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For diffusive stochastic dynamics, the probability to observe any individual trajectory is vanishingly
small, making it unclear how to experimentally validate theoretical results for ratios of path probabilities.We
provide the missing link between theory and experiment by establishing a protocol to extract ratios of path
probabilities frommeasured time series. For experiments on a single colloidal particle in a microchannel, we
extract both ratios of path probabilities and the most probable path for a barrier crossing, and find excellent
agreement with independently calculated predictions based on the Onsager-Machlup stochastic action. Our
experimental results at room temperature are found to be inconsistent with the low-noise Freidlin-Wentzell
stochastic action, andwe discuss under which circumstances the latter action is expected to describe themost
probable path. Furthermore, while the experimentally accessible ratio of path probabilities is uniquely
determined, the formal path-integral action is known to depend on the time-discretization scheme used for
deriving it; we reconcile these two seemingly contradictory facts by careful analysis of the time-slicing
derivation of the path integral. Our experimental protocol enables us to probe probability distributions on
path space and allows us to relate theoretical single-trajectory results to measurement.
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I. INTRODUCTION

Stochastic effects are of fundamental relevance for
statistical physics and beyond [1–9]. For example, diffusion
processes are used to model colloidal particles [4,10,11],
polymer dynamics [12–15], or active particles such as
driven colloidal systems, cells, or bacteria [8,10]. Any
stochastic dynamics is fully characterized by its path
probabilities, which are also highly relevant in applications;
examples are irreversibility in stochastic thermodynamics,
which is expressed in terms of ratios of path probabilities
[10,16], or transition pathways between metastable states
[17,18], as relevant, e.g., for conformational transitions in
biomolecules [19–21].
For diffusive dynamics, the probability to observe any

given individual path is zero. Still, ratios of path proba-
bilities can be quantified theoretically by stochastic actions
[22–37]. The literature contains several proposals for
stochastic actions, the prominent ones being associated
with the names of Onsager and Machlup (OM) [22–25], as

well as Freidlin and Wentzell (FW) [38–40]. Since it is not
straightforward to access probability-zero events in meas-
urement, hitherto it was not clear how to directly validate
the theoretical results for stochastic actions.
Here we overcome this difficulty by establishing an

experimental protocol to determine the ratios of path
probabilities from observed data without fitting a model
to the stochastic dynamics. The key observable for our
protocol is the sojourn probability [23,25,38], i.e., the
probability that a stochastic trajectory remains within a tube
of small-but-finite radius R around a reference path [see
Fig. 3(a) for an illustration]. For a colloidal particle in a
microchannel subject to a double-well potential, we
directly measure the finite-radius sojourn probability for
a pair of reference paths, and subsequently extrapolate the
ratio of sojourn probabilities to the limit R → 0. We
demonstrate that this experimentally observed ratio of path
probabilities is well described by the difference in OM
Lagrangians along the two reference paths, thereby con-
firming classical theoretical results on the asymptotic
sojourn probability [23–25] and transforming the OM
action from a purely mathematical construct into a physical
observable. We observe that our results for relative path
probabilities at room temperature are markedly different
from the predictions of the FW Lagrangian [38–40], which
in the context of sojourn probabilities is associated with a
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low-noise limit [38]. Considering the most probable path,
or instanton, as the zero-radius limit of the most probable
tube, we furthermore determine the instanton for exper-
imental barrier-crossing paths in a double-well potential,
which is again well described by the OM Lagrangian and
different from the FW prediction. We discuss quantitatively
for which system parameters the FW Lagrangian [38] is
expected to describe the physical most probable path.
Finally, we resolve the seeming contradiction that the
asymptotic-tube Lagrangian is uniquely defined, whereas
the formal stochastic action Lagrangian that appears in the
path-integral formalism is not. Our results demonstrate that
ratios of path probabilities can be inferred from exper-
imental data without the need to fit a stochastic model.

II. THEORY AND EXPERIMENTAL RESULTS

A. Sojourn probability and stochastic action

We consider the approach to relative path probabilities
via the sojourn probability Pφ

RðtÞ, i.e., the probability that a
stochastic trajectory Xt ≡ XðtÞ remains within a moving
ball of radius R and with a center parametrized by a twice-
differentiable reference path φt ≡ φðtÞ up to a time t
[23–29,38]. The relative likelihood for two given reference
paths φðtÞ, ψðtÞ, t ∈ ½ti; tf� is then quantified by a stochas-
tic action S defined via [23–29,38]

e−S½φ�

e−S½ψ �
≡ lim

R→0

Pφ
RðtfÞ

Pψ
RðtfÞ

: ð1Þ

For Markovian dynamics, the action is the integral over a
Lagrangian [25,29]

S½φ� ¼
Z

tf

ti

dtLφðtÞ; ð2Þ

and for overdamped Langevin dynamics with additive
noise, Stratonovich was the first to show that the limiting
ratio of sojourn probabilities is described by the OM
Lagrangian [23]; this analytical result has since been
confirmed by several subsequent derivations [24,25,27–
29,41]. A notable exception is the derivation of Ventsel’
and Freidlin [38], where the FW Lagrangian is obtained as
the sojourn probability in a low-noise limit.
A different route to quantifying path probabilities via

stochastic actions is given by the path-integral formalism,
in which the propagator of a stochastic dynamics is
formally represented as an integral over all paths connect-
ing an initial and a final point [22,30,31,33–37]. In the
standard time-slicing derivation of the path-integral for-
malism, a formal stochastic action is defined via the
continuum limit of concatenated short-time propagators.
The formal limit is not uniquely defined, but even for
overdamped Langevin dynamics with constant diffusivity
(additive noise), it depends on the discretization used for

the short-time propagators; this discretization-dependence
of the short-time propagator leads to the FW and OM
actions as two of the infinitely many equivalent represen-
tations of the path-integral action [31,35,36,42]. While this
nonuniqueness seems in conflict with the definite finite-
temperature limit found in Eq. (2), in Sec. III, we resolve
this apparent contradiction by careful analysis of the time-
slicing path-integral derivation.
The practical relevance of the asymptotic sojourn prob-

ability Eq. (1) is that it directly leads to a simple relation
between the stochastic action Lagrangian and physical
observables. To make this explicit, we substitute Eq. (2)
into the logarithm of Eq. (1), differentiate the result with
respect to tf, and subsequently rename tf as t. This
calculation yields

LφðtÞ − LψðtÞ ¼ lim
R→0

(αφRðtÞ − αψRðt)Þ; ð3Þ

where the instantaneous exit rate at which stochastic
trajectories first leave the ball of radius R around φ is given
by αφRðtÞ≡ − _Pφ

RðtÞ=Pφ
RðtÞ, where a dot denotes a derivative

with respect to time t. For a finite radius R, each exit rate on
the right-hand side of Eq. (3) can be measured directly
experimentally via the ratio of recorded trajectories which
remain within the threshold distance R to the respective
reference path as a function of time. Thus, Eq. (3) yields a
model-free experimental route to action Lagrangian
differences via extrapolating exit-rate differences measured
at finite radius to the limit R → 0. In the following, we use
this extrapolation strategy to measure stochastic Lagrangian
differences, and hence to experimentally test theoretical
predictions for ratios of path probabilities.

B. Experimental setup

In our experiments, we observe the motion of a colloidal
particle confined to a microchannel. Our experimental
setup illustrated in Fig. 1 consists of a holographic optical
tweezer, which can autonomously capture colloidal par-
ticles and position them inside a microchannel filled with
an aqueous salt solution. Because of the strong confinement
created by the channel, the motion of the center point of the
colloidal particle can be considered effectively one dimen-
sional, i.e., along the channel axis. A spatial light modu-
lator is used to form an optical landscapewhich gives rise to
a potential-energy landscape that the colloid experiences
inside the channel. We tune the modulator to create an
approximate double-well potential shown in Fig. 1(c); on
the scales we probe, this potential is time independent. The
position of the colloidal particle is recorded at 1000 frames
per second. In total, we record and analyze approximately
104 minutes of experimental measurements partitioned into
short trajectories of variable length ranging from 10 to
60 seconds. The experimental setup is discussed in more
detail in Refs. [43,44].
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C. Relative path likelihoods from experiment

We now compare the experimentally measured right-
hand side of Eq. (3) to the corresponding difference in
theoretical stochastic action Lagrangians. From recorded
experimental time series of a colloidal particle in a micro-
channel, as illustrated in Fig. 1, we evaluate

ΔαRðtÞ≡ αφRðtÞ − αψRðtÞ ð4Þ

for several finite values of R. Since the sojourn probabilities
for the paths and radii we consider are so small that not a
single recorded trajectory remains within the tube until the
final time, we introduce a cloning algorithm to obtain the
experimental exit rate based on concatenating short
recorded trajectories; see Fig. 2 for an illustration and
Appendix B for further details. For φ, we consider a path

which moves from the left minimum of the experimental
potential energy to the right minimum of the potential
energy in Δttot ¼ 20 s, as illustrated in Fig. 3(a). For ψ we
consider a constant path, which rests at the right minimum
for the duration Δttot ¼ 20 s shown as the upper horizontal
dashed line in Fig. 3(a). This choice for ψ ensures that all
time dependence in themeasured exit-rate differences can be
attributed to the exit rate pertaining to φ. In principle,
arbitrary pairs of twice-differentiable paths of the same
duration can be considered in Eq. (1); we illustrate this in
Appendix B, where we show the results for several other
path pairs. In Fig. 3(b), we show the exit-rate differences
Eq. (4) for the paths φ, ψ for several finite values of R. We
extrapolate to R ¼ 0 as follows. Since the exit rate is
invariant under a parity transformation around the instanta-
neous tube center φðtÞ, for small radius the difference in exit
rates scales as ΔαRðtÞ ¼ Δαð0ÞðtÞ þ R2Δαð2ÞðtÞ þOðR4Þ.
For every time t, we therefore fit a quadratic function

(c)

(b)

(a)

FIG. 1. (a) Experimental setup. In our experiments, following
the general setup of Ref. [44], we observe the motion of a
colloidal particle inside a microchannel. (b) Image of a colloidal
particle in a microchannel. The motion of the colloidal particle
can be considered effectively one dimensional. The horizontal
scale bar in the lower right corner is 5 μm in length; the colloidal
particle has a diameter of 500 nm. (a) and (b) are adapted from
Ref. [44]. (c) Potential energy extracted from experimental
time series. The blue solid line depicts the potential energy
obtained from evaluating the first two Kramer-Moyal coefficients
based on experimental data, and subsequent smoothing as
explained in the Appendix A. The vertical dashed lines denote
two local minima of the potential-energy landscape located at
xmin
0 ≈ −2.7 μm, xmin

1 ≈ 1.7 μm.

