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We present a statistical approximate solution of the bound, nonhierarchical three-body problem, and
extend it to a general analysis of encounters between hard binary systems and single stars. Any such
encounter terminates when one of the three stars is ejected to infinity, leaving behind a remnant binary; the
problem with binary-single-star scattering consists of finding the probability distribution of the orbital
parameters of the remnant binary as a function of the total energy and the total angular momentum. Here,
we model the encounter as a series of close, nonhierarchical, triple approaches, interspersed with
hierarchical phases, in which the system consists of an inner binary and a star that orbits it; this series of
approaches turns the evolution of the entire encounter to a random walk between consecutive hierarchical
phases. We use the solution of the bound, nonhierarchical three-body problem to find the walker’s
transition probabilities, which we generalize to situations in which tidal interactions are important. Besides
tides, any dissipative process may be incorporated into the random-walk model, as it is completely general.
Our approximate solution can reproduce the results of the extensive body of past numerical simulations and
can account for different environments and different dissipative effects. Therefore, this model can
effectively replace the need for direct few-body integrations for the study of binary-single encounters in any
environment. Furthermore, it allows for a simply inclusion of dissipative forces typically not accounted for
in full N-body integration schemes.
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I. INTRODUCTION

The three-body problem—that of the interaction of three
gravitating objects—is one of the oldest physical and
astrophysical problems, and has been studied for centuries;
solving it requires an understanding of the outcomes of
encounters between binary systems and single stars. Such
encounters play a key role in the evolution of binary
systems, both in dense environments such as globular or
nuclear clusters [1,2], and in the field [3,4]. These encoun-
ters can result in the formation of compact binaries and,
consequently, engender a plethora of physical phenomena,
ranging from mergers of stars and compact objects to the
production of electromagnetic and gravitational-wave tran-
sients, such as type-Ia supernovæ, short gamma-ray bursts,
etc. Currently, full numerical integrations of few-body
systems are required in order to characterize the results

of such interactions. However, the large number of such
few-body simulations needed for one cluster comes with a
significant computational cost; any change in the basic
aspects of the problem (e.g., different masses, binary
configuration, etc.) necessitates a new set of simulations;
and likewise, different environments (e.g., external, outer
potentials in clusters) require different sets of simulations
(and, in many cases, are not even consistently accounted
for). Moreover, realistic physical processes that may affect
the outcomes, such as dissipative forces (e.g., tidal inter-
actions or gravitational-wave dissipation) acting on the
interacting stars, are rarely incorporated into simulations of
the evolution of binary systems through binary-single
encounters. Finally, such simulations, by their very nature,
provide neither an explanation for their outcomes nor any
direct insight into them, and they are used, to some extent,
as black-box ingredients in simulations of large-scale
systems. Despite much progress in the analytical under-
standing of the problem, the full solution for the outcomes
of nonhierarchical three-body systems—and, in particular,
the general understanding of binary-single encounters and
their long-term end states under realistic conditions—
remains unsolved. Furthermore, analytically accounting
for dissipative aspects of this problem has not been done
previously, to the best of our knowledge.
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Here, we provide a full analytical, statistical model that
solves the nonhierarchical three-body problem in the limit
of encounters with hard binaries. We show how our
approach can account for the long-term evolution of a
nonhierarchical triple system and characterize it as it goes
through consecutive close binary-single encounters until
the system is destroyed. Our solution provides the detailed
cross section for the final outcomes, including both cases of
ejection of one of the components or the collision or merger
of two of the components, as well as, most importantly, the
characterization of the final remnant binary properties. Our
approach can also account for different spatial cutoffs due
to external perturbations. Last but not least, it can generally
account for dissipative forces—we exemplify its applica-
tion for dissipative tidal forces during binary-single
encounters. Thus, the use of our model, which is based
on a random-walk approach, can potentially replace the
need for direct integration of binary-single encounters and
provide a general, robust tool for understanding the out-
comes of binary-single encounters.
Binary-single encounters can generally be divided

between the cases of encounters with hard or soft binaries,
i.e., according to the ratio between the binary binding
energy and the kinetic energy of the incoming third star.
When the binary star is wide—when its binding energy is
considerably smaller than the typical kinetic energy of a
star in the host cluster, kBT (where T is proportional to the
squared velocity dispersion of the cluster), the encounter is
well described by a composition of two two-body inter-
actions [1,5,6]. In the case where the binary is “hard,” i.e.,
when its binding energy is much larger than kBT, an
analytical description of the encounter is more difficult. If
the encounter stays hierarchical, it may be treated by means
of perturbation theory [5], but if it does not, it becomes a so-
called “resonant encounter,” where there are phases when
all three bodies are close to each other, and the evolution is
inherently chaotic. One could still find some analytical
insight by investigating the phase-space evolution of a set
of various initial conditions during such a close encounter.
For example, it was shown in the early 20th century that if
the system starts as a binary and an unbound third star, then,
eventually, it will end up with at least one unbound star
(apart from a set of measure zero); see Arnold et al.
(Secs. 2.4 and 2.6 of Ref. [7]) for a review of this theorem
and related ones.
Here, we present an analytical, statistical model for

the evolution of such encounters with hard binaries. We
endeavour to derive a probability distribution function for
the possible end states. The initial binary is hard, so the
total energy of the system, E, must be negative, whence
an end state with three stars unbound is forbidden—the
set of all possible end states is therefore the set of all
possible final binary configurations, multiplied by the set of
configurations of the ejected star (which, of course, may
be a different star from the initial unbound one—see

Sec. III below). We derive a distribution function,
fbinðEbin;SjE; JÞ, for the resultant binary to have energy
Ebin and angular momentum S, given that the total energy is
E and that the total angular momentum is J.
Let m1, m2, and m3 denote the masses of the three stars,

which we take to be of similar magnitude, and let M ¼
m1 þm2 þm3 be the total mass. Further, let the subscript
“bin” denote any quantity related to the binary, such as its
total mass mbin, the reduced mass of its two components
μbin, etc. Likewise, let a subscript s denote quantities
pertaining to the ejected star, like μs ¼ msmbin=M. We
denote the total energy of the triple by E or sometimes by
E0, and its total angular momentum by J. More explicitly,
then, the problem we investigate is as follows: We consider
a single star with velocity v0 at infinity, which is scattered
on a hard binary, such that the total energy is E and the
total angular momentum is J. As the binary is hard,
E ≈ −Gmamb=ð2a0Þ, where a0 is the initial semimajor
axis of the binary, consisting, initially, of stars a and b. For
a given impact parameter b of the single star, relative to the
binary center of mass (as well as all the initial anomalies
of the binary), it is possible, in principle, to predict the
outcome of the encounter, i.e., the final values of Ebin, S,
and Es. However, because of the chaotic nature of the close
three-body interaction, doing so is impracticable. One
could study the problem either by performing numerical
simulations (see, e.g., Refs. [8–21]), or, statistically, using
various analytical approximations. Such analytical treat-
ments presuppose that the results of such numerical
scattering experiments may be treated as random variables,
drawn from some distribution; in effect, it reduces the
problem to finding that distribution. Numerical simulations
have shown that the encounter proceeds as a sequence of
many close triple approaches, after each of which a single
star is ejected [11,12,19]: If the star is still bound to the
other binary, it eventually returns, whereupon a new close
triple approach ensues, and so on, until the single star is
ejected to infinity with positive energy.
There are two dominant analytical approaches in the

literature (to our knowledge): One, initiated by Monaghan
in Ref. [22], relies on chaotic mixing during the close triple
approach to argue that the distribution is ergodic in the
relevant part of the system’s phase space. This approach
was refined later by various authors, e.g., Refs. [6,23–25],
to more accurately account for angular-momentum con-
servation, until Stone and Leigh [26] succeeded in doing so
fully, for the unbound case.
The other approach, which dates back to Heggie [5], was

to draw upon the principle of detailed balance to deduce
what the outcome distribution, fbinðEbin;SjE; JÞ, must be in
order for the number of bound triples formed by such
encounters to be fixed, in a cluster in thermal equilibrium
(see, e.g., Refs. [2,5,15]). In simulations, various authors
also attempted to account not only for the Newtonian
interaction of three point particles but also include other
physical effects, such as collisions [17,27], and, more
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recently, also gravitational-wave emission and tidal dis-
sipation [19,28]. The reader is referred to Chapters 7 and 8
of Ref. [6] for a review of some of the work on binary-
single scattering.
The contribution of this work to the understanding of

binary-single encounters is threefold: First, we present the
first (to our knowledge) closed-form statistical approximate
solution of the bound, nonhierarchical three-body problem
that takes both energy and angular-momentum conserva-
tion into account, which complements the solution of the
unbound case of Ref. [26]; using the results presented here,
one can compute the outcome distribution of each inter-
mediate close approach, not only of the final one. [29]
Second, we show how to derive the solution using both
detailed balance arguments and ergodic arguments, thereby
unifying the two approaches. That they give the same result
is hardly surprising since the principle of detailed balance is
essentially a statement about phase-space volumes. Third,
and most significantly, we elevate our solution of the bound
case to a random-walk model of the entire encounter, in
which the binary actions and the three-body conserved
quantities perform a random walk, whose transition prob-
abilities are related to fbinðEbin;SjE; JÞ. This random-walk
model is extremely general and can incorporate many
physical processes beyond the Newtonian gravitational
three-body interaction and in addition to it. Here, we
provide, as an example, the important case of dissipation
due to tidal forces, but our approach can be generalized to
any other type of additional perturbations and physical
processes, which will be done in future work.
The structure of this paper is as follows: We start with an

explicit calculation of fbinðEbin;SjE; JÞ using ergodic
arguments in Sec. II, while Sec. IV presents a computa-
tion of the same function using the principle of detailed
balance. In Secs. III and V, we discuss two marginal
distributions: the probability function of the ejected star’s
mass and the marginal energy distribution. Our paper
culminates in Sec. VI, where we present the random-walk
model in its full generality. In Sec. VII, we compare the
results of Secs. III and V to past numerical simulations, and
in Sec. VIII, we apply the random-walk model to tidal
dissipation while also comparing it with relevant simula-
tions. All of our results mesh well with the simulations.

