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Fluid dynamics is one of the cornerstones of modern physics and has recently found applications in the
transport of electrons in solids. In most solids, electron transport is dominated by extrinsic factors, such as
sample geometry and scattering from impurities. However, in the hydrodynamic regime, Coulomb
interactions transform the electron motion from independent particles to the collective motion of a viscous
“electron fluid.” The fluid viscosity is an intrinsic property of the electron system, determined solely by the
electron-electron interactions. Resolving the universal intrinsic viscosity is challenging, as it affects the
resistance only through interactions with the sample boundaries, whose roughness not only is unknown but
also varies from device to device. Here, we eliminate all unknown parameters by fabricating samples with
smooth sidewalls to achieve the perfect slip boundary condition, which has been elusive in both molecular
fluids and electronic systems. We engineer the device geometry to create viscous dissipation and reveal the
true intrinsic hydrodynamic properties of a 2D system. We observe a clear transition from ballistic to
hydrodynamic electron motion, driven by both temperature and magnetic field. We directly measure the
viscosity and electron-electron scattering lifetime (the Fermi quasiparticle lifetime) over a wide temperature
range without fitting parameters and show they have a strong dependence on electron density that cannot be
explained by conventional theories based on the random phase approximation.
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I. INTRODUCTION

Fluid dynamics is one of cornerstones of modern physics
and technology, with wide-ranging applications. Although a

well-established subject (Bernoulli’s law was formulated in
1738), it has important modern manifestations such as
hydrodynamics of the quark-gluon plasma and of electrons
in solids. While the dynamics of fluids are universal and
depend only on the viscosity, the boundary conditions
between the fluid and the containing solid play a crucial role.
These boundary conditions are nonuniversal and depend on
the details of the solid surface, the fluid, ambient conditions,
and the structure of complex boundary layers. The precise
nature of fluid boundary conditions at various interfaces is a
long-standing problem of great practical importance.
Hydrodynamic flow of electrons in solids occurs

when extrinsic momentum-relaxing processes, such as
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electron-phonon and electron-impurity collisions, are much
slower than intrinsic electron-electron scattering processes,
which conserve the fluid’s momentum [1,2]. Recent studies
in graphene and other clean 2D systems have demonstrated
viscous electron flow through Poiseuille flow [3,4], thermal
and electrical transport effects [5–12], and modifications to
the Hall effect [13,14]. However, the boundary problem
remains unresolved: Most studies are performed in systems
with diffusive boundaries [3,10,15,16]. The boundaries
introduce a system-dependent unknown parameter, the
“slip length” β [17], which can vary with experimental
conditions such as temperature and magnetic field, inhib-
iting quantitative analysis of experimental data. A perfect
slip boundary condition (β → ∞) would eliminate this
unknown, allowing a direct measurement of the viscosity
and, hence, the Fermi liquid quasiparticle lifetime (since
viscosity depends only on electron-electron scattering).
However, the perfect slip boundary condition has been
elusive and remains a mathematical idealization in the
literature.
The central idea of our work is to create devices with

perfectly smooth sidewalls. This work eliminates unknown
boundary effects and constitutes the first realization of
universal viscous flow with the perfect slip condition. We
first demonstrate perfect slip boundary conditions with no
viscous dissipation in straight channels and then controllably
introduce viscous dissipation by carefully engineering the

device geometry. The fluid flow is now determined solely by
the geometry, hence bearing the name “universal hydro-
dynamic flow”.
Using this approach, we observe a clear transition from

ballistic to hydrodynamic electron motion, driven by both
temperature (which is expected) and also by magnetic field
(which is not). Moreover, the absence of unknown boun-
dary conditions allows quantitative extraction of the
viscosity and, hence, Fermi liquid quasiparticle lifetime
over a wide temperature range, from T ≪ EF to T ∼ EF.
The experimental data reveal an unexpected and unex-
plained deviation of the electron-electron scattering length
from existing theoretical models.

II. HYDRODYNAMICS IN SAMPLES WITH
SMOOTH BOUNDARIES

Describing the hydrodynamic flow of a fluid has two
ingredients: (i) the dynamic Navier Stokes equation and
(ii) the boundary condition at the fluid-solid interface.
While the former is universal, the latter is not.
We begin by considering a straight channel with perfectly

smooth boundaries [18]. No matter how strong the electron-
electron interactions, there is no viscous contribution in this
straight channel, since the electron flow is uniform as shown
in Fig. 1(c). The resistance Rstraight ¼ ρDrudeL=W arises
purely from phonons and impurity scattering. Viscous

(a)

(f)   

(e)   

(d)   

(c)   

(b)

FIG. 1. (a),(b) 3D schematics showing (a) a conventional modulation-doped GaAs=AlxGa1−xAs heterostructure. The conduction
channel is patterned using chemical etching, which causes rough sidewalls, while random surface charge on the sidewalls creates
additional disorder. (b) An accumulation-mode GaAs=AlxGa1−xAs device. The channel is defined by a metal top gate and kept away
from etched sidewalls and surface charge. (c)–(f) Theoretical simulations (see the Appendix D) of the power dissipation density (W=m2)
under the perfect slip boundary condition (width W ¼ 2.5 μm, length L ¼ 25 μm) in the linear response regime (Reynolds number
much smaller than 1). The color scale represents the magnitude of the dissipation, and white lines show the electron flow streamlines.
(c) Power dissipation density of a straight channel. The dissipation is purely Ohmic, as viscous contribution vanishes with perfect slip
boundaries. (d) Ohmic power dissipation density of a crenellated channel (crenellation size lcren ¼ 1 μm) with zero viscosity, i.e.,
nonviscous electron transport. The Ohmic resistance of the crenellated channel is smaller than the straight channel. (e) Viscous power
dissipation density of the crenellated channel with a viscosity of ν ¼ 1.15 × 10−2 m2=s. The viscous power dissipation density
concentrates around the regions where the streamlines deform the most to form slow whirlpools in the crenellations [19]. The viscous
power dissipation vanishes near the boundaries due to the perfect slip boundary condition. (f) Total power dissipation density of the
crenellated channel for a viscous electron flow summing up both Ohmic and viscous contributions.
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transport is introduced by modifying the device geometry
with artificially engineered crenellations on the channel
sidewalls, which causes nonuniform electron flow and, thus,
viscous power dissipation as shown in Figs. 1(d)–1(f).

A. Advantages of smooth boundaries

The advantage of the smooth sidewalls with engineered
structures lies in three aspects.

(i) All uncertainties associated with the slip length and
boundary conditions are eliminated.

(ii) The electron transport regime can be unambiguously
identified, simply by comparing the resistance of the
straight channel and the crenellated channel. In
transport measurements of samples with rough
boundaries, it is hard to determine if the resistance
RðTÞ is due to viscous effects or scattering from
extrinsic impurities and phonons. In our design,
when the transport is dominated by scattering with
phonons and impurities, the wider crenellated chan-
nel has a lower resistance than the straight channel
Rcren < Rstraight. This is because the crenellated
channel is on average wider for the same length.
However, in the hydrodynamic regime where elec-

tron-electron scattering dominates, the additional
viscous contribution increases the resistance of the
crenellated channel so that Rcren > Rstraight.

(iii) Most importantly, all experimental parameters asso-
ciated with phonon and impurity scattering can be
quantified through a direct comparison of the resis-
tance of the straight and crenellated channels. Even
when the electron transport is deep in the hydro-
dynamic regime, the resistance of the straight
channel does not have any viscous contribution.
This allows the electron-phonon and electron-impu-
rity scattering processes to be fully characterized, so
that the electron viscosity can be directly determined
from the resistance of the crenellated channel with-
out any unknown fitting parameters.