FIG. 2. Illustration of our algorithm for obtaining sojourn
probabilities from measured time series. The solid blue line
represents a reference path φ, around which a tube of radius R ¼
0.5 μm is shown as the gray shaded area. We randomly select
M ¼ 3 measured trajectories which start in a small interval
around xmin

0 ≈ −2.7 μm, and follow them for a duration ΔT ¼
0.25 s (vertical dashed lines). Trajectories which leave the tube
(red dotted lines) are discarded, and the final positions of those
trajectories that stay (green solid lines) are collected. We then
again randomly select M ¼ 3 measured trajectories, which start
in a small interval around any of the collected final positions, and
repeat the process. The exit rate αφRðtÞ which appears in Eq. (4) is
the rate at which the red sample trajectories leave the tube for the
first time. The small value M ¼ 3 is chosen here for illustration;
to calculate exit rates from experimental data, we use values of the
order 104, which are chosen dynamically; see Appendix B for
details. Our algorithm assumes that the time series is Markovian;
we verify in Appendix A that this holds approximately for our
experimental data. To demonstrate that concatenating short
measured trajectories does not artificially alter the dynamics,
in Appendix B we vary the parameters of the algorithm, including
ΔT and M, and find that the inferred exit rate is independent of
the particular choices. All trajectories shown here are actual
experimental data, and the reference path φ is the same as in
Fig. 3(a).
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fðt; RÞ ¼ aðtÞ þ R2bðtÞ tomeasured finite-radius exit rates,
as the ones shown in Fig. 3(b), and extrapolate to vanishing
radius as limR→0ΔαRðtÞ≡ aðtÞ. Figure 3(c) compares the
result with the theoretical difference in OM Lagrangians
[22–25]

LφðtÞ¼ γ

4kBT0

�
_φðtÞ−1

γ
F(φðtÞ)

�
2

þ 1

2γ
ð∂xFÞ(φðtÞ); ð5Þ

where γ ¼ 1.75 × 10−8 kg=s is the friction coefficient, kBT0

the thermal energy with kB the Boltzmann constant and
T0 ¼ 294 K the absolute temperature at which the experi-
ment is carried out, and FðxÞ ¼ −ð∂xUÞðxÞ the force
corresponding to the potential shown in Fig. 1; for details
on the parametrization of γ,UðxÞ, see Appendix A.While in
Fig. 3(c) there are some minor differences between theory
and experimental extrapolation, the overall agreement is
very good. This shows both that our protocol for extracting
ratios of path probabilities from experiments yields mean-
ingful results and confirms that relative path probabilities are
indeed quantified by the OM Lagrangian [23]. On the other
hand, the difference in FW Lagrangians [38] given by

Lφ
FWðtÞ ¼

γ

4kBT0

�
_φðtÞ − 1

γ
F(φðtÞ)

�
2

; ð6Þ

and also shown in Fig. 3(c), disagrees considerably with
both the experimental data and the OM prediction. This
illustrates very clearly that in the context of physically
observable asymptotic sojourn probabilities at finite temper-
ature, the two actions Eqs. (5) and (6) are not equivalent.
They differ by a term proportional to ∂xF, which in the
nonlinear force profile we consider here, contributes

considerably to the asymptotic exit rates. This highlights
that, while in the context of the path-integral formalism, the
OM and FWactions are usually considered equivalent, this
is not the case for asymptotic sojourn probabilities. We
discuss this in more detail in Sec. III.
According to Eqs. (1)–(3), the ratio of path probabilities

is given by the exponential of the negative integral over the
data shown in Fig. 3(c). For the extrapolated experimental
exit-rate difference, this yields a value of approximately
0.026 for the path-probability ratio. As expected from
Fig. 3(c), this experimental ratio is closer to the OM value,
which evaluates to 0.068, as compared to the FW value,
which yields 0.132.

D. Most probable path from experiment

The most probable path φ�, also called the instanton,
connecting an initial point φ�ðtiÞ ¼ xi and a final point
φ�ðtfÞ ¼ xf, is given by

φ� ≡ lim
R→0

�
argmin

φ

Z
tf

ti

dtαφRðtÞ
�
; ð7Þ

whereweminimize over all continuous paths with given end
points φðtiÞ ¼ xi, φðtfÞ ¼ xf. This equation follows from
maximizing the right-hand side of Eq. (1) with respect to φ
for any fixed ψ , and states that the most probable path is the
onewhere the integrated exit rate diverges slowest asR → 0.
As in Fig. 3, we use ti ¼ 0, tf ¼ 20 s, and for xi, xf, we

consider the two minima of the experimental potential
energy; cf. Fig. 1. Using our experimental time series, we
minimize the right-hand side of Eq. (7), but without
the limit, to obtain the most probable tube for several

(a) (b) (c)

FIG. 3. (a) Reference paths used to extract relative path probabilities. The thin horizontal dashed lines denote the minima in the
experimental potential-energy landscape; cf. Fig. 1. The upper dashed line additionally denotes the constant path ψ , as indicated by a
thick orange dashed line. The blue solid line denotes a path φ which moves from the left potential-energy minimum to the right
minimum in 20 seconds. The gray shaded region around the path φ indicates a tube of radius R ¼ 0.5 μm; the green solid line depicts
concatenated experimental time series obtained using the algorithm from Fig. 2. (b) Exit-rate differences for finite radius R. Colored
solid lines denote the exit-rate difference Eq. (4) extracted directly from experimental time series for various values of the radius R, as
indicated in the legend. The used reference paths φ, ψ are shown in (a); the shown exit rates are smoothed using a Hann window of width
0.1s. (c) Extrapolation of exit-rate differences to radius R ¼ 0. The green solid line denotes the extrapolation to R ¼ 0 of (the
presmoothing versions of) finite-radius exit-rate differences as shown in (b). The shown extrapolated exit rate is smoothed using a Hann
window of width 0.1s. The black dashed line and the red dotted line denote the difference in the OM and FW Lagrangians for the paths
φ, ψ calculated using Eqs. (5) and (6) the diffusivity and force estimated from the experimental data; cf. Fig. 1.
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finite values of R. We subsequently extrapolate the result to
the limit R → 0, to obtain the most probable path; for
details, see Appendix C. In Fig. 4(a), we compare the
resulting experimental instanton to the directly minimized
OM action obtained by substituting Eq. (5) into Eq. (2). As
the figure shows, the extrapolated most probable tube
agrees very well with the OM instanton, demonstrating
that the most probable path can be extracted from exper-
imental data without fitting a model for the stochastic
dynamics. The FW instanton obtained from minimizing
the temporal integral over the Lagrangian Eq. (6) is also
shown in Fig. 4(a) and disagrees significantly with the
experimental data. This confirms experimentally that
the OM Lagrangian yields the correct action to describe

the physically observable most probable paths at a finite
temperature [24,36].

E. Range of validity of the FW Lagrangian

In the context of sojourn probabilities, the FW
Lagrangian is derived for asymptotically low noise [38],
which in the present case means asymptotically low
temperature. Indeed, for fixed γ, F, the first term in
Eq. (5) scales with the inverse temperature, whereas the
second term is independent of the temperature. One might
thus expect that for a sufficiently small temperature, the
second term becomes irrelevant and the Lagrangian Eq. (5)
reduces to Eq. (6). To quantitatively understand in which
parameter regime the FW Lagrangian predicts an instanton
which is in agreement with the OM instanton, we now
compare the minima of the functionals obtained by sub-
stituting Eqs. (5) and (6) into Eq. (2) for a wide range of
both the total duration Δttot and the temperature T. For
all temperatures, we use the friction coefficient γ and the
force profile F inferred from our experimental data at
the temperature T0 ¼ 294 K. In reality, γ and F of the
experimental system shown in Fig. 1(a) of course depend
on the temperature [45]. Here we hold those parameters
fixed because the focus of this section is not to understand
the temperature dependence of our particular experimental
system, but of the theoretical instantons predicted by
Eqs. (5) and (6). Note that, while in the FW Lagrangian
Eq. (6), the temperature appears only as an overall prefactor
which does not affect the variational extremum, varying the
temperature in the OM Lagrangian Eq. (5) amounts to
changing the relative size of the two terms.
In Fig. 4(b), we show the numerically evaluated

dimensionless average difference between FW and OM
instanton

jjφ�
FW − φ�

OMjj≡ 1

ΔttotL

Z
tf

ti

dtjφ�
FWðtÞ − φ�

OMðtÞj ð8Þ

as a function of the total duration Δttot ¼ tf − ti, and
temperature T=T0, with the experimental temperature T0 ¼
294 K indicated in the plot by a red vertical dotted line. For
the typical length scale in Eq. (8), we use L ¼ 1 μm. As can
be seen, for short total duration Δttot, there is a parameter
regime where the FW Lagrangian predicts the correct
instanton. The FW Lagrangian has been derived as a
low-temperature approximation to the sojourn probability
[38], but for total times Δttot ≳ 102 s the FW and OM
instantons disagree even at the lowest temperature consid-
ered here; we discuss the reason for this further below. In
Appendix E, we show instantons from experimental and
numerical data for several more points in the ðT=T0;ΔttotÞ
plane, all of which confirm that the OM instanton describes
the measured instanton.
A quantitative estimate for the range of applicability of

the FW action to determine the instanton is obtained by

(a)

(b)

FIG. 4. (a) Most probable paths for barrier crossing. The green
solid line denotes the most probable path extracted directly from
experimental data; see Appendix C for details. The black dashed
line is obtained by minimizing the integrated OM Lagrangian
Eq. (5), and the red dotted line is obtained by minimizing the
integrated FW Lagrangian Eq. (6). (b) Mean difference between
the OM and FW instanton. The actions corresponding to the
Lagrangians Eqs. (5) and (6) are minimized for various values of
temperature T=T0 and total transition time Δttot. The plot shows
the dimensionless mean difference between the resulting instan-
tons, as defined in Eq. (8); for technical details, see Appendix D.
The horizontal and diagonal black dashed lines denote the
crossover time Δtc ≈ 34 s defined in Eq. (9), and the right-hand
side of Eq. (10). The black vertical dashed line denotes the
crossover temperature T=T0 ≈ 0.08 defined in Eq. (11); the
red vertical dotted line denotes the reference temperature
T0 ¼ 294 K. The cross denotes the parameters ðT=T0;ΔttotÞ
used for (a).
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investigating for which parameters the second term in
Eq. (5) is negligible as compared to the first term. For
this, we distinguish between the two limiting cases of short
and long total duration. If the total duration Δttot is short,
the precise meaning of which is quantified in the following,
then the trajectory needs a large velocity to reach the given
final position xf ¼ xi þ Δx. For this scenario, we estimate
the typical velocity as _φ ≈ Δx=Δttot, so that _φ2 dominates
the first term in Eq. (5) if the total time is much smaller than
a crossover time

Δttot ≪ Δtc ≡ γjΔxj
hjFji ; ð9Þ

where the brackets hi denote a spatial average between xi
and xf, so that hjFji represents the typical magnitude of the
force between xi and xf. Using the experimentally inferred
values for γ, F, Eq. (9) yieldsΔtc ≈ 34 s, which is shown in
Fig. 4(b) as a horizontal dashed line. For a fast transition,
Δttot ≪ Δtc, the second term in the OM Lagrangian Eq. (5)
is negligible as compared to the first term if

Δttot ≪
1ffiffiffiffiffiffiffiffiffiffiffi
T=T0

p jΔxj
D0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0hj∂xFji

p ; ð10Þ

where we write β−10 ≡ kBT0 as well as D0 ¼ kBT0=γ. For
our example system, jΔxj=ðD0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0hj∂xFji

p Þ ≈ 14 s. The
right-hand side of Eq. (10) is shown in Fig. 4(b) as a
diagonal black dashed line, and indeed, in the lower left
corner of the plot, where both Eqs. (9) and (10) are fulfilled,
the FW action predicts the correct instanton. Surprisingly,
even though the FW action is in the context of sojourn
probabilities derived only for low noise, it predicts the
correct instanton even at T=T0 ¼ 1 if the transition is fast
enough; we illustrate this with an example in Appendix E.
For long total duration Δttot ≫ Δtc, we observe in Fig. 4(b)
that the FW instanton is different from the OM instanton
even for the smallest temperatures considered. To under-
stand this, we first discuss a simple scaling argument
to determine at which temperature the second term in
Eq. (5) might be negligible, and then rationalize why
even in this regime we observe deviations between the
FW and OM instanton. For Δttot ≫ Δtc, the first term in
the OM Lagrangian Eq. (5) is expected to be of order
hjFji2=ð4γkBTÞ, so that the second term should be negli-
gible if the temperature is much smaller than a crossover
temperature Tc defined by

T
T0

≪
Tc

T0

≡ 1

2

hjβ0Fj2i
hjβ0∂xFji

: ð11Þ

For our system, Tc=T0 ≈ 0.08, which is shown as a vertical
dashed line in Fig. 4(b); however, even in the parameter
regime where both Δttot ≫ Δtc and Eq. (11) are fulfilled,
i.e., in the upper left corner of Fig. 4(b), the FW and OM

instantons are distinct. This is because for long enough
Δttot, the OM instanton rests close to one of the minima of
the potential-energy landscape, as observed in Fig. 4(a).
That staying close to a potential minimum leads to a
particularly small exit rate (and hence, large sojourn
probability) is intuitively reasonable, as the positive cur-
vature of the potential around the minimum hinders particle
exit from the tube. Now if the trajectory rests close to a
potential minimum, then both the velocity and the force are
very small, and hence, the second term in Eq. (5) may not
be negligible as compared to the first term even for rather
low temperatures. Thus, even at low temperature the FW
action is not expected to produce the OM instanton
whenever the latter yields a path that temporarily rests
close to a state where the deterministic force vanishes. In
summary, Fig. 4(b) shows that while the FW instanton
agrees with the OM instanton for short transitions, as
quantified by Eqs. (9) and (10), a similar scaling argument
for long transitions given by Eq. (11) fails. This is because
even at the lowest temperature considered here, the second
term in the OM action remains relevant for the instanton.

