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We study random quantum circuits and their rate of producing bipartite entanglement, specifically with
respect to the choice of 2-qubit gates and the order (protocol) in which these are applied. The problem is
mapped to a Markovian process, and we prove that there are large spectral equivalence classes—different
configurations have the same spectrum. Optimal gates and the protocol that generate entanglement with the
fastest theoretically possible rate are identified. Relaxation towards the asymptotic thermal entanglement
proceeds via a series of phase transitions in the local relaxation rate, which is a consequence of non-
Hermiticity. In particular, non-Hermiticity can cause the rate to be either faster or, even more interestingly,
slower than predicted by the matrix eigenvalue gap. This result is caused by expansion coefficients that
grow exponentially with system size, resulting in a “phantom” eigenvalue and is due to nonorthogonality of
non-Hermitian eigenvectors. We numerically demonstrate that the phenomenon also occurs in random
circuits with nonoptimal generic gates, random U(4) gates, and also without spatial or temporal
randomness, suggesting that it could be of wide importance in other non-Hermitian settings, including
correlations.
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I. INTRODUCTION

Entanglement is one of the key properties that can make
quantum systems different than classical ones, which is
reflected in quantum information—large entanglement is a
necessary resource to gain an advantage over classical
computation, and many of the new phases discovered in
recent decades can be distinguished by different patterns of
entanglement [1]. Because entanglement, and the related
concept of quantum information, plays such a fundamental
role, it is also instrumental in the quest to push the
boundaries of present-day physics, for instance, trying to
figure out essential rules that quantum gravity should obey.
An elementary question is, how can one efficiently

generate this resource? We focus on the so-called random
quantum circuits [2], where quantum gates are chosen
randomly from a certain set of gates. What set one uses
might foremost depend on the available resources; while
one wants to generate entanglement as quickly as possi-
ble, one must use the resources as efficiently as possible.

What is meant by efficient will depend on the context;
however, there are some common conditions. Richness of
nature emerges from two ingredients: innate properties of
constituent objects (particles) and local interactions
between them. Locality, being intimately related to cau-
sality, is rather important and is also typically the costly
resource in quantum computation. Local transformations,
i.e., one-site unitary operations, are faster to perform and
typically have higher fidelity, while interactions in the form
of two-site gates are expensive. We focus on random
circuits in which one-site resources are random (1-qubit
unitary from the Haar measure) while the two-site trans-
formations are held fixed. Such a choice makes sense for
two reasons: (i) It follows quantum information cost
guidelines, and (ii) in some cases, it allows exact solvabil-
ity. We demonstrate that taking a fixed good entangling
2-qubit gate is actually better than randomly choosing the
whole 2-qubit transformation. Optimal random circuits that
generate entanglement the fastest should also be of interest
in the near-term applications of noisy quantum computers
where they have been identified as prime candidates in the
quest to demonstrate quantum supremacy [3]. Using the
optimal circuit in such a quest is of high relevance as it
directly affects the execution speed and therefore the
attainable fidelity, which can, in turn, be crucial for an
experiment to be on the right side of the supremacy frontier.
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Random circuits also have another use—they are believed
to correctly describe some of the properties of generic
quantum systems, e.g., dynamics of operators [4–7], and
can therefore serve as models of chaotic many-body systems
[8]. The main advantage over chaotic systems is that their
randomness enables analytical simplifications, leading to
exact results. Exact results for entanglement evolution have
also been obtained for the CFT [9]. Recently, the two
pictures, that of random circuits and that of solvable quantum
systems, emerged in the form of the so-called dual-unitary
circuits, e.g., Ref. [10], which are solvable models having
some elements of chaotic systems (as well as of integrable
ones). Aswe shall see, extremal random circuits use the same
building blocks as dual-unitary circuits. The interesting
phenomena we discuss, though, are not limited to extremal
nor to dual-unitary circuits.
Entanglement generation has also been studied in the

context of black hole physics [11–13]. A question of intense
interest is, in particular, the maximal possible entanglement
generation, with various bounds and explicit results [14–16].
The fact that random circuits “scramble” information well
can also be used for decoupling protocols [17]—a procedure
in which any initial (local) correlations between an observer
and a system are spread out globally, such that no local
measurement on the system can reveal any correlation
anymore; an observer becomes decoupled from a system
(under local measurements). Such quantum information
decoupling is, in fact, what is effectively going on during
the thermalization process [18], so random circuits can also
be thought of as being models of ideal thermalization (i.e.,
lacking any Hamiltonian-specific features).
We obtain a complete class of random protocols that

optimally generate entanglement and, more importantly,
identify several new and surprising features that can emerge
in non-Hermitian matrices describing many-body systems.
Specifically, we (i) find random circuits that produce
entanglement in the fastest possible way. Our fastest circuit
is significantly faster than the best previous random circuits.
(ii) We identify a number of phase transitions in time—at
certain moments, the convergence rate to the asymptotic
“thermal” entanglement of random states suddenly changes.
This change shows that an ideal thermalization modeled by a
random circuit is a two-stage process rather than relaxation
with a constant rate. (iii) We find that the convergence rate
may not be given by the transfermatrix gap but can instead be
either larger or smaller. This does not occur just in some
obscure, unimportant cases but in almost every case we
looked at, specifically in the fastest circuits as well as in
generic ones, and also in circuits with random U(4) gates
much studied in the past. This failure of the spectral gap
prediction happens in spite of the spectrum itself being rather
innocuous; e.g., the second-largest eigenvalue λ2 is gapped
away from both λ1 ¼ 1 and jλ3j < jλ2j. We also interestingly
observe that in the thermodynamic limit, the phenomenon is
also observed in a single realization of a random circuit and

that, in fact, randomness is not necessary neither in space nor
in time (one can use the same random 1-qubit transformation
at all sites and at all times). The fact that a common “folk
theorem,” that the decay is given by the gap, does not hold
might have important implications in many areas of physics
where one deals with non-Hermitian matrices, e.g., dissipa-
tive systems, transfer matrices, etc. Preliminary results show
[19] the same phenomenon also in out-of-time-ordered
correlations (OTOC).
One particularly intriguing case is where the decay is

∼ð1
2
Þt rather than ∼ð1

4
Þt suggested by jλ2j ¼ 1

4
. We show that

this occurs because of a phantom eigenvalue 1
2
—an

eigenvalue that is not in the spectrum but is rather just
mimicked by exponentially growing expansion coefficients
in front of smaller (true) eigenvalues. We are not aware of
any similar observations; the closest is perhaps a recent
study [20] of vanishing gaps in Lindblad generators,
finding that, because of exponentially growing expansion
coefficients, the gap does not always give a physically
relevant relaxation timescale [21].
Considering conceptual and practical importance of ran-

dom circuits, it is not surprising that they have a long history.
Let us make a brief overview of existing results, focusing on
the speed with which entanglement is generated. One of the
earliest works that studied the convergence properties of
random circuits include Refs. [2,22]. The first exact results
about the convergence rate towards random states weremade
possible by mapping [23] the average dynamics to a
Markovian chain. Using the mapping, the question about
the speed of generating entanglement boils down to the
question about the gap of a certain transfer matrix. Such a
mapping is rather fruitful not just for the specific question of
entanglement generation [24–28] but also for a nice system-
atic treatment of any expectation that involves t copies of the
propagator U and t copies of U†—a so-called unitary t-
design [29–33]. The simplest entanglement quantifier purity
I ¼ trρ2A therefore belongs under the realmof a 2-design.The
Markovian mapping, in particular, allows us to get exact
results for the purity convergence rate (purity “entanglement
speed”) by recognizing that the resultingmatrix is equivalent
to an (integrable) spin chain [24]. Recently, the Markovian
description has been used to describe evolution of purity for
all possible bipartitions at once [27]. Exact results are now
available for various protocols containing the 2-qubit random
Haar U(4) gate (including quantities beyond purity), e.g.,
choosing a random nearest-neighbor pair [24,25], picking a
random permutation [34], or having a brick-wall pattern
[4,5,35], or for random single-site unitaries and a global
phase [28]. If one allows the coupling between all pairs of
qubits, one can also get the exact entanglement speed for
some nonrandom gates, in particular, for the important XY
gate (as well as for the CNOT) [24]; see Table I. Exact results
are also available in the limit of large local Hilbert space
dimension q [4,8,25,34–36] (we focus on qubits, q ¼ 2). For
numerical results, see Refs. [26,33,36–38].
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Summarizing these results in Table I, we see that
using NN qubit gates, the fastest known protocol is the
BW configuration with a U(4) gate for which the entan-
glement rate defined via a long-time purity decay IðtÞ ≍
expð−rEtÞ is rE ≈ 0.45 [39] per boundary link. We find a
protocol that is more than 3 times faster and has the
maximal possible entanglement speed. The optimal 2-qubit
gate will turn out to be the so-called XXZ gate (also known
as the pSWAP), a special case of which is the XY gate
(iSWAP). The same gate has appeared before in the context
of random circuits: It has been observed numerically that
the XY gate is the fastest of all gates for random NN, or
the all-all protocol [38] (which, though, are much slower
than our best BW protocol). The same type of gate has
recently emerged in dual-unitary circuits [10]. Because of
their special properties, such circuits (see also related
concepts [41] of 2-unitaries [42] and perfect tensors
[43]) allow exact results, for instance, of Rényi entropies
for a nonsymmetric bipartition in a disordered kicked Ising
model [10] (this system has a maximal entanglement rate
provided one counts time in an optimal way); see also
Ref. [44], and for a symmetric half-infinite bipartition, see
Ref. [45]. One can also calculate the tripartite information
[46] or find circuits with maximal butterfly velocity [47] in
the dual-unitary context.
We characterize entanglement generation through the

decay of average purity IðtÞ ¼ trρ2AðtÞ. Because we want
to understand entanglement generation on a global scale,
we focus on a symmetric bipartition [48] of our system

of n qubits into two equal subsystems A and B, each with
nA ¼ nB ¼ n=2 qubits. In other words, for a chain geom-
etry of qubits, we split the chain in two equal halves of
consecutive qubits. We calculate the average purity behav-
ior by mapping its dynamics to a Markovian process
[23,24,27], thus reducing the problem to that of properties
of a particular transfer matrix M. At long times, purity will
decay exponentially with a rate rE determining how fast
entanglement is produced. Because the purity entanglement
rate rE will be proportional to the area A of the boundary
between A and B, one often considers the entanglement
speed vE (also called the purity speed, or tsunami velocity
[15]) defined as

IðtÞ ≍ expð−rEtÞ; rE ≡ vEAs∞: ð1Þ

For random circuits, the asymptotic state is an infinite-
temperature state having maximal entropy density
s∞ ¼ ln q, while A is simply the number of 2-qudit gates
applied across the boundary between subsystems A and B
per unit of time. If one uses natural units of time such that
one applies one gate on each bond per unit of time, then A
is just the number of bonds cut by a bipartition, which, for
the symmetric bipartition we use, is A ¼ 1 for OBC and
A ¼ 2 for PBC. Because one can generate two maximally
entangled 2-qudit states per one application of a two-site
gate [51], the maximal vE one can achieve is

vE ≤ 2: ð2Þ

In quantum circuits, one therefore has the upper bound
rE ≤ 4 ln q for PBC and rE ≤ 2 ln q for OBC.
One can also study other quantities measuring entangle-

ment, like the von Neumann entanglement entropy SðtÞ ¼
−trðρA ln ρAÞ or the Rényi entropies SrðtÞ ¼ ln ρrA=ð1 − rÞ,
and use them to define corresponding rates and speeds. In
general, all of those entanglement speeds can be different
[35], an example being a circuit with random U(4) gates.
The reason for the difference is the variation in entangle-
ment properties of different circuit realizations; for in-
stance, some rare realizations could use very inefficient
entanglers from the U(4) set of gates. For the circuits we
focus on, we expect such effects to be much less pro-
nounced. In particular, the fastest scramblers that we find
have the maximal speed allowed by causality, so all Rényi
entropies should have the same maximal speed (similarly
as, e.g., in Ref. [10]). Furthermore, even for nonmaximal
random circuits with fixed 2-qubit gates, the variation in
entanglement between different realizations should be
much smaller than, e.g., for the random U(4) case because
the entangling 2-qubit gates are the same at every step [even
for random U(4), the difference between the speed from the
average purity and the average second Rényi entropy is
likely very small [35] ]. The circuits we study will, at not
too short times, produce typical states that have good

TABLE I. Existing exact results for the purity decay rate rE,
defined as IðtÞ ∼ exp ð−rEtÞ, in qubit random circuits
(cf. Fig. 1). Per unit of time, ∼n gates are applied. Determin-
istic 1-dimensional (1-dim.) nearest-neighbor (NN) protocol
with a brick-wall (BW) pattern of gates is faster than randomly
choosing a NN pair on which the gate acts. Allowing coupling
between an arbitrary pair of gates (∞-dim. all-all) is even
faster. Results are shown for open boundary conditions (OBC)
and periodic boundary conditions (PBC). U(4) denotes a Haar
random gate, while the XY gate is also known as the iSWAP or
DCNOT gate.

