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Self-complementary metasurfaces have gained significant attention due to their unique frequency-
independent transmission and reflection properties and the possibility of the polarization transformation
of plane waves. In this paper, we focus on the near-field spectrum to investigate, both theoretically and
experimentally, the properties of surface waves supported by anisotropic self-complementary meta-
surfaces. We show that as a consequence of the electromagnetic Babinet’s duality, such a structure is
hyperbolic for any frequency. We demonstrate the possibility of switching the canalization direction of
surface waves with ultimately flat phase fronts for 90° by a very small frequency shift, paving the way to
the extreme tunability and surface-wave routing. We reveal the polarization degree of freedom inherent to
plane waves by demonstrating the all-frequency TE-TM polarization degeneracy of the surface waves
along two principal directions. The results obtained open a plethora of opportunities for practical
applications, including flat polarization devices, optical data-processing systems, sensing, holography
and antennas.
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I. INTRODUCTION

Metasurfaces have gained significant attention because
of their ability to control the phase, amplitude, and
polarization of the incident electromagnetic waves in
transmission and reflection [1–3]. Metasurfaces represent
a thin-layer periodic array of subwavelength scatterers
tailored to achieve the necessary goals in electromag-
netic-waves control for a number of practical applications
such as lenses, antennas, absorbers, filters, polarizers,
holograms, etc., [4,5]. An even more promising fact is
that metasurfaces provide the ultrathin platform to
implement on-chip and photonic devices based on near-
field effects and in-plane propagation of surface plasmon-
polaritons with a plethora of perspective applications in
communications, sensing, and optical networks [6,7].
Another important application area is the microwave and
millimeter-wave antennas, where surface waves propagat-
ing at spatially nonuniform impedance metasurfaces have

been used. Antennas can be realized by converting slow
surface waves into radiating waves by introducing a
periodic or quasiperiodic spatial modulation of the surface
impedance [8]. This method was successfully employed to
design low-profile and high-gain directive antennas with
radiation pattern shapes precisely controlled by the imped-
ance modulation [9–11]. Furthermore, Luneburg [12–14]
and Maxwell fisheye [15] flat microwave lenses were based
on engineered curvilinear propagation of surface waves
over a spatially nonuniform metasurface.
Anisotropic self-complementary metasurfaces are single-

layer metal patterns that remain the same after Babinet
inversion except for some translation or rotation. They were
shown to operate as frequency-selective filters [16], perfect
absorbers [17], and linear-to-circular polarization converters
for incident plane waves [18,19], and they have frequency-
constant transmission properties when excited by circularly
polarized waves [20]. In contrast to isotropic checkerboard,
which has self-complementary patterns requiring perfectly
sharp corners of planar square conductors [21–23], their
anisotropic counterparts are constructed of alternating induc-
tive and capacitive complementary strips and, therefore,
are easy to implement. In Refs. [24,25], it was shown that
two mutually complementary surfaces, one with inductive
and the other with capacitive impedance, have the same
dispersion of TM and TE surface waves, respectively.
However, surface waves on anisotropic self-complementary
metasurfaces have not previously been studied.
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In this work, we study, in detail, the fundamental
properties of surface waves on self-complementary meta-
surfaces. We consider a symmetric case of a nonchiral
metasurface exhibiting no cross-polarization response in an
appropriate Cartesian basis and, as a consequence, with a
diagonalized effective local surface admittance tensor
Ŷ0 ¼ diagðYx; YyÞ. Then, we provide the self-consistent
analytical model supported by numerical and experimental
results. The self-complementary metasurface is defined as
one obeying the Babinet’s duality relation:

det Ŷ0 ¼ YxYy ¼ 4Y2
0; ð1Þ

where Y0 ¼ 1=Z0 and Z0 is the free space wave impedance
[22,26]. In addition to the fundamental investigation of
self-complementary metasurfaces, we raise three topical
issues related to the near-field control over surface waves
and demonstrate the benefits of self-complementary meta-
surfaces over general anisotropic ones.
Overcoming frequency limitation for hyperbolic plas-

mon-polaritons.—We pay particular attention to hyperbolic

plasmons—surface waves localized at hyperbolic meta-
surfaces [27–30]. For the last decade, many exciting
regimes of hyperbolic plasmon propagation were discov-
ered and analyzed, including negative refraction [31], zero
index [32], Moiré patterns [33,34], unidirectional [35,36],
and canalization [37] regimes of propagation. Despite the
great success in hyperbolic plasmon research, the poten-
tial for further development and application is strictly
limited by the narrow operational frequency range corre-
sponding to the hyperbolicity condition ImðYxÞImðYyÞ <
0 [Figs. 1(a) and 1(b)].
Canalization of surface waves: Propagation with ulti-