III. RELATION BETWEEN THE ASYMPTOTIC
SOJOURN PROBABILITY AND THE

PATH-INTEGRAL ACTION

In this section, we show that the asymptotic-tube action
defined by Eq. (1) is consistent with the path-integral
formalism, in the sense that both approaches lead to
identical probability ratios for twice-differentiable paths.
By formally writing the sojourn probabilities on the

right-hand side of Eq. (1) as path integrals, the equation
reads

e−S½φ�

e−S½ψ �
¼ lim

R→0

R
D½X�1φR½X�e−S½X�R
D½X�1ψR½X�e−S½X�

; ð12Þ

where S on the left-hand side denotes the OM action
defined by Eqs. (2) and (5), D½X� stands for a fictitious
uniform measure on the space of all continuous paths [28],
e−S½X� is the corresponding path weight which defines the
formal path-integral action S, 1φR½X� denotes the indicator
function on the set of all paths that remain within a tube of
radius R around the reference path φ, and for each path
integral, we consider the initial point of the respective
reference path as an initial condition for the corresponding
stochastic paths. To give operational meaning to the
symbolic path-integral expressions on the right-hand side
of Eq. (12), we interpret the expression as the continuum
limit of the standard time-slicing procedure [22,30–
37,42,46,47], as we discuss in more detail below.
The limiting ratio of sojourn probabilities Eq. (1) defines

the action S on the left-hand side of Eq. (12); the path-
integral action S in the integrand on the right-hand side of
the equation is defined as a formal limit of a time-slicing
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procedure. From Eq. (12), one would assume that these two
actions are equal: As R on the right-hand side of the
equation tends to zero, only the immediate neighborhood of
the reference path remains within the tube. One would thus
expect that the right-hand side tends to e−S½φ�=e−S½ψ �, which
is equal to the left-hand side if S ¼ S, up to a possible path-
independent additive contribution. However, the formal
path-integral action on the right-hand side of Eq. (12) is not
uniquely defined; in fact, infinitely many equivalent sto-
chastic actions can be employed, including the OM and FW
actions Eqs. (5) and (6) [31,35,36,42,46]. This indetermi-
nacy is in sharp contrast to the limiting ratio of tube
probabilities at a finite temperature, which is described by
the OM action Eq. (5), as given on the left-hand side of
Eq. (12) [23–25,27–29].
To show how these two seemingly inconsistent math-

ematical results are reconciled, we now consider the
usual time-slicing derivation of the path-integral action
[22,32,34–37,42,46]. The key insight in the following
discussion is that the continuum limit of the discretized
path-integral action depends on whether the action is
evaluated on a typical realization of the Langevin equation
or on a differentiable path. The ambiguity in the stochastic
action discussed in the literature [31,35,36,42,46] emerges
only in the former case; in the latter case, which is the
appropriate scenario for comparing the time-slicing
action to the limiting ratio Eq. (1), the OM action follows
unambiguously, i.e., independent of the discretization
scheme. The relation between the action of rough and
smooth paths has been discussed from another perspective
in previous works [30,32].
For a one-dimensional stochastic process Xt, we con-

sider the Itô-Langevin equation

dXt ¼ aðXtÞdtþ bdBt; ð13Þ
where aðxÞ ¼ D0β0FðxÞ is the drift, dBt is the increment of
the Wiener process, and the noise strength b ¼ ffiffiffiffiffiffiffiffiffi

2D0

p
is

independent of position. Since the noise is additive, the
following derivation is independent of whether one inter-
prets Eq. (13) in the Itô or Stratonovich sense [1,48].
We consider a given continuous path Yt, t ∈ ½0; tf�, and

aim to quantify its probability according to the Itô-
Langevin Eq. (13). We begin by discretizing the time
interval ½0; tf� into N equally large slices of duration
Δt ¼ tf=N, and denote the position of the path at time ti ≡
iΔt by Yi ≡ Yti. Using the Markov property, we rewrite the
joint probability density that a realization of the Langevin
Eq. (13), after starting at Y0 at time t0, is at the points Yi at
times ti, as

PðYN; tN ;YN−1; tN−1;…;Y1; t1jY0; t0Þ ð14Þ

¼
YN−1

i¼0

PðYiþ1; tiþ1jYi; tiÞ ð15Þ

≡N N exp

�
−
XN−1

i¼0

ΔSi

�
; ð16Þ

where we define the normalization constant N N ≡
ð2πb2ΔtÞ−N=2. We now derive an expression for the
discretized action

P
i ΔSi ≡P

i ΔSðYiþ1; Yi;ΔtÞ, which
is defined by Eq. (16), by calculating the short-time
propagator of the Langevin dynamics. Equation (16) is
the usual starting point for the time-slicing derivation of the
path integral [22,32,34–37,42,46].
At this point, we do not require that the given continuous

path Yt be a realization of the Langevin equation. We
assume only that the increments ΔYi ≡ Yiþ1 − Yi fulfill
ΔYi ¼ OðΔt1=2Þ for small Δt. This condition holds if Yt is
a typical realization of the Langevin equation, but it is also
true if Yt is a continuously differentiable path, for which in
fact the stronger condition ΔYi ¼ OðΔtÞ holds.
For the Itô-Langevin Eq. (13), the increment ΔX ≡

XΔt − X0 for a short time interval Δt, and with initial
condition X0, follows via an Itô-Taylor expansion as [48],

ΔX ¼ Δt1=2bΔW þ ΔtaðX0Þ þ Δt3=2a0ðX0ÞbΔZ
þOðΔt2Þ; ð17Þ

where a0 denotes the spatial derivative of the drift a, and
where ðΔW;ΔZÞ are distributed according to a two-dimen-
sional Gaussian distribution [48]

PðΔW;ΔZÞ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffi
detΣ

p e−
1
2
ðΔW;ΔZÞΣ−1ðΔW;ΔZÞT ; ð18Þ

with

Σ ¼
�

1 1=2

1=2 1=3

�
: ð19Þ

By OðΔt2Þ, in Eq. (17) we subsume both random and
deterministic terms that scale at least as Δt2 for small Δt.
The probability density for observing the ith increment

ΔYi of the given continuous path Yt in a realization of the
Langevin dynamics is now obtained as [3]

PðYiþ1; tiþ1jYi;tiÞ

≡
Z

dΔW
Z

dΔZ½δ(ΔYi−ΔXðΔW;ΔZÞ)PðΔW;ΔZÞ�;

ð20Þ

where the increment as a function of the noiseΔXðΔW;ΔZÞ
is given by Eq. (17), with the initial conditionX0 ≡ Yi, and δ
is the Dirac-delta distribution. The delta distribution can be
used to directly evaluate the integral overΔW; the remaining
integral over ΔZ in Eq. (20) is a Gaussian integral, which
evaluates to
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PðYiþ1; tiþ1jYi; tiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πb2Δt
p e−ΔSi ; ð21Þ

where

ΔSi ≡ ΔSðYiþ1; Yi;ΔtÞ ð22Þ

≡ Δt
2b2

�
ΔYi

Δt
− aðYiÞ

�
2

−
a0ðYiÞ
2b2

ðΔY2
i − b2ΔtÞ

þOðΔt3=2Þ: ð23Þ
From the appearance of a0ðYiÞ in Eq. (23), it is apparent why
we consider Eq. (17) beyond linear order in the time
increment: The term of order Δt3=2 in the discretized
Langevin equation in fact contributes a term of order Δt
in the short time propagator.
In Eq. (23), the drift a and its derivative are evaluated

at the initial point of each time slice. Equivalently, we
can use any other point in the interval ½Yi; Yiþ1�, and
we parametrize the choice by a parameter ξ ∈ ½0; 1� as
Ȳξ
i ≡ Yi þ ξðYiþ1 − YiÞ. Taylor expanding a, a0 around Ȳξ

i ,
substituting the result into Eq. (22), and rearranging, we
obtain

ΔSi≡ Δt
2b2

�
ΔYi

Δt
−aðȲξ

i Þ
�

2

−
a0ðȲξ

i Þ
2b2

½ð1−2ξÞΔY2
i −b2Δt�þOðΔt3=2Þ; ð24Þ

where we use that ΔYi ¼ OðΔt1=2Þ. This equation is, to
order Δt, equivalent to Eq. (22), which is recovered from
Eq. (24) by Taylor expanding a, a0 around Yi again.
Therefore, despite the explicit appearance of ξ in
Eq. (24), the expression is to order Δt independent of this
parameter [31,35,36,42].
Equations (16) and (24) describe an N-dimensional

probability density, which can be evaluated on any con-
tinuous path that obeys ΔYi ¼ OðΔt1=2Þ. Since the sum
over the ΔSi in Eq. (16) has N terms, the sum over the
terms of order Δt3=2 ∼ N−3=2 from Eq. (24) is of order
OðN−1=2Þ. Thus, while the parameter ξ appears explicitly
in Eq. (24), the discretized action in the probability
density Eq. (14) depends on ξ only to subleading order
OðN−1=2Þ, which becomes irrelevant in the limit N → ∞.
Equations (16) and (24) thus constitute a one-parameter
family parametrized by ξ ∈ ½0; 1� of asymptotically equiv-
alent expressions for the N-point probability density
evaluated on a given continuous path that obeys ΔYi ¼
OðΔt1=2Þ [31,35,36,42].
We first consider the formal continuum limit N → ∞ of

the exponent in Eq. (16) for the case where Yt is a
realization of the Langevin Eq. (13), which we denote
by Yt ≡ Xt. For a realization of the Langevin equation, the
formal continuum limit of the action defined by Eqs. (16)
and (24) follows as

S½X�≡ lim
N→∞

XN−1

i¼0

ΔSðXiþ1; Xi;ΔtÞ ð25Þ

¼
Z

tf

0

dt

�
1

2b2
( _Xt − aðXtÞ)2 þ ξa0ðXtÞ

�
; ð26Þ

see Appendix F for a derivation of the second term in
Eq. (26) from Eq. (24). For special choices of ξ, Eq. (26)
yields the Freidlin-Wentzell (ξ ¼ 0), Onsager-Machlup
(ξ ¼ 1=2), or Hänggi-Klimontovich (ξ ¼ 1) action. That
the formal continuum limit Eq. (26) depends on the
parameter ξ is precisely the well-studied fact that the
formal path-integral action is not uniquely defined
[31,35,36,42]. In practice, this indeterminacy is not an
issue: As it stands, the formal expression Eq. (26) is not
mathematically well defined. More explicitly, for a reali-
zation of the Langevin equation, it holds that

1

2b2

Z
dt _X2

t ≡ 1

2b2
lim
N→∞

XN−1

i¼0

Δt
ΔX2

i

Δt2
ð27Þ

¼ 1

2
lim
N→∞

�XN−1

i¼0

ΔW2
i þOðN−1=2Þ

�
; ð28Þ

where we use ΔX2
i =Δt ¼ b2ΔW2

i þOðΔt3=2Þ ¼ b2ΔW2
i þ

OðN−3=2Þ, which follows from Eq. (17). Because hΔW2
i i ¼

1 and all the noise increments ΔWi are independent,
the expected value of the limit Eq. (28) is infinite.
Consequently, Eq. (26) should be interpreted in its dis-
cretized form Eq. (24), which is to leading order indepen-
dent of ξ [31,35,36,42]. Furthermore, as we detail in
Appendix F, if the diverging square term Eq. (27) is
subtracted from the discretized action before taking the
limit N → ∞, a well-defined expression is obtained, which
is given by the Girsanov formula [2,49,50] and independent
of the value of ξ used in Eq. (24).
Second, we consider the continuum limit N → ∞ of the

exponent in Eq. (16) for the case where Yt is a continuously
differentiable path with a square-integrable derivative,
which we denote by Yt ≡ φt. While any such path occurs
with probability zero as the realization of the Langevin
equation, it is of course possible to evaluate the N-point
probability density Eq. (14) on a given set of positions
parametrized by φt. For a continuously differentiable path,
we have Δφi ¼ OðΔtÞ, so that ΔY2

i ≡ Δφ2
i ¼ OðΔt2Þ, and

hence, the continuum limit of Eqs. (16) and (24) follows as

S½φ�≡ lim
N→∞

XN−1

i¼0

ΔSðφiþ1;φi;ΔtÞ ð29Þ

¼
Z

tf

0

dt

�
1

2b2
( _φt − aðφtÞ)2 þ

1

2
a0ðφtÞ

�
: ð30Þ
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In contrast to Eq. (25), this limit is independent of the
choice of ξ and always given by the OM action Eqs. (2) and
(5) [30], which is seen by substituting aðxÞ ¼ FðxÞ=γ, b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0=γ

p
into Eq. (30). Furthermore, because the path φt

is continuously differentiable with square-integrable
derivative, the integral over _φt

2 is finite, and hence, the
functional Eq. (30) is well defined.
The two continuum limits Eqs. (26) and (30) show how it

is mathematically consistent that the formal path-integral
action is not unique [31,35,36,42], whereas the limiting
ratio Eq. (1) is [23–25,27–29]. More explicitly, the ambi-
guity in the continuum limit of the discretized action
Eqs. (16) and (24) is observed only if the discretized
action is evaluated on a typical realization of the Langevin
Eq. (13), in which case, the formal expression Eq. (26) is
obtained. However, in Eq. (1), we consider two twice-
differentiable reference paths, for which the limiting ratio
of N-point probability densities follows from Eq. (30)
unambiguously as

lim
N→∞

PðφN;tN ;φN−1; tN ;…;φ1; t1jφ0; t0Þ
PðψN;tN ;ψN−1; tN−1;…;ψ1; t1jψ0; t0Þ

¼ e−S½φ�

e−S½ψ �
; ð31Þ

which is identical to the limiting ratio of tube probabilities
Eq. (1) [23–25,27–29].

