lagrangian; i.e., they have no description
in terms of a weakly coupled renormalizable continuum
Lagrangian at any scale. In Sec. VIII, we present more
detailed arguments supporting this conjecture. As for

SLðN;kÞ with N > 6 and k > 1, it may also be non-
Lagrangian if it flows to a CFT.
Below we discuss the basic physical properties of the

SLs in more detail.

B. Symmetries

In addition to the Poincaré symmetry, the actions in
Eqs. (9) and (10) are invariant under an SOðNÞ trans-
formation, which acts as

n → Ln; L ∈ SOðNÞ; ð11Þ

and another SOðN − 4Þ transformation, which acts as

n → nR; R ∈ SOðN − 4Þ: ð12Þ

Note that for even N, the two Z2 centers L ¼ −IN and
R ¼ −IN−4 act identically. So SðNÞ and SðN;kÞ have a
continuous symmetry group IðNÞ, where IðNÞ ¼ ½SOðNÞ ×
SOðN − 4Þ�=Z2 for even N and IðNÞ ¼SOðNÞ×SOðN−4Þ
for odd N. Recall that Ið5Þ and Ið6Þ were already introduced
in Sec. III.
Besides this continuous symmetry, SðNÞ and SðN;kÞ also

have discrete charge conjugation, reflection, and time-
reversal symmetries, i.e., C, R, and T . These symmetries
can be combined with elements of IðNÞ to be redefined, and
we will utilize this freedom to redefine these symmetries
whenever useful later in the paper.
A particular implementation of these discrete symmetries

for N ≥ 6 is

C∶ nji → ð−1Þfjinji;

R∶ nji →

�
nji j ≤ N − 1

−nji j ¼ N;

T ∶ nji →

�
nji j ≤ N − 1

−nji j ¼ N;
ð13Þ

with fji ¼ 1 if (j ¼ N and i < N − 4) or (j < N and
i ¼ N − 4), and fji ¼ 0 otherwise. Note that R and T also
need to flip a spatial or temporal coordinate, respectively.
Another useful way to characterize these symmetries for

N ≥ 6 is to imagine enlarging the SOðNÞ and SOðN − 4Þ in
IðNÞ to OðNÞ and OðN − 4Þ, respectively. Then the
improper rotation of neither the OðNÞ nor the OðN − 4Þ
is a symmetry due to the WZW term, but the combination
of these two improper rotations is the C symmetry. Also,R
and T can be viewed as an improper rotation of either
OðNÞ or OðN − 4Þ combined with a reversal of the
appropriate spacetime coordinate.
When combined with the continuous symmetries, the full

symmetry group (besides the Poincaré) can be written as
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½SOðNÞ × SOðN − 4Þ�⋊ðZC
2 × ZT

2 Þ; N ¼ 2nþ 1;�
SOðNÞ × SOðN − 4Þ

Z2

�
⋊ðZC

2 × ZT
2 Þ; N ¼ 2n; ð14Þ

where ZC
2 and ZT

2 are generated by C and T , respectively.
The semidirect product ⋊ comes from nontrivial relations
like Eq. (13). We do not need to list ZR

2 above since it is
related to ZT

2 through a Lorentz rotation.
For N ¼ 5, the matrix n contains only a single column,

and we can suppress its column index and denote it by nj,
with j ¼ 1; 2;…; 5. In this case, the above C symmetry
does not exist [103], and we take the actions of theR and T
symmetries to be

R∶ n1;2;3;4 → n1;2;3;4; n5 → −n5;

T ∶ n1;2;3;4 → n1;2;3;4; n5 → −n5; ð15Þ

which is analogous to the case with N ≥ 6.

C. Cascade structure of the SLs

Now we discuss the relations between different SLs.
As is common for WZW theories, SLðN;kÞ with k > 1 can

be viewed as k copies of SLðNÞ that have strong “ferro-
magnetic” couplings between them. More precisely, the
action of k copies of decoupled SLðNÞ is

P
k
i¼1 S

ðNÞ½ni�. A
strong ferromagnetic coupling, −

P
i≠j gij

R
d3xTrðnTi njÞ

with gij > 0, has the tendency of identifying different ni’s
as a single matrix, n. Focusing on the low-energy sector
that contains only n, the total action takes the form of
Eq. (10). That is, we can get SLðN;kÞ by appropriately
coupling k copies of SLðNÞ. Note that this coupling does
not break the symmetries discussed in Sec. IV B, as
expected.
SLðN;kÞ and SLðN;−kÞ almost have identical properties,

because one of them can be obtained from the other by an
improper Z2 operation of either theOðNÞ orOðN − 4Þ. But
they have opposite quantum anomalies, since a composed
system of SLðN;kÞ and SLðN;−kÞ can be turned into a trivial
state by a strong ferromagnetic coupling. Because of the
similarity between SLðN;�kÞ, in this paper we mostly focus
on the case with k > 0.
Next, we remark on an interesting and important specific

property of the SLs: the cascade structure.
Suppose we start with SLðN;kÞ described by SðN;kÞ with

N ≥ 6, and fix, say, n11 ¼ n22 ¼ � � � ¼ nmm ¼ 1 with
m ≤ N − 5, while allowing the other components of n to
fluctuate under the orthonormal constraint, nTn ¼ IN−4.
Now fluctuations of the entries in the first m rows and the
first m columns of n are frozen, while fluctuations of the
other entries remain at low energies. The IðNÞ symmetry of
SðN;kÞ is explicitly broken to IðN;mÞ, where IðN;mÞ ¼
½SOðN −mÞ × SOðN − 4 −mÞ × SOðmÞ�=Z2 if both N

and m are even, and IðN;mÞ ¼ SOðN −mÞ × SOðN − 4 −
mÞ × SOðmÞ if at least one of N and m is odd. Here the
SOðN −mÞ ⊂ SOðNÞ ⊆ IðNÞ acts on the last N −m rows
of n, SOðN − 4 −mÞ ⊂ SOðN − 4Þ ⊂ IðNÞ acts on the last
N − 4 −m columns of n, and SOðmÞ is a combination of
the SOðmÞ ⊂ SOðNÞ ⊆ IðNÞ acting on the first m rows of n
and the SOðmÞ ⊂ SOðN − 4Þ ⊂ IðNÞ acting on the first m
columns of n.
To focus on the low-energy fluctuations, we can define

a reduced (N −m)-by-ðN − 4 −mÞ matrix nred, by remov-
ing the first m rows and first m columns of n. This
reduced matrix still satisfies an orthonormal condition,
nTrednred ¼ IN−4−m. In addition, SðN;kÞ½n� ¼ SðN−m;kÞ½nred�.
That is, the low-energy dynamics of this symmetry-broken
descendent of SLðN;kÞ is effectively identical to that of
SLðN−m;kÞ (see Fig. 2). We remark that within the low-
energy sector, the remaining continuous symmetry is IðN−mÞ,
which is generally smaller than IðN;mÞ. Physically, this is
because some elements of IðN;mÞ only act on the frozen d.o.f.
of this symmetry-broken descendent, but not on its low-
energy d.o.f., as discussed above. Also notice that the
discrete R and T symmetries defined in Eqs. (13) and
(15) are preserved for all m ≤ N − 5, and the C symmetry
defined in Eq. (13) is preserved for m < N − 5 and broken
when m ¼ N − 5.
Therefore, SLðN;kÞ for each k form a cascade of theories,

where the ones with a smaller N can be obtained from the
ones with a larger N by appropriately perturbing the latter
and focusing on the resulting low-energy sector.
Ifm ¼ N − 4 in the above, then all entries of n are fixed,

the remaining continuous symmetry is ½SOð4Þ × SOðN −
4Þ�=Z2 for even N and SOð4Þ × SOðN − 4Þ for odd N,
there is no longer any low-energy d.o.f. in the system, and
the resulting state is no longer a SL. In particular, the WZW
term is now completely removed. Note that the R and T
symmetries in Eq. (13) are still preserved, but the C
symmetry defined there is broken. However, the following
C0 symmetry, which is a combination of that C and an
element in IðNÞ, is preserved:

C0∶ nji → ð−1Þf0jinji; ð16Þ
where f0ji ¼ 1 if (j ¼ 1 and i > 1) or (j > 1 and i ¼ 1),
and f0ji ¼ 0 otherwise.
Since the WZW term is expected to capture the quantum

anomalies of the SL, from the above cascade structure we

(N, k) 
Stiefel liquid

Ordered 
phase

(N-1, k) 
Stiefel liquid

FIG. 2. The cascade structure of Stiefel liquids.
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see that the anomalies of a SL with a smaller N should be
contained in the anomalies of a SL with a larger N.
Furthermore, by explicitly breaking the symmetries of
SLðN;kÞ via tuning up m from 0 to N − 4 as above, its
anomalies are gradually removed, and also localized to the
low-energy sector defined by nred. For example, if the above
procedure of symmetry breaking is applied to SLðNÞ with
m ¼ N − 5, the anomaly of the system is reduced to that of
SLð5Þ, given by Eq. (3). If this procedure is applied with
m ¼ N − 4 instead, the anomaly of the system is com-
pletely removed. As another application, this cascade
structure also implies that SLðNÞ with any N ≥ 6 have
symmetry-enforced gaplessness, similar to that of SLð5Þ,
which is reviewed in Sec. III.
The cascade structure among the SLs remarked here will

be repeatedly used later, and it plays an important role in
simplifying the discussion of the anomaly.

D. Possible fixed points at strong coupling

Now we argue that for sufficiently large N and small k,
with certain mild physical assumptions, the action SðN;kÞ in
Eq. (10) can flow to a conformally invariant fixed point
under RG, so that these SLs can be a critical quantum
liquid.
We will explore SðN;kÞ piece by piece, and we start by

completely ignoring the WZW term in Eq. (10) and only
considering S0. When N is sufficiently large, S0 is expected
to be able to describe an order-disorder transition of the
matrix n.
One way to see this is to look at the saddle point

corresponding to the S0. The constraint nTn ¼ IN−4 can be
eliminated by introducing an (N − 4)-by-(N − 4) matrix-
valued Lagrangian multiplier α, such that the (Euclidean)
path integral becomes

Z0 ¼
Z

DnDα exp

�Z
d3x

�
−

1

2g

�
· ½∂μnji∂μnji − iαijðnkjnki − δijÞ�

�

¼
Z

DnDα exp

�Z
d3x
2g

½nkjðδij□þ iαijÞnki�
�
· exp

�
−i
Z

d3x
2g

TrðαÞ
�

¼
Z

Dα exp

�
−
N
2
tr ln ðδij□þ iαijÞ

�
· exp

�
−i
Z

d3x
TrðαÞ
2g

�
; ð17Þ

where □≡ ∂μ∂μ. The Lagrangian multiplier α is intro-
duced in the first step. In the second step we integrate by
parts. In the last step we integrate out n and ignore a
constant multiplicative factor to the path integral, where the
factor of N appears because the index k in the middle line
runs from 1 to N, and trace is taken over both the matrix
indices and the spacetime coordinates.
When N ≫ 1, we expect that the remaining path integral

will be dominated by the configuration of α that satisfies
the saddle-point equation. Assuming an ansatz to the
saddle-point equation with αij ¼ iΔ2δij, where Δ is a
number (not a matrix), the saddle-point equation becomes

1

2g
¼ N

2

Z
d3k
ð2πÞ3

1

k2 þ Δ2
: ð18Þ

Taking the limit N → ∞ while gN is fixed, we find that the
above equation has a solution with nonzero Δ if g is larger
than certain critical value, g0 ∼Oð1=ðNΛÞÞ, where Λ is a
UV cutoff. In this case, sinceΔ ≠ 0, the matrix n acquires a
gap, and the system is in the disordered phase. On the other
hand, when g < g0, the system is in the ordered phase. Note
that the structure of this saddle-point equation is the same
as the usual OðNÞ vector NLSM [104], despite that n is a
matrix.

The above results suggest that the β function for S0 at
sufficiently large N is

βðg̃Þ ¼ −g̃þ β0ðg̃Þ; ð19Þ

where g̃≡ gΛ is the dimensionless coupling. The first term
comes from the engineering dimension of g, and the second
term, β0ðg̃Þ, represents loop corrections. The precise form
of β0ðg̃Þ is hard to obtain even at largeN. In fact, asN → ∞
this model approaches the SOðNÞ sigma model, for which
even the leading correction to the β function requires
summing over all planar diagrams (see, for example,
Ref. [105] for the three-loop result). For us, what is
important is that βðg̃Þ ¼ 0 at g̃ ¼ g̃0 ≡ g0Λ ∼Oð1=NÞ.
Physically, the above discussion suggests that for the

NLSM defined by S0, there is an attractive fixed point at
g̃ ¼ 0, corresponding to the ordered phase where the
symmetry is broken spontaneously. There is also a repul-
sive fixed point at g̃ ¼ g̃0 ∼Oð1=NÞ, corresponding to the
order-disorder transition.
Next, we include the WZW term and consider the full

SðN;kÞ. We will view the WZW term as a perturbation to S0,
and it is expected to contribute a term of the following form
at the leading order to the β function [106]:

δβðg̃Þ ¼ −Ck2g̃5; ð20Þ
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where C is of order 1. It is expected that C > 0, because the
WZW term yields a phase factor in the path integral and
induces destructive interference of the paths, which tends to
prevent g̃ from flowing to a large value, just like the effect
of Haldane’s phase in spin chains [107–109]. To further
understand the effect of this contribution to the β function,
let us first consider cases with k ∼Oð1Þ, which are the main
focus of this paper. At large N, the term Eq. (20) is
negligible when g̃ ∼ 1=N, so it does not affect the order-
disorder transition significantly. The WZW could affect the
nature of the disordered state. For example, for odd k we
know that the disordered state cannot be a trivially gapped
phase because of the nontrivial ’t Hooft anomaly—it has to
be either gapless or spontaneously break some other
symmetry. It is hard to tell exactly what happens in the
disordered regime since we no longer have analytic control.
It then turns out to be useful to consider a different limit

with N → ∞, k → ∞ and k=N2 ¼ α with α ∼Oð1Þ fixed
[110]. Figure 3(a) illustrates several different scenarios. If α
is smaller than some critical value αc, then the repulsive

fixed point at g̃ ¼ g̃0 will be shifted to a larger value, and
another attractive fixed point at g̃ ∼Oð1=NÞ emerges
[111]. Because this attractive fixed point is still weakly
coupled at large N, we expect it to describe a symmetry-
preserving critical state, rather than a gapped or Goldstone
state. The repulsive fixed point then describes the transition
from the critical phase to the symmetry-breaking phase. On
the other hand, if α > αc, the attractive and repulsive fixed
points will collide and annihilate with each other, and the
only fixed point left will be the weakly coupled one with
spontaneously broken symmetry. In other words, with a
smaller k, there is a stronger tendency for the WZW NLSM
to have an attractive fixed point at finite coupling. Although
this conclusion is drawn in the k=N2 ∼Oð1Þ regime, it
seems natural to assume that this trend is qualitatively true
even for k ∼Oð1Þ. Namely, we expect that SðN;kÞ can
describe a critical quantum liquid even for k ¼ 1, if
N ≫ 1. [Note that this nicely corroborates our results that
Sð5;kÞ and Sð6;kÞ have dual descriptions based on USpð2kÞ
and UðkÞ gauge theories, since these gauge theories are
generally expected to have stronger tendency to be critical
(unstable) for small (large) k.] More generally, we propose
that for each k ≠ 0, there exists an integer NcðkÞ that
increases as k increases, such that when N ≥ NcðkÞ, SðN;kÞ
can flow to a conformally invariant attractive fixed point,
corresponding to SLðN;kÞ. The precise form of NcðkÞ is
unknown at this stage [see Fig. 3(b)].
We can gain more confidence about the above arguments,

or conjectures, from WZW sigma models on Grassmannian
manifolds such as Uð2NÞ=UðNÞ ×UðNÞ. Our arguments
can be equally applied in those cases and we conclude that a
strong-coupling attractive fixed point should occur for
sufficiently large N (see also Ref. [112]). Unlike the
Stiefel WZW models, however, the Grassmannian WZW
models are naturally related to various non-Abelian gauge
theories (QCD) in ð2þ 1ÞD [113], which we review in
Appendix D. The rankN in theWZWmodel corresponds to
flavor number in those QCD theories, and it is well known
that a large-flavor QCD does flow to a nontrivial fixed point
in ð2þ 1ÞD. This serves as a nontrivial check of our
arguments on the existence of strong-coupling fixed points.
Also notice that if α happens to be barely above αc (as in

Fig. 3), the RG flow will be slow near the fixed-points-
collision region. This gives a mechanism for the “walking”
of the coupling constant [87] and pseudo-critical behavior
[25,86] of the system.
Recall that SLð5;1Þ is just the DQCP. Later we argue that

SLð6;1Þ is in fact theUð1ÞDSL. As reviewed in Sec. III, these
two states are likely pseudo-critical and critical, respectively.
This implies that for k ¼ 1, 5 < Nc < 6, so we propose that
SðN;kÞ for allN ≥ 6 and k ¼ 1 can still flow to a conformally
invariant fixed point and describe a critical state. (Note that
this proposal is consistent with the symmetry-enforced
gaplessness of these theories, as required by their anomalies.
See Sec. IV C for more details.)

Symmetry breaking

Critical

(a)

(b)

FIG. 3. Fixed point structure and schematic phase diagram of
SLðN;kÞ. In (a), different fixed point structures for different values
of α are shown. There is always an attractive fixed point,
represented by the red circle, which corresponds to the sym-
metry-broken state. The structure of the other fixed points
depends on the relation between α and αc ∼Oð1Þ. The precise
value of αc depends on β0 and C. If α < αc, there are two other
fixed points, a repulsive one represented by the blue circle,
corresponding to an order-disorder transition, and an attractive
one, represented by the yellow circle, corresponding to a stable
critical quantum liquid, i.e., the SL. As α increases and ap-
proaches αc, the blue and yellow fixed points approach each other
and collide when α ¼ αc. When α > αc, the original blue and
yellow fixed points disappear (become complex fixed points
[25,86]). We would like to take α below αc. In (b), a schematic
phase diagram of SLðN;kÞ is shown. For the ðN; kÞ in the critical
regime, it is possible to tune the parameters of the system to yield
a critical quantum liquid, while in the symmetry-breaking regime
this is not possible. The yellow star represents ðN; kÞ ¼ ð6; 1Þ,
i.e., the Uð1Þ DSL, and the black star represents ðN; kÞ ¼ ð5; 1Þ,
the DQCP. The precise boundary between the critical and
symmetry-breaking regimes is currently undetermined.
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To summarize this section, we have proposed the
existence of SLs, whose effective field theories can be
directly formulated in terms of local DOF, given in Eqs. (9)
and (10). These SLs have an interesting symmetry structure
discussed in Sec. IV B, and they are interrelated with a
special cascade structure discussed in Sec. IV C. We argue
that SLðNÞ with N ≥ 6 can flow to a CFT fixed point under
RG. Furthermore, we conjecture that SLðNÞ with N > 6 are
all non-Lagrangian. Putting these compactly, SLs are
cascades of extraordinary critical quantum liquids.

V. N = 6: DIRAC SPIN LIQUIDS

According to the previous discussion, it is readily seen
that the SLðN¼5Þ is special in many ways among all SLs. For
example, its continuous symmetry Ið5Þ ¼ SOð5Þ, which is
qualitatively different from IðNÞ with N ≥ 6, in the sense
that the former has only one connected component, while
the latter has two. In this section, we focus on the more
nontrivial case, i.e., SLðN¼6;kÞ, and we argue that SLðN¼6;kÞ
has a dual description in terms of UðkÞ DSLs, i.e., 4 flavors
of gapless Dirac fermions coupled to a UðkÞ gauge theory.

