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We formulate a general theory of wave-particle duality for many-body quantum states, which quantifies
how wavelike and particlelike properties balance each other. Much as in the well-understood single-particle
case, which-way information—here, on the level of many-particle paths—lends particle character,
while interference—here, due to coherent superpositions of many-particle amplitudes—indicates wavelike
properties. We analyze how many-particle which-way information, continuously tunable by the level
of distinguishability of fermionic or bosonic, identical and possibly interacting particles, constrains
interference contributions to many-particle observables and thus controls the quantum-to-classical
transition in many-particle quantum systems. The versatility of our theoretical framework is illustrated
for Hong-Ou-Mandel-like and Bose-Hubbard-like exemplary settings.
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I. INTRODUCTION

The coexistence of wavelike and particlelike features
in the behavior of quantum objects lies at the very heart
of quantum theory [1] and has been contemplated since
Bohr’s and Einstein’s early debate on the double-slit
experiment [2]. According to Bohr, “evidence obtained
under different experimental conditions cannot be compre-
hended within a single picture but must be regarded as
complementary in the sense that only the totality of the
phenomena exhausts the possible information about the
objects” [2]. Quantitative expressions of this statement in
terms of wave-particle complementarity relations [3–17]
weight which-way information against fringe visibility in
interferometric settings. Confirmed by experimental evi-
dence for ever-larger single quantum objects [18–26], they
consolidate the fundamental status of complementarity on
the single-particle level. Complementarity thus constitutes
a cornerstone of our modern understanding of decoherence
as the consequence of the availability of which-way
information—i.e., of the manifestation of an object’s
particle character—in quantum dynamical processes.

As the considered object’s size increases, which-way
information is easier to assess, and interference phenomena
therefore become ever more fragile [27], consistently with
our everyday experiences in the macroscopic world.
However, quantum interference is not restricted to single

particles but can also arise in the evolution of ensembles
of identical particles. Such interference is rooted in the
inability to attribute unambiguous evolution paths to each
of the ensemble’s identical constituents, so various many-
particle transition amplitudes from a given input to a well-
defined output state sum up coherently [28–31]. Yet, if the
particles possess additional degrees of freedom (e.g., the
polarization of photons, or the electronic levels of cold
atoms) through which they can be (fully or partially)
distinguished—hereafter, referred to as internal, in contrast
to the external degree of freedom in which interference is
detected—which-way information becomes available on
the level of many-particle transition amplitudes, and their
interference must progressively fade away. Figure 1 illus-
trates how, for more than two particles, many-particle
interference involves ever fewer particles as these become
more distinguishable.
It is thus qualitatively clear that the interference of

indistinguishable particles induces a potentially large
number of interference contributions (possibly on top of
single-particle interference terms) and that the interference
contrast in suitably chosen many-particle observables will
be maximal for strictly indistinguishable particles. This
suggests a many-particle version of wave-particle duality,
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which we formulate here in terms of quantitative
complementarity relations. While the deterioration of
many-particle interference phenomena by particle distin-
guishability is a subject of lively scientific debate [33–46],
such relations have so far been unavailable. Since promi-
sing quantum information schemes such as optical quantum
computation [47,48] or boson sampling [49] exploit the
interference of many noninteracting particles and have been
demonstrated in small-scale experiments [50–56], we trust
that quantitative complementarity relations will be valuable
for benchmarking quantum computation platforms of
increasing size. Another possible area of application is
defined by experiments with ultracold atoms [57–64],
which additionally feature control over interactions and
offer the possibility to study many-particle interference in
strongly correlated quantum systems. Finally, by analogy
with the discussion of wave-particle duality for single
quantum objects, our results pave the way for a systematic
many-particle decoherence theory, which remains to be
formulated.
Our present contribution is structured as follows: In

Sec. II, we begin with a brief discussion of the single-
particle double-slit experiment and derive two complemen-
tarity relations, one of which was not yet considered in the
literature. Section III then treats systems of many particles.
Our first quantization formalism for many partially
distinguishable particles is presented in Sec. III A. In
Sec. III B, we examine the many-particle state’s properties
in terms of the involved particles’ distinguishability.
Measures of wave and particle character are defined in
Sec. III C, and their interdependence through wave-particle
complementarity is elaborated upon in Sec. III D. Next, in
Sec. IV, we consider generic many-particle interference
experiments. We discuss changes in the output statistics
when particles are permuted at the input in Sec. IVA. In
Sec. IV B, we derive bounds for the difference between the
output statistics obtained with partially distinguishable and
fully distinguishable or indistinguishable particles. We
establish, in Sec. IV C, visibility measures of many-particle
interference signals that are fundamentally bounded by the
particles’ distinguishability and apply irrespective of the

exact experimental scenario and of the particles’ interaction
strength. The versatility of these visibility measures is
illustrated in Sec. IV D, where we apply our findings to the
Hong-Ou-Mandel experiment and to the Bose-Hubbard
model. Finally, Sec. V concludes the paper. For the sake
of readability, all detailed proofs are deferred to the
Appendixes.

II. DOUBLE-SLIT EXPERIMENT

Before we turn to the case of many particles, we start
with a brief discussion of how wave-particle duality
manifests in the double-slit experiment with a which-path
detector acquiring partial information about the particle’s
path. We follow the approach of Ref. [7] and derive two
wave-particle duality relations. This establishes the basis
for our considerations on wave-particle duality for many-
body quantum states in the subsequent sections.
Let us suppose that a single particle, initially in the pure

state jP0i, is incident on a symmetric double slit, with
the slits labeled A and B as illustrated in Fig. 2. Further,
consider a which-path detector initially in a mixed

state ρd0 ¼
P

j qjjDðjÞ
0 ihDðjÞ

0 j, i.e., in a statistical mixture

of states jDðjÞ
0 i, with probabilities qj ≥ 0,

P
j qj ¼ 1.

FIG. 2. Single-particle double-slit experiment in the presence of
a which-path detector (transparent box). A single particle (blue
ball) passes through a double slit and is detected on a screen. The
amount of information on the particle’s path, obtained by the
which-path detector, determines the visibility of the interference
pattern on the screen.

(b)(a) (c)((a) (b) (c)

FIG. 1. Three-particle transition amplitudes of (a) indistinguishable (indicated by identical coloring), (b) partially (two different
colors), and (c) fully (three different colors) distinguishable particles. In the fully indistinguishable case, six indistinguishable three-
particle transition amplitudes add coherently to determine the output event’s probability [32]. In the partially distinguishable case, the six
transition amplitudes from diagram (a) fall apart into three mutually distinct pairs of interfering two-particle amplitudes. In the fully
distinguishable case, no—now perfectly distinguishable—transition amplitudes superimpose coherently anymore.
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Therefore, the common initial density operator of the
particle and detector reads

ρinipd ¼ jP0ihP0j ⊗
X
j

qjjDðjÞ
0 ihDðjÞ

0 j: ð1Þ

When the particle passes through the double slit, its state
becomes a balanced superposition of jPAi and jPBi, with
jPAi (resp. jPBi) corresponding to the particle passing
through slit A (resp. B), and hPAjPBi ¼ 0. The detector
gains information about the particle’s path by changing its

states jDðjÞ
0 i to jDðjÞ

A i (resp. jDðjÞ
B i) if the particle is in state

jPAi (resp. jPBi), where jDðjÞ
A i and jDðjÞ

B i are not neces-
sarily orthogonal:

jP0i ⊗ jDðjÞ
0 i ↦ 1ffiffiffi

2
p ðjPAi ⊗ jDðjÞ

A i þ jPBi ⊗ jDðjÞ
B iÞ:

Thereby, the particle and detector become entangled, and
their common state (1) then reads

ρpd ¼
1

2

X
J;K∈fA;Bg

jPJihPKj ⊗
X
j

qjjDðjÞ
J ihDðjÞ

K j: ð2Þ

The reduced state of the particle is obtained by taking the
partial trace over the detector subsystem,

ρp ¼ TrdðρpdÞ ¼
X

J;K∈fA;Bg
½ρp�J;KjPJihPKj; ð3Þ

with

½ρp�J;K ¼ 1=2
X
j

qjhDðjÞ
K jDðjÞ

J i: ð4Þ

Consequently, in the basis fjPAi; jPBig of the particle,
the off-diagonal element ½ρp�A;B of the particle’s state is

governed by the overlaps hDðjÞ
B jDðjÞ

A i between the different
detector states. The magnitude of this off-diagonal element
also quantifies the fringe visibility V of the interference
pattern accumulated upon repeated particle detection on
the screen,

V ¼
X

J;K∈fA;Bg
J≠K

jhPJjρpjPKij ¼
����X

j

qjhDðjÞ
B jDðjÞ

A i
����; ð5Þ

which we can thus interpret as a measure of the wave
character, with the range 0 ≤ V ≤ 1. Moreover, the vis-
ibility, and thus the wave character, quantifies the entan-
glement between the particle and detector, as apparent by
its relation to the purity of the reduced state of the particle,

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Trðρ2pÞ − 1

q
: ð6Þ

If, instead, we trace out the particle in Eq. (2), we obtain
the reduced detector state

ρd ¼ TrpðρpdÞ ¼
1

2

X
J∈fA;Bg

ρJd; ð7Þ

with ρJd ¼
P

j qjjDðjÞ
J ihDðjÞ

J j. The detector thus ends up in a
balanced mixture of ρAd and ρBd , which corresponds to
detecting the particle in slit A and B, respectively. In turn,
the ability to discriminate these two states via a general
measurement on the detector state is related to the pos-
sibility of tracking the particle and provides a measure of
the particle character.
We therefore need to compare two statesρ and σ, whichwe

accomplish by use of either their trace distance Dðρ; σÞ ¼
Trðjρ − σjÞ=2 or their (square-root quantum) fidelity
Fðρ; σÞ ¼ Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp Þ [65]. Here, jMj ¼
ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
, andffiffi

·
p

denotes the positive square root of a positive-semidefinite
matrix. Both quantities take values between zero and one,
and they obey the Fuchs–van de Graaf inequalities [66]

1 − Fðρ; σÞ ≤ Dðρ; σÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðρ; σÞ

q
: ð8Þ

If ρ or σ is pure, the lower bound can be made tighter,
1 − F2ðρ; σÞ ≤ Dðρ; σÞ, and if both ρ and σ are pure, the
upper bound saturates [65].
With this in mind, we define two measures:

Pt ¼ DðρAd ; ρBd Þ ð9Þ

and

Pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðρAd ; ρBd Þ

q
: ð10Þ

These measures quantify the ability to discriminate the
which-path detector states ρAd and ρBd , and we identify this
ability as a particle character. It immediately follows from
these definitions and Eq. (8) that

Pt ≤ Pf; ð11Þ

with equality for pure detector states.
Note that, in the literature [6,7,9,10,12–14,16], measures

of the particle character are sometimes denoted byD. Here,
we refer to measures of the particle character by P and
reserve D for many-particle distinguishability measures
defined further below.
While we elaborate on quantum state discrimination in

Sec. III C 2, let us stress that the particle measure Pt is
already related to PAQSD, the maximal success probability
for an ambiguous quantum-state discrimination [67–69]
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between ρAd and ρBd , by PAQSD ¼ ð1þ PtÞ=2. The second
particle measure, Pf, can likewise be motivated by state
discrimination since PUQSD, the maximal success proba-
bility for an unambiguous quantum-state discrimination
[70,71] of ρAd and ρBd , obeys PUQSD ≤ 1 − FðρAd ; ρBd Þ ≤ Pf.
As we prove in Appendix A, both measures Pt andPf of

the particle character, together with the measure V of the
wave character, can be combined to obey wave-particle
duality relations. Specifically, we find

P2
t þ V2 ≤ P2

f þ V2 ≤ 1; ð12Þ

with both inequalities saturating for pure which-path
detector states. The relation P2

t þ V2 ≤ 1 was proven in
Refs. [6,7]. However, with the second inequality in
Eq. (12), we identify a tighter wave-particle duality relation
for mixed detector states. Note that, since all the above
measures are normalized, i.e., 0 ≤ V;Pt;Pf ≤ 1, wave and
particle character are mutually exclusive; i.e., the single
quantum objects under consideration cannot fully display
both properties simultaneously. We stress that we refer to
relations of the form (12) as wave-particle duality relations
if the inequality saturates for pure states since this case is
fully characterized by quantifiers of precisely two com-
plementary properties. Otherwise, the two involved mea-
sures do not necessarily account for the totality of
all observable phenomena, and, on the basis of Bohr’s
notion [2] (see the Introduction), we refer to them as
complementarity relations.