mately flat phase fronts and direction switching.—The
canalization [39] regime is a well-known phenomenon in
photonic crystals [40,41], wire medium [42], and epsilon-
near-zero metamaterials [43,44] exhibiting flat isofre-
quency contours in the reciprocal wave-vector space
ðkx; kyÞ. It leads to the enhanced resolution (greater
than diffraction limit), imaging, and lensing [45–47].
Recently, the study of the surface-wave canalization
regime at the anisotropic metasurface has gained great
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FIG. 1. Three topical issues related to the near-field properties of surface waves on the conventional anisotropic two-dimensional
systems (a)–(d) and self-complementary metasurfaces (e)–(h). (a,b,e,f) I. Hyperbolic regime of a metasurface corresponding to
ImðYxÞImðYyÞ < 0. The dependence of the imaginary parts of the admittance tensor components Yx (blue lines) and Yy (red lines) on the
frequency in the dimensionless units normalized per the frequency of the first resonance Ω0. The signs “þ” and “−” correspond to
the positive and negative values of ðYx; YyÞ, respectively. The green area corresponds to the hyperbolic regime of a metasurface. The
resonant frequencies of the conventional anisotropic 2D systems (Ωx, Ωy) and the self-complementary metasurfaces (Ωy, Ωy2) are
spectrally (a,e) close [namely, (a)Ωy=Ωx ¼ 2, (e)Ωy2=Ωy ¼ 2] and (b,f) far from each other [namely, (b)Ωx=Ωy ≪ 1, (f)Ωy2=Ωy ≪ 1].
(c,g) II. Extreme (divergenceless) canalization corresponding to absolutely flat isofrequency contours. (c,g) Isofrequency contours in the
vicinity of the resonances (c)Ωx (blue line) andΩy (red line) for conventional anisotropic metasurface, and (g)Ωy (blue line) andΩx (red
line) for the self-complementary metasurface. The circles correspond to the light cone at the same frequencies. (d,h) III. All-frequency
TE-TM polarization degeneracy. We show the dependence of frequency on the in-plane wave-vector component kk for TE- and TM-
polarized surface waves propagating along the x and y directions for (d) conventional anisotropic and (h) self-complementary
metasurfaces. The yellow region corresponds to the light cone. The parameters of the surface admittance tensor components for
hyperbolic and self-complementary metasurfaces can be found in the Supplemental Material [38].
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importance because of the enormous application potential
in flat devices, on-chip networks, and optical signal
control [6,37,48]. This phenomenon is observed in the
extremely anisotropic systems in the vicinity of the near-
zero regimes. This exciting effect is still poorly used
and remains exotic in the aspect of applications owing
to the nontunable single-frequency and unidirectional
operational regime that typically exhibits a weak diver-
gence [Fig. 1(c)] that is perceptible for the long-range
applications.
Polarization degree of freedom for surface waves.—

Plane waves in any isotropic medium are double degenerate
with respect to polarization in all directions at any
frequency. The surface waves at anisotropic metasurfaces
possess hybrid TE-TM polarization [49,50], providing
an efficient tool for the spin-dependent electromagnetic
phenomena [50–54] and polarization-dependent direc-
tional plasmon steering [55–59]. However, despite the
complicated polarization structure of surface waves,
the development of flat optics is significantly limited
by the inefficient polarization control of the propagating
localized electromagnetic waves. Except for accidental
intersections at several points, the dispersion curves of
TE and TM surface modes are not degenerate [Fig. 1(d)],
in sharp contrast to the plane waves in an isotropic
medium. Nevertheless, polarization degeneracy of the
TE and TM modes is the fundamental operational
principle of the classical bulk polarizers. The polari-
zation transformation of propagating surface waves
also requires the broadband TE-TM polarization degen-
eracy of the eigenmode spectrum inherent to the
bulk waves.
In this work, we show that, thanks to the self-

complementariness, the above-mentioned benefits are
achievable. In particular, self-complementary metasurfaces
exhibit (1) all-frequency hyperbolicity as illustrated in
Figs. 1(e) and 1(f), (2) the divergenceless and dual-
directional canalization of surface waves switched by a
very small frequency shift [Fig. 1(g)], and (3) the all-
frequency TE-TM polarization degeneracy of surface
waves [Fig. 1(h)]. Particularly, we show the canalization
of polarization-degenerate surface waves leading to the
efficient signal routing preserving the polarization of its
source, as schematically depicted in Fig. 2.
The present paper is organized as follows. Section II

presents the developed analytical model describing the
properties of surface waves on self-complementary meta-
surfaces within an effective surface admittance approach. In
Sec. III, we provide the numerically optimized design of a
metasurface for the practical implementation, describe the
experimental setup and measurement methods, and com-
pare the analytical, numerical, and experimental results
validating their relevance. In Sec. IV we study, in detail, the
main results and features of self-complementary metasur-
faces by dividing them into the three topical issues

mentioned above. Finally, concluding remarks and an
outlook are given in Sec. V.

II. FORMULATION

A. Problem statement

We consider a freestanding single-layer resonant aniso-
tropic metasurface constituted by alternance of infinitely
thin complementary inductive and capacitive strips with
narrow width in terms of the operating wavelength (Fig. 3);
thus, they can be homogenized with boundary condition

E
H

FIG. 2. Artistic representation of the canalized and polariza-
tion-degenerate surface waves at the self-complementary meta-
surface under study. The red and blue arrows demonstrate the
instantaneous direction of magnetic and electric fields of TM and
TE surface plasmons excited by vertical electric (probe) and
magnetic (loop) dipolelike sources, respectively. The conical
shapes schematically show the field amplitude sharply decreasing
with distance from a metasurface. The white arrows correspond to
the wave propagation directions emulating the canalization
propagation regime of the surface plasmon-polaritons.
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FIG. 3. Geometry of the problem constituted by a collections of
coplanar inductive and capacitive parallel strips of a width that is
small in terms of a wavelength immersed in free space. The
polarization of TE andTMsurface-wavemodeswith a propagation
direction both parallel and orthogonal to the strips is also depicted.
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J ¼ n̂ × ðH1 −H2Þ ¼ ŶEτ: ð2Þ