Gate Protocol Rate rE Reference

Configuration Boundary
conditions

1-dim.(NN):
U(4) Random PBC 2

5
¼ 0.4 [24]

U(4) Random OBC 1
5
¼ 0.2 [24]

U(4) Permutation OBC ln 3
2
≈ 0.40 [34]

U(4) BW PBC 4 ln 5
4
≈ 0.89

U(4) BW OBC 2 ln 5
4
≈ 0.45 [4,5,35]

∞-dim. (all-all):
U(4) Random 6

5
¼ 1.2 [24,25]

XY, CNOT Random 4
3
≈ 1.33 [24]
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self-averaging properties, and we expect von Neumann
entropy and Rényi entropy to behave essentially the same
as the logarithm of the average purity, SðtÞ ≈ S2ðtÞ ¼
− ln IðtÞ. We leave possible differences for future work.
In the remainder of the paper, we always discuss only
purity rates and speeds.
Our results for rE are summarized in Table II and in

Fig. 1. We can see that the rates are, in general, not equal to
the ones suggested by the second-largest eigenvalue λ2 of
the transfer matrix M and that, in the two optimal cases,
namely, the BW configuration with PBC, or the OBC, the
entanglement velocity is vE ¼ 2 and therefore saturates the
bound (2). The optimal gate is, in both cases, found to
be the XXZ gate for any value of the anisotropy 0 ≤ az < 1
in front of the σzjσ

z
jþ1 coupling [see Eq. (4) for its

definition]. In particular, using the XXZ gate is much
faster than using random U(4) gates, as well as, for
instance, the CNOT gate. We do not find any transition
with az in the relevant entanglement rate rE, though we do
find it in the leading eigenvalue λ2 of the transfer matrix

(which, in most cases, determines the late-time entangle-
ment rate after the phase transition at the thermalization
time). For dual-unitary systems with transitions with az in
transfer matrices, see Refs. [46,53].

II. METHODS

A. Random quantum circuits

We study random quantum circuits in which 2-qubit
unitary transformations are drawn from some set of unitary
gates. One elementary gate—a 2-qubit transformation Ui;j

acting on qubits i and j—is a product of independent single-
qubit random unitaries Vi acting on the ith qubit and Vj

acting on the jth qubit, drawn according to the Haar measure
on group U(2), and a two-site unitary Wi;j. Therefore, the
whole gate isUi;j ¼ Wi;jViVj. The two-siteWi;j will be the
same for all steps,while the single-siteVi are independent for
each step and each qubit. The formalism that we use can also
accommodate the situation where Wi;j would be random
from U(4) (we briefly comment on that case in Sec. IV C);
however, such circuits produce entanglement more slowly
(see Table I) than the ones we study.
A given random circuit is specified by a fixed two-siteW

and a sequence of qubit pairs, called a protocol or
configuration, on which Ui;j are applied. For instance,
one could chooseW to be the CNOT gate and a sequence to
be a brick-wall pattern (Fig. 2). We find a gate W and a
protocol that generate entanglement the fastest.
In the main body of the paper, we limit ourselves to

protocols in one dimension (1D), where the gates are
allowed only between NN qubits with either OBC or PBC;
i.e., qubits are on a line or on a circle. We only briefly
mention the 2D case of the Sycamore [3] quantum
processor, and in the Appendix G, we discuss the all-to-
all coupling (NN protocols are faster than those). Focusing
on the 1D setting, the space of quantum circuits over which
we need to optimize is still large (infinite); therefore,
simplification is necessary. First, we focus on periodic
protocols in which the geometry of applied gates repeats
after each period. One period consists of exactly one gate
applied on each allowed bond; that is, for OBC, there are
T ¼ n − 1 gates in a period, whereas there are T ¼ n for

FIG. 1. Overview of purity entanglement generation rates rE for
random circuits with different gates and ordering of NN gates:
random (rand.) vs BW vs S. See Fig. 2 for the BWand S structure.

TABLE II. New results for the purity decay rate rE in random
circuits (cf. Fig. 1). The fastest entanglement generation for
local couplings is achieved for the XXZ gate in a BW
configuration (bold). Such circuits are optimal and much faster
than, e.g., using random U(4) gates or all-all coupling (Table I),
or using the CNOT gate. The staircase configuration S is, on
the other hand, the slowest. The rate is, in general, not given by
the second-largest eigenvalue jλ2j of the associated transfer
matrix.

Gate Protocol Rate rE − ln jλ2j
(for XY)Configuration Boundary

conditions

1-dim.(NN):
XXZ BW PBC ln 16 ≈ 2.77 ln 9 ≈ 2.20
XXZ BW OBC ln 4 ≈ 1.39 ln 4 ≈ 1.39
XXZ S PBC ln 4 ≈ 1.39 ln 3 ≈ 1.10
XXZ S OBC ln 2 ≈ 0.69 ln 4 ≈ 1.39
CNOT BW PBC ≈ 0.591
CNOT BW OBC ≈ 0.284
CNOT S PBC ≈ 0.570
CNOT S OBC ≈ 0.296

(a) (b)

FIG. 2. Illustration of different quantum circuit configurations
(here, for OBC): (a) brick-wall (BW) configuration and (b) stair-
case (S) configuration.
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PBC. Optimization therefore needs to be performed over all
T! permutations describing different orderings of gates
within one period, and over all choices of the gate W.
Our time t that we use throughout the paper measures the
number of periods (see Fig. 2). In Sec. III, we prove that
one does not need to consider all n! permutations but only
∼n of them.
One can also reduce the number of W that need to be

checked. Because we have a single-site invariance due to
random single-qubit gates, it suffices to consider W in the
canonical form parametrized by only three parameters
[instead of 16 for general W ∈ Uð4Þ]. Namely, every
2-qubit unitary can be written in the following canonical
form [54,55],

Wj;k ¼ Vð1Þ
j Vð2Þ

k wj;kðaÞVð3Þ
j Vð4Þ

k ;

wj;kðaÞ ¼ exp

�
i
π

4
ðaxσxjσxk þ ayσ

y
jσ

y
k þ azσzjσ

z
kÞ
�
; ð3Þ

where VðαÞ
k are one-site unitary operators, σx;y;z are Pauli

matrices, and a ¼ ðax; ay; azÞ has three real parameters,
which can be constrained to 0 ≤ az ≤ ay ≤ ax ≤ 1. A
detailed explanation on how to calculate this decomposition
from an arbitrary unitary two-site gate W can be found in

Ref. [56]. Fixed single-site VðαÞ
k for a specific gateW can be

lumped together with random unitaries Vk, so we need to
explore only canonical gates wðaÞ. For instance, the CNOT
gate has a ¼ ð1; 0; 0Þ; the gate that turns out to be the fastest
is the XY gate with a ¼ ð1; 1; 0Þ (also called the iSWAP or
DCNOTgate).More generally, the optimal set will consist of
gates

WXXZ ¼ exp

�
i
π

4
ðσxjσxk þ σyjσ

y
k þ azσzjσ

z
kÞ
�
; ð4Þ

i.e., with parametersa ¼ ð1; 1; azÞ andaz < 1,whichwe call
the XXZ gate (also known as the pSWAP—parametric
SWAP gate). The SWAP gate reached at a ¼ ð1; 1; 1Þ
generates no entanglement and therefore has completely
different entanglement properties than the XXZ family of
gates. For our best protocols, one therefore has, in the
thermodynamic limit (TDL), a discontinuous transition from
themaximal rate ataz < 1 (XXZgate) to a zero rate ataz ¼ 1
(SWAP gate).
To quantify bipartite entanglement of pure states, we use

purity IðtÞ,

IðtÞ ¼ trAρ2AðtÞ; ð5Þ

where ρAðtÞ ¼ trBjψðtÞihψðtÞj and jψðtÞi ¼ UðtÞjψð0Þi,
with UðtÞ ¼ Q

ði;jÞUi;j a product of all 2-qubit gates up to
time t [because we have T gates per unit of time, the total
number of 2-qubit gates in UðtÞ is therefore T · t]. The
whole system of n qubits is bipartitioned into a subsystem

A with nA qubits and a complement B with nB qubits,
n ¼ nA þ nB. In explicit numerical demonstrations, we
always use a symmetric half-half bipartition, where A is
composed of the first n=2 consecutive qubits while B is
composed of the rest. However, the results do not depend
on the specifics of the bipartition, provided one has an
extensive nA ∝ n connected subsystem A. The initial state
jψð0Þi is always chosen to be fully separable with respect to
any bipartition such that Ið0Þ ¼ 1. Purity will therefore
decay with time from its initial 1 to the asymptotic value
being equal to the purity of random states [57],

I∞ ¼ 2nA þ 2nB

1þ 2n
: ð6Þ

For large t, our random circuit uniformly samples U from
the unique unitarily invariant Haar measure. Observe
that this asymptotic purity is not exactly equal to the
purity of the infinite-temperature state ρA ∝ 1, which is
Iðβ ¼ 0Þ ¼ ð1=2n=2Þ, whereas I∞ ¼ ð2=2n=2Þ=ð1þ 2−nÞ
for the symmetric bipartition. For easier understanding,
we often show

S2ðtÞ ¼ − log2 IðtÞ; ð7Þ

which is a quantity that will grow from 0 at t ¼ 0 to its
maximal value S2ð∞Þ ≈ ðn=2Þ − 1 (for a half-half biparti-
tion), which is reached when the state jψðtÞi converges
towards a random state. Note that S2ðtÞ will reach its
saturation ∼n=2 at time t∞, which is given by

t∞
nA

¼ ln 2
rE

¼ 1

vEA
: ð8Þ

For instance, for the BW PBC random circuit, the scaled
thermalization time will be t∞=nA ¼ 1=4. To more clearly
show the relaxation process towards I∞, we also study

ΔS2ðtÞ ¼ − ln jIðtÞ − I∞j: ð9Þ

Looking at ΔS2ðtÞ instead of just S2ðtÞ will allow us to
discuss relaxation (thermalization) on timescales beyond
t∞, which will reveal interesting new phase transitions.
Because the state reached (at nonsmall times) is akin to a
random state, one has good self-averaging properties in the
thermodynamic limit; thus, other measures of entangle-
ment, like the von Neumann entropy of the Rényi entropies,
will behave similarly to the above S2ðtÞ; see Appendix F 1
for an explicit numerical demonstration. Also, because the
variance of IðtÞ between different circuit realizations is
small in the TDL, one can also study the average IðtÞ, i.e.,
averaging over different realizations of single-qubit uni-
taries Vj. Such averaging is crucial to get an analytically
tractable setting, and next, we describe the formalism used
for that purpose.
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B. Markov chain description

Asmentioned, one can describe [23] the average dynamics
of ρ2A, i.e., of squares of the expansion coefficients of ρA, by a
Markovian matrixMi;j that describes the averaged action of
one 2-qubit gate Ui;j. Such a description has been widely
used, e.g., Refs. [24,25,30,31,33], for random U(4) gates or
for Clifford gates (gates that map a product of Pauli matrices
to a single product of Pauli matrices, examples being the
CNOT or the XY gate). Recently, a different approach has
been taken [27] in which one directly describes the evolution
of purity for all possible bipartitions rather than of ρ2A. This
approach allows one to describe purity evolution for a
protocol with an arbitrary 2-qubit gate Wi;j. As we shall
see, despite beingmoregeneral and formally different, for the
cases where the old method works (Clifford gates), this
approach will result in the very same transfer matrixMi;j as
obtained in Ref. [24].
One starts by formally defining a Hilbert space with basis

jsi, where s ¼ ðs1; s2;…; snÞ with si ∈ f↑;↓g. A given s
encodes a bipartition; that is, if si ¼ ↑, the ith qubit is in
subsystem A, and otherwise, it is in B. A state vector whose
evolution we want to describe is then defined as

Φ0ðtÞ ¼
X
s

IsðtÞjsi; ð10Þ

where IsðtÞ is the purity of a state jψðtÞi for a given
bipartition labeled by s. The state Φ0ðtÞ therefore implicitly
depends on the initial state—for the most interesting, fully
separable, initial state jψð0Þi, the initial Φ0ð0Þ≡Φ0