B. Experimental realization and verification
of the perfect slip condition

Experimentally, the key challenge is how to make
samples with perfect slip boundaries. In most conventional
devices, such as graphene or the modulation-doped
GaAs=AlGaAs heterostructure shown in Fig. 1(a), chemi-
cal etching is required to pattern the channel of the 2D

(a)

(b)

(d)(c) (e)

FIG. 2. (a) Image of the accumulation-mode GaAs heterostructure device containing a high-mobility 2DEG. The gate-defined channel
contains two sections: a 2.5-μm-wide and 25-μm-long straight channel labeled “S” and a crenellated channel “C” of the same
dimensions with crenellations of lcren ¼ 1 μm. (b) Key length scales and transport regimes in the system at n ¼ 2.45 × 1011 cm−2. lmfp

is the momentum-relaxing mean free path due to electron-phonon (lphonon) and electron-impurity (limp) scattering. lcren is the size and
spacing of the square crenellations. λF is the Fermi wavelength. lee is the theoretically calculated electron-electron scattering length. The
shaded blue area indicates the gradual crossover from hydrodynamic to ballistic transport regimes around T ∼ 10 K as the smallest
length scale in the system varies between lcren and lee. (c),(d) Experimentally measured resistance of both straight and crenellated
channels Rstraight and Rcren, respectively, as a function of the temperature for three electron densities n ¼ 2.45, 1.78, and
1.45 × 1011 cm−2, respectively. The resistances of two straight channels with different widths W ¼ 2.5 and 5 μm but the same
length-to-width ratio are shown by the red solid circles and gray squares and are indistinguishable. The solid red lines are fits to Rstraight

including both electron-impurity and electron-phonon scattering with the shaded area presenting the uncertainty. The resistance of the
crenellated channel C is shown both at B ¼ 0 (dark blue empty circles) and with a small out-of-plane magnetic field B ¼ 0.1 T (light
blue empty circles).
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system, creating microscopically rough sidewalls.
Moreover, random surface charge on the sidewalls of the
channel creates additional disorder at the boundary.
To avoid the uncontrolled roughness and disorder that
cause rough boundary conditions, we utilize accumulation-
mode GaAs=AlGaAs heterostructure (W639) depicted in
Fig. 1(b). There is no chemical doping in these accumu-
lation-mode devices, and the conduction channel is induced
by applying a positive bias to the metallic top gate. This
technique ensures that the 2DEG is kept away from etched
sidewalls and surface charge, providing a very smooth
boundary.
The device used in this study is divided into multiple

segments containing both straight and crenellated channels,
in which the resistance of each segment can be measured
independently. Figure 2(a) shows a 2.5-μm-wide by 25-μm-
long straight channel, adjacent to a crenellated channel of
the same length, with a minimum width varying between
2.5 and 4.5 μm, due to 1 μm by 1 μm crenellations.
Figure 2(b) shows the calculated characteristic length scales
for this device. For 10 K≲ T ≲ 40 K, the electron-electron
scattering length lee is the shortest length scale in the
system, so that hydrodynamic effects are significant. At
very low temperatures T ≲ 10 K, lee exceeds the character-
istic length scale of the device lcren ∼ 1 μm, and electron
transport is ballistic.
We verify the smooth boundary condition in our experi-

ment by comparing the resistance of the two straight
channels with different widths: 5 and 2.5 μm (both have
the same length-to-width ratio of 10). The two straight
channels have almost identical resistance across the whole
temperature range for all three densities, shown by the red
circles and gray squares in Figs. 2(c)–2(e). This result
proves that the perfect slip boundary condition is satisfied
in our device, since the resistance of channels with rough
boundaries has a strong width dependence in both the
hydrodynamic [1] and ballistic [21] regimes.

III. DISENTANGLING DIFFUSIVE AND
VISCOUS TRANSPORT

A. Straight channel

One of the key challenges in quantitative extraction of the
viscosity of the electron fluid is how to disentangle viscous
and nonviscous contributions to the resistance. A unique
advantage of the perfect slip boundaries is that the resistivity
of the straight channels has no ballistic backscattering or
viscous components and, hence, serves as an absolute
reference from which all momentum-relaxing contributions
can be measured: (i) From the resistance at base temperature
T ¼ 0.25 K, we calculate the momentum relaxation length
due to impurity scattering limp ¼ vFτimp ≈ 10 μm, corre-
sponding to a mobility on the order of 106 cm2=V s (see
Appendixes A and B). (ii) The linear increase of RstraightðTÞ
with temperature is due to scattering from acoustic phonons

(see Appendix C). We extract the phonon scattering time
τph ¼ Aτ

ph=T from the slope dRstraightðTÞ=dT. This analysis
gives a phonon coupling constant of Aτ

ph ¼ 1.5 ns · K,
consistentwith previous studies of electrons inGaAs [16,22].

B. Crenellated channel

The resistance of the crenellated channel with a width of
2.5 μm and crenellations of lcren ¼ 1 μm is shown as the
dark blue circles in Figs. 2(c)–2(e). The crenellated channel
resistance is always higher than that of the straight channels,
despite having the same length and minimum width as the
2.5-μm-wide straight channel. At high temperatures,
RcrenðTÞ exhibits a close to linear dependence on T with
the same slope asRstraightðTÞ. As the temperature is lowered,
RcrenðTÞ starts to deviate from the linear dependence and
rapidly increases when T < 10 K, which is particularly
visible at low electron densities. This nonmonotonic behav-
ior of RcrenðTÞ at low temperatures is caused by quasibal-
listic effects at low temperatures [23],which hide theviscous
behavior [3,6,7,16] (see Appendix H and Fig. 10).
Disentangling the viscous, diffusive, and ballistic effects
can be very complicated both theoretically and experimen-
tally when the boundary condition is unknown [3,6] but is
simple for smooth boundaries. In this limit, most of the
ballistic effects can be excluded by applying a small
perpendicular magnetic field of B ¼ 0.1 T. The magnetic
field suppresses ballistic backscattering, since the cyclotron
radius rc ≈ 800 nm is shorter than the smallest feature size
of the channel, while the viscous friction stays robust, given
that rc is about twice larger than the typical electron-electron
scattering length lee. Of course, we cannot completely
eliminate all ballistic effects due to crenellations, but the
remainder is much smaller as indicated by the data. The light
blue circles in Figs. 2(c)–2(e) show the resistance of the
crenellated channel at B ¼ 0.1 T. The low-temperature
resistance is reduced by the suppression of ballistic effects
but is still larger than the straight channel. This result
suggests that there is viscous contribution to the resistance
of the crenellated channel over a wide temperature range. At
higher temperatures, the resistance atB ¼ 0.1 T approaches
the B ¼ 0 T resistance, as ballistic contributions decline.
There is a clear change of slope in the B ¼ 0.1 T data at
T ¼ 10–15 Kwhich marks a soft transition from ballistic to
hydrodynamic transport regimes [23] [see Fig. 10(c) for
different choices of B fields]. This is consistent with the
crossover temperature expected from the length scales of the
system shown in Fig. 2(b).