In Eq. (2), n̂ is the unit normal vector from the lower to the
upper half-space, J is a surface electric current density
proportional to the jump of the tangential component of the
magnetic field across the metasurface plane, Eτ is a
tangential electric field component that is continuous across
the metasurface, and Ŷ is the local effective surface
admittance tensor describing the anisotropic metasurface.
It is worth noting that the above structure respects the

Babinet’s duality principle if the strips are mutually
complementary. This result can be obtained by realizing
geometrical complementary slots and dipoles along the
strips while still keeping them compact in terms of a
wavelength. If two half-spaces above and below are filled
with different permittivities, the structure, strictly speaking,
does not respect the duality. Nevertheless, the physical
mechanism we describe will be the same. First, we analyze
an ideally dual case, while in the experiment, we implement
a metasurface as a self-complementary copper pattern on a
thin dielectric substrate. As we will show, in the considered
practical metasurface realization, the Babinet’s duality
principle is still fulfilled well.

B. Admittance tensor

The anisotropic metasurfaces, as well as other ultrathin
subwavelength systems (graphene, van der Waals materi-
als, 2D electron gas, etc.) can be reasonably described in
terms of the effective surface admittance (conductivity)
approach. We assume that a metasurface creates no cross-
polarization when the incident plane wave has only an x- or
a y-directed tangential electric field. Thus, in these coor-
dinates, the tensor can be diagonalized along the principal
axes as follows:

Ŷ0 ¼
�
Yx 0

0 Yy

�
: ð3Þ

The resonant response of a metasurface can be expressed
by a Lorentzian form of one of the admittance tensor
components (for example, here we have chosen the Yy
component):

Yy ¼
X
j

iY0Njω
2

ω2 −Ω2
j þ iγjω

: ð4Þ

Here, j denotes the resonance number, Nj is a nondimen-
sional normalization factor, Ωj is the resonance angular
frequency, and γj is the resonance bandwidth.
According to the Babinet’s duality relation, the surface

admittance tensor components obey the relation (1). Thus,
the opposite admittance tensor component Yx can be
strictly determined by the relation (1) and is inversely
proportional to the one defined in Eq. (4). We note that the
duality relation (1) highlights a cancellation between the

poles and the zeros of the admittances [Fig. 4(a)], which
implies a frequency alternance between series and parallel-
type resonances for the two eigenvalues of the tensor.
In order to find the expression of the admittance in an

arbitrary reference system, it is useful to introduce a wave-
vector-fixed coordinate system constituted by unit vectors
parallel and orthogonal to the direction of propagation.
Assuming that the wave vector forms an angle α with
respect to the x axis, in this reference system, the admit-
tance tensor may be written as

Ŷ ¼
�
Yk;k Yk;⊥
Y⊥;k Y⊥;⊥

�
; ð5Þ

where

Yk;k ¼ Yx cos2αþ Yy sin2α;

Y⊥;⊥ ¼ Yx sin2αþ Yy cos2α;

Yk;⊥ ¼ Y⊥;k ¼ ðYx − YyÞ cos α sin α:

ð6Þ

When α is zero, Eq. (6) recovers Eq. (3); when it is 90°, the
tensor again becomes diagonal with a swapped position of
the diagonal eigenvalues with respect to α ¼ 0. In this
system (see Fig. 3), the resonances change roles with
respect to propagation along the strips; namely, the parallel
resonances become series resonances and vice versa, as
mentioned before.

C. Dispersion equation

The dispersion equation of surface waves at an aniso-
tropic metasurface described with the effective local surface
admittance tensor can be found analytically [27]:�
ε1k0
κ1

þ ε2k0
κ2

þ iỸk;k

��
κ1
k0

þ κ2
k0

− iỸ⊥;⊥
�

¼ Ỹk;⊥Ỹ⊥;k:

ð7Þ

Here, k0 ¼ ω=c, κ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k − ε1;2k20

q
is a penetration

depth, kk is the surface-wave propagation constant, and
ε1 and ε2 are the dielectric constants for z positive and
negative, respectively. In Eq. (7) and after, we use the
following admittance normalization: Ỹ ¼ Y=Y0.
One can see that the first and second factors in the left

side of Eq. (7) correspond to the dispersion laws of TM and
TE modes, respectively, while the right side of Eq. (7)
contains a coupling factor related to anisotropy. So, the
spectrum of an anisotropic metasurface consists of the
modes with hybrid TE-TM polarization, usually called
quasi-TM and quasi-TE [27,49] depending on which
polarization component is dominant. Importantly, the sur-
face modes possess purely orthogonal TE and TM polar-
izations in the main axes directions α ¼ nπ=2, where n is
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an integer. For any propagation angle, different from
α ≠ nπ=2, the spectrum represents the set of the hybrid
TE-TM surface waves.
The dispersion equation (7) can be solved analytically in

the symmetric case ε1 ¼ ε2 ¼ ε:

κTM;TE ¼ k0
ζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − εỸk;kỸ⊥;⊥

q
−iỸk;k

; ζ ¼ εþ det ˆ̃Y0

4
;

ð8Þ

where the square root is defined with a positive real part and
the upper (lower) sign corresponds to the TM (TE) mode.
In the absence of losses, the term under the square root
becomes real and positive with ζ ¼ εþ 1. In free space, we
can express the dispersion of the in-plane complex wave-
vector component of the surface waves localized at the self-
complementary metasurface by applying the Babinet’s
duality relation (1) as follows:

kk ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

0
B@2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ỹk;⊥Ỹ⊥;k

q
Ỹk;k

1
CA

2

vuuuut : ð9Þ

This equation is specialized for the propagation direction
along the strips (α ¼ 0°), orthogonal to the strips (α ¼ 90°),
and at α ¼ 45°, respectively, thus leading to

kα¼0°
k ¼ ηxk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Ỹ2
y

4

s
¼ ηxk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

Ỹ2
x

s
;

kα¼90°
k ¼ ηyk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Ỹ2
x

4

s
¼ ηyk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

Ỹ2
y

s
;

kα¼45°
k ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
4�

ffiffiffiffiffiffiffiffiffi
−Ỹ2

−
p
Ỹþ

�2
s

; ð10Þ

where ηx;y ¼ U½ImðYx;yÞ� and U½� is the Heaviside unit step
function, Ỹþ;− ¼ Ỹx � Ỹy, and the upper (lower) sign for
α ¼ 45° corresponds to quasi-TM (quasi-TE) modes. This
relation states that the eigenmodes propagating along the x
and y axes exist only within the frequency range correspond-
ing to ImðYyÞ < 0 and ImðYxÞ < 0, respectively. These
propagation constants are plotted in Figs. 4(b)–4(d). We
note that in the two principal directions, the degeneracy of the
propagation constant for TE and TM waves takes place,
while at 45°, the modes exhibit different wave numbers.
It is important to point out that, strictly speaking, any

substrate with permittivity different from the permittivity of
free space violates the Babinet’s duality relation (1).
Nevertheless, the dispersion equation (7) remains relevant
for any environment, and it could be solved analytically for
small differences between superstrate and substrate per-
mittivities using perturbation theory [27]. We further
demonstrate, both numerically and experimentally, the

−2

−1

0

1

2

= 0.6
3

−3
−1 0 1 2−2−3 3
kx [a.u.] kx [a.u.] kx [a.u.] kx [a.u.] kx [a.u.] kx [a.u.]

−1 0 1 2−2−3 3

 = 0.8  = 1

−1 0 1 2−2−3 3

(e) (f) (g)

0.5 1 2.5
−20

0

20

A
dm

itt
an

ce
 [

a.
u.

]

1.5 2

10

−10

Im (Yx)
Im (Yy)

(a)

1

quasi-TE
quasi-TM

1 2 3 4 5 6 7

y  = 45º

(d)

 = 1.2

−1 0 1 2−2−3 3 −1 0 1 2−2−3 3

 = 1.73  = 2

−1 0 1 2−2−3 3

(h) (i) (j)

x

k

k y
 [a

.u
.]

Im
 (Y

y)
 <

 0

Im
 (Y

x)
 <

 0

quasi-TE
quasi-TM

1 2 3 4 5 6 7

TE
TM

(c)

Re(k  ) [a.u.] Re(k  ) [a.u.] Re(k  ) [a.u.]

TE
TM

1 2 3 4 5 6 7

x

y  = 0º

k
x

y  = 90º
kL

ig
ht

 li
ne

1.0

1.5

 [
a.

u.
]

0.5

2.0

2.5
(b)

~

FIG. 4. Analytically calculated properties of an ideal resonant self-complementary metasurface. (a) Frequency dependence of the
imaginary parts of admittance tensor components. The Lorentzian parameters are as follows: N1 ¼ 1, Ω̃1 ¼ 1, N2 ¼ 0.5, Ω̃2 ¼ 2,
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consistency of the analytically predicted results for the self-
complementary metasurface at a thin dielectric substrate.

D. Isofrequency contours

One of the powerful tools used to analyze the wave
propagation features are the isofrequency contours (IFCs).
The possible isofrequency contours for the self-comple-
mentary metasurface described by the surface admittance
tensor, shown in Fig. 4(a), are presented in Figs. 4(e)–4(j).
One can follow the evolution from the horizontal [Figs. 4(e)
and 4(f)] and vertical [Fig. 4(h)] hyperbolic to the hori-
zontal [Figs. 4(g) and 4(j)] and vertical [Fig. 4(i)] flat IFCs.
The hyperbola-like and flat IFCs correspond to the
hyperbolic and canalization regimes of a metasurface,
respectively. The latter emerges in the vicinity of the
resonances. The horizontal flat IFCs are observed in the
vicinity of Yy resonances, while Yx is nearly zero; thus,
the condition jYy=Yxj ≫ 1 is fulfilled. For vertical, flat
IFCs, the opposite situation takes place.
One can see that, for any frequencies except the

resonances, the quasi-TE and quasi-TM IFCs have an
intersection point along the corresponding main axes, in
accordance with Figs. 4(b) and 4(c). Its absence in the near-
resonance frequency range corresponding to the flat IFCs is
associated with the losses (γ1 ¼ γ2 ¼ 0.03Ω1).