0 is
simply Φ0

0 ¼ ðj↑i þ j↓iÞ⊗n. Averaging over two 1-qubit
random matrices Vi and Vj, it has been shown [27] that the
vector Φ0 is mapped to M0

i;jΦ0 (see also Appendix A).
Repeating this step for all T 2-qubit unitaries (each
involving independent 1-qubit random unitaries) that are
applied per unit of time, we get the transformation

Φ0ðtþ 1Þ ¼ M0Φ0ðtÞ; M0 ¼
YT
ði;jÞ

M0
i;j: ð11Þ

The dynamics of purity—the expansion coefficients of
Φ0ðtÞ—is therefore given by iterating a single-step transfer
matrix M0 describing the Markovian average purity evo-
lution. To get purity for the most interesting, symmetric,
half-half bipartition, one just has to project Φ0ðtÞ to the
basis state j↑…↑↓…↓i. Slightly abusing notation and
defining the initial vector Φ0

0 ¼ ð1; 1;…; 1Þ and the bipar-
tition basis vector Φ0

half with components ½Φ0
half �k ¼ δk;2n=2 ,

we have the average purity after t steps,

IðtÞ ¼ Φ0
halfðM0ÞtΦ0

0: ð12Þ
The 4 × 4matrixM0

i;j can be calculated for an arbitraryWi;j

in its canonical form wðaÞ [Eq. (3)]. Following the
procedure in Ref. [27], we obtain (Appendix A)

M0
i;j ¼

0
BBB@

1 0 0 0

h bþ b− h

h b− bþ h

0 0 0 1

1
CCCA; b� ¼ 1

36
ð3� 6uþ 5vÞ;

ð13Þ
where the basis is ordered as sisj ¼ f↑↑;↑↓;↓↑;↓↓g, and
h ¼ 1

9
ð3 − vÞ, u ¼ cos ðπaxÞ þ cos ðπayÞ þ cos ðπazÞ and

v¼ cos ðπaxÞcos ðπayÞþ cos ðπaxÞcos ðπazÞþ cos ðπayÞ×
cos ðπazÞ. For instance, for the XY gate, we have
u ¼ v ¼ −1, resulting in

M0
i;jðXYÞ ¼

1

9

0
BBB@

9 0 0 0

4 −2 1 4

4 1 −2 4

0 0 0 9

1
CCCA: ð14Þ

Not surprisingly, because of local unitary averaging, the
parameters h, u, v can be related to known 2-qubit gate
objects. Specifically, one has h ¼ 2eðWÞ, where eðUÞ is the
entangling power [58] of unitaryU, while v itself is equal to
the local invariantG2 [59,60].Note, though, that knowing the
two-site properties of the gateW does not help us understand
the entanglement generating properties of the whole circuit.
As we will see, the latter is a full many-body property (the
interesting effects that we discuss only arise in the TDL) and
also crucially depends on the configuration, not just on the
choice of a 2-qubit gate. For instance, the entangling power
[61] ofW ismaximal for theXYaswell as for theCNOTgate,
and continuously decreases with az for the XXZ gate. On the
other hand, our results show that, in themany-body setting of
random circuits, the CNOT gate is, for instance, more than 4
times slower than theXYgate (Table II) and that, for theXXZ
gate, the rate does not depend on az.
We observe that the matrixM0

i;j is not symmetric. Often,
it is easier to work with symmetric matrices, and it turns
out that it is possible to transform M0

i;j to a symmetric
form. Such transformation will make symmetries more
transparent and facilitate comparison with previous
Markovian descriptions of random circuits. We can obtain
the symmetric form with a similarity transformation
Mi;j ¼ A−1

i A−1
j M0

i;jAiAj, where

Ai ¼
�
1 −1=

ffiffiffi
3

p

1 1=
ffiffiffi
3

p
�
; ð15Þ

arriving at

Mi;j ¼

0
BBBBB@

1
36
ð33þ vÞ 0 0 1

12
ð3 − vÞ

0 uþ u− 0

0 u− uþ 0

1
12
ð3 − vÞ 0 0 1

4
ð1þ vÞ

1
CCCCCA
; ð16Þ
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where u� ¼ ð3� uÞ=6. This elementary two-site matrix
can be equivalently written in terms of Pauli matrices,

Mi;j ¼ d1þ Jxσxi σ
x
j þ Jyσ

y
i σ

y
j þ Jzσziσ

z
j þ

h
2
ðσzi þ σzjÞ;

ð17Þ

where d ¼ ð39þ 6uþ 5vÞ=72, Jx ¼ ð9 − 2u − vÞ=24,
Jy ¼ ð3 − 2uþ vÞ=24, Jz ¼ ð3 − 6uþ 5vÞ=72, and
h ¼ ð3 − vÞ=9. For the XY gate, it is equal to

Mi;jðXYÞ ¼
1

9

0
BBB@

8 0 0 3

0 3 6 0

0 6 3 0

3 0 0 0

1
CCCA: ð18Þ

Observe that even if one starts with a noninteracting gate
like the XY, the resulting M is interacting (Jz ≠ 0). For
Clifford gates, e.g., CNOT and XY, this is, in fact, the same
transfer matrix as the one already derived in Ref. [24]. The
new mapping [27] that we use therefore generalizes
the Markovian mapping to non-Clifford gates. As a side
note, the transfer matrixMi;j for a random U(4) gate [24] is
obtained by formally using u ¼ 0 and v ¼ −3=5 in Eq. (17).
The similarity transformation A preserves the spectrum

—the spectrum of M is the same as that of M0; only the
vectors have to be transformed. Similarly as in Eq. (11), we
use M to denote a product of T 2-qubit Mi;j appearing in
one unit of time. We use a prime to denote matrices and
vectors written in the (unrotated) basis jsi, like M0

i;j or
Φ0ðtÞ, whereas unprimed objects, like Mi;j or ΦðtÞ, are in
the basis transformed by A (where needed, we denote
the basis vectors of this space by ek). For instance, the
initial vector corresponding to a product initial state Φ0

0

is transformed to Φ0 ¼ ðA−1Þ⊗nΦ0
0 and has components

Φ0 ¼ ð1; 0;…; 0Þ, while Φhalf ¼ ðATÞ⊗nΦ0
half . A boldface

notation is used to stress that a vector (components) is
written in a given basis, like Φ0, while Φ0 is used for a
basis-independent ket notation. The average purity after t
periods of our random circuits in this new basis is IðtÞ ¼
ΦhalfMtΦ0. For a symmetric bipartition and a product
initial state, because of the structure ofΦ0 andΦhalf , purity
is determined by one column ofMt or, equivalently, by one
row of ðM0Þt. Because of a block structure of Mi;j

[Eq. (16)], it is also clear that M conserves the parity Z ¼
ð−1ÞN↓ ¼ Q

j σ
z
j of a vector jΦðtÞi, i.e., the number of

down spins N↓. Because the initial state in the primed
basis jΦ0

0i is invariant under the particle-hole transforma-
tion (i.e., spin-flip), XjΦ0

0i ¼ jΦ0
0i, where X ¼ Q

j σ
x
j

(this is because the purity is invariant under exchanging
subsystems A ↔ B), the parity of the initial jΦ0i is always
even (evenN↓). Indeed, ifXjΦ0

0i ¼ jΦ0
0i, thenXA⊗njΦ0i ¼

A⊗njΦ0i, leading to ðA−1Þ⊗nXA⊗njΦ0i¼ jΦ0i. Because

A−1
j σxjAj¼σzj, one immediately gets ð−1ÞN↓ jΦ0i ¼ jΦ0i.

The relevant parity sector of M describing purity evolution
of physical jΦ0i is therefore the onewith an even number of
down spins. We note that, in some cases, other additional
symmetries are present. For instance, for BWprotocol with
PBC and n divisible by 4 one also has a reflection
symmetry about the site n=2 and the translation symmetry
by two sites.
Another useful observation is that Mi;j has eigenvectors

that are independent of gate parameters u and v, namely,

v1 ¼ ð3; 0; 0; 1Þ; λ ¼ 1;

v2 ¼ ð0; 1; 1; 0Þ; λ ¼ 1;

v3 ¼ ð0;−1; 1; 0Þ; λ ¼ u=3;

v4 ¼ ð−1; 0; 0; 3Þ; λ ¼ ð3þ 5vÞ=18: ð19Þ

One consequence of this is thatM always has (at least) two
eigenvalues equal to λ1 ¼ 1. The corresponding eigenvec-
tors are steady states and are also independent of the gate
W, which is consistent with the asymptotic convergence to
purity of random states. The physically relevant steady-
state vector Φ0

∞, i.e., the even-parity eigenvector of M0
with λ1 ¼ 1, has components equal to I∞ [Eq. (6)],

jΦ0
∞i ¼

X
s

Isð∞Þjsi: ð20Þ

One can indeed use the above one-site eigenvectors v1;2 to
construct the steady state on n qubits and explicitly verify
I∞ (see Appendix B). The steady state (20) can also be
written compactly as a matrix product state of rank 2; see
Appendix C.
Time evolution of the average purity is therefore

Markovian [Eq. (11)], i.e., there is no memory. The
transition matrix, either M0 or M [Eqs. (13) and (16)],
is, however, not stochastic (rows do not sum to 1) and
therefore does not describe transition probabilities. The
probabilistic interpretation is recovered if one works with
squares of the expansion coefficients of the state ρ on the
original full 16-dimensional two-site Pauli basis [23];
however, it is lost if one uses reduction [24] down to four
nontrivial basis states that results inM [Eq. (18)] or directly
works with purity evolution [27].
Note that the transfer matrix for one step M is, in gen-

eral, not symmetric, even though the individual gates Mi;j

are. The spectrum of M is therefore complex and con-
tained within the unit circle. Provided the spectrum has a
gap (which is always the case for nontrivial gates), the next-
largest eigenvalue jλ2j should determine the asymptotic
decay of purity and therefore the growth of entanglement
[decay of IðtÞ]. Asymptotically, one should have

jIðtÞ − I∞j ≍ jλ2jt; ð21Þ
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where we denote by λ2 the largest eigenvalue that is smaller
than 1 (in absolute value). The corresponding entanglement
rate (1) would then be rE ¼ − ln jλ2j.
In the next section, we therefore study the gap of M

for various gates W and configurations and, in particular,
prove that there are large classes of configurations with
the same spectrum, which enables us to then find circuits
with the largest gap, i.e., the smallest jλ2j. However, it
turns out, surprisingly, that the entanglement rate is, in
fact, not given by jλ2j because of the nonsymmetric
nature of M. As we will show, one can have two
configurations with exactly the same spectrum but with
different entanglement rates (for example, taking XXZ
gates and comparing the S configuration with OBC, and
BW with OBC, see Table II). Nevertheless, the spectral
analysis suggests good candidates for optimal circuits.
Furthermore, the two theorems on spectral equivalence
are completely general and hold for products of any
matrices acting on nearest-neighbor sites (for PBC, the
matrices need to be symmetric) and could therefore be of
use in other situations.
Combining spectral results on λ2 from Sec. III and

numerically calculated true entanglement rates in Sec. IV
will result in the main message of our work: In a many-
body setting involving non-Hermitian transfer matrices,
spectral analysis can give the wrong results.

III. SPECTRAL OPTIMIZATION

In this section, we determine the protocol and the gate
with the smallest second-largest eigenvalue jλ2j, i.e., the
largest gap of M, in a 1D geometry where only local gates
between nearest-neighbor sites are allowed. Specifically, if
we have T distinct NN gates, i.e., T ¼ n − 1 for OBC and
T ¼ n for PBC, we find a sequence (configuration) of those
T gates among all T! different permutations as well as
among all possible choices of a 2-qubit gate Mi;iþ1 (held
fixed for all gates) that has the smallest jλ2j.
As mentioned, we treat chains with periodic boundary

conditions, where the gate Mn;1 is also allowed, and
chains with open boundary conditions. In both cases, we
first prove that, among all factorially many T! configu-
rations, there are only a few with different gaps. The
outline of proofs is to show that the spectrum of a
product of gates Mi;iþ1 does not change under certain
rearrangements (holding the two-site gate, i.e., Mi;j,
fixed), which then allows us to focus on equivalence
classes defined as an arrangement with the same spec-
trum. We use the equivalence notation A ≃ B if the
matrices A and B have the same spectrum. It turns out
that, for OBC, there is only one equivalence class, while
for PBC, there are bn=2c (bn=2c is the largest integer
smaller than or equal to n=2). This greatly reduces the
complexity and allows us to numerically find the optimal
configuration and the gate.