IV. DISCUSSION

A. Summary of results

In this work, we establish a protocol to determine the
ratios of path probabilities from a measured time series,
without fitting a stochastic model to the data. Applying
this protocol to the time series of a colloidal particle in a
microchannel, we find that the Onsager-Machlup action
Lagrangian [22–25] describes both ratios of path proba-
bilities and the most probable path extracted from our
experimental data, validating classical theoretical results
[23–25,27–29]. The Freidlin-Wentzell action [38–40]
disagrees with our finite-temperature experimental results,
and we quantify for which parameters it is expected to
predict the correct most probable path. By careful analysis
of the continuum limit of the usual time-slicing approach
to the path-integral formalism, we resolve the apparent
inconsistency that the formal path-integral action is not
unique, whereas both theoretical and experimental results
point to a definitive probability ratio for differentia-
ble paths.
Our results constitute a model-free experimental

measurement of relative likelihoods of stochastic trajec-
tories and demonstrate that from a physical point of view
there is no ambiguity as to which stochastic action
describes observable relative path probabilities, as defined
in Eq. (1).

B. Probability vs probability density

The key idea in our approach is to measure finite-radius
sojourn probabilities and to extrapolate the results to the
vanishing-radius limit using Eq. (1). Our measurements
hence focus on probabilities, as opposed to probability
densities, which is because only nonzero probabilities, such
as the sojourn probability at finite radius, can be directly
measured in an experiment.
For overdamped Langevin dynamics with additive noise,

the sojourn probability for small-but-finite radius can be
calculated as [23,27,41]

Pφ
RðtfÞ ¼ PW

R ðtfÞ½e−S½φ� þOðRÞ�; ð32Þ

where S½φ� is the OM action defined by Eqs. (2) and (5),
and where PW

R ðtfÞ is the probability that a rescaled Wiener
process starting at the origin and with the same increment
variance as the random force in the Langevin dynamics
remains within a tube of radius R around the origin until
the final time tf. Substituting the asymptotic sojourn
probability Eq. (32) for both φ, ψ in Eq. (1), and noting
that PW

R ðtfÞ is for additive noise independent of the
reference path [23,27,41], the left-hand side of Eq. (1) is
obtained. In that sense, our experiments directly probe the
measure induced on the space of all continuous paths by the
observed stochastic dynamics. For overdamped Langevin
dynamics, Eq. (1) is straightforwardly generalized to higher
dimensions, where a tube consists of a ball of radius R
around the reference path [23,27,41].
Following Ref. [24], Eq. (32) can be compared to the

probability that a one-dimensional real random variable X
is within a small interval IxR ≡ ½x − R; xþ R�, PðX ∈ IxRÞ. If
the probability measure associated with X has a density
ρðxÞ with respect to the usual Lebesgue measure λ, then the
probability can be written as

PðX ∈ IxRÞ ¼ λðIxRÞ½ρðxÞ þOðRÞ�; ð33Þ

where, due to the translation invariance of the Lebesgue
measure, λðIxRÞ ¼ j½x − R; xþ R�j ¼ 2R is independent
of x.
Comparing Eqs. (32) and (33), one might be inclined to

think of e−S½φ� as a (unnormalized) probability density with
respect to the Wiener measure. It is, however, apparent that
this cannot be true [24], because the OM functional is not
even well defined for a typical realization of the Langevin
equation; cf. Eq. (28). While the measure induced on the
space of all continuous paths by overdamped additive-noise
Langevin dynamics does have a density with respect to the
Wiener measure, this density is not described by the OM
functional, but rather by the Girsanov formula [2,49,50];
cf. Appendix F.
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C. Extension to other types of stochastic dynamics

In general, for any reaction coordinate Xt, independent
of the precise nature of its stochastic dynamics, the
probability to remain within an asymptotically small tube
is the experimentally relevant characterization of its path
probabilities. After all, it is precisely the realizations of Xt
that one observes, and the asymptotic sojourn probability
very concretely characterizes how these realizations
behave. This means that the sojourn probability is also a
physically relevant observable for other variants of
Langevin dynamics, which are typically obtained from
projecting high-dimensional dynamics onto a low-dimen-
sional reaction coordinate [51,52]. If there is timescale
separation between fast orthogonal degrees of freedom and
the reaction coordinate, then such a projection leads to a
Langevin equation with multiplicative noise [53], i.e.,
configuration-dependent diffusivities. If there is no time-
scale separation, then the reaction coordinate is described
by non-Markovian Langevin dynamics. Physical examples
where memory effects are relevant include conformational
transitions in small molecules [54–56], colloidal particles
in solution on very short timescales [57–59], or the motion
of cells [60,61].
Whether a limiting process as described in Eq. (1) leads

to a finite result for an arbitrary reaction coordinate Xt
depends on the details of its stochastic dynamics. For
example, for overdamped Langevin dynamics with multi-
plicative noise, Dürr and Bach have shown that the limit in
general does not exist [24]. This is conceptually similar to
the fact that, also on finite-dimensional spaces, not every
physically relevant probability measure has a probability
density with respect to the Lebesgue measure. However,
even if the limiting ratio of sojourn probabilities is not
finite, which means that one asymptotically small tube is
infinitely more likely than the other, the sojourn probability
for small-but-finite radius is still an experimentally acces-
sible quantity that describes the behavior of a reaction
coordinate [62].
Theoretically calculating the finite-radius sojourn prob-

ability for a given stochastic dynamics, reference path,
and small-but-finite tube radius is a conceptually straight-
forward mathematical task: This is an absorbing-boundary
problem with moving boundaries for the reaction coor-
dinate Xt [41,62]. Whether absorbing boundaries should
also be introduced for orthogonal degrees of freedom,
such as the velocity in the case of inertial Langevin
dynamics, or more generally, memory degrees of freedom,
will in general depend on the physical question under
investigation.
From an experimental point of view, measuring the

sojourn probability for a finite-radius tube is also a well-
defined problem. As we do in this work, one needs to count
which fraction of the recorded trajectories (all of which
start inside the tube) leave the tubular neighborhood around
the reference path for the first time at each recorded time.

One key aspect of our algorithm is how we overcome the
exponential temporal decay of the number of sample
trajectories that have never left the tube: We periodically
increase the number of sample trajectories at each multiple
of ΔT by drawing new measured trajectories with initial
conditions according to the instantaneous distribution of
the current trajectories inside the tube. As it assumes only
Markovianity, this algorithm is directly applicable also for
overdamped Langevin dynamics with multiplicative noise.
If the dynamics of the reaction coordinate is non-
Markovian, our algorithm needs to be amended. A
possible extension would be to not only use the instanta-
neous distribution of trajectories at multiples of ΔT to
draw new sample trajectories. Instead, at iteration k, a
multiple-time distribution could be considered, which
includes the positions of trajectories at several times
between kΔT − τ and kΔT , where τ denotes the longest
memory timescale of the system. A newly drawn trajec-
tory would then need to approximately share the same
recent history with a current trajectory so that the two
might be considered at approximately the same non-
Markovian state.
The dynamics of the system we consider in the present

work is time homogeneous, meaning that both the external
force and the strength of the random force are independent
of time. While theoretically calculating the finite-radius
sojourn probability for a time-dependent force protocol is a
conceptually clear task [41,62], extending our data analysis
to time-dependent forces means that more data need to be
collected. More explicitly, in concatenating measured
trajectories, as illustrated in Fig. 2, one needs to make
sure that the external and random forces consistently follow
the time-dependent protocol. In practice, this can be
achieved by measuring a large number of independent
experimental trajectories, each with the given protocol, and
considering only the value of each trajectory at the current
state of the protocol in the cloning algorithm. In contrast, in
the algorithm in Appendix B, the time t that appears in the
sojourn probability does not need to agree with the physical
time that has passed since the recording of a trajectory
started.
Both the extrapolated exit rate and the theoretical model

used for predictions in Fig. 3(c) are based on measurements
pertaining to comparable length- and timescales, and on
which the motion of the colloidal particle is well described
by an overdamped Langevin model. This observational
scale set by the experimental apparatus explains why even
in the limit of asymptotically small tube radius, inertial
effects do not play a role in our results. If one were able to
experimentally observe the dynamics in the colloidal-
particle system shown in Fig. 1(b) with arbitrary precision,
one would inevitably observe inertial effects or noise
correlations on some small scale [57,63]. However, any
measurement can of course only directly probe the physics
down to scales that are resolvable by the measurement
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apparatus. This means that, very generally, a limiting ratio
for the sojourn probability obtained directly from measured
data should always be compared to a theory that describes
the dynamics on the scale used for measuring the finite-
radius exit rate. That any measurement fixes a modeling
scale is of course not a deficiency of our particular
approach, but a fundamental property of the physical
sciences.

D. Entropy production and further applications

Equations (3) and (7) relate path properties to experiment
by formulating them as vanishing-radius limits of tube
properties. This is a general strategy to relate questions on
individual paths to measurement: If a given single-path
statement can be reformulated in terms of a limit of tubes,
the resulting finite-radius expression is accessible in meas-
urement. The corresponding finite-radius observables can
then be either investigated directly or used to infer a
vanishing-radius limit. This method to experimentally
access single-path properties will be particularly important
for the field of stochastic thermodynamics, which exten-
sively employs the concept of individual trajectories [4,10].
For example, entropy production is in this context typically
quantified by the probability ratio of forward and backward
paths [10], which can be accessed experimentally by
considering the ratios of sojourn probabilities for forward
and backward finite-radius tubes [64].
In this study, we probe the probability distribution on the

space of all trajectories at a finite temperature. However,
our measurement algorithm is directly applicable also in the
low-noise limit, as considered in the Freidlin-Wentzell
theory [38,39], or in the study of switching transitions,
where the full probability distribution in path space induced
by Langevin dynamics may be very concentrated around a
single path [17,18,65–67]. One concrete example for
possible future research on switching transitions is con-
formational changes of small molecules [54,56]. For such
molecules, measuring sojourn probabilities of dihedral
angle reaction coordinates will allow us to quantitatively
study transitions between metastable states, without the
need to fit a stochastic model to the data.
In Sec. III, we show that the time-slicing approach to

path integrals [31,35,36,42], is consistent with the math-
ematical results on the asymptotic ratio of sojourn prob-
abilities Eq. (1) [23–25,27–29,41], in the sense that both
unambiguously lead to the Onsager-Machlup action. From
a theoretical perspective, it will be interesting to explore the
relation between these two approaches to the stochastic
action beyond the single-path limit of vanishing tube
radius. More explicitly, as formulated in Eq. (12), one
can think of the finite-radius sojourn probability Pφ

RðtfÞ for
a tube of radius R around a reference path φ as a path
integral over an indicator function [68,69]. It will be
interesting to see whether the theoretical results like the
finite-radius sojourn probability [41] can also be calculated

directly as path-integral averages within the time-slicing
path-integral formalism.
To summarize again, with Eq. (3) we provide an intuitive

and experimentally useful relation between observable exit
rates and the stochastic action Lagrangian. We use this
relation to show experimentally that the Onsager-Machlup
Lagrangian characterizes physical ratios of path probabil-
ities. More generally, our work demonstrates that the
asymptotic sojourn probability provides a direct and
experimentally accessible characterization of path proper-
ties in stochastic dynamics. We believe that both the
theoretical and experimental study of this observable will
be valuable for relating theoretical single-trajectory results
to measurement in stochastic dynamics.
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APPENDIX A: PARAMETRIZING THE
OVERDAMPED LANGEVIN EQUATION