III. MANY PARTIALLY DISTINGUISHABLE
PARTICLES

We now proceed to our original findings for the case of
many particles. We first provide a general description of
partially distinguishable particles in first quantization,
where we distinguish between external and internal degrees
of freedom. As we elaborate upon in Sec. IV, the former
evolve dynamically and are resolved by the detection
apparatus, while the latter are fixed during the particles’
evolution and remain unresolved by the detection but can
serve as labels to distinguish the particles. We then inspect
the reduced many-particle density operators obtained by
tracing over the internal or external degrees of freedom
and distill wave-particle duality of many-body quantum
states in the same spirit as for the single-particle double-slit
experiment.

A. Partially distinguishable particles
in first quantization

The first quantization formalism developed in the present
section is equivalent to the usual second quantization
approach but highlights the interdependencies between
internal and external degrees of freedom, which are at
the heart of our understanding of particle distinguishability.

We aim at describing N identical bosons or fermions
that are prepared in an arbitrary state of their internal (I)
degrees of freedom and expanded over n mutually ortho-
gonal external (E) states (or modes). The single-
particle Hilbert space H ¼ HE ⊗ HI is composed of the
n-dimensional external Hilbert space HE spanned by
the orthonormal basis fj1i;…; jnig, tensored with the
m-dimensional internal Hilbert space HI spanned by the
orthonormal basis fji1i;…; jimig. Note that, while we
choose to work with finite-dimensional Hilbert spaces,
for simplicity, our formalism allows a straightforward
extension to include continuous degrees of freedom. For
N identical particles, the basis states of H⊗N ¼ H⊗N

E ⊗
H⊗N

I are then given as N-fold tensor products of single-
particle basis states. An orthonormal basis of the nN-
dimensional external Hilbert space H⊗N

E is therefore
composed of the states

jE⃗i ¼ jE1i ⊗ … ⊗ jENi; ð13Þ
with Ej ∈ f1;…; ng. In the literature, the N-tuple E⃗ is
commonly called the mode assignment list [30,72–75].
Analogously, an orthonormal basis of the mN-dimensional
N-particle internal Hilbert space H⊗N

I is given by states

jI⃗i ¼ jI1i ⊗ … ⊗ jINi; ð14Þ
where I j ∈ fi1;…; img. Note that in Eqs. (13) and (14),
each particle is implicitly given a label corresponding to its
position in the tensor product. This sort of labeling is
characteristic of the first quantization formalism and is
unphysical for identical particles. Therefore, we eliminate it
by (anti)symmetrization later.
With an orthonormal basis of H⊗N at hand, we can now

describe partially distinguishable particles with an arbitrary
internal state and a fixed particle occupation in the external
modes (the latter is a natural assumption, inspired by a
typical experimental scenario, e.g., in photonic circuitry
[55,56,76–78]). This distribution is specified by the mode
occupation list [30,72–75] R⃗ ¼ ðR1;…; RnÞ, where Rj is
the number of particles in mode j. Since several mode

assignment lists E⃗ correspond to a given occupation R⃗, we
single out the mode assignment list E⃗≡ E⃗ðR⃗Þ with
components listed in nondecreasing order, E1 ≤ E2 ≤ …

≤ EN . Other external basis states jE⃗i corresponding to the
same mode occupation R⃗ are then obtained by permutation
of the factors of jE⃗i. The external state of the particles can
therefore be written in terms of the states

jE⃗πi ¼ jEπð1Þi ⊗ … ⊗ jEπðNÞi; ð15Þ

for π a permutation in the symmetric group SN . In short, for
each mode occupation R⃗, there exists a unique basis state
jE⃗i with elements in nondecreasing order, from which we
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obtain all basis states jE⃗i associated with R⃗ by permuting
the factors of jE⃗i.
Regarding the internal degrees of freedom, we impose no

restriction on the N-particle state, which we write as a
general superposition of all internal basis states (14),

jΩðjÞi ¼
X
I⃗

CðjÞ
I⃗
jI⃗i: ð16Þ

This approach allows us to consider the effects of corre-
lations and mixedness in the internal state (with the index j
used below to label different states in a statistical mixture)
on many-particle interference in the external degree of

freedom. The coefficients CðjÞ
I⃗

ultimately determine the

distinguishability of the particles [38,42,79]. The bosonic
(fermionic) state of particles in the external configuration R⃗
with internal state jΩðjÞi is then obtained by (anti)symmet-
rization, i.e., by forming the coherent sum over all
permutations (disregarding normalization, for the moment)

jΨðjÞi ∝
X
π∈SN

ð−1ÞπBðFÞjE⃗πi ⊗
�X

I⃗

CðjÞ
I⃗
jI⃗πi

�
; ð17Þ

where we have introduced the permuted internal basis states

jI⃗πi ¼ jIπð1Þi ⊗ … ⊗ jIπðNÞi: ð18Þ

The sign factor is given by ð−1ÞπB ¼ 1 for bosons and
ð−1ÞπF ¼ sgnðπÞ for fermions, respectively. As is apparent
from Eq. (17), the (anti)symmetrization of jΨðjÞi results in
the entanglement of the particles’ external and internal
degrees of freedom, with a strength that depends on the
particles’ internal state. We will elaborate upon this
observation later.
In the case of multiple occupations, i.e., if there is a mode

i such that Ri ≥ 2, distinct permutations π ≠ π0 can lead to
the same state jE⃗πi ¼ jE⃗π0 i, which defines an equivalence
relation π ∼ π0, and we constitute a set Σ≡ ΣðR⃗Þ by
choosing one representative in each of the R ¼
N!=ðQn

j¼1 Rj!Þ equivalence classes. Any permutation π ∈
SN can then be uniquely decomposed as π ¼ ξμ, with
μ ∈ Σ and ξ ∈ SR⃗, where SR⃗ ¼ SR1

⊗ … ⊗ SRn
denotes

the subgroup of SN which leaves jE⃗i invariant. In group
theoretical terms, Σ is a transversal of the set of right cosets
of SR⃗ in SN , also called right transversal of SR⃗ in SN [80].
Since each permutation μ ∈ Σ corresponds to one of the R
inequivalent ways of ordering the particles, we refer to μ as
a particle labeling. The normalized state jΨðjÞi can thus be
written as a sum over particle labelings

jΨðjÞi ¼ 1ffiffiffiffi
R

p
X
μ∈Σ

ð−1ÞμBðFÞjE⃗μi ⊗ jΩðjÞ
μ i; ð19Þ

with

jΩðjÞ
μ i ∝

X
I⃗

�X
ξ∈SR⃗

ð−1ÞξBðFÞCðjÞ
I⃗ξ

�
jI⃗μi: ð20Þ

From Eq. (20), one sees that the coefficients CðjÞ
I⃗

must be

(anti)symmetrized over permutations of bosons (fermions)
belonging to the same external mode,

CðjÞ
I⃗ξ

¼ ð−1ÞξBðFÞCðjÞ
I⃗
;

for all ξ ∈ SR⃗ [note that I⃗ξ ¼ ðIξð1Þ;…; IξðNÞÞ]. For
fermions, this enforces Pauli’s exclusion principle [81]:
Fermions in the same mode must be in orthogonal internal

states. Without loss of generality, we choose the CðjÞ
I⃗

to

already satisfy this symmetry and obey
P

I⃗ jC
ðjÞ
I⃗
j2 ¼ 1,

such that the normalized internal states in Eq. (19) read

jΩðjÞ
μ i ¼

X
I⃗

CðjÞ
I⃗
jI⃗μi: ð21Þ

Finally, states with mixed internal degrees of freedom can
be expressed as

ρ ¼
X
j

qjjΨðjÞihΨðjÞj; ð22Þ

where jΨðjÞi from Eq. (19) appears with probability qj,
and

P
j qj ¼ 1.

The state of N fully indistinguishable identical particles
is obtained by assigning the same internal state to each
particle, e.g., jΩi ¼ ji1i⊗N . Fully distinguishable identical
particles are obtained when all particles are in mutually
orthogonal internal states, such that they can be identified
unambiguously, e.g., if jΩi ¼ ji1i ⊗ ji2i ⊗ … ⊗ jiNi.
Before we continue, let us consider a brief example,

illustrated in Fig. 3. We consider N ¼ 3 bosons in n modes
with two particles in mode 1 and one particle in mode 2,
such that R⃗ ¼ ð2; 1; 0;…; 0Þ, R ¼ N!=ðQn

j¼1 Rj!Þ ¼ 3, and

E⃗ ¼ ð1; 1; 2Þ. With ϵ the identity permutation and permu-
tations given in cycle notation, we have SR⃗ ¼ fϵ; ð12Þg,
and we find Σ ¼ fϵ; ð13Þ; ð23Þg. Note that for R⃗ ¼
ð2; 1; 0;…; 0Þ and π ∈ S3, there are three distinct right
cosets SR⃗π of SR⃗ in S3, SR⃗ϵ ¼ SR⃗ð12Þ ¼ fϵ; ð12Þg,
SR⃗ð13Þ¼SR⃗ð132Þ¼fð13Þ;ð132Þg, and SR⃗ð23Þ¼SR⃗ð123Þ¼
fð23Þ;ð123Þg. The right transversal Σ is then obtained
by choosing one element of each distinct right coset, e.g.,
Σ ¼ fϵ; ð13Þ; ð23Þg. With the help of Σ, we can extract the
subset of external basis states needed in Eq. (19),
fjE⃗μigμ∈Σ ¼ fj1; 1; 2i; j2; 1; 1i; j1; 2; 1ig. In this example,
we consider pure internal states, such that the sum in
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Eq. (22) consists of just one term and the index j is
dropped. Moreover, the single-particle internal Hilbert
space is assumed to be of dimension m ¼ 2 and spanned
by the basis fjai; jbig. We consider the correlated internal
state defined by the choice of coefficients Cða;a;aÞ ¼
Cða;b;bÞ ¼ Cðb;a;bÞ ¼ 1=

ffiffiffi
3

p
, and CI⃗ ¼ 0 otherwise. These

coefficients satisfy the required symmetry CI⃗ξ
¼ CI⃗ for all

ξ ∈ SR⃗ ¼ S2 ⊗ S1 ⊗ S0 ⊗ … ¼ fϵ; ð12Þg, where permu-
tations ξ ∈ SR⃗ only permute particles in the same mode.
The internal state (16) then reads

jΩi ¼ 1ffiffiffi
3

p ðja; a; ai þ ja; b; bi þ jb; a; biÞ: ð23Þ

The symmetrized pure state (19) is obtained by combining
the external states jE⃗μi and the internal states jΩμi for all
particle labelings μ ∈ Σ,

jΨi ¼ 1

3
½j1; 1; 2i ⊗ ðja; a; ai þ ja; b; bi þ jb; a; biÞ

þ j2; 1; 1i ⊗ ðja; a; ai þ jb; b; ai þ jb; a; biÞ
þ j1; 2; 1i ⊗ ðja; a; ai þ ja; b; bi þ jb; b; aiÞ�;

where the term in the first, second, and third row corre-
sponds to μ ¼ ϵ, μ ¼ ð13Þ and μ ¼ ð23Þ, respectively. One
can easily verify that this state is symmetric under the
exchange of any two particles, as required for a state of
many bosons.