A. OBC protocols

For OBC, we have ðn − 1Þ! possible configurations;
however, all of them are spectrally equivalent. Namely, one
can prove the following theorem.
Theorem 1: Any product of n − 1 two-site matrices

acting on n − 1 distinct NN sites on a line (OBC protocol)
is spectrally equivalent to the canonical staircase configu-
ration (denoted, briefly, by S):

Sðn−1Þ1 ¼ Mn−1;n…M2;3M1;2: ð22Þ

The superscript in SðkÞj indicates the number of consecu-
tive gates in such canonical order, and the subscript j is
for the first site on which they act. For the proof that
uses the spectral equivalence under cyclic permutations,
ABC ≃ CAB, see Appendix D 1.
As a consequence, one can transform any configuration

with OBC to the canonical form S (see Fig. 3 for an
illustration) without affecting the spectrum ofM. For OBC,
there is thus a single spectral equivalence class, and we can
focus only on one representative S configuration; therefore,
we only need to find the optimal 2-qubit gate Mi;iþ1

[Eq. (16)]. Staircase configurations have been considered
before in, e.g., the context of operator spreading [5] or
complexity [64].
We have calculated the second-largest eigenvalue jλ2j of

M ¼ Sðn−1Þ1 for all of the different 2-qubit gates in the
canonical form. Results (see Fig. 20 in Appendix D 4) show
that the smallest eigenvalues jλ2j come from the region
around ax ¼ ay ¼ 1; az ¼ 0, which is the XY gate.
Looking more precisely at the n dependence for the XY
gate (Fig. 21), we find that, in the TDL, the S configuration
with OBC has

jλ2j ¼
1

4
: ð23Þ

Exploring the region around the XY gate, we find that the
same largest eigenvalue (23) is also achieved for suffi-
ciently small nonzero values of az and ax ¼ ay ¼ 1. In
Fig. 4, we can see that at az ¼ ac ≈ 0.32, the transition

FIG. 3. Transforming the initial configuration M ¼ M4;5 ×
M5;6M3;4M1;2M2;3 to the final S configuration preserves the
spectrum of M. For OBC, any configuration can be transformed
to S.
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happens in jλ2j, so the optimal jλ2j ¼ 1
4
is obtained for all

XXZ gates with az ≤ ac.

B. PBC protocols

The PBC case is a bit more complicated, resulting in
bn=2c spectral equivalence classes. Each class can be
labeled by an integer p ¼ 1;…; bn=2c denoting the maxi-
mal number of consecutive commuting gates in the
canonical representative configuration

Sðn−2pþ1Þ
2p Bð2p−1Þ

1 ; ð24Þ

where Bð2p−1Þ
1 is a brick-wall configuration made out of

2p − 1 gates (see Fig. 5 for an example),

Bð2p−1Þ
1 ¼ M2p−2;2p−1 � � �M4;5M2;3M2p−1;2p � � �M3;4M1;2:

ð25Þ

We note that BðnÞ
1 denotes the full BW configuration with

PBC, i.e., BðnÞ
1 ¼ Mn;1B

ð2bn=2c−1Þ
1 .

More precisely, the following theorem holds.

Theorem 2. Any product of n symmetric two-site
matrices acting on distinct NN on a circle (PBC configu-
ration) is spectrally equivalent to one of bn=2c canonical
configurations of the form (Fig. 6)

Sðn−2pþ1Þ
2p Bð2p−1Þ

1 : ð26Þ

The proof that uses cyclic permutations and the fact
that the spectra of A and AT are the same can be found
in Appendix D 2 [observe that our Mi;j in Eq. (16) are
symmetric matrices].
For PBC protocols, we therefore have to find the optimal

configuration among the bn=2c different ones, as well as the
optimal 2-qubit gate.We have numerically computed jλ2j for
small sizes n (see Appendix D 4 and Fig. 22). One observes
that fixing a 2-qubit gate (canonical parameters ax; ay; az)
and n, the gap always monotonically increases as we change
the equivalence class from p ¼ 1 top ¼ bn=2c. In the TDL,
configurations in the class p ¼ 1 have the smallest gap, and
those in p ¼ bn=2c have the largest. Focusing on the region
around theXY gate, we see that, in the TDL and forp ¼ 1 as
well as for p ¼ bn=2c, the fastest gate is obtained for az ¼
0; ax ¼ ay ¼ 1 (Figs. 23 and 24 in Appendix D 4), which is
the XY gate. Analyzing the dependence on n (Fig. 21 in
Appendix D 4), we get that, in the TDL, the eigenvalue is

jλ2j ¼
1

9
; BW with PBC; ð27Þ

for the fastest class p ¼ bn=2c, and

jλ2j ¼
1

3
; S with PBC; ð28Þ

for the slowestp ¼ 1, whichwe simply call S PBC.Contrary
to theOBCcase, the smallest eigenvalue jλ2j is achieved only
at a single point ax ¼ ay ¼ 1, az ¼ 0. For the XXZ gate, the

FIG. 5. Brick-wall configuration Bð3Þ
1 with three gates, i.e.,

Bð2p−1Þ
1 with p ¼ 2.

FIG. 6. Spectrally equivalent configurations for PBC protocols.
In the example with n ¼ 8, there are just four classes labeled by
p ¼ 1;…; 4. The specific configuration shown in the left can be

transformed to Sð3Þ6 Bð5Þ
1 with p ¼ 3 (red arrow).

FIG. 4. jλ2j for the XXZ gate [Eq. (4)]. Symbols are numerical
data for n ¼ 16, while dashed curves are results in the TDL
(obtained by extrapolation, like in Fig. 21). For az ¼ 1, all three
cases converge to a nonentangling SWAP gate with λ2 ¼ 1. For
the BW configuration with PBC (“fastest” class p ¼ bn=2c), and
for the S configuration with PBC (“slowest” PBC class p ¼ 1),
the dependence is smooth. For the OBC (all configurations
are equivalent), the gap does not change until a transition
at az ¼ ac ≈ 0.32.
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gap smoothly decreases as one moves away from az ¼ 0;
see Fig. 4.
Among all OBC and PBC protocols, the one with the

largest gap, and therefore the fastest expected entanglement
generation, is the BW with PBC and the XY gate for which
jλ2j ¼ 1=9. While we use numerics to obtain this value, we
can, in fact, rigorously show (see Appendix D 3) that λ ¼
1=9 is in the spectrum of M for p ¼ bn=2c, which implies
an exact relation jλ2j ≥ 1=9. Proving analytically that jλ2j is
1=3, 1=4, and 1=9 for the XY gate and PBC S, OBC, and
PBC BW, respectively (Fig. 4), is an interesting open
problem.
Note that the same eigenvalues λ2 ¼ 1=3; 1=4; 1=9 are

also the leading nontrivial eigenvalues of the Markovian
matrix propagating OTOCs [19].

IV. ENTANGLEMENT GENERATION SPEED

In the previous section, we identified gates and con-
figurations that have the smallest jλ2j and are therefore
expected to have the fastest asymptotic entanglement
generation rate rE. Comparing the spectral gap for the S
configuration between PBC and OBC (Table II), we see
that the gap is larger for the OBC than for the PBC. If the
gap was the end of the story, that would mean that the
entanglement generation rate would be larger for the OBC
than for the PBC, which would be odd as one would expect
exactly the opposite. For symmetric bipartition, one has
two cuts for the PBC and only one for the OBC; therefore,
the rate should be twice as large for PBC than for OBC. A
faster rate for the OBC would mean that applying less gates
across the cut would produce more entanglement. In this
section, we see that numerically analyzing the true entan-
glement rate will rectify this odd spectral situation—for
OBC, the true rate will be slower than suggested by jλ2j; for
PBC, it will be faster than jλ2j, such that, at the end, the
ratio of the two is recovered at the expected value 2.
For all extremal random circuits, either the fastest (BW)

or the slowest in its class (the S configuration), the relevant
entanglement rate rE on times smaller than the thermal-
ization time t∞ [Eq. (8)] is, surprisingly, not necessarily
given by − ln jλ2j despite jλ2j being gapped away from
other eigenvalues. In other words, the time t∞ at which S2
reaches its random-state saturation value of ∼n=2 is not
equal to t∞ ¼ n=ð−2 log2 jλ2jÞ. It can be either larger
because of a phantom eigenvalue—a phenomenon where
exponentially large expansion coefficients mimic a fake
eigenvalue larger than jλ2j—or smaller, again because of
exponentially large coefficients in front of eigenvalues that
are smaller than jλ2j. As we shall see, the culprit lies in the
non-Hermiticity of the transfer matrixM. A quick overview
of our results for extremal circuits that we focus on can be
found in Table III.
Non-Hermiticity is important for the following reason.

The spectral decomposition of a non-Hermitian operatorM
has the form (assuming diagonalizability)

M ¼
X
j

λjjRjihLjj; hLjjRki ¼ δj;k; ð29Þ

where λj are, in general, complex eigenvalues, while jRji
and jLji are the associated right and left eigenvectors.
Importantly, left and right eigenvectors are mutually
orthogonal; however, left and right eigenvectors are not
orthogonal between themselves. Expanding the initial state
jΦ0i over a nonorthogonal basis jRji, we have

jΦðtÞi ¼
X
j

cjλtjjRji; cj ¼ hLjjΦ0i: ð30Þ

If M were Hermitian (having orthogonal jRji), the tri-
angle inequality would bound jcjj2 ≤ hΦ0jΦ0i. For non-
Hermitian M, no such bound exists, and the expansion
coefficient cj can be arbitrarily big (see, e.g., Ref. [65] for a
simple Ising chain in a tilted field with an imaginary
component, where the eigenvectors effectively span a sub-
space of lower dimension and thus the expansion coeffi-
cients can become large; see also the Lindblad case in
Ref. [20]). This is precisely what will happen for our random
circuits. Exponentially large (in n) coefficients cj>2 will
dominate over the term c2λt2 for times t < t∞, causing the
entanglement rate rE to be larger than− log jλ2j. In one case,
the entanglement ratewill be smaller than− log jλ2j, i.e., like
there is a “phantom” eigenvalue larger than jλ2j, which we
explain below.
To calculate the correct entanglement rate, we use numeri-

cal simulations to get IðtÞ, or closely relatedΔS2ðtÞ [Eq. (9)].
We use two methods with the goal of simulating as large a
system as possible, which turns out to be important as the
multistage thermalization reveals itself clearly only in
relatively large systems—simulating systems with, e.g., just
n ¼ 16 qubits, one could easily miss it. The first method
works by directly iterating the full state jΦðtÞi, obtaining

IðtÞ − I∞ ¼ Φhalf ·Mt · ðΦ0 −Φ∞Þ; ð31Þ

whereΦ∞ ¼ ðA−1Þ⊗nΦ0
∞ [Eq. (20)]. We use such iteration

to obtain the exact ΔS2ðtÞ for n ≤ 34. For larger circuits,

TABLE III. Origin of the entanglement rate. “Phantom”
denotes a phantom eigenvalue resulting in a slower entanglement
generation than given by jλ2j, “faster” denotes cases with faster
generation than given by jλ2j, and λ2 is for the one case where the
rate is actually determined by jλ2j.
Configuration Gate

XY, az ¼ 0 XXZ, az ∈ ð0; 1Þ
BW OBC λ2 λ2 [az ∈ ð0; acÞ], faster
BW PBC Faster Faster
S OBC Phantom Phantom, faster
S PBC Faster Faster
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memory requirements of the exact method become prohibi-
tive, and we use the matrix product state (MPS) ansatz for a
more memory-efficient representation of jΦ0ðtÞi. While the
MPS method [66] allows us to study large systems, it has its
limitation beyond timeswhen S2 becomes too large. Namely,
when, e.g., S2 ∼ 50, the floating-point double-precision
“noise” of size 10−15 ≈ 2−50 becomes comparable to IðtÞ,
making further simulation hard despite using large MPS
bond dimensions up to 1500.
The main part of this section is devoted to the brick-wall

configuration (Sec. IVA) and to the staircase configuration
(Sec. IV B), both for the XXZ gate. In Sec. IV C, we briefly
demonstrate that the same phenomena are also observed for
generic fixed gates as well as for the random U(4) gates. In
Sec. IV D, we touch upon the experimentally relevant
Sycamore processor that uses a 2D layout of qubits.