We consider the overdamped one-dimensional Itô-
Langevin equation

dXt ¼ DβFðXtÞdtþ
ffiffiffiffiffiffiffi
2D

p
dBt ðA1Þ

with D the diffusivity, β−1 ¼ kBT the thermal energy with
kB the Boltzmann constant and T the absolute temperature,
FðxÞ ¼ −∇U an external force with a potential U, and dBt
the increment of the Wiener process. Equation (A1) is
identical to Eq. (13) with aðxÞ ¼ DβFðxÞ, b ¼ ffiffiffiffiffiffiffi

2D
p

,
T ¼ T0. As we explain in the following, we parametrize
Eq. (A1) by locally calculating the first two Kramers-
Moyal coefficients based on the experimental time series.
While this parametrization allows for a position-depen-
dent diffusivity DðxÞ, we see below that for our exper-
imental system the diffusivity is well approximated by a
spatially constant diffusivity. The approximate position-
independence of the diffusivity in particular implies that,
while we use the Itô interpretation for Eq. (A1), the choice
of stochastic integral does not lead to any ambiguity in our
results because for constant diffusivity D, the Itô and
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Stratonovich interpretations of Eq. (A1) are equiva-
lent [1,48].
From 104 minutes of experimental measurements, we

obtain N ¼ 230 uncorrelated discrete time series

XiðtjÞ≡ XiðjΔtÞ≡ Xij; ðA2Þ

where i ∈ I ¼ f1;…; Ng labels the time series, and the
maximal time index j ∈ f0;…; Jig for each time series
depends on i, meaning the recorded time series are of
variable length. All time series have identical time step
Δt ¼ 0.001 s; the lengths of the time series range from 10
to 60 s. We divide space into bins of width Δx ¼ 0.05 μm,
with the kth bin

Bk ¼ ½x̂L þ kΔx; x̂L þ ðkþ 1ÞΔxÞ; ðA3Þ

where for the left boundary we use x̂L¼−4.8μm, and k ∈
f0;…; Kg with K ¼ 192, so that x̂R≡x̂LþKΔx̂ ¼
4.8μm. The center of the kth bin denoted by xk is located
at xk ≡ x̂L þ ðkþ 1=2ÞΔx. The positions x̂L, x̂R are still
well within the experimental microchannel, meaning that a
colloid starting at x̂L, x̂R is very unlikely to leave the
channel within 1 second. For every bin Bk, we create a list
of all the experimentally recorded tuples ði; jÞ such that
Xij ∈ Bk; i.e., we for every k construct the set

Bk ¼ fði; jÞjXij ∈ Bkg: ðA4Þ

We denote the total number of data points in bin Bk by

Nk ≡ jfXij ∈ Bkgj≡ jBkj; ðA5Þ

and show a plot of Nk as a function of the bin center xk
in Fig. 5.
To parametrize the overdamped Langevin Eq. (A1), we

locally estimate both the diffusivity and the force via
discretized Kramers-Moyal coefficients [1]. At the bin
centered on xk, we obtain

DðxkÞ ¼
1

2Δt�
½hΔX2ðΔt�Þik − hΔXðΔt�Þi2k�; ðA6Þ

βFðxkÞ ¼
hΔXðΔt�Þik
DðxkÞΔt�

; ðA7Þ

where the symbol h•ik denotes the average over all Nk
experimental time series which start in the bin Bk. In the
evaluation of Eqs. (A6) and (A7), we furthermore use the
lag time Δt� ¼ 15Δt ¼ 0.015 s; a discussion of the
dependence of our results on lag time is given further
below. From the force, we calculate a potential as

(a) (b)

FIG. 6. Local potential and diffusivity extracted from experimental time series. (a) The orange solid line depicts the potential energy as
obtained from Eqs. (A7) and (A8) for Δt� ¼ 0.015 s. The black dashed solid line is a smoothed version of the orange line obtained via a
Hann-window average using 20 data points at each point xk. The vertical solid lines denote local minima xmin

0 ≈ −2.725 μm, xmin
1 ≈

1.725 μm of the smoothed potential energy. The vertical dashed lines indicate the bounds of the interval ½xmin
0 − 1 μm; xmin

1 þ 1 μm� over
which the average diffusivity hDi is calculated in (b). (b) The orange line shows the local diffusivity as obtained from Eq. (A6). The
horizontal dashed line depicts the average over the diffusivity inside the interval ½xmin

0 − 1 μm; xmin
1 þ 1 μm�, as indicated by the two

vertical lines; cf. (a).

FIG. 5. Number of experimental data points per discretization
bin. The solid line denotes the number of experimental data
points per bin, as defined in Eq. (A5). The bin center xk is the
center of the bin Bk defined in Eq. (A3).

GLADROW, KEYSER, ADHIKARI, and KAPPLER PHYS. REV. X 11, 031022 (2021)

031022-12



βUðxkÞ ¼ −
Z

xk

x̂L

dx0βFðx0Þ; ðA8Þ

where we use the trapezoidal rule to perform the integral on
the right-hand side numerically; the result of this integra-
tion is furthermore smoothed using a Hann window that at
each xk incorporates the 20 closest data points. The
smoothed potential is then interpolated using polynomial
splines of degree 3; this polynomial interpolation is used in
evaluations of the stochastic action to calculate the force F
and its derivative ∂xF.
The diffusivity and potential-energy profiles obtained

from Eqs. (A6) and (A7) are shown in Fig. 6. The potential
energy in Fig. 6(a) shows two local minima at
xmin
0 ≈ −2.725 μm, xmin

1 ≈ 1.725 μm separated by a barrier
at x ≈ −0.5 μm. Note that in the main text, a constant is
added to the potential, such that the potential vanishes at
xmin
0 . From Fig. 6(b), we conclude that the diffusivity is
almost independent of position within the interval
½xmin

0 − 1 μm, xmin
1 þ 1 μm], with an average value

hDi ≈ 0.232
ðμmÞ2

s
: ðA9Þ

The dependence of the inferred potential and diffusivity
Eqs. (A6) and (A7) on the lag time Δt� is shown in Fig. 7.
Figures 7(a) and 7(b) show that both the potential and the
diffusivity for the two lag times Δt� ¼ 0.015, 0.025 s agree
with each other. Figure 7(c) shows the average diffusivity
hDi as a function of the lag time Δt�. For short lag times
Δt� ≲ 0.01 s, the mean diffusivity slightly depends on the
lag time (note the scaling on the y axis), which we attribute
to inaccuracies of the centroid algorithm which we use to
estimate colloidal positions. For lag times Δt� ≳ 0.01 s, the

mean diffusivity is independent of the lag time, which
justifies our choice Δt� ¼ 0.015 s.
Using the Einstein relation, the friction coefficient γ

follows from Eq. (A9) as

γ ¼ kBT
hDi ≈ 1.75 × 10−8

kg
s
; ðA10Þ

where kB is the Boltzmann constant and T ¼ 294 K is the
experimental temperature.
Figures 6 and 7 demonstrate that, on the millisecond

timescale, the dynamics of the colloidal particle along the
channel axis is approximately Markovian and well
described by an overdamped Langevin equation with
additive noise. This fact in particular implies that both
hydrodynamic interactions with the channel walls, as well
as temporal noise correlations, are irrelevant on the scales
we consider. We now briefly discuss that this is consistent
with other experimental studies involving colloidal
particles.
For colloidal particles in bulk water, deviations from

white-noise behavior of the thermal force in fluids have
been reported and characterized by Franosch et al. [57].
While the hydrodynamic-memory timescale τf is of the
order of 1 μs [57,63], hydrodynamic effects can be
observed on much larger timescales because hydrodynamic
noise correlations decay with a power-law tail. More
explicitly, in Ref. [57] it was observed that colored
deviations from white noise start to become relevant in
bulk water on timescales slightly below 1 ms for beads of
size 2–3 μm. For smaller colloids with diameter 500 nm, as
we use in our present work, we expect the onset of colored
noise, and hence, of hydrodynamic effects, to be on the
order of 0.1 ms. We expect this timescale to decrease even
more in strong confinement (as compared to the corre-
sponding bulk value), so that hydrodynamic-memory

(a) (b) (c)

FIG. 7. Lag-time dependence of potential and diffusivity extracted from experiments. (a) The potential energy as obtained from
Eqs. (A7) and (A8) is shown for Δt� ¼ 0.015 s as a black solid line and for Δt� ¼ 0.025 s as an orange dashed line. (b) The diffusivity
as obtained from Eq. (A6) is shown for Δt� ¼ 0.015 s as a black solid line and for Δt� ¼ 0.025 s as an orange dashed line. The vertical
dashed lines depict the boundary of the interval ½xmin

0 − 1 μm; xmin
1 þ 1μm�, where xmin

0 ≈ −2.725 μm, xmin
1 ≈ 1.725 μm are two local

minima of the potential energy; cf. Fig. 6. (c) Mean diffusivity hDi averaged over ½xmin
0 − 1 μm; xmin

1 þ 1 μm� as a function of the lag
time Δt� used in Eq. (A6). The horizontal thick dashed line denotes the value hDi for Δt� ¼ 0.015 s, as indicated by the vertical
dashed line.
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effects are irrelevant on the millisecond timescale probed in
our measurements. In this context, we furthermore note that
Ref. [63] also shows that the inertial timescale τp of our
colloidal particle is below 1 μs, which explains why inertial
effects can be neglected in the overdamped Langevin model
we use for our recorded data on the millisecond timescale.
The diffusivity of a colloidal particle in a confining

microchannel is well characterized experimentally [70]. In
particular, the diffusivity is approximately position inde-
pendent in the interior of the channel, i.e., sufficiently far
away from the channel ends. The region of the channel
shown in Fig. 1(c), which we use for our measurements, is
well within the channel, so that as can be seen by the almost
position-independent diffusivity in Fig. 6(b), the boundary
effects described in Ref. [70] are irrelevant here.

APPENDIX B: EXTRACTING SOJOURN
PROBABILITIES FROM EXPERIMENTAL

TIME SERIES

1. Algorithm

We now explain how we extract sojourn probabilities
and exit rates from experimental time series. We assume as
given several uncorrelated time series, a reference path
φðtÞ, and a radius R. In essence, the algorithm we use
concatenates randomly sampled short recorded trajectories.
We assume that the dynamics is time homogeneous and

that the time series are Markovian. The former assumption
holds in our experimental data because the external force is
time independent. We discuss the validity of the latter
assumption in Appendix A. We furthermore assume that
the time series are indexed as described in the beginning of
Appendix A.
At the initial time ti, we choose an initial probability

density inside the tube. In the discretization of space
described in Appendix A, this probability density is
represented by a normalized histogram that is only nonzero
in the approximately 2R=Δx bins which intersect
with the tube at time ti, which is given by the interval
½φðtiÞ − R;φðtiÞ þ R�. To estimate the sojourn probability
for a short time interval ΔT , we proceed as follows.

(i) From the histogram representing the initial condition,
we draw M sample bins (with replacement)
fBk1 ; Bk2 ;…; BkMg; for the definition of a bin, see
Eq. (A3). Each sample bin represents an initial con-
dition for a sample trajectory starting inside the tube.

(ii) For each sample bin Bki , we draw one of the Nki
measured data points inside this bin (with
replacement, and using a uniform distribution on
the set of all measured data points inside the bin),
where Ni is defined in Eq. (A5). If the bin Bki only
partly intersects the tube interior, and the drawn
data point lies outside the tube, a new data point is
drawn. The drawn data point belongs to a recorded
time series, and we assume that this time series
extends at least until a duration ΔT beyond the

recording time of the drawn datapoint (this require-
ment can always be ensured by reducing the
maximal index Ji corresponding to the trajectory
Xi, and removing trajectories Xi that are shorter
than ΔT ).

(iii) We follow each of the M randomly drawn time
series from step 2 for the duration ΔT and discard
each trajectory as soon as it first leaves the tube. The
number of trajectories left in the tube at each time
step, which we denote by Mj, yields an estimate for
the sojourn probability via Pφ

RðjΔtÞ≡ Pj ≡Mj=M,
subject to the given initial condition, and for a
duration ΔT .