II. CROSS SECTION VIA PHASE-SPACE
INTEGRATION

All the system’s phase space is divided into three parts:
one where the system is hierarchical but the outer body is
unbound; one where the system is still hierarchical but the
outer body is bound; and a chaotic region in which all three
bodies interact closely. Let us denote them by A, B, and C,
respectively. The latter is taken to be the collection of points
where the maximum relative separation between any one
body and the center of mass of the other two is no more
than some value R, which is defined below. Then, if chaos

is sufficiently strong to lead to phase-space mixing inside C,
the cross section of the outcome of a close approach is
simply an integral over C, as assumed in previous studies
[6,22–24,26,30]:

σ ¼
�Y3

i¼1

Z
C
d3rid3pi

�
δðE −HÞδ

�
J −

X3
j¼1

rj × pj

�

× δ

�
PCM −

X3
j¼1

pj

�
; ð1Þ

where rj and pj are the position vector and the momentum
of the jth particle,H is the Hamiltonian, and E, PCM, and J
are the total energy, momentum, and angular momentum,
respectively. This equation is equivalent to the statement
that the probability of the system exiting C through a point
w is actually independent of w; we give a heuristic
argument for this statement in the Appendix B.
One can calculate this integral by transforming to the

coordinate system of a binary and a lone star orbiting its
center of mass, which amounts to demanding that the
system becomes hierarchical when it leaves C; this require-
ment is what defines R below. Working in the center-of-
mass frame,

σ ¼
Z

d3rsd3psd3rbind3pbinδðE − Ebin − EsÞδðJ −L − SÞ;

ð2Þ

where Ebin ¼ −Gm1m2=2abin is the binary energy, and

Es ¼
jpsj2
2μs

−
Gðm1 þm2Þm3

jrs − rcm;binj
¼ �Gðm1 þm2Þm3

2as
; ð3Þ

where the sign is negative or positive when the system goes
into A or B, respectively. The spin of the binary is S, and
the angular momentum of the third body about the binary is
L. Below, the integral over the phase-space of the remain-
ing binary is shortened to

R
bin.

As there are three stars, with possibly different masses,
there are three distinct outcomes, depending on which of
the three bodies ends up being ejected. Since the original
binary was hard, the final binary must also be hard.
Formally, we weigh the binding energies between each
of the three pairs, and the one whose binding energy is
considerably lower (i.e., more negative) is the remaining
binary. Consequently, the total cross section splits into a
sum of three cross sections,

σ ¼ σ1 þ σ2 þ σ3; ð4Þ

where σi is the cross section for a breakup with star i
ejected as the lone star in the hierarchical system. This split
also naturally gives an infrared cutoff for Ebin, forcing it to
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be less than E=3, for if it were more, one of the other pairs
would actually be harder. Below, we calculate such a σi;
because all three are symmetric, we ignore this complica-
tion for now and return to it in Sec. III.

A. C in angle-action variables

Performing this integral in angle-action variables is the
best way to proceed [26], but first it is essential to
determine the integration region explicitly: In the initial
encounter, the third body must come close enough to the
binary such that its pericenter distance is of the same order
as R, which implies that

asð1 − esÞ≲ R for an elliptic orbit; or

asðes − 1Þ≲ R for a hyperbolic orbit: ð5Þ
Equation (5) needs to be supplemented by another con-
dition, which says that, while the system becomes hierar-
chical, the lone star’s apoapsis is sufficiently larger than R.
This condition is automatically verified for a hyperbolic
orbit (where the lone star escapes and the preceding close
encounter is the final one), but for an elliptic orbit (where
the lone star eventually returns), one must have

asð1þ esÞ ≳ ηR; ð6Þ

for η ≈ 5 (other values are acceptable, too).
Let us discuss how R is related to the binary parameters:

R is defined as the critical distance between the would-be
ejected star to the center of mass of the other two stars,
where the problem becomes hierarchical. Conversely, for a
hierarchical triple, one might write the Hamiltonian (in the
center-of-mass frame) as

H ¼ Ebin þ Es −
G
rs

X∞
n¼2

Mn
rnbin
rns

PnðcosΦÞ; ð7Þ

where

Mn ¼
m1m2m3ðmn−1

a − ð−mbÞn−1Þ
mn

bin
; ð8Þ

where ma and ma are the inner binary’s masses, rbin is
the distance between them, Φ is the angle between rbin
and rs, and Pn is the nth Legendre polynomial. We refer
the reader to Refs. [6,31] for details and for more references
on the hierarchical three-body problem. Now, the triple
ceases to be hierarchical if the multipole series becomes as
large as the leading-order term in the Hamiltonian, namely,
as big as the energy E ¼ Ebin þ Es. The leading term in
this series is the quadrupole (for nonextreme mass ratios).
Approximating r2binP2ðcosΦÞ ≈ a2bin, we find

R ≤ β

�
GμbinμsM
mbinjEj

�
1=3

a2=3bin ; ð9Þ

where β is a constant of order unity. If the masses are
unequal, this formula might lead to an overestimate since,
then, it is possible that an exchange of a light star with a
heavy star would yield R ≫ abin, in which case the problem
is still quite visibly hierarchical. To account for that, we
define R as

R ¼ βmin
��

GμbinμsM
mbinjEj

�
1=3

a2=3bin ; abin

�
; ð10Þ

where, again, β ≥ 1 is of order unity; the cross section σ
depends only weakly on β (cf. Ref. [26] for the unbound
case). In future work, we will explore the consequences of
the existence of this threshold for the stability of hierar-
chical triples. If the reader is concerned about the crude
approximation of the Legendre polynomial, we offer a
more refined one and test both in Appendix D, but we
recommend that it be read only after the next section.
Both conditions (5) and (6) may be translated into

conditions on the angular momentum L (they are, evi-
dently, independent of its direction). Using energy con-
servation, one may express Es in terms of Ebin, whence
conditions (5) and (6) may be written as L ≤ AðEbinÞ.
Let us start with the apoapsis condition: First, if ηR < as,
then this condition is fulfilled automatically. If not, it
simplifies to

L2 ≤ μ2sGMηR

�
2 −

ηR
as

�
: ð11Þ

As the left-hand side is non-negative, this implies that
ηR ≤ 2as. Therefore, as can either be more than ηR or more
than ηR=2, so, in both cases, more than ηR=2. Thus, one
has a restriction on the energy difference jE − Ebinj, viz.

jE − Ebinj ≤
Gmbinμs

ηR
: ð12Þ

The elliptic periapsis condition is satisfied trivially if
as < R, but if η > 2, this cannot be the case. Otherwise,
one has

L2 ≤ μ2sGMR

�
2 −

R
as

�
: ð13Þ

Which of conditions (11) and (13) is more stringent
depends on the masses, and on as. For the unbound,
hyperbolic case, the periapsis condition is equivalent to

L2 ≤ μ2sGMR

�
2þ R

as

�
; ð14Þ

note that, as a consequence of the plus sign inside the
brackets here, there is no restriction on as in this case, and it
may be as small as one wants.
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The function AðEbinÞ is therefore defined as

AðEbinÞ2 ¼ μ2sGMR

8<
:

min
n
2 − R

asðEbinÞ ; η
�
2 − ηR

asðEbinÞ
�o

if E < Ebin

2þ R
asðEbinÞ otherwise:

ð15Þ

The approximation made here—which includes a sep-
aration of phase space into the three regions A, B, and C,
and the different treatment of each—inadvertently induces
some uncertainty. We attempt to gauge it in Appendix C,
but we urge the reader to peruse Secs. III–V before turning
to this Appendix.

B. Cross-section calculation

Now, one may perform the integration in Eq. (2). The
goal is to find the final distribution of binary spin and

energy, of the remaining binary, after the system stops
being chaotic. Thus, one has to integrate over all of the lone
star’s phase space, as well as the angle variables of the
binary. First, though, note that there are two possibilities for
each encounter: either Es < 0, or Es > 0 after the encoun-
ter (Es ¼ 0 has zero measure). So, σ ¼ σbd þ σubd, where
each cross section pertains to each possible sign of Es [32].
Note that σubd has been calculated by Stone and Leigh [26].
They obtained

σubd ∝
Z

dEbindJadJb
jE − Ebinj3=2jEbinj3=2jJ − Sj

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

a2s
þ 2R

as
þ 1 − e2s

s
− arccosh

�
Rþ as
ases

�#
: ð16Þ

The other cross section, σbd, may be calculated using Delaunay variables for both the emergent binary and the binary
formed by the star and the inner binary. We do so below, which is meaningful given that the whole encounter proceeds as a
series of consecutive close approaches, each one having a cross section σbd. While this case is supported by numerical
simulations, as mentioned in the Introduction, we also give a heuristic argument for it in Appendix B. The single close
approaches are combined below in Sec. VI. The Delaunay variables are denoted by ðJa; Jb; Jc; θa; θb; θcÞ and are defined in,
e.g., Ref. [1].
Using a superscript or a subscript s to denote variables pertaining to the outer binary, we have

Lz ¼ Jsa; ð17Þ

Lx ¼ Jsb sin θ
s
a sin is; ð18Þ

Ly ¼ −Jsb cos θsa sin is; ð19Þ

which implies that the angular-momentum-conserving delta function is

δðJ − S −LÞ ¼ δðJx − Sx − Jsb sin θ
s
a sin isÞδðJy − Sy þ Jsb cos θ

s
a sin isÞδðJz − Sz − JsaÞ: ð20Þ

This equation, in turn, implies that the angular-momentum integral is independent of Jsc, modulo the integration domain
boundaries, which are

jJsaj ≤ Jsb; ð21Þ

0 ≤ Jsb ≤ minfAðEbinÞ; Jscg≡ α: ð22Þ

[Please note that, for the unbound case, α is defined simply as AðEbinÞ.] The ẑ-axis integral gives
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σbd ¼
Z
bin

Z
dJscdJsbdθ

s
adθsbdθ

s
cδðenergyÞ

× δ

 
Jx − Sx − Jsb sin θ

s
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðJz − SzÞ2
ðJsbÞ2

s !
δ

 
Jy − Sy þ Jsb cos θ

s
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðJz − SzÞ2
ðJsbÞ2

s !
: ð23Þ

As in Ref. [26], we perform a change of variables

�
Jsb
θsa

�
↦

�
z1
z2

�
¼

0
B@ sin θsa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJsbÞ2 − ðJz − SzÞ2

q
cos θsa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJsbÞ2 − ðJz − SzÞ2

q
1
CA: ð24Þ

The Jacobian of this transformation is

				 ∂ðθsa; JsbÞ∂ðz1; z2Þ
				 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 þ z22 þ ðJz − SzÞ2
p : ð25Þ

Integrating over z1, z2 yields

σbd ¼
Z
bin∩fjJ−Sj≤αg

Z
dJscdθscdθsb

δðE − Ebin þ G2M2μ3s
2ðJscÞ2 Þ

jJ − Sj : ð26Þ

The integral dθsb gives 2π, while the integral dθ
s
c—over the mean anomaly—gives a multiplicative factor of θmax, which is

the maximum mean anomaly the star may have and still stay in C. Condition (5) implies that θsc ¼ 0 is in C, while condition
(6) implies that θsc ¼ π is no longer in C. Thus, θmax restricts jrsj to jrsj ≤ R, such that the integration is carried out in C. The
last lone-star integration over Jsc may now be performed to remove the last delta function and give