A. Deriving k= 1 WZW model from QED3

We begin with deriving the Stiefel WZW sigma model,
SðN¼6Þ in Eq. (9), from QED3 with Nf ¼ 4. The derivation
is similar in spirit to that in Ref. [1], although somewhat
more complicated in detail.
We start from the QED3 Lagrangian:

X4
α¼1

ψ̄αiDaψα −
1

2π
Atopda; ð21Þ

where a is the dynamical Uð1Þ gauge field and ψ is the
Dirac fermion. Compared to Eq. (4), here the Maxwell term
of a is suppressed, because it is unimportant for the
current discussion. Also, the last term, −ð1=2πÞadAtop ≡
−ð1=2πÞϵμνλAμ

top∂νaλ, is introduced to keep track of the
conserved flux of a by introducing the probeUð1Þtop gauge
field Atop. The subscript “top” is due to the fact that the
conservation of the current corresponding to this Uð1Þ
symmetry, jμ ¼ ϵμνλ∂νaλ=ð2πÞ, does not rely on the equa-
tions of motion of the theory. For later convenience, here
we introduce the following notation of the generators of the
SUð4Þ flavor symmetry of this theory: σab ≡ 1

2
σa ⊗ σb,

with a, b ¼ 0, 1, 2, 3 but a and b not simultaneously zero.
Here σ0 ¼ I2 and σ1;2;3 are the standard Pauli matrices.
We now consider dynamically breaking the SUð4Þ flavor

symmetry down to ½SUð2Þ × SUð2Þ ×Uð1Þ�=Z2, which is
believed to be the most likely symmetry-breaking pattern
for this theory [114–118]. This introduces an order param-
eter P, defined in the complex Grassmannian manifold
Uð4Þ=½Uð2Þ ×Uð2Þ�, that couples to the Dirac fermions as
an SUð4Þ-adjoint mass:

mPαβψ̄αψβ; ð22Þ

where m is the coupling strength, which physically means
the magnitude of the mass. Now we can formally integrate
out the Dirac fermions and obtain an effective theory in
terms of the P and a fields. One can expand in 1=m and
obtain aUð4Þ=½Uð2Þ × Uð2Þ� sigma model for the P fields.
As shown in Ref. [119], this sigma model comes with a
WZW term with coefficient k ¼ 1. Note that this WZW
term is well defined because the target Grassmannian
manifold has π4 ¼ Z and π3 ¼ 0.
However, this Grassmannian WZW theory is not the end

of the story: the Uð1Þ gauge field is still present and we
expect nontrivial couplings between the gauge field and the
P field. The most important coupling is

a · jSk; ð23Þ

where jSk is the skyrmion current of the P field. The
skyrmion current is well defined because the target
Grassmannian manifold has π2 ¼ Z. The existence of this
coupling is due to that the elementary skyrmion is a fermion
that carries unit gauge charge, which is nothing but the
original Dirac fermion ψ . To see this, let us build up a
simple type of skyrmion by first considering a mass term
that only couples to the first two flavors of Dirac fermions,
ψα¼1;2, i.e., a mass of the form ψ̄Niσi ⊗ ðI2 þ σ3Þψ , where
i ¼ 1, 2, 3 and, hence,N ∈ S2. ThisN field can then form a
standard skyrmion configuration in space. Now this mass
can be extended to an allowed configuration for the P field,
by adding a constant mass for the other two Dirac fermions,
say, ψ̄σ3 ⊗ ðI2 − σ3Þψ , which would not change the
topological properties of the skyrmion. However, it is well
known that this N field has a Hopf term with θ ¼ π in its
effective theory, and the skyrmion is a fermion with gauge
charge 1 [120,121]. Since this is the minimum gauge
charge of the theory, we conclude that the elementary
skyrmion in P field also has gauge charge 1 and is a
fermion; i.e., it is the original Dirac fermion ψ . This
justifies the coupling in Eq. (23).
So the sigma model should be written as

S ¼ SG0½P� þ SG−WZW½P�

þ
Z

d3x

�
a · jSk −

1

2π
Atopda

�
; ð24Þ

where SG0½P� is the NLSM on the Grassmannian manifold
without any topological term, and SG−WZW½P� is the WZW
action on this Grassmannian manifold. The precise expres-
sions of SG0½P� and SG−WZW½P� are unimportant for our
purpose.
Next, notice that the complex Grassmannian Uð4Þ=

½Uð2Þ ×Uð2Þ� is equivalent to the real Grassmannian
SOð6Þ=½SOð4Þ × SOð2Þ�, since SUð4Þ ∼ SOð6Þ, SUð2Þ×
SUð2Þ ∼ SOð4Þ, andUðnÞ ∼Uð1Þ × SUðnÞ (all up to some
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discrete quotients, which do not change the conclusion
here). The real Grassmannian SOð6Þ=½SOð4Þ × SOð2Þ�
can be rewritten as follows: introduce two ortho-
normal SOð6Þ vectors n1 and n2, and rewrite the matrix
field P ¼ −2iðnT1Tabn2Þ · σab, where Tab is the SOð6Þ
generator that corresponds to σab (see Appendix E). The
fact that TT

ab ¼ −Tab means that this rewriting introduces an
SOð2Þgauge redundancy that rotates betweenn1 andn2, i.e.,
there is a dynamical SOð2Þ gauge field, denoted by b, that
couples to n1 and n2. Notice that n ¼ ðn1; n2Þ lives on
nothing but the Stiefel manifold SOð6Þ=SOð4Þ. We have
therefore rewritten the Grassmannian sigma model, SG0½P�,
in terms of an SOð2Þ ¼ Uð1Þ gauge field b, coupled to an
order parameter that lives on the Stiefel manifold
SOð6Þ=SOð4Þ, i.e., S0½n; b�, the NLSM in Eq. (5) with n
minimally coupled to b. So what do the Grassmannian
WZW term and the skyrmion current become in this
representation? Mathematically, our rewriting of the
Grassmannian in terms of an SOð2Þ gauge theory coupled
to a Stiefel manifold corresponds to the fibration

SOð2Þ → SOð6Þ
SOð4Þ →

SOð6Þ
SOð4Þ × SOð2Þ :

The long exact sequence from this fibration leads to two
isomorphisms:

p∶ π4

�
SOð6Þ

SOð4Þ × SOð2Þ
�

→ π4

�
SOð6Þ
SOð4Þ

�
;

β∶ π2

�
SOð6Þ

SOð4Þ × SOð2Þ
�

→ π1½SOð2Þ�: ð25Þ

This means that any nontrivial winding in π4 and π2
of the Grassmannian should be fully encoded in the
corresponding homotopy groups of the Stiefel and
SOð2Þ, respectively. Since the Grassmannian WZW term
comes from π4fSOð6Þ=½SOð4Þ × SOð2Þ�g, it should
simply become the WZW term of the Stiefel manifold
[which comes from π4½SOð6Þ=SOð4Þ�], given by Eq. (6).
The Grassmannian skyrmion current comes from
π2fSOð6Þ=½SOð4Þ × SOð2Þ�g, so it should simply become
the flux current of the SOð2Þ gauge theory [which comes
from π1½SOð2Þ�]:

jSkμ ¼ 1

2π
ϵμνλ∂νbλ: ð26Þ

The complete theory in Eq. (24) can now be written as

S ¼ S0½n; b� þ Sð6ÞWZW½n; b�

þ
Z

d3x

�
1

2π
adb −

1

2π
Atopda

�
: ð27Þ

Now integrating out the a gauge field, the b gauge field will
be set to b ¼ A. The only IR degrees of freedom left is the

Stiefel field n with the action of WZWmodel at k ¼ 1. The
n fields couple to the probe gauge field A as charge-1 fields,
which leads to the interpretation that they correspond to the
monopole operators in the original QED3. This completes
our derivation.
In passing, we mention that in Appendix G we also

explicitly derive some properties regarding the quantum
anomalies of the Uð1Þ DSL and show that they match with
that of SLð6Þ. This provides further evidence for the
equivalence between the Uð1Þ DSL and SLð6Þ.

B. General k: UðkÞ QCD with Nf = 4

The above derivation can be generalized quite readily to
UðkÞ ¼ ½Uð1Þ × SUðkÞ�=Zk gauge theories with Nf ¼ 4

fundamental Dirac fermions. Denote the UðkÞ gauge field
that is minimally coupled to the Dirac fermions by
a ¼ aþ ã1, where a is an SUðkÞ gauge field and ã is a
Uð1Þ gauge field. Note that now the minimal local
monopole carries 2π flux of TrðaÞ ¼ kã, so the coupling
of the theory to Atop takes the form −ð1=2πÞAtopdTrðaÞ.
Also notice that the Dirac fermion carries charge 1=k
under TrðaÞ.
We can now proceed with the same arguments as in the

QED case. First we introduce a mass operator on
Grassmannian SOð6Þ=½SOð4Þ × SOð2Þ�, which is a color
singlet and SUð4Þ adjoint. Then we integrate out all Dirac
fermions. This gives a Grassmannian sigma model with a
WZW term, which is at level k because of the color
multiplicity of the Dirac fermions. There is also a skyrmion
term like Eq. (23) from each color, but with a therein
replaced by TrðaÞ, and with a coefficient 1=k, since the
Dirac fermions carry gauge charge 1=k under TrðaÞ.
Summing over all colors gives precisely TrðaÞ · jSk. The
remaining UðkÞ gauge field splits into an SUðkÞ and Uð1Þ
part. The SUðkÞ gauge field now does not couple to any IR
degrees of freedom, so we expect it to flow to strong
coupling and eventually confine (and be gapped). TheUð1Þ
part can be analyzed in the same way as we did for QED. In
the end we again obtain a Stiefel WZW sigma model, now
at level k.
Therefore, we propose that SLð6;kÞ and a UðkÞ DSL are

dual. In passing, we note that a UðkÞ DSL is proposed to
arise in a spin-k=2 system [122].

VI. QUANTUM ANOMALY OF SLðN;kÞ

The above derivation of the effective theory of SLð6;kÞ
from Dirac spin liquids should really be viewed as at the
kinematic level; i.e., this derivation does not guarantee that
these two theories have identical IR dynamics. In fact,
rigorously showing that two theories have identical IR
dynamics is generally formidably challenging.
Now we investigate the kinematic aspects of the SLs in

greater detail, by analyzing the quantum anomaly of SLðNÞ

for general N ≥ 5. The results for SLðN;kÞ can be readily
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obtained from those for SLðNÞ by viewing the former as k
copies of the latter. The anomaly takes the form of an
invertible topological response term in ð3þ 1ÞD spacetime,
characterizing a SPT phase whose boundary can host our
physical SLðNÞ. In principle, the anomaly can be calculated
directly from the action of SðNÞ, but in practice this appears
to be quite complicated. Instead, we show in this section
that the anomaly of SLðNÞ is essentially fixed by the phase
diagram, or, more precisely, by the cascade structure
discussed in Sec. IV C.
Below we first treat the continuous symmetry of SLðNÞ to

be SOðNÞ × SOðN − 4Þ, and derive the topological
response function corresponding to the full anomaly
associated with the entire symmetry of the theory, i.e.,
including both this continuous and the discrete symmetries.
For N odd, this treatment is faithful and complete. For N
even, the symmetry SOðNÞ × SOðN − 4Þ is larger than the
faithful IðNÞ ¼ ½SOðNÞ × SOðN − 4Þ�=Z2 symmetry pos-
sessed by SLðNÞ. Physically, one can think of this symmetry
enlargement as from some trivially gapped local d.o.f. that,
e.g., transform as an SOðNÞ vector and SOðN − 4Þ singlet.
The risk of working with the larger SOðNÞ × SOðN − 4Þ
symmetry is that we may miss some anomalies that are
nontrivial only for the original IðNÞ group. In the latter part
of this section, by analyzing the properties of the monop-
oles of the IðNÞ symmetry, we derive the anomaly asso-
ciated with the faithful IðNÞ symmetry for all N ≥ 5.
However, there we will not explicitly derive the anomaly
associated with the discrete symmetries, which is left for
future work.
The final result with the continuous symmetry taken to

be the enlarged SOðNÞ × SOðN − 4Þ is given by Eq. (35).
Some of the physical implications of this anomaly can be
read off from Table V. If the continuous symmetry is taken
to be the faithful IðNÞ, for even N the monopole corre-
sponding to the IðNÞ symmetry of SLðNÞ has the structure
given by root 3 of Eq. (40). One important implication of
this improved characterization of the anomaly is that for
even N, SLðN;2Þ is still anomalous, and SLðN;4Þ has no IðNÞ
anomaly. This is to be contrasted from Eq. (35), which
implies that SLðN;2Þ is anomaly-free for any N.
To derive Eq. (35), we take the following three steps. We

first put the system on an orientable manifold and also
ignore the C symmetry. Next, we include the C symmetry,
but still stay on an orientable manifold. This restriction to
orientable manifolds means that we are not considering the
full anomaly associated with the orientation-reversal (time-
reversal and reflection) symmetries. Finally, we put the
theory on a possibly unorientable manifold (still with C
taken into account), in order to fully characterize the
anomaly associated with all symmetries. Recall that from
the discussion in Sec. IV B, it is sufficient to consider C and
T , and the results will already capture anomalies associated
with R.

A. SOðNÞ × SOðN − 4Þ on orientable manifolds

We first consider orientable 4-manifolds X4, with van-
ishing first Stiefel-Whitney class wTM

1 ¼ 0 (mod2). We
shall also neglect charge conjugation symmetry for now. A
general response term in 4d takes the form

Sbulk ¼ iπ
Z
X4

ða1wSOðNÞ
4 þ a2w

SOðN−4Þ
4

þ a3w
SOðNÞ
2 wSOðN−4Þ

2 þ a4w
SOðNÞ
2 wSOðNÞ

2

þ a5w
SOðN−4Þ
2 wSOðN−4Þ

2 þ a6wTM
2 wTM

2 Þ; ð28Þ

where a1;2;3;4;5;6 ∈ f0; 1g are unknowns, and w2 ∈
H2ðX4;Z2Þ and w4 ∈ H4ðX4;Z2Þ are the second and
fourth SW classes of the corresponding bundles [SOðNÞ,
SOðN − 4Þ and tangent bundles], respectively. The prod-
ucts among the SW classes here and below all refer to the
cup product. The physical meanings of various of these
topological response terms are given in Table V.
We now try to fix the unknown coefficients in the above

expression. We do not attempt to directly gauge the SLðNÞ
and compute the anomaly. Instead, we shall use two simple
facts due to the cascade structure among the SLs discussed
in Sec. IV C.
(1) If the SOðNÞ × SOðN − 4Þ symmetry is broken

to SOð5Þ ⊂ SOðNÞ, the anomaly becomes simply

iπ
R
wSOð5Þ
4 . Namely, if we set wSOðN−4Þ

2 and wSOðN−4Þ
4

to trivial, wSOðNÞ
2 ¼ wSOð5Þ

2 and wSOðNÞ
4 ¼ wSOð5Þ

4 , the

anomaly term should become just wSOð5Þ
4 . This

comes from the fact (as reviewed in Sec. III A) that
SLð5Þ corresponds to the DQCP and has the simple
w4 anomaly.

(2) If the SOðNÞ × SOðN − 4Þ symmetry is broken to
SOð4Þ × SOðN − 4Þ0, where SOð4Þ ⊂ SOðNÞ and
SOðN − 4Þ0 is a combination of SOðN − 4Þ ⊂
SOðNÞ and the original SOðN − 4Þ, then there is
no anomaly left since the theory admits a simple
ordered state (see also Sec. IVA for more details).

This means that if we setwSOðNÞ
2 ¼wSOð4Þ

2 þwSOðN−4Þ0
2

and wSOðN−4Þ
2 ¼ wSOðN−4Þ0

2 , the anomaly should
vanish.

It turns out that the above two conditions unambiguously
fix Sbulk to be

Sbulk ¼ iπ
Z
X4

ðwSOðNÞ
4 þ wSOðN−4Þ

4 þ wSOðNÞ
2 wSOðN−4Þ

2

þ wSOðN−4Þ
2 wSOðN−4Þ

2 Þ: ð29Þ

To show this, we use the facts that (a) if SOðNÞ symmetry

is broken to SOðN −mÞ × SOðmÞ, then wSOðNÞ
4 ¼

wSOðN−mÞ
4 þ wSOðmÞ

4 þ wSOðN−mÞ
2 wSOðmÞ

2 , and (b) wSOðnÞ
4 ¼0

for n ≤ 4.
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B. Charge conjugation

We now consider the C symmetry, which is a Z2

symmetry that is improper (orientation reversing) in both
the SOðNÞ and SOðN − 4Þ spaces. Upon including this
improper Z2 symmetry, the probe SOðNÞ × SOðN − 4Þ
gauge field will be enhanced to an OðNÞ ×OðN − 4Þ
bundle, with the restriction

wOðNÞ
1 ¼ wOðN−4Þ

1 ðmod 2Þ; ð30Þ

where w1 is the first SW class of the corresponding bundle.
This equation states that an improper rotation in the OðNÞ
space is also improper in OðN − 4Þ.
To study the anomaly, we utilize the simple fact that

OðNÞ ⊂ SOðN þ 1Þ. So the anomaly of the OðNÞ ×
OðN − 4Þ bundle in the SðNÞ theory is completely fixed
by the known anomaly of the SOðN þ 1Þ × SOðN − 3Þ
bundle in the SðNþ1Þ theory.
To be concrete, let us start from the SðNþ1Þ theory, and

condense the component hn11i ¼ 1—as discussed in
Sec. IVA, this leads to the SðNÞ theory. The condensate
breaks the SOðN þ 1Þ × SOðN − 3Þ symmetry down to
½SOðNÞ × SOðN − 4Þ�⋊ZC

2 , which is a subgroup of
OðNÞ ×OðN − 4Þ. Now starting from the SOðN þ 1Þ ×
SOðN − 3Þ anomaly in Eq. (29), we can obtain the anomaly
associated with the OðNÞ ×OðN − 4Þ bundle as follows.
First we split the bundles SOðN þ 1Þ → Oð1ÞA ×OðNÞ
and SOðN−3Þ→Oð1ÞB×OðN−4Þ [remember Oð1Þ ∼ Z2],
with the condition that

wOð1ÞA
1 ¼ wOðNÞ

1 ¼ wOð1ÞB
1 ¼ wOðN−4Þ

1 ðmod 2Þ: ð31Þ

The first and last equal signs come from the SOðN þ 1Þ ×
SOðN − 3Þ “parent” group, and the second equal sign
comes from the fact that the condensate hn11i forces the
identification of Oð1ÞA and Oð1ÞB. This gives rise to the
restriction Eq. (30). In the following we shall denote
the common w1 of these bundles to be simply w1. Now
take the terms in Eq. (29) and apply the Whitney product
formula:

wSOðNþ1Þ
4 → wOðNÞ

4 þ w1w
OðNÞ
3 ;

wSOðN−3Þ
4 → wOðN−4Þ

4 þ w1w
OðN−4Þ
3 ;

wSOðNþ1Þ
2 → wOðNÞ

2 þ w2
1;

wSOðN−3Þ
2 → wOðN−4Þ

2 þ w2
1: ð32Þ

From the Wu formula we have
R
wOðNÞ
1 wOðNÞ

3 ¼R
Sq1ðwðOðNÞÞ

3 Þ ¼ R wTM
1 wOðNÞ

3 ¼ 0 (mod2) on orientable
manifolds, where Sq1 is the Steenrod square operation.
After some algebra we obtain the following anomaly:

Sbulk ¼ iπ
Z
X4

½wOðNÞ
4 þ wOðN−4Þ

4 þ wOðNÞ
2 wOðN−4Þ

2

þ ðwOðN−4Þ
2 Þ2 þ w2

1ðwOðNÞ
2 þ wOðN−4Þ

2 Þ�: ð33Þ

In particular, for N ¼ 6, the above anomaly agrees with
an explicit computation for the Uð1Þ Dirac spin liquid in
Ref. [92]. This further strengthens the support for the
equivalence between SLð6Þ and the Uð1Þ DSL.