III. NUMERICAL ANALYSIS AND
MEASUREMENTS

A. Unit-cell geometry and numerical analysis

Theunit-cell designof the consideredmetasurface is based
on a meandered dipole and a complementary meandered slot
(Fig. 5). By numerical simulations, the following geometric
parameters were chosen in order to obtain the first resonance
of themetasurface at around 5GHz: periodicity of the square
unit cell A ¼ 7 mm, substrate thickness Hsub ¼ 1 mm, and
gap and metal strip widths g1 ¼ 0.25 mm, g2 ¼ 0.4 mm,
g3 ¼ 0.2 mm, and w ¼ 0.2 mm. The guidelines for

designing the specific self-complementary metasurface
can be found in the Supplemental Material [38].
The numerical simulation of dispersion curves and field

patterns over the metasurface, shown in Fig. 5, was done in
eigenmodes and transient solvers of CST Microwave
Studio, respectively. The surface-wave dispersion compari-
son between theory, proposed in Sec. II, and numerical
simulation is shown in Fig. 6. Semianalytical eigenmode
dispersion curves [Figs. 6(e)–6(g), 6(l)–6(n)] are based on
the solution of Eq. (7), whereas the effective surface
admittance tensor (3) of the real structure (Fig. 5) without
[Fig. 6(d)] and with [Fig. 6(k)] the substrate was extracted
from the numerically calculated [Figs. 6(d) and 6(k)] and
experimentally measured [dots in Fig. 6(k)] S-matrix
coefficients [60]. On the other hand, we have numerically
found the eigenmode spectrum of the same structure
without [Figs. 6(a)–6(c)] and with [Figs. 6(h)–6(j)] a
dielectric substrate FR-4. The cross-check analysis proves
the relevance of our formulation even in the case where the
Babinet’s duality is not rigorous, namely, in the presence of
the dielectric substrate [Figs. 6(h)–6(n)]. The surface-wave
spectra shown in Fig. 6 are in reasonable agreement, both
for the semianalytical and numerical results. However, one
can see that the characteristic frequencies in the numerical
simulation are slightly lower than the ones obtained by the
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w
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FIG. 5. Unit-cell design of the resonant self-complementary
metasurface under investigation.
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FIG. 6. Dispersion diagrams for surface waves localized at the
self-complementary metasurface, shown in Fig. 5, without a
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dispersion curves were calculated numerically with the CST
eigenmode solver [(a)–(c), (h)–(j)] and analytically [Eq. (10)]
[(e)–(g), (l)-(-n)] by using the numerically (d,k) and experimen-
tally [color dots in (k)] recovered effective surface admittance
tensor.
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semianalytical process, which is probably a consequence of
the nonlocality [61–63].

B. Measurements

The experimental sample was produced using a printed-
circuit-board method on substrate FR-4 with the relative
permittivity ε ¼ 3.9 and loss tangent tanðδÞ ¼ 0.02. The
full-size sample has dimension 69 × 55 unit cells or
483 × 385 mm2. The manufactured sample was fixed using
a foam substrate and was placed between a source antenna
and a probe for near-field measurements in an anechoic
chamber [Figs. 7(a) and 7(b)]. The feeding probe during
the measurements was fixed and placed in the middle of the
structure at a distance of 5 mm from the sample. At the same
time, a scanning probe was moved by a near-field scanner
across the plane parallel to the metasurface on the opposite
side of the structure such that the gap between the probe and
sample was equal to 10 mm. The probe was connected to a
vector network analyzer (VNA) Agilent E8362C.

Two complex field maps have been obtained by two
independent measurements for quasi-TE and quasi-TM
surface waves, respectively. For the measurement of the
quasi-TM surface wave, electric monopoles made of open-
ended coaxial cables [Fig. 7(c)] were used both as a source
and as a probe to measure the normal component of the
electric field. For the quasi-TE surface-wave measurement,
Faraday loops [64,65] were manufactured from coaxial
cables [Fig. 7(d)] and similarly used as transmitting and
receiving probes to measure the normal component of the
magnetic field. After the field maps were obtained, they
were converted to the isofrequency contours using space
Fourier transformation, as was proposed in Refs. [53,66]. In
our work, we have used fast Fourier transformation with
zero padding and a Hamming window to increase the
resolution of the isofrequency contours.
The measured and simulated distributions of the normal

component of the magnetic field excited by a magnetic loop
source (quasi-TE mode) and the reconstructed isofrequency
contours are shown in Fig. 8. Similar results for quasi-TM
mode fields are shown in Fig. 9.