σbd ¼
2πGMμ3=2sffiffiffi

8
p

Z
bin∩fjJ−Sj≤αg

θmax

jJ − SjjE0 − Ebinj3=2
; ð27Þ

where

θmax ¼ arccos

�
as − R
esas

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R
as

−
R2

a2s
− 1þ e2s

s
: ð28Þ

One may perform the integration over the binary angles trivially to give an additional factor of ð2πÞ3, which yields a cross
section

σbd ¼
ð2πÞ4GMμ3=2sffiffiffi

8
p

Z
θmaxdJcdJbdJa

jJ − SjjE0 − Ebinj3=2
: ð29Þ

Taking the ẑ axis in this integral to be along J implies that the integration domain is

ðJa; JbÞ ∈ fðJa; JbÞ∶0 ≤ J2 þ J2b − 2JJa ≤ α2g ∩ fjJaj ≤ Jbg;
Jc ∈ fE ≤ EbinðJcÞ ≤ Eming; ð30Þ

where Emin is some minimum cutoff on the binary energy. This form is the same as that of σubd of Ref. [26], which implies
that

σ ¼ ð2πÞ4GMμ3=2sffiffiffi
8

p
Z

θmaxdJcdJbdJa
jJ − SjjE0 − Ebinj3=2

; ð31Þ
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where now the integration domain is

ðJa; JbÞ ∈ Ω≡ fðJa; JbÞ∶0 ≤ J2 þ J2b − 2JJa ≤ α2g ∩ fjJaj ≤ Jbg

Jc ∈
�
EbinðJcÞ ≤

E
3

�
; ð32Þ

and θmax is defined by Eq. (28) for the bound case and by Eq. (16) for the unbound case. Equation (31), together with
Eqs. (32), specify the probability that the resultant binary has Delaunay actions Ja, Jb, Jc, given conserved quantities E, J—
their probability density function is simply the integrand in Eq. (31). It might be more useful to express Eq. (31) in terms of
Ebin, rather than Jc; the Jacobian for this transformation is simply ∝ E−3=2

bin , which gives a distribution function for the
outcome of one binary-single close approach,

fbinðEbin;SjE; JÞ ∝
E−3=2
bin

jJ − SjjE0 − Ebinj3=2
θmaxðEbin; E0; J − SÞ: ð33Þ

III. DIFFERENT MASSES

In fact, Eq. (33) is proportional to the probability that a star s ∈ f1; 2; 3g escapes, leaving a binary with energy Ebin and
spin S. What remains is the coefficient, which depends on the masses, as in Eq. (31). Therefore, the probability density that
star s is ejected after a close interaction and that the remaining binary has energy Ebin and spin S is

fbinðEbin;S; sjE; JÞ ¼ NðsÞðμsμbinÞ3=2
mbinE

−3=2
bin

jJ − SjjE0 − Ebinj3=2
θmaxðEbin; E0; J − SÞ; ð34Þ

where NðsÞ is a normalization constant, which depends on s through the integration over Eq. (32). To obtain this constant,
one should change the integrands in σ to ones that are independent of the masses, i.e., from ðJa; Jb; JcÞ in Eq. (31) to
semimajor axes, eccentricities, and inclinations. The lone star’s angular momentum and energy simply contribute a factor of
μ−5=2s , and the measure contributes an additional factor of μ3binm

3=2
bin . Thus, up to dimensionless quantities,

NðsÞμ3=2s ∝
μ3binm

3=2
bin

μs
; ð35Þ

where, now, the proportionality constant is independent of the identity of the ejected star (but may still depend on the total
mass or on conserved quantities). One immediate prediction of Eq. (35) is that, if one of the masses is much smaller than the
other two, then the probability that each close interaction ends with the lighter one being shot out, rather than one of the
others, dominates. By dimensional analysis, the probability that mass m escapes is therefore

PðmÞ ≈ m4
am4

b

ðma þmbÞ5=2
h
m4

a

�
m4

b

ðmaþmbÞ5=2 þ
m4

ðmaþmÞ5=2
�
þ m4m4

b

ðmbþmÞ5=2
i : ð36Þ

We emphasize that Eq. (36) is an approximation, and for
accurate results, one should integrate Eq. (34) over remnant
binary energies or angular momenta or the marginal energy
distribution, Eq. (48) below, over the allowed energies [33].
One can also compute the exchange cross section, givenby

σðexchangeÞ ¼ σtot × PðexchangeÞ

¼ 2πGMa0
v20

PðexchangeÞ; ð37Þ

as the total cross section is, of course,

σtot ¼
2πGMa0

v20
; ð38Þ

where a0 is the initial binary semimajor axis, and v0 is the
perturber’s initial velocity (see, e.g., Heggie and Hut [2]).

IV. DETAILED BALANCE

Let us try to obtain Eq. (31) by an easier means. One
might, for instance, assume that the triple is part of a globular
cluster that is in thermal equilibrium and that contains
binaries, single stars, and triples. Of course, the desired
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cross section σ does not depend on whether there exists
such a cluster or onwhether this hypothetical cluster is indeed
in thermal equilibrium. Making those auxiliary assump-
tions would simplify the calculation because then we could
use the principle of detailed balance (cf. Refs. [2,5,15]).
If the cluster is in thermal equilibrium, then the numbers

of binaries with energy Ebin and stars with energy Es must
be constant. This number density is proportional (in the
canonical ensemble, neglecting collisions and stellar evo-
lution) to expð−β�HÞ, where β� ¼ 1=ðkBTÞ. Thus, one
may deduce that the rates at which encounters between
stars and binaries transfer these systems from one energy to
another, and those of the reverse process, have to be equal.
This is the principle of detailed balance.

Let ΓðEbin;S;p → E0; JÞdE0dJdEbindJadJb be the
differential rate at which binaries and single stars
combine to form bound triples with energy E0 and
total angular momentum J, and likewise, let ΓðE0; J →
Ebin;SÞdE0dJdEbindJadJb be the rate of disintegration of
such triples. Let ntripleðE0; JÞ denote the number density
of such triples, and let nbinðEbin;SÞ and nðp3Þ denote the
phase-space densities of binaries and single stars,
respectively. Detailed balance amounts to the require-
ment that the number of bound triples remain constants,
i.e., that the rate of the forward and backward reactions,
weighed by the relevant densities, cancel each other out.
Symbolically, in barycentric coordinates,

ntripleðE0; JÞΓðE0; J → Ebin;SÞ ¼
Z

d3Rcmd3Pd3pδðRcmÞδðpbin þ p3Þ × nðp3ÞnbinðEbin;SÞΓðEbin;S;p → E0; JÞ; ð39Þ

where p is the momentum of the relative motion between the third star and the binary center of mass. (See, e.g., Ref. [15] for
a derivation of a similar expression for the reaction rate.)
The advantage of Eq. (39) is that the rate of formation of bound triples may be simpler to compute; one could

approximate it as

nbinðEbin;SÞΓðEbin;S → E0; JÞ ¼
Z

d3pnðp3ÞnbinðEbin;SÞΓðEbin;S;p → E0; JÞ

¼
Z

d3p
Z Z

DðvÞ
d2bvδðE0 − Ebin − EsÞδðJ − S − μsbvϕ̂Þnðp3ÞnbinðEbin;SÞ; ð40Þ

whereDðvÞ is a disc in the x̂-ŷ plane at infinity, with radius
abin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðGM=μsv2abinÞ

p
(see, e.g., Ref. [15]). [34]

The direction of the ẑ axis is chosen so that it points
along v (which is assumed not to be away from the
binary, for then there would be no encounter). The integral
over b, including the angular-momentum delta function,
gives

δðθJ−S − π=2Þ ×
� 1

μ2sv2jJ−Sj if ðJ − SÞ2 < A2

0 otherwise:
ð41Þ

The remaining delta function should not really be there—it
is just a mathematical artifact, which came from the way
we defined the axes, so it is safe to omit it. Alternatively,
one could justify its omission by integrating over all
possible orientations of the axes: This delta function then
picks out the orientation where the ẑ axis is perpendicular
to J − S; such an integration is, in turn, justified by the
fact that a choice of axis is meaningful only for the right-
hand side of Eq. (39) and not for the left-hand side. The
factor of jJ − Sj in the denominator comes from expressing
the angular-momentum delta function in spherical coor-
dinates, which turns the three-dimensional Dirac delta
function δðJ − S −LÞ (recall that μsbvϕ̂ ¼ L) into a

product of three 1D delta functions—one for the magni-
tudes of J − S and L, one for one angle, and one for the
other angle—divided by the appropriate Jacobian
jLj2 sin θJ−S. Since the other delta function sets
θ ¼ π=2, we are left with jLj2 in the denominator, and
in the numerator, two angular delta functions are multiplied
by δðjJ − Sj − jLjÞ. We now perform the integral d2b in
polar coordinates b and φ, by writing jLj ¼ μsbv and
changing variables from jLj to b. As d2b ¼ bdbdφ, one b
cancels one power of jLj from the denominator, and the
integral db removes the absolute-value delta function,
replacing the other jLj with jJ − Sj. The integration dφ
removes one of the angular delta functions, and the second
one is removed as explained above.
The density nðp3Þ is a Maxwell-Boltzmann distribution,

which is proportional to ρm−3=2
3 expð−β�EsÞ. After perform-

ing the integral over p ¼ μsv, keeping track of the energy-
conserving delta function, one has ΓðEbin;S → E0; JÞ ∝
ðμ3sm−3=2

3 =μ3s jJ − SjÞeβ�ðEbin−E0Þ. Heggie [5] gives a formula
for the density of binaries with energy Ebin, eccentricity e,
and inclination i (see Eq. 2.12 in Ref. [5][]), from which the
phase-space density nbinðEbin;SÞ is determined to be

∝ ρ2ðm1m2Þ−3=2μ3=2binmbine−β
�EbinE−3=2

bin . Hence, by detailed
balance,
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ΓðE0; J → Ebin;SÞ ∼
ρ3e−β

�E0ðm1m2m3Þ−3=2mbinμ
3=2
bin

ntripleðE0; JÞE3=2
bin jJ − Sj

;

ð42Þ
provided that the condition ðJ − SÞ2 < α2 is obtained.
How is this rate related to fbinðEbin;SjE0; JÞ? By

definition, it is the number of disintegrations per unit time;
i.e., it is the number of triples in which star s is between θsc
and θsc þΩs

cdt, divided by dt, where θsc ∈ ½0; θmax�. In other
words,

ΓðE0; J → Ebin;SÞ ∝ Ωs
c
dfbinðEbin;SjE0; JÞ

dθsc
; ð43Þ

on the one hand, and on the other hand, we have Eq. (42).
Together, these imply that, upon division, by the lone star’s
orbital frequency Ωs

c ∝ jEsj3=2=ðMμ3=2s Þ and integration
over θsc,

fbinðEbin;SjE0; JÞ ∝
� mbinθmaxjJ−Sj−1

jEsj3=2jEbinj3=2 if jJ − Sj ≤ α

0 otherwise
ð44Þ

up to a function symmetric in all the particle masses, as in
Eq. (33). (The expressions μsμbin, m1m2m3, and M are all
such symmetric functions.)