B. Reduced external and internal states

We now consider the reduced external and internal states
of systems of partially distinguishable particles, to reveal
the connection to the single-particle case described in
Sec. II. First, let us rewrite the state (22) in the same form
as Eq. (2), with the help of Eq. (19):

ρ ¼ 1

R

X
μ;ν∈Σ

ð−1ÞμνBðFÞjE⃗μihE⃗νj ⊗
X
j

qjjΩðjÞ
μ ihΩðjÞ

ν j: ð24Þ

In general, the (anti)symmetrized state (24) shows entan-
glement between external and internal degrees of freedom.
As we show below, this entanglement can be used to
characterize the distinguishability of the particles [46] and
to quantify the many-particle wave character.
We first consider the reduced external state obtained by

tracing out the internal state space in Eq. (24),

ρE ¼ TrIðρÞ ¼
X
μ;ν∈Σ

½ρE�μ;νjE⃗μihE⃗νj; ð25Þ

with elements

½ρE�μ;ν ¼ ð−1ÞμνBðFÞ
1

R

X
j

qjhΩðjÞ
ν jΩðjÞ

μ i ð26Þ

[compare with Eqs. (3) and (4)]. In the basis fjE⃗igE⃗ , the off-
diagonal elements of ρE are thus determined by particle

distinguishability via the overlaps hΩðjÞ
ν jΩðjÞ

μ i for different
particle labelings μ ≠ ν. Note that in Refs. [36,38,42],
particle distinguishability is described by the so-called
J-matrix, which, in our formalism, has elements Jν;μ ¼
R½ρE�μ;ν ¼

P
j qjhΩðjÞ

ν jΩðjÞ
μ i. On the other hand, for the

description of particles in an internal product state,
Ref. [37] introduced the distinguishability matrix S.
In this case, we have hΩνjΩμi ¼

Q
N
i¼1 SνðiÞ;μðiÞ (see also

Ref. [82]).
In the case of distinguishable particles (D), each

particle is in a distinct orthogonal internal state, and these
overlaps vanish. As a result, the reduced external state is
maximally mixed,

ρDE ¼ 1

R

X
μ∈Σ

jE⃗μihE⃗μj: ð27Þ

On the other hand, perfectly indistinguishable bosons
(fermions) share the same pure internal state, such that

hΩðjÞ
ν jΩðjÞ

μ i ¼ 1, for all j and μ; ν ∈ Σ. Therefore, the
external state is pure and given by

ρBðFÞE ¼ jψBðFÞihψBðFÞj; ð28Þ

with

jψBðFÞi ¼
1ffiffiffiffi
R

p
X
μ∈Σ

ð−1ÞμBðFÞjE⃗μi: ð29Þ

The coherences (off-diagonal elements) of the reduced
external state (25) thus reflect the indistinguishability of the
particles. As we show in Eq. (44) in Sec. IV below, these

FIG. 3. Example of a state of N ¼ 3 partially distinguishable
particles with mode occupation list R⃗ ¼ ð2; 1; 0;…; 0Þ and,
correspondingly, mode assignment list E⃗ ¼ ð1; 1; 2Þ. External
states are depicted by black arrows, particles by colored balls, and
internal states by the balls’ coloring, with the yellow envelope
illustrating correlations between the particles. Particle distin-
guishability is determined by the listed coefficients CI⃗ .
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coherences are at the origin of many-particle interference in
the external degrees of freedom and are therefore con-
stitutive of the particles’ wave character. On a related note,
the purity of ρE, which, by virtue of Eqs. (27) and (28),
quantifies the separability of internal and external degrees
of freedom, is, in turn, a marker of indistinguishability. In
the case of indistinguishable particles, the particles’ internal
and external degrees of freedom are uncorrelated and ρE
appears pure. On the other hand, for fully distinguishable
particles, with each particle in a distinct orthogonal internal
state, the particles’ internal and external degrees of freedom
are maximally correlated, and the reduced state ρDE is
maximally mixed on its support. We pursue this direction
further in the next section.
Let us now consider the reduced internal state by tracing

over the external state space in Eq. (24):

ρI ¼ TrEðρÞ ¼
1

R

X
μ∈Σ

ρμI : ð30Þ

The result is a balanced mixture of the internal states

ρμI ¼
X
j

qjjΩðjÞ
μ ihΩðjÞ

μ j; ð31Þ

which correspond to different particle labelings μ [note the
close analogy with Eq. (7)]. In the case of indistinguishable
particles, the internal states ρμI are equal for all particle
labelings μ ∈ Σ and cannot be discriminated. In contrast,
for distinguishable particles and pure internal states, such
that the sum in Eq. (31) reduces to a single term, the states
ρμI can be discriminated with certainty; i.e., ρμI and ρνI have
support on orthogonal subspaces for μ ≠ ν. Therefore,
different particle labelings can be distinguished from each
other. The ability to discriminate different labelings thus
constitutes a particlelike property of the many-body state.
Note, however, that, for mixed internal states, even if every
term in the mixture corresponds to fully distinguishable
particles, perfect discrimination of the labelings might not
be possible.

C. Measures for wave and particle character

In the previous section, we identified the magnitude of
the coherences of the reduced external state (25) with the
many-particle wave character and the ability to discriminate
the internal states (31) with the constituents’ particle
character. Based on these observations, we now define
normalized measures that quantify these attributes.

1. Wave character

A first measure for the wave character of a many-particle
state ρ is given by the normalized coherence of ρE,

WC ¼ 1

R − 1

X
μ;ν∈Σ
μ≠ν

jhE⃗μjρEjE⃗νij: ð32Þ

This is simply the sum of absolute values of off-diagonal
elements of ρE, normalized such that 0 ≤ WC ≤ 1, with
WC ¼ 0 for distinguishable andWC ¼ 1 for indistinguish-
able particles [compare to Eq. (5)].
Above, we have pointed out that particle distinguish-

ability is rooted in entanglement between external and
internal degrees of freedom. The purity Trðρ2EÞ of the
reduced external state quantifies the degree of entanglement
and is the basis for our second measure of the wave
character, the normalized purity

WP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

R − 1

�
Trðρ2EÞ −

1

R

�s
; ð33Þ

which satisfies 0 ≤ WP ≤ 1, since the purity is bounded by
1=R ≤ Trðρ2EÞ ≤ 1 [compare to Eq. (6)]. Just as for the
previous measure, WP ¼ 0 corresponds to distinguishable
and WP ¼ 1 to indistinguishable particles. Note that WP
was identified [83] as a coherence measure that is rela-
ted to the Frobenius norm (or Hilbert-Schmidt norm)
DHSðρE; ρDE Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðjρE − ρDE j2Þ

p
of ρE and ρDE [see

Eqs. (25) and (27)] by WP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=ðR − 1Þp

DHSðρE; ρDE Þ.
Moreover, a similar measure for many-particle indistin-
guishability was proposed in Ref. [36] [Eq. (52) in
that work].
As we show in Appendix B, like WC, the normalized

purity WP can be expressed in terms of a sum over the
off-diagonal elements of ρE. In particular,WC (resp.Wp) is
related to the L1-norm (resp. L2-norm) of a vector whose
elements are the off-diagonal elements of ρE. In this regard,
both measures quantify the ability for the state to display
many-particle interference [see Eq. (44) below]. We further
prove in Appendix B that these measures obey the
following inequality:

WC ≤ WP: ð34Þ

It is worth noting that this inequality does not necessarily
saturate for pure internal states. It saturates if and only if all
off-diagonal elements (26) of ρE have equal modulus (see
Appendix B for details).

2. Quantum state discrimination and particle character

In Sec. III B, we associated the distinctiveness of the
internal states ρμI in Eq. (31) with the many-body state’s
particle character. To quantify this property, we make use of
the concept of quantum state discrimination, which we
briefly introduce in the following.
Given a quantum state drawn from the set fρ1;…; ρkg

with corresponding a priori probabilities η1;…; ηk,
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quantum state discrimination aims at quantifying the ability
to discriminate between ρ1;…; ρk via a general mea-
surement. Therefore, one considers positive-operator
valued measures (POVMs) M ¼ fMjgkj¼1, consisting of
positive-semidefinite Hermitian operators, which satisfyP

k
j¼1Mj ¼ 1, such that outcome j identifies state ρj. In

minimum error or ambiguous quantum state discrimination
(AQSD) [67–69,84,85], the outcome of the measurement
does not necessarily identify the correct state, and one
choosesM such as to maximize the probability of a correct
result, leading to the success probability

PAQSD ¼ max
M

Xk
j¼1

ηjTrðMjρjÞ: ð35Þ

In unambiguous quantum state discrimination (UQSD)
[69–71,86–88], one demands that output j identifies
state ρj with certainty, which is only possible if one
supplements the POVM M with a Hermitian operator
M0 corresponding to an inconclusive answer. The success
probability then reads

PUQSD ¼ max
M

�
1 −

Xk
j¼1

ηjTrðM0ρjÞ
�
: ð36Þ

In general, for both success probabilities PAQSD and PUQSD,
no exact expressions in terms of distances between
ρ1;…; ρk are known. However, various upper bounds were
derived [69,85], some of which we utilize in the following.
We now turn to the quantification of a given many-body

state’s particle character, with the help of quantum state
discrimination. Our aim is to discriminate the internal states
fρμIgμ∈Σ from Eq. (31), with equal a priori probabilities
1=R, by virtue of Eq. (30). For the moment, we consider the
discrimination of these internal states as a formal problem,
which we make more concrete in Sec. IVA below, where
we show its equivalence to the discrimination of common
states (including the particles’ internal and external degrees
of freedom) differing by permutations of the particles.
However, for now, let us concentrate on the discrimination
of the internal states ρμI and use the upper bound on the
success probability (35) for AQSD as derived in Ref. [84].
Given our above definitions, this reads

PAQSD ≤
1

2
ð1þ PTÞ;

with the trace-distance-based measure

PT ¼ 1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

DðρμI ; ρνIÞ: ð37Þ

This measure is normalized, 0 ≤ PT ≤ 1, with the lower
bound being reached if all internal states ρμI are equal. The
upper bound saturates if all pairs of distinct internal states
ρμI and ρνI have orthogonal support. In this regard, the

distance measure (37) quantifies the ability to discriminate
particle labelings and, thus, serves as a measure for the
particle character.
A second quantifier of the many-body state’s particle

character can be motivated by the upper bound on the
success probability for UQSD [see Eq. (36)], derived in
Ref. [71]. For the discrimination of states fρμI gμ∈Σ with
equal a priori probabilities 1=R, we have

PUQSD ≤ 1 − F ; ð38Þ

where the pairwise fidelity measure F is given by

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

F2ðρμI ; ρνIÞ
vuut : ð39Þ

From Eq. (38), it follows that PUQSD ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F 2

p
, which

motivates the definition of

PF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F 2

p
ð40Þ

as a measure for the particle character. Similarly to the case
of PT from Eq. (37), we have 0 ≤ PF ≤ 1 with PF ¼ 0 if
all internal states ρμI are equal, and PF ¼ 1 if all pairs of
distinct states ρμI have orthogonal support.
With the help of the Fuchs–van de Graaf inequality (8),

we obtain a relation reminiscent of Eq. (11),

PT ≤ PF; ð41Þ

which is proven in Appendix C. Indeed, for R ¼ 2 different
particle labelings (analogous to two mutually exclusive
paths A and B in the single-particle interference scenario
discussed in Sec. II above), PT and PF coincide with Pt
and Pf from Eqs. (9) and (10). However, while Pt ¼ Pf

for pure states, in general, Eq. (41) does not saturate for
pure internal states in the case R > 2.