IV. EXTRACTION OF VISCOSITY AND lee

A. Extraction of viscosity

To quantitatively extract the viscosity ν, we use only the
B ¼ 0 experimental data and solve the Navier-Stokes
equations with perfect slip (no-stress) boundary conditions
(Appendix F) [24–26]:
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v=τmfp þ v ·∇v − ν∇2v ¼ −∇Φ=m�;

∇ · v ¼ 0: ð1Þ

Here, v is the velocity field, τmfp is the mean free time due
to phonons and disorder, m� is the effective mass of
electron, ν is the kinematic viscosity, and Φ is the
electrochemical potential. The mean free time is extracted
directly from the measured resistance of the straight
channels, Rstraight ¼ m�L=ðnWe2τmfpÞ. Hence, the viscosity
ν is the only unknown parameter. We choose a particular
value of ν and numerically solve the Navier-Stokes
equations at B ¼ 0 (see Appendixes D and E). The
numerical solution of Eq. (1) for a given ν gives the
velocity field, from which we calculate the dissipation and
compare it with the measured resistance (also at B ¼ 0). We
repeat this procedure until we find the value of ν that
reproduces the experimental resistance of the crenellated
segment. This value is the “experimental value” of ν. For an
infinitely large device, the relation to the electron-electron
scattering length lee is ν ¼ 1

4
vFlee (see Appendixes F and

G 1). However, for a real device, we need to account for
ballistic effects.

B. Ballistic effects

At low temperatures, lee approaches the critical sample
dimensions, the smallest of which is lcren. This finite size
effect causes an apparent saturation of lee as T → 0, as
ballistic effects become relevant. These ballistic effects can
be captured by solving the Boltzmann kinetic equation
instead of Navier-Stokes, but this calculation is nontrivial.
The calculation can be simplified by assuming that the
relaxation time is independent of energy [7,27]. However,
in our system, this approximation is invalid, since the ratio
T=EF can be as high as 0.7, making brute-force solution of
the Boltzmann equation impractical. Instead, we follow the
approach in Refs. [6,28] and capture both the finite size and
ballistic effects by introducing an effective viscous mean
free path leff :

ν ¼ 1

4
vFleff ;

1

leffðTÞ
¼ 1

leeðTÞ
þ 1

leffðT ¼ 0Þ : ð2Þ

Here, leff is completely independent of scattering of
electrons from phonons and impurities and captures the
ballistic and viscous effects. The cutoff at the ballistic limit
leffðT ¼ 0Þ ≈ lcren=2.5 is not a fitting parameter but is
extracted from the base temperature T ¼ 0.25 K measure-
ment, which is dominated by ballistic effects. We assume
leffðT ¼ 0Þ is T independent, although relaxing this
assumption varies the extracted lee by only 10%–20%,
as discussed in Appendix G 1. The extraction of lee from
the data is rather reliable at T ≥ 20 K, where the ballistic
contribution is relatively small. The extracted values of lee
are less reliable at lower temperatures where the ballistic

contribution dominates. Nevertheless, if we extend our
method down to T ≈ 10 K, the agreement with theory is
still good despite the large error bars [see Fig. 3(a)].
We plot the extracted electron-electron scattering lengths

with symbols in Fig. 3(a) as a function of the temperature
for an electron density of n ¼ 2.45 × 1011 cm−2 (see Fig. 5
for other densities). Both leff and lee increase with decreas-
ing T, with leff saturating as it approaches half the
crenellation length scale. In contrast, lee, an intrinsic
property of the electron liquid, diverges as T → 0.
It is well known that at very low temperatures the

electron-electron scattering length scales lee ∝ 1=T2.
However, this approximation is valid only at T ≪ 0.1EF
[see Fig. 6(b)], and most data in the literature, including
ours, are obtained at T > 0.1EF. Therefore, we go beyond
the low-temperature approximation, as described in
Appendix F. The solid and dashed lines show our theo-
retical calculations of lee and leff using the random phase
approximation (RPA) with leffðT ¼ 0Þ as the only param-
eter taken from experiment. The parameter-free calculation
of lee is in remarkably good agreement with the experiment,
given the lack of any fitting parameters.

V. INDEPENDENT VERIFICATION OF lee
THROUGH MAGNETOTRANSPORT

To independently check the values of the extracted lee,
we show in Figs. 3(b) and 3(c) low-field magnetoresistance
measurements at the same carrier density. The crenellated
channel exhibits a parabolic negative magnetoresistance,
shown in Fig. 3(b), due to the magnetic suppression of the
viscosity [30–32]

νðBÞ ¼ νð0Þ B2�
B2� þ B2

; B� ¼
pF

2jejlee
; ð3Þ

where pF ¼ ℏ
ffiffiffiffiffiffiffiffi
2πn

p
is the Fermi momentum. The char-

acteristic magnetic field B� thus provides a direct
measurement of the zero-field lee, without solving the
Navier-Stokes equations. Using the second part of Eq. (3)
and the experimentally determined values of lee from
Fig. 3(a), we find B� ≈ 105 and 152 mT for T ¼ 20 and
25 K, respectively. The magnetoresistance calculated from
Eq. (3) is shown by dashed lines in Fig. 3(b) and is in
excellent agreement with the measurement. In contrast to
the crenellated channels, the straight channels have no
noticeable dependence on B over the same field range, as
shown in Fig. 3(c). This confirms the absence of viscous
effects in the straight channels; i.e., the boundaries are
smooth.
Furthermore, lower-temperature magnetoresistance data

discussed in Appendix H provide additional confirmation
of the ballistic to hydrodynamic crossover at T ¼ 10–15 K.
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VI. DISCUSSION AND CONCLUSIONS

Comparing the lee calculated using the parameter-free
theory with the measured values in Fig. 3(a), it is notable
that the experimental values are consistently higher than
theoretical predictions. This deviation is even more pro-
nounced when examining the variation of lee (and, hence,
the electron quasiparticle lifetime) with carrier density. The
lee calculated in the RPA shows only a weak dependence on
n, in contrast to the strong dependence measured exper-
imentally in Fig. 3(d). These results suggest that τee has a
significant density dependence that is not captured in the
RPA. This dependence is especially surprising given the
small interaction parameter rs ∼ 1.1–1.5 of the electron
system (see, for example, Ref. [33] and references therein).
We have checked that this discrepancy is not an effect of the
methods used to solve the Navier-Stokes equations, nor can
it be explained by including density-dependent screening
effects in the 2DEG. As shown in Appendix G 3, these have
a small effect on lee but do not influence the density
dependence of lee. Furthermore, we have gone beyond the
RPA, using the Hubbard approximation (Appendixes F and
G 2), but the calculated density dependence [blue dash-
dotted line in Fig. 3(d)] remains inconsistent with

experiment. This inconsistency suggests that correlation
effects beyond the Hubbard approximation are significant
even at relatively low rs.
In conclusion, we have created 2D electron channels

with perfect slip boundaries, thereby eliminating unknown
parameters related to boundary scattering. This method
makes it possible to separate extrinsic (phonon and dis-
order) scattering effects from the intrinsic viscous effects
due to electron-electron scattering. From the viscous
resistance, we directly extract the electron-electron scatter-
ing length. The techniques and analysis introduced here
open a new route to probing the finite-temperature quasi-
particle lifetime of two-dimensional Fermi liquids over a
wide temperature range.
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FIG. 3. (a) Electron-electron scattering length lee and the viscous effective scattering length leff as a function of the temperature for an
electron density of n ¼ 2.45 × 1011 cm−2. The solid red line is the parameter-free theoretical calculation of lee for a Fermi liquid using
RPA and Boltzmann theory (Appendix F). The dashed black line is the calculated leff using Eq. (2). The black squares and red filled
circles are the values of leff and lee, respectively, extracted from the measured resistance of the crenellated channel. The error bars are due
to the uncertainty in the Ohmic component of resistance. (b),(c) High-temperature magnetoresistance of the crenellated and straight
channels for n ¼ 2.45 × 1011 cm−2. The straight channel (c) shows no magnetoresistance as expected for smooth sidewalls, whereas the
crenellated channel (b) shows a strong negative magnetoresistance due to viscous effects. The dashed lines in (b) are theoretical
magnetoresistance curves, calculated using Eq. (3) and the lee measured in (a). (d) Density dependence of lee at T ¼ 20 K. Values
extracted from the experiment (symbols, with the error margin shown by the shading) are substantially lower than the low T theory of
Giuliani and Quinn [29] (as expected) but show a stronger density dependence than predicted theoretically from the more complete RPA
(black dashed line) and Hubbard calculations (blue dash-dotted line).
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Note added.—Recently, we became aware of a study of
viscous behavior in a GaAs 2DEG using nonlocal mea-
surements [27]. The lee differ from those obtained here; a
comparison of the two approaches is given in Appendix J.