V. MARGINAL ENERGY DISTRIBUTION

Let us compute the marginal energy distribution

fbinðEbinjE; JÞ ¼
Z
Ω
dJadJbfbinðEbin;SjE; JÞ: ð45Þ

For this purpose, let

IðαÞ ¼
Z
Ω

dJbdJa
jJ − Sj

θmax

θmaxðes ¼ 1Þ ; ð46Þ

where I is the integral one must evaluate. The calculation is
performed in Appendix A, and the outcome is that I is well
approximated by a power law, proportional to E−1=2

bin for low
J, but to E−1

bin for large values of J.
A consequence of Sec. II A [inequality (12)] is that for

Ebin > E0—i.e., in the bound case—the final binary energy
is constrained to lie close to the total energy. In this
neighborhood, θmax ∼ jE − Ebinj3=2, which cancels the
existing jE − Ebinj−3=2. Outside this region, θmax is approx-
imately constant; thus, one may remove its eccentricity
dependence by approximating es ≈ 1, writing

θmax ≈ θapðEbinÞ≡
8<
:

arccos ð1 − R
as
Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 R
as
− R2

a2s

q
bound caseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 R
as
þ R2

a2s

q
− arccoshð1þ R

as
Þ unbound:

ð47Þ

This implies that the marginal energy distribution is

fbinðEbinjE; JÞ ∝ mbin

8<
:

I ½αðEbinÞ�θapðEbinÞ
jEbinj3=2jE−Ebinj3=2 if Ebin > E; jE − Ebinj ≤ Gmbinμs

ηR

I ½AðEbinÞ�θapðEbinÞ
jEbinj3=2jE−Ebinj3=2 Ebin ≤ E:

ð48Þ

VI. RANDOM-WALK DESCRIPTION

We have now reached the point where we may introduce
a random-walk description of the evolution between con-
secutive close triple approaches. Suppose that during each
close approach, the constants of motion ðE; JÞ might
change by some amount, according to some probability
distribution, which depends on the state of the system at the
beginning of the close approach (i.e., at the end of the
previous one) because of some additional astrophysical
process. We denote this distribution by fcðEk; JkjEk−1

bin ;
Ek−1;Sk−1; Jk−1Þ, where Ej, etc., denote quantities at the
end of the jth close approach. A definition of such an addi-
tional astrophysical process one would like to incorporate

in the study of binary-single encounters therefore
amounts to providing fc. Otherwise, fc ¼ δðEk − Ek−1Þ×
δðJk − Jk−1Þ, by default.
The total energy E, the total angular momentum J, the

spin S, and the binary energy Ebin thus perform a random
walk, where the probabilities for the jth value are dictated
by the values of these quantities at the j − 1th step—this
random walk has a one-step memory. For example, this
process may describe a tidal interaction between two stars
during the encounter (see Sec. VIII below).
The beauty of this description is that now one can use it to

find the ultimate binary parameter distribution PðEbin;SÞ,
when the single star leaves, never to return. Let x ¼
ðEbin; E;S; JÞ, and let hðxjx0Þ denote the probability of the
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walker (i.e., the binaryþ single) moving from x0 to x in one
step—that is, the probability that it started the close approach
at x0 and left it at x. Explicitly,

hðxjx0Þ ¼ fbinðEbin;SjE; JÞfcðE; JjE0; E0
bin;S

0; J0Þ: ð49Þ

The ultimate reason we spent so much effort above
computing fbin for the bound three-body problem is
precisely so that we would know what hðxjx0Þ looks like.
The mixing hypothesis ensures that the functional form of
the way h depends on the Ebin;S components of x is only
through fbin as calculated in Sec. II. In particular, it also

allows us to account for spatial cutoffs; e.g., in a dense
cluster environment, an ejected but still bound third star,
which would have otherwise eventually fallen back into C,
would now be met with an external perturbation by other
stars, if its separation became comparable to the distance
between stars in the cluster. In other words, the environment
could potentially dictate an effective binding energy limit,
which would be different from the clean case of an isolated
interacting triple. Our model can easily incorporate this
aspect.
Let us also introduce the following linear, integral

operators, acting on a function φðxÞ:

ðWlimφÞðxÞ ¼
Z
fE0

bin≥E
0g
dx0hðxjx0Þφðx0Þ; ð50Þ

ðWunlimφÞðxÞ ¼
Z
fE0

bin<E0g
dx0hðxjx0Þφðx0Þ: ð51Þ

The first describes an encounter that ends with the third star bound, and the second is the final encounter. Suppose we start
with the initial probability

piðxÞ ¼ NfbinðEbin;SjE0; J0ÞδðE − E0ÞδðJ − J0Þ; ð52Þ

where E0 is the initial total energy and J0 is the initial total angular momentum. Now,

WlimðpiÞ ¼ NfbinðEbinjE; JÞ
Z

dE0d3J0dE0
bind

2S0fbinðE0
bin;S

0jE0; J0ÞδðE0 − E0ÞδðJ0 − J0ÞfcðE; Jjx0Þ ð53Þ

¼ NfbinðEbinjE; JÞ
Z

dE0
bind

2S0fbinðE0
bin;S

0jE0; J0ÞfcðE; JjE0; E0
bin;S

0; J0Þ: ð54Þ

This result means that the only dependence on Ebin;S is outside the integral, inside an fbin—just as in Eq. (52). Insofar as
the binary actions are concerned, the action of Wlim does not alter the functional form of the probability distribution.
Now, suppose that fc may be expanded as a sum of changes in energy and angular momentum, relative to E0, J0, whose

probabilities depend on the previous round:

fcðE; JjE0; E0
bin;S

0; J0Þ ¼
Z

dλd3χδ½E − ðE0 − λÞ�δ½J − ðJ0 − χÞ�pEðλ; χjE0
bin;S

0; E0; J0Þ ð55Þ

(this is the law of total probability in disguise); if this is the case, then

WlimðpiÞ ¼ NfbinðEbin;SjE; JÞ
Z

dλd3χp̃Eðλ; χ;E0; J0Þδ½E − ðE0 − λÞ�δ½J − ðJ0 − χÞ�; ð56Þ

where we have defined

p̃Eðλ; χ;E0; J0Þ ¼
Z

dE0
bind

2S0pEðλ; χjE0
bin;S

0; E0; J0Þ:

ð57Þ
Equation (56) implies that one encounter—if the initial
probability distribution is some constant time fbin and a
total-energy–total-angular-momentum delta function—
turns this form into a sum of terms of similar structure.

This fact helps us find the final distribution of binary
energies and spins, when tidal interactions are taken into
account, as we do below.
Using the particularly special form of the action of Wlim

on pi (the action of Wunlim is quite similar), we may
determine the final distribution in terms of the initial total
energy and angular momentum. This is done in a pertur-
bative manner, assuming that the probability of a nonzero
change in these quantities is small. [35] Let Pnðxjx0Þ be the
probability that the full close interaction ends after exactly
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n steps, at x, given that it started out initially at x0. By the
properties of random walks (see, e.g., Hughes [36]),

PnðxÞ ¼
Z

dx1…dxn−1hðxjxn−1Þ ·… · hðx1jx0Þpiðx0Þ;

ð58Þ

integrated over

fEk
bin ≥ Ekgn−1k¼1: ð59Þ

Therefore, Pn is given by Wunlim acting once after n − 1
actions of Wlim, on pi. The final probability is

PðxÞ ¼
X∞
n¼0

PnðxÞ: ð60Þ

Equation (60) is the ultimate distribution of binary param-
eters, after a complete binary-single encounter, incorporat-
ing the physical process described by fc, in addition to the
classical three-body dynamics. We apply this formalism to
include the effects of tides and collisions in Sec. VIII.
Equation (60) implies that if the conserved quantities do
not change, then PðxÞ is just fbin, and the entire process is
rendered memoryless. We now compare the theoretical
predictions made in this paper with results of numerical
simulations.

VII. COMPARISON WITH SIMULATIONS—
MARGINAL DISTRIBUTIONS

Let us start by comparing some marginal distributions of
fbin to numerical simulations, before testing the full
random-walk model in Sec. VIII. All numerical integra-
tions in this paper were done using MATLAB’s integral
functions.
We start by testing the ejected mass probability, which is

given by Eq. (36), to two simulations, by Saslaw et al. [8]

and by Hills [14], in Fig. 1. Please bear in mind that
when the perturbing star’s mass is much larger than
the initial binary members’ masses, a0 in Eq. (37)
needs to be modified by another multiplicative factor of
½M=ðma þmbÞ�1=3, due to an increased effective total cross
section, which is what we show in the right panel of Fig. 1.
We also test the predictions of our model by comparing

them to the simulation results of Ref. [37], which calculated
exchange cross sections for a wide range of masses. In
Fig. 2, we plot the predictions obtained by integrating
Eq. (48) over the allowed range, as well as those of the
approximate equation (36), and those of Appendix A of
Ref. [25], for the following situation: The initial binary
consists of masses m1 ¼ 1 M⊙ and m2, and the incoming
star has mass m3 ¼ m1; we plot the branching ration,
defined by BR ¼ ½σexchð1Þ=σexchð2Þ�, i.e., by the ratio of the
exchange cross section for ejecting star 1 and that of
ejecting star 2. [38] Reference [37] provides an analytical
fit, which is also plotted, as well as data from Ref. [17], for
comparison. This fit is based on the entirety of the
numerical simulations in Ref. [37], which cover an exten-
sive range of mass ratios. The data from Ref. [37] in this
figure are for resonant cross sections, while the fit is, to our
understanding, for the total one, which is dominated by the
resonant cross section everywhere, especially for large
mass ratios.
As one is concerned with exchange cross sections, they

decay to zero at sufficiently large impact parameters. The
impact parameter serves only to determine the total angular
momentum, and as the exchange cross section tends to zero
as J → ∞, one can integrate equivalently over J. There is a
natural cutoff J�, which is the maximum angular momen-
tum for which I does not vanish (for any Ebin), minimized
over all ejected masses. Above J�, there is no configuration
in which the triple could have been in a nonhierarchical
phase before separating (cf. Sec. VIII C below). The reader
should bear in mind that if m2 is considerably larger than
m1, then BR ≫ 1 since there is a much higher probability

FIG. 1. Left: probability that a star of mass m escapes, where ma ¼ mb ¼ 1 M⊙, compared with data from Ref. [8]. Right: exchange
cross section, in units of the geometric cross section, πa20, for binary masses equal to 1 M⊙, and third star mass m, which arrives with
initial velocity v ¼ 0.001vorb, compared with data from Ref. [14].
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to eject the light particle; likewise, for m2 ≪ m1; m3, BR
should decay to zero. All theoretical predictions plotted in
Fig. 2 satisfy these limits, but only the exact prediction of
Eq. (48) meshes well with the data and with the semi-
analytical fit.
Next, we show the semimajor axis distribution.