IV. RESULTS AND DISCUSSION

A. All-frequency hyperbolicity
and hyperbolic plasmons

The hyperbolicity or the hyperbolic regime of any two-
dimensional waveguiding systems or metasurfaces arises
because of the structure resonances. In the lossless case, the
hyperbolic regime could be defined via the condition
ImðYxÞImðYyÞ < 0 within the effective surface admittance
approach. The frequency range corresponding to this
condition is strictly limited by the resonant frequencies
of the surface admittance tensor components [Fig. 1(a)],
which has been shown for various two-dimensional sys-
tems in different frequency ranges, including natural
materials (e.g., black phosphorus [30,67–69], hexagonal
boron nitride [70–73], van der Waals crystals [74,75]) as
well as periodic structures composed of graphene strips
[28,68,71], gold nanodisks [63,68,76], microstrip trans-
mission lines [77,78], etc. The hyperbolicity can be
expected only for the frequencies that are either lower or
higher than the resonant frequency. Note that the hyper-
bolic regime of ultra-anisotropic structures (e.g., silver
gratings [31] or split-ring resonators [79] in optical and
microwave ranges, respectively) can be broad enough, as
shown in Fig. 1(b), but it still remains frequency limited.
The intriguing consequence of Eqs. (4) and (1) is that the

hyperbolicity condition ImðYxÞImðYyÞ < 0 is met at any
frequency [Fig. 1(e) and 1(f)]. The explanation of this
physical mechanism lies in the coincidence of the zeros of
one surface admittance tensor component, with the poles of
the other one related to the mutually orthogonal direc-
tion, and vice versa. This pole-zero matching property is
guaranteed by the Babinet duality principle (1). Therefore, a

(a)

(b)

(c) (d)

FIG. 7. (a) Scheme and (b) photo of the field measurement
setup, and (c) electric and (d) magnetic field probes.
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self-complementarymetasurface appears as a genuine hyper-
bolic metasurface in the resonant case [Fig. 4(a)]. Hence, the
surface waves localized at a resonant self-complementary
metasurface can be classified as the hyperbolic plasmon-
polaritons [27,28,30].
In contrast to the conventional, relatively narrow-band,

hyperbolic operational regime of two-dimensional resonant
systems caused by the resonances splitting [Fig. 1(a)], the
all-frequency hyperbolicity of a self-complementary meta-
surface arising from Eq. (1) is a unique feature, and it
possesses a high-value practical potential. This result is
in full agreement with the IFCs calculated analytically
[Figs. 4(e), 4(f), 4(h)] and numerically and reconstructed
experimentally [Fig. 8(i)]. Finally, the simulated [Fig. 8(c)]
and experimental [Fig. 8(m)] field patterns are character-
ized by hyperbolic wavefronts. Strictly speaking, the
hyperbolicity is supported at any frequency where the
Babinet duality principle (1) is fulfilled. One should take
into account that, for real structures and materials, this
frequency range is always finite, but still, the phenomenon
could be extremely broadband, significantly outperforming
any other microwave analogues of hyperbolic sheets.
Usually, hyperbolic metasurfaces strongly depend on

the geometrical arrangement of the material constituents.
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FIG. 8. Spatial distribution of the absolute value (first and fourth columns) and real part (second and fifth columns) of the normal
magnetic field component of quasi-TE surface waves calculated numerically (a)–(e) and measured (k)–(o). The scanning area of the
structure consists of 48 × 24 unit cells (336 × 168 mm2). The central column (f)–(j) corresponds to the isofrequency contours within the
first Brillouin zone restored from the measurements (color maps) and calculated numerically with the CST eigenmode solver (blue
dashed lines).
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FIG. 9. Spatial distribution of the absolute value (first column)
and real part (second column) of the measured normal electric
field component for the canalized quasi-TM surface waves. The
scanning area of the structure consists of 48 × 24 unit cells
(336 × 168 mm2).
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The slight scaling of the unit-cell size spectrally shifts the
resonances and, as a consequence, the frequency range
between the resonances corresponding to the hyperbolic
regime. Thus, even minor modifications, deformations, and
external effects can destroy the hyperbolic regime of a
metasurface at a given frequency. This sharp dependence of
the hyperbolic properties on the meta-atom scaling and
deformation can be denoted as extrinsic hyperbolicity. The
opposite situation takes place for natural 2D materials, such
as black phosphorus, hexagonal boron nitride, and van der
Waals materials, because their hyperbolic properties do not
depend on the structure size. In this sense, natural 2D
materials possess intrinsic hyperbolicity. Nevertheless, in
both cases, the hyperbolic regime is frequency limited. The
resonant self-complementary metasurface exhibits both
kinds of hyperbolicity. First, it is still an artificial structure,
so the scaling spectrally shifts the resonances. At the same
time, the resonance shifting for a self-complementary
metasurface does not break the hyperbolic regime due to
all-frequency hyperbolicity, and for instance, hyperbolic
plasmons still exist, in contrast to the purely extrinsic
hyperbolicity case. Therefore, we conclude that hyper-
bolicity of a resonant self-complementary metasurface can
be classified as an all-frequency extrinsic, which is in sharp
contrast to both conventional hyperbolic metasurfaces and
natural hyperbolic materials.
Nevertheless, one should take into account that the

hyperbolicity condition ½ImðYxÞImðYyÞ� < 0 does not nec-
essarily imply hyperbola-like isofrequency contours of
surface waves beyond the effective local approximation.
For real implementation, the dispersion of surface waves
can be significantly modified, while hyperbola-like IFCs
can even be removed, owing to the nonlocal contribution
[61–63].