D. Wave-particle duality

So far, for a state of many partially distinguishable
particles, we relate the measuresWC andWP [see Eqs. (32)
and (33)] to its many-particle wave character, and PT and
PF [see Eqs. (37) and (40)] to its particle character. These
measures quantify the ability of particles to display many-
particle interference, on the one hand, and the possibility of
individually identifying and tracking them, on the other
hand. Wave-particle duality relations state that both proper-
ties cannot be fully realized in the same state: The amount
of wave character limits the amount of particle character,
and vice versa. For PF and WP, this is quantitatively
expressed by

P2
F þW2

P ≤ 1; ð42Þ
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which we prove in Appendix D. This expression constitutes
a wave-particle duality relation since it saturates for pure
internal states. By the hierarchies (34) and (41) (which do
not necessarily saturate for pure internal states), we addi-
tionally find complementarity relations between all combi-
nations of the above-defined wave and particle measures:

P2 þW2 ≤ 1; ð43Þ

for P ∈ fPT;PFg and W ∈ fWC;WPg. Interestingly, the
complementarity relation (43) saturates for pure internal
states for the wave measure WP but not for WC. While the
former quantifies the correlations between internal and
external degrees of freedom independently of the chosen
basis via their entanglement, the latter measures these
correlations via the coherence of ρE in the chosen external
basis. Therefore, the entanglement-based measure WP
seems to have a more fundamental status, while the
coherence-based one WC might be more suited to describe
measurements performed in a specific basis.
All complementarity relations (43) and their dependence

on the mixedness of the internal state are illustrated via a
numerical example in Fig. 4. We consider N ¼ 3 particles
occupying distinct modes, with external and internal single-
particle Hilbert spaces of dimension n ¼ m ¼ 4. We
generate 300 random states of partially distinguishable
particles by mixing l ¼ 1, 3, 10, or 30 different pure
internal states (21) [see Eq. (22)]. The probabilities qj in
Eq. (22) are randomly chosen according to a uniform
probability distribution in the range qj ∈ ½0; 1� and
normalized such that

P
l
j¼1 qj ¼ 1. Many-particle disti-

nguishability is encoded in the coefficients CðjÞ
I⃗

¼
rðjÞ
I⃗

expðiφðjÞ
I⃗
Þ—which enter through Eq. (21). To fairly

distribute the 300 generated states over all possible
levels of partial distinguishability, for the internal states
of the kth state (with 0 ≤ k ≤ 300), we uniformly pick

rðjÞ
I⃗

∈ ½1 − k=300; 1� and φðjÞ
I⃗

∈ ½−πk=300; πk=300� for

each I⃗ and each pure state j. This results in lmN ¼ l43

different coefficients CðjÞ
I⃗
, which are then appropriately

normalized, such that
P

I⃗ jC
ðjÞ
I⃗
j2 ¼ 1 for each j ¼ 1;…; l.

Note that no symmetrization of the coefficients is required
since we consider at most singly occupied modes.
In Figs. 4(a)–4(h), we plot the squared wave character

quantifiers W2
C and W2

P against the squared particle
character quantifiers P2

F and P2
T , for l ¼ 1, 3, 10, and 30.

Pure internal states (l ¼ 1) come close to saturating the
upper bound for all complementarity relations (43), as
shown in Figs. 4(a) and 4(e). In particular, the saturation of
Eq. (42) is evident from Fig. 4(a). However, for stronger
mixing of the internal states, i.e., for increasing l, the sum
of the squared quantifiers of complementary many-particle
properties tends to move away from the upper bound

which, by Eq. (41), is stronger for P2
T as compared to

P2
F [compare Figs. 4(a)–4(d) with Figs. 4(e)–4(h)]. Note

that while full wave character quantifiers imply vanishing
particle character quantifiers, the converse is not true.
Indeed, mixing of internal states can reduce the particle
character quantifiers [see the discussion below Eq. (31)],
such that states with a low wave character can also have
low particle character. For all sampled states, we find
very similar values for both wave character quantifiers.

(a) (e)

(f)

(g)

(h)

(b)

(c)

(d)

FIG. 4. Complementarity relations for 300 randomly generated
states of three partially distinguishable particles, with l referring
to the number of mixed internal states (see main text for details).
Panels (a)–(d) show the wave character measures W2

P (blue
circles) and W2

C (red triangles) plotted against the particle
character quantifier P2

F, while in panels (e)–(h), they are plotted
against P2

T . In all panels, the solid black line corresponds to the
upper bound according to Eq. (43).
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As shown by the zoomed-in views in Fig. 4(f), the differ-
ence between W2

P and W2
C tends to increase with more

pronounced particle character, which can be traced back to
inhomogeneities in the moduli of the off-diagonal elements
of ρE (see Appendix B).
Let us now return to the analogy between many-particle

complementarity as summarized by Eq. (43) and the double-
slit experiment discussed in Sec. II. First of all, the common
state (2) of the particle and detector is structurally very
similar to the many-body state (24) of external and internal
degrees of freedom. In both cases, the weaker the entangle-
ment between the subsystems, the more pronounced the
wave character of the state. This observation has its direct
counterpart in the congruent structure of the wave character
quantifiers in Eqs. (6) and (33). Consistently, the wave
character is related to the coherences of the reduced single-
particle state by Eq. (5) and of the reduced many-particle
external state by Eq. (32). The latter, however, leaves room
for a much more subtle quantum-classical transition than the
former because of the many degrees of freedom involved.
Likewise, the particle character is determined by the ability

to discriminate the states (7) of thewhich-path detectors in the
single-particle case and the many-body internal states (30) in
the case of partially distinguishable particles. To quantify the
particle character, concepts imported from quantum state
discrimination lead to a generalization of Eqs. (9) and (10) by
Eqs. (37) and (40). This deep analogy then results in the
many-body generalization (43) of the single-particle duality
relation (12). For the sake of clarity, all character measures
and complementarity relations presented in Secs. II and III
are summarized in Table I.

IV. WAVE-PARTICLE DUALITY IN THE
INTERFERENCE OF MANY PARTICLES

In the previous section, we considered states of partially
distinguishable particles and associated the coherence

and the purity of their reduced external states ρE
with their wave character, arguing that both properties
give rise to many-particle interference. We now substantiate
this claim by investigating the outcome of interference
experiments performed with partially distinguishable
particles.
The experimental arrangement under consideration is

depicted in Fig. 5 and consists of a generic state (24) of N
partially distinguishable particles distributed over n
modes, which undergoes coherent evolution of its exter-
nal degrees of freedom while the internal state remains
unaffected. We thus consider the evolution of the reduced
external state ρE under an arbitrary many-particle unitary
U, chosen from the unitary group UðnNÞ. Note that, since
U acts on many identical particles, it must commute with
all particle permutation operators. Further note that,
in general, U describes an interacting evolution and not
only a unitary mapping of the input modes to the output
modes—thus, the degree of U is exponential in the
particle number. After the evolution, the resulting
state UρEU† is measured with the help of a POVM
M ¼ fMjgkj¼1. Similar to U, the operators Mj must
commute with all particle permutation operators. In
principle, one could absorb the unitary evolution into
the measurement M; however, for the sake of clarity, we
consider evolution and detection stages separately.
Let us assume that the POVM M ¼ fMjgkj¼1 has k

distinct outcomes and results in the associated counting
statistics PM ¼ fpðjÞgkj¼1 for partially distinguishable
particles. Here, pðjÞ ¼ TrðMjUρEU†Þ is the probability
of outcome j ∈ f1;…; kg, which can be decomposed as

pðjÞ ¼ pDðjÞ þ
X
μ;ν∈Σ
μ≠ν

½ρE�μ;νhE⃗νjU†MjUjE⃗μi; ð44Þ

with pDðjÞ ¼ TrðMjUρDEU
†Þ the probability in the case

of fully distinguishable particles, and the second term
accounting for many-particle interference as governed
by the coherences (off-diagonal elements) ½ρE�μ;ν from
Eq. (26). Note that, by Eq. (44), the wave character
measures WC and WP from Eqs. (32) and (33) [see also
Eq. (B3)] ultimately dictate the many-particle state’s ability
to interfere.
In the following, we consider distances between such

counting statistics on output. We make use of the classical
analogues of trace distance Dðρ; σÞ and quantum fidelity
Fðρ; σÞ, known, respectively, as the Kolmogorov distance
(or L1 distance),

DðPA
M; PB

MÞ ¼ 1

2

Xk
j¼1

jpAðjÞ − pBðjÞj; ð45Þ

and the Bhattacharyya coefficient (or fidelity),

TABLE I. Overview of complementarity relations for the
single-particle double-slit experiment and for states of many
partially distinguishable particles.

Particle
measures

Wave
measures

Complementarity
relations

Saturation for pure
states

Single-particle double slit

Pt ≤ Pf V
P2

f þ V2 ≤ 1 Yes

P2
t þ V2 ≤ 1 Yes

Many-particle states

PT ≤ PF WC ≤ WP

P2
F þW2

P ≤ 1 Yes

P2
F þW2

C ≤ 1 No

P2
T þW2

P ≤ 1 No

P2
T þW2

C ≤ 1 No
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FðPA
M; PB

MÞ ¼
Xk
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAðjÞpBðjÞ

p
; ð46Þ

which both take values between 0 and 1 [65,66].
These measures are related to the trace distance and
quantum fidelity by an optimization over all POVMs: If
ρA and ρB are two states leading to distributions PA

M and
PB
M, then [66]

DðρA; ρBÞ ¼ max
M

DðPA
M; PB

MÞ ð47Þ

and

FðρA; ρBÞ ¼ min
M

FðPA
M; PB

MÞ: ð48Þ

In analogy to their quantum counterparts [cf. Eq. (8)], these
measures obey the Fuchs–van de Graaf inequality [66]

DðPA
M; PB

MÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðPA

M; PB
MÞ

q
: ð49Þ

A. Permutations of the internal states

In Sec. III C 2, we defined the measures PT and PF [see
Eqs. (37) and (40)] to quantify the many-body state’s
particle character. These measures are based on the formal
discrimination of different particle labelings μ ∈ Σ by
comparison of the associated internal states ρμI from
Eq. (31). We now show that different particle labelings
can equivalently be discriminated by comparing common
states, of external and internal degrees of freedom, that
differ by an initial permutation of the internal states.
Therefore, instead of the unpermuted internal many-par-
ticle states jΩðjÞi from Eq. (16), we consider the internal

states jΩðjÞ
κ i permuted according to κ ∈ Σ [see Eq. (21)].

While the unpermuted common state ρ of external and
internal degrees of freedom is given in Eq. (24), the
permuted states read

ρκ ¼ 1

R

X
μ;ν∈Σ

ð−1ÞμνBðFÞjE⃗μihE⃗νj ⊗
X
j

qjjΩðjÞ
κμ ihΩðjÞ

κν j: ð50Þ

Here, the subscript κμ in jΩðjÞ
κμ i refers to a composition of

permutations, with permutation κ and μ arising because of
the initially permuted internal states and the symmetriza-
tion of the many-particle state, respectively.
In Appendix E, we prove the equality of the distances,

Dðρκ; ρτÞ ¼ DðρκI ; ρτIÞ; ð51Þ

and of the fidelities,

Fðρκ; ρτÞ ¼ FðρκI ; ρτIÞ; ð52Þ

with ρκ and ρκI from Eqs. (50) and (31), respectively. Thus,
the discrimination of different particle labelings κ can be
performed equally well by comparison of the internal states
ρκI or of the permuted common states ρκ. We therefore
investigate how the outcomes of interference experiments
as sketched in Fig. 5 differ for permuted states. This
approach will lead us to classical counterparts of the
measures PT and PF of the particle character, evaluated
on the output counting statistics, which also obey com-
plementarity relations of the form (43).
Let us denote by ρκE the reduced external state of the

permuted state, ρκE ¼ TrIðρκÞ, and by Pκ
M the probability

distribution obtained when ρκ is used as input in the
experiment depicted in Fig. 5. As we prove in
Appendix F, for two permutations κ ≠ τ, the classical
distances between the corresponding output probability
distributions are bounded by the magnitude of the corre-
sponding off-diagonal element of ρE,

DðPκ
M; Pτ

MÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðPκ

M; Pτ
MÞ

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2jhE⃗κjρEjE⃗τij2

q
: ð53Þ

Thus, for external states ρE with large coherences,
jhE⃗κjρEjE⃗τij ≈ 1=R, permuted input states lead to similar
output probability distributions.
Given this observation, it is natural to consider all

pairwise differences in the output probability distributions
Pκ
M; Pτ

M; κ ≠ τ. We therefore define classical analogues of
PT and PF from Eqs. (37) and (40):

PT ¼ 1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

DðPκ
M; Pτ

MÞ ð54Þ

FIG. 5. General setting of a many-particle interference experi-
ment with a state ρ of N partially distinguishable particles in n
modes (colored balls covered by a yellow envelope illustrating
correlations in the internal degrees of freedom). The external state
ρE evolves according to a many-particle, possibly interacting,
unitary U ∈ UðnNÞ (illustrated in blue) and is measured by a
POVM M with outcomes 1;…; k (illustrated in red). As a
consequence of wave-particle duality, the visibility of many-
particle interference is bounded by the particles’ degree of
distinguishability.
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and

PF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

F2ðPκ
M; Pτ

MÞ
vuut ; ð55Þ

with 0 ≤ PT;PF ≤ 1. Similarly to Eqs. (11) and (41),
these measures obey

PT ≤ PF; ð56Þ

and they are bounded from above by their quantum
counterparts,

PT ≤ PT and PF ≤ PF: ð57Þ

Equations (56) and (57) are proven in Appendixes G and H,
respectively. In consideration of Eq. (43), the inequalities in
Eq. (57) directly lead to the complementarity relations

P2 þW2 ≤ 1; ð58Þ

for P ∈ fPT;PFg and W ∈ fWC;WPg. In contrast to
Eq. (43), these relations use experimental outcomes in the
external degrees of freedom to quantify the particle
character. In the case of indistinguishable particles, the
state remains invariant under permutations of the particle’s
internal degrees of freedom, and thus Pκ

M is the same for all
permutations κ, such that PT ¼ PF ¼ 0 [see Eqs. (54)
and (55)]. On the other hand, permuting partially distin-
guishable particles in the input can change the output
counting statistics, which then leads to nonvanishing
measures PT and PF.