C. Unorientable manifolds

We now consider the anomaly on possibly unorientable
manifolds. As discussed in Sec. IVA, an orientation-
reversing symmetry (such as time reversal) should also
be orientation reversing in either the SOðNÞ or SOðN − 4Þ
space (but not both). This means that we should again
consider an OðNÞ ×OðN − 4Þ bundle as we did for charge
conjugation, but now the restriction Eq. (30) is modified:

wOðNÞ
1 þ wOðN−4Þ

1 þ wTM
1 ¼ 0 ðmod 2Þ: ð34Þ

So it is now meaningful to ask which w1’s participate in the
anomaly terms like Eq. (33)—from Eq. (34) there are two
linearly independent ones.
We now again take advantage of two facts due to the

cascade structure among the SLs, as discussed in Sec. IVA.
(1) If we reduce the theory to Sð5Þ through a set of

condensation, so that theOðN − 4Þ gauge symmetry
is completely broken and OðNÞ is broken to Oð5Þ,
the resulting theory is known to have the anomaly

iπ
R
wOð5Þ
4 , with the restriction wOð5Þ

1 ¼ wTM
1 (mod2).

(2) We can enter a completely ordered phase by con-
densing the first N − 4 rows of the order parameter.
This leaves behind an Oð4Þ ×OðN − 4Þ0 bundle
[OðN − 4Þ0 being a combination of an OðN − 4Þ ⊂
OðNÞ and the originalOðN − 4Þ] with the restriction
wOð4Þ
1 þ wTM

1 ¼ 0 (mod2). The anomaly should
completely vanish for this bundle.

One can check that there is only a single anomaly that
satisfies the above two conditions, and reduces to Eq. (33)
on orientable manifolds [123]:

Sbulk ¼ iπ
Z
X4

½wOðNÞ
4 þ wOðN−4Þ

4 þ wOðNÞ
2 wOðN−4Þ

2

þ ðwOðN−4Þ
2 Þ2 þ ðwOðN−4Þ

1 Þ4

þ ðwOðN−4Þ
1 Þ2ðwOðNÞ

2 þ wOðN−4Þ
2 Þ�: ð35Þ

It is relatively easy to see that this anomaly satisfies
condition (1). To verify condition (2), the derivation goes
as follows. We split the OðNÞ bundle to Oð4Þ ×OðN − 4Þ
and identify the OðN − 4Þ ⊂ OðNÞ with the original
OðN − 4Þ. The SW classes of OðNÞ split according to
Whitney product formula. This leads to the following
anomaly for the Oð4Þ ×OðN − 4Þ bundle:
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iπ
Z
X4

½wOð4Þ
1 wOðN−4Þ

3 þ wOðN−4Þ
1 wOð4Þ

3

þ wOð4Þ
1 wOðN−4Þ

1 wOðN−4Þ
2 þ ðwOðN−4Þ

1 Þ4

þ ðwOðN−4Þ
1 Þ2wOð4Þ

2 þ ðwOðN−4Þ
1 Þ3wOð4Þ

1 �; ð36Þ

with the restriction wOð4Þ
1 ¼ wTM

1 (mod2). We now notice
that these SW classes are not completely independent.
There are several useful (mod2) relations, valid when
integrated over X4:

0 ¼ Sq1ðwOðN−4Þ
1 wOð4Þ

2 Þ þ wTM
1 wOðN−4Þ

1 wOð4Þ
2

¼ ðwOðN−4Þ
1 Þ2wOð4Þ

2 þ wOðN−4Þ
1 wOð4Þ

1 wOð4Þ
2

þ wOðN−4Þ
1 wOð4Þ

3 þ wTM
1 wOðN−4Þ

1 wOð4Þ
2

¼ ðwOðN−4Þ
1 Þ2wOð4Þ

2 þ wOðN−4Þ
1 wOð4Þ

3 ;

0 ¼ Sq1 · Sq1ðwOðN−4Þ
2 Þ

¼ Sq1ðwOðN−4Þ
3 þ wOðN−4Þ

1 wOðN−4Þ
2 Þ

¼ wOð4Þ
1 wOðN−4Þ

3 þ wOð4Þ
1 wOðN−4Þ

1 wOðN−4Þ
2 ;

0 ¼ ðwOðN−4Þ
1 Þ4 þ Sq1½ðwOðN−4Þ

1 Þ3�
¼ ðwOðN−4Þ

1 Þ4 þ wOð4Þ
1 ðwOðN−4Þ

1 Þ3: ð37Þ

These relations come from several properties of the
Steenrod square Sq1: Sq1x ¼ wTM

1 x for x ∈ H3ðX4;Z2Þ,
Sq1wOðnÞ

1 ¼ ðwOðnÞ
1 Þ2, Sq1wOðnÞ

2 ¼ wOðnÞ
1 wOðnÞ

2 þ wOðnÞ
3 ,

Sq1ðx ∪ yÞ ¼ ðSq1xÞ ∪ yþ x ∪ Sq1y, Sq1 · Sq1 ¼ 0, as

well as the (mod2) restriction wOð4Þ
1 þ wTM

1 ¼ 0. The
remnant anomaly Eq. (36) vanishes upon plugging in these
relations, as promised. Furthermore, one can check that
Eq. (35) is the unique anomaly that satisfies the above
properties due to the cascade structure and reduces to
Eq. (33) on orientable manifolds.
We therefore conclude that Eq. (35), together with the

restriction Eq. (34), forms the complete anomaly of our
theory.

D. Anomaly for the faithful IðNÞ symmetry from
monopole characteristics

In the above we have derived the anomaly of the SLs by
taking its continuous symmetry to be SOðNÞ × SOðN − 4Þ.
As alluded before, this treatment is complete for oddN. For
even N, this symmetry is larger than the faithful IðNÞ
symmetry, and we may miss some anomalies by just
looking at the enlarged symmetry. In this section, we
derive the anomaly associated with the faithful IðNÞ

symmetry for even N. We will see that the IðNÞ anomaly
of the SLs can still be unambiguously pinned down from
the cascade structure. Interestingly, although the analysis in
the previous sections indicates that SLðN;2Þ is anomaly-free,

here we find that for evenN, if the faithful IðNÞ symmetry is
properly taken into account, SLðN;4Þ is anomaly-free, but
SLðN;2Þ is still anomalous. In the following discussion we
mainly focus on anomalies that involve the continuous
symmetries, and we leave the full anomaly (for example, on
unorientable manifolds) to future works.
Our approach is to consider the ð3þ 1ÞD SPT whose

boundary can host the SL, gauge the IðNÞ symmetry of this
SPT, and use the properties of the IðNÞ monopoles as a
characterization of the SPT. The bulk-boundary correspon-
dence due to anomaly inflow indicates that this is also a
characterization of anomaly of the SL. This approach is a
generalization of the one used in the study of symmetry-
enriched Uð1Þ quantum spin liquids [54–57]. Note that
since the properties of the monopoles capture the properties
of the ’t Hooft lines of the corresponding IðNÞ gauge theory,
the discussion here can be equivalently phrased in terms of
the ’t Hooft lines. However, we will use the language of the
monopoles. Here we focus on the case with an even N, and
in Appendix F 2 we apply this approach to odd N to
reproduce the results obtained before.
To start, let us ask what is the fundamental monopole of

an IðNÞ gauge theory, where by “fundamental” we mean
that all dyonic excitations can be viewed as a bound state of
certain numbers of such a fundamental monopole and the
pure gauge charge. Naively, one might expect that there are
two types of fundamental monopoles: the SOðNÞ monop-
ole and the SOðN − 4Þ monopole. However, due to the
locking of the Z2 centers of the SOðNÞ and SOðN − 4Þ
symmetries, those are not the fundamental monopole.
Instead, the fundamental monopole can be viewed as a
bound state of half of an SOðNÞ monopole and half of an
SOðN − 4Þ monopole. More explicitly, denote the field
configuration of a unit Uð1Þ monopole by AUð1Þ, whose
precise expression is unimportant, and a particular reali-
zation is given in Ref. [63]. Write the SOðNÞ and
SOðN − 4Þ gauge fields as ASOðNÞ ¼ AL

aTL
a and ASOðN−4Þ ¼

AR
aTR

a , with fTL
ag and fTR

ag the generators of SOðNÞ
and SOðN − 4Þ, respectively. For example, TL

12 generates
the SOðNÞ rotations in the (1,2) plane, TR

34 generates the
SOðN − 4Þ rotations in the (3,4) plane, etc. A fundamental
IðNÞ monopole can be realized by the following field
configuration:

AL
12 ¼ AL

34 ¼ AL
56 ¼ � � �AL

N−1;N

¼ AR
12 ¼ AR

34 ¼ AR
56 ¼ � � �AR

N−5; N−4 ¼
AUð1Þ
2

: ð38Þ

That is, this IðNÞ monopole is obtained by embedding half-
Uð1Þ monopoles into the maximal Abelian subgroup of
IðNÞ. This configuration breaks the continuous IðNÞ sym-
metry to ½SOð2ÞN−2�=Z2. So it is convenient to denote a
general excitation in this IðNÞ gauge theory by the following
excitation matrix:
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�
q
m

�
s
¼
�

qL12 qL34 � � � qLN−1;N qR12 qR34 � � � qRN−5;N−4

mL
12 mL

34 � � � mL
N−1;N mR

12 mR
34 � � � mR

N−5;N−4

�
s

; ð39Þ

where the first (second) row represents the electric (mag-
netic) charges of this excitation under AL;R

ij , s ¼ 0 (mod2)
[s ¼ 1 (mod2)] represents that this excitation is a boson
[fermion], and the vertical line separates the charges related
to the original SOðNÞ and SOðN − 4Þ subgroups of IðNÞ.
The fundamental monopole has m ¼ ð1

2
; 1
2
;…; 1

2
Þ, and its q

and s will characterize the corresponding SPT.
There are multiple constraints on the possible excitation

matrices that a consistent theory should satisfy. For
instance, a pure gauge charge should have an excitation
matrix such thatm ¼ 0, and all entries of q are integers that
sum up to an even integer, such as q ¼ ð1; 0; 0;…; 0; 1Þ.
Another important constraint is the Dirac quantization
condition, which in this case states that two excitations
with excitation matrices ðq1m1

Þ
s1

and ðq2m2
Þ
s2

should satisfy

q1 ·m2 − q2 ·m1 ∈ Z. As a sanity check, consider a fun-
damental monopole with m ¼ ð1

2
; 1
2
;…; 1

2
Þ as above, and

an elementary pure gauge charge with m ¼ 0 and
q ¼ ð1; 0; 0;…; 0; 1Þ; we see that the Dirac quantization
condition is indeed satisfied. This actually explains why the
above configuration of the fundamental monopole is valid
in this theory. Other constraints come from the C,R, and T
symmetries, as well as the fact that the original theory has
an IðNÞ gauge structure (see Appendix F for more details).
Taking all these constraints into account, as shown in

Appendix F, there are only very few classes of distinct types
of SPTs. In particular, if N ¼ 2 (mod4), the structures of
fundamental monopoles can be classified as Z2 × Z2 × Z4,
where the three generators, or “roots,” are given by

root1∶

 
0 0 � � � 0 0 0 � � � 0

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

!
f

;

root2∶

 
0 0 � � � 0 0 0 � � � 1

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

!
b

;

root3∶

 
1
4

1
4

� � � 1
4

− 1
4

− 1
4

� � � − 1
4

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

!
b

: ð40Þ

For N ¼ 0 (mod4), the structures of the fundamental
monopoles can be classified as Z2 × Z2 × Z4 × Z2; i.e.,
it has one more Z2 factor compared to the case with N ¼ 2
(mod4). The fundamental monopoles in Eq. (40) are still
the roots for the first Z2 × Z2 × Z4 factor, and the root for
the additional Z2 factor has the following fundamental
monopole:

root4∶

 
0 � � � 0 1

2
1
2

1
2

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

!
b

: ð41Þ

It is useful to derive the properties of the SOðNÞ and
SOðN − 4Þ monopoles from these fundamental IðNÞ
monopoles. The results are listed in Table I, and the details
of the derivation can be found in Appendix F. It is
interesting to notice that the results for N ¼ 2 (mod4),
N ¼ 0 (mod8), and N ¼ 4 (mod4) are all different. It is
known that the spinor representations of SOðNÞ in these
three classes are complex, real, and pseudoreal, respec-
tively [124], which may be related to the difference of the
monopoles in SLs with different N.
The above discussion implies the existence of various

IðNÞ SPTs, and thus also of the IðNÞ anomalies. Which of the
anomalies are compatible with the cascade structure of the
SLs, in particular, the two conditions in Sec. VI C? It is
relatively easy to examine the first condition. Note that
the SOðNÞ monopole breaks the SOðNÞ symmetry to
SOðN − 2Þ. To satisfy the first constraint, this SOðNÞ
monopole should carry a spinor representation of the
remaining SOðN − 2Þ, which means that root 3 or its
inverse must be involved in the anomaly of the SL. It is a bit
more complicated to examine the second condition, and we
leave the details to Appendix F. The result is that only
root 3 or its inverse can satisfy both constraints. Therefore,
we conclude that for even N the IðNÞ anomalies of SLðN;�1Þ
are those of root 3 and its inverse, respectively.
In passing, we mention that the monopole properties of

the Uð1Þ DSL are explicitly derived in Appendix G, which
agree with that of SLð6Þ. This match provides further
evidence for our statement in Sec. V that the Uð1Þ DSL
and SLð6Þ are actually equivalent.

E. Semion topological order from
time-reversal breaking

It is well known [125] that nonperturbative anomalies
(such as those in this work) can sometimes be satisfied by
gapped topological orders in dimension d ≥ ð2þ 1Þ.
However, it is also known that for the N ¼ 5 theory

(the deconfined criticality) the wSOð5Þ
4 anomaly cannot be

matched by a gapped topological order if time-reversal
symmetry is not broken [25]. This statement can be easily
generalized to arbitrary N ≥ 5 using similar arguments as
in Ref. [25]: consider an SOðNÞmonopole, represented as a
unit SOð2Þ ⊂ SOðNÞ monopole in the first two compo-

nents. The wSOðNÞ
4 anomaly requires the monopole to carry
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spinor representation for the remaining SOðN − 2Þ. For a
gapped topologically ordered state, this condition can be
satisfied only by attaching a gapped anyon excitation to the
monopole, with the anyon carrying spinor representation
under SOðN − 2Þ. But an anyon should in general carry
irrep under the entire SOðNÞ, which means that the
SOðN − 2Þ spinor anyon should also carry SOð2Þ charge
q ¼ 1=2. This leads to a nontrivial Hall conductance for the
SOð2Þ, which necessarily breaks time-reversal symmetry.
For N ≥ 9 the same argument applies to the SOðN − 4Þ
symmetry since there is also a wSOðN−4Þ

4 anomaly.
If time reversal is broken, either explicitly or sponta-

neously, then a gapped topological order becomes possible.
For DQCP (N ¼ 5) and Uð1Þ Dirac spin liquid (N ¼ 6), it
is known that the simplest topological order that satisfies
the anomaly is a semion (or antisemion) topological order,
with only one nontrivial Abelian anyon s with exchange
statistical phase eiπ=2 (or e−iπ=2 for antisemion s̄)—
basically each semion sees another semion as a π flux.
We now argue that for any N ≥ 5, the anomaly can be
matched by a semion topological order, in which the
semion s carries spinor representation under both SOðNÞ
and SOðN − 4Þ [for N ¼ 6 “spinor rep” for SOð2Þ here
means charge 1=2]. For simplicity we shall only consider
the SOðNÞ × SOðN − 4Þ symmetry below, neglecting the
charge conjugation symmetry.
Consider an SOð2Þ ⊂ SOðNÞ monopole. Since the

semion carries charge �1=2 under this SOð2Þ, a semion
sees a “bare” monopole as a π flux. To make the monopole
local, one has to attach a semion to the bare monopole to
neutralize its mutual statistics with other semions. Since a
semion carries spinor rep under both SOðNÞ and
SOðN − 4Þ, the monopole now also carries spinor rep
under SOðN − 2Þ ⊂ SOðNÞ and SOðN − 4Þ. Using the
same reasoning, an SOðN − 4Þ monopole will also carry
spinor rep under SOðNÞ and SOðN − 6Þ (the latter only if
N ≥ 9). These features match exactly with the general
anomaly (without time reversal and charge conjugation):

iπ
Z
X4

ðwSOðNÞ
4 þ wSOðN−4Þ

4 þ wSOðNÞ
2 ∪ wSOðN−4Þ

2 Þ: ð42Þ

Notice that compared to Eq. (29), the ðwSOðN−4Þ
2 Þ2 term is

missing from the above anomaly. This is because the ðw2Þ2
term is equivalent to the standardΘ term for the SOðN − 4Þ
gauge field. In the absence of time-reversal symmetry theΘ
angle can be continuously tuned to zero and does not count
as a nontrivial anomaly.

VII. POSSIBLE LATTICE REALIZATIONS
FOR N > 6

In the above we have conjectured, based on various
evidence, that Stiefel liquids with N > 6 and k ¼ 1 exist as
an exotic type of critical quantum field theories. As
quantum field theories they are interesting because of
the possibility that they may be non-Lagrangian, which
means that they cannot be UV completed by any weakly
coupled renormalizable continuum Lagrangian. We now
discuss their relevance to condensed matter physics.
Realizing a SL with N > 6 in a condensed matter system
will be particularly interesting, because it may represent a
critical quantum state that has no “mean-field” description,
not even one with partons, at any scale. In contrast, most
correlated states theoretically constructed so far, at least for
nondisordered phases at equilibrium, do admit some mean-
field description at some energy scale (typically in the UV).
Therefore, our Stiefel liquid states, if realized, will be an
example beyond existing paradigms of quantum phases.
To be concrete, we shall discuss possible realizations of

SLðN>6Þ in two-dimensional lattice spin systems. In
Sec. VII A, we discuss necessary conditions for a SL to
be “emergible,” that is, realizable in some local
Hamiltonian systems. The two important conditions to
be discussed are (1) anomaly matching and (2) dynamical
stability. Subsequently we will discuss some concrete
examples relevant to SLð7Þ. We propose that on a triangular

TABLE I. Properties of the SOðNÞ and SOðN − 4Þ monopoles of the root states for even N. The first three roots apply to all even N,
and root 4 only applies to the case with N an integral multiple of 4. The SOðNÞ monopole breaks the IðNÞ symmetry to
½SOð2Þ × SOðN − 2Þ × SOðN − 4Þ�=Z2, and it always has no charge under the SOð2Þ. Its three corresponding entries represent its
representation under the SOðN − 2Þ, its representation under the SOðN − 4Þ, and its statistics, respectively. The SOðN − 4Þ monopole
breaks the IðNÞ symmetry to ½SOðNÞ × SOðN − 6Þ × SOð2Þ�=Z2, and it always has no charge under the SOð2Þ. Its three corresponding
entries represent its representation under the SOðNÞ, its representation under the SOðN − 6Þ, and its statistics, respectively. For the case
with N ¼ 6, the second entry does not exist for its SOðN − 4Þ monopole. Note that these properties are determined up to attaching pure
gauge charges.

SOðNÞ monopole SOðN − 4Þ monopole

Root 1 (singlet, singlet, boson) (singlet, singlet, boson)
Root 2 (singlet, singlet, fermion) (singlet, singlet, fermion)
Root 3 (spinor, spinor, boson) (spinor, spinor, fermion)
Root 4 with N ¼ 0 (mod8) (singlet, singlet, fermion) (singlet, vector, boson)
Root 4 with N ¼ 4 (mod8) (singlet, singlet, boson) (singlet, vector, fermion)
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lattice, SLð7Þ can naturally arise as a competition (or
intertwinement) between a tetrahedral magnetic order
and the 12-site VBS order, and on a kagome lattice,
SLð7Þ can naturally arise as a competition (or intertwine-
ment) between a cuboctahedral magnetic order and a
VBS order.