B. Extreme dual-directional canalization

The necessary conditions for the conventional canaliza-
tion are the strong anisotropy and near-zero admittance
(conductivity) regime [6,27,37]. We denote extreme canali-
zation of surface waves as their collinear propagation with
ideally flat phase fronts and collimated energy transport
like those in Figs. 8 and 9. The conditions Yy=Yx → ∞ and
Yx=Yy → ∞ lead to the canalization along [Fig. 4(i)] and
orthogonal to [Figs. 4(g) and 4(j)] the strips, respectively.
One can see that for a self-complementary metasurface, this
phenomenon is achieved in the vicinity of Yx and Yy

resonances and can be found from the dispersion diagram
as the surface plasmon resonances.
To achieve extreme canalization, one has to fulfill both

necessary [jImðYxÞj ≪ 1] and sufficient [jImðYyÞj ≫ 1]
conditions simultaneously in order to achieve the canali-
zation along the y direction [ImðYyÞ=ImðYxÞ → ∞] for the
lossless case. It is important to note that for the conven-
tional anisotropic structures, the pole [jImðYxÞj ≫ 1] or
zero [jImðYxÞj ≪ 1] of one surface admittance tensor

component (for instance, Yx) is necessary but not a
sufficient condition for the canalization. For general aniso-
tropic metasurfaces, the other surface admittance tensor
component (Yy) is not generally connected to the first
one (Yx).
Another situation takes place for the self-complementary

metasurface, whereas the resonant or near-zero behavior
of Yx automatically results in the opposite behavior
of Yy according to the Babinet duality relation (1). For
instance, Yx≈0 leads to Yy¼4Y2

0=Yx→∞, so one can
observe the extreme vertical canalization under the
condition jYy=Yxj → ∞. Thus, any resonance of the self-
complementary metasurface results in the extreme canali-
zation of surface waves. This result is in sharp contrast to
the conventional anisotropic metasurface, whereas the
engineering of the canalization phenomenon is much more
complicated.
This pole-zero matching inherent to self-complementary

metasurfaces results in the extreme canalization and exhib-
its completely divergenceless propagation with the
corresponding, perfectly flat, isofrequency contour. One
can compare the flatness of IFCs for the conventional two-
dimensional anisotropic system [Fig. 1(c)] and the
self-complementary metasurface [Fig. 1(g)]. This funda-
mentally protected regime of extreme canalization at the
resonances of the self-complementary metasurface is of
high importance from a practical point of view for
interferometry [80] and any area needed to route surface
waves with specially engineered metasurfaces [81,82].
One can see from the experimental results in Fig. 9 that an

effective canalization of quasi-TM surface waves seems to
occur only along the strips, while in the practical case, there
is no strong localization of the field. The reason for this is
related to the shifts of eigenvalue resonant frequencies
caused by the nonperfect duality of the measured structure.
Indeed, the condition of perfect zero-pole cancellation of
the product between two admittance eigenvalues is violated
for propagation orthogonal to the strips. In order to obtain
an expected extreme canalization in this case, one should
adjust the slot dimensions to compensate for the dielectric
substrate presence [19]. Besides, the vertical IFC is not
purely flat because of the nonlocal interaction between the
meta-atoms [Fig. 8(h)]. The analogous effect has previously
been observed for waves propagating in a double, mutually
orthogonal, wire medium [83]. In this case, the isofre-
quency contours of a nonlocal practical structure are rather
close to two orthogonal flat contours (four straight lines) but
transform to the four near-corner hyperbolic lines and a
central closed contour because of the capacitive coupling
between orthogonal wires.
The promising feature of the resonant self-complementary

metasurface (even under weak violation of Babinet’s duality
principle because of the presence of the dielectric substrate) is
the possibility to switch between two orthogonal canalization
directions by a small frequency shift. This effect is possible
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because of the existence of at least two consequent resonances
of the metasurface. One of the eigenvalues has a zero at a
characteristic frequency and a pole at a nearby frequency. The
Babinet’s principle guarantees that the reverse situation
occurs for other eigenvalues related to the orthogonal polari-
zation. We demonstrate, both numerically [Figs. 8(b)–8(e)]
and experimentally, the sharp switching between two
orthogonal plasmon canalization directions in a narrow
operational frequency range. Namely, we measured canali-
zation (i) along the strips at 3.5 GHz [Fig. 8(l)] and 3.45
[Fig. 9(a)], (ii) across the strips at 5.1GHz [Fig. 8(n)] and 4.95
[Fig. 9(b)], and again (iii) along the strips at 6.2 GHz
[Fig. 8(o)] and 6.25 [Fig. 9(c)] for TE (Fig. 8) and TM
(Fig. 9) polarization, respectively. This result clearly dem-
onstrates the canalizationdirection switching (without reflect-
ing mirrors) by applying a minor frequency shift.