(iv) By creating a histogram from the final positions of
those trajectories that stay inside the tube until time
ΔT , a new initial distribution is obtained, and the
algorithm can be repeated from step (i) for another
time interval ΔT .

Figure 2 illustrates the algorithm for an initial distribution
PðxÞ ¼ δ(x − φðtiÞ), ΔT ¼ 0.25 s, M ¼ 3 (to obtain a
reliable estimate for the sojourn probability, of course much
larger values forM need to be used). For the analysis of the
experimental data, we use Δx ¼ 0.05 μm, ΔT ¼ 0.25 s; at
the end of this section, we show that the results of this
algorithm are independent of our particular choices for Δx
and ΔT .
From the discrete time series Pj for the sojourn

probability, the exit rate αφR is obtained by discretizing

αφRðtÞ ¼ −
_Pφ
RðtÞ

Pφ
RðtÞ

: ðB1Þ

For the first iteration of steps (i)–(iii) of the algorithm
outline above, we choose M ¼ 105 and as an initial
condition, a smeared-out delta peak at the tube center
consisting of a uniform distribution on the three bins closest
to the tube center. For each subsequent iteration of steps
(i)–(iii), we estimate the number of trajectoriesM based on
the recent trend of the exit rate. More explicitly, assuming
we are at the kth repetition of steps (i)–(iii) (where k > 1),
we fit a linear function

αfitðtÞ ¼ a(t − ðti þ kΔT Þ)þ b ðB2Þ

to the exit rate in the time interval ½ti þ kΔT − Δtfit;
ti þ kΔT �, where Δtfit ¼ minf0.4 s;ΔT g. Using the fitted
Eq. (B2), we estimate the numberM such that the expected
number of trajectories inside the tube at the final time of the
kth iteration step is approximately Nfinal, which yields

Nfinal ¼ M exp

�
−
Z

tiþðkþ1ÞΔT

tiþkΔT
dsαfitðsÞ

�
; ðB3Þ

⟺ M ¼ Nfinal exp

�
a
ΔT 2

2
þ bΔT

�
: ðB4Þ

GLADROW, KEYSER, ADHIKARI, and KAPPLER PHYS. REV. X 11, 031022 (2021)

031022-14



Unless noted otherwise, we use Nfinal ¼ 105 for all
exit rates shown in this paper; we demonstrate further
below that our results are independent of the precise value
used for Nfinal (as long as it is sufficiently large). For the
minimization leading to the most probable path, we also
use smaller values for Nfinal, as described in detail in
Appendix C.

2. Relative path likelihood for a pair of paths

To infer the ratio of path probabilities for a pair of paths
φ, ψ , we use the algorithm described just above to measure
the exit rate for finite tube radius R ¼ 0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8 μm. Subsequently, we extrapolate the cor-
responding finite-radius exit-rate difference

ΔαRðtÞ≡ αφRðtÞ − αψRðtÞ ðB5Þ

to the limit R → 0, as described in the main text. For Fig. 3
in the main text, the path φ is parametrized as

φðtÞ ¼ xf − xi
2 arctanðκ=2Þ arctan

�
κ

tf
ðt − tf=2Þ

�
þ xf þ xi

2
;

ðB6Þ

where t ¼ ½0; tf� with tf ¼ 20 s, and where xi ≡ xmin
0 ≈

−2.725 μm, xf ≡ xmin
1 ≈ 1.725 μm are two minima of the

potential energy. The path Eq. (B6) describes a barrier
crossing starting at time ti ¼ 0 at the left minimum and
arriving at the right minimum at time tf ¼ 20 s, with the
parameter κ controlling the maximal path velocity during
barrier crossing; for the results shown in Fig. 3, we use
κ ¼ 5. For ψ, we consider a path that rests at the right
minimum ψðtÞ≡ xmin

1 ; see Fig. 3(a) for an illustration. As
we demonstrate further below, pairs in which both paths are
time dependent can also be considered; the advantage of
considering one constant path is that then all time depend-
ence in the exit rate can be attributed to the nonconstant
path. While in principle, arbitrary paths can be considered,

(a) (b) (c)

(d) (e) (f)

FIG. 8. Invariance of extrapolated exit-rate differences under variation of analysis parameters. All subplots feature a replot of the
extrapolated exit rate difference from Fig. 3(c) of the main text (green solid line), which is obtained using the algorithm from
Appendix B with ΔT ¼ 0.25 s, Δx ¼ 0.05 μm, Nfinal ¼ 105, and the pair of reference paths shown in Fig. 3(a) of the main text. (a),(d)
compare the extrapolated exit rate for ΔT ¼ 0.25 s (green solid line) to results obtained using (a) ΔT ¼ 0.1 s and (d) ΔT ¼ 0.5 s
(black dotted line), with all other parameters for both analyses identical. (b),(e) show both the extrapolated exit rate for Δx ¼ 0.05 μm
(green solid line) and the corresponding results extracted using (b) Δx ¼ 0.01 μm and (e) Δx ¼ 0.1 μm (black dotted line), with all
other parameters identical. (c),(f) compare extrapolated exit-rate differences obtained for (c) Nfinal ¼ 104 and (f) Nfinal ¼ 106 to the
results from Fig. 3(c) of the main text, which use Nfinal ¼ 105. For the latter data, the running average is plotted as a thick green solid
line, and the corresponding unsmoothed time series is shown as a thin green solid line (and looks like a shaded area because of the short-
timescale fluctuations in the time series). The running average corresponding toNfinal ¼ 104, 106 is shown as a black dotted line, and the
corresponding full unsmoothed time series is plotted as a thin red line. Except for the unsmoothed data in (c),(f), all shown data are
smoothed using a running Hann-window average with window width 0.1s.
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any path φ should of course move so slowly that given
the experimental time resolution Δt of the data, the exit
rate from a tube of radius R can be reliably inferred,
i.e., _φΔt ≪ R.

3. Invariance of algorithm under variation of ΔT
For the results shown in the main text, we use

ΔT ¼ 0.25 s. To demonstrate that exit rates obtained using
the algorithm described above are independent of this
particular choice of the parameter ΔT , we now consider
the exit-rate difference of the pair of paths used in Fig. 3 of
the main text for two other values of the parameter ΔT . In
Figs. 8(a) and 8(d), we compare extrapolated exit-rate
differences obtained for ΔT ¼ 0.1, 0.5 s to results obtained
using ΔT ¼ 0.25 s. All curves show excellent agreement,
so that we conclude that our results are independent of ΔT .

4. Invariance of results under variation of bin width Δx
In the algorithm described in this appendix, particle

positions are binned repeatedly, and new samples of
trajectories starting from those bins are drawn. We now
demonstrate that our results are independent of the par-
ticular bin width used for all results in the main text,
Δx ¼ 0.05 μm. For this, we consider the pair of paths from
Fig. 3 of the main text, and infer ratios of path probabilities
from the experimental data using the bin widths Δx ¼
0.01 μm and Δx ¼ 0.1 μm, with all other parameters
identical to the Δx ¼ 0.05 μm scenario. The resulting
extrapolated exit-rate differences are shown in Figs. 8(b)
and 8(e), where we observe that the result is indeed
independent of the bin width. Note that the bin width Δx ¼
0.01 μm is in fact of the order of the measuring error for the
particle position (the experimental accuracy is about
0.05 μm); according to Fig. 8(b), this additional error does

not influence the inferred extrapolated exit rate. On the
other hand, for Δx ¼ 0.1 μm the bin width is 10% of the
smallest tube diameter considered, 2R ¼ 1 μm; according
to Fig. 8(e), this binning is still accurate enough to infer the
extrapolated exit rate.

5. Invariance of results under variation of Nfinal

For the parameter Nfinal, which via Eq. (B4) determines
the number of trajectorial samples we consider in each
iteration step to measure the exit rate, we useNfinal ¼ 105 in
this work unless noted otherwise. To show that our
results do not depend on this particular choice, in
Figs. 8(c) and 8(f), we show extrapolated exit-rate
differences based on Figs. 8(c) Nfinal ¼ 104 and 8(f)
Nfinal ¼ 106, with all other parameters identical to the
Nfinal ¼ 105 scenario. As expected, we observe that for
smaller Nfinal, the fluctuations around the running average
of the extrapolated exit-rate difference are increased. The
running averages themselves agree very well for all values
of Nfinal considered, so that we conclude that our results are
independent of this parameter.

6. Analysis of the noise eliminated by temporal
averaging (smoothing)

As can be seen in Figs. 8(c) and 8(f), the experimental
extrapolated exit-rate difference fluctuates significantly
around its running average. We now show that these
fluctuations are approximately normally distributed and
correlated only on very short timescales, which indicates
that they are approximately described by Gaussian white
noise. This observation justifies that we average over these
fast fluctuations, which originate from the fact that only a
finite amount of experimental data are available. For our

(a) (b) (c)

FIG. 9. Analysis of the noise eliminated by our smoothing procedure for extrapolated exit-rate differences. All data shown in this plot
pertain to the smoothed extrapolated exit-rate difference considered in Fig. 3(c) of the main text, which is obtained using the algorithm
described in Appendix B with parameters Δx ¼ 0.05 μm, ΔT ¼ 0.25 s, Nfinal ¼ 105. (a) shows the deviation of the extrapolated exit-
rate difference from its running average; the latter is obtained from the former via a moving average with Hann window of width 0.1s.
(b) shows the distribution of the time series from (a), together with a normalized fit of a Gaussian with zero mean; the fitting interval is
½−0.5=s; 0.5=s�, and the resulting variance is σ ¼ 0.16=s−1. (c) shows the normalized autocorrelation of the time series shown in (a) as a
function of time.
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analysis, we consider the data used for Fig. 3(c) of the main
text, which is based on analysis parameters Δx ¼ 0.05 μm,
ΔT ¼ 0.25 s, and Nfinal ¼ 105, and a moving Hann-
window average with width 0.1s. For the discussion in
this paragraph, we denote the unsmoothed extrapolated
exit-rate difference by Δαexit, and its running average by
hΔαexiti [this average corresponds to the green line shown
in Fig. 3(c) in the main text]. In Fig. 9(a), we show the
fluctuations of Δαexit around its running average as a
function of time. Surprisingly, the fluctuations are almost
independent of time and only slightly larger at around
t ¼ 10 s, when the extrapolated exit-rate difference is
maximal; cf. Fig. 3(c). We note that there are discrete
peaks, which occur at multiples of ΔT . These originate
from the instantaneous binning of the trajectories at
these times performed by our algorithm. This binning
slightly perturbs the instantaneous probability distribution
inside the tube; the following relaxation of this perturba-
tion, which happens on a very short timescale, leads to the
observed peaks in the exit rate. In Fig. 9(b), we plot
the distribution of the fluctuations from Fig. 9(a). The
distribution is approximately Gaussian, as shown by the
included fit of a Gaussian distribution to the region
½−0.5=s; 0.5=s�. This interval contains 99.4% of the fluc-
tuations, which shows that the peaks observed at multiples
of ΔT in Fig. 9(a) are statistically insignificant. Figure 9(c)
displays the normalized autocorrelation function calculated
from the time series that is shown in Fig. 9(a). We observe
that the autocorrelation decays on a timescale comparable
to the time step of our data, and is completely uncorrelated
for most of the duration of our averaging-window width
0.1s. The short correlation time observed in the figure
furthermore corroborates our assumption that the
experimental time series is approximately Markovian;
cf. Appendix A. In conclusion, Fig. 9 shows that the noise
we eliminate by the running average is approximately
described by a stationary stochastic process with Gaussian
steady-state distribution and quickly decaying autocorre-
lation. Our smoothing procedure thus basically eliminates
Gaussian white noise, and thus, does not introduce any
spurious effects or bias into the recorded data.