A. General strategy

1. Anomaly matching

Given an effective IR field theory (such as our Stiefel
liquids), an important question for condensed matter
physicists is whether it can be realized as the low-energy
theory of some lattice local Hamiltonian system. In general,
it is very hard to definitively answer such questions, since
the space of all local Hamiltonians has infinite dimensions
(corresponding to infinitely many tuning parameters), and
the vast majority of those Hamiltonians are not analytically
solvable.
A new approach to this type of question has emerged in

recent years based on Lieb-Schultz-Mattis (LSM) type of
theorems and ’t Hooft anomaly matching [32–34,36–
39,126]. It has been well known, since Lieb, Schultz,
and Mattis, that certain structures of the lattice Hilbert
space can forbid a trivial (symmetric and short-range
entangled) ground state. For example, if a lattice spin
system has an odd number of S ¼ 1=2 moments per unit
cell, then as long as the SOð3Þ spin rotation and lattice
translation symmetries are unbroken, the ground state must
either be gapless or topologically ordered. More recently, it
has been appreciated that such LSM constraints are
equivalent to certain ’t Hooft anomaly-matching conditions
[127]. Again we use the example with a spin-1=2 per unit
cell, and now focus on (2þ 1)D. If we try to couple the
system to background gauge fields of the SOð3Þ spin
rotation symmetry and the Tx, Ty translation symmetries
(each with a group structure Z) [130], the coupling should
be anomalous, with an anomaly term in one higher
dimension:

iπ
Z
X4

wSOð3Þ
2 xy; ð43Þ

where x; y ∈ H1ðX4;ZÞ are the integer-valued gauge fields
corresponding to the two translation symmetries. There
may also be other anomalies involving lattice rotations,
reflections, and time reversal, depending on the type of the
lattice (we discuss a concrete example in Sec. VII B). The
LSM-like constraints state that the IR theories that emerge
out of such lattice systems should also match the above
anomalies, since anomalies are invariant under RG flow.
This immediately rules out short-range entangled symmet-
ric ground states, since there would be no IR degrees of
freedom to match the anomaly. This also rules out conven-
tional, Landau-Ginzburg-Wilson-Fisher-type of theories

since those theories do not carry any anomaly. The
Stiefel liquids studied in this work do carry nontrivial
anomalies, and it is natural to expect that they can match the
LSM anomalies and emerge in certain situations.
When a critical field theory emerges out of a lattice

system in the IR limit, the local operators in the IR field
theory can all be viewed as some coarse-grained versions of
lattice operators. One way to characterize this coarse
graining is to utilize the fact that operators with low scaling
dimensions are characterized by their symmetry properties.
For example, in the Ising model the lattice spin Sz coarse
grains to the continuum real scalar field ϕ in the Wilson-
Fisher theory, because both operators are odd under the
global Z2 symmetry. More systematically, this coarse
graining is described by an embedding of the symmetries
at the lattice scale GUV to the symmetries of the IR theory
GIR [131]. Typically, GUV includes on-site symmetries like
spin rotation and time reversal, as well as lattice symmetries
like translations and rotations. For the Stiefel liquids, GIR
symmetries include SOðNÞ, SOðN − 4Þ, C,R, T , as well as
the emergent Poincaré symmetry. More formally, this
embedding is characterized by a group homomorphism:

φ∶ GUV → GIR: ð44Þ

As a simple example, when the Z2 Wilson-Fisher theory is
realized from the Ising model near criticality, the lattice
Ising Z2 symmetry is mapped under φ to the Z2 symmetry
of theWilson-Fisher theory. If a Stiefel liquid is realized out
of a spin system, both GUV and GIR will be more
complicated than the Ising-Wilson-Fisher theory, and in
general there are multiple nontrivial group homomor-
phisms φ between GUV and GIR. The natural question
is, which φ, if any, is physically legitimate? The LSM
anomaly-matching conditions provide a strong constraint:
the IR theory contains an anomaly w½GIR�, as described in
detail in Sec. VI. We can now pull back the IR anomaly
using φ, and obtain the corresponding anomaly for the UV
symmetry:

w½GUV� ¼ φ�w½GIR�: ð45Þ

The requirement on φ is that for the IR anomaly discussed
in Sec. VI, such as Eq. (35), the pullback yields exactly
the LSM anomalies, such as Eq. (46) and its various
generalizations.
Anomaly matching has thus been established as a

necessary condition for a low-energy theory to be emer-
gible. Here we shall go one step further and conjecture that
it is also sufficient. This conjecture can be phrased as
follows.

Hypothesis of emergibility: A low-energy theory is
emergible out of a lattice system if and only if its
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anomaly matches with that from the lattice LSM-like
theorems.

Although there is no proof to this statement, there is also
no known counterexample [133]. An indirect piece of
supporting evidence of this conjecture is the existence of
“featureless Mott insulators”: in certain systems such as the
half-filled honeycomb lattice, the ground state is guaran-
teed to be gapless within free-fermion band theory, but
there is no LSM-like constraint, so one may expect that
with strong interactions a trivial state can emerge. Indeed,
trivial states have been theoretically constructed in various
such systems [138–141].
Once we make the above conjecture, the task of find-

ing emergible Stiefel liquids on certain lattice systems
becomes the task of finding appropriate homomorphism,
φ∶GUV → GIR, that pulls back the IR anomaly to the LSM
anomaly.

2. Dynamical stability

The above hypothesis of emergibility based on anomaly
matching is only concerned with whether the IR theory can
emerge at all, but does not make any statement about the
stability of this IR theory, even if it is emergible. In order
for the IR theory to be stable, we require that all GUV-
symmetry-allowed local perturbations to this IR theory are
RG irrelevant.
For Stiefel liquids, although we have argued in Sec. IV

D that all GIR-symmetry-allowed local perturbations are
RG irrelevant, since GUV is much smaller than GIR, in
general there will be operators that are nontrivial under
GIR but trivial under GUV, which may be RG relevant.
Therefore, to avoid discussing unstable states (which are
practically hard to access), we should look for φ that only
allows a small number of relevant perturbations. However,
we do not know the accurate scaling dimensions of
various operators in Stiefel liquids, although some guess-
work can be done based various trends at N ¼ 5 and
N ¼ 6, which have been numerically measured for DQCP
and DSL, respectively. In general, we expect operators in
sufficiently high-rank representations of either SOðNÞ or
SOðN − 4Þ to be irrelevant, but the “critical rank” is hard
to determine. In fact, even for the Uð1Þ DSL (SLð6Þ), it is
still not entirely clear whether various rank-2 operators are
irrelevant or not. These are represented in the QED3

theory as various fermion quartic interactions and 4π
monopoles. We will therefore consider embeddings φ that
disallow low-rank operators (such as vectors) as much as
possible.
More specifically, in the examples to be discussed in this

section, two types of operators will be symmetry disal-
lowed: (1) the n operators, which are vectors under both
SOðNÞ and SOðN − 4Þ—these are believed to be the most
relevant operators based on experience with DQCP and
DSL, and (2) the conserved currents of either SOðNÞ or

SOðN − 4Þ—these operators have scaling dimension two
and will be relevant if symmetry allowed.
In the following we construct some illuminating exam-

ples of lattice realizations of Stiefel liquids, characterized
by the embeddings φ. These are by no means the only ways
to realize Stiefel liquids on lattice systems. Instead, our goal
is to illustrate the possibility of realizing Stiefel liquids in
some lattice systems. We also note that all these realizations
have an SOð3Þ spin rotational symmetry that is embeded
into the SOðNÞ subgroup of GIR, so it suffices to use
Eq. (35) to characterize the anomaly of a SL, for any N.

B. List of LSM-like anomalies in ð2 + 1ÞD
Here we list LSM-like anomalies that can arise in a two-

dimensional lattice spin system, with on-site SOð3Þ and
time-reversal symmetries as well as lattice symmetries. For
simplicity, the lattice symmetry we consider will only
include discrete translations, rotations, and reflections.
First, if there is an odd number of S ¼ 1=2 moments per

unit cell, there is the aforementioned anomaly involving
SOð3Þ and translations:

Str−LSM ¼ iπ
Z
X4

wSOð3Þ
2 xy; ð46Þ

where x; y ∈ H1ðX4;ZÞ are the Ta1 ; Ta2 translation gauge
fields. Likewise, if each spin-1=2moment is also a Kramers
doublet (T 2 ¼ −1), then there should be another anomaly,

ST −LSM ¼ iπ
Z
X4

t2xy; ð47Þ

where t ∈ H1ðX4;Z2Þ is the gauge field for time-reversal
symmetry.
Next, if the location of each spin-1=2 moment is also an

inversion (C2 rotation) center, there is another anomaly:

SI−LSM ¼ iπ
Z
X4

c2ðwSOð3Þ
2 þ t2Þ; ð48Þ

where c ∈ H1ðX4;Z2Þ is a Z2 gauge field associated with
the C2 rotation symmetry. The Z2 nature of the topology of
SOð3Þ and T guarantees that other types of rotations like
C3 will not contribute to anomaly.
Now consider the reflection symmetry Ry; we should

also examine the reflection axis (the line that is invariant
under reflection): we view the reflection axis as a (1þ 1)D
system, with a translation symmetry Ta1 that commutes
with reflection and possibly a C2 rotation that acts like one-
dimensional inversion on the axis. If decorated on the
reflection axis is a spin-1=2 chain, it will have its own
LSM-like anomalies. We will then have the following
anomalies
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iπ
Z
X4

rðwSOð3Þ
2 þ t2Þðxþ cÞ; ð49Þ

where r ∈ H1ðX4;Z2Þ is the gauge field for reflection. The
fact that both time reversal and reflection change the
spacetime orientation means that we also have the follow-
ing restriction:

rþ t ¼ wTM
1 ðmod 2Þ: ð50Þ

If the lattice system has all the above features, the LSM
anomalies add up to

iπ
Z
X4

ðwSOð3Þ
2 þ t2Þ½xyþ c2 þ rðxþ cÞ�: ð51Þ

Note that there are also other LSM constraints that are not
explicitly described above, but are nevertheless contained
in this anomaly formula. For example, there can be
analogous LSM constraints associated with the reflection
symmetry Rx (the reflection symmetry with invariant axis
perpendicular to that of Ry). In Appendix H, we derive
some of these other LSM constraints from Eq. (51). We also
stress that in a given lattice system, there may be multiple
different, say, C2, rotation symmetries. Some of them have
rotation centers hosting an odd number of spin-1=2’s, but
others do not. When the above formula is applied to the
former, the contributions from Eq. (48) should be non-
trivial, while if it is applied to the latter, Eq. (48) should
vanish. In general, the anomalies associated with all these
different C2 centers should be specified separately. But on
C6-symmetric lattices such as triangular and kagome, one
typically only needs to specify one inversion center and the
others will be determined by symmetries. For example,
consider triangular lattice. There are four inversion centers
per unit cell: the C6 center (lattice site) and three C2 centers
(bond center) that are related to each other through C6

rotations. The parity of 2S (S being the spin moment) of the
entire unit cell is given by the sum of the parity on each
inversion center. This means that if we have anomaly

awSOð3Þ
2 xy and bwSOð3Þ

2 c2, where a; b ∈ f0; 1g and c probes
the site-centered inversion, then the anomaly associated
with the bond-centered inversion (probed by c0) will be

given by ðaþ bÞwSOð3Þ
2 ðc0Þ2. For this reason we will only

focus on one inversion center in these lattices.
The above situations [summarized in Eq. (51)] happen

for a variety of 2D lattice system, including square,
triangular, and kagome lattices. (In Appendix H, an
alternative expression for the LSM anomaly on a square
lattice is given. We have checked that all the following
statements about states on a square lattice hold if either the
expression here or the alternative one there is used.) These
are common playgrounds for studying frustrated quantum
magnetism, and we show some examples next.

C. Warm-up: Anomaly matching for DQCP

Given the variety of anomaly terms presented above, it is
rather nontrivial for a theory to exactly match all the
anomalies. Below we show how this works for the DQCP
on square lattice. In Appendix I, we show this for the
slightly more complicated case of Uð1Þ DSL on triangular
lattice. Since these states admit explicit parton mean-field
constructions on the lattices, we expect them to be
emergible and the anomaly matching should go through.
So these exercises serve as a benchmark for the anomaly-
matching approach.
As we reviewed in Sec. III A, the DQCP corresponds to

Sð5Þ, with IR anomaly,

iπ
Z
X4

wOð5Þ
4 ; ð52Þ

together with the restriction wOð5Þ
1 ¼ wTM

1 .
We represent the microscopic symmetry implementa-

tions by their actions on the n field, which for DQCP is
simply a five-component vector. The SOð3Þ spin rotation is
implemented as

n →

�
SOsð3Þ 0

0 I2

�
n: ð53Þ

Time-reversal symmetry acts as

n →

�−I3 0

0 I2

�
n; i → −i: ð54Þ

On square lattice the translation symmetries Tx, Ty are
implemented as (see Fig. 4)

Tx∶ n →

0
BBBBBB@

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

1
CCCCCCA
n;

Ty∶ n →

0
BBBBBB@

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 −1

1
CCCCCCA
n: ð55Þ

As for the lattice rotation, since only the site-centered
inversion (C2) participates in the anomaly, we should just
focus on it:
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C2∶ n →

�
I3 0

0 −I2

�
n: ð56Þ

Finally, for reflection Ry:

n →

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1

1
CCCCCCA
n: ð57Þ

We can now pull back the wOð5Þ
4 anomaly to the physical

symmetries. The calculation proceeds as follows. First,
since none of the microscopic symmetries mixes n1;2;3 with
n4;5, we can decompose theOð5Þ bundle intoOð3Þ ×Oð2Þ,
where

wOð3Þ
1 ¼ tþ xþ y;

wOð2Þ
1 ¼ rþ xþ y;

wOð3Þ
2 ¼ wSOð3Þ

2 þ t2;

wOð2Þ
2 ¼ xyþ c2 þ xrþ cr;

wOð3Þ
3 ¼ Sq1ðwOð3Þ

2 Þ þ wOð3Þ
1 wOð3Þ

2

¼ Sq1ðwSOð3Þ
2 Þ þ ðtþ xþ yÞðwSOð3Þ

2 þ t2Þ; ð58Þ

and all higher SW classes vanish. Notice that we have used
the fact that x, y live inH1ðX4;ZÞ, so x2 ¼ y2 ¼ 0. We also
set cx ¼ cy ¼ ry ¼ 0, based on the physical understanding
that noncommuting crystalline symmetries do not simulta-
neous contribute to the same anomaly term—this can be
seen, for example, from the dimension-reduction approach

[142]. We can then write the wOð5Þ
4 using the Whitney

product formula:

wOð5Þ
4 ¼

X
i

wOð3Þ
i wOð2Þ

4−i

¼ ðwSOð3Þ
2 þ t2Þðxyþ c2 þ xrþ crÞ

þ r½Sq1ðwSOð3Þ
2 Þ þ twSOð3Þ

2 þ t3�
þ ðxþ yÞ½Sq1ðwSOð3Þ

2 Þ þwTM
1 ðwSOð3Þ

2 þ t2Þ�; ð59Þ

where we have used the constraint rþ t ¼ wTM
1 to obtain

the last line. The first line above is exactly what we expect
from LSM constraints from Eqs. (46)–(49), so our task now
is to show that the last two lines vanish. This follows from
the following relations:

rSq1ðwSOð3Þ
2 Þ ¼ wTM

1 rwSOð3Þ
2 þ r2wSOð3Þ

2

¼ trwSOð3Þ
2 ;

rt3 ¼ wTM
1 t3 þ t4 ¼ 0;

wTM
1 ðxþ yÞwSOð3Þ

2 ¼ Sq1½ðxþ yÞwSOð3Þ
2 �

¼ ðxþ yÞSq1ðwSOð3Þ
2 Þ;

wTM
1 ðxþ yÞt2 ¼ Sq1½ðxþ yÞt2� ¼ 0: ð60Þ

D. N = 7: Intertwining noncoplanar magnets
with valence-bond solids

In spin systems, as we reviewed in Sec. III, the DQCP
(SLðN¼5Þ) naturally describes the competition (or intertwin-
ing) between collinear magnetic and valence-bond-solid
orders, while theUð1Þ Dirac spin liquid (SLðN¼6Þ) naturally
describes the intertwining between coplanar magnetic and
VBS orders. The natural extension to the intertwining
between noncoplanar magnetic and VBS orders is the
N ¼ 7 Stiefel liquid state. Below we discuss two lattice
realizations of the SLð7Þ theory, one on triangular lattice and
one on kagome lattice.

1. Triangular lattice

We consider a triangular lattice with an odd number of
half-integer spins per site, so the LSM anomalies are given
by Eqs. (46)–(49). These conditions impose strong con-
straints on the allowed lattice realizations of the N ¼ 7 SL
theory. We now describe an embedding of the microscopic
symmetries to the N ¼ 7 SL theory that matches the
anomaly. We specify the embedding by the symmetry
actions on the SOð7Þ=SOð4Þ field nji, where the SOð7Þ
symmetry acts on the left and the SOð3Þ symmetry acts on
the right.
First, the on-site spin rotation SOsð3Þ symmetry acts as

an SOsð3Þ subgroup of SOð7Þ:

n →

�
SOsð3Þ 0

0 I4

�
n: ð61Þ

FIG. 4. Square lattice and the relevant symmetries. Each filled
red circle represents an odd number of spin-1=2’s. The C2

rotation is around a site that hosts the spins, and the dashed
line is the reflection axis of Ry.
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Next we specify time-reversal symmetry as

n →

�−I3 0

0 I4

�
n; i → −i: ð62Þ

For translations along the three unit vectors Ta1 , Ta2 and
T−a1−a2 (see Fig. 5), we have (we shall use σ

i;j
μ to denote the

μth Pauli matrix acting on the i, j indices)

Ta1∶ n →

0
BBBBB@

I3 0 0

0 exp
�
i 2π
3
σ4;5y

	
0

0 0 exp
�
−i 2π

3
σ6;7y

	

1
CCCCCAn

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA;

Ta2∶ n →

0
BBBBB@

I3 0 0

0 exp
�
i 2π
3
σ4;5y

	
0

0 0 exp
�
−i 2π

3
σ6;7y

	

1
CCCCCAn

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA;

T−a1−a2∶ n →

0
BBBBB@

I3 0 0

0 exp
�
i 2π
3
σ4;5y

	
0

0 0 exp
�
−i 2π

3
σ6;7y

	

1
CCCCCAn

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA: ð63Þ

The C6 ¼ C2 × C3 rotation is implemented as

C6∶ n →

0
BBBBB@

I3 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 −1

1
CCCCCAn

0
B@

0 1 0

0 0 1

1 0 0

1
CA: ð64Þ

Finally, the reflection Ry (preserving a1 but exchanging a2
with −a1 − a2) acts as

Ry∶ n →

0
BBBBB@

I3 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1

1
CCCCCAn

0
B@

0 1 0

1 0 0

0 0 1

1
CA: ð65Þ

The symmetry actions are chosen so that all components of
the nji field are nontrivial under some symmetry action.
This makes the state somewhat stable since the most
fundamental fields are not allowed by symmetry as
perturbations. One can check that the conserved currents
of the SOð7Þ × SOð3Þ symmetry are also forbidden, which
is important since these operators have scaling dimension
two and are relevant. Whether the theory is actually a stable

phase depends on the (yet unknown) relevance or irrel-
evance of composite operators like njinj0i0 .
One can check that the symmetry actions are consistent

withthegroupalgebraandindeedgiveahomomorphism.One
can also check the anomaly-matching conditions as follows.
First,wepull back theSWclasses to thephysical symmetries:

wOð7Þ
1 ¼ t;

wOð7Þ
2 ¼ wSOð3Þ

2 þ t2 þ c2 þ r2 þ rc;

wOð7Þ
4 ¼ ðwSOð3Þ

2 þ t2Þðc2 þ r2 þ rcÞ þ tcrðcþ rÞ;
wOð3Þ
1 ¼ r;

wOð3Þ
2 ¼ xyþ xr: ð66Þ

FIG. 5. Triangular lattice and the relevant symmetries. Each
filled red circle represents an odd number of spin-1=2’s. The C6

rotation is around a site that host the spins, and the dashed line is
the reflection axis of Ry.
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Notice that the restriction wTM
1 ¼ wOð7Þ