C. All-frequency TE-TM polarization degeneracy

According to Eq. (10), the dispersions of two modes with
orthogonal polarizations are identical for the surface
waves on self-complementary metasurface propagation
along the main axes directions [Fig. 1(h)]. This feature is
inherent to the bulk waves in any isotropic medium where
the spectrum is doubly degenerate with respect to polari-
zation. However, in general, for surface waves, the
polarization degeneracy phenomenon of eigenmodes is
achieved accidentally only at discrete frequency points
[Fig. 1(d)]. It has also been shown that the appropriate
engineering of an all-dielectric metasurface can lead to the
broadband TE-TM degeneracy due to the overlapping of
the effective electric and magnetic polarizabilities [84].
One should notice that Eq. (10) uncovers the all-frequency
TE-TM degenerate surface waves propagating along the
same single-layer two-dimensional structure in four dif-
ferent directions.
In our simple analytical model, the TE-TM polarization

degeneracy of the surface waves is fulfilled for the principal
directions of the self-complementary metasurface for any
frequency [Figs. 4(b) and 4(c)]. Indeed, this result is in
good agreement with surface waves on mutually inverted
capacitive and inductive metasurfaces [24,25] and topo-
logical guided modes between two complementary meta-
surfaces [85,86]. However, in contrast to the previously
reported results, anisotropic self-complementary metasur-
faces allow frequency-independent polarization degeneracy
achievable with any shape of unit cells. In contrast to the
topological edge states propagating solely along the edge
between two contacting half-surfaces, the considered
canalized polarization-degenerate surface waves can be
excited by corresponding point sources located at an
arbitrary point near the surface. Moreover, several sources
can independently launch canalized surface waves with the
same or different polarizations, which will then be canal-
ized along parallel, straight paths (see Fig. 2).

Furthermore, the numerical results, shown in Figs. 6(h)–
6(k), confirm the polarization degeneracy for the sample,
shown in Fig. 5. Besides, we demonstrate a similar
dispersion of TE and TM surface modes along and across
the strips extracted from the measurements by using the
recovered IFCs (Fig. 10), even for a sample on a substrate.
The demonstrated effect of broadband polarization

degeneracy of surface waves is especially pronounced in
the experiment for the canalization regimes. The frequen-
cies corresponding to the canalization regime for quasi-TE
[Figs. 8(l), 8(n), and 8(o)] and quasi-TM (Fig. 9) modes are
almost the same. Therefore, we state that our resonant self-
complementary metasurface in the vicinity of its resonances
can support highly directional propagation of two orthogo-
nally polarized surface waves with nearly the same phase
velocity, which means that the canalized plasmon can be
transmitted in the direction parallel to one of the main axes,
keeping the initial polarization of its source (e.g., circular,
linear, or elliptical polarization). Moreover, the effect of
canalization allows for parallel routing of surface waves
excited by multiple sources located near the same metasur-
face. This operational principle can enhance the sensing of
chiral molecules sensitive to polarization [7] and expand
the element base and functionality of planar photonic
devices, including flat polarizers and multiplexers of sur-
face waves, while in the microwave range, it can be directly
applied to engineer the planar, holographic, leaky-wave
antennas based on the modulated surface impedance with
the capability to operate with arbitrary polarization in a
multichannel mode.

V. CONCLUSIONS

To conclude, we have studied, both theoretically and
experimentally, the surface waves localized at a resonant
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self-complementary metasurface at microwaves. We have
developed a consistent analytical model based on the
effective surface admittance tensor approach. We have
theoretically, numerically, and experimentally demon-
strated the all-frequency intrinsic hyperbolicity, canaliza-
tion in frequency-switchable direction with ultimately flat
wavefronts (extreme canalization), and broadband TE-TM
polarization degeneracy of surface waves localized at a self-
complementary metasurface. Importantly, we have shown
the simultaneous canalization and TE-TM degeneracy of
surface waves in the vicinity of the self-complementary
metasurface resonances. Thus, the emitter energy can be
transferred by virtue of highly directive surface waves,
keeping the same polarization.
The resonant self-complementary metasurfaces could be

easily scaled up to the terahertz region, where the metals
can still be approximately represented as perfect electric
conductors. For higher frequencies, in plasmonic frequency
windows, the metals exhibit strong dispersion and high
absorption losses, significantly limiting the Babinet inver-
sion principle to the narrow frequency range. Particularly,
plasmonic metasurfaces can fulfill the Babinet principle in
the vicinity of the resonance [87,88], opening up the
possibility of simultaneous canalization and polarization
degeneracy of surface waves. Another approach to imple-
ment the self-complementary metasurfaces in the visible
can include the all-dielectric materials (such as silicon and
oxides) exhibiting a weak dispersion and negligibly small
absorption in the optical and near-infrared ranges. The all-
dielectric metasurfaces can exhibit the sharp collective
resonant response caused by Mie resonances of the inter-
coupled particles [89]. The latter can be tailored in shape and
size to enhance TE or TM local resonance, thus having an
equivalent complementary homogenized behavior. Finally,
the Babinet principle could be fulfilled in a broadband
frequency range for active and tunable metasurfaces,
whereas the external factors (voltage,magnetic field, temper-
ature, mechanical rotation, loaded capacitors) can compen-
sate the strong dispersion appropriately [90–93].
In the microwave range, surface waves localized at self-

complementary metasurfaces represent a low-loss, simple
and cheap method for guiding localized electromagnetic
signals. Furthermore, the broadband TE-TM polarization
degeneracy can be exploited, along with the extreme
canalization, to design dual-polarized leaky-wave antennas
with azimuthal beam scanning capability. The results
obtained reveal that the self-complementary metasurfaces
provide the platform for a number of applications, includ-
ing polarization control and routing over optical and
radio-frequency signals, on-chip devices, planar networks,
photonic components, antennas, and sensors.
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