APPENDIX A: CONFIRMATION OF PERFECT
SLIP BOUNDARIES AND EXTRACTION OF

MEAN FREE TIME τmfp

The solution of fluid equations in a straight channel is
well known (see, e.g., Ref. [30]). If the channel is extended
in the x direction, the finite slip boundary condition reads
ðvx − β∂yvxÞjboundary ¼ 0. For the limit of large slip length
(β ≫ ffiffiffiffiffiffiffiffiffiffi

ντmfp
p Þ, the channel resistivity is dominated by the

usual Ohmic form with higher-order viscous corrections:

Rstraight →
L
W

m�

ne2τmfp

�
1þ 2ντmfp

βW
þO

�
ντmfp

β2

��
: ðA1Þ

By comparing the experimentally measured resistance in
the straight segment to this formula, we can characterize the
boundary conditions of our device. We are also able to
extract the scattering time τmfp and characterize the scatter-
ing impurity and phonon scattering processes. As shown in
Fig. 4(a), the experimental data show that the resistance
depends only on L=W. Shown is the measured resistance in
the straight devices with dimensions W ¼ 2.5 and 5.0 μm
and L ¼ 25 and 50 μm, respectively. By comparing with
Eq. (A1), we conclude that for this segment there are no
finite slip corrections to the resistivity and the perfect slip
(no-stress) boundary condition holds, resulting in uniform
fluid flow, as shown in Fig. 1(c) in the main text. In such a

uniform flow, the internal viscous friction is irrelevant,
because friction plays a role only when different parts
of the fluid are in relative motion. Since the effects of the
boundary are completely eliminated, the resistance Rstraight

and corresponding scattering time τmfp are attributed only
to impurity and phonon scattering. In principle, the disorder
density can slightly vary between different sections of the
device. The dotted lines in Fig. 4(a) show the high and low
estimates for Ohmic resistance, based on the resistivity of
straight sections with two different widths.

APPENDIX B: CONTRIBUTION
TO τmfp FROM IMPURITIES

At zero temperature, the Ohmic resistance is purely due
to disorder and, thus, τmfp → τdis, which we explain with a
model distribution of charged impurities in the volume
between the gate and the channel. Charged impurities
above the channel create a variation in the gate potential.
If a positive elementary charge is located above the fluid
plane, it creates the electric potential that scatters the
electrons. Assuming a volumetric distribution of impurities
in the region between the gate and the 2DEG and following
Ref. [34], we find approximately that

1

τdis
≈

ffiffiffi
2

p
πℏni

m�κ
r3s

�
−

ffiffiffi
2

p

rs þ
ffiffiffi
2

p þ log
rs þ

ffiffiffi
2

p

rs

�
;

rs ¼ κ=ð
ffiffiffi
2

p
kFÞ ∼

ffiffiffi
2

p
: ðB1Þ

As shown in Table I, 1 < rs < 1.5 has a tight range, and,
therefore, we can expand τdis in n to obtain

(b)(a)

FIG. 4. (a) The resistances in the straight devices with dimensions W ¼ 2.5 and 5.0 μm and L ¼ 25 and 50 μm, respectively, as a
function of the temperature. The dotted lines are the high and low fits (see Table II). (b) Electron-impurity mean free time and
corresponding impurity limited mobility (at T ¼ 0.25 K) with respect to number density. A volumetric distribution of ni ¼ 1.13 ×
1015 cm−3 impurities yields the dotted line based on Eqs. (B1) and (B2) and explains the observed data shown by filled circles.
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τdis ≈
2m�κ
πℏni

�
0.1þ 13.9

n
κ2

þOðn3=κ6Þ
�
;

0.02 < n=κ2 < 0.06: ðB2Þ

A reasonable value of ni ≈ 1.13 × 1015 cm−3 for volumet-
ric density of charged impurities sufficiently accounts for
the observed impurity limited scattering lifetime as seen in
Fig. 4(b).

APPENDIX C: CONTRIBUTION
TO τmfp FROM PHONONS

The T-linear resistance of the straight channels is
consistent with deformation potential coupling of electrons
to acoustic phonons as outlined below.
From the straight section measurements depicted in

Fig. 4(a) and tabulated in Table II, we extract the elec-
tron-phonon scattering mean free time from ρDrude − ρdis ¼
m�=ðne2τphÞ as

τph ≈ 1.55 ns
1

T½K� : ðC1Þ

The electron-phonon interaction vertex for phonon cou-
pling is Ve−ph ¼

ffiffiffi
ℏ

p
Edq=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρdωq

p
, where Ed is the defor-

mation potential, q is the wave vector of the phonon, ρd is
the mass density of the crystal, and ωp is phonon energy.
For an acoustic phonon, ωp ¼ uqℏ, where u is the sound
velocity. When an electron scatters from an acoustic
phonon, momentum conservation dictates that the phonon

momentum q ∼ pF, since the electron comes from the
vicinity of the Fermi surface. Noting that the Fermi velocity
for our choice of density is much larger than the speed of
sound in GaAs, (u ∼ vF=100), the energy of phonon
satisfies ωq=ðkBTÞ ∼ ðu=vFÞEF=ðkBTÞ ≪ 1, whenever
T ≳ 1 K. Therefore, the number of phonons with momen-
tum q can be obtained from the Bose-Einstein distribution
as nbq ∼ T=ωq. Moreover, since the energy of phonon is
small compared to the Fermi energy, the phase space
volume of quasielastic scattering is independent of temper-
ature in the range of our experiment. The scattering rate is
proportional to the number of phonons, which are popu-
lated according to the Bose-Einstein distribution nb. Since
nbq ∼ kBT=ωq, except when T < 1 K, the scattering rate
increases linearly with the temperature.
Note that the phonon momentum q is a three-dimensional

vector, since phonons are not confined to the quantum well,
unlike electrons. This vector results in a form factor of about
F ≈ 3=2. Finally, from Fermi’s golden rule, we obtain the
acoustic phonon limited mobility as

μph ¼
2eℏ3ρdu2d
3m�2E2

dkBT
; ðC2Þ

which is consistent with the literature [35–38]. We estimate
for GaAs (based on Ref. [35] and references therein) that τph
for a quantum well of thickness d ¼ 10 nm is τph ∼
1 ns=T½K� and is very close to our measurements.
Above approximately 40 K, longitudinal optical (LO)

polar phonons are activated, and they significantly reduce
the mobility in GaAs [38].

APPENDIX D: CONTRIBUTION TO MEASURED
RESISTANCE FROM VISCOSITY AND

CRENELLATIONS

Having shown for the straight channel that the bounda-
ries are smooth and flow is uniform [as shown in Fig. 1(c)
in the main text], we now describe the role of viscous
effects in the crenellated channels [see Figs. 1(d)–1(f) in the
main text]. In the crenellated channel, the electron fluid is
forced to undergo a sequence of diverging and converging
flows. As a result, the velocity of the fluid v is nonuniform,

TABLE I. Parameters for the resistivity of 2DEG relevant to impurities.