A. Fastest scrambler

Let us first look at the fastest random circuits, namely,
the BW configuration for which the spectral analysis would
predict rE ¼ ln 9 for the XY gate and PBC, and rE ¼ ln 4
for the XY with OBC. The BW configuration with an
appropriate gate type that we identify turns out to be
the fastest possible entanglement scrambler saturating
the theoretical upper bound on the entanglement speed
in Eq. (2).
In the following, we show a number of figures of the

same type, which demonstrate the asymptotic entanglement
rate and a multistage thermalization. Let us describe
what those figures show. The main quantity is the local
entanglement rate rE, which is equal to the local slope of
ΔS2ðtÞ ¼ − ln jIðtÞ − I∞j. Specifically, from numerical
data, we plot

rEðtþ 1
2
Þ

ln 2
¼ log2

���� IðtÞ − I∞
Iðtþ 1Þ − I∞

����: ð32Þ

We use base-2 logarithms so that, for qubits, the theoretical
upper bound on the rate is an integer (2 or 4 depending on
boundary conditions). In addition, we show plots of purity
− log2 IðtÞ as well as purity with a subtracted asymptotic
saturation value I∞, i.e., − log2 jIðtÞ − I∞j.
In Fig. 7, we show results of numerical simulations for

the BW configuration with the XXZ gate and PBC. In
frame (a), we show the XY gate (az ¼ 0), whereas in (b)
and (c), a more general XXZ gate with az ¼ 0.5 is shown.
The behavior is similar for any az < 1 (az ¼ 1 corresponds
to the SWAP gate, which does not generate any entangle-
ment). We can see from the purity plot in Fig. 7(c) that there
is a kink—a change in the entanglement growth rate—at
the point when IðtÞ gets close to I∞ (dashed saturating
curves). The change in rE is also clearly seen in Fig. 7(b).
Regardless of az, the rate in the TDL increases towards 4
for times smaller than the saturation time t∞ (note that
we rescale the time axis by nA ¼ n=2). However, the

convergence with n is rather slow. If one were to look only
at small n, one could be misled into thinking that the rate is
given by rE ¼ − ln jλ2j [n ¼ 34 in Fig. 7(a)]; however, at
larger n, the initial bump gets higher and moves to smaller
times. The rate is therefore not determined by λ2 and equal
to − ln jλ2j but is instead larger. For instance, for az ¼ 0, we
have λ2 ¼ 1

9
, while the rate converges with n towards ln 16

[Fig. 7(a)]. This case is perhaps even more clear for az ¼
0.5 in Fig. 7(b). Based on the data, we therefore conjecture
the following scenario in the TDL, which holds for any
az < 1: The rate is rE ¼ ln 16 for t ≤ t∞ ¼ 1

4
nA, at which

point there is a discontinuous transition in the rate to a
smaller value determined by the second-largest eigenvalue
jλ2j. For any zero or nonzero az < 1, there is one discon-
tinuous phase transition in the local rate at the critical time
tc ¼ 1

4
nA, which is reflected in the phase diagram shown in

Fig. 9(a). The relaxation process has two phases: In the first
faster phase, whose entanglement rate is in the TDL
independent of az (even if we are very close to a non-
entangling SWAP gate), one approaches a random state; in
the second, which starts at tc ¼ t∞ ¼ nA=ð2AÞ when the
state is already close to random, the relaxation is slower and
determined by − ln jλ2j. Therefore, the physically relevant
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FIG. 7. Local entanglement rate rE for the BW configuration
with PBC. Panel (a) is for az ¼ 0 (the XY gate), and (b) and (c)
are for az ¼ 0.5. The full black line in panel (a) is a conjectured
rE in the TDL, which has a discontinuous jump from 4 for t ≤
tc ¼ t∞ to a smaller value given by λ2. In panel (c), dotted curves
are − log2 IðtÞ and full curves − log2 jIðtÞ − I∞j, while the
transition times tc for n ¼ 100 and 200 are marked by full
circles. The dashed brown line in panels (a) and (b) agrees with
− log2 jλ2j from Fig. 4.
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entanglement generation rate that determines how long it
takes to generate all ∼ðn=2Þ bits of entanglement is not
determined by the matrix gap, but rather, it is equal to ln16.
By studying the spectrum of M (in the even sector) and

the relevant overlaps with Φ0 and Φhalf [Eq. (31)] that
appear in the spectral expansion

IðtÞ ¼ I∞ þ
X∞
j¼2

djλtj; dj ¼ hΦhalf jRjihLjjΦ0i; ð33Þ

we can identify the leading terms in the sum. Focusing
on az ¼ 0, there is exactly one with jλ2j ≈ 1

9
and

ðn − 4Þ=4 with jλjj ≈ 1
16
. The weight dj of terms with

λj ∼ 1=16 grows with n, albeit first for small n rather slowly
[see, e.g., slow convergence with n in Fig. 7(a)].
Nevertheless, for large n, the terms d3ð 116Þt overwhelm

the “leading” d2ð19Þt; this happens roughly when the ratio
d3=d2 ∼ ð16=9Þn=8 ≈ 1.07n gets large.
Data for the BW with OBC are shown in Fig. 8. For

az ¼ 0, the rate is in the TDL rE ¼ 2 ln 2 for any t, which is
in line with the fact that, in this case, jλ2j ¼ 1

4
; therefore, one

has rE ¼ − ln jλ2j. Out of the four cases studied, BW and S
with OBC or PBC, this case is the only one where the
gap determines the entanglement rate. Apparent singular-
ities in the rate at integer t=nA, visible in Fig. 8(a), are due
to a sign change in the IðtÞ − I∞, which is also visible as
sharp kinks in − log2 jIðtÞ − I∞j plotted in frame (b). The
case of nonzero az is different. As we have seen in Fig. 4,
for az < ac, the gap for the OBC does not change with az,
while for az > ac ≈ 0.32, it starts to decrease, which, in
turn, is also reflected in the local entanglement rate rE at
t > tc. Up to the thermalization time t∞, the rate stays
at 2 ln 2 and is therefore not equal to − ln jλ2j for az > ac,
while at tc ¼ t∞ ¼ nA=2, the rate jumps to − ln jλ2j
[Fig. 8(c)]. This change in the rate is continuous at az ¼
ac but discontinuous for az > ac. Correspondingly, ΔS2ðtÞ
[Eq. (9)] exhibits a kink at tc [Fig. 8(d)]. It is worth noting
that while in the scaled time t=nA the rate in the TDL will
be ln 4 already at t=nA → 0 [Fig. 8(c)], in real time t, there
is a “delay” of about Δt ≈ 15 before the rate becomes
approximately ln 4 [slower initial growth in Fig. 8(d)]. The
dependence of rE on az for BW with OBC is shown in the
phase diagram in Fig. 9(b).
The BW configuration with the XXZ gate is the fastest

entanglement scrambler. Considering that λ2 does not give
the correct rate, one might wonder whether some other
gate, which did not look optimal according to λ2 in Sec. III,
could be even better. The answer is no because the rates 4
and 2 for PBC and OBC, respectively, saturate the bound in
Eq. (2). There are no better scramblers. What could, in
principle, happen (but we think is unlikely) is that for some
other canonical gate with parameters a different from XXZ,
one would get the same maximal rate. For instance, for
a ¼ ð0.9; 0.8; 0.5Þ with BW PBC, one again has a faster
rate than given by jλ2j, though at approximately 2.77 it is
smaller than 4 (see Sec. IV C for more details).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2

r E
/ln

(2
)

t /nA

n=100,50,34,26

 0

 20

 40

 60

 0  5  10  15  20  25  30

-log2|I|

-lo
g 2|

I-
I ∞

|

t

n=100
50
34
26
2t

 0

 20

 40

 60

 0  5  10  15  20  25  30

-log2|I|

-lo
g 2|

I-
I ∞

|

t

(a)

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

-log2|λ2|

n=26,34,50,100

r E
/ln

(2
)

t/nA

 0

 25

 50

 0  5  10  15  20  25  30  35

-log2|I| 26

34

50

100

-lo
g 2|

I-
I ∞

|

t

 0

 25

 50

 0  5  10  15  20  25  30  35

-log2|I| 26

34

50

100

-lo
g 2|

I-
I ∞

|

t

2 t
1.2 t+8

(c)

(d)

FIG. 8. Entanglement rate for the BWand OBC. Panels (a) and
(b) are for az ¼ 0 (the XY gate), and (c) and (d) are for az ¼ 0.5.
For az ¼ 0, the local rate is always equal to ln 4 in the TDL. For
az ¼ 0.5, the conjectured rate in the TDL [full black line in (c)] is
ln 4 for t < tc ¼ t∞ ¼ nA=2 and smaller − ln jλ2j for t > tc. The
dashed brown line in panel (c) is at 1.2 and is approximately equal
to − ln2 jλ2j from Fig. 4.

(a) (b)

FIG. 9. Phase diagram of the local entanglement rate rE for the
BW configuration. (a) For PBC, there is one phase transition;
(b) for OBC, there is, again, one discontinuous transition for
az > ac ≈ 0.32. The brown dashed vertical line at az ¼ 1
indicates a nonentangling SWAP gate.
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B. Slow scramblers

Here, we discuss the S configuration [Fig. 2(b)], which is
also an extremal configuration in the spectral sense.
Namely, for PBC, its jλ2j is the largest among all configu-
rations with PBC (spectral equivalence class p ¼ 1). Note
that we do not discuss the slowest scramblers in the
absolute sense here because we still use the fastest gate
within the class p ¼ 1 (XXZ). For instance (Table II), XXZ
with S and OBC is still faster than CNOT (“slow gate”)
with BW and PBC (fastest configuration). We expect the
same behavior that we reveal here for p ¼ 1 to also hold in
the TDL for any finite p, i.e., for a spectral class that
consists of a finite BW section and an extensive S part.
Let us first have a look at the S configuration with PBC.

Results are shown in Fig. 10. We can see that, similarly to
the BW with PBC, the entanglement rate rE is larger than
− ln jλ2j. Specifically, for az ¼ 0, one has − ln jλ2j ¼ ln 3
while the rate is rE ¼ ln 4 [Figs. 10(a) and 10(b)]. While the
numerical results are not very clear, perhaps for az ¼ 0 the
rate also converges in the TDL to rE ¼ ln 4 for times t > t∞
so that there is no phase transition. On the other hand, for

nonzero az, one has a phase transition in the rate from the
initial rE ¼ ln 4 to a smaller rate given by the spectral gap,
Fig. 10(c). For az ¼ 0.5, the phase transition seems to
happen at a distinctively larger time tc than the thermal-
ization time t∞ [see Fig. 10(d)], while at larger az—for
instance, az ¼ 0.7 (data not shown)—it is very close to
t∞ ¼ nA=2. As opposed to the BW configuration, here the
convergence with n towards the TDL rate ln 4 is much
faster, so there is almost no delay in the time when purity
starts to follow the asymptotics [Figs. 10(b) and 10(d)]. A
conjectured phase diagram is sketched in Fig. 11(a).
The explanation for such larger entanglement rates is

similar to the BW configuration with PBC, though some
details are different. The even-parity spectrum of M for
n ¼ 12 is shown in Fig. 12. Besides the steady state giving
I∞ (blue point), one has n − 1 nondegenerate eigenvalues
(λ2) distributed around the circle with radius 1

3
(in the TDL,

Fig. 4) and ðn − 1Þðn − 4Þ=2 eigenvalues around the circle
of smaller radius 1

4
[those are grouped into n − 1 in the TDL

degenerate clusters, each having ðn − 4Þ=2 eigenvalues,
e.g., 4 for the n ¼ 12 example in Fig. 12]. In the TDL,
though, not all eigenvalues contribute in the purity expan-
sion [Eq. (33)]. It turns out that only those on the real
axis contribute, that is, one with λ2 ¼ 1

3
(orange point) and

ðn − 6Þ=2 with λj ¼ 1
4
(red point). The relative weight

dj=d2 of relevant eigenvalues 1
4
grows with n, which is

how the faster entanglement rate rE ¼ ln 4 emerges in
the TDL.