Reference [26] already obtained a good agreement between
numerical simulations and the unbound cross section,
which has a form similar to Eq. (31). To check whether
the bound one is also correct, we compare fbin to the
numerical results of Sigurdsson and Phinney [17], who
imposed an energy cutoff on the ejected star. As mentioned
above, in that work, even some encounters with the lone
star ejected with negative energy were deemed to be
concluded, if its semimajor axis was large enough. This
result was meant to mimic the environmental effect of the
globular cluster, where the triple resides. Clearly, once a
single star is sufficiently far from the binary, it feels the
cluster’s potential more strongly and ceases to be bound to
the binary, even if its energy is negative. This environ-
mental cutoff implies that one has to use both σbd and σubd
to match the numerical results of Ref. [17].
We do so by modifying the marginal energy distribution

in Eq. (48) to account for the external cutoff criterion.
Explicitly, Sigurdsson and Phinney [17] took a cutoff of
asð1þ esÞ ¼ 960a0, where a0 is the initial semimajor axis

of the binary. When the apoapsis was larger than this value,
they considered the third body to be unbound from the
binary. This may be incorporated into fbin simply by modi-
fying the apoapsis criterion in Eq. (5) accordingly. The
result is compared with their simulation results in Fig. 3.
As one can tell from Figs. 1–3, the function fbin

calculated above agrees well with simulation results. We
now proceed to test the random-walk model in more detail
in the next section.

FIG. 3. Comparison between Eq. (48) and the numerical simu-
lations of Sigurdsson and Phinney [see Fig. 2(b) in Ref. [17] ].
The initial semimajor axis is a0 ¼ 0.1 AU, and the initial
eccentricity is e0¼0; the initial binary masses are m1¼1.4M⊙,
m2 ¼ 0.56 M⊙, and the incoming third star’s mass is m3 ¼
1.4 M⊙. Its initial velocity v0 is uniformly distributed between
0.05vc and 0.15vc, where vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMμbin=ðm3a0Þ

p
. The impact

parameter is uniformly distributed in a disc Dðv0Þ at infinity,
whose radius is bmaxðv0Þ ¼ a0½4vc=v0 þ 0.6ð1þ e0Þ�. All these
parameters were chosen to match those of Ref. [17]. We use
β ¼ 1.5, but the results are insensitive to β. The straight line
and the data marked by blue bars pertain to the exchange
ð1; 2Þ þ ð3Þ → ð1Þ þ ð2; 3Þ, while the dashed-dotted line and
the data marked by purple bars are for the process ð1; 2Þ þ
ð3Þ → ð1; 3Þ þ ð2Þ, where the lighter star is ejected. Error bars
correspond to 3σ statistical (Poisson) errors, arising from a total
integration number of 4000 (see Fig. 9 in Ref. [17]). As expected
by Sigurdsson and Phinney [17], the cutoff at large values of a is
faster than exponential, occurring almost instantaneously. Data
for flybys is not shown here, as in Sigurdsson and Phinney [17], it
is dominated by adiabatic flybys, and the effect of resonant
scattering is hard to disentangle from it (Observe that as the
masses are different, the factor of mbin in Eq. (31) must be
incorporated as well. Thus, the normalization of Eq. (48) is the
sum, over all three possible final states, of the integrals of
fbinðEbinjE; JÞ over Ebin. Also note that the graphs shown here are
normalized such that the cross sections (integrated over a) match
the values of Sigurdsson and Phinney (see Table 3B in Ref. [17]).
This is necessary, as the total cross section we calculate only takes
close encounters into account, while the total cross section of
Sigurdsson and Phinney [17] also includes weak interactions).

FIG. 2. Predictions of Eq. (36) (sea blue, dash-dotted line),
Eq. (48) (red), integrated over the relevant range, and Eq. (A.16)
of Kol [25] (green dashed line), compared with the semianalytical
fit of Heggie et al. [37] (blue, dotted with crosses) and numerical
simulation data from Heggie et al. [37] (black circles) and
Sigurdsson and Phinney [17] (purple asterisks). The initial binary
masses are m1 ¼ 1 M⊙ and m2, and the incoming star’s mass,
m3 ¼ m1. Its velocity is v0 ¼ 0.1vc (where vc is defined in the
caption of Fig. 3) to ensure that the binary is hard. The y axis
shows the branching ratio of the cross section for ejecting m1

relative to the cross section for ejecting m2. There is excellent
agreement with Eq. (48).
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VIII. COMPARISON WITH
SIMULATIONS—TIDES

To test the random-walk model described in Sec. VI, we
assume that dissipation is caused by tides, and we compare
with the extensive three-body simulations conducted by
Samsing et al. [28], which include both tidal forces and
relativistic corrections. They investigated many cases, but
we choose the equal mass case m ¼ 1.2 M⊙; the initial
binary is comprised of a white dwarf and a compact object
(i.e., point particle), and the incoming lone star is also a
point particle. The white dwarf’s radius is r� ¼ 0.006R⊙.
The initial orbital separation is a0, and the initial speed of
the third body is v0 ¼ 10 km s−1. Its origin is sampled
uniformly from a disc Dðv0Þ whose radius is [19]

bmax ¼
a0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4GM

a0v20

s
: ð61Þ

Before proceeding, let us note that Eq. (56), together
with the form of fbin, suffices to explain the main features
of numerical simulations; inserting Eq. (56) into Eq. (60)
implies that

PðxÞ ¼ fbinðEbin;SjE; JÞ
Z

dλ̃ p̃ðλ̃jE0Þδ½E − ðE0 − λ̃Þ�;

ð62Þ

where the upper ∼ signs indicate that the energy shifts and
their associated probabilities may be different from those
obtained in a single action of Wlim, but the structure is still
the same. The final energy is “traced out,” while the initial
total energy is fixed.
Below, we start by describing the tidal model we adopt in

this paper; next, we compute PðxÞ perturbatively; and then,
we compute the cross section for a collision and a tidal
inspiral. The latter event is an inspiral of two stars into one
another due to orbital energy loss to tides. We back our
analysis up by comparing its results to the numerical
simulations of Ref. [28].

A. Tidal model

We adopt the tidal model of Ref. [39]. We further deem
any energy that goes into the tidal oscillations of the white
dwarf as lost from the system (that is, the timescale on
which it might return to orbital energy is much larger than
the relevant dynamical timescales), and we approximate the
total angular momentum as fixed. [40] We take a tidal
dissipation event in a single close approach to occur with
probability

ptideðabin; yÞ ¼
12a0yr�
a2bin

; ð63Þ

where 1 < y is a free parameter, which describes, roughly,
the maximum separation between two bodies that would
engender sizable tidal effects. Equation (64) is strictly
correct in the limit where yr� ≪ abin [27], which is the limit
we consider here; at larger yr�, it has to be modified
[17,27]. It originates from the following reasoning: Let
u < y. For ur� ≪ abin, the cross section for star 1 (which
we choose to be the white dwarf) to come within a dis-
tance ur� of one of the other two stars is approximately
described by a two-body interaction with either one of
them. Gravitational focusing thus implies that the cross
section for this event is 4πGmur�=v2, where v2 is the
“initial” velocity of star 1. As the tidal interaction occurs
during the chaotic three-body-close-interaction phase, v
should be, roughly, given by the virial speed, multiplied byffiffiffi
2

p
because it is a relative velocity, i.e., v2 ≈ 4

3
ðjEj=mÞ,

with E ≈ −ðGm2=2a0Þ, since the original binary was hard.
The cross section should be divided by the total area
available for star 1, which is approximately πR2, and
multiplied by 2 to account for the two possible partners
2 and 3. Thus,

ptideðabin; uÞ ¼ 2 ×
4πGmur�

πR2

3a0
2Gm

¼ 12a0ur�
R2

; ð64Þ

as in Eq. (63). Therefore, ptideðabin; uÞ is the probability of
star 1 coming within ur� from star 2 or star 3. The
probability density function is

dptide

du
¼
� 12a0r�

R2 if 0 < u < R2

12a0r�

0 otherwise:
ð65Þ

If such an event does occur [i.e., if star 1 arrives at ðuþ
duÞr� from either of its companions, but not below ur�], the
energy loss is given by [see Ref. [39], with T2ðxÞ ∼ x8=3]

ΔEðuÞ ¼ −2.995
Gm2

r�
u−10: ð66Þ

To gauge the error on our computations, we also use the
simpler model of Ref. [42], in which

ΔEðuÞ ¼ −
Gm2

r�
u−6: ð67Þ

Needless to say, the technique described in Sec. VI applies
to more sophisticated tidal models, too.