B. Partially distinguishable
vs indistinguishable particles

When considering experiments with partially distin-
guishable particles, it is common to compare the output
distribution against the extreme distributions obtained with
fully distinguishable or fully indistinguishable particles. In
this way, one can define generalized visibilities of many-
particle interference. Here, we start by comparing the
output probability distribution PM to the one obtained

with strictly indistinguishable bosons (fermions) PBðFÞ
M .

This question was addressed in Ref. [38] in the context
of boson sampling, that is, for noninteracting bosons
and (possibly imperfect) particle-number measurements.
Here, we generalize the result of Ref. [38] to both bosons
and fermions, interacting evolutions, and arbitrary
measurements.
We start by noting that jψBðFÞi from Eq. (29) is an

eigenvector of ρE from Eq. (25), with eigenvalue

λBðFÞ ¼ F2ðρBðFÞE ; ρEÞ:

ρEjψBðFÞi ¼ λBðFÞjψBðFÞi: ð59Þ

This is proven in Appendix I. As we further show in
Appendix J, Eq. (59) leads to

DðρBðFÞE ; ρEÞ þ F2ðρBðFÞE ; ρEÞ ¼ 1: ð60Þ

Given the relation (47) between the trace distance and the
Kolmogorov distance, as well as the invariance of the trace
distance under unitary transformations [65], we find

DðPBðFÞ
M ; PMÞ þ F2ðρBðFÞE ; ρEÞ ≤ 1; ð61Þ

with the bound saturating for an optimal measurement (see
Appendix K for details). The difference between the
outcomes of experiments performed with partially distin-
guishable and with indistinguishable particles is thus rather
intuitively constrained by the similarity of the input state to
the state of ideal bosons or fermions, as measured by the

fidelity F2ðρBðFÞE ; ρEÞ. Furthermore, this fidelity is related to
the coherences of ρE, and therefore to the state’s wave
character, through

F2ðρBðFÞE ; ρEÞ ¼
1

R
þ 1

R

X
μ;ν∈Σ
μ≠ν

ð−1ÞμνBðFÞhE⃗μjρEjE⃗νi; ð62Þ

as can be seen by singling out the terms with μ ¼ ν
in Eq. (I1) and recognizing the coherences from
Eq. (25). Let us stress that while both measures that
enter Eq. (61) generally vary between zero and unity, in
the case of fully distinguishable particles, with the external

state ρDE , we have F2ðρBðFÞE ; ρDE Þ ¼ 1=R and, in turn,

DðPBðFÞ
M ; PD

MÞ ≤ 1 − 1=R. The Kolmogorov distance
therefore does not reach its maximum value for distinguish-
able particles.
Under the assumptions of noninteracting particles and

perfect particle-number measurement, the unitary evolution
is constrained to the form U ¼ u⊗N with u ∈ UðnÞ, and
the particle-number measurement is performed by the
projectors MS⃗ ¼

P
μ∈ΣðS⃗Þ jE⃗μðS⃗ÞihE⃗μðS⃗Þj, where S⃗ is the

output-mode occupation list, defined analogously to R⃗ in
Sec. III A. This particular scenario has been addressed in
Ref. [38] and is covered by Eq. (61). In this regard, we can
identify ps in Eq. (12) of Ref. [38] withF2ðρBE; ρEÞ. We also
note that similar considerations were made under a group-
theoretical perspective in Ref. [46] [e.g., compare our
Eq. (60) to Eq. (66) in Ref. [46] ].

C. Partially distinguishable vs
fully distinguishable particles

We now compare the outcomes of experiments carried
out with partially distinguishable particles to those obtained
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with fully distinguishable particles. To this end, we utilize
the Kolmogorov distance (45) and the Bhattacharyya
coefficient (46) and define the visibilities

VT ¼ R
R − 1

DðPD
M; PMÞ ð63Þ

and

VF ¼ R
R − 1

(1 − F2ðPD
M; PMÞ): ð64Þ

These visibility measures quantify the interference contrast;
they are normalized, 0 ≤ VT;VF ≤ 1, and yield VT ¼
VF ¼ 0 for distinguishable particles. For indistinguishable
particles, one finds VT;VF ≤ 1, with the saturation
VT ¼ 1 (resp. VF ¼ 1) in the case of an optimal
measurement.
As a consequence of the relations between quantum and

classical trace distance and fidelity [cf. Eqs. (47) and (48)],
VT and VF are smaller than their quantum counterpart,
which we use to define the distinguishability measures DT
and DF,

VT ≤
R

R − 1
DðρDE ; ρEÞ ¼ 1 −DT ð65Þ

and

VF ≤
R

R − 1
(1 − F2ðρDE ; ρEÞ) ¼ 1 −DF; ð66Þ

respectively, with ρDE from Eq. (27). The inequalities in
Eqs. (65) and (66) saturate for an optimal measurement,
such as a projection onto the eigenstates of UρEU† (see,
e.g., Secs. 9.2.1 and 9.2.2 in Ref. [65]).
Given that 1=R≤F2ðρDE ;ρEÞ≤1 [resp. 0 ≤ DðρDE ; ρEÞ ≤

ðR − 1Þ=R], with the lower (resp. upper) bound reached

when ρE ¼ ρBðFÞE , we have 0 ≤ DT;DF ≤ 1, with the lower
bound saturating for indistinguishable particles and the
upper bound for distinguishable particles. Therefore,
Eqs. (65) and (66) entail the complementarity relations

DT þVT ≤ 1 ð67Þ

and

DF þVF ≤ 1; ð68Þ

which provide a bound on the visibility based on the
distinguishability of the particles, as measured by DT and
DF, regardless of the exact form of ρE, which depends,
for example, on the particle type. In other words, a given
level of visibility can only be achieved by states that
are sufficiently distant from the state of distinguishable
particles.

Interestingly, the distinguishability measures DT and DF
are also connected to the previously defined wave character
measures (32) and (33) by the complementarity relation

D2 þW2 ≤ 1 ð69Þ

for D ∈ fDT;DFg andW ∈ fWC;WPg. Inequality (69) is
proven in Appendix L. Although Eq. (69) does not
explicitly refer to outcomes of experiments, it once more
highlights the suppression of the wave character by particle
distinguishability. For a better overview, Table II summa-
rizes the relations developed in the present section.

D. Examples for the interference visibility measures

To conclude, let us illustrate the behavior of the
visibilities VT and VF [see Eqs. (64) and (63)] and the
inequalities (67) and (68) in two experimental scenarios:
the Hong-Ou-Mandel experiment and the double-well
Bose-Hubbard model with four partially distinguishable,
interacting particles. First, we consider the Hong-Ou-
Mandel experiment [28,89,90] illustrated in Fig. 6(a),
where N ¼ 2 noninteracting, partially distinguishable par-
ticles (bosons or fermions) are incident on two different
input modes of a balanced beam splitter and measured via a
projective measurement of the number of particles in the
output modes. For the input state, we have R⃗ ¼ ð1; 1Þ,

TABLE II. Summary of the relations obtained by comparing
the output statistics for initially permuted input particles, between
partially distinguishable and fully distinguishable or indistin-
guishable particles.

Measures
Complementarity

relations
Saturation for

optimal measurement

Permuted input particles

PT ≤ PF WC ≤ WP

P2
F þW2

P ≤ 1 No

P2
F þW2

C ≤ 1 No

P2
T þW2

P ≤ 1 No

P2
T þW2

C ≤ 1 No

Partially distinguishable vs fully distinguishable particles

DT

VT DT þVT ≤ 1 Yes

WC ≤ WP

D2
T þW2

P ≤ 1

D2
T þW2

P ≤ 1

DF VF DF þVF ≤ 1 Yes

WC ≤ WP

D2
F þW2

P ≤ 1

D2
F þW2

C ≤ 1

Partially distinguishable vs indistinguishable particles

DðPBðFÞ
M ; PMÞ þ F2ðρBðFÞE ; ρEÞ ≤ 1 Yes
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R ¼ 2, E⃗ ¼ ð1; 2Þ, and Σ ¼ S2 ¼ fϵ; ð12Þg, with ϵ the
identity permutation and Eq. (12) permuting the particles.

In the external basis fjE⃗igE⃗ ¼ fj1; 1i; j1; 2i; j2; 1i; j2; 2ig,
the reduced external state (25) reads

ρE ¼ 1

2

0
BBB@

0 0 0 0

0 1 r 0

0 r 1 0

0 0 0 0

1
CCCA; ð70Þ

where the second and third rows and columns correspond to
the subset of states fjE⃗μigμ∈Σ ¼ fj1; 2i; j2; 1ig needed in
Eq. (19) to describe states (22) with particles in different
modes. For two particles, we find that the nonzero off-
diagonal element (26) is always real, and we write

2½ρE�ϵ;ð12Þ ¼ ð−1ÞBðFÞ
P

j qjhΩðjÞ
ð12ÞjΩðjÞ

ϵ i ¼ r ∈ R.
The noninteracting evolution of state (70) is governed by

the unitary U ¼ u⊗2, with

u ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
ð71Þ

the single-particle transformation matrix of the beam
splitter. Thereupon, the number of particles in the output
modes is measured by MO ¼ fMS⃗gS⃗, with S⃗ the output

mode occupation defined analogously to R⃗ in Sec. III A,

and MS⃗ ¼
P

μ∈ΣðS⃗Þ jE⃗μðS⃗ÞihE⃗μðS⃗Þj the projector on

external states with occupation S⃗. In total, there are three
different output mode occupations S⃗, which occur with
probability pðS⃗Þ ¼ TrðMS⃗UρEU

†Þ. These probabilities
form the distribution PM, and they read

p(ð1; 1Þ) ¼ 1

2
ð1 − rÞ;

p(ð2; 0Þ) ¼ p(ð0; 2Þ) ¼ 1

4
ð1þ rÞ: ð72Þ

In the case of distinguishable particles, r ¼ 0, such that

ρDE ¼ 1

2
diagð0; 1; 1; 0Þ;

and the output probability distribution PD
M becomes

pD(ð1; 1Þ) ¼ 1

2
;

pD(ð2; 0Þ) ¼ pD(ð0; 2Þ) ¼ 1

4
: ð73Þ

Therewith, a short calculation reveals the distinguish-
ability measures in Eqs. (65) and (66),

DT ¼ 1 − jrj ð74Þ

and

DF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
: ð75Þ

Note that in this case, the measures (32) and (33) of the
many-body state’s wave character obey WC ¼ WP ¼ r,
such thatD2