(a) (b)

FIG. 11. Phase diagram of rE for the staircase configuration.
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FIG. 10. (a,b) Entanglement rate for the S configuration with
PBC and az ¼ 0, and (c,d) az ¼ 0.5. At az ¼ 0, the rate is always
rE ¼ 2 ln 2, and it is larger than − ln jλ2j. At nonzero az, there is a
phase transition from rE ¼ ln 4 for t < tc to − ln jλ2j at larger
times. The transition appears to happen at larger t=nA than 0.5
(here, around tc=nA ≈ 0.6). The brown dashed line at 0.60 is in
line with jλ2j ≈ 0.66 from Fig. 4.
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FIG. 12. Spectrum of M for S and PBC, az ¼ 0 and n ¼ 12.
There are n − 1 eigenvalues with jλjj → 1

3
[black dots on the

larger (orange) circle] and ðn − 1Þðn − 4Þ=2 with jλjj → 1
4
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4Þ=2 close eigenvalues]. The leading contribution to IðtÞ comes
from one eigenvalue with λk ¼ 1
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(orange point) and ðn − 6Þ=2

eigenvalues with λk ¼ 1
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(the red point represents three almost

degenerate eigenvalues).
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Configuration S with OBC is even more interesting. In
Fig. 13, we show numerical results for rE [Eq. (32)]. The
rate is rE ¼ ln 2 and is therefore smaller than ln 4 as
suggested by the gap. For az ¼ 0, such a rate persists
for any finite time t=nA; however, looking at IðtÞ − I∞
[Fig. 13(b)], we note that there are discontinuous jumps at
integer t=nA, the size of which increases with n. At such
times, purity IðtÞ closes in on its asymptotic value I∞ by a
finite amount (that increases with n) in a single time step.
For nonzero az ¼ 0.5, the situation is similar, with the
difference being that the rate at t > tc ¼ nA jumps to
smaller values than ln 2 [Fig. 13(c)]. In this case, though,
the rate after tc is not simply equal to − ln jλ2j as in other
cases studied.
The explanation of how one can get a slower rate rE ¼

ln 2, despite all nontrivial eigenvalues ofM being jλ2j ≤ 1
4
, is

very interesting and is illustrated in Fig. 14. In frame (a), we
can see that there are n − 1 eigenvalues with jλjj ¼ 1

4
;

however, only n=2 have nonzero overlap with the initial
vector [red points in (b)]. The size jcjj of those coefficients

grows exponentially with n, and they come in conjugate
pairs. The resulting expression for purity is therefore of the
form IðtÞ − I∞ ≈

Pn=2þ1
k¼2 jdkj · jλkjt cos ðφktþ αkÞ, where

φk is the phase of λk and αk the phase of dk. Coefficients dk,
Eq. (33), are such that the corresponding sum, including
cosine terms, mimics exponential growth ∼2t up to time
t ¼ n=2, when it discontinuously jumps to 0 in a single unit
of time [frame (c)]. The end result is that their growth 2t

partially cancels ð1
4
Þt from the actual eigenvalues, resulting in

a decay ð1
2
Þt, as therewould be a phantomeigenvalue of size 1

2
.

Again, this is only possible because of the non-HermitianM
whose eigenvectors are not orthogonal. The size of discon-
tinuous jumps in panel (c) grows exponentially with n and is
responsible for the jumps that we observed in Fig. 13(b).
In Fig. 14(d), we see how this is reflected in IðtÞ:

Discontinuous jumps are such that on times larger than
t∞ ¼ n=2, one actually obtains an overallΔS2ðtÞ ≍ t ln 4 as
predicted from λ2; however, in the TDL, the time t∞ is
pushed to infinity, and the physically relevant entanglement
rate towards random-state entanglement is instead given by
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the phantom eigenvalue 1
2
. Note that even though the local

entanglement rate is, for noninteger t=nA, always ln 2,
because of discontinuities in IðtÞ at integer t=nA, the overall
growth of ΔS2ðtÞ for az ¼ 0 is given by ln 4 and not the
local rate [Fig. 14(d)]. For az > ac ≈ 0.32, when jλ2j
moves, the local rate at t > tc ¼ nA also decreases; see
Fig. 13(c). However, it is not equal to − ln jλ2j (the rate
decreases from ln 2, whereas the eigenvalue decreases from
ln 4). Note that rE ¼ ln 2 for all az < 1 regardless of jλ2j
increasing with az (Fig. 4). This is all reflected in the phase
diagram in Fig. 11(b).
We remark that one could, in principle, get a slower

effective decay than jλ2jt for special initial states that would
have a very small overlap with the corresponding eigen-
vector; in the asymmetric simple exclusion process that
exhibits a cutoff [67] such states are those with an extensive
empty or occupied sections. However, this is not what
happens in our case; we get such a phantom eigenvalue
decay for the relevant initial state, i.e., generic bipartition
(provided nA is extensive). The origin of the slower decay
is different in our case. It is the left and right eigenvectors
corresponding to jλjj ≈ 1=4 [red points in Fig. 14(a)]
that must be special as they are the ones that mimic the
exponential function [Fig. 14(c)].
We have seen that, in most of the circuits we studied, the

relevant entanglement rate rE is not given by the largest
nontrivial eigenvalue of M. The ratio of ln jλ2j between the
PBC and theOBC (Table II) for a fixedW is not equal to 2 for
the BW configuration or for the S; in particular, it changes
with theaz of the XXZgate. However, the correct rates rE we
identified in this section are always in the expected ratio of
2∶1 for the two boundary conditions. Rates that are different
than− ln jλ2j aremade possible because of the nonsymmetric
nature of M (despite individual gates Mi;j being symmetric
matrices), which results in expansion coefficients growing
withn. Another observation is that the ratio of rE between the
BW and S configurations for fixed W and boundary con-
ditions is always 2 for the XXZ gates, which, however, is not
the case for all 2-qubit gates [68].
It is worth noting that, in general, the exponential growth

of coefficients, in our case, cannot be traced to degener-
acies. For instance, taking a simple nonsymmetric 2 × 2
matrix

�
1 1 − ϵ

0 1 − ϵ

�
; ð34Þ

the eigenvalues are λ1 ¼ 1 and λ2 ¼ 1 − ϵ, with the asso-
ciated right eigenvectors x1 ¼ ð1; 0Þ and x2 ¼ ðϵ − 1; ϵÞ. In
the limit ϵ → 0, the two eigenvalues coalesce (an “excep-
tional point”; for ϵ ¼ 0, one has a nondiagonalizable Jordan
canonical form), and the right eigenvectors are almost
collinear. Expanding y ¼ ða; 1Þ over such a basis will result
in large expansion coefficients of the order of the inverse
eigenvalue separation that scales as 1=jλ1 − λ2j ∼ ð1=ϵÞ,

y ¼ ½a − 1þ ð1=ϵÞ�x1 þ ð1=ϵÞx2. While in some cases
one indeed has ∼n-fold degeneracy (S with PBC,
Fig. 12), in others, one does not [S with OBC, Fig. 14(a)].
Thus, it does not seem like the phenomena we found can be
simply ascribed to degeneracies.
The phantom eigenvalue phenomenon—and, more gen-

erally, of multistage relaxation in which the relaxation rate
exhibits a sudden transition—has been identified in random
circuits. Considering that random circuits are often used as
models of chaotic systems, one naturally asks if the random-
ness explicitly present in space and time due to random
1-qubit unitaries is actually necessary. A detailed study of
this interesting question goes beyond the present work;
however, we have numerically checked (see Appendix F 2)
that, in the TDL, one gets the same multistage thermalization
even in a single circuit realization and without randomness in
both space and time; i.e., one can use the same 1-qubit
unitary on all qubits and at all time steps.

C. Generic gates

So far, we have focused on the fastest 2-qubit gates in the
spectral equivalence class p ¼ 1 and p ¼ n=2, which turn
out to be the XXZ-type gates [Eq. (4)]. Random circuits
with XXZ gates are dual unitary; thus, one might naturally
ask if the observed multistage thermalization and phantom
eigenvalues are perhaps limited to (some) dual-unitary
circuits. The answer is no. All the phenomena we discussed
can occur in circuits that are not dual unitary, and this is
what we briefly demonstrate in this section. A full treat-
ment goes beyond the present paper, so we will only show
two examples.
The first is the case of the BW configuration with PBC

and a generic 2-qubit gate. We pick a completely aniso-
tropic non-dual-unitary gate with canonical parameters
a ¼ ð0.9; 0.8; 0.5Þ. In Fig. 15, we can see that one has
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FIG. 15. Entanglement rate for the BW configuration with
PBC and a 2-qubit gate with parameters a ¼ ð0.9; 0.8; 0.5Þ. One
has a multistage thermalization with rate rE= ln 2 ≈ 2.77 that is
nonmaximal (less than for XXZ gates) but still faster than the
one calculated from jλ2j [dashed brown line at approximately
1.34 in (a)].
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exactly the same phenomenology as for the XXZ gate
(compare with Fig. 7). Namely, in the thermodynamic limit,
the initial rate is larger than − ln jλ2j; therefore, one has a
multistage thermalization. This local rate, though, is
smaller than for the XXZ gates, where it is rE= ln 2 ¼ 4,
which is the reason why we conjecture that the XXZ gates
are the only ones with the maximal entanglement produc-
tion rate.
The second non-dual-unitary example that we show is a

much-studied case of completely random 2-qubit gates
distributed according to the Haar measure on U(4). For
previous results on the rates for different configurations, see
Table I. We focus on the S configuration with OBC. Their
dynamics can again be described by a Markovian matrix
[23] with an elementary 4 × 4 two-site matrix [24].
Because of the spectral equivalence of all configurations
with OBC, we also know that λ2 for the S configuration that
we study is the same as for the BW configuration. In the
TDL, it has been calculated (Table I) that for the BW with
OBC, one has jλ2j ¼ ð4=5Þ2. Therefore, if the rate is
determined by λ2, one should have asymptotic decay
IðtÞ ≍ ð4=5Þ2t, i.e., rE ¼ 2 ln ð5=4Þ. Numerical simulations
in Fig. 16, however, show that this is not the case. Based on
the data, we conjecture that, at any finite t, the purity for a
half-half bipartition in the TDL is, in fact, exactly equal to

IðtÞ ¼
�
2

3

�
t
: ð35Þ

The decay is slower than one would predict from λ2;
therefore, one again deals with a phantom eigenvalue like
in other staircase circuits that we studied. For the BW
configuration U(4) random circuit with open boundary
conditions, see Ref. [69].

Because the Markovian matrix M essentially determines
the evolution of squares of expansion coefficients like those
of the density operator, one can expect that the phenomena
identified in purity will also be present in other quantities
that are quadratic in time-evolved coefficients. Such objects
include the OTOC, for which our preliminary results show
[19] the same effects.

D. Google’s Sycamore processor

One of the largest experimental realizations of quantum
computation is a recent work by Google AI Quantum
performing a random-circuit-like computation on 53 qubits
[3]. Here, we analyze the entanglement generation speed of
the 2D qubit geometry that is used in the Sycamore
quantum processor.
The Google experiment used a fixed 2-qubit Sycamore

gate with canonical parameters ax ¼ 1; ay ¼ 1; az ¼ 1=6,
whereas for 1-qubit, the experiment randomly sampled
from a set of square roots of Pauli matrices [3]. For the sake
of simplicity, and to stay within the framework used in our
paper, we take the 1-qubit gates to be random and
uniformly distributed on U(2). The geometry used in the
Sycamore processor (and that we analyze) is schematically
represented in Fig. 17. The protocols that we study are
composed of commuting groups of 2-qubit gates denoted
by four letters: A, B, C, and D (see Fig. 17). For instance,
the protocol used in Google’s supremacy experiment is
ABCDCDAB. Because of the size limitation, we cannot
simulate a circuit with n ¼ 53 qubits, so we focus on the
half-sized patch circuit with n ¼ 27 used by Google. In
addition, we show results for two other protocol steps
(ABCD and ABCDCADB), which turn out to be optimal at
smaller sizes.
In Table IV, we compare all three mentioned protocols,

as well as different choices of a 2-qubit gate. In order to
facilitate the comparison of entanglement generation rates
between protocols with different numbers of gates, we
compare the effective eigenvalue λ. The effective eigen-
value is equal to the true eigenvalue jλ2j renormalized to a
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FIG. 16. Entanglement rate for the S configuration with OBC
and Haar random 2-qubit gates from U(4). In the TDL, one has
jλ2j ¼ ð4=5Þ2; however, the entanglement rate is due to a
phantom eigenvalue equal to rE ¼ ln ð3=2Þ. The three dashed
lines in panel (a) show rE ¼ − log2 jλ2j, using the conjectured
finite-size expression jλ2j ¼ ½4

5
cos ðπ=nÞ�2.