B. Perturbative calculation of PðxÞ
Let us define the following functions of the total triple

energy E (and, albeit suppressed, total angular momentum
J), for an initial total energy Ei (please bear in mind
that ΔE < 0):
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pðE; uÞfbinðEbin;SjE; JÞδfE − ½Ei þ ΔEðuÞ�g ¼
Z
fE0

bin≥E
0g
dx0hðxjx0Þ dptideðE0

binÞ
du

; ð68Þ

qðEÞfbinðEbin;SjE; JÞδðE − EiÞ ¼
Z
fE0

bin≥E
0g
dx0hðxjx0Þ½1 − ptideðE0

b; yÞ�: ð69Þ

Suppose that r� ≪ abin. Then, ptide ≪ 1, and most of the steps conserve the total binary energy. Then, one can view this
process as two randomwalks—a “small-scale” randomwalk in Ebin, and a larger-scale one in E, on top of it—and derive the
equation perturbatively. What this means is that, in expanding Pn, one may truncate the series at some small power of
ε ¼ ðr�jEij=GMμsÞ, where Ei is the initial total energy. Such a truncation corresponds to resumming the series of PðxÞ, as a
series in powers of ε. Suppose one stops at first order; then,

PnðEbin; EjEb;i; EiÞ ¼
Z

y

0

du

�
Wunlim



fðEbinjEÞ

�
δðE − EiÞ

qtideða0Þ
y

qðEiÞn−1

þ δ½E − Ei þ ΔEðuÞ�
Xn−1
k¼1

qtideða0ÞqðEiÞk−2pðEi; uÞq½Ei − ΔEðuÞ�n−k

þ δ½E − Ei þ ΔEðuÞ� dptideða0; uÞ
du

q½Ei − ΔEðuÞ�n−1
���

: ð70Þ

The first line in this equation corresponds to the occurrence of no tidal interactions, the last to a tidal interaction in the very
first close approach, and the second to a tidal interaction in another close approach.
The sum over k is a geometric sum and may be computed analytically. Then, using Eq. (60) (summing from n ¼ 1, as we

assume that the first, initial close approach always happens), one may sum over n analytically, too (this sum may be
exchanged with the action ofWunlim by its linearity). Then, one may act withWunlim to find that the probability distribution
for the final binary energy reads

PðEb;S; EjEi; JÞ ∝ fbinðEb;SjE; JÞ

×

�
qtideða0ÞδðE − EiÞ

1 − qðEiÞ
þ
Z

y

0

du
δ½E − Ei þ ΔEðuÞ�
1 − q½Ei − ΔEðuÞ�



qtideða0ÞpðEi; uÞ

1 − qðEiÞ
þ dptideða0; uÞ

du

��
ð71Þ

up to an overall normalization and Oðε2Þ corrections.

C. Inspiral cross section

Samsing et al. [28] define the result of an encounter to be
deemed an inspiral if abin ≤ 6r� and if a collision has not
occurred. Therefore, the final possible outcomes are as
follows: a collision, an inspiral, an exchange, or a flyby.
The exchange or flyby cross section may be computed by
including a Heaviside function in p; q; pu; qu, which
ensures that there is no collision and no inspiral. The
inspiral or collision cross section is simply the total cross
section minus the exchange or flyby cross section.
There is another possible outcome: If ΔEðuÞ is large

enough relative to Ei, then for large enough J, upon losing
energy to tides, there is too much angular momentum for
the triple system to interact closely again, which results in
none of the conditions in Sec. II A being satisfied. Denote
the minimum J for which this occurs by J�. In this case, the
triple becomes hierarchical automatically, and the encoun-
ter ends. The inevitable fate of this triple is a tidal inspiral:

During each pericenter approach of the inner binary, more
energy is lost to tides, until the two stars collide. This
process is just another route to a tidal inspiral, which does
not require the triple to have ejected the third star.
As in both models ΔEðuÞ decays quite fast with u, the

dependence on y is very weak, and the cross sections
converge for sufficiently large y (see Fig. 4).
One may compute the tidal inspiral cross section as

follows: Compute the cross section for cases in which there
is no collision and no tidal inspiral, and then subtract the
result from the total cross section, which we take, in this
section, to be

σtot ¼
πGMa0

v20
; ð72Þ

and not twice this value, consistent with Ref. [28]. The
former is given by first computing the differential cross
section for a final periapsis rp, by integrating Eq. (71)
over the disc Dðv0Þ—this is effectively an integration over
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the allowed range of total angular momenta—as well as
over the binary actions with a Dirac delta function
δ½rp − abinð1 − ebinÞ�, all the while enforcing the no-inspi-
ral-and-no-collisions condition both in Eq. (71) and in the
definitions of pðEÞ; qðEÞ; puðEÞ; quðEÞ, by restricting the
integration to the domain fa0bin ≥ 6r�g. This differential
cross section is shown in Fig. 5. In this figure, it does not
matter if one sets R ¼ βabin for simplicity—this deviation
from Eq. (10) does not change the results significantly since
all three masses are equal, whence Eq. (10) reduces to
R ¼ βminfa1=30 a2=3bin ; abing, and the distribution of abin is
peaked sharply about a0. The total exchange or flyby

cross section is then found by integrating this differential
cross section over rp ≥ r� (to preclude collisions); by the
special nature of Eq. (62), this restriction automatically
precludes collisions during all close approaches, not just
the final one.
Explicitly, let

NubdðE; JÞ ¼
Z

dEbind2SfbinðEbin;SjE; JÞ; ð73Þ

Nni
ubdðE; JÞ ¼

Z
dEbind2SfbinðEbin;SjE; JÞΘ

�
Gmbinμbin
2 × 6r�

− Ebin

�
; ð74Þ

these quantities, when evaluated at E ¼ Ei − ΔE, are only defined for J ≤ J�, so for J > J�, we define them to be zero.
Furthermore, define

B ¼
Z
Dðv0Þ

d2b



dptideða0Þ

du
þ qtideða0ÞpðEi; uÞ

1 − qðEiÞ
�
× ΘðJðbÞ − J�Þ; ð75Þ

where JðbÞ is the magnitude of the total angular momentum as a function of the position b of the incoming star on the disc
Dðv0Þ. Let us denote

U ¼
Z
Dðv0Þ

d2b
Nni

ubdðEi; JÞqtide
1 − qniðEiÞ

þ Nni
ubdðEi − ΔE; JÞ

1 − qniðEi − ΔEÞ
�
ptide;ncða0Þ þ

qtideða0ÞpniðEiÞ
1 − qniðEiÞ

�
; ð76Þ

FIG. 4. Inspiral or collision cross section, as a function of y, for
β ¼ 1.3, a0 ¼ 10−3 AU, and v0 ¼ 10 km s−1. The purple line
corresponds to the model of Eq. (67), while the blue line is for
Eq. (66); the red line is the numerical result of Samsing et al. [28].
As expected, the cross section converges to a constant for large
enough y, despite some noise due to numerical integration.

FIG. 5. Differential cross section for obtaining a final pericenter
distance rp in an exchange or flyby, which is the integral over
ðEbin;SÞ of Eq. (71), multiplied by the relevant Dirac delta
function. Note that y is defined below Eq. (63). This is compared
with data from Samsing et al. [28] for a0 ¼ 10−3 AU and
v0 ¼ 10 km s−1, and both are normalized to give the same total
exchange or fly-by cross section. To reduce computational
difficulty here, ΔEðuÞ is approximated to be equal to ΔEðð1þ
yÞ=2Þ for u < y, and zero otherwise. The y ¼ 2 case is indis-
cernible from the tideless case, y ¼ 0, in agreement with Samsing
et al.’s result that tides do not change the exchange or flyby cross
section significantly.
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V ¼
Z
Dðv0Þ

d2b
NubdðEi; JÞqtide

1 − qðEiÞ
þ NubdðEi − ΔE; JÞ

1 − qðEi − ΔEÞ
�
ptideða0Þ þ

qtideða0ÞpðEiÞ
1 − qðEiÞ

�
; ð77Þ

where ptide;ncðabinÞ ¼ 12a0ðy − 1Þr�=a2bin, to preclude col-
lisions; pniðEÞ is the analogue of pðEÞ but with the same
Heaviside theta function inserted as in the definition of
Nni

ubd and with ptide;ncðabinÞ used instead of ptide; and qniðEÞ
is the same as qðEÞ but also with the aforementioned
Heaviside function. It follows from Eq. (71) that the
inspiral or collision cross section is given by

σinspþcoll ¼ σtot

�
1 −

U
V þ B

�
: ð78Þ

We find, from Eq. (78), that for β ≈ 1.3, σinspþcoll agrees
with the findings of Ref. [28] for both a0 ¼ 10−3 and

10−2 AU. The former improves upon the analytic estimate
of 0.155 AU2 considerably. This cross section depends
on β, as shown in Fig. 6. The fact that β ¼ 1.3 fits both
cases, with initial semimajor axes differing by an order of
magnitude, implies that indeed Eq. (78) is an adequate
model to describe a binary-single encounter with tides.

IX. DISCUSSION AND SUMMARY

In this paper, we introduced a random-walk model for
binary-single encounters in globular clusters. An encounter
is viewed as a sequence of chaotic, close triple approaches,
interspersed with hierarchical phases. The orbital param-
eters of the binary and the single star, as well as the triple
system’s constants of motion, perform a random walk:
Each step of the walk corresponds to one close approach
and its subsequent hierarchical phase. We calculated the
transition probabilities between steps of the walk, both in
the Newtonian, point-mass approximation [in which the
walk is memoryless, and the final outcome distribution is
simply given by the formula of Ref. [26], while the
transition probabilities between intermediate steps are
given by Eq. (33)], and in the case where there is some
dissipative process involved, when Eq. (62) holds.
We have shown that this model reproduces numerical

results well, as we exemplified for aspects such as the
semimajor axis distribution, the escaper’s mass distribution,
and the final periapsis distribution. Including tides and
collisions, our predictions match the inspiral or collision
cross section measured by numerical simulations, which
validates the prescription of R and the solution to the bound
problem; besides, including a tide allowed us to perform a
nontrivial test on the extra step involved in elevating the
statistical solution of the scattering problem to the random-
walk model, which it passed.
In some cases, the probability distribution can be

computed completely analytically, while in others, it only
involves a relatively simple calculation of a few integrals.
Note that the formula for the escaper’s mass distribution is
valid in every intermediate step of the encounter. In
conjunction with the random-walk model, it implies, inter
alia, that if one of the stars is considerably lighter than the
other two, then it will be the one ejected after each close
approach—not just the final one. The only free parameters
in our analysis that do not influence the results of the
dissipation-free problem significantly are β and η; the
former was found to be equal to 1.3—a single value that
agrees with both cases considered in Sec. VIII—and the
latter does not change the results much in either case. The
fact that one value of β fits both parameters further supports
the random-walk approach.