1 þ wOð3Þ
1 ¼ rþ t is

satisfied. Now plugging these into the IR anomaly Eq. (35),
we obtain

Sbulk ¼ iπ
Z
X4

½ðwSOð3Þ
2 þ t2Þðxyþ c2 þ xrþ rcÞ

þ ðc2 þ r2 þ rcÞðr2 þ xyþ xrÞ þ r4

þ tcrðcþ rÞ þ r2ðxyþ xrÞ�: ð67Þ
Wenow examine the relations among these terms. Again, we
set ry ¼ cx ¼ cy ¼ 0, since the crystalline symmetries
involved in each product do not commute. So the second
and third lines of the above anomaly become

c2r2 þ cr3 þ tcrðcþ rÞ ¼ ðrþ tÞcrðcþ rÞ
¼ wTM

1 crðcþ rÞ
¼ Sq1ðc2rþ cr2Þ
¼ 0: ð68Þ

Soonly thefirst lineofEq.(67) remains,which isexactlywhat
is required as discussed in Sec. VII B.
How do we think of this N ¼ 7 SL theory on lattice? We

can interpret the nji field as a collection of fluctuating order
parameters, whose nature is decided by their symmetry
properties. The first three rows of the field nji (1 ≤ j ≤ 3),
being a triplet in SOsð3Þ, describe magnetic fluctuations at
the three M points [ðπ; 0Þ, ð0; πÞ, and ðπ; πÞ] in the
Brillouin zone. A possible pattern of symmetry-breaking
order is

hni ∼
�
O3×3

04×3

�
; ð69Þ

where O3×3 is a 3 × 3 orthogonal matrix and 04×3 is a zero
matrix. This describes a noncoplanar magnetic order, with
the expectation of the spin operator Si (i ¼ 1, 2, 3) on the
site r ¼ na1 þma2 (n;m ∈ Z),

hSii ∼Oi1 cos½ðnþmÞπ� þOi2 cosðnπÞ
þOi3 cosðmπÞ; ð70Þ

where the three vectors Oi1; Oi2; Oi3 are by construction
orthonormal. This noncoplanar magnetic order is also
known as the tetrahedral order on triangular lattice.
The theory can also form a VBS order by condensing nji

with 4 ≤ j ≤ 7. By Eq. (63) this VBS order has momentum
K þM, which is the same as the commonly studied 12-site
VBS on triangular lattice.
We therefore conclude that the SLð7Þ theory can naturally

arise as a competition (or intertwinement) between the
tetrahedral magnetic order and the 12-site VBS order on
triangular lattice. The tetrahedral order is known, numeri-
cally, to arise in the J1 − J2 − Jχ model [143], where J1 and

J2 are the nearest and next-nearest neighbor Heisenberg
couplings, respectively, and Jχ is the spin chirality
Si · ðSj × SkÞ. This model, however, explicitly breaks the
time-reversal and reflection symmetries due to the chirality
term. Since time-reversal breaking perturbations are rel-
evant for Dirac spin liquids (SLð6Þ), it may also be relevant
for SLð7Þ. Therefore, to search for SLð7Þ, it may be useful to
find a time-reversal invariant lattice Hamiltonian that
realizes the tetrahedral order, and study the effect of various
perturbations on top of it. We also note that the tetrahedral
order may be realized in higher-spin systems with addi-
tional ðSi · SjÞ2 coupling [144]. So it is also interesting to
explore whether SL physics can arise in those systems. A
smoking-gun signature for the SLð7Þ state is that both the
noncoplanar magnetic and VBS order parameters (i.e., the
21 matrix elements of n) are critical with identical critical
exponents, which is a consequence of the emergent
SOð7Þ × SOð3Þ global symmetry. Similar physics has been
numerically confirmed for the SLð5Þ (i.e., DQCP) [24].

2. Kagome lattice

We now consider a kagome lattice with spin-1=2 per site.
The kagome lattice has the same lattice symmetries as the
triangular. There are three spin-1=2 moments in each unit
cell, so the LSM anomaly involving translation symmetries
is identical to the triangular case. The only essential
difference with the triangular lattice is the lack of spin
moment at the C6 rotation center. So instead of Eq. (51), the
full LSM anomaly on kagome is

iπ
Z
X4

ðwSOð3Þ
2 þ t2Þðxyþ rxÞ: ð71Þ

We now describe a symmetry embedding (a lattice
realization) of the SLð7Þ theory on kagome lattice. The
spin rotation and time reversal act on the first three rows
of n, in the same way as the triangular realization following
Eqs. (61) and (62). The translation symmetries act as (see
Fig. 6)

FIG. 6. Kagome lattice and the relevant symmetries. Each filled
red circle represents an odd number of spin-1=2’s. In this case the
rotation center of C6 does not host any spin. Again, the dashed
line is the reflection axis of Ry.
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Ta1∶ n → n

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA;

Ta2∶ n → n

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA;

T−a1−a2∶ n → n

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA: ð72Þ

The C6 rotation acts as

C6∶ n →

0
BBBBB@

−I3 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1

1
CCCCCAn

0
B@

0 1 0

0 0 1

1 0 0

1
CA: ð73Þ

Finally, the Ry reflection acts the same way as the
triangular case:

Ry∶n →

0
BBBBB@

I3 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1

1
CCCCCAn

0
B@

0 1 0

1 0 0

0 0 1

1
CA: ð74Þ

We can now go through the anomaly calculation in a
similar way as our earlier examples. We shall omit the
intermediate steps here and simply state that the final result
is indeed the required anomaly in Eq. (71).
Similar to the triangular case, we can again interpret this

SLð7Þ theory as a result of competition between non-
coplanar magnetic and VBS orders, now both at momenta
M from Eq. (72). The noncoplanar magnetic order also has
a C6 angular momentum l ¼ 1. This is known as the
cuboctahedral order (more precisely, the cuboc1 order in
the language of Ref. [145]). This order has been numeri-
cally found for the J1 − J2 − J3 Heisenberg model in
certain regimes [146]. Our results motivate further explo-
ration of the phase diagram near the cuboctahedral order,
and see if the SLð7Þ state could be realized. Again, just like
the realization on the triangular lattice, a smoking-gun
signature of the SLð7Þ state is that the noncoplanar magnetic
and VBS order parameters are critical and have identical
critical exponent, due to the emergent SOð7Þ × SOð3Þ
symmetry.

VIII. DISCUSSION

In this paper, based on a nonlinear sigma model defined
on a Stiefel manifold, SOðNÞ=SOð4Þ, supplemented with a
Wess-Zumino-Witten term, we have put forward the theory
of Stiefel liquids, which are a family of critical quantum
liquids that have many extraordinary properties. For exam-
ple, they have a large emergent symmetry, a cascade
structure, and nontrivial quantum anomalies. Some of these
Stiefel liquids are argued to be dual to the well-known
deconfined quantum critical point and Uð1Þ Dirac spin
liquid, and others are conjectured to be non-Lagrangian,
i.e., its corresponding RG fixed point cannot be described
by any weakly coupled mean-field theory at any scale,
which, in particular, means that these states are beyond
parton (mean-field) construction widely used in the study
of exotic quantum phases and phase transitions.
We make some comments on why the “non-Lagrangian”

conjecture for the N ≥ 7 Stiefel liquids may be reasonable.
The most obvious gauge theory candidates for such WZW
fixed points are some kinds of QCD3 with gapless Dirac
fermions coupled to some gauge fields. However, as
we review in Appendix D, typical QCD3 correspond to
WZW theories defined on Grassmannian manifolds
Gð2NÞ=GðNÞ ×GðNÞ, where G can be U; SU;USp; SO.
In fact, this is also why Stiefel liquids with N ¼ 5, 6 do
have gauge theory descriptions, since the corresponding
Stiefel manifolds in these two cases also happen to be
some kinds of Grassmannian: SOð5Þ=SOð4Þ ¼ USpð4Þ=
½USpð2Þ×USpð2Þ� and SOð6Þ=SOð4Þ ¼ SUð4Þ=½SUð2Þ×
SUð2Þ�. For SOðN ≥ 7Þ=SOð4Þ, we do not have such
identification, so the corresponding Stiefel liquids are
not captured by some simple QCD3. We also note the
special role played by the SOðN − 4Þ symmetry in Stiefel
liquids. For N ¼ 6, this SOð2Þ symmetry is realized in the
gauge theory as the flux conservation symmetry of the
dynamical Uð1Þ gauge field. It is not clear how this SOð2Þ
flux conservation symmetry could be generalized to higher
SOðN − 4Þ in different gauge theories. Besides these
constraints from symmetries, the intricate anomaly struc-
tures of the Stiefel liquids discussed in Sec. VI also impose
further nontrivial constraints on its possible renormaliz-
able-Lagrangian description. One possibility is that theN ≥
7 Stiefel liquids can be realized by gauge theories with
significantly lower symmetries in the UV Lagrangians, and
the full IR symmetries emerge through some nontrivial
dynamics. This scenario will be hard to rule out, and if true,
it will likely shed new light on the dynamics of (2þ 1)D
gauge theories.
We mention that the fixed points of some quantum

loop models were also proposed to be non-Lagrangian
[147–149]. The nature of such loop quantum criticality
appears to be very different from those studied in this paper.
For example, they are not Lorentz invariant.
Note that although the most commonly used parton

approach uses canonical bosonic or fermionic partons to
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construct a (noninteracting) mean field, there are also some
parton approaches that use other types of partonic d.o.f., in
particular, ones that are subject to some constraints and are
strongly fluctuating at all scales (see, e.g., Ref. [150]). One
may wonder if the latter constrained-parton-based approach
can lead to a construction to the non-Lagrangian Stiefel
liquids. Although it is not ruled out, we believe this
approach is difficult, and even if it can be achieved, novel
ideas are still needed to make it work. This is true for the
following reasons. (i) As far as we know, all states
constructed with constrained partons ultimately fall into
the paradigm of mean field plus weak fluctuations, but these
(conjectured) non-Lagrangian states are beyond this para-
digm. (ii) More technically, in such an approach, one often
(if not always) encounters Dirac fermions coupled to sigma
fields (i.e., bosonic fields subject to some constraints), but
these sigma fields live in certain Grassmannian manifold,
which is difficult to be converted into a Stiefel manifold
relevant here, unless some nontrivial mathematical facts
can be used, in a way similar to the case of Stiefel liquids
with N ¼ 6.
In Sec. VII, we have proposed an approach based on the

hypothesis of emergibility, which is complementary to the
conventional parton approach, to study quantum phases and
phase transitions. This approach is benchmarked with some
known examples, and then applied to predict that spin-1=2
triangular and kagome lattices can host one of the non-
Lagrangian Stiefel liquids. This approach can also predict
some detailed properties of such lattice realizations of these
Stiefel liquids, such as the quantum numbers of various
critical order parameters with identical scaling exponents.
It may be useful to comment on the parton approach and

compare it with our anomaly-based approach. The parton
approach is explicit, concrete, and relatively easy to
manipulate, and it has led to tremendous success and deep
insights in the study of strongly correlated quantum matter.
However, this parton approach also has some drawbacks.
More specifically, there are two common treatments of a
parton construction, leading to a projected wave function
and an effective gauge theory, respectively. The wave-
function-based treatment starts with an enlarged Hilbert
space of the partons, and performs a projection of a valid
ground state of these partons, in order to return to the
physical Hilbert space. Although the projected wave
function is indeed in the physical Hilbert space, a priori,
it may not describe any ground state of a local Hamiltonian
in the physical Hilbert space, and it is unclear what
universal properties it exhibits—these have to be checked
case by case, say, using numerical calculations. On the
other hand, from the effective gauge theory, it is more
analytically tractable to deduce what ground state it
describes and what universal properties it possesses.
However, a priori, it is unclear whether such an effective
gauge theory can really emerge from the physical Hilbert
space, although it is often assumed so without any rigorous

analytically controlled justification [151]. Our anomaly-
based approach may be more abstract by contemporary
standards, but it is closer to the intrinsic characterization of
the universal many-body physics discussed in the
Introduction, and it directly hinges on the emergibility:
states that fail to satisfy the anomaly-matching condition
are necessarily not emergible, although at this stage we
cannot rigorously prove that states that do satisfy the
anomaly-matching condition must be emergible. We also
note that the parton approach is in fact also essentially an
attempt to verify anomaly-matching between the IR theory
and the microscopic setup, but through an explicit mean-
field-like construction.
Let us also comment on the significance of non-

Lagrangian, or intrinsically nonrenormalizable, theories
specifically in condensed matter physics. Since most
condensed matter systems do have some natural UV
cutoffs, the concept of renormalizability should not play
a fundamental role in condensed matter physics. This
means that we should have a theoretical framework that can
handle both Lagrangian and non-Lagrangian theories—
there should be no intrinsic difference between the two.
However, the fact is that not only do we not have many
tools to analyze non-Lagrangian theories, we did not even
have many serious examples of non-Lagrangian theory
prior to this work. From this perspective, what is really
surprising is how difficult it was to find such non-
Lagrangian examples—this is perhaps rooted in our heavy
reliance on perturbative quantum field theories in the past.
The examples found here may also require and inspire us to
develop new tools to analyze strongly correlated systems in
more intrinsic manners. One example is the problem of
“emergibility,” which was the focus of the latter half of our
paper: the intrinsic nonrenormalizability, or lack of mean-
field construction, forced us to further develop the
anomaly-matching approach which may become useful
for future works on strongly correlated systems in general.
Therefore, even though renormalizability per se is not of
fundamental importance in condensed matter physics,
being able to go beyond renormalizable theories is. Our
work on (likely) non-Lagrangian quantum criticality rep-
resents a step toward this ambitious goal.
We finish this paper with some interesting open ques-

tions that we leave for future work.
(1) Although we have given a derivation of the effective

theory of some of the Stiefel liquids based on the
gauge theoretic descriptions of Dirac spin liquids, it
is desirable to give a more explicit derivation. For
example, it is desirable to explicitly derive the
expression of skyrmion current in Eq. (23) in terms
of the P field. Also, it is nice to show how the WZW
term on the Grassmannian manifold reduces to that
on the Stiefel manifold.

(2) The quantum anomalies of the Stiefel liquids labeled
with an even N have not been fully pinned down.
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It is interesting to finish this anomaly analysis. For
the purpose of studying Stiefel liquids, using their
cascade structure may be sufficient to fully deter-
mine their anomalies, just as what we have done in
this paper. However, we note that deriving the full
quantum anomalies directly based on the WZW
action is also an intriguing theoretical challenge.

(3) Although we have argued that the Stiefel liquids
labeled byN ≥ 6 can flow to a conformally invariant
fixed point under RG, we have not been able to
establish this with a controlled analysis. It is well
motivated to find ways to systematically study the IR
dynamics of the Stiefel liquids. For example, it is
natural to ask if the Stiefel liquid fixed points
predicted in this work can be found in numerical
conformal bootstrap. The large emergent symmetry
group SOðNÞ × SOðN − 4Þ and the likely irrel-
evance of singlet operators may provide some
reasonable starting point for such investigation.
Also, given that the Stiefel liquids are described
by a matrix model, it is interesting to explore if they
have any holographic dual.

(4) The conjecture that the Stiefel liquids withN > 6 are
non-Lagrangian has not been proved. It is important to
prove or falsify it. We expect that the method to prove
or falsify it will necessarily bring in useful general
insights. Also, even if it is falsified, these Stiefel
liquids are still interesting. Relatedly, although awave
function is not strictly necessary for the intrinsic
characterization of the universal physics of a many-
body system, it may be interesting and useful to find a
wave function for these Stiefel liquids.

(5) It is natural to ask whether similar WZW models on
target manifolds other than the Stiefel can lead to
interesting fixed points. The most natural manifolds
are the Grassmannians, which have been studied
[112] and related to various gauge theories [113]
(see also Appendix D). It will be interesting to
either better understand the Grassmannian theories
or to contemplate theories based on other types of
manifolds.

(6) The hypothesis of emergibility has not been proved
rigorously, and it is important to prove or falsify it. If
it can be proved, or at least further justified, it can be
applied to other cases to study other exotic quantum
phases and phase transitions. We expect this ap-
proach to give rise to many more interesting results
and novel insights in the future. If it will be falsified,
it is still very useful to find the correct general rules
that govern the emergibility of a given low-energy
theory for a system.

(7) Perhaps the most important question is whether
some of the critical Stiefel liquids can be realized
in real materials. We have suggested that the N ¼ 7
Stiefel liquid may arise near certain noncoplanar

magnetic orders. Numerically those noncoplanar
orders can arise in some relatively simple lattice
spin models [143,144,146]. It will be fascinating to
explore further in the phase diagram of those
systems and see if the Stiefel liquid can indeed be
found. This may provide valuable guidance toward
ultimate experimental realizations.

(8) We have seen that the theories of the deconfined
quantum critical point and theUð1ÞDirac spin liquid
can be formulated in terms of local d.o.f. It may be
interesting to see if other exotic nonquasiparticle
critical quantum liquids can also be formulated in a
similar way, and such a new formulation may
bring in new insights. For example, can the theory
of a Fermi surface coupled to a Uð1Þ gauge field in
ð2þ 1ÞD be formulated purely in terms of local
d.o.f.? It is likely that such a formulation will
explicitly involve the infinitely many collective
excitations around the Fermi surface, and the ideas
from Ref. [152] may be useful.

ACKNOWLEDGMENTS

We thank Maissam Barkeshli, Zhen Bi, Vladimir
Calvera, Davide Gaiotto, Meng Guo, Chao-Ming Jian,
Theo Johnson-Freyd, Steve Kivelson, John McGreevy,
Subir Sachdev, Cenke Xu, Weicheng Ye, and Yi-Zhuang
You for illuminating discussions. Research at Perimeter
Institute is supported in part by the Government of Canada
through the Department of Innovation, Science and
Industry Canada and by the Province of Ontario through
the Ministry of Colleges and Universities.