FIG. 17. Qubit connectivity used in Google’s quantum proc-
essor Sycamore. Dots represent qubits, and lines are different 2-
qubit gates. We focus on lattices of 3 ×m qubits (we showm ¼ 6,
giving n ¼ 18). Gates labeled with the same letter (and color) are
executed simultaneously (see text for details).
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step with n gates; that is, in a protocol step with T local
gates Mi;j, it is λ ¼ jλ2jn=T . For example, protocol steps
with eight letters have T ¼ ð10n − 30Þ=3, whereas the
ABCD protocol has T ¼ ð5n − 15Þ=3. Similarly as in 1D
protocols, fixing a configuration, the fastest gate is the XY
gate. Comparing different configurations (for small n, we
checked all possible permutations of eight-letter protocols),
we find that while at smaller n there are configurations that
have smaller λ than Google’s ABCDCDAB, at n ¼ 27,
Google’s choice seems to be the optimal one. We can see
that the optimal eigenvalue λ ¼ 0.141 for the XY gate is
approximately 15% larger than for the BW PBC jλ2j ¼ 1=9
[Eq. (27)]; however, applying a BW protocol on the 2D
geometry in Fig. 17 would necessitate additional long-
range 2-qubit gates. A similar gain (approximately 10%)
would also be obtained for the Sycamore gate. For non-
optimal 2-qubit gates, like the CNOT, the optimal protocol
can be different than ABCDCDAD even at n ¼ 27; see
Table IV.
In the 1D protocols studied in the rest of the paper, we

have seen that the entanglement generation rate rE is
usually not given by the spectral gap. In Fig. 18, we show
numerically calculated purity for the protocols discussed in
this section. For even m, subsystem A for our bipartition is

composed of m=2 bottom rows of qubits (see Fig. 17),
while for odd m, we take the bottom ðm − 1Þ=2 rows plus
an additional leftmost qubit in the next row. We can see
that, for all cases, the purity rate agrees with − log jλ2j. It is
now evident that taking a CNOT gate instead of the XY or
the Sycamore gate would result in a significantly slower
entanglement generation. It is an important and nontrivial
task to find the optimal configuration and choose the best
gate for each topology at hand.

V. DISCUSSION

Studying the purity entanglement generation speed in
quantum circuits with random single-qubit unitaries and a
given nearest-neighbor 2-qubit gate, we have identified
circuits with the fastest entanglement production. They are
the fastest possible and, by a significant factor, faster than
previously studied cases, for instance, circuits with CNOT
or random U(4) gates. These fastest scramblers are circuits
with a brick-wall pattern of applied gates, with either open
or periodic boundary conditions, and the XXZ 2-qubit gate,
a special case of which is the XY gate.
Such random circuits should be of interest in experiments

where they can reduce the running time and therefore
increase the fidelity. These are simple examples of “fastest”
chaotic many-body systems; see also Ref. [10] for a Floquet
systemwith such a property. Interestingly, relaxation towards
the asymptotic random-state entanglement in optimal pro-
tocols, as well as others, does not proceed with a single
relaxation rate but rather exhibits a phase transition:
Relaxation (or, equivalently, the entanglement generation
rate) is faster until the thermalization time (thermalization
time is the time when the entanglement closes in on its
volume-law saturation value of ∼nA) but then discontinu-
ously transitions into a smaller rate, which happens because
the initial relaxation rate is not given by the transfer matrix
gap, as one would naively expect. On a mathematical
level, it arises because of the nonsymmetric Markovian
transfer matrix, even though the action of each individual
gate is described by a symmetric matrix. The discrepancy
between the spectral gap prediction and the convergence rate
happens because the expansion coefficients in the spectral

TABLE IV. Effective eigenvalue λ for different configurations, gates (XY, Sycamore, CNOT, and random), and
system sizes n in a 2D geometry (Fig. 17). With random a, we denote the gate with randomly generated canonical
parameters ax ¼ 0.8501, ay ¼ 0.4628, and az ¼ 0.1204. The effective eigenvalue describes purity decay after the
application of n 2-qubit gates.

Configuration λ

XY Sycamore CNOT Random a

n ¼ 9 n ¼ 18 n ¼ 27 n ¼ 9 n ¼ 18 n ¼ 27 n ¼ 27 n ¼ 27

ABCDCDAB 0.319 0.161 0.141 0.336 0.188 0.169 0.548 0.427
ABCDCADB 0.192 0.128 0.143 0.236 0.160 0.176 0.547 0.428
ABCD 0.114 0.174 0.208 0.133 0.196 0.229 0.494 0.358

FIG. 18. Purity results for Google-like protocol (symbols,
n ¼ 27) and the asymptotic linear growth given by the leading
eigenvalue − log2 jλ2j (dashed lines). The protocols examined
suggest that the purity decay rate agrees with the value predicted
from spectral analysis.
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decomposition can get exponentially large in the size of a
many-body system. As a consequence, a subleading eigen-
value, even if it is gapped away from the leadingone, can give
the dominant relaxation rate. Even stranger is the observation
that, for the same non-Hermiticity reasons, such exponen-
tially large terms can result in relaxation with a rate that is
smaller than the one given by the leading eigenvalue. It is as if
one has an additional “phantom” eigenvalue in the spectrum
that is larger than any actual eigenvalue.
We demonstrated that the same phenomenology also

occurs for nonextremal fixed 2-qubit gates (non-dual-
unitary), as well as for the case of Haar-random 2-qubit
gates. For the latter gate several conjectured exact results
about the largest eigenvalue and the purity decay are left as
open problems. We also show that spatial as well as
temporal randomness of on-site unitaries is not necessary,
which suggests that the same phenomenology of multi-
stage relaxation should also arise in many other situations,
including nonrandom systems. While we discussed the
average entanglement, for large system sizes, explicit aver-
aging over different circuit realizations is not necessary—a
single circuit realization will already show the phenomenon.
Therefore, the phenomena seem to be rather general, a

common point being non-Hermitian many-body matrices.
One may wonder in how many other situations with non-
Hermitian operators such physics can arise (e.g., dissipative
systems, scattering problems, etc.). A promising approach
would be to find a continuous-time system with the same
phenomenology. Alternatively, starting with a Hamiltonian
with noise (instead of with a Floquet system—a quantum
circuit—with random unitaries), one can arrive at the
Lindblad master equation after averaging over noise. In
some cases or limits, the resulting [70] non-Hermitian
generator is equal to somewell-studied models, simplifying
the insight. It has been shown [70] that some features in
such a setting are the same as in random circuits.
We stress that one needs sufficiently large systems to

observe the effects. We are therefore working with genuine
many-body physics. In some cases, convergence with n is,
namely, quite slow, and one needs good numerical methods
to access the required sizes.
How other quantities, besides purity, behave in such

random circuits is also an interesting open problem,
which includes other Rényi entropies as well as operators,
correlation functions, etc. For instance, von Neumann
entropy shows multistage thermalization. Preliminary
results show [19] that OTOCs also exhibit effects of a
phantom eigenvalue. Because the extremal random circuits
belong to a class of dual-unitary circuits, non-Hermitian
effects that we identify could be at play in such situations
and perhaps, even more generally, in some chaotic Floquet
systems [10,47,71].
Do Markov chains describing random circuits exhibit a

cutoff phenomenon known to occur in some Markovian
chains [72,73], and which has been speculated [38] to
actually occur in certain random circuits; if yes, are

phenomena we observe in any way related to it? In the
cutoff phenomenon, relaxation towards the invariant state
as measured by the total variational distance is sudden—up
to the cutoff time, there can be “memory” of the initial state
and no relaxation, which is then suddenly “forgotten” at the
cutoff (mixing) time. Based on purity decay, which is
always exponential but with a “wrong” rate that is different
than the inverse gap by a factor, it would be tempting to
conclude that there is no cutoff. Namely, a necessary
condition for a cutoff [74] is that the mixing time is
parametrically larger than the inverse gap (their ratio should
diverge in the TDL). However, to probe the cutoff, one
should study the full measure relaxation as quantified by
the total variational distance, which is, in particular,
concerned with a worst-case relaxation scenario. On the
other hand, we studied initial states that correspond to a
valid purity vector (purities for different bipartitions cannot
be arbitrary) and relevant bipartitions with extensive nA.
While we explained the behavior in terms of non-

orthogonality and the way expansion coefficients behave,
the underlying physics is still not analytically understood.
When and why do such phase transitions in the rate occur?
Are they associated with some change in the entanglement
properties of the underlying state, like, e.g., their Schmidt
spectrum being different than that of random states [50];
such features have, for instance, been identified in either
appropriate random ensembles [75] or under random
evolutions [76,77]. It has been observed that in random
circuits, fluctuations qualitatively change around thermal-
ization time [78].
We focused on qubits and the case of nearest-neighbor

protocols; however, other topologies are also of interest,
including systems in higher dimensions as well as systems
with larger local Hilbert space (qudits). For instance, for the
all-to-all coupling, we have calculated the exact asymptotic
expression for the spectral gap for any gate (Appendix G);
however, we did not explore the entanglement generation.
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APPENDIX A: BRIEF DERIVATION OF
TRANSFER MATRIX

In this section, we present a short derivation of Eq. (11);
the original derivation with a more detailed explanation can
be found in Ref. [27].
In order to sketch the derivation of the Markov chain

description, we define a new set of operators on a doubled
Hilbert space. These operators will be used to obtain a
compact expression for purity for every possible bipartition
of our system. Averaging over all independent one-site
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Haar random gates results in the Markov chain description
in Eq. (11).
Let us write down the purity of the state Ψ for

every possible bipartition of our set of qubits. We
encode a bipartition in a vector s ¼ ðs1; s2;…; snÞ, where
si ∈ f↑;↓g, depending on whether the ith qubit is in the
subsystem A (si ¼ ↑) or B (si ¼ ↓) of a given bipartition.
Note that Ψ is a physical state of a chain of n qubits on a
Hilbert space H ¼ C2

1 ⊗ C2
2 ⊗ … ⊗ C2

n. In order to write
the purity, we define two local operators χ↓i

and χ↑i
acting

nontrivially on a site i of the duplicated system H⊗2,
namely,

χsi ¼
� 1i ¼

P
1
α;β¼0 jαβiihαβji si ¼ ↓

SWAPi ¼
P

1
α;β¼0 jβαiihαβji si ¼ ↑;

ðA1Þ

where jαi,jβi are basis vectors fj0i; j1ig of the local Hilbert
space C2

i . The index si labels the local part of the
bipartition, and the operator χsi thus depends on the choice
of a bipartition. Defining χs as the tensor product of all
local operators χsi , we can neatly express the purity of a
state Ψ for a given bipartition as

IsðΨÞ ¼ tr½χsðjΨihΨjÞ⊗2�; ðA2Þ

where the trace is evaluated on the duplicated systemH⊗2.
We are interested in the average evolution of purity under

the application of one elementary step Ui;j ¼ Wi;jViVj.
Averaging over one-site Haar random unitaries Vi and Vj

[27], one gets the average purity of the state Ui;jΨ,

E
Vi;Vj∈Haar

½IsðUi;jΨÞ� ¼
X
t;t0

ðWi;jÞ0s;t0Ot0;tItðΨÞ; ðA3Þ

where scalars ðWi;jÞ0s;t0 are

ðWi;jÞ0s;t0 ¼ tr½χsW⊗2
i;j χt0W

†
i;j

⊗2� ðA4Þ

while scalars Ot0;t are matrix elements of the operator O ¼
O1 ⊗ O2 ⊗ … ⊗ On defined on H, with

Oi ¼
1

3
j↑ih↑j − 1

6
j↑ih↓j − 1

6
j↓ih↑j þ 1

3
j↓ih↓j: ðA5Þ

Summing over t0 in Eq. (A3) and defining matrix
elements of M0

i;j as ½M0
i;j�s;t ¼

P
t0 ðWi;jÞ0s;t0Ot0;t, we get

a simple Markovian mapping of average purities after one
gate, as written in Eq. (11).