Parameter Expression Value Description

ϵr 12.5 Relative permittivity
ϵ ϵr4πϵ0 1.39 × 10−9 F=m Permittivity
1=κ ϵℏ2=ð2m�e2Þ 4.94 nm Screening length
1=kF 1=

ffiffiffiffiffiffiffiffi
2πn

p
8–10 nm Reduced Fermi wavelength (ƛF)

rs κ=ð ffiffiffi
2

p
kFÞ 1.1–1.5 Interaction parameter

z ∼100 nm Vertical distance of impurity from 2DEG
ni 1.13 × 1015 cm−3 Impurity concentration

TABLE II. The linear function for the Drude resistivity ex-
tracted from the straight geometry. We allow for variation of
disorder distribution to explain the small difference between
segments with two widths and use these low and high estimates to
analyze the Ohmic resistance in the crenellated channel.

ρDrude ¼ AphT þ ρdis Aph½Ω=K� ρdis½Ω�
Density ×1011 cm−2

n ¼ 1.45 1.05 41.37� 1.38
n ¼ 1.78 0.84 29.22� 1.19
n ¼ 2.45 0.65 16.68� 0.62
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which means that components of the fluid that are in relative
motion with respect to each other experience a viscous
internal friction forcem�ν∇2v. The dissipated power per unit
area, due to viscous friction, is then nm�νv · ∇2v, which we
have plotted in Fig. 1(e) in the main text. We integrate the
dissipated power over thewhole area of the device and, by the
conservation of energy, find that the viscous resistance
satisfies RviscousI2 ¼ nm�ν

R
d2xv ·∇2v. Noting that the

current density J ¼ jejnv and the current that runs through
the device is I ¼ JW, we obtain

Rviscous ¼
νm�

I2ne2
1

2

Z
d2xð∂iJj þ ∂jJiÞ2 ¼ γρν;

where ρν ¼
νm�

ne2W2
: ðD1Þ

Numerical solution of the Navier-Stokes equations
(NSEs) (see the next section) establishes that γ ∼ 60 for
our channel geometry. The value of γ is sensitive to how the
flow is distributed in the channel and depends on (a) the
Reynolds number Re ¼ I=ðνnjejÞ, (b) the relative strength
of impurities ντmfp=W2, and, finally, (c) the geometry, i.e.,
the ratio of length to width L=W and the crenellation length
lcren=W. In Table III, we show the realistic experimental
parameters that we use in our simulation. We note that the
Reynolds number is small for realistic currents, and it
therefore drops out of the problem.

Note that, in addition to viscosity, Ohmic dissipation is
also at work in the crenellated channel. The density of
power dissipated due to Ohmic resistivity is simply

ROhmicI2 ¼
Z

d2xρDrudeJ2; ρDrude ¼
m�

ne2τmfp
: ðD2Þ

In Fig. 1(d) in the main text, we show the Ohmic power
density in the crenellated channel, assuming that the
viscosity is zero. Compared to Fig. 1(c) in the main text,
it is clear that the density is less, simply because, in the
crenellated channel, the effective width is larger. We
account for the viscous effects by numerically solving
the NSE and explicitly evaluating the integral in Eq. (D2).
We determine that the ratio ROhmic=ρDrude is slightly larger
than L=W ¼ 10, as long as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lmfplee

p
> 0.16W ≈ 400 nm.

Above a critical temperature T�
Ohmic, the lmfp shrinks due to

frequent collisions with phonons, and, therefore, the Ohmic
contribution ROhmic drops below the straight segment
resistance LρDrude=W. Based on the acoustic phonons we
analyze in Appendix C, we predict T�

Ohmic to be 48, 90, and
153 K for lowest, medium, and highest density, respec-
tively. However, we note that, above approximately 40 K,
LO phonons significantly reduce the mobility in GaAs
[37,38]. Taking this reduction into account, we estimate
that the transition to the Ohmic regime will occur at
45–75 K in the range of densities we consider.

TABLE III. Parameters of electron system organized in four sections. First is Fermi-energy-related scales, controlled by the effective
electron mass (GaAs is chosen) and density. Second is the scales related to the e-e and e-ph collisions that determine resistivity and
viscosity. Third, the geometric and ambient parameters are listed. Finally, the dimensionless numbers of flow are given. Note that the
Reynolds number is low, indicating Stokes or “creeping” flow with Ohmic corrections depending on ffiffiffiffiffiffiffiffiffiffi

ντmfp
p =W.

Parameter Expression Value Description

m� 0.067me 6.1 × 10−32 kg Effective electron mass
n 1.45−2.45 × 1011 cm−2 Electron density
EF ℏ2πn=m� 5.2–8.7 meV, 60–100 K Fermi energy
vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF=m�p

1.65–2.14 × 105 m=s Fermi velocity
1=kF ð2πnÞ−1=2 8.1–10.5 nm Reduced Fermi wavelength (ƛF)

lee >100 nm e-e interaction length scale
τmfp 19.3–60.24 ps Momentum relaxation time
lmfp vFτmfp 3.2–12.8 μm Mean free path
ρDrude ðne2τ=m�Þ−1 20–80 Ω Ohmic resistivity
ν leevF=4 4.1–16.5 × 10−3 m2=s Kinematic viscosity

L 25 μm Total device length
W 2.5 μm Width of channel at the entrance
I <200 nA Current through device
v I=ðenWÞ <350 m=s Fluid velocity
T 20 K Ambient temperature
ρν m�ν=ðne2W2Þ 1.1–4.3 Ω Viscous resistivity
ΔT=ΔV e=ðkBTÞ 43.3 K=mV Estimated temperature gradient per voltage

Re vW=ν <0.2 Reynolds number
Gu ffiffiffiffiffiffiffiffiffiffi

τmfpν
p =W 0.2–0.9 Gurzhi number: Relative strength

of viscous to Ohmic resistance
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Note that, when we measure the resistance of the
crenellated channel, the viscous and Ohmic contributions
cannot be determined separately. Therefore, in order to
deduce the viscosity from the resistance, one needs a prior
knowledge of the Ohmic component ρDrude or τmfp. We use
the values we obtain from the straight segment (see
Table II). The density of impurities might vary over
different channels, and, therefore, the precise value of
ρDrude in the crenellated channel is unknown. We calculate
the error margins on ρDrude, by using the bounds on the
Ohmic resistance in Table II, obtained from the two
different straight channels with W ¼ 2.5 and 5 μm.
Knowing the density of the fluid, the input current, and the

bounds on ρDrude, we numerically calculate the viscosity that
reproduces the measured resistance, as we discuss further
below in Appendix E. In Fig. 5, the black error bars show the
bounds on viscosity converted to an effective viscous length
leff ¼ 4ν=vF, as a function of the temperature for three
different densities. We then extract lee by using Eq. (2). Also
in Fig. 5, the orange error bars show the bounds on
experimentally extracted lee. Note that the error in lee grows
as the temperature is decreased. This result is consistent with
Eq. (2), from which we obtain the ratio of error in lee to leff
as Δlee=ΔleffðTÞ ∝ l2effðT ¼ 0Þ=½leffðT ¼ 0Þ − leffðTÞ�2.
Below, we further explain the extraction of lee from the

experiment (i.e., the resistance measurements) and its
theoretical calculation.