F þW2 ¼ 1 forW ∈ fWC;WPg [cf. Eq. (69)].
The probability distributions PM and PD

M yield the visi-
bilities from Eqs. (63) and (64),

VT ¼ jrj ð76Þ

and

VF ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
: ð77Þ

Interestingly, by virtue of Eqs. (72) and (73), the visibility
measure VT from Eq. (76) coincides with the usual inter-
ference contrast,

VT ¼
����pDðS⃗Þ − pðS⃗Þ

pDðS⃗Þ

����
for all output events S⃗. With DT and VT from Eqs. (74)
and (76) as well as DF and VF from Eqs. (75) and (77),
both inequalities (67) and (68) saturate. Finally, withWC ¼
WP ¼ r and Eqs. (76) and (77), we have VF ≤ VT ¼
WC ¼ WP. With Eq. (43), this leads to

(a) (b)

FIG. 6. Experimental settings to illustrate the complementarity
relations (67) and (68), for systems of partially distinguishable,
possibly interacting particles. (a) Hong-Ou-Mandel experiment:
N ¼ 2 noninteracting partially distinguishable particles (colored
balls), which can be correlated in their internal degrees of
freedom (yellow envelope), evolve according to U ¼ u⊗N , with
u the single-particle unitary matrix of the balanced beam
splitter. The output mode occupation S⃗ is measured according
to the measurement MO (see main text) with an interference
contrast controlled by Eq. (67). (b) Double-well Bose-Hubbard
model: Each site (or mode) initially contains two particles, with
particles on distinct sites prepared in distinct internal states with
mutual overlap γ (see main text). The difference in the potential
wells’ on-site energies is controlled by the tilt F. Particles can
tunnel with rate J and interact with strength U. After an
evolution for some time t, different observables exhibit an
interference contrast, which is bounded by the complementarity
relation (67); see Fig. 8.
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P2 þV2 ≤ 1;

for P ∈ fPT;PFg and V ∈ fVT;VFg, in direct analogy
with the wave-particle duality relations (12) of the double-
slit experiment.
Note that for internal product states of bosons (resp.

fermions),

jΩðjÞ
ϵ i ¼ jϕðjÞ

1 i ⊗ jϕðjÞ
2 i;

the off-diagonal element

½ρE�ϵ;ð12Þ ¼ ð−1ÞBðFÞ
1

2

X
j

qjjhϕðjÞ
1 jϕðjÞ

2 ij2

is positive (resp. negative) such that r ≥ 0 (resp. r ≤ 0), and
the probability of the output event S⃗ ¼ ð1; 1Þ in Eq. (72)
decreases (resp. increases) with increasing particle indis-
tinguishability. This refers to the usual scenario of the
Hong-Ou-Mandel experiment with uncorrelated bosons
(resp. fermions). However, if the particles are in an
entangled internal state, this relation can be modified or
even inverted [89,90].
The second example involves the Bose-Hubbard model

for partially distinguishable and possibly interacting bosons
as illustrated in Fig. 6(b). Since the particles’ evolution is
supposed to be independent of their internal states, we can
consider the Bose-Hubbard Hamiltonian with respect to the
particles’ external degrees of freedom, reading

H ¼ Hhop þHint þHtilt: ð78Þ

In first quantization, the coupling between neighboring
sites hj; ki with strength J is described by the hopping term

Hhop ¼ −J
X
hj;ki

XN
α¼1

11 ⊗ … ⊗ jjihkjα ⊗ … ⊗ 1N;

where jjihkjα acts only on the αth particle (and 1 on all
other particles). On-site particle interactions of strength U
are modeled by

Hint ¼ U
Xn
j¼1

XN
α;β¼1
α<β

11 ⊗ … ⊗ jjihjjα ⊗ …

⊗ jjihjjβ ⊗ … ⊗ 1N;

and

Htilt ¼
Xn
j¼1

ωj

XN
α¼1

11 ⊗ … ⊗ jjihjjα ⊗ … ⊗ 1N

additionally accounts for different on-site energies ωj.
Note that in the second quantization formalism, these

Hamiltonians take their usual form Hhop¼−J
P

hj;kia
†
jak,

Hint¼U=2
P

n
j¼1ða†jÞ2ðajÞ2, andHtilt ¼

P
n
j¼1 ωja

†
jaj, with

a†j (resp. aj) the creation (resp. annihilation) operator of a
particle in mode j.
In our example, we consider N ¼ 4 particles in a double-

well potential (i.e., n ¼ 2), where different on-site energies
lead to a tilt F ¼ ω2 − ω1 [cf. Fig. 6(b)]. Initially, we
consider two particles in each mode, such that R⃗ ¼ ð2; 2Þ,
R ¼ 6, E⃗¼ð1;1;2;2Þ, and SR⃗ ¼ fϵ; ð12Þ; ð34Þ; ð12Þð34Þg.
Moreover, let us suppose that the particles in mode 1 share
the same internal state jai, while the two particles in mode
2 are both in state γjai þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
jbi, with γ ∈ ½0; 1� and

hajbi ¼ 0. Thus, for increasing γ, particles in different
modes become increasingly indistinguishable. This allows
us to study the quantum-to-classical transition in this
setting merely with respect to the coefficient γ [33]. The
many-particle internal state (16) then reads

jΩi ¼ γ2ja; a; a; ai þ γ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
ja; a; b; ai

þ γ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
ja; a; a; bi þ ð1 − γ2Þja; a; b; bi; ð79Þ

with the coefficients CI⃗ from Eq. (16) given by

Cða;a;a;aÞ ¼ γ2, Cða;a;b;aÞ ¼ Cða;a;a;bÞ ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
, and

Cða;a;b;bÞ ¼ 1 − γ2. As required, this set of coefficients is
normalized,

P
I⃗ jCI⃗ j2 ¼ 1, and symmetric under the

exchange of particles in the same mode, CI⃗ ¼ CI⃗ξ
for

all ξ ∈ SR⃗ [see below Eq. (20)]. Accordingly, the internal
state (79) is normalized and symmetric; i.e., jΩξi ¼ jΩi for
all ξ ∈ SR⃗.
After the evolution of the many-particle state according

to U ¼ e−iHt=ℏ with H from Eq. (78), we consider different
measurements of the resulting outcome: the projective
measurement MO ¼ fMS⃗gS⃗ of the output mode occupa-

tions S⃗ ∈ fð2; 2Þ; ð3; 1Þ; ð1; 3Þ; ð4; 0Þ; ð0; 4Þg [see below
Eq. (71)], the one-point density measurement
M1P ¼ fM1;M2g, with

Mj ¼
1

N

XN
α¼1

11 ⊗ … ⊗ jjihjjα ⊗ … ⊗ 1N

measuring the particle density on site j, the two-point
(density-density) correlation measurementM2P¼fM2

1;M
2
2;

2M1M2g, which measures density correlations between the
two sites, as well as three-point and four-point density cor-
relation measurements M3P¼fM3

1;M
3
2;3M1M2

2;3M
2
1M2g

and M4P ¼ fM4
1;M

4
2; 4M1M3

2; 4M
3
1M2; 6M2

1M
2
2g. As re-

quired, these measurements constitute POVMs satisfy-
ing

P
M∈MM ¼ 1.

First, let us consider the visibility VT from Eq. (63) for
the measurement MO of the output mode occupations,
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given equal on-site energies, i.e., F ¼ 0. As highlighted in
Figs. 7(a)–7(d), the upper bound from Eq. (65) limits the
extent of the interference visibility throughout the evolution
(i.e., for all evolution times t) and independently of the
interaction strength (i.e., for all values of U=J). The bound
of VT merely depends on particle distinguishability as
governed by the overlap γ between particles initially in
different modes [see the inset in Fig. 7(a)]. In the case
of a fixed evolution time t ¼ 4ℏ=J and tilt F ¼ J,
Figs. 8(a)–8(d) show that our bound (65) is likewise valid
for the density correlation measurements M1P, M2P,
M3P, and M4P. Note that the gap between the visibility
VT and the upper bound from Eq. (65), e.g., in Fig. 8(d), is
an artefact of the particular measurement. Indeed, by
optimizing the measurement [see below Eq. (66)], the
upper bound can be reached.
In summary, while the exact behavior of the many-

particle interference visibility VT undergoes complex
dynamics, Figs. 7 and 8 illustrate that VT is bounded
by particle distinguishability via Eq. (65), which applies
independently of the particular underlying experimental
setting, even beyond the Bose-Hubbard model considered

in the present example. Note that the visibility VF from
Eq. (64) obeys a similar behavior.

V. CONCLUSION

Many-particle interference is an intricate phenomenon
that leads to complex dynamics for both interacting and
noninteracting systems. It is a central ingredient for
applications in quantum information processing and quan-
tum simulation, ranging from boson sampling [49] to
simulations of quantum many-body problems with ultra-
cold atoms in optical lattices [61], quantum walks with
strongly correlated quantum matter [58], or relaxation
phenomena in a many-body quantum system [59]. This
calls for a better understanding of the impact of partial
particle distinguishability of the involved particles—which
deteriorates any interference-based many-body quantum
protocol.
Here, we investigated particle distinguishability in an

approach that relies on the complementarity of wavelike
and particlelike features of many-body quantum states. By
deriving the complementarity relations (43), we showed
that the fundamental concept of wave-particle duality can

(a)

(c) (d)

(b)

FIG. 7. Many-particle interference visibility VT in the double-
well Bose-Hubbard model (78) for the particle occupation
measurement MO and tilt F ¼ 0. Panels (a)–(d) show the
visibility VT as a function of the evolution time t for different
levels of particle distinguishability in the internal state (79), as
controlled by γ ¼ 1=4, 1=2, 3=4, and 1, respectively. Independ-
ently of the interaction strength U=J, and as predicted by
Eq. (65), the visibility VT is bounded for all evolution times t
by the particle indistinguishability 1 −DT (red dashed line),
which is a monotonously increasing function of γ, as illustrated in
the inset of panel (a).

(a)

(c) (d)

(b)

FIG. 8. Many-particle interference visibility VT in the double-
well Bose-Hubbard model for the evolution time t ¼ 4ℏ=J and
tilt F ¼ J. For the particle occupation measurementMO, as well
as the correlation measurements M1P, M2P, M3P, and M4P,
panels (a)–(d) show the visibility VT as a function of the
interaction strength U=J for γ ¼ 1=4, 1=2, 3=4, and 1, respec-
tively. Just like in Fig. 7, for all measurements and all interaction
strengths U=J, the visibility VT is bounded by the particle
indistinguishability 1 −DT (red dashed line). See the inset in
Fig. 7(a) for the relation between 1 −DT and γ.
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be generalized to the many-body realm. We then demon-
strated how the wave and particle properties of a many-
body state affect the interference contrast imprinted on
diverse experimental observables. In particular, we estab-
lished general visibility measures that can be applied
independently of the specific experimental setting and thus
provide universal tools to quantify the magnitude of many-
particle interference, and to certify particle indistinguish-
ability, as illustrated by numerical examples.
Formally, the effect of particle distinguishability on the

discussed many-body interference scenarios bears a pro-
found similarity to decoherence due to interactions with an
environment. At the single-particle level, this relation is
clear: For example, in the double-slit interference of macro-
molecules [21,23], collisions entangle the particle’s state
with the environment and lead to which-way information
that deteriorates single-particle interference. In the many-
particle case, here we assumed that the entanglement of
internal and external degrees of freedom is given a priori.
The creation of such correlations by controlled or uncon-
trolled interactions of the many-particle system with envi-
ronmental degrees of freedom mediates decoherence of
many-particle amplitudes and poses a panoply of interesting
questions, which are open for future investigations.
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APPENDIX A: PROOF OF THE SINGLE-
PARTICLE WAVE-PARTICLE DUALITY

RELATIONS (12)

In the following, we prove the wave-particle duality
relations in Eq. (12). Let us consider the fidelity of the
detector states ρAd and ρBd [see Eq. (7)] and utilize its
concavity [65],

FðρAd ; ρBd Þ ≥
X
j

qjFðjDðjÞ
A ihDðjÞ

A j; jDðjÞ
B ihDðjÞ

B jÞ

¼
X
j

qjjhDðjÞ
B jDðjÞ

A ij ≥
����X

j

qjhDðjÞ
B jDðjÞ

A i
����

¼ V; ðA1Þ

where we identified V from Eq. (5) in the last step. By
plugging Eq. (A1) into Eq. (10), we obtain

Pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðρAd ; ρBd Þ

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
;

which results in the second inequality of Eq. (12),

P2
f þ V2 ≤ 1:

The first inequality in Eq. (12) follows directly from
Eq. (11). Note that both inequalities saturate for pure states.