7. Extrapolated and finite-radius exit rates from
Langevin simulations

In Figs. 8(b) and 8(e), we show that the results of our
algorithm are independent of the particular choice of the
binning parameter Δx. As discussed before, the smallest
feasible value for Δx in our experimental analysis is
determined by the accuracy of our measurement apparatus.
To demonstrate that even if there is no spatial averaging at all
in our algorithm, i.e., in the limit Δx → 0, the extrapolated
exit rate is described by the OM Lagrangian, we use a
variation of our cloning algorithm to measure tubular exit
rates from Langevin dynamics. For this variation, we apply
the algorithm to numerical simulations, but with two

differences as compared to the analysis of experimental
data. First, we do not aggregate an ensemble of trajectories
beforehand, but generate each sample trajectory on the fly
via an independent Langevin simulation in the potential-
energy landscape shown in Fig. 3(c) of the main text using
the constant diffusivity given by Eq. (A9), and using an
Euler-Maruyama integration scheme with a time step
Δtnum ¼ 10−4 s. Second, instead of binning positions after
each iteration time ΔT ¼ 0.25 s, we directly sample the
initial conditions for the next iteration from the final
positions of those stochastic trajectories that have remained
inside the tube; this direct sampling of initial conditions
corresponds to a binning with vanishingly small bin width,
Δx → 0. Using this algorithm, we measure the exit rate for
the same values for R and extrapolate to R → 0 as for the
experimental data. The resulting extrapolated exit rate is
compared to the experimental data in Fig. 10(a); we observe

(a)

(b)

FIG. 10. Extrapolated and finite-radius exit-rate differences
from Langevin simulations. This plot compares the extrapolated
exit-rate difference obtained directly from the experimental data
to results from Langevin simulations. (a) shows a numerical
extrapolated exit rate obtained using a variation of the algorithm
described in Appendix B, where sample trajectories are generated
using Langevin simulations and no spatial binning is performed
at multiples of ΔT ¼ 0.25 s; see Appendix B for details.
(b) shows the exit rate measured from Langevin simulations at
finite radius R ¼ 0.2 μm. All data are smoothed using a Hann-
window average; for the numerical data in (b), we use an
averaging window of width 0.2s, and for all other shown data,
the averaging window has width 0.1s.
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good agreement between the two, showing that our results
are robust even in the limit Δx → 0 (assuming that the
stochastic process is described by an overdamped Langevin
equation with additive noise). As mentioned before, the
limiting factor for resolving the exit rate for small radius is
both the temporal and spatial resolution; for our numerical
simulations, the temporal resolution is given by the inte-
gration time step Δtnum, and the spatial resolution is
basically the numerical integration error (which for the
Euler-Maruyama algorithm and additive noise scales to
leading order as Δtnum). Since the time step in the simu-
lations is a factor of 10 smaller than the resolution of the
experimental data, using simulations we can measure the
exit rate also at smaller radius. Figure 10(b) compares
the exit-rate difference measured in Langevin simulations
at the finite radius R ¼ 0.2 μm to both the extrapolated
experimental data and the OM Lagrangian; we observe that
the finite-radius numerical result agrees well with the
theoretical OM Lagrangian, indicating that for the system
parameters and paths considered here, for the radius R ¼
0.2 μm the limit R → 0 is almost realized. This agreement

can be seen as direct numerical validation of the analytically
calculated limit first obtained by Stratonovich [23].

8. Relative path likelihoods for several pairs of paths

To demonstrate that relative path likelihoods inferred
using our algorithm agree with the OM Lagrangian
Eq. (5) for arbitrary pairs of reference paths φ, ψ , we now
consider three more pairs of reference paths, which are
illustrated in the first column of Fig. 11. In each line, the
second column shows the respective finite-radius exit-rate
difference Eq. (B5) obtained from experimental data. The
third column compares the resulting vanishing-radius extrap-
olations of the measured exit-rate differences to the
Lagrangians Eqs. (5) and (6). As can be seen, for all pairs
of paths the experimental result agrees reasonably well with
the OM Lagrangian and shows clear disagreement with the
FW Lagrangian.
Note that also the OM Lagrangian sometimes does not

agree perfectly with the experimental data, which is most
clearly observed in Fig. 11(f). We believe that this is
because even the smallest radii of our finite-radius tubes are

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 11. (Extrapolated) exit-rate differences for various paths. Each subplot in the first column shows a pair of paths φ (blue solid
line), ψ (orange dashed line), as well as two local minima of the potential landscape from Fig. 1(c). Each subplot in the second column
depicts the measured exit-rate differences Eq. (B5) (colored solid lines), as extracted directly from experimental time series for the paths
from the first column of each row, and for various values of the radius R, as indicated in the legend. The third column shows the result of
extrapolating the measured finite-radius exit-rate differences for the paths from each row to the limit R → 0, as described in the main
text. Each subplot furthermore features the difference of FW and OM Lagrangians evaluated along the corresponding path pairs. Each
exit rate shown in this figure is smoothed using a Hann window of width ΔTsmooth ¼ 0.1 s.
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not always small enough to perfectly capture the vanishing-
radius limit. Consequently, the agreement between the
experimental and theoretical results can presumably be
improved upon by including measurements at smaller tube
radius to the extrapolation. Measuring the exit rate for
smaller tube radius, however, requires a higher temporal
and spatial resolution in the recorded time series, which is
ultimately limited by the experimental measurement
apparatus.

APPENDIX C: CALCULATING THE
MOST PROBABLE PATH FROM

EXPERIMENTAL DATA

To extract the most probable path from experimental
data, we evaluate

φ�
R ≡ argmin

φ

Z
tf

ti

dtαφRðtÞ ðC1Þ

for the finite values R ¼ 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.8 μm, and then extrapolate to R ¼ 0.
For each R, the minimization in Eq. (C1) is over all

continuous paths with given end points φðtiÞ ¼ xi,
φðtfÞ ¼ xf, so that the minimization is over an infinite-
dimensional space of functions. To approximate this
infinite-dimensional function space by a finite-dimensional
space of dimension N, we parametrize φ as

φðtÞ ¼ xi þ
t − ti
tf − ti

ðxf − xiÞ þ
XN
n¼1

an
n2

sin

�
πn

t − ti
tf − ti

�
:

ðC2Þ

Note that for any given set of coefficients ða1;…; aNÞ ∈
RN , Eq. (C2) fulfills the boundary conditions φðtiÞ ¼ xi,
φðtfÞ ¼ xf. Employing this approximate parametrization,
the minimization in Eq. (C1) is, for given R, overRN. Using
our experimental data to evaluate the exit rate, we minimize
the right-hand side of Eq. (C1), for N ¼ 20 and R ¼ 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8 μm using a standard
minimization algorithm [71]. For each evaluation of the
sojourn probability, we employ the algorithm detailed in
Appendix B. Since the algorithm presented there is based
on stochastic sampling of recorded stochastic trajectories,
the sojourn probability obtained from a single evaluation of
our algorithm is also stochastic. Using a larger value for
Nfinal decreases the variance of the inferred exit rate, but
increases the computational time necessary to evaluate the
exit rate for a given reference path.
For computational efficiency, we proceed in several steps

to minimize Eq. (C1) for each given R. First, we perform
four independent minimizations using Nfinal ¼ 2000. For
two of these minimizations, we use as the initial condition
for the modes an, n ¼ 1;…; 20, independent samples from
a uniform distribution in ð−1; 1Þ. For the other two, we use

as the initial condition the minimum of the analytical FW
and OM action (each obtained as the lowest of ten
independent minimizations of the respective action using
the potential energy and friction coefficient inferred from
the measured data). Each minimization has a starting
variance σ0 ¼ 0.5 for the minimization algorithm, and
we truncate the minimization after at most 2000 iterations
of the algorithm (during each iteration, the sojourn prob-
ability is evaluated 12 times); typically, the minimization
converges before that. After these four minimizations, the
sojourn probability for each of the four minima is evaluated
again using Nfinal ¼ 105, and the path with the largest
sojourn probability is chosen as φ�

R.
Having obtained the most probable tube for several finite

values of R, we subsequently extrapolate the corresponding
modes anðRÞ, to R ¼ 0 by fitting a function fnðRÞ ¼
An þ R2Bn to the finite-radius minimization results, and
defining the corresponding expansion coefficients of the
most probable path φ� as

a�n ≡ lim
R→0

fnðRÞ ¼ An: ðC3Þ

To minimize the OM and FW actions obtained by
integrating Eqs. (5) and (6) along a path, we also use
the parametrization Eq. (C2), with N ¼ 40; the resulting
instantons are shown in Fig. 4(a). Since the OM instanton
agrees very well with the experimental extrapolation, for
which we use N ¼ 20, we conclude that N ¼ 20modes are
indeed sufficient to characterize the most probable path for
the transition considered.

APPENDIX D: PROTOCOL FOR THE
COMPARISON OF FW AND OM INSTANTONS

In Fig. 4(b), we show a contour plot of Eq. (8) as a
function of T=T0 and Δttot ¼ tf − ti. To obtain the figure,
the actions corresponding to the OM and FW Lagrangians
defined in Eqs. (5) and (6) are minimized using the
experimental friction coefficient and force from
Appendix A, using a path parametrized via Eq. (C2) with
N ¼ 40 modes. Finding the most probable path for each
action is then a nonlinear minimization problem in RN . To
carry out this minimization problem numerically, we
employ a covariance-matrix-adaptation evolution-strategy
algorithm [71] using the following protocol. To ensure we
find the global minimum for each parameter combination
ðT=T0;ΔttotÞ, we minimize each action in total 30 times.
For every odd numbered of these 30 minimizations, we
employ as the initial condition for the minimizer a random
initial condition where all the an, n ¼ 1;…; 40 are inde-
pendent samples from a uniform distribution in ð−1; 1Þ; for
every even numbered of the 30 minimizations, we use the
most probable OM or FW path from all the previous
minimizations as the initial condition for the respective
other action. In all cases, the initial variance for the
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minimization algorithm is chosen as σ0 ¼ 0.5. For each
value of ðT=T0;ΔttotÞ, the respective action (FWor OM) is
finally evaluated on all the results from the 30 minimiza-
tions, and the path with the smallest action is used in
Eq. (8). For Fig. 4(b), the resulting 2D array of data are
subsequently smoothed using a Gaussian filter.

APPENDIX E: INFERRED INSTANTONS FOR
VARIOUS TEMPERATURES AND TOTAL

DURATIONS

In Fig. 4(b) of the main text, we discuss in which
parameter regime FW and OM Lagrangians predict the
same instanton. In Fig. 4(a) of the main text, we compare
the functional minima for parameters T=T0 ¼ 1 and
Δttot ¼ 20 s to the instanton extracted from experimental
data; i.e., we consider one particular point of Fig. 4(b)
of the main text (which is denoted by a black cross
in the figure). We observe that, as expected from Figs. 3
and 4(a) of the main text, the experimental result agrees
with the OM instanton and disagrees with the FW instan-
ton. In this Appendix, we consider several more points
in the ðT=T0;ΔttotÞ plane, namely, ðT=T0;Δttot=sÞ ¼
ð1; 5Þ; ð1; 50Þ; ð0.1; 5Þ; ð0.1; 20Þ; ð0.1; 50Þ as indicated in
Fig. 12(a). For each of these parameters, we extract the

instanton from time series data and compare to the
theoretical predictions from the OM and FW Lagrangians.
For T=T0 ¼ 1, we apply the algorithm from

Appendix C to extract the instantons for Δttot ¼ 5 s
and Δttot ¼ 50 s from the experimental data. For
T=T0 ¼ 1=10, no experimental data are available.
Indeed, as we discuss in the main text, if our experimental
system is cooled down to T ¼ T0=10 ¼ 29.4 K, the
physics of the system would be radically different from
what we observe at room temperature, and presumably not
described by the friction coefficient and force profile
obtained at T0 ¼ 294 K. To obtain instantons based on
trajectorial data also at T=T0 ¼ 1=10, we generate an
ensemble of Langevin trajectories, which we then analyze.
To generate the data, we use our inferred friction coef-
ficient and force profile (inferred at temperature T0), a
diffusion coefficient that is rescaled to T ¼ T0=10, and
run 104 independent Langevin simulations of duration 2s
each, with a time step 10−4 s. For each simulation,
the initial condition is an independent sample of the
uniform distribution in ½xmin

0 − 0.5 μm; xmin
1 þ 0.5 μm�≈

½−3.225 μm; 2.225 μm�. We treat this ensemble of numeri-
cally generated trajectories similar to the recorded exper-
imental data and apply the algorithm from Appendix C to
find instantons for Δttot ¼ 5, 20, 50s. Because for

(a) (b) (c)

(d) (e) (f)

FIG. 12. Most probable paths for various temperatures T=T0 and total durations Δttot. (a) is a replot of Fig. 4(b) of the main text and
shows the mean difference between the OM and FW instanton as a function of T=T0 and Δttot. While the gray cross denotes the
parameters considered in Fig. 4(a) of the main text, the black crosses depict the parameters considered in (b)–(f) of the present figure.
(b)–(f) show the most probable paths extracted from the data using Eq. (C3) (green solid line), together with the results of minimizing the
integrated OM Lagrangian Eq. (5) (black dashed line), and minimizing the integrated FW Lagrangian Eq. (6) (red dotted line). In each
plot, the horizontal dashed lines denote the local minima xmin