APPENDIX E: NUMERICAL SOLUTION OF THE
NAVIER-STOKES EQUATION

The number density of electrons is fixed by the top gate
electrode and is constant throughout the fluid. Consequently,
the steady state flow obeys the incompressible NSEs
[24–26,39]

v
τmfp

þ v · ∇v − ν∇2v ¼ −∇Φ=m�; ðE1aÞ

∇ · v ¼ 0: ðE1bÞ

Here, v is the local macroscopic fluid velocity vector
following the flow of positive charge per convention, ν is
the kinematic viscosity, n is the 2D number density,m� is the
effective mass of fluid particles, and −jej is the electron
charge. On the left-hand side in Eq. (E1), the first term is due
to damping created by impurities and phonons, the second is
due to convective acceleration, and, finally, the third repre-
sents the viscous force. On the right-hand side, the electro-
static potential gradient appears as a source term that drives
the fluid. The electrodes measureΦ ¼ jejV, which contains
both the pressure and electric effects, so that we have
∇Φ ¼ n−1∇pþ jej∇ϕ.
Once the scattering mean free time τmfp of electrons from

impurities and phonons and the viscosity ν is known, we
can solve this equation by imposing the boundary

(a) (b) (c)

FIG. 5. Extracted lee and the viscous effective length leff ¼ 4ν=vF as a function of the temperature for three different number densities:
(a) 1.45, (b) 1.78, and (c) 2.45 in units of 1011 cm−2. The error bars are the lee and the viscous effective length leff ¼ vF=ð4νÞ extracted
from resistance data by solving Navier-Stokes equation (E1) and using the formula in Eq. (G1) that captures size effects. The uncertainty
is due to the possible variation of impurity concentration as discussed in Appendixes A and D. Dotted orange lines are the theoretical
calculation of the lee using RPA and Boltzmann theory, with no free parameters, as outlined in Appendix F. The dotted black line shows
the viscous effective length we calculate by using theoretical lee and Eq. (G1).
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conditions, which we explain below. First, we fix the
velocity at the input terminal that is W ¼ 2.5 μm wide
[as shown on the left side in Fig. 1(d) in the main text]. The
input velocity field is uniform and points in the x direction,
that is, parallel to the surface normal of the input terminal.
The magnitude of input velocity is determined by the
current as I ¼ jejnvinW. At the output terminal [shown on
the right side in Fig. 1(f) in the main text], we fix the
pressure p ¼ 0 that amounts to saying that it is kept at the
reference voltage Vout ¼ 0.
We assume that the sidewalls of the crenellated channel do

not “leak” current (impenetrable) and are perfectly smooth
(no-stress or perfect slip). If the tangent and normal vectors at
the boundary are denoted by t̂ and n̂, respectively, impen-
etrability of the boundary requires that n̂ivijboundary¼0

(for no penetration) or t̂iσijn̂jjboundary ¼ 0 (for no stress)
[39]. We note that the stress tensor of the incompressible
fluid is the sum of pressure and viscous stresses
σij ¼ −pδij þ nm�νð∂ivj þ ∂jviÞ ¼ −pδij þ σ0ij. A more
general boundary condition for arbitrary slip is derived in
Ref. [17], where βt̂ið∂ivj þ ∂jviÞn̂jjboundary ¼ t̂ivijboundary,
where β is the slip length and, once again, t̂ and n̂ are tangent
and normal vectors, respectively, at the boundary. In the limit
β → 0, the no-slip boundary condition is obtained, which
applies tomost molecular fluids flowing in everyday vessels.
In the limit β → ∞, we recover the perfect slip (no-stress)
condition that holds in our channel, that we verify by
measuring the straight channels with differing widths (see
Appendix A).
With the above boundary conditions, we sweep the mean

free time τmfp and viscosity ν and numerically calculate the
resistance as R ¼ V in=I, which we tabulate as a function of
ν and τmfp. We use this look-up table to extract ν from the
measured resistance, given τmfp that we experimentally
obtain from the straight channels. Table III gives a
summary of parameters used in the simulations. The
solution of NSE gives the current density J ¼ njejv every-
where in the channel. Then, using Eqs. (D1) and (D2), we
calculate, respectively, the viscous and Ohmic components
of resistances. We find that the dimensionless ratio γ ¼
Rviscous=ρν is a weakly decaying function of the dimension-
less momentum diffusion length Gu ¼ ffiffiffiffiffiffiffiffiffiffi

ντmfp
p =W (we use

the name “Gu” after Gurzhi). For a realistic range of
parameters, γ ¼ 75, 70, and 62 for Gu ¼ 0.12, 0.21, and
0.3, respectively, and saturates to γ ≈ 61 for Gu > 0.4. This
result means that a larger Drude resistance, owing to a
smaller τmfp, causes more viscous resistance. The dimen-
sionless ratio ROhmic=ρDrude assumes the values 10, 10.3,
10.5, and 10.6 for Gu ¼ 0.12, 0.21, 0.3, and 0.4, respec-
tively. Noting that ROhmic=ρDrude is precisely 10 for the
straight channel and, therefore, at ν ¼ 0, must be< 10 in the
crenellated channel, for it is effectively wider, we conclude
that the viscosity tends to increase Ohmic resistance.

APPENDIX F: THEORETICAL CALCULATION
FOR THE VISCOSITY AND ELECTRON-

ELECTRON SCATTERING RATE

The Coulomb interaction between electrons is screened
by the 2DEG itself. We consider three different approx-
imations for Coulomb screening. The simplest is the
contact approximation, that serves as a point for compari-
son. In this approximation, the Coulomb interaction is
perfectly screened and, thus, zero, except two electrons
coincide at the same space point. Second is the static
random phase approximation (RPA), that assumes that the
electron-hole pairs that screen the Coulomb field are
uncorrelated. Last, we consider the Hubbard approximation
(HA), that partly captures the correlation of electron-hole
pairs that participate in the screening process [40]. Explicit
forms for the Coulomb interaction U are shown below. The
interaction parameter is the radius of a disk that on average
contains one electron, measured in terms of the effective
Bohr radius and turns out to be rs ¼ ðκ= ffiffiffi

2
p

kFÞ. It is known
that in the limit rs → 0, that is achieved at high densities
where kF ≫ κ, the correlation effects are canceled and
UHA → URPA [33].
In the relaxation time approximation, the total relaxation

rate at momentum k is the sum of the relaxation rate 1=τpee
of a particle state, for which nk ¼ 1, and relaxation rate
1=τhee of a hole state, for which nk ¼ 0, i.e., τeeðkÞ−1 ¼
τpeeðkÞ−1 þ τheeðkÞ−1, where
1

τpeeðkÞ ¼
1

8πm�

Z
d2qd2pδð−p · qþ q2Þnpþk

× ð1 − npþk−qÞð1 − nkþqÞjUðqÞm�=πj2; ðF1Þ

and we obtain the τhee after replacing the distribution
functions n → 1 − n in the expression for τpee. Figure 6(a)
shows the scattering probability at the Fermi surface,
Pðϵk ¼ EFÞ, as a function of normalized temperature
T=TF for different values of interaction parameter rs ¼
κ=ð ffiffiffi