APPENDIX B: PROOF OF THE HIERARCHY (34)
OF QUANTIFIERS OF THE MANY-BODY

STATE’S WAVE CHARACTER

Before we prove the hierarchy in Eq. (34), let us rewrite
the two measures WC and WP from Eqs. (32) and (33).
With ρE from Eq. (25), the summands of the normalized
coherence (32) can be expressed as

jhE⃗μjρEjE⃗νij ¼
1

R

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����; ðB1Þ

and by plugging this into Eq. (32), we obtain

WC ¼ 1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����: ðB2Þ

Moving on to the purity-based measure, a straightforward
calculation gives the purity of ρE,

Trðρ2EÞ ¼
1

R2

X
μ;ν∈Σ

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����2:

Since the summands for μ ¼ ν yield 1=R, the normalized
purity (33) becomes

WP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����2

vuut : ðB3Þ

Now, we are set to prove the hierarchy (34). We start
from Eq. (B2) and use the Cauchy-Schwarz inequality,
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W2
C ¼

 X
μ;ν∈Σ
μ≠ν

1

RðR − 1Þ
����X

j

qjhΩðjÞ
ν jΩðjÞ

μ i
����
!

2

≤
X
κ;τ∈Σ
κ≠τ

�
1

RðR − 1Þ
�

2X
μ;ν∈Σ
μ≠ν

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����2

¼ 1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����2

¼ W2
P; ðB4Þ

where we identified the square of Eq. (B3) in the last step.
Accordingly,

WC ≤ WP; ðB5Þ

which completes the proof. Note that by the use of the
Cauchy-Schwarz inequality in Eq. (B4), Eq. (B5) saturates

if and only if jPj qjhΩðjÞ
ν jΩðjÞ

μ ij is equal for all μ ≠ ν.
Considering Eq. (26), this refers to all off-diagonal ele-
ments of ρE having equal modulus.

APPENDIX C: PROOF OF THE HIERARCHY (41)
OF QUANTIFIES OF THE MANY-BODY STATE’S

PARTICLE CHARACTER

In order to prove Eq. (41), we consider the squared
particle character measure PT from Eq. (37) and use the
Fuchs–van de Graaf inequality (8), resulting in

P2
T ¼

 
1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

DðρμI ; ρνIÞ
!

2

≤

 
1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðρμI ; ρνIÞ

q !
2

:

Now, using the Cauchy-Schwarz inequality, we arrive at

P2
T ≤

X
κ;τ∈Σ
κ≠τ

�
1

RðR − 1Þ
�

2X
μ;ν∈Σ
μ≠ν

(1 − F2ðρμI ; ρνIÞ)

¼ 1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

(1 − F2ðρμI ; ρνIÞ)

¼ 1 −
1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

F2ðρμI ; ρνIÞ

¼ 1 − F 2;

where we used Eq. (39) in the last step. By definition (40),
this leads to PT ≤ PF, which was our initial claim.

APPENDIX D: PROOF OF THE
MANY-PARTICLE WAVE-PARTICLE

DUALITY RELATION (42)

We prove the wave-particle duality relation (42) in a
similar way as in the proof of P2

f þ V2 ≤ 1 in Appendix A.
First of all, we consider the pairwise fidelities of internal
states (31) corresponding to different particle labelings and
utilize the fidelity’s concavity [65]:

FðρμI ; ρνIÞ ≥
X
j

qjFðjΩðjÞ
μ ihΩðjÞ

μ j; jΩðjÞ
ν ihΩðjÞ

ν jÞ

¼
X
j

qjjhΩðjÞ
ν jΩðjÞ

μ ij ≥
����X

j

qjhΩðjÞ
ν jΩðjÞ

μ i
����; ðD1Þ

with the inequality saturating for pure internal sates.
Therefore, the fidelity measure F in Eq. (39) obeys

F ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

RðR − 1Þ
X
μ;ν∈Σ
μ≠ν

����X
j

qjhΩðjÞ
ν jΩðjÞ

μ i
����2

vuut ¼ WP;

where we identified WP from Eq. (B3). By means of the
definition (40), PF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F 2

p
, we then obtain

PF ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

P

q
and, hence, P2

F þW2
P ≤ 1, which had to be proven.

APPENDIX E: PROOF OF EQS. (51) AND (52)

In order to prove Eqs. (51) and (52), we first show
that ρκ from Eq. (50) is obtained by transforming the state

ρBðFÞE ⊗ ρκI [with ρ
BðFÞ
E from Eq. (28) and ρκI from Eq. (31)]

according to the unitary transformation

V ¼
X
R⃗

X
μ∈ΣðR⃗Þ

jE⃗μðR⃗ÞihE⃗μðR⃗Þj ⊗ Πμ; ðE1Þ

with the permutation operator Πμ acting on the internal
basis states as

ΠμjI⃗i ¼ ΠμjI1;…; INi ¼ jIμð1Þ;…; IμðNÞi ¼jI⃗μi;

such that

ΠμjI⃗κi ¼ ΠμjðI κÞ1;…; ðIκÞNi ¼ jðIκÞμð1Þ;…; ðI κÞμðNÞi
¼ jI κ(μð1Þ);…; Iκ(μðNÞ)i ¼ jI⃗κμi;

and, by Eq. (16),

ΠμjΩðjÞ
κ i ¼ jΩðjÞ

κμ i: ðE2Þ
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Note that in Eq. (E1), we explicitly state the dependence of
the mode assignment list E⃗ and of the subset Σ on the mode
occupation R⃗ since we sum over all possible R⃗. Given thatP

R⃗

P
μ∈ΣðR⃗Þ jE⃗μðR⃗ÞihE⃗μðR⃗Þj¼

P
E⃗ jE⃗ihE⃗j¼1 andΠ†

μΠμ¼1,
one checks that V is indeed unitary. Utilizing Eqs. (28),
(29), (31), (E1), and (E2), we then obtain for the trans-
formed state

V½ρBðFÞE ⊗ ρκI �V†

¼ 1

R

X
μ;ν∈Σ

ð−1ÞμνBðFÞjE⃗μihE⃗νj ⊗
X
j

qjΠμjΩðjÞ
κ ihΩðjÞ

κ jΠ†
ν

¼ 1

R

X
μ;ν∈Σ

ð−1ÞμνBðFÞjE⃗μihE⃗νj ⊗
X
j

qjjΩðjÞ
κμ ihΩðjÞ

κν j

¼ ρκ; ðE3Þ

where we identified ρκ from Eq. (50).
We are now set to prove Eqs. (51) and (52). Let us start

with Eq. (51): We rewrite the trace distance Dðρκ; ρτÞ
between permuted states using Eq. (E3), and we use
the invariance of the trace distance under unitary trans-
formations:

Dðρκ; ρτÞ
¼ DðV½ρBðFÞE ⊗ ρκI �V†; V½ρBðFÞE ⊗ ρτI �V†Þ
¼ DðρBðFÞE ⊗ ρκI ; ρ

BðFÞ
E ⊗ ρτIÞ: ðE4Þ

Next, we use Dðα ⊗ σ; α ⊗ ρÞ ¼ Dðσ; ρÞ for density
matrices σ, ρ and α. This turns Eq. (E4) into

Dðρκ; ρτÞ ¼ DðρκI ; ρτIÞ;

which proves Eq. (51). Equation (52) can be proven
similarly: Utilizing Eq. (E3), the invariance of the fidelity
under unitary transformations, and the multiplicativity of
fidelities, we obtain

Fðρκ; ρτÞ ¼ FðV½ρBðFÞE ⊗ ρκI �V†; V½ρBðFÞE ⊗ ρτI �V†Þ
¼ FðρBðFÞE ⊗ ρκI ; ρ

BðFÞ
E ⊗ ρτIÞ

¼ FðρBðFÞE ; ρBðFÞE ÞFðρκI ; ρτIÞ
¼ FðρκI ; ρτIÞ;

which proves Eq. (52).

APPENDIX F: PROOF OF EQ. (53)

The first inequality in Eq. (53) is a statement of the
Fuchs–van de Graaf inequality (49); we therefore set out to
prove the second inequality. We start by utilizing the
relation (48) between the Bhattacharyya coefficient and

the quantum fidelity and, thereafter, the invariance of the
quantum fidelity under unitary transformations,

FðPκ
M; Pτ

MÞ ≥ min
M

FðPκ
M; Pτ

MÞ
¼ FðUρκEU†;UρτEU

†Þ
¼ FðρκE; ρτEÞ:

Since the quantum fidelity increases under partial trace
operations [65], and using Eq. (52), we find

FðPκ
M; Pτ

MÞ ≥ FðρκE; ρτEÞ ≥ Fðρκ; ρτÞ ¼ FðρκI ; ρτIÞ; ðF1Þ

with ρκ from Eq. (50). Using Eq. (31) and the concavity of
the quantum fidelity [see Eq. (D1)] then yields

FðPκ
M; Pτ

MÞ ≥ FðρκI ; ρτIÞ

≥
X
j

qjjhΩðjÞ
τ jΩðjÞ

κ ij ≥
����X

j

qjhΩðjÞ
τ jΩðjÞ

κ i
����:
ðF2Þ

In view of Eq. (B1), we therefore obtain

FðPκ
M; Pτ

MÞ ≥ RjhE⃗κjρEjE⃗τij;

such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðPκ

M; Pτ
MÞ

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2jhE⃗κjρEjE⃗τij2

q
;

which is the second inequality in Eq. (53).

APPENDIX G: PROOF OF THE HIERARCHY (56)
OF QUANTIFIERS OF THE PARTICLE

CHARACTER

Equation (56) can be proven by following the same route
as in Appendix C. Starting from the definition (54) and
using Eq. (49), we obtain

P2
T ¼

 
1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

DðPκ
M; Pτ

MÞ
�2

≤

 
1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðPκ

M; Pτ
MÞ

q !
2

:

Using the Cauchy-Schwarz inequality then leads to
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P2
T ≤

X
μ;ν∈Σ
μ≠ν

�
1

RðR − 1Þ
�

2X
κ;τ∈Σ
κ≠τ

½1 − F2ðPκ
M; Pτ

MÞ�

¼ 1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

½1 − F2ðPκ
M; Pτ

MÞ�

¼ 1 −
1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

F2ðPκ
M; Pτ

MÞ

¼ P2
F;

where we identified PF from Eq. (55) in the last step.

APPENDIX H: PROOF OF EQ. (57)

We now prove the inequalities in Eq. (57). We start by
proving that PT ≤ PT . Given Eq. (54), let us maximize
the Kolmogorov distance and utilize Eq. (47) as well
as the invariance of the trace distance under unitary
transformations,

DðPκ
M; Pτ

MÞ ≤ max
M

DðPκ
M; Pτ

MÞ
¼ DðUρκEU†;UρτEU

†Þ
¼ DðρκE; ρτEÞ:

Now, using the contractivity of the trace distance under the
partial trace operations [65], as well as Eq. (51), yields

DðPκ
M; Pτ

MÞ ≤ DðρκE; ρτEÞ ≤ Dðρκ; ρτÞ ¼ DðρκI ; ρτIÞ: ðH1Þ

By plugging Eq. (H1) into Eq. (54), we then obtain

PT ≤
1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

DðρκI ; ρτIÞ ¼ PT;

where we identified PT from Eq. (37) in the last step. In
order to prove the second inequality in Eq. (57), we plug
Eq. (F1) into Eq. (55) such that

PF ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

RðR − 1Þ
X
κ;τ∈Σ
κ≠τ

F2ðρκI ; ρτIÞ
vuut ¼ PF:

In the last step, we identified PF from Eq. (40), which
finishes the proof.