0 ≈ −2.725 μm, xmin
1 ≈ 1.725 μm of the inferred potential, which are the

start and end points of the paths. (b),(c) show the most probable paths extracted from the experimental data measured at T0 ¼ 294 K.
(d)–(f) are obtained by analysis of an ensemble of numerical trajectories, which is generated using Langevin simulations based on the
friction coefficient and force profile measured at T0 ¼ 294 K, but with the random force scaled down to represent the temperature
T ¼ T0=10 ¼ 29.4 K; see Appendix E for details.
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lower temperature the exit rate during barrier crossing is
quite large, we now consider a smaller refill time
ΔT ¼ 0.025 s; reducing ΔT here is unproblematic
because the data are by construction perfectly
Markovian. For Δttot ¼ 5, 20s, we proceed exactly as
with the experimental data, and extrapolate inferred
instantons for finite tube radius R ¼ 0.5, 0.55, 0.6,
0.65, 0.7, 0.75, 0.8 μm to vanishing radius. However,
for Δttot ¼ 50 s, we observe that starting for R≳ 0.65 μm,
the finite-radius most probable tube starts to deviate a lot
from the results for R ¼ 0.5, 0.55, 0.6 μm. This indicates
that for the larger radii, we are too far away from the
asymptotic vanishing-radius behavior of the exit rate to
properly infer the limit R → 0. Therefore, instead of
extrapolating to vanishing radius, for this case we consider
the finite-radius most probable tubes for R ¼ 0.5,
0.55, 0.6 μm.
In Figs. 12(b)–12(f), we compare the instantons

obtained from experimental data [Figs. 12(b) and 12(c)]
and Langevin data [Figs. 12(d)–12(f)] with the correspond-
ing functional minima of the OM and FW action. In all
subplots, the experimental or Langevin instanton shows
good agreement with the OM instanton and agrees only
with the FW instanton in the regime where the OM and FW
instanton agree with each other; cf. Fig. 12(a).

APPENDIX F: CONTINUUM LIMIT OF THE
ACTION FOR A REALIZATION OF THE

LANGEVIN EQUATION

Here we discuss in more detail the continuum limit
of the discretized action defined via Eqs. (26) and (24)
for the case that we evaluate the action on a realization of
the Langevin Eq. (13), which we write as Yt ≡ Xt. The
results derived in this Appendix are well known in the
literature [2,42,46,49,50] and are included here for
completeness.
Substituting Eq. (24) into the sum in Eq. (25), and

expanding the square, the limit we are interested in can be
written as

S½X�≡ lim
N→∞

XN−1

i¼0

ΔSi ðF1Þ

¼ lim
N→∞

XN−1

i¼0

1

b2

�
1

2

ΔX2
i

Δt
− aðX̄ξ

i ÞΔXi þ
1

2
aðX̄ξ

i Þ2Δt
�

− lim
N→∞

XN−1

i¼0

a0ðX̄ξ
i Þ

2b2
½ð1 − 2ξÞΔX2

i − b2Δt�: ðF2Þ

As discussed in Eq. (27), the expectation value for
the sum over the term ΔX2

i =Δt in Eq. (F2) diverges in the
continuum limit N→∞. However, according to Eq. (28)
we have

1

2b2
XN−1

i¼0

ΔX2
i

Δt
¼ 1

2b2
XN−1

i¼0

ΔB2
i

Δt
þOðN−1=2Þ; ðF3Þ

where ΔBi ≡ bΔBi ≡ b
ffiffiffiffiffiffi
Δt

p
ΔWi is the increment of the

Wiener process rescaled to the increment variance at which
it enters as a random force in the Langevin equation,
Bt ≡ bBt. The diverging term in Eq. (F2) can therefore be
removed by subtracting the discretized action Sð0Þ½B� of B,

XN−1

i¼0

ΔSð0Þ
i ≡ 1

2b2
XN−1

i¼0

Δt
�
ΔBi

Δt

�
2

; ðF4Þ

before taking the continuum limit N → ∞. Instead of
Eq. (F2), we therefore consider the limit

S½X� − Sð0Þ½B� ðF5Þ

≡ lim
N→∞

XN−1

i¼0

�
ΔSiðXiþ1; Xi;ΔtÞ −

1

2b2
ΔB2

i

Δt

�
ðF6Þ

¼ − lim
N→∞

XN−1

i¼0

1

b2
aðX̄ξ

i ÞΔXi þ lim
N→∞

XN−1

i¼0

1

2b2
aðX̄ξ

i Þ2Δt

− lim
N→∞

XN−1

i¼0

a0ðX̄ξ
i Þ

2b2
½ð1 − 2ξÞΔX2

i − b2Δt�: ðF7Þ

This action difference amounts to considering the limiting
ratio

lim
N→∞

PðXN; tN ;…;X1; t1jX0; t0Þ
PWðBN; tN ;…;B1; t1jB0; t0Þ

≡ e−ðS½X�−Sð0Þ½B�Þ; ðF8Þ

where the N-point probability density in the numerator
of Eq. (F8) is with respect to the Langevin dynamics,
whereas the N-point probability density in the denominator
is with respect to the rescaled Wiener process B, as
indicated by the superscript W. For the two diverging
sums in Eq. (F6) to cancel, the Langevin realization in the
numerator of Eq. (F8) must correspond to the same random
force realization as used in the denominator; because the
expression depends only on the increments of the Wiener
process, the initial value of the Wiener process B0 is in fact
irrelevant.
The limiting ratio Eq. (F8) quantifies the probability

ratio of a realization Xt of the Langevin Eq. (13) and the
corresponding realization of the Brownian motion Bt. The
limit Eq. (F7) therefore relates the probability distributions
induced on the space of continuous paths by the Langevin
Eq. (13) to the probability distribution induced on the same
space by the (rescaled) Wiener process. This relation is
described by the Girsanov formula, and indeed we see
further below that the limit Eq. (F8) is precisely the Radon-
Nikodym derivative from the Girsanov theorem [2,49,50].
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Even more, the time-slicing approach employed here was
used by Cameron and Martin to derive an early variant of
the Girsanov theorem [49].
To calculate S½X� − Sð0Þ½B�, and to see explicitly that the

result is in fact independent of ξ, we now consider the limit
for each of the sums in Eq. (F7) separately. Conceptually, it
is clear without calculation that the final result of the
following calculation must not depend on ξ, as the sum over
the terms Eq. (24) is asymptotically independent of ξ.
The first sum in Eq. (F7) is simply the definition of the

stochastic integral [1] using the convention of evaluating
the integrand at an intermediate point given by ξ, which we
write as

lim
N→∞

XN−1

i¼0

aðX̄ξ
i ÞΔXi ≡

Z
tf

0

�ξ dXtaðXtÞ; ðF9Þ

where the symbol �ξ indicates the convention for the
stochastic integral. For example, for ξ ¼ 0we obtain the Itô
stochastic integral, whereas for ξ ¼ 1=2, we obtain
the Stratonovich stochastic integral [1]. For any value of
ξ, the stochastic integral along a solution of the Langevin
equation can be rewritten in terms of an Itô integral [1,46].
This change in stochastic integral is achieved by Taylor
expanding aðX̄ξ

i Þ around Xi,

aðX̄ξ
i ¼ Xi þ ξΔXiÞ ¼ aðXiÞ þ ξΔXia0ðXiÞ þOðΔtÞ;

ðF10Þ

where we use that from Eq. (17) it follows that
ΔXi ¼ OðΔt1=2Þ. Substituting Eq. (F10) into the left-hand
side of Eq. (F9), we obtain

lim
N→∞

XN−1

i¼0

aðX̄ξ
i ÞΔXi

¼ lim
N→∞

XN−1

i¼0

aðXiÞΔXi þ ξ lim
N→∞

XN−1

i¼0

a0ðXiÞΔX2
i

þ lim
N→∞

XN−1

i¼0

OðΔtÞΔXi: ðF11Þ

The first sum in Eq. (F11) is the Itô stochastic integral,
which we denote by

lim
N→∞

XN−1

i¼0

aðXiÞΔXi ≡
Z

tf

0

dXtaðXtÞ: ðF12Þ

Substituting ΔXi ¼ bΔt1=2ΔWi þOðΔtÞ, which follows
from Eq. (17), into the second sum in Eq. (F11), we obtain

lim
N→∞

XN−1

i¼0

a0ðXiÞΔX2
i ¼ b2 lim

N→∞

XN−1

i¼0

a0ðXiÞΔtΔW2
i ðF13Þ

¼ b2
Z

tf

0

dta0ðXtÞ: ðF14Þ

The last equality follows via the same argument as
employed in proving the Itô formula; see, e.g., Chap. 4
of Ref. [2]. As stated in Ref. [2], we note that because
ΔBi ≡

ffiffiffiffiffiffi
Δt

p
ΔWi is the increment of the Wiener process,

the limit Eq. (F14) is often expressed by the formula
dB2

t ¼ dt. Because OðΔtÞΔXi ¼ OðΔt3=2Þ ¼ OðN−3=2Þ,
the last sum in Eq. (F11) scales as OðN−1=2Þ and hence
vanishes in the limit N → ∞.
Combining Eqs. (F9), (F11), (F12), and (F14), we obtain

lim
N→∞

XN−1

i¼0

aðX̄ξ
i ÞΔXi ≡

Z
tf

0

�ξ dXtaðXtÞ ðF15Þ

¼
Z

tf

0

dXtaðXtÞ þ b2ξ
Z

tf

0

dta0ðXtÞ; ðF16Þ

where the last equality is the standard formula that
relates different definitions of the stochastic integral along
the solution of the Langevin equation to the Itô conven-
tion [1,46].
The second sum in Eq. (F7) yields

lim
N→∞

XN−1

i¼0

1

2b2
aðX̄ξ

i Þ2Δt ¼
1

2b2

Z
tf

0

dtaðXtÞ2: ðF17Þ

That the result is independent of ξ follows by Taylor
expanding aðX̄ξ

i Þ around Xi; cf. Eq. (F10). Similar to the
third sum in Eq. (F11), the sum on the left-hand side of
Eq. (F17) then depends on ξ only via terms that vanish in
the continuum limit N → ∞.
The continuum limit of the third sum in Eq. (F7) is

given by

lim
N→∞

XN−1

i¼0

a0ðX̄ξ
i Þ

2b2
½ð2ξ − 1ÞΔX2

i þ b2Δt�

¼ ξ

Z
tf

0

dta0ðXtÞ: ðF18Þ

To obtain this limit, we first note that

lim
N→∞

XN−1

i¼0

a0ðX̄ξ
i ÞΔt ¼

Z
tf

0

dta0ðXtÞ; ðF19Þ

which follows from the same arguments as used in
Eq. (F17). The other limiting sum in Eq. (F18) is given by

lim
N→∞

XN−1

i¼0

a0ðX̄ξ
i ÞΔX2

i ¼ b2
Z

tf

0

dta0ðXtÞ; ðF20Þ
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which follows from the same argument as used in Eq. (F14)
[2]. Upon substituting the two limits Eqs. (F19) and (F20)
into the left-hand side of Eq. (F18), the right-hand side of
the equation follows.
Finally substituting Eqs. (F9), (F17), and (F18) into

Eq. (F7), we obtain [46]

S½X� − Sð0Þ½B� ¼ −
1

b2

Z
tf

0

�ξ dXtaðXtÞ þ
1

2b2

Z
tf

0

dtaðXtÞ2

þ ξ

Z
tf

0

dta0ðXtÞ: ðF21Þ

While the symbol ξ appears explicitly in Eq. (F21), the
expression is in fact independent of ξ. The independence of
S½Xt� − S0½Bt� on ξ becomes apparent by transforming the
stochastic integral in the equation to the Itô convention via
Eq. (F16), which leads to

S½X� − Sð0Þ½B� ¼ −
1

b2

Z
tf

0

dXtaðXtÞ þ
1

2b2

Z
tf

0

dtaðXtÞ2:

ðF22Þ

From this manifestly ξ-independent expression, it is also
apparent that the limit Eq. (F8) is the Radon-Nikodym
derivative of the Langevin trajectory X with respect to its
corresponding noise realization B, as described by the
Girsanov formula [2,49,50].
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