2
p

kFÞ in the three different approximations.We note that
for graphene (see, e.g., Refs. [6,41]), the density n ∼
10121=cm2 is about 10 times larger than in our case.
Moreover, in monolayer graphene, the Fermi velocity is
about 10 times larger thanour case; usingEF ¼ ℏvF

ffiffiffiffiffiffi
πn

p
,we

find that TF ∼ 1500 K that is, about 20 times larger than our
sample, where TF ∼ 60–100 K (see Table III). Therefore,
unlike graphene samples where the Fermi liquid theory
estimation for a degenerate gas lee ∼ 1=T2 holds to a large
extent, the electrons in our GaAs samples go beyond this
estimate and satisfy τ ∼ 1=T even at relatively low temper-
atures T ∼ 6–10 K [which corresponds to T=TF ∼ 0.1; see
Fig. 6(a)].
When the electronic distribution function is disturbed

from local thermodynamic equilibrium, ee scattering
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provides the relaxation mechanism that restores the equi-
librium. Therefore, we can calculate viscosity by appro-
priately expanding the kinetic equation around the local
thermodynamic equilibrium [42]. This derivation is for-
mally equivalent to the linear response theory of viscous
transport [43]. The length scale associated with viscous
relaxation differs from the naive interaction length vFτee,
especially when the distribution function broadens due to

high temperatures. This distinction is recognized in the
literature (see, for example, Ref. [6]).
Solving the kinetic equation for a small deviation from

thermal equilibrium, we can find that the shear stress is
proportional to the rate of strain [44]. Here, the proportion-
ality constant is viscosity. For the transport mean free path,
or simply ee length in an infinite system, we get

lee ¼
4ν

vF
¼ vF

E2
F

Z
dϵϵ2τeeðϵÞð−∂ϵnÞ; ðF2Þ

which agrees with the microscopic formula for viscosity in
the literature (see, for example, Ref. [42]). Figure 6(b)
shows the averaged scattering probability, or inverse
normalized lee, hPi ¼ 2=ðkFleeÞ as a function of normal-
ized temperature T=TF for different values of interaction
parameter rs ¼ κ=ð ffiffiffi

2
p

kFÞ in the three different approx-
imations in Eq. (G2). To reiterate, lee denotes the mean free
path associated with viscous transport rather than the naive
length vFτee. Note, however, that at low T, since the
distribution function is peaked at the Fermi surface, the
distinction disappears: lee → vFτee.

APPENDIX G: ADDITIONAL CONSIDERATIONS

1. Relation of viscosity to lee in the quasiballistic regime

The viscous transport length scale receives ballistic
corrections, when lee becomes comparable to the size of
the system. Here, we present a physical explanation.
Hydrodynamics apply when local thermodynamic equilib-
rium is established. The size of the region in which
electrons can thermalize and form a joint local velocity
is lee. The viscous power dissipation is not proportional to
local current density, but it is derivative, as we show in this
Appendix [Eqs. (D1)]. Therefore, dissipation is not local,
unlike the dissipation due to τmfp, which is always local.
When lee grows comparable to the size, there is a smooth
crossover from hydrodynamics, defined in a small volume
of size lee to completely nonlocal, ballistic transport. (The
crossover regime is analyzed, for example, in Ref. [42].)
The cutoff occurs when lee becomes comparable to the size.
Following Refs. [6,28], which show that the ballistic and

hydroconductance are additive, we capture both the finite
size and ballistic effects by introducing an effective viscous
length leff ¼ 4ν=vF:

ν ¼ 1

4
vFleff ;

1

leffðTÞ
¼ 1

leeðTÞ
þ 1

leffðT ¼ 0Þ ; ðG1Þ

where the cutoff at the ballistic limit leffðT ¼ 0Þ ≈ lcren=2.5
is not a fitting parameter but is extracted from the base
temperature T ¼ 0.25 Kmeasurement, which is dominated
by ballistic effects.
In our analysis, we assume Lb ¼ leffðT ¼ 0Þ is T

independent. However, even if Lb varies with temperature

HARPA
Contact

RPA HA Contact

(a)

(b)

FIG. 6. (a) The scattering probability at the Fermi surface,
Pðϵk ¼ EFÞ, and (b) the dimensionless inverse viscosity
hPi ¼ ℏ=ð2m�νÞ, and, equivalently, hPi ¼ 2=ðkFleeÞ, as a func-
tion of normalized temperature T=TF for different values of
interaction parameter rs ¼ κ=ð ffiffiffi

2
p

kFÞ in the three different
approximations in Eq. (G2), namely, contact interaction, RPA,
and HA. As rs decreases, the trend RPA → HA is clearly visible.
At low temperatures, only the Fermi surface contributes to the
average; hence, hPi → P or lee → vFτee.
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and changes by 100%, it gives only 10%–20% correction to
our values of lee at T > 20 K. This result is practically
within the error bars. Of course, the values of lee at T ¼
10 K are more sensitive to Lb. However, the agreement of
the measured leeðT ¼ 10 KÞ with the theory indicates
that LbðT ¼ 10 KÞ ≈ LbðT ¼ 0.25 KÞ.
We present both the viscous effective length and lee in

Fig. 5, for three different densities, and compare it to the
theoretical estimates based on RPA. The black error bars

are bounds on viscous effective length explained in
Appendix D. The orange error bars represent the true ee
length lee that is obtained using the bounds on leff and the
formula Eq. (G1), that subtracts the ballistic contributions.
The dotted orange lines are the RPA prediction. By
combining the theoretical lee taken from Fig. 6(b) in
Appendix F with the formula Eq. (G1) using the exper-
imentally obtained ballistic cutoff leffðT ¼ 0Þ ≈ lcren=2.5,
we arrive at the dotted black curves, that represent the
theoretical predictions for viscous effective length leff .

2. Hubbard approximation versus
the random phase approximation

The interaction potential in these three approximations
read (we set ℏ ¼ 1 wherever convenient)

U ¼

8>>><
>>>:

Ucontact ¼ π=m�;

URPA ¼ U0

1þU0ΠR
0

;

UHA ¼ U0ð1−U0GΠÞ
1þUΠð1−GÞ ;

ðG2Þ

where Π0 is the polarization operator and U0 ¼ ðπκ=m�qÞ
is the bare Coulomb potential with κ−1 ¼ ðϵ=2m�e2Þ as the
inverse screening length.

FIG. 7. Normalized polarization function with respect to
momentum q, for different temperatures.

(b)(a) (c)

FIG. 8. (a) The measured lee shown by error bars, compared to the theory with the Hubbard local field correction (dotted orange lines)
described in Appendix F and the measured effective length leff that contains low-T ballistic corrections, compared to the theory with the
Hubbard local field correction (dotted black lines). See similar plots in Fig. 3, where the dotted theory curves are based on RPA. The
density dependence of lee at (b) T ¼ 20 K and (c) T ¼ 40 K in the Hubbard and RPA approximations compared to the experimentally
measured values shown by the blue solid line. The shaded area depicts the uncertainty due to the possible variation of impurity
concentration as discussed in Appendixes A and D. The correlation effects captured by HA but missed in RPA account for an
approximately 50% increase in the interaction length yet do not explain the strong density dependence observed in the
experimental data.
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In Fig. 7, the normalized polarization function
Πð0; qÞ=Πð0; 0Þ ¼ Πð0; qÞπ=m� is given as a function of
the temperature and momentum q.
The temperature-dependent local field correction G is

given as

Gðq; TÞ ¼ 1

2

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2m�μðTÞ þ κ2

p : ðG3Þ

As seen in Fig. 5, going from low to high number
density, the midpoints of the error bars that represent the
experimentally obtained lee rise faster than the dotted lines
that represent the RPA prediction. The failure of the RPA
indicates the strong correlation effects. Indeed, as seen in
Fig. 8, the prediction based on Hubbard approximation is
about 50% higher than the RPA prediction; hence, the
correlation effects are strong despite the relatively low
interaction parameter rs < 2.