APPENDIX I: PROOF OF THE EIGENVALUE
EQUATION (59)

We provide two proofs of the eigenvalue equation (59),
i.e., that jψBðFÞi from Eq. (29) is an eigenvector of ρE from

Eq. (25) with eigenvalue λBðFÞ ¼ F2ðρBðFÞE ; ρEÞ.
First proof: Let us consider the squared fidelity

F2ðρBðFÞE ; ρEÞ, and note that both states, ρBðFÞE and ρE,

are not necessarily of the same particle type; e.g., if ρE
describes a state of fermions, then F2ðρBE; ρEÞ corresponds
to the squared fidelity between a bosonic and a fermionic
state. Therefore, for ρE, we abbreviate the case of
bosons (fermions) by B0 (F0), and for the pure state

ρBðFÞE , by B (F). Starting from Eqs. (25) and (29), the
squared fidelity can be written as

F2ðρBðFÞE ; ρEÞ
¼ hψBðFÞjρEjψBðFÞi

¼ 1

R2

X
μ∈Σ

�X
ν∈Σ

X
j

qjð−1ÞμνBðFÞð−1ÞμνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

μ i
�
:

ðI1Þ

Next, consider the expression in parentheses, for brevity
denoted by Z, and insert a sum over all ξ ∈ SR⃗,

Z¼
X
ν∈Σ

X
j

qjð−1ÞμνBðFÞð−1ÞμνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

μ i

¼ 1

jSR⃗j
X
ξ∈SR⃗

X
ν∈Σ

X
j

qjð−1ÞμνBðFÞð−1ÞμνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

μ i

¼ 1

jSR⃗j
X
ξ∈SR⃗

X
ν∈Σ

X
j

qjð−1ÞμνξBðFÞð−1ÞμνξB0ðF0ÞhΩðjÞ
ξν jΩðjÞ

μ i: ðI2Þ

In the last step, we used jΩðjÞ
ξν i ¼ ð−1ÞξB0ðF0ÞjΩðjÞ

ν i, which
can be seen by considering the coefficients’ symmetry

CðjÞ
I⃗ξ

¼ ð−1ÞξB0ðF0ÞC
ðjÞ
I⃗

in Eq. (21). Furthermore, we inserted

the factor ð−1ÞξBðFÞ, which can be done because of ρBðFÞE

describing a state of indistinguishable bosons or fermions,
with ð−1ÞξBðFÞ ¼ 1 in the case of bosons, and SR⃗ ¼ fϵg,
with ϵ the identity permutation, in the case of fermions. The
latter is a consequence of Pauli’s principle. Now, we use the
fact that the permutations π ∈ SN can be decomposed as
π ¼ ξν, with ξ ∈ SR⃗ and ν ∈ Σ, such that

Z ¼ 1

jSR⃗j
X
π∈SN

X
j

qjð−1ÞμπBðFÞð−1ÞμπB0ðF0ÞhΩðjÞ
π jΩðjÞ

μ i

¼ 1

jSR⃗j
X
π∈SN

X
j

qjð−1ÞπBðFÞð−1ÞπB0ðF0ÞhΩðjÞ
π jΩðjÞ

μ i:

Again using the decomposition π ¼ ξν, with ξ ∈ SR⃗ and

ν ∈ Σ, the symmetry jΩðjÞ
ξν i ¼ ð−1ÞξB0ðF0ÞjΩðjÞ

ν i, as well as

the freedom to insert ð−1ÞξBðFÞ, yields
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Z ¼ 1

jSR⃗j
X
ξ∈SR⃗

X
ν∈Σ

X
j

qjð−1ÞνBðFÞð−1ÞνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

ϵ i

¼
X
ν∈Σ

X
j

qjð−1ÞνBðFÞð−1ÞνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

ϵ i: ðI3Þ

Thus, in consideration of Eqs. (I2) and (I3), we have

Z ¼
X
ν∈Σ

X
j

qjð−1ÞμνBðFÞð−1ÞμνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

μ i

¼
X
ν∈Σ

X
j

qjð−1ÞνBðFÞð−1ÞνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

ϵ i; ðI4Þ

with ϵ the identity permutation. Therewith, the squared
quantum fidelity in Eq. (I1) becomes

F2ðρBðFÞE ; ρEÞ ¼
1

R

X
ν∈Σ

X
j

qjð−1ÞνBðFÞð−1ÞνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

ϵ i:

ðI5Þ

Next, we rewrite the left-hand side of Eq. (59) with the
help of Eqs. (25) and (29):

ρEjψBðFÞi¼
1

R3=2

X
μ;ν;τ∈Σ

ð−1ÞτBðFÞð−1ÞμνB0ðF0Þ

×
X
j

qjhΩðjÞ
ν jΩðjÞ

μ ijE⃗μihE⃗νjE⃗τi

¼ 1

R3=2

X
μ;ν∈Σ

X
j

qjð−1ÞνBðFÞð−1ÞμνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

μ ijE⃗μi:

Using Eqs. (I4) and (I5) then yields

ρEjψBðFÞi

¼ 1

R3=2

X
μ;ν∈Σ

X
j

qjð−1ÞμνBðFÞð−1ÞνB0ðF0ÞhΩðjÞ
ν jΩðjÞ

ϵ ijE⃗μi

¼ F2ðρBðFÞE ; ρEÞ
1ffiffiffiffi
R

p
X
μ∈Σ

ð−1ÞμBðFÞjE⃗μi

¼ F2ðρBðFÞE ; ρEÞjψBðFÞi;

where we recognized jψBðFÞi from Eq. (29) in the last step.

Thus, we identify the eigenvalue λBðFÞ ¼ F2ðρBðFÞE ; ρEÞ,
which finishes the proof.
Second proof: One arrives at the same result faster by

using a result from group representation theory known as
unitary-unitary duality [91]. One can indeed show that the
reduced external state can be decomposed according to the
irreducible representations Λ of the symmetric group SN :

ρE ¼ ⨁
Λ
λΛρΛ: ðI6Þ

In particular, the totally symmetric, Λ ¼ B, and totally
antisymmetric, Λ ¼ F, irreducible representations each
contain only one state with mode occupation R⃗: the bosonic
and fermionic states ρB ¼ jψBihψBj and ρF ¼ jψFihψFj,
respectively, as given by Eq. (29), which must therefore

appear in the decomposition (I6). The identity λBðFÞ ¼
F2ðρBðFÞE ; ρEÞ then follows from

F2ðρBðFÞE ; ρEÞ ¼ hψBðFÞjρEjψBðFÞi ¼ λBðFÞ:

APPENDIX J: PROOF OF EQ. (60)

The proof of Eq. (60) is based on Eq. (59), which allows
us to decompose ρE as

ρE ¼ λBðFÞρ
BðFÞ
E þ ð1 − λBðFÞÞρ⊥E ; ðJ1Þ

where ρBðFÞE and ρ⊥E have support on orthogonal subspaces,
such that their trace distance yields

DðρBðFÞE ; ρ⊥E Þ ¼ 1: ðJ2Þ

By utilizing Eqs. (J1) and (J2) as well as the convexity of
the trace distance [65], we obtain the upper bound

DðρBðFÞE ;ρEÞ≤λBðFÞDðρBðFÞE ;ρBðFÞE Þþð1−λBðFÞÞDðρBðFÞE ;ρ⊥E Þ
¼1−λBðFÞ

¼1−F2ðρBðFÞE ;ρEÞ; ðJ3Þ

where we used λBðFÞ ¼ F2ðρBðFÞE ; ρEÞ in the last step [see
Eq. (59)]. On the other hand, the known lower bound on
the trace distance if at least one state is pure [65],
DðjΨi; ρÞ ≥ 1 − F2ðjΨi; ρÞ, leads to

DðρBðFÞE ; ρEÞ ≥ 1 − F2ðρBðFÞE ; ρEÞ: ðJ4Þ

Combining Eqs. (J3) and (J4) results in

DðρBðFÞE ; ρEÞ þ F2ðρBðFÞE ; ρEÞ ¼ 1;

which had to be proven.

APPENDIX K: PROOF OF EQ. (61)

We now prove Eq. (61). Utilizing the relation (47) of the
Kolmogorov distance to the trace norm, as well as the
invariance of the trace distance under unitary transforma-
tions [65], we have
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DðPBðFÞ
M ; PMÞ ≤ max

M
DðPBðFÞ

M ; PMÞ

¼ DðUρBðFÞE U†;UρEU†Þ ðK1Þ

¼ DðρBðFÞE ; ρEÞ: ðK2Þ

Plugging Eq. (K2) into Eq. (60) then leads to

DðPBðFÞ
M ; PMÞ þ F2ðρBðFÞE ; ρEÞ ≤ 1; ðK3Þ

which is the sought-after relation. Note that the inequality
in Eq. (K3) [and, thus, in Eq. (61)] is only due to the
maximization in Eq. (K1) and saturates for an optimal
measurement. One such measurement is given by the
projection onto the eigenstates of UðρE − ρBðFÞE ÞU† (see
also Sec. IX.2.1 in Ref. [65]).

APPENDIX L: PROOF OF EQ. (69)

Let us start by proving Eq. (69) for the distinguishability
measure DT by utilizing the lower bound of the trace
distance between density operators ρ and σ derived in
Ref. [92] (Theorem 1 there),

Dðρ; σÞ ≥ 1 − TrðρσÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Trðρ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Trðσ2Þ

q
:

For the trace distance between ρE and ρDE from Eqs. (25)
and (27), we can use TrðρDEρEÞ ¼ TrððρDE Þ2Þ ¼ 1=R,
such that

DðρDE ; ρEÞ ≥
R − 1

R
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 1

R
(1 − Trðρ2EÞ)

r
:

Considering Eq. (33), we have

1 − Trðρ2EÞ ¼
R − 1

R
ð1 −W2

PÞ; ðL1Þ
which leads us to

DðρDE ; ρEÞ ≥
R − 1

R

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

P

q �
:

By plugging this into Eq. (65), we obtain

DT ¼ 1 −
R

R − 1
DðρDE ; ρEÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

P

q
;

and, accordingly, D2
T þW2

P ≤ 1. Together with the hier-
archy (34), this proves Eq. (69) for DT.
Next, we prove Eq. (69) for the distinguishability

measure DF. Therefore, first of all, we recall that ρDE
from Eq. (27) is maximally mixed, such that ρDE and ρE
can be simultaneously diagonalized. Letting λα be the
eigenvalues of ρE, the fidelity of ρDE and ρE can thus be
written as [65,66]

FðρDE ; ρEÞ ¼
XR
α¼1

ffiffiffiffiffiffiffiffiffi
1

R
λα

r
: ðL2Þ

Taking the square of Eq. (L2) and utilizing
P

α λα ¼ 1
yields

F2ðρDE ; ρEÞ ¼
XR
α;β¼1

1

R

ffiffiffiffiffiffiffiffiffi
λαλβ

q

¼ 1

R
þ
XR
α;β¼1
α≠β

1

R

ffiffiffiffiffiffiffiffiffi
λαλβ

q
:

Now, using the Cauchy-Schwarz inequality in the second
summand, we obtain

F2ðρDE ; ρEÞ ≤
1

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR
γ;δ¼1
γ≠δ

1

R2

XR
α;β¼1
α≠β

λαλβ

vuut ðL3Þ

¼ 1

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 1

R
(1 − Trðρ2EÞ)

r
; ðL4Þ

where we used
P

α≠β λαλβ ¼ 1 − Trðρ2EÞ in the last step. By
plugging Eq. (L1) into Eq. (L4) and rearranging accord-
ingly, we arrive at

R
R − 1

�
F2ðρDE ; ρEÞ −

1

R

�
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

P

q
:

Now, by using Eq. (66), we can identify the left-hand side
with DF, such that

D2
F þW2

P ≤ 1: ðL5Þ

In consideration of the hierarchy (34), this proves Eq. (69)
for the distinguishability measure DF and thus finishes
the proof of Eq. (69). Note that this proof can also be
performed using Theorem 1 in Ref. [93]. However, we
provided the entire proof in order to see that the inequality
(L5) saturates if and only if ρE ¼ ρDE , given the use of the
Cauchy-Schwarz inequality in Eq. (L3).
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