FIG. 6. Inspiral or collision cross section for the case described
in the text, for different values of β [defined in Eq. (10)]. The red
line is the result of the simulations of Samsing et al. [28]; the blue
line shows our result, using the tidal model of Eq. (66), while the
dashed blue line shows the cross section if the model in Eq. (67)
is employed. There is some noise due to numerical integration.
Top panel: a0 ¼ 10−3 AU. Bottom panel: a0 ¼ 10−2 AU. In both
cases, v0 ¼ 10 km s−1, and y is chosen to be very large.
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The random-walk model described here may be used to
address a plethora of astrophysical phenomena using the
analytical, statistical model we described in this paper:
Apart from incorporating tidal interactions as was done
here, one could also include gravitational-wave dissipation
and the effects of stellar evolution. One could also inves-
tigate external effects, for example, the tidal influence of an
external gravitational potential. The main change would be
a modification of the largest value asð1þ esÞ that corre-
sponds to a bound binary. Such cutoffs are important in
globular clusters, which are the main places one expects to
find significant rates of binary-single encounters. This
investigation is made possible by our statistical approxi-
mate solution of the bound, nonhierarchical, three-body
problem in Eq. (33). This approach also allows one to
calculate the distribution of the number of consecutive
close approaches before the disruption of the triple and
hence the distribution of timescales of temporary captures,
which could be relevant for various astrophysical capture
processes by gravitating stars and planets. Other applica-
tions include—but are not limited to—binary-single
encounters in nuclear star clusters around supermassive
black holes at the centers of galaxies (or, equivalently,
binary-single encounters of planets, dwarf planets, moons,
or asteroids in the solar system), where the Hill radius
effectively provides a limiting separation (as mentioned
above) during consecutive encounters, as well as the
velocity distribution of fast, runaway stars due to ejections
through binary-single encounters, which will be treated in a
separate paper.
Let us present an algorithm for how this would be done

for any given astrophysical process involved in three-body
physics. Suppose that in addition to Newtonian, point-
particle motion, one wishes to incorporate another physical
phenomenon, say, gravitational-wave emission (which we
will address in future work). One would have to be able to
calculate how this phenomenon changes the total energy
and angular momentum E, J during a single close approach
and subsequent hierarchical phase. With these data, one
could compute fcðE; JjE0; E0

bin;S
0; J0Þ from Sec. VI. Using

the random-walk model, we immediately get the transition
probabilities hðxjx0Þ, and then all that remains is to sum up
the series (60) to obtain the final probability—the proba-
bility density function of final binary parameters, given the
initial total energy and angular momentum. If there is a
small parameter, e.g., if the probability for a nonzero
change in the constants of motion is small, one can resum
Eq. (60) and expand in the small parameter. We summarize
as follows:
(1) Compute the single-step (one close approach and

one hierarchical phase) probabilities for a given
change in total energy and angular momen-
tum, fcðE; JjE0; E0

bin;S
0; J0Þ.

(2) Compute the transition probabilities hðxjx0Þ as
in Sec. VI.

(3) Compute Eq. (60) to obtain the final distribution.
(4) If hðxjx0Þ is small [OðεÞ] for ðE0; J0Þ ≠ ðE; JÞ, resum

Eq. (60) and expand in ε to the desired accuracy.
Here, we have brought the endeavor of statistical

modeling of binary-single encounters closer to completion.
By viewing them as concatenations of close triple
approaches, we were able to model, statistically, the bound
nonhierarchical three-body problem and to use the solu-
tion to model the entire encounter as a random walk. This
model has the potential to facilitate simulations of globular
clusters significantly. Instead of having to resolve binary-
single encounters individually using a high-resolution few-
body code, one could simply implement the analytical
random-walk model as a probabilistic solution of these
encounters, with the additional possibility of incorporating
any astrophysical process one chooses. By the law of large
numbers, if the number of encounters per cluster is
sufficiently large, the few-body resolutions of binary-single
encounters will be rendered unnecessary. We hope that this
gain in speed will enable astrophysicists to study many
more phenomena in clusters and planetary systems, and in
the field, in much better detail.
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APPENDIX A: MARGINAL ENERGY
DISTRIBUTION—EVALUATION OF THE
ANGULAR-MOMENTUM INTEGRAL

Let us compute IðtÞ, as defined in Eq. (46), first
approximating θmax ¼ θap. There are two possibilities
for Ω: either J > t or J ≤ t. We denote I as Iþ and I−,
respectively, in these cases. Writing Jb ¼ S, Ja ¼ Sx, with
jxj ≤ 1, one finds that, in both cases, Ω is a simple domain
with respect to x, while S is integrated from 0 to
Smax ¼ minfJ þ t; Jcg. Note that Ω is shown in Fig. 7.
For the case t ≤ J, IðtÞ ¼ IþðtÞ, which is defined as

IþðtÞ ¼
1

J

Z
Smax

J−t
ðt − jJ − SjÞdS: ðA1Þ

Evaluating the last integral yields
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IþðtÞ ¼
1

J

8<
:

1
2
ð2tðSmax − JÞ − ðJ − SmaxÞ2 þ t2Þ if J < Smax ∧ J − t ≤ Smax

1
2
ð−J þ Smax þ tÞ2 if J ≥ Smax ∧ J − t ≤ Smax

0 otherwise:

ðA2Þ

For the case t > J, I− ¼ I ð1Þ
− þ ΘðSmax þ J − tÞI ð2Þ

− , where Θ is the Heaviside theta function,

I ð1Þ
− ðtÞ ¼ 1

J

�
2Jminft − J; Smaxg − J2 if minft − J; Smaxg ≥ J

min ft − J; Smaxg2 otherwise;
ðA3Þ

and

I ð2Þ
− ðtÞ ¼ 1

J

Z
Smax

t−J
ðt − jJ − SjÞdS: ðA4Þ

To compute I ð2Þ
− , one needs to consider the signs carefully. The result is

I ð2Þ
− ðtÞ ¼ 1

J

8>><
>>:

− ðt−JÞ2
2

þ ðtþ JÞSmax −
S2max
2

− J2 if t − J ≤ J < Smax

ðtþ JÞSmax −
S2max
2

− t2 þ J2 þ ðt−JÞ2
2

if t > 2J

ðt − JÞSmax þ S2max
2

− 3ðt−JÞ2
2

if J ≥ Smax:

ðA5Þ

Inserting R from Eq. (10), where 1≲ β ≲ 2, the exact value of I ½αðEbinÞ� roughly follows a power law until J ¼ α, where
it begins to fall sharply (like Iþ). The dominant contribution to I− is I ð1Þ

− , whence, when jEbinj ≫ jEj but α > J, one may
approximate I by I ð1Þ

− , which goes like jEbinj−1 for high angular momentum but like jEbinj−1=2 for low angular momentum.
In the unbound case, when jEbinj ≫ jEj, one has as ≈ abinms=μbin, and

A2

J2c
≈
�
2� βμbin

ms

�
βmsμs
μ2bin

: ðA6Þ

An even better approximation would be to take into account the eccentricity dependence of θmax, when computing I . The
angle θmax is equal to θap for es ¼ 1, and it vanishes when L2 saturates the periapsis bound of Sec. II A. Let us define
ξ ¼ R=as and

b2 ¼ L2

GMμ2sR

(
1

2−R=as
bound case

1
2þR=as

unbound case;
ðA7Þ

so that

FIG. 7. Two options for Ω, with t ¼ α.
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e2s ¼
�
1 − b2ξð2 − ξÞ bound case

1þ b2ξð2þ ξÞ unbound case:
ðA8Þ

Then, θmaxðb ¼ 0Þ ¼ θap, while θmaxðb ¼ 1Þ ¼ 0. One
could write θmax ¼ θapðθmax=θapÞ and then approximate
the fraction. While at b ¼ 0, ξ ¼ 0, this fraction is unity, it
differs from 1 for nonzero b even at ξ ¼ 0. So, let us expand
θmax=θap in powers of ξ; keeping only the leading term, we
find

θmax

θap
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
ð1þ 2b2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
OðξÞ; ðA9Þ

uniformly in b. We keep only the leading term, and, since
we have shown above that I ≈ I ð1Þ

− for most values of Ebin
(except possibly those where fbin is very small anyway), we
only compute a correction to I ð1Þ

− here, but corrections to
Iþ and I ð2Þ

− may be obtained in a similar manner. The
integral we need to compute is

IðtÞ ¼
Z Z

Ω

SdSdx
L

θmax

θap
≈
Z Z

Ω

SdSdx
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
ð1þ 2b2Þ:

ðA10Þ

Changing variables from x to L gives

IðtÞ ¼ 1

J

ZZ
dSdL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
ð1þ 2b2Þ: ðA11Þ

Fortunately, this integral may be computed analytically in
terms of inverse trigonometric functions. Let

ϕðuÞ ¼ 1

20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
½12þ u2ð1þ 2u2Þ� þ 3

4
u arcsin u;

ðA12Þ

and let us focus on I ð1Þ
− . Performing the integrations, and

keeping in mind the limits (here, S ranges from 0 to
minft − J; Smaxg and L goes from J þ S to jJ − Sj), yields,
for the bound case,

J
A2
p
I ð1Þ
−;bd ¼ ϕ

�
J þminft − J; Smaxg

Ap

�
− 2ϕðJ=ApÞ þ

8<
:

ϕ
�
J−minft−J;Smaxg

Ap

�
if minft − J; Smaxg ≤ J

2ϕð0Þ − ϕ
�
minft−J;Smaxg−J

Ap

�
otherwise;

ðA13Þ

where Ap ¼ μs
ffiffiffiffiffiffiffiffiffiffiffiffi
GMR

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − R=as

p
. For the unbound case,

J
t2
I ð1Þ
−;ubd ¼ ϕ

�
J þminft − J; Smaxg

t

�
− 2ϕðJ=tÞ þ

8<
:

ϕ
�
J−minft−J;Smaxg

t

�
if minft − J; Smaxg ≤ J

2ϕð0Þ − ϕ
�
minft−J;Smaxg−J

t

�
otherwise:

ðA14Þ

This improved, more cumbersome approximation differs
significantly from the simpler one, made at the beginning of
this section, when the masses are significantly different
from each other. Therefore, we use it only for Figs. 2 and 8
since the masses are considerably different or there is a
need for a high degree of accuracy; only there does it make
a difference.

APPENDIX B: CHAOS AS PHASE-SPACE
DIFFUSION

In this Appendix, we endeavor to give a heuristic
justification of Eq. (2), i.e., of the mixing assumption
inside C. We do so by defining C as the region in phase
space in which the system is completely nonhierarchical.

FIG. 8. Plots of the marginal energy distribution (for Eb ¼ Ebin)
in Eq. (48) for m1 ¼ m2 ¼ m3 for different values of β: β ¼ 1.5
(blue line), β ¼ 1 (red, dash-dotted line), and β ¼ 2 (black,
dashed line). One can see that except for at energies where fbin is
minuscule anyway, the three plots coincide.
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By energy considerations, the spatial extent of this region
must be related to the binary’s initial semimajor axis
(recall that the binary is hard, so the amount of energy
contributed by the incoming star is negligible), so the
spatial size of C must be approximately R, with β of order
unity. If the system is nonhierarchical inside C, then, by
dimensional analysis, the relevant timescale must also be a
function of the energy alone; i.e., it must be the virial
timescale τvir ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2 þm1m3 þm2m3

p
M=ð2jEj3=2Þ.