APPENDIX A: MORE ON THE PROPOSED
WZW ACTION

In the main text a WZW action for the ð2þ 1ÞD system
of our interest is proposed in Eq. (6). In this appendix, we
present more details on its mathematical aspects.
For any even integer d ≥ 0, we can define a WZW

term for a dþ 1 (spacetime) dimensional system on a
Stiefel manifold VN;N−ðdþ2Þ ≡ SOðNÞ=SOðdþ 2Þ, where
N ≥ dþ 3. An element on this Stiefel manifold can be
parametrized by an N-by-½N − ðdþ 2Þ�matrix, n, such that
its columns are orthonormal, i.e., nTn ¼ IN−ðdþ2Þ. The
corresponding WZW action is

SðN;dÞ
WZW½n� ¼

2π

Ωdþ2

Z
1

0

du
Z

ddþ1x

×
XN−ðdþ2Þ

k1;k2;…;kðdþ2Þ=2¼1

detðñðk1;k2;…;kðdþ2Þ=2ÞÞ; ðA1Þ

where Ωdþ2 is the volume of Sdþ2 with unit radius, and the
N-by-N matrix ñðk1;k2;…;kðdþ2Þ=2Þ is given by
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ñðk1;k2;…;kðdþ2Þ=2Þ ¼ ðn; ∂x1nk1 ; ∂x2nk1 ; ∂x3nk2 ; ∂x4nk2 ;…; ∂xdþ1
nkðdþ2Þ=2 ; ∂unkðdþ2Þ=2Þ; ðA2Þ

where x1;2;…;xdþ1
is the coordinate of the physical spacetime, and nki is the kith column of n [note that the repeated subscripts

ki’s are not summed over in the right-hand side of Eq. (A2)]. That is, the first N − ðdþ 2Þ columns of ñðk1;k2;…;kðdþ2Þ=2Þ is just
n, and its last dþ 2 columns are derivatives of the columns of n arranged in the above way. More explicitly,

detðñðk1;k2;…;kðdþ2Þ=2ÞÞ ¼
1

½N − ðdþ 2Þ�! ϵ
i1i2���iN−ðdþ2Þϵj1j2���jNnj1i1nj2i2 � � �njN−ðdþ2ÞiN−ðdþ2Þ

· ∂x1njN−ðdþ2Þþ1k1∂x2njN−ðdþ2Þþ2k1∂x3njN−ðdþ2Þþ3k2∂x4njN−ðdþ2Þþ4k2 � � � ∂xdþ1
njN−1kðdþ2Þ=2∂unjNkðdþ2Þ=2 ; ðA3Þ

where the ϵ’s are the fully antisymmetric symbols with rank
N − ðdþ 2Þ and N, respectively.
It is straightforward to see that the WZW term

presented in the main text is precisely the special case
of the above one with d ¼ 2, and in the main text we
denote VN;N−4 by VN. Also, it is clear that such a term
can be defined only if d is even, and it is interesting
to compare this observation with the fact that the
form of the homotopy groups of the Stiefel manifold
VN;N−ðdþ2Þ is qualitatively different for even d and

odd d. That is, the first nontrivial homotopy group of
VN;N−ðdþ2Þ is

πdþ2VN;N−ðdþ2Þ ¼
�
Z dþ 2 even or N ¼ dþ 3

Z2 dþ 2 odd and N >dþ 3.
ðA4Þ

The validity of the above WZW term requires it to be the
integral of the pullback of a closed (dþ 2)-form on
VN;N−ðdþ2Þ. The (dþ 2)-form on VN;N−ðdþ2Þ that this
WZW term is associated with is

ω ¼ 1

½N − ðdþ 2Þ�! ϵ
i1i2���iN−ðdþ2Þϵj1j2���jNnj1i1nj2i2 � � � njN−ðdþ2ÞiN−ðdþ2Þ

· dnjN−ðdþ2Þþ1k1 ∧ dnjN−ðdþ2Þþ2k1 ∧ dnjN−ðdþ2Þþ3k2 ∧ dnjN−ðdþ2Þþ4k2 � � � ∧ dnjN−1kðdþ2Þ=2 ∧ dnjNkðdþ2Þ=2 ; ðA5Þ

where the repeated subscripts ki’s are summed over. It can
be shown that the above form is indeed closed [153].
It remains to fix the normalization factor in front of the

WZW term. We start with two observations.
(1) For N ¼ dþ 3, Eq. (A1) is the familiar WZW term

on Sdþ2 with the correct normalization factor.
(2) For N > dþ 3, if we fix the first column of n to a

constant, say n1 ¼ ð1; 0; 0;…ÞT, the proposed
WZW term for VN;N−ðdþ2Þ becomes that for
VN−1;ðN−1Þ−ðdþ2Þ.

Mathematically, fixing the first column of n describes an
inclusion map i∶VN−1;N−d−3 → VN;N−d−2:

nðN−1Þ×ðN−d−3Þ →
�
1 0

0 nðN−1Þ×ðN−d−3Þ

�
: ðA6Þ

This map then induces a homomorphism between the
homotopy groups πdþ2ðVN−1;N−d−3Þ → πdþ2ðVN;N−d−2Þ.
Based on the two observations made above, the normali-
zation factor in Eq. (A1) will be justified if the homomor-
phism πdþ2ðVN−1;N−d−3Þ → πdþ2ðVN;N−d−2Þ induced by i
is an isomorphism. The last statement can be proved using

the long exact sequence of homotopy groups associated
with the fibration,

VN−1;N−d−3 → VN;N−d−2 → SN−1: ðA7Þ

A pictorial consequence of the above argument is that a
“generator” of πdþ2ðVN;N−ðdþ2ÞÞ is given by fixing the
entries of the first N − ðdþ 2Þ − 1 columns of n to be
nji ¼ δji, and letting the last column, which now lives on
Sdþ2 with unit radius, wrap around the Sdþ2 once.
Some properties of the WZW term for the case with

d ¼ 2 are discussed in Sec. IVA, and with minor mod-
ifications many of them also apply appropriately to the case
with a general even d.

APPENDIX B: GAUGE THEORY
DESCRIPTION OF SLðN = 5;kÞ

In this appendix, we show that SLðN¼5;kÞ has a natural
gauge-theoretic description, i.e., a QCD3 theory with
Nf ¼ 2 flavor of fermions interacting with a USpð2kÞ
gauge field. A special case of k ¼ 1, i.e., SLð5Þ or the
DQCP, was already discussed in Ref. [25].
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The global symmetry of the Nf ¼ 2 USpð2kÞ QCD3

theory is USpð2NfÞ ¼ USpð4Þ ≅ SOð5Þ, which is identi-
cal to SLð5;kÞ. The fermions are in the fundamental
representation of the USpð2kÞ gauge group and USpð4Þ
global symmetry [i.e., spinor representation of SOð5Þ]. The
gauge invariant operators with lowest scaling dimensions
shall be the fermion mass terms, which are SOð5Þ vector
and SOð5Þ singlet. The SOð5Þ vector mass can be identified
as the order parameter field n of the NLSM. To see the
relation more explicitly, we can couple the SOð5Þ vector
mass to a SOð5Þ bosonic vector ni, and then integrate out
fermions. This will yield an SOð5Þ NLSM, and the original
USpð2kÞ gauge field is expected to just confine since it
does not couple to any low-energy degrees of freedom.
Moreover, due to the Abanov-Wiegmann mechanism
[120], integrating out fermions also yields a level-k
WZW term of the SOð5Þ vector ni. The level-k comes
from the fact that there are k copies of fermions as the gauge
group is USpð2kÞ. Therefore, we have derived that the
Nf ¼ 2 USpð2kÞ QCD3 theory is dual to SLðN¼5;kÞ.
From the gauge-theoretic description of SLðN¼5;kÞ, we

can gain some intuition about the properties of SL with a
general ðN; kÞ.
(1) Stability.—It is clear that the larger k is, it is

more likely that the QCD3 theory will confine.
Naturally, we expect that this feature will also hold
for N > 5: for a given N there exists a critical kc,
such that the SL can flow into a critical phase
when k ≤ kc.

(2) Neighboring topological order.—By turning on a
time-reversal-breaking singlet mass, the SLðN¼5;kÞ
will become the USpð2kÞs∓1 topological quantum
field theory (TQFT) (the superscript s refers to the
fact that the gauge field is a spin gauge field), which
is dual to the USpð2Þ�k ¼ SUð2Þ�k TQFT. SUð2Þ1
is just the semion topological order discussed in the
main text. In Sec. VI E, we have argued that SLðN;1Þ
with a generalN ≥ 5 can flow to the SUð2Þ�1 TQFT
under a time-reversal-breaking deformation. So it is
possible that the SLðN>5;kÞ will also flow to the
SUð2Þ�k TQFT under appropriate time-reversal-
breaking perturbation.

(3) Higgs descendent.—As shown in Sec. IV B of
Ref. [25], for the case with k ¼ 1, adding a fla-
vor-singlet Higgs field can break the gauge structure
to UðkÞ with k ¼ 1, and the resulting theory is
equivalent to a QED3 coupled to 4 gapless Dirac
fermions, with one of the six monopole operators
added to the Lagrangian; i.e., schematically we have
USpð2Þ þ Higgs ¼ Uð1Þ þmonopole. This is how
the DQCP is related to the Uð1Þ DSL. The argument
there can actually be generalized to any k to show
that USpð2kÞ þ Higgs ¼ UðkÞ þmonopole. This is
nicely compatible with the cascade structure of the

SLs and our results that SLð5;kÞ and SLð6;kÞ can also
be described by USpð2kÞ gauge theory and UðkÞ
gauge theory, respectively.

(4) Microscopic realization.—For a spin-k=2 system,
there is a natural parton construction for the
SLðN¼5;kÞ.
We first fractionalize spin operators into partons,

Si ¼ −
1

4
TrðX†XσiÞ; ðB1Þ

with X being a 2k × 2 matrix:

X ¼
�

ψ†
1 � � � ψ†

k ψ†
kþ1 � � � ψ†

2k

ψkþ1 � � � ψ2k −ψ1 � � � −ψk

�T

: ðB2Þ

Here ψ†
i is the fermion creation operator. X satisfies

the reality condition X� ¼ ΩcXΩs with

Ωc ¼
�

0 Ik
−Ik 0

�
; ΩS ¼

�
0 1

−1 0

�
: ðB3Þ

Here Ik is ak × k identitymatrix. So the spin operators
can be written as Si ¼ − 1

4
TrðΩsXTΩcXσiÞ. It is

apparent that this parton decomposition has a
USpð2kÞ gauge invariance, namely, the spin oper-
ators are invariant under a USpð2kÞ (left) rotation
of X, RX, as RTΩcR ¼ Ωc. On the other hand, the
SOð3Þ spin rotation acts as the USpð2Þ ≅ SUð2Þ
(right) rotation of X. The local constraint of the
parton construction is

XΩsXT ¼ −Ωc; ðB4Þ

or equivalently, ψ†
iψ i ¼ ψ†

iþkψ iþk for i ¼ 1;…; k.
One can further show that the spin operators
defined in Eq. (B1) satisfy ½Si; Sj� ¼ iεijkSk andP

iðSiÞ2 ¼ ðk=2Þ½ðk=2Þ þ 1�.
Therefore, the above parton construction has an

emergent USpð2kÞ gauge structure, and the fer-
mions ðψ1;…;ψkÞ form a USpð2kÞ fundamental.
Putting ψ i fermions into a band structure with two
Dirac cones, we will get the Nf ¼ 2 USpð2kÞ
QCD3, or equivalently, SLð5;kÞ.
So it is natural to look for SLð5;kÞ in a spin-k=2

system. Furthermore, as proposed in Sec. V, SLð6;kÞ
is dual to the Nf ¼ 2 UðkÞ QCD3, so it is also
possible that SLð6;kÞ can emerge in a spin-k=2
system. This was discussed in detail recently
[122]. These observations lead us to further con-
jecturing that it is also true SLðN>6;kÞ can also
emerge in a spin-k=2 system. Indeed, in Sec. VII D,
we have argued that SLð7Þ can emerge in a spin-1=2
system.
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APPENDIX C: FULL QUANTUM ANOMALY
OF THE DQCP

The quantum anomaly of the DQCP, or equivalently,
SLð5Þ, was partially analyzed in Ref. [25], and an anomaly
associated with the SOð5Þ symmetry was found, which is
described by a ð3þ 1ÞD topological response function,

iπ
R
M wSOð5Þ

4 , where M is the closed manifold in which the
ð3þ 1ÞD bulk corresponding to the DQCP lives, and

wSOð5Þ
4 is the fourth Stiefel-Whitney class of the SOð5Þ

gauge bundle that couples to this bulk.
Besides the SOð5Þ symmetry, the DQCP also enjoys a

time-reversal symmetry T , which also contributes to the
anomaly. To understand the full anomaly associated with
both the SOð5Þ and T symmetries, it is useful to enlarge the
SOð5Þ symmetry to Oð5Þ by including the improper Z2

rotation. Then the action of the time-reversal symmetry is a
combination of this improper Z2 rotation and a flip of the
time coordinate. In this appendix, we show that the full
anomaly of the DQCP is described by a ð3þ 1ÞD topo-
logical response function,

S ¼ iπ
Z
M
wOð5Þ
4 ; ðC1Þ

with a constraint wOð5Þ
1 ¼ wTM

1 (mod2), where TM denotes
the tangent bundle of M. This constraint simply indicates
that the improper Z2 rotation of the Oð5Þ symmetry is
accompanied with a flip of the time coordinate. For
notational brevity, in the following we will suppress the
superscript “TM” of a SW class of TM.
To obtain the above result, let us look at the most general

form that the anomaly can take:

S¼ iπ
Z
M
ða1wOð5Þ

4 þa2ðwOð5Þ
2 Þ2þa3w2

1w
Oð5Þ
2 þa4w4

1þa5w2
2Þ;

ðC2Þ

wherewehave used the (mod2) relationswOð5Þ
1 ¼w1,w1w3 ¼

w4
1 þ w2

2 þ w4 ¼ 0, w1w2 ¼ 0, ½wOð5Þ
2 �2¼ðw2þw2

1ÞwOð5Þ
2 ,

Sq1ðwOð5Þ
3 Þ ¼ w1w

Oð5Þ
3 , Sq1 · Sq1ðwOð5Þ

2 Þ ¼ 0, and wOð5Þ
3 ¼

Sq1ðwOð5Þ
2 Þ þ wOð5Þ

1 wOð5Þ
2 to remove some terms.

The above topological response function must
satisfy the following known properties of the DQCP
[25,125,154,155], which help us to deduce the values of
the a’s unambiguously.
(1) As mentioned above, if only the SOð5Þ symmetry is

considered, the anomaly is described by iπ
R
M wSOð5Þ

4 .

In this case, wOð5Þ
4 ¼wSOð5Þ

4 , w1¼0, and wOð5Þ
2 ¼

wSOð5Þ
2 . So Eq. (C2) becomes S ¼ iπ

R
M½a1wSOð5Þ

4 þ
a2½wSOð5Þ

2 �2 þ a5w2
2�, which implies that a1 ¼ 1

and a2 ¼ a5 ¼ 0.

(2) Ignoring the SOð5Þ symmetry and implementing T
by n → −n, there is an anomaly associated with T ,
described by iπ

R
M w4

1. The corresponding bulk is
known as eTmT [54].

In this case, wOð5Þ
4 ¼ w4

1 and wOð5Þ
2 ¼ 0. So

Eq. (C2) becomes S ¼ iπ
R
Mð1þ a4Þw4

1, which
implies that a4 ¼ 0.

(3) Suppose the full symmetry is broken to SOð2Þ × T ,
where the SOð2Þ rotates the first 2 components of n
and T flips its last 3 components, the anomaly is

described by S3 ¼ iπ
R
M w2

1w
SOð2Þ
2 . The correspond-

ing bulk is known as eCmT [54,156].

In this case, wOð5Þ
4 ¼ w2

1w
SOð2Þ
2 and wOð5Þ

2 ¼
wSOð2Þ
2 þw2

1. So Eq. (C2) becomes S ¼
iπ
R
M½ð1þ a3Þw2

1w
SOð2Þ
2 þ a3w4

1�, which implies that
a3 ¼ 0.

In summary, the above three conditions imply that
a1 ¼ 1 and a2 ¼ a3 ¼ a4 ¼ a5 ¼ 0. So the full anomaly
of the DQCP is described by Eq. (C1).

APPENDIX D: WZW MODELS ON THE
GRASSMANNIAN MANIFOLD

½Gð2NÞ=GðNÞ × GðNÞ�
The Grassmannian manifolds ½Gð2NÞ=GðNÞ × GðNÞ�

(with G ¼ U; SU; SO;USp) also have π4½Gð2NÞ=GðNÞ ×
GðNÞ� ¼ Z and π3½Gð2NÞ=GðNÞ ×GðNÞ� ¼ 0, so one can
define (2þ 1)D WZW models on these Grassmannians.
Using the argument in Sec. IV D, we can obtain a similar
phase diagram (at least for large N). Namely, as one tunes
the coupling constant of NLSM, there are three fixed
points: (1) an attractive fixed point of a spontaneous-
symmetry-breaking phase, with the ground state manifold
being ½Gð2NÞ=GðNÞ ×GðNÞ�, (2) a repulsive fixed point
of order-disorder transition, (3) an attractive fixed point of a
critical quantum liquid. The last attractive fixed point is the
Grassmannian version of our proposed SLs. Interestingly,
the Grassmannian WZWmodels have simple candidates of
renormalizable Lagrangian descriptions, i.e., Dirac fer-
mions coupled to non-Abelian gauge fields [113]. More
concretely, we have the following.
(1) The QCD3 theory with Nf ¼ 2N Dirac fermions

coupled to a SUðkÞ gauge field is a UV completion
of the ½Uð2NÞ=UðNÞ ×UðNÞ� NLSM model with a
level k WZW term.

(2) The QCD3 theory with Nf ¼ 2N Majorana fermions
coupled to a SOðkÞ gauge field is a UV completion
of the SOð2NÞ=SOðNÞ × SOðNÞNLSMmodel with
a level k WZW term.

(3) The QCD3 theory with Nf ¼ 2N Dirac fermions
coupled to a USpð2kÞ gauge field is a UV com-
pletion of the USpð4NÞ=USpð2NÞ ×USpð2NÞ
NLSM model with a level k WZW term.
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(iv) The QCD3 theory with Nf ¼ 2N Dirac fermions
coupled to a UðkÞ gauge field is a UV completion of
the SUð2NÞ=SUðNÞ × SUðNÞ NLSM model with a
level k WZW term. (This one is relatively new and
will be discussed more carefully elsewhere.)

One may expect to see this correspondence by using
the trick that appears several times in the paper. We first
couple the color-singlet fermion mass of the QCD3 theory
to a bosonic field that lives on the Grassmannian
Gð2NÞ=GðNÞ ×GðNÞ, and then integrate out fermions.
This will give a NLSM of the bosonic field and will also
generate a WZW term [120]. At last, the gauge field will
confine by itself without doing anything to the
Grassmannian Gð2NÞ=GðNÞ ×GðNÞ WZW models. The
level k (instead of 1) comes from the color multiplicity of
the gauge field. It is worth mentioning if one couples the
fermion mass to a field living on Gð2NÞ=Gð2N −MÞ ×
GðMÞ with M ≠ N, integrating out Dirac fermions will
generate a Chern-Simons term for the gauge field as well.
In this case the gauge field will not confine, and one ends
up with the Gð2NÞ=Gð2N −MÞ × GðMÞ WZW model
coupled to a Chern-Simons gauge field.
We can also compare the global symmetry of the gauge

theories and the Grassmannian WZWmodels. The simplest
one is the last case, where both the gauge theory and the
Grassmannian WZW models have an explicit USpð4NÞ
global symmetry. For the first case, the SUðkÞ gauge theory
has an explicit SUð2NÞ ×Uð1Þ symmetry, and the Uð1Þ
symmetry is carried by the baryon operator. The
Uð2NÞ=UðNÞ ×UðNÞ WZW model has an explicit
SUð2NÞ symmetry, which acts directly on the NLSM field.
The nontrivial part is the Uð1Þ symmetry, which comes
from the topological property of the manifold
π2½Uð2NÞ=UðNÞ ×UðNÞ� ¼ Z. The operator charged
under this topological Uð1Þ symmetry is the skyrmion
creation operator, which is fermionic (or bosonic) if the
level k of the WZW term is odd (or even) [113]. This nicely
matches the statistics of the baryon operator of the SUðkÞ
gauge theory. Similarly, for the second case one can also
match the global symmetry by using π2½SOð2NÞ=SOðNÞ ×
SOðNÞ� ¼ Z2 for N > 2.
The identification of Grassmannian WZW models as the

QCD3 theories further corroborates the existence of SLs as
critical quantum liquids, as discussed in Sec. IV D.

APPENDIX E: EXPLICIT HOMOMORPHISM
BETWEEN THE suð4Þ AND soð6Þ GENERATORS

To be self-contained, in this appendix we present the
explicit homomorphism between the suð4Þ and soð6Þ
generators that is used in this paper.
Recall that the we write the suð4Þ generators as

σab ≡ 1
2
σa ⊗ σb, with a, b ¼ 0, 1, 2, 3 but a and b not

simultaneously zero. Here σ0 ¼ I2 and σ1;2;3 are the
standard Pauli matrices. The correspondence between the
suð4Þ and soð6Þ generators are given as follows:

σ01↔T16; σ02↔T62; σ03↔T12;

σ10↔T54; σ11↔T32; σ12↔T31; σ13↔T63;

σ20↔T53; σ21↔T24; σ22↔T14; σ23↔T46;

σ30↔T34; σ31↔T25; σ32↔T51; σ33↔T56; ðE1Þ

where ðTijÞkl ¼ iðδikδjl − δilδjkÞ is a 6-by-6 matrix, which
generates rotations on the ði; jÞ plane. One can explicitly
check that the above correspondence is indeed a homo-
morphism between the suð4Þ and soð6Þ algebras.