3. “Boundary rounding” cannot explain the strong
observed density dependence of lee

One might argue that the strong dependence of the
experimentally obtained lee on n might be due to the
variation of 2DEG boundary with particle density.
In the previous analysis, we assume that the shape of the

electron liquid repeats the shape of the metallic gate with
sharp corners, Fig. 1(a) in the main text. To be more
realistic, since the 2DEG is approximately 150 nm below
the gate, the physical shape of the boundary is somewhat

rounded. To find the actual shape, in this subsection, we
solve Thomas-Fermi-Poisson equations (TFPEs) for the
system 2DEGþ gate. Solution of TFPEs shows that the
electron density in the center of 2DEG channel depends of
the gate voltage in the following way:

n½1011 cm−2� ¼ 3.2649 × Vg½V� − 2.7901: ðG4Þ

The three densities we measure (1.45, 1.78, and
2.45 × 1011 cm−2) correspond to the voltages 1.3, 1.4,
and 1.6 V, respectively. In Fig. 9(a), we present a color
map of the charge density plot for nc ¼ 2.45 × 1011 cm−2.
Of course, density varies smoothly from nc down to zero.
We define the effective boundary of the electron liquid as a
line where density is equal to nc=2. Effective boundaries
are shown in Fig. 9(b) for three values of nc. Having the
rounded boundaries, we solve again NSE and, hence, find
the values of lee that are consistent with the measured
resistances. This result is presented in Fig. 9(c). We see
that, while the rounding of the boundaries slightly changes
lee, it does not influence our conclusion about the density
dependence.

APPENDIX H: MAGNETORESISTANCE OVER
THE ENTIRE RANGE OF TEMPERATURE

Here, we discuss the magnetoresistance data as further
evidence for a transition from the ballistic to fully hydro-
dynamic regime.
In Figs. 10(a) and 10(b), we show our magnetoresistance

data for the crenellated and for the straight segment,
respectively. Here, we plot R − RstraightðB ¼ 0Þ, because
the straight segment resistance is practically B independent
(apart from Shubnikov–de Haas quantum oscillations) and,
therefore, RstraightðB ¼ 0Þ gives a natural zero level. The
data for the broader range of magnetic field are taken only
at T ¼ 0.25 K. For the crenellated segment, the strongly
T-dependent parabolic negative magnetoresistance at
higher T is a consequence of the viscous flow and boundary
scattering in the hydrodynamic regime. In addition, the
T ¼ 0.25 K curve of the crenellated sample shows a double
hump structure related to the interplay betweenW and rc in
the presence of effectively diffusive scattering from the
crenellated walls. This structure is a well-understood
signature of ballistic transport [21]. At larger fields, the
T ¼ 0.25 K curve shows Shubnikov–de Haas oscillations.
Therefore, we limit our range to jBj < 0.1 T, which allows
us to trace the double hump as a function of the temper-
ature. We note that the double hump structure goes away at
T ¼ 17–20 K, signifying the onset of the hydrodynamic
regime. The data indicate that, even at T ¼ 14 K, the
fraction of electrons which propagate ballistically across
the channel is very small. Since we already extracted the lee
from the B ¼ 0 data, we need only the curvature at B ¼ 0
for a second confirmation of our results through magneto-
resistance. Hence, the range jBj < 0.1 T is more than

(a)

(b)

(c)

FIG. 9. (a) The charge contour plot over the plane of 2DEG for
the highest gate voltage V ¼ 1.6 V, where the number density
deep inside the channel (along y ¼ 0) is n ¼ 2.45 × 1011 cm−2.
(b) The electrical shape of the channel near the crenellation for
three different densities, compared to the top gate marked by the
dotted black line. The boundary of the channel is assumed to be
the contour on which the density is half its maximum value.
(c) The comparison of lee at T ¼ 20 K extracted by assuming
boundaries of the top gate and the softened boundaries in (a).
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sufficient to determine this curvature. At larger B fields, the
curves are expected to smoothly approach zero.
If we now look at the data from the straight channel,

shown on the right in this figure, it does not show the
strongly T-dependent negative magnetoresistance. At low
T, a weak double hump structure is visible, which indicates
that the electron scattering from the walls is not perfectly

specular. However, the effective slip length is longer than
the dimensions of the channel, indicated by the resistance
of the straight segments presented in Fig. 2, which are
practically identical, consistent with vanishing viscous
friction in smooth channels.
Of course, the disappearance of the double hump

structure at T ¼ 17–20 K does not imply that the ballistic
effects are completely absent. The effects related to the
ballistic propagation inside the crenellation still survive,
which is why we use the parallel resistance formula to
extract lee at B ¼ 0. We believe that the quantitative
analysis at B ¼ 0 is much more reliable than that based
on the negative magnetoresistance. The magnetoresistance
is just a semiquantitative confirmation of the B ¼ 0
analysis. It is also worth noting that the extraction of lee
from the data is rather reliable at T ≥ 20 K, where the
ballistic contribution is relatively small. The extracted
values of lee are less reliable at lower temperatures where
the ballistic contribution dominates. Nevertheless, if we
extend our method down to T ≈ 10 K, the agreement with
theory is still good despite the large error bars.
In Fig. 10(c), we plot the resistance of the crenellated

channel as a function of the temperature atB ¼ 0, 30, 50, and
100 mT. In the low-temperature limit, as the magnetic field
(0.03 T ≤ B ≤ 0.1 T) increases, the ballistic contribution to
the resistance of the crenellated is suppressed and Rcren
decreases. On the other hand, the magnetic field also reduces
the viscous contribution, which accounts for the reduction of
Rcren in the high-temperature limit, but at a much slower rate.
This different B dependence between the ballistic and
viscous resistance results in a clear change of slope of
RcrenðB ≠ 0Þ in the range 10–15 K. This change of slope
marks the soft transition from ballistic to hydrodynamic
transport regimes, which agrees with the crossover temper-
ature expected from the length scales of the system in
Fig. 2(b).

APPENDIX I: EXPERIMENTAL METHODS

The device is fabricated on an undoped GaAs=
AlxGa1−xAs heterostructure comprising a 10 nm GaAs
cap and a 150 nm AlGaAs layer on a GaAs buffer layer
grown by molecular beam epitaxy. Thermally evaporated
Ti=Au gates are patterned by electron-beam lithography for
the active channel region and by standard UV photolithog-
raphy elsewhere. N-type electrical contacts (AuGe) to the
heterostructure are thermally evaporated and annealed.
15 nm of atomic layer deposited AlOx is used as the
dielectric between the contacts and the top gate. The device
is measured in a 3He cryostat with a variable temperature
range from 0.25 to 40 K. At each temperature, the
resistances of the straight and the crenellated channels
are measured simultaneously using standard lock-in tech-
niques with a small ac excitation voltage of 100 μV. The
2DEG density is extracted from the slope of the low-field
Hall resistance of the same device at different gate biases.

(a)

(b)

(c)

FIG. 10. Magnetoresistance of (a) the crenellated channel after
removing the zero-field resistance of the straight channel
RstraightðB ¼ 0Þ and (b) the straight channel after removing
RstraightðB ¼ 0Þ at n ¼ 2.45 × 1011 cm−2 for different temper-
atures. (c) Resistance of the crenellated channel as a function of
the temperature at different magnetic fields. Dashed (dotted) lines
are straight line guides for low (high) temperatures depicting the
change in slope.
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APPENDIX J: COMPARISON OF lee
MEASUREMENTS FROM PERFECT SLIP
DEVICES AND RECENT NONLOCAL

MEASUREMENTS

Here, we compare our results for lee at zero magnetic
field with Ref. [27], which uses elegant nonlocal resistance
measurements to detect viscous behavior from vortex
formation in devices with multiple point contacts. In
Ref. [27], a temperature-dependent calibration parameter
is used to extract lee from comparisons of the measured
nonlocal voltages with numerical calculations at two
temperatures, 13 and 28 K. Figure 11 compares the two
approaches to measuring lee. The nonlocal measurements
are more challenging to perform and analyze than the local
measurements in the perfect slip devices studied here, with
error bars that are about 50 times larger. The extremely high
resolution and parameter-free nature of our new technique
allows accurate comparison with different theories for lee,
bringing the field of electron hydrodynamics to a qualita-
tively new level.
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