Indeed, Heinämäki et al. [43] found that the Lyapunov
time λ−1 is roughly

1

27
ffiffiffi
6

p GM5=2

jEj3=2 ¼
ffiffiffi
6

p

27
τvir ðB1Þ

for the equal mass case. [44] While this indeed consolidates
the assumption that R is given by Eq. (10), with β of order
unity, the weak dependence of σ on β in Eq. (31)—only
through θmax—implies that one cannot specify the precise
value of β from the simulations of Ref. [43], but this could
be theoretically performed with a similar simulation with
very high resolution. In this Appendix, we normalize the
units of time by this timescale and the units of mass by the
total mass (recall that all three bodies are taken to have
masses of the same order of magnitude), such that both
momenta and distances have units of length. We also
assume, for simplicity, that all three masses are equal.
Outside C, f simply satisfies a Liouville equation

∂f
∂t ¼ fH; fg; ðB2Þ

where, now, one may writeH in the coordinates of the inner
binary, and those of the two-body system formed by the
outer body and the center of mass of the inner binary. Both
in A and in B, the Hamiltonian H admits angle-action
variables. Given an initial condition f0ðθ; JÞ, the solution is

fðθ; J; tÞ ¼ f0ðθ −Ωt; JÞ: ðB3Þ

Let us assume that, in C, the motion is practically
stochastic. Motion is deterministic throughout the evolu-
tion, but the chaotic dependence on initial conditions
implies that, practically, it is random on short times
(cf. Lichtenberg and Lieberman [45]). What we mean is
that if the system is inside a small regionR in C of size ε at
one instant, it may jump, at the following instant, to any
place in expðλδtÞR, where δt is the time difference between
the two instants, with λ being the Lyapunov exponent. This
evolution is assumed to be valid for times that are of the
same order as the Lyapunov time λ−1 and as long as the
system is in C. Suppose that one starts with a phase-space
distribution that is uniform on some ε neighborhood of
some w0 ∈ C, namely, uniform in R ¼ Bεðw0Þ ⊆ C; then,
after a time t, this phase-space density evolves to a uniform
distribution in a sphere (in the metric in which the

Lyapunov exponent is calculated) of volume about
V½Bεðw0Þ�eλt.
Now, suppose that we wish to start with an initial

condition in C very close to a delta function. Then, as
time goes by, f spreads over C, until some parts of it reach
C’s boundaries and enterA or B. The timescale of evolution
in C is roughly the virial timescale of the three-body system,
while the timescales for interesting evolution in A and B
are set by the frequencies Ω of the outer binary. Per
definitionem, these are much longer than the virial time-
scale; otherwise the system would not be hierarchical.
Thus, those parts of f that have left C are, from the point of
view of the C, stuck at the boundary, so to speak. The
distribution continues to spread, until virtually all of f is on
∂C. The proportion that arrives at A never returns to C, but
the rest, being in B, eventually does return to C and starts all
over. This process goes on ad infinitum or until all of the
probability mass is in A.
Separation of scales thus ensures that the evolution of the

system proceeds as a sequence of close three-body, chaotic
encounters, and between them, hierarchical phases, until
one of the three bodies is ejected. This picture meshes well
with simulations [11,12,19], but here we have given it some
theoretical credence.
If w0 is a typical initial condition inside C, then its phase-

space distance from the ∂C is roughly R. According to the
evolution described above, the time it would take the
system to arrive at ∂C is then

t ∼
1

λ
ln

�
R8

V½Bεðw0Þ�
�
∼
lnR − ln ε

λ
: ðB4Þ

The power of 8 is due to the conserved quantities: The
three-body phase space is 18 dimensional, but conservation
of linear momentum in the center-of-mass frame, angular
momentum, and energy reduces this dimension to 8.
Requiring a resolution ε=R ≪ 1 implies that the time it
takes the system to leave C is larger than the Lyapunov
time, consolidating the assumption of efficient phase-space
mixing inside it. The simulations of Ref. [21] demonstrated
that the half-life time of chaotic three-body systems is

2.6 ×
3ffiffiffi
2

p ≈ 30.4λ−1 ðB5Þ

(for the equal mass case, in units of τvir, see their Table 4).
This value is indeed sufficient for chaotic mixing.
The next step is to see how much of the probability mass

arrives at each point in ∂C in a single close encounter. (In a
close approach that is not the first one, by linearity, the
solution is a superposition of solutions that start out as delta
functions around some point in C.) Because of the scale
separation, the evolution equation for the distribution
function in C should have (approximately) Dirichlet boun-
dary conditions on ∂C, whence the probability of reaching a
point w ∈ ∂C—which leads immediately to the outcome
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probability in A and B via Liouville’s equation—is given
by the so-called “eventual hitting probability” of w [46],
which is simply the time integral of the scalar product of∇f
with the unit normal to ∂C, n̂ (the gradient ∇ is a phase-
space gradient). As f effectively evolves like a top hat that
expands, ∇

R
fdt is very large at ∂C, but its magnitude is

independent of w0. The scalar product n̂ · ∇f gives an
additional cosine, so that

feventualðwÞ ∝ cos θðw;w0Þ; ðB6Þ

where θðw;w0Þ is the angle between n̂ and the vector
pointing from w0 to w. However, the boundary between C
and the other two sets is not well defined, so instead, it
would be useful to think of ∂C as a “fuzzy” boundary—
with some width. This implies that the cosine should be
removed as unphysical and replaced by its averageR π=2
−π=2 cos θdθ. Thus, the eventual hitting probability is well
approximated by a function independent of both w0 and w.
What we are interested in is the probability distribution

of an outcome in A or B and, specifically, in the action
distribution there. Consider the set SðJa; Jb; JcÞ, which is
the set of all points w ∈ A ∪ B such that the (Delaunay)
actions of the inner binary are between ðJa; Jb; JcÞ and
ðJa þ dJa; Jb þ dJb; Jc þ dJcÞ. We are interested in the
measure of SðJa; Jb; JcÞ. Given that these actions corre-
spond to something that has been in a close triple system,
one can use Liouville’s theorem to translate this question
into a question of finding the probability distribution
function of ∂C. This is independent of the initial condition,
which implies that one can simply compute it by assuming
a uniform distribution of initial conditions in C, which we
compute in Sec. II.
The reader should also bear in mind that because of the

scale separation of the evolution in the hierarchical region
B, there is an additional source of phase-space mixing:
While the outer body moves along its two-body orbit about

the inner binary, the mean anomaly of the latter evolves
much more rapidly, and its value when the third star returns
depends sensitively on its initial value, which implies that it
is effectively quite random. Therefore, as the number of
close approaches increases, σ should resemble Eq. (2) more
closely—this fact is attested to by the simulations of
Ref. [26]. Indeed, if the above arguments apply only
approximately—so that, in a single close approach, mixing
is only efficient in a fraction ν of the total volume of C—
then the phase-space distribution still tends to a fully mixed
one, as νn (exponentially in the number n of close
approaches). It may be possible that a close triple approach
following a hierarchical phase ends more quickly than is
required for the system to mix chaotically in C [25]. In that
case, this phase mixing implies that the cross section is
still mixed.

APPENDIX C: APPROXIMATION ERROR
INDUCED BY THE MODEL

As the solution described in the previous sections is a
statistical approximation to a deterministic, albeit chaotic,
problem, it would be useful to be able to constrain the
uncertainty due to the approximation above. We do so by
evaluating fbin for different values of β and comparing
the resulting plots. An analogous check may be per-
formed for η. [47] While this test is not an ideal
uncertainty estimate, it is at least a test of the robustness
of the model; we rely on the fact that, in many situations,
the error induced by varying the parameters of a model is
of a size similar to the one made by using that model as
an approximation.
Figure 8 shows the marginal energy distribution, and

Fig. 9 shows contour plots of the joint distribution of Ebin
and S ¼ jSj; both figures indicate a weak dependence on β
and therefore a high accuracy of the approximation model
made here.

FIG. 9. Plots of Eq. (34) form1 ¼ m2 ¼ m3 for different values of β: β ¼ 1 (left), β ¼ 1.5 (center), and β ¼ 2 (right). One can see that
except for at energies where fbin is minuscule anyway, the three plots agree well with each other.
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APPENDIX D: INCLINATION

A yet-more-refined version of R may be obtained by not approximating the Legendre polynomial by unity. Instead, we
use the singly averaged correction to the Hamiltonian, averaged over the inner binary’s orbit, which yields a quadrupole
term proportional to (see, e.g., Ref. [6] for orbit-averaging procedures)

Hquad ¼ −
GM2

8

a2b
r3s

f−3ðcos2 iðe2b − 1Þ þ 4e2b þ 1Þ cosð2θsb þ ϕsÞ þ 3 cos2 iðe2b − 1Þ − 6e2b þ 1g; ðD1Þ

where ϕs is the true anomaly of the outer orbit, and i is the mutual inclination between the two orbits,

i ¼ is þ ibin ¼ arccos

�
Jz − Sz
jJ − Sj

�
þ arccos

�
Sz
S

�
; ðD2Þ

where S ¼ Jb and Sz ¼ Ja are the magnitude and ẑ component of the binary angular momentum, respectively, and ẑ is
parallel to J. We also shorten the subscript bin to b for brevity.

FIG. 10. Comparison between fbin calculated with R defined by Eq. (10) and by Eq. (D3). The first two rows show the marginal
energy distribution, and the last line shows that joint energy-spin distribution [left is for Eq. (10); right is for Eq. (D3)]. The top row
displays fbin for a large value of J, while the second is for a low value. For the bottom row, we use the same value of J as for the top row,
and equal masses. All rows have β ¼ 1.5.
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This quadrupole term is to be evaluated at the value θsc that corresponds to rs ¼ R (i.e., at the value of ϕs that corresponds
to it), and then equated with E and solved for R. This procedure gives an R that depends on the binary actions and on θsb; but,
as we already know that the dependence of θmax on the precise value of R is weak, we neglect this dependence on θsb, by
setting Hquad to its average value, when averaging it over θsb, thereby allowing us to solve for R, explicitly:

R ¼ βmin

�
abin;

a2=3bin

2

�
GM2

jEj
�

1=3
j3ðe2bin − 1Þcos2ðiÞ − 6e2bin þ 1j1=3

�
: ðD3Þ

In Fig. 10, we display a comparison between fbin for R
given by Eq. (10), and the correction implied by using
Eq. (D3) (for the unbound case) instead. The two defi-
nitions yield almost identical values of fbin; therefore, we
use the simpler Eq. (10) in the paper.
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