APPENDIX F: IðNÞ ANOMALIES OF SLðNÞ

In this appendix, we present the details of the monopole-
based approach to the anomalies associated with the IðNÞ

symmetry, where IðNÞ ¼ ½SOðNÞ × SOðN − 4Þ�=Z2 for
even N and IðNÞ ¼ SOðNÞ × SOðN − 4Þ for odd N. Our
strategy is to consider ð3þ 1ÞD bosonic IðNÞ SPTs that are
also compatible with the discrete C, R, and T symmetries,
gauge the IðNÞ symmetry, and use the statistics and quantum
numbers of the fundamental IðNÞ monopoles of the result-
ing gauge theory to characterize the SPTwe start with. This
also gives us a characterization and classification of the IðNÞ
anomalies of the ð2þ 1ÞD theories. Note that this is not a
full classification of the anomalies associated with both IðNÞ
and the discrete symmetries, and such a full classification is
expected to be a more refined version of the one pre-
sented here.
The main results are as follows.
(1) If N ¼ 2 (mod4), the SPTs or anomalies are clas-

sified into a Z2
2 × Z4 structure. The fundamental

monopoles of the root states are given by Eq. (F4).
(2) If N ¼ 0 (mod4), the SPTs or anomalies are clas-

sified into a Z3
2 × Z4 structure; i.e., it has one more

Z2 factor compared to the case with N ¼ 2 (mod4).
In addition to fundamental monopoles of the types
given in Eq. (F4), this additional Z2 factor corre-
sponds to one more possible type of the fundamental
monopole, given in Eq. (F5).

(3) If N is odd, the SPTs or anomalies are classified into
a Z5

2 structure. The fundamental monopoles of root
states are listed in Table V.

(4) In all these cases, the statistics and quantum numbers
of the SOðNÞ and SOðN − 4Þ monopoles of the root
states are derived, given by Table II for even N and
Table V for odd N.

(5) In all these cases, we identify anomalies correspond-
ing to theories that are compatible with the cascade
structure of the SLs, as discussed in Sec. IV C. In
particular, two conditions need to be satisfied.
(a) If the symmetry is broken to SOð5Þ, we can

consider the SOð5Þ monopole of the resulting
theory. An SOð5Þ monopole breaks the SOð5Þ
symmetry to SOð2Þ × SOð3Þ. For a SL, the
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SOð5Þ monopole of the resulting theory should
carry no charge under the SOð2Þ but a spinor
representation under SOð3Þ.

(b) If the symmetry of a SL is broken to
½SOð4Þ × SOðN − 4Þ�=Z2, the resulting theory
should have no anomaly.
For even N, we find that only root 3 in

Eq. (F4) and its inverse satisfy both conditions.
For odd N, there is a single anomaly class that
satisfies both conditions, as discussed at the end
of Appendix F 2.

1. Case with an even N

We start the discussion with the case with an even N, as
in this case results not captured by Eq. (35) may arise.
As in the main text, we write the SOðNÞ and SOðN − 4Þ

gauge fields as ASOðNÞ ¼ AL
aTL

a and ASOðN−4Þ ¼ AR
aTR

a ,
respectively, where fTLg and fTLg form the generators
of SOðNÞ and SOðN − 4Þ, respectively. For even N, the

field configuration of a fundamental monopole will be
taken as

AL
12 ¼ AL

34 ¼ AL
56 ¼ � � �AL

N−1;N

¼ AR
12 ¼ AR

34 ¼ AR
56 ¼ � � �AR

N−5;N−4 ¼
AUð1Þ
2

; ðF1Þ

where AL
ij [AR

ij] is the gauge field corresponding to the
generator associated with rotations on the ði; jÞ plane of
SOðNÞ [SOðN − 4Þ] symmetry, and AUð1Þ is the field
configuration of a unit monopole in a Uð1Þ gauge theory,
which can be taken to be of the form in Ref. [63]. Namely,
this monopole is obtained by embedding many half-Uð1Þ
monopoles into the maximal Abelian group of IðNÞ. The
configuration of such a monopole breaks the gauge
symmetry from IðNÞ to ½SOð2ÞN−2�=Z2. So it is convenient
to denote a general excitation in this IðNÞ gauge theory by
the following excitation matrix:

�
q

m

�
s

¼
� qL12 qL34 � � � qLN−1;N qR12 qR34 � � � qRN−5;N−4

mL
12 mL

34 � � � mL
N−1;N mR

12 mR
34 � � � mR

N−5;N−4

�
s

; ðF2Þ

where the first (second) row represents the electric (mag-
netic) charges of this excitation under AL;R

ij , s ¼ 0 (mod2)
[s ¼ 1 (mod2)] represents that this excitation is a boson
[fermion], and the vertical line separates the charges related
to the original SOðNÞ and SOðN − 4Þ subgroups of IðNÞ.
The above fundamental monopole has m ¼ ð1

2
; 1
2
;…; 1

2
Þ,

and its q and s will characterize the corresponding SPT.
Because the statistics of any excitation can be unambig-
uously determined by its q and the statistics of the
fundamental monopole, later we will sometimes suppress
the subscript related to the statistics of this excitation.

In such a theory, the structures of the possible excitations
are constrained by the following conditions.
(1) The pure gauge charges are built up with bosons in

the bifundamental representation of IðNÞ. That is, if
m ¼ 0, then all entries of q are integers that add
up to an even integer. An example of the elementary
pure gauge charge has m ¼ 0 and q ¼
ð1; 0; 0;…; 0; 0; 1Þ.

(2) The Dirac quantization condition for two excitations

ð q1
m1

Þ and ð q2
m2

Þ: q1 ·m2 − q2 ·m1 ∈ Z.

TABLE II. Properties of the SOðNÞ and SOðN − 4Þ monopoles of the root states for even N. The first three roots
apply to all evenN, and root 4 only applies to the case withN an integral multiple of 4. The SOðNÞmonopole breaks
the IðNÞ symmetry to ½SOð2Þ × SOðN − 2Þ × SOðN − 4Þ�=Z2, and it always has no charge under the SOð2Þ. Its three
corresponding entries represent its representation under the SOðN − 2Þ, its representation under the SOðN − 4Þ, and
its statistics, respectively. The SOðN − 4Þmonopole breaks the IðNÞ symmetry to ½SOðNÞ×SOðN−6Þ×SOð2Þ�=Z2,
and it always has no charge under the SOð2Þ. Its three corresponding entries represent its representation under the
SOðNÞ, its representation under the SOðN − 6Þ, and its statistics, respectively. For the case with N ¼ 6, the second
entry does not exist for its SOðN − 4Þ monopole. Note that these properties are determined up to attaching pure
gauge charges.

SOðNÞ monopole SOðN − 4Þ monopole

Root 1 (singlet, singlet, boson) (singlet, singlet, boson)
Root 2 (singlet, singlet, fermion) (singlet, singlet, fermion)
Root 3 (spinor, spinor, boson) (spinor, spinor, fermion)
Root 4 with N ¼ 0 (mod8) (singlet, singlet, fermion) (singlet, vector, boson)
Root 4 with N ¼ 4 (mod8) (singlet, singlet, boson) (singlet, vector, fermion)
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(3) If an excitation exists, its C, R, and T partners also exist. We take the actions of these discrete symmetries on the
excitation given by Eq. (F2) to be

C∶
�

q

m

�
s

→

� −qL12 qL34 � � � qLN−1;N −qR12 qR34 � � � qRN−5;N−4

−mL
12 mL

34 � � � mL
N−1;N −mR

12 mR
34 � � � mR

N−5;N−4

�
s

;

R∶
�

q

m

�
s

→

�−qL12 qL34 � � � qLN−1;N qR12 qR34 � � � qRN−5;N−4

mL
12 −mL

34 � � � −mL
N−1;N −mR

12 −mR
34 � � � −mR

N−5;N−4

�
s

;

T ∶
�

q

m

�
s

→

� qL12 qL34 � � � qLN−1;N −qR12 qR34 � � � qRN−5;N−4

−mL
12 −mL

34 � � � −mL
N−1;N mR

12 −mR
34 � � � −mR

N−5;N−4

�
s

: ðF3Þ

(4) The remaining ½SOð2ÞN−2�=Z2 has a normalizer
subgroup in IðNÞ. If an excitation exists, its partners
under the actions of the normalizer subgroup also
exist.

These are necessary conditions for a theory to be consistent,
and we believe they are also sufficient.
The above conditions impose strong constraints on the

possible q of a fundamental monopole. First, there is an
element in the normalizer subgroup associated with the
remaining ½SOð2ÞN−2�=Z2, whose action is to exchange the
first two columns of the excitation matrix. Applying this
operation to the fundamental monopole yields a normalizer
partner of it. The bound state of this normalizer partner and
the antiparticle of the fundamental monopole has all entries
in the excitation matrix being 0, except that the first two
entries in the first row are �ðqL12 − qL34Þ. Because this is a
pure gauge charge, qL12 ¼ qL34 (mod1). Similarly, it is easy
to see that the first N=2 entries in q of the fundamental
monopoles are all equal mod1, and the last ðN − 4Þ=2
entries in q are also all equal mod1. Second, it is always
possible to attach the fundamental monopole with some
pure gauge charge, such that all its q entries are in the
interval ð−1; 1�. These two observations imply that
we can always write a fundamental monopole as�qL qL � � � qL qR qR � � � qR

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

�
s
, if N ¼ 2

(mod4), while if N ¼ 0ð mod 4Þ, besides this
possibility, there is one more possible type:�qL qL � � � qL qR qR � � � qR þ 1

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

�
s
.

a. Case with N = 2 (mod4)

Now let us focus on the case with N ¼ 2 (mod4). The
case with N ¼ 6 needs some special treatment, so we defer
the discussion on it for a moment. If N > 6, the four-
particle bound state of the fundamental monopole and its C,
R, and T partners is a pure gauge charge with excitation

matrix

�
0 4qL 4qL ��� 4qL 0 4qR 4qR ��� 4qR
0 0 0 ��� 0 0 0 0 ��� 0

�
. This

implies that 4qL;R ∈ Z. The Dirac quantization condition
on the fundamental monopole and its T partner implies
½NqL þ ðN − 8ÞqR=2� ∈ Z. So qL þ qR ∈ Z. Now it is
straightforward to see that there are only two elementary
possibilities of ðqL; qRÞ, i.e., ðqL; qRÞ ¼ ð0; 1Þ and
ðqL; qRÞ ¼ ð1

4
;− 1

4
Þ, and these possibilities are elementary

in the sense that all other possibilities can be obtained from
them by forming bound states of them and/or attaching pure
gauge charges; i.e., they can be taken as the monopoles of
the root states. So far we have not considered the statistics
of the fundamental monopole, and it can actually be either
bosonic or fermionic. These results suggest a Z2

2 × Z4

classification of the fundamental monopoles, and the roots
can be taken to be

root1∶
� 0 0 � � � 0 0 0 � � � 0

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

�
f

;

root2∶
� 0 0 � � � 0 0 0 � � � 1

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

�
b

;

root3∶
� 1

4
1
4

� � � 1
4

− 1
4

− 1
4

� � � − 1
4

1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

�
b

: ðF4Þ

Note that in writing root 2, we have attached pure gauge
charge to it. One can check that these roots satisfy all four
conditions listed at the beginning of this section.
The above results also apply to the case with N ¼ 6, but

the argument needs to be slightly modified. For N ¼ 6,

these 4 excitations exist:

�−qL −qL −qL qR

1
2

1
2

1
2

− 1
2

�
s

,
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�
qL −qL qL qR

− 1
2

1
2

− 1
2

− 1
2

�
s

,

�−qL −qL qL qR

− 1
2

− 1
2

1
2

1
2

�
s

,

and

�
qL −qL −qL qR

1
2

− 1
2

− 1
2

1
2

�
. The four-particle bound

state of these 4 excitations is

�
0 −4qL 0 4qR

0 0 0 0

�
b

,

which means in this case we also have 4qL;R ∈ Z.
Furthermore, the Dirac quantization condition for a funda-
mental monopole and its T partner gives −3qL þ qR ∈ Z.
These conditions still suggest a Z2

2 × Z4 classification, and
the roots can still be taken as the ones in Eq. (F4).
It is useful to derive the structure of the SOðNÞ and

SOðN − 4Þmonopoles from these fundamental monopoles.
An SOðNÞ monopole can be viewed as the two-particle
bound state of the fundamental monopole and itsR partner: 
0 2qL � �� 2qL 2qR ��� 2qR

1 0 � �� 0 0 ��� 0

!
qLþqR

. The SOðN − 4Þ

monopole can be viewed as the two-particle bound state
of the fundamental monopole and its T partner:�
2qL � � � 2qL 0 2qR � � � 2qR

0 � � � 0 1 0 � � � 0

�
qL−3qR

. In physical

terms, the properties of these monopoles are summarized in
Table II.
Let us check which anomalies correspond to states that

satisfy the two conditions listed at the beginning of this
appendix. In order for the first condition to be satisfied,
according to Table II, the state must contain the anomaly
corresponding to root 3 or its inverse.
It is a bit more complicated to check the second condition,

but it actually suffices to check a weaker condition: if the
remaining SOðN − 4Þ symmetry is further broken to
SOð2ÞN=2−2, the system is anomaly-free. To this end, let us

condense

�
1 1 � � � 1 0 0 −1 −1 � � � −1

0 0 � � � 0 0 0 0 0 � � � 0

�
b

.

This condensate breaks the IðNÞ symmetry into
½SOð2ÞN=2−2 × SOð4Þ�=Z2, and the gauge fields correspond-
ing to the remaining ðN=2Þ − 2 SOð2Þ symmetries can
be taken as A0

12 ¼ 1
2
ðAL

12 þ AR
12Þ; A0

34 ¼ 1
2
ðAL

34 þ AR
34Þ;…;

A0
N−5;N−4 ¼ 1

2
ðAL

N−5;N−4 þ AR
N−5;N−4Þ, and for the SOð4Þ⋍

½SUð2Þ × SUð2Þ=Z2�, we denote the gauge fields correspond-
ing to these two SUð2Þ subgroups by B1;2, which together
form the SOð4Þ gauge field.
The fundamental monopole remains deconfined

in this condensate and becomes the fundamental monop-
ole of the resulting theory. In terms of the
remaining symmetries, it should be written as�
qL þ qR qL þ qR � � � qL þ qR qL qL

1
2

1
2

� � � 1
2

1
2

1
2

�
s

. By

adding to the theory a proper θ term of the SOð4Þ gauge
field, θϵμνλρTrð∂μBν

1∂νBρ
1 − ∂μBν

2∂λBρ
2Þ, which preserves

all remaining symmetries (including the remaining C, R,
and T symmetries), this fundamental monopole can be

converted to

�
qLþqR qLþqR � � � qLþqR 0 0

1
2

1
2

� � � 1
2

1
2

1
2

�
s

.

In order for the theory to be anomaly-free, this monopole
should be a boson with trivial projective quantum numbers.
This means s ¼ 0 (mod2) and qL þ qR ¼ 0 (mod2).
Therefore, only root 3 and multiple copies of it satisfy
this condition.
To satisfy both conditions, the only possibilities are root

3 and its inverse. Because the SLs with ðN;�1Þ satisfy both
conditions, we conclude that the anomalies of these SLs are
precisely the same as root 3 and its inverse. Notice that from
this analysis we cannot determine which of ðN;�1Þ
corresponds to root 3, and which corresponds to its inverse.
Now that we have identified the SLs with ðN;�1Þ as

states that realize the anomalies of root 3 and its inverse, it
may also be worth mentioning which states realize the
anomalies of the other 2 roots.
The IðNÞ anomaly of root 1 can be realized by a Z2

topological order (TO). Denote the Z2 charge and flux by e
and m, respectively; the symmetry actions on these topo-
logical sectors are given in Table III.
To see that this Z2 TO realizes the IðNÞ anomaly of root 1,

consider threading a fundamental monopole through the
system, which leaves a flux. Because of the above
symmetry assignment, when an e or m circles around this
flux, it acquires a phase factor −1, no matter how far it is
away from the flux. Since this monopole threading process
is local for the (2þ 1)D system, this −1 phase factor has to
be canceled by requiring that the flux also trap an anyon
that has −1 mutual braiding with both e and m. This anyon
is ϵ, the fermionic bound state of e and m. Furthermore,
time-reversal symmetry ensures that no polarization charge
is induced around this flux. Then the composite of this flux

TABLE III. Projective symmetry actions on the topological
sectors of the Z2 TO that realizes the IðNÞ anomaly of root 1. In
the row corresponding to IðNÞ, the two entries represent the rep-
resentations of this excitation under the SOðNÞ and SOðN − 4Þ
subgroups of IðNÞ, respectively. When N ¼ 6, the vector repre-
sentation of the SOð2Þ ⊂ Ið6Þ means charge 1 under SOð2Þ. Their
partners under C,R, and T are shown as above. Note that one can
further specify data like T2 for e and m, but it is unnecessary for
our purpose.

e m

IðNÞ (singlet, vector) (singlet, vector)
C e m
R e m
T e m
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and ϵ is a fermion in the trivial representation of IðNÞ.
Therefore, the fundamental monopole of this Z2 TO has
precisely the structure as in root 1.
This Z2 TO can be explicitly constructed using the layer

construction in Ref. [54], and it is an analog of eCmC, the
surface state of a ð3þ 1ÞD bosonic topological insulator
protected by Uð1Þ charge conservation and time rever-
sal [54,125].
The IðNÞ anomaly of root 2 can be realized by a Z4 × Z2

TO. Denote the Z4 charge and flux by e1 andm1 and the Z2

charge and flux by e2 and m2, respectively. We take the
convention such that the mutual statistics between e1 and
m1 is i if N ¼ 6 (mod8), and −i if N ¼ 2 (mod8). The
symmetry actions on these topological sectors are given in
Table IV.
To see that this theory realizes the IðNÞ anomaly of root 2,

we can again consider threading a fundamental monopole
through the system and use a similar argument as before.
One can check that the flux left by the fundamental
monopole will trap an anyon e1m−1

1 , and this fundamental
monopole is indeed a boson in the vector representation
under SOðN − 4Þ, so we conclude that this theory realizes
the Ið6Þ anomaly of root 2.
We believe this Z4 × Z2 TO with the above symmetry

implementation is a consistent theory, although we do not
have an explicit construction for it.

b. Case with N = 0ð mod 4Þ
Next we turn to the case with N ¼ 0ð mod 4Þ. From

similar analysis as before, now the constraints we obtain are
4qL;R ∈ Z and 2ðqL þ qRÞ ∈ Z. The three roots in Eq. (F4)
still satisfy these constraints, but we find one additional
root [this root is absent in the case with N ¼ 2ð mod 4Þ
because qL þ qR ∈ Z in that case, which is violated here]:

root4∶

 
0 � � � 0 1

2
1
2

� � � 1
2

1
2

� � � 1
2

1
2

1
2

� � � 1
2

!
b

: ðF5Þ

Similar as before, we can also derive the properties of the
SOðNÞ and SOðN − 4Þ monopoles for this root, and the

results are given in Table II. From this table, we observe
that there are not only differences in the anomalies for the
cases with N ¼ 2 (mod4) and N ¼ 0 (mod4), but also
differences in the anomalies for the cases with N ¼ 0
(mod8) and N ¼ 4 (mod8). It is known that the spinor
representations of SOðNÞ in these three cases are different;
i.e., they are complex, real, and pseudoreal for N ¼ 2
(mod4), N ¼ 0 (mod8), and N ¼ 4 (mod8), respectively
[124]. Our analysis suggests a connection between these
two results.
Lastly, analogous arguments as before indicate that only

root 3 and its inverse satisfy both conditions discussed at
the beginning of this appendix. Because SLs with ðN;�1Þ
also satisfy those two conditions, we conclude that these
SLs have the same anomaly as root 3 and its inverse.

2. Case with an odd N

Now we turn to the case with odd N, so
IðNÞ ¼ SOðNÞ × SOðN − 4Þ. Notice this analysis also
applies to the case with an even N if we add to the system
bosonic d.o.f. in the vector representation of SOðNÞ.
In this case, the fundamental monopoles are simply the

usual SOðNÞ and SOðN − 4Þ monopoles, so these two
monopoles will characterize the IðNÞ SPTs and anomalies.
An SOðNÞ monopole breaks IðNÞ into

SOð2Þ × SOðN − 2Þ × SOðN − 4Þ. This monopole can

be denoted as

�
qN rLN rRN

1 0 0

�
sN

, where qN represents

the fractional charge under the remaining SOð2Þ, rLN
represents the projective quantum number under the
remaining SOðN − 2Þ, rRN represents the projective quan-
tum number under SOðN − 4Þ, and sN is the statistics of
this monopole. Similarly, an SOðN − 4Þ monopole can be

denoted by

�
rLN−4 qN−4 rRN−4

0 1 0

�
sN−4

. Just as in the

usual ð3þ 1ÞD bosonic topological insulator, time-reversal
symmetry and the bosonic statistics of the pure gauge
charge require that qN ¼ qN−4 ¼ 0 [125]. Furthermore, the
Dirac quantization condition requires that whenever the

TABLE IV. Projective symmetry actions on the topological sectors of the Z4 × Z2 TO that realizes the IðNÞ anomaly of root 2. In the
row corresponding to IðNÞ, the two entries in each parentheses represent the representations of this excitation under the associated spin
group of the corresponding SOðNÞ and SOðN − 4Þ subgroups of IðNÞ, where “fund.” (“antifund.”) represents fundamental
(antifundamental) representation of the relevant spin group [when N ¼ 6, the fund. (antifund.) in the second entry in the parentheses
means charge 1=2 (−1=2) under SOð2Þ ⊂ Ið6Þ]. Their partners under C,R, and T are shown as above. Note that one can further specify
data like T2 for various anyons, but it is unnecessary for our purpose.

e1 m1 e2 m2 ϵ2 ≡ e2m2

IðNÞ (singlet, fund.) (singlet, antifund.) (antifund., antifund.) (fund., fund.) (singlet, singlet)
C e−11 m−1

1 e−12 m−1
2

ϵ2
R e1 m−1

1 e−21 ϵ2 e−12 e−21 m−1
2 e21 ϵ2

T e−11 m1e21ϵ2 e2e21 m2e−21 ϵ2
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SOðNÞ monopole carries a spinor representation under
SOðN − 4Þ, the SOðN − 4Þ monopole must also carry a
spinor representation under SOðNÞ, and vice versa. These
are all the constraints, and we get a Z5

2 classification of the
IðNÞ SPTs or anomalies, and the structures of the monop-
oles of the 5 root states are in Table V.
Using similar arguments as before, one can show that

only one of the 25 ¼ 32 anomaly classes satisfy both
conditions discussed at the beginning of this appendix,
which is ðroot2Þ ⊗ ðroot3Þ ⊗ ðroot4Þ ⊗ ðroot5Þ, i.e., a
composed system made of root 2, root 3, root 4, and root
5. This anomaly class is identified with the one for the SLs,
and this result agrees with Eq. (35).

APPENDIX G: EXPLICIT CALCULATIONS
OF THE Uð1Þ DSL

In this appendix, we explicitly derive the properties of
the fundamental Ið6Þ monopole in a Uð1Þ DSL, whose
effective theory is given by Eq. (4). We will see that this
fundamental Ið6Þ monopole has precisely the structure of
root 3 in Eq. (40), which further strengthens our proposal
that theUð1ÞDSL and SLð6Þ are equivalent. Our results also
agree with a more formal calculation in Ref. [92].
Recall that we can take the Dirac fermions in a DSL to be

in either the fundamental or antifundamental representation
of SUð4Þ, and take the monopole of a to have either charge
1 or −1 underUð1Þtop, so there are 4 different choices of the
symmetry implementation. To be general, we consider the 4
cases together by introducing parameters ζ and ξ, such that
ζ ¼ 1 (ζ ¼ −1) if the Dirac fermions are in the fundamental
(antifundamental) representation of SUð4Þ, and ξ ¼ �1 if
the monopole of a carries charge �1 under Uð1Þtop. (Since
we can redefine the theory through a charge conjugation
ψ̃ ¼ ψ†, ã ¼ −a, the two signs ζ and ξ can be flipped
simultaneously without physical effect. Only the product ζξ
will eventually matter in the following discussions.)

Next we will calculate the qL, qR, and s of the
fundamental Ið6Þ monopole for a DSL. In particular, we
will thread a flux corresponding to the fundamental Ið6Þ
monopole in Eq. (38), which has a π flux for A12, A34, A56,
and Atop.
It is useful to denote the 4 flavors of Dirac fermions by

ψ↑þ, ψ↑−, ψ↓þ, and ψ↓−, respectively. This notation is
motivated by the lattice realizations of a DSL, where ↑ and
↓ represent two physical spins, and þ and − represent the
two valleys. According to the homomorphism between
suð4Þ and soð6Þ in Appendix E, the charges under
ðA12; A34; A56Þ carried by ψ↑þ, ψ↑−, ψ↓þ, and ψ↓− are,
respectively, ζð1=2; 1=2; 1=2Þ, ζð1=2;−1=2;−1=2Þ,
ζð−1=2; 1=2;−1=2Þ, and ζð−1=2;−1=2; 1=2Þ. Note that
the Dirac fermions are neutral under Atop.

When the flux specified above is thread, ψ↑þ sees a total
3ζπ=2 flux, while the other 3 flavors of Dirac fermions see
a total −ζπ=2 flux. To construct a gauge invariant state
corresponding to the local fundamental Ið6Þ monopole, one
can consider a state where the internal gauge field a has a
flux of ζπ=2, such that at the end ψ↑þ sees a 2ζπ flux and
contributes a zero mode in this flux background, and the
other 3 flavors see no flux and contribute no zero mode.
Because there is a single zero mode in the background of a
flux with magnitude 2π, no matter if it is occupied or not,
we get a bosonic state, so s ¼ b for the fundamental Ið6Þ

monopole in Eq. (38). To determine qL;R for this funda-
mental monopole, we need to determine whether this zero
mode is occupied or not.
The usual way to do this is to demand that the zero

modes are half filled. However, that works only if the
theory has a symmetry that preserves the flux but flips the
charge. In the present case, there is not such a symmetry, so
a different approach should be taken. To proceed, we
regularize the DSL as follows. First, to preserve the SUð4Þ
flavor symmetry, for each flavor we add to the system a
gapped Dirac fermion, which contributes to the effective

TABLE V. Properties of the SOðNÞ and SOðN − 4Þmonopoles of the root states for oddN. The SOðNÞmonopole
breaks the IðNÞ symmetry to SOð2Þ × SOðN − 2Þ × SOðN − 4Þ, and it always has no fractional charge under the
SOð2Þ. Its three corresponding entries represent its representation under the SOðN − 2Þ, its representation under the
SOðN − 4Þ, and its statistics, respectively. The SOðN − 4Þ monopole breaks the IðNÞ symmetry to
SOðNÞ × SOðN − 6Þ × SOð2Þ, and it always has no charge under the SOð2Þ. Its three corresponding entries
represent its representation under the SOðNÞ, its representation under the SOðN − 6Þ, and its statistics, respectively.
The last column lists the topological response function corresponding to these root states.

SOðNÞ monopole SOðN − 4Þ monopole Topological response function

Root 1 (singlet, singlet, fermion) (singlet, singlet, boson) ðwSOðNÞ
2 Þ2

Root 2 (singlet, singlet, boson) (singlet, singlet, fermion) ðwSOðN−4Þ
2 Þ2

Root 3 (spinor, singlet, boson) (singlet, singlet, boson) wSOðNÞ
4

Root 4 (singlet, singlet, boson) (singlet, spinor, boson) wSOðN−4Þ
4

Root 5 (singlet, spinor, boson) (spinor, singlet, boson) wSOðNÞ
2 wSOðN−4Þ

2
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action a term −πη=2 when combined with the original
gapless Dirac fermion with the same flavor, where η is the η
invariant of the Dirac operator corresponding to each flavor
of gapless and gapped Dirac fermions [157]. These η
invariants will generally break the T symmetry. To main-
tain the T symmetry, next we put the system on the
boundary of a (3þ 1)D bulk that contributes an appropriate
θ term to the bulk partition function, such that the combined
partition function of the boundary and bulk is T invariant.
This particular regularization of the theory should suffice to
yield qL;R of the fundamental monopole in Eq. (38), up to
attaching local d.o.f.
With this regularization, the effective action [more pre-

cisely, the partition function is Z ¼ j detðDÞj expðiSeffÞ in
Euclidean signature [157]] is

Seff ¼
X4
i¼1

�
−
π

2
ηðaiÞ þ

1

2

1

4π

Z
d3xaidai

�

þ ξ

2π

Z
d3xAtopda; ðG1Þ

with

a1 ¼ aþ ζðA12 þ A34 þ A56Þ
2

;

a2 ¼ aþ ζðA12 − A34 − A56Þ
2

;

a3 ¼ aþ ζð−A12 þ A34 − A56Þ
2

;

a4 ¼ aþ ζð−A12 − A34 þ A56Þ
2

; ðG2Þ

and i ¼ 1, 2, 3, 4 correspond to contributions from ↑þ, ↑−,
↓þ, ↓−, respectively. Note that the second term in the above
effective action comes from reducing the θ term of the
(3þ 1)D bulk to the boundary. Furthermore, the coefficient
of the Chern-Simons term of the dynamical gauge field a is
1=ð2πÞ, which is well defined in (2þ 1)D and implies that
the (3þ 1)D bulk does not really need a dynamical gauge
field, consistent with the general expectation that a theory
with a ’t Hooft anomaly can live on the boundary of a short-
range entangled bulk (see, e.g., Ref. [59] for examples of
theories that have more severe anomalies than a ’t Hooft
anomaly and thus can only live on the boundary of a long-
range entangled bulk). Also notice that all dependence on the
metric of the spacetimemanifold of the system is suppressed,
which will not affect our following analysis.
This effective action can be used to read off the resulting

charges under various gauge fields when the flux is
thread:

Qa¼Nψ↑þ þ
Ba1 þBa2 þBa3 þBa4

4π
þξBtop

2π

¼Nψ↑þ þ
Ba

π
þξBtop

2π
;

Q12¼ ζ

�
Nψ↑þ

2
þBa1 þBa2 −Ba3 −Ba4

8π

�
¼ ζ ·

Nψ↑þ

2
þB12

4π
;

Q34¼ ζ

�
Nψ↑þ

2
þBa1 −Ba2 þBa3 −Ba4

8π

�
¼ ζ ·

Nψ↑þ

2
þB34

4π
;

Q56¼ ζ

�
Nψ↑þ

2
þBa1 −Ba2 −Ba3 þBa4

8π

�
¼ ζ ·

Nψ↑þ

2
þB56

4π
;

Qtop¼
ξBa

2π
; ðG3Þ

where Qð·Þ and Bð·Þ represent the charge and flux under the
corresponding gauge field, respectively, and Nψ↑þ deter-
mines whether the zero mode contributed by ψ↑þ is
occupied; i.e., if the flux seen by the fermion is positive
(negative), then Nψ↑þ ¼ 0 means it is occupied
(unoccupied).
According to the previous discussion, now we have

B12 ¼ B34 ¼ B56 ¼ Btop ¼ π and Ba ¼ ζπ=2. To be gauge
invariant, Qa ¼ 0, which means Nψ↑þ ¼ −ðζ þ ξÞ=2.
Substituting this into the rest of the equations yields Q12 ¼
Q34 ¼ Q56 ¼ −ðζξ=4Þ and Qtop ¼ ðζξ=4Þ. That is, if
ðζ; ξÞ ¼ ð1;−1Þ or ðζ; ξÞ ¼ ð−1; 1Þ, qL ¼ −qR ¼ 1=4, cor-
responding to root 3 in Eq. (40). If ðζ; ξÞ ¼ ð1; 1Þ or
ðζ; ξÞ ¼ ð−1;−1Þ, qL ¼ −qR ¼ −1=4, corresponding to
the inverse of root 3 in Eq. (40). Therefore, the IðNÞ
anomaly of the Uð1Þ DSL is indeed identical to that of
the SLð6;�1Þ, which even further strengthens our proposal
that they are dual.

APPENDIX H: MORE ON THE
LSM CONSTRAINTS

In the main text, we used some physical arguments to
propose that Eq. (51) describes the complete set of LSM
constraints for various lattice systems. In this appendix, we
extract some LSM constraints from Eq. (51) that were not
used in deriving Eq. (51). We also give an alternative
expression for the LSM anomaly on a square lattice.
For convenience, we copy Eq. (51):

SLSM ¼ iπ
Z
X4

ðwSOð3Þ
2 þ t2Þ½xyþ c2 þ rðxþ cÞ�; ðH1Þ

where wSOð3Þ
2 is the second SW class of the SOð3Þ gauge

field corresponding to the spin rotational symmetry, t is the
gauge field corresponding to the time-reversal symmetry, x
and y are the gauge field corresponding to translation along
T1 and T2, respectively, c is the gauge field corresponding
to C2 site-centered lattice rotation, and r is the gauge field
corresponding to the reflection symmetry Ry. There is a
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constraint rþ t ¼ wTM
1 (mod2). This anomaly polynomial

should be viewed as a topological response function of the
system under the various gauge fields.
Physically, we expect that there will be LSM anomalies

associated with reflection symmetry Rx. To read them off,
we need to design a configuration of the gauge field
corresponding to Rx in Eq. (H1). Although the gauge field
corresponding to Rx does not explicitly appear in Eq. (H1),
because Rx is a combination of C2 and Ry, we can still have
a gauge connection of Rx by writing c ¼ c0 þ r. This
means that whenever there is a gauge connection corre-
sponding to Ry, a gauge connection corresponding to C2 is
also induced. Therefore, now r actually represents a gauge
connection corresponding to Rx, and c0 is the gauge
connection for pure C2 rotation. Substituting c ¼ c0 þ r
into Eq. (H1) yields

SLSM ¼ iπ
Z
X4

ðwSOð3Þ
2 þ t2Þ½xyþ c20 þ rðxþ c0Þ�: ðH2Þ

The physical meaning of this new anomaly polyno-
mial can be understood by looking at various subsymme-
tries of the system. For example, ignoring translation
symmetries, i.e., setting x ¼ y ¼ 0, it becomes SLSM ¼
iπ
R
X4
ðwSOð3Þ

2 þ t2Þðc20 þ rc0Þ. The first term in the second
parentheses, c20, physically means that there is an LSM
anomaly if there is an odd number of spin-1=2’s at the C2

center, just as Eq. (48). The other term, rc0, represents a
LSM anomaly associated with Rx and C2, if there is a C2

center at the Rx-invariant line and this C2 center hosts an
odd number of spin-1=2’s.
As another example, we can also ignore the C2 symmetry

by setting c0 ¼ 0, and consider translations. On a triangular
lattice, the Rx-invariant line has a translation symmetry
generated by T1T2

2. The gauge field corresponding to such
a translation symmetry can be obtained by writing
y ¼ y0 þ 2x. Similar as above, now x represents the gauge
field corresponding toT1T2

2, and y0 represents thegauge field
corresponding to T2. Substituting c0 ¼ 0 and y ¼ y0 þ 2x

into Eq. (H1) yields SLSM ¼ iπ
R
X4ðwSOð3Þ

2 þ t2Þðxy0 þ rxÞ.
Now the first term in the second parentheses, xy0, represents
a LSM anomaly associated with having an odd number of
spin-1=2’s in each unit cell corresponding to the translations
T2 and T1T2

2. The second term, rx, represents a LSM
anomaly associated with Rx and T1T2

2, if there is an odd
number of spin-1=2’s in each unit cell of T1T2

2.
Similarly, we can also obtain the LSM anomaly associated

with Rx and Ry. To do so, we can set x ¼ y ¼ 0 and r ¼
cþ r0 in Eq. (H1). The first of these two conditions amounts
to ignoring translation symmetries, while the second con-
dition means that now c is really a gauge field corresponding
to theRx symmetry, and r0 is thegauge field corresponding to
theRy symmetry. Substituting these conditions into Eq. (H1)

yields SLSM¼ iπ
R
X4
ðwSOð3Þ

2 þt2Þcr0. This represents a LSM
anomaly if there is an odd number of spin-1=2’s at the
intersecting point of the reflection axes of Rx and Ry. This
LSM anomaly of course encodes the one associated with the
C2 center. To see it formally, one way is to further restrict
c ¼ r0, which turns both c and r0 into the gauge field
corresponding to the C2 rotation. Then this anomaly poly-
nomial becomes Eq. (48).
The above discussion motivates us to write the LSM

anomaly on a square lattice in terms of gauge fields
corresponds to T1;2, Rx;y, SOð3Þ, and T symmetries.
Denote the gauge fields corresponding to Rx;y by rx;y.
Using an argument similar to that in the main text, the LSM
anomaly on a square lattice can be written as

SLSM ¼ iπ
Z
X4

ðwSOð3Þ
2 þ t2Þðxþ rxÞðyþ ryÞ; ðH3Þ

with a constraint tþ rx þ ry ¼ wTM
1 ð mod 2Þ. Note that

this expression is manifestly C4 rotationally invariant.
To reproduce Eq. (H1), we want to write this anomaly in

terms of gauge fields of Ry, C2, T1;2, SOð3Þ, and T . So we
let rx ¼ c and ry ¼ cþ r, then c is the gauge field for C2

and r is the gauge field for Ry. Then the above LSM
anomaly precisely recovers Eq. (H1), after using that
cx ¼ cy ¼ 0. It is interesting to note that in order to derive
Eq. (H3) from Eq. (H1), one needs to first replace the
latter by

SLSM¼ iπ
Z
X4

ðwSOð3Þ
2 þt2Þ½xyþc2þrðxþcÞþcy�: ðH4Þ

Because cy ¼ 0, this expression should be equivalent to
Eq. (H1). Then by setting c ¼ rx and r ¼ ry þ rx and using
that rxx ¼ ryy ¼ 0, this anomaly becomes Eq. (H3).
All the above results are consistent with the physical

expectations. The method employed above can also be
readily applied to other situations to extract other LSM
anomalies.

APPENDIX I: ANOMALY MATCHING OF THE
Uð1Þ DSL ON A TRIANGULAR LATTICE

In this appendix, we show that the Uð1Þ DSL on a
triangular lattice indeed has the correct LSM anomaly.
The symmetrieswewill focus on areSOsð3Þ spin rotation,

time reversal T , translationsTa1;a2 , site-centeredC2 rotation,
and reflectionRy that keeps a1 invariant. Their actions on the
Uð1Þ DSL on a triangular lattice are [10,11]
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SOsð3Þ∶ n →

�
I3

SOsð3Þ

�
n;

T ∶ n →

�
I3

−I3

�
n;

Ta1∶ n →

0
BB@

−1
1

−1
I3

1
CCAn exp

�
i
2π

3
σy

�
;

Ta2∶ n →

0
BB@

1

−1
−1

I3

1
CCAn exp

�
i
2π

3
σy

�
;

C2∶ n →

�
I3

−I3

�
nσz;

Ry∶ n →

0
BB@

−1
1

−1
I3

1
CCAn: ðI1Þ

From these symmetry actions, we get

wOð6Þ
1 ¼ tþ rþc; wOð2Þ

1 ¼ c;

wOð6Þ
2 ¼ xyþxrþ rtþ rcþc2þwSOsð3Þ

2 þ t2; wOð2Þ
2 ¼ 0;

wOð6Þ
4 ¼ðwSOsð3Þ

2 þ t2Þðxyþxrþ rcÞþ rc2ðtþcÞ; ðI2Þ

with the meanings of these symbols identical as those in the
main text. Substituting these expressions into Eq. (35) and
performing some algebraic manipulations yields

Sbulk ¼ iπ
Z
M
½xyþ c2 þ rðxþ cÞ�ðwSOsð3Þ

2 þ t2Þ

¼ SLSM; ðI3Þ

which shows that the Uð1Þ DSL on a triangular lattice
indeed has the correct LSM anomaly.
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