APPENDIX B: CALCULATION OF
STEADY-STATE PURITY

In this Appendix, we derive the eigenvector Φ∞ of M
with eigenvalue λ ¼ 1. The steady state of M will be of
great importance in numerical gap calculations (see

Appendix E). With the help ofΦ∞, we are able to calculate
the purity of random states [Eq. (6)].
Keeping in mind that we must consider only even-parity

vectors in the basis of M, we can try to calculate the purity
to which wewill converge after infinite time. To do so, let us
first derive the even-parity eigenvector Φ∞ with eigenvalue
1. The eigenvector Φ∞ can be constructed by demanding
that, for every i ∈ f1;…; ng, we have Mi;iþ1Φ∞ ¼ Φ∞.
From Eq. (19), we see that the coefficients before basis
vectors with the same number of up spins must be equal, and
that the coefficients before vectors with k up spins must be 3
times greater than those with (k − 2) up spins. The eigen-
vector Φ∞ is thus

Φ∞ ¼
X

ek∈f↑;↓g⊗n

3n−wek; ðB1Þ

where the sum runs over all basis vectors ek of M with an
even number of down spins and where w ¼ wðsÞ is the
Hamming weight of the n-bit string ek, i.e., the number of
digits equal to ↓ in ek. For instance, when n ¼ 4, the vector
Φ∞ takes the form

Φ∞ ¼ 9j↑↑↑↑i
þ 3ðj↑↑↓↓i þ j↑↓↑↓i þ j↓↑↑↓iÞ
þ 3ðj↑↓↓↑i þ j↓↑↓↑i þ j↓↓↑↑iÞ
þ 1j↓↓↓↓i: ðB2Þ

Wealso present an alternative construction of the eigenvector
Φ∞, which will be especially useful in the derivation of I∞
that will follow. The new way to obtainΦ∞ is by projecting
the vector

ϕ ¼ ⊗
n

i¼1
ð

ffiffiffi
3

p
; 1Þ ðB3Þ

onto the subspace of even parity, that is,

Φ∞ ¼ 1

2
ð1þ ZÞϕ ¼ 1

2

�
1þ

Y
i

σzi

�
ϕ: ðB4Þ

After infinite time, we converge to the eigenvectorΦ∞. If
we want to read the purities from the coefficients of our
final vector, we must convert Φ∞ back to the basis of M0;
i.e., we must obtain the vector Φ0

∞ ¼ AΦ∞. We get

Φ0
∞ ¼ A

1

2
ð1þ ZÞϕ ¼

Y
i

Ai
1

2

�
1þ

Y
i

σzi

�
ϕ

¼
�

1ffiffiffi
3

p
�

n
�
⊗
n

i¼1
ð1; 2Þ þ ⊗

n

i¼1
ð2; 1Þ

�
: ðB5Þ

The first term on the right-hand side of Eq. (B5) will be, up
to the normalization factor ð1= ffiffiffi

3
p Þn, equal to 2nA , and the
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second term will be 2nB . We normalize the coefficients of
Φ0

∞ by demanding I∅ð∞Þ ¼ 1, so

I∞ ¼ 2nA þ 2nB

1þ 2n
; ðB6Þ

which agrees with Eq. (6).

APPENDIX C: MATRIX PRODUCE STATE
FORM OF STEADY STATE

The steady state in the even sector jΦ0
∞i [Eq. (20)] is an

(unnormalized) eigenvector of M0 with eigenvalue 1. It has
Schmidt rank 2 for any bipartition and can therefore be
written in the MPS ansatz with matrices of size 2.
Let us define two non-normalized orthogonal vectors

jxðpÞþ i and jxðpÞ− i on p qubits,

jxðpÞ� i ¼
X

s∈f0;1g⊗p

2p−w � 2w

2p � 1
jsi; ðC1Þ

where w ¼ wðsÞ is the Hamming weight of a p-bit string s,
i.e., the number of sj equal to ↓ in the string s. The norm of
those vectors is

jxðpÞ� j2 ¼ 2ð5p � 4pÞ
ð2p � 1Þ2 : ðC2Þ

Observe that jΦ0
∞i ¼ jxðnÞþ i.

The Schmidt decomposition of an n-qubit jxðnÞþ i for a
bipartition into first r (subsystem A) plus last n − r qubits
(subsystem B) is

jxðnÞþ i ¼ μþðn; rÞ
jxðrÞþ i
jxðrÞþ j

jxðn−rÞþ i
jxðn−rÞþ j

þ μ−ðn; rÞ
jxðrÞ− i
jxðrÞ− j

jxðn−rÞ− i
jxðn−rÞ− j ;

ðC3Þ

where the two Schmidt coefficients are

μ�ðn; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5r � 4rÞð5n4r � 5r4nÞ

5r

r
1

2rð2n þ 1Þ : ðC4Þ

The Schmidt decomposition of the second vector is, on the
other hand,

jxðnÞ− i ¼ νþðn; rÞ
jxðrÞþ i
jxðrÞþ j

jxðn−rÞ− i
jxðn−rÞ− j þ ν−ðn; rÞ

jxðrÞ− i
jxðrÞ− j

jxðn−rÞþ i
jxðn−rÞþ j

;

ðC5Þ

with Schmidt coefficients ν�ðn; rÞ,

ν�ðn; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5r � 4rÞð5n4r ∓ 5r4nÞ

5r

r
1

2rð2n − 1Þ : ðC6Þ

This recursive two-state structure of the Schmidt decom-
positions guarantees a MPS representation with matrices of
size 2. More explicitly, writing

I∞ðsÞ ¼ hyjAðs1Þ
1 Aðs2Þ

2 � � �AðsnÞ
n jyi ðC7Þ

where y ¼ ð1; 0Þ, the matrices are

Að↑Þ
1 ¼ 1ffiffiffi

2
p

�
μþðn; 1Þ −μ−ðn; 1Þ

0 0

�
;

Að↓Þ
1 ¼ 1ffiffiffi

2
p

�
μþðn; 1Þ μ−ðn; 1Þ

0 0

�
ðC8Þ

on the first site,

Að↑Þ
n ¼ 1ffiffiffi

2
p

�
1 0

−1 0

�
;

Að↓Þ
n ¼ 1ffiffiffi

2
p

�
1 0

1 0

�
ðC9Þ

on the last, and

Að↑Þ
r ¼ 1ffiffiffi

2
p

0
B@

μþðn−r;1Þ
jxðn−rÞþ j − μ−ðn−r;1Þ

jxðn−rÞþ j

− ν−ðn−r;1Þ
jxðn−rÞ− j

νþðn−r;1Þ
jxðn−rÞ− j

1
CA;

Að↓Þ
r ¼ 1ffiffiffi

2
p

0
B@

μþðn−r;1Þ
jxðn−rÞþ j

μ−ðn−r;1Þ
jxðn−rÞþ j

ν−ðn−r;1Þ
jxðn−rÞ− j

νþðn−r;1Þ
jxðn−rÞ− j

1
CA ðC10Þ

on sites r ¼ 2;…; n − 1.

APPENDIX D: SPECTRUM ANALYSIS

Let us first note an elementary fact about the matrices
that we will repeatedly use. Let A and B be two finite-
dimensional square matrices. Then, the product AB has the
same spectrum as BA, AB ≃ BA. One way to see this is to
write down the characteristic polynomial pðλÞ whose
expansion coefficients can all be expressed in terms of
invariants, for instance, the traces trðABÞr. Because
trðABÞr ¼ trðBAÞr, the above equivalence immediately
follows. A corollary of AB ≃ BA is also the spectral
equivalence under cyclic permutations that we shall use,
e.g., ABC ≃ CAB. The other property that we need is the
spectral equivalence under transposition, AT ≃ A.
Physical initial states always have positive (even) parity

Z; therefore, only even eigenvalues of M matter for the
purity decay. Because all elementary gatesMi;j preserve the
parity, the parity of eigenvectors for spectrally equivalent
configurations A ≃ B corresponding to the same eigenvalue
λ is the same. More explicitly, for cyclic permutations, if
one has a nonzero λ and the associated eigenvector x of
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ABC, then CABCx ¼ Cλx ¼ CABy ¼ λy, where y ¼ Cx.
Because all matrices conserve parity, the parity of x is the
same as that of y. The same holds for the transposition;
parities of eigenvectors x and y with eigenvalue λ corre-
sponding to A and AT, respectively, is the same (in a basis
with good parity, A and AT have a block structure). In the
two theorems we are going to prove, we therefore do not
have to keep track of the parity—an eigenvalue with good
parity will have the same parity in all members of the
equivalence class.

1. Proof of Theorem 1

Proof.—Let us begin with an arbitrary permutation of
n − 1 gatesM (an example forn ¼ 4 isM ¼ M3;4M1;2M2;3).
Our first step is to put the matrix M1;2 at the rightmost
position in the product (the first gate) using cyclic permu-

tations. We thus have M ≃ AM1;2 ¼ ASð1Þ1 , where A is a
product of matrices that do not contain M1;2. We next

increase the length of Sð1Þ1 by one using the following step.
Suppose we have

RMi;iþ1AS
ði−1Þ
1 ; ðD1Þ

where R and A are a product of gates not including Mi;iþ1

or any of the gates in Sði−1Þ1 ¼ Mi−1;i � � �M1;2. Note that the

only gate with which the gates in Sði−1Þ1 do not commute is

Mi;iþ1; therefore, one always has ½Sði−1Þ1 ; A� ¼ 0. Thus,

RMi;iþ1AS
ði−1Þ
1 ≃RMi;iþ1S

ði−1Þ
1 A≃ARMi;iþ1S

ði−1Þ
1 ¼ARSðiÞ1 .

We have increased the length of Sði−1Þ1 by one. Iterating

this step, we end up with M ≃ Sðn−1Þ1 . This concludes
the proof. ▪

2. Proof of Theorem 2

Proof.—In the first step, we bring, by cyclic permuta-
tions, the gate M1;2 to the rightmost position. Then, in step

1 (described below), we try to constructBð3Þ
1 (Bð3Þ

1 is the first

nontrivial brick-wall because Bð1Þ
1 is equal to Sð1Þ1 ¼ M1;2).

Step 1 will either succeed in constructing Bð3Þ
1 , or we will

end up in the canonical form with p ¼ 1 (see Fig. 6).
Step 1.—First, we bring M2;3 to the position of a second

gate. Writing RM2;3AM1;2, where R and A are arbitrary
products excluding M1;2 and M2;3, we have two possibil-
ities (M2;3 does not commute with only two gates,M1;2 and
M3;4; for n ¼ 3, when M3;4 is, in fact, equal to M3;1, the
presented argument still works):
(a) If M3;4 ∉ A, so that ½M2;3; A� ¼ 0, we have

RM2;3AM1;2 ≃ RAM2;3M1;2.
(b) If M3;4 ∈ A, we use ½M2;3; R� ¼ 0 and cyclic permu-

tations to get RM2;3AM1;2 ≃M1;2M2;3RA. Using the

fact that allMi;iþ1 are real and symmetric, and thatMT

andM have the same spectra, we writeM1;2M2;3RA≃
ATRTM2;3M1;2.

Having a form RM3;4AM2;3M1;2, we now try to bring M3;4

to the rightmost position. There are, again, two possibilities
(n ¼ 4 does not influence the argument):

(i) If M4;5 ∉ A, we have RM3;4AM2;3M1;2 ≃
RAM3;4M2;3M1;2 ¼ RASð3Þ1 .

(ii) IfM4;5 ∈ A, we use ½M3;4; R� and a cyclic permutation
to write RM3;4AM2;3M1;2 ≃ RAM2;3M1;2M3;4 ¼
RABð3Þ

1 .

At this point, we therefore either have RABð3Þ
1 and have

succeeded (finished step 1), or we have RASð3Þ1 and

continue by trying to include M4;5 into Sð3Þ1 .

The procedure is, by now, familiar; writing RM4;5AS
ð3Þ
1 ,

we have either M5;6 ∈ A, in which case RM4;5AS
ð3Þ
1 ≃

RASð4Þ1 , or M5;6 ∉ A, in which case RM4;5AS
ð3Þ
1 ≃ RASð4Þ1 ,

or M5;6 ∉ A, in which case RM4;5AS
ð3Þ
1 ≃ RASð3Þ1 M4;5 ≃

RAM3;4M4;5M2;3M1;2 ≃ RAM4;5B
ð3Þ
1 , where, in the last

equivalence, we used that M3;4 commutes with all the
gates in A and R. Therefore, we have either increased the

number of gates in Sð3Þ1 by one or obtained the desired Bð3Þ
1 .

We are now in a position to write the generic iteration

step: In RMiþ1;iþ2AS
ðiÞ
1 , one has either (i) Miþ2;iþ3 ∉ A

or (ii) Miþ2;iþ3 ∈ A. In case (i), we immediately get

≃RASðiþ1Þ
1 . In case (ii), we have RMiþ1;iþ2AS

ðiÞ
1 ≃

RASðiÞ1 Miþ1;iþ2≃RAMi;iþ1Miþ1;iþ2Mi−1;i ���M3;4M2;3M1;2.
Using the fact that gates M3;4 to Mi;iþ1 commute with all
gates in R and A, we can use cyclic permutations to first

FIG. 19. Example of a transformation from the configuration

M ¼ RSðiÞ1 Mi;iþ1 to the configuration M ¼ RBð3Þ
1 . Using com-

mutation relations and cyclic permutations, we must transform
the operator in the red box to the position denoted by the
green box.
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bring Mi;iþ1 to the rightmost position, then Mi−1;i, and so
on, until we bring M3;4 to the first position, resulting in

Bð3Þ
1 . An example of such a transformation can be seen

in Fig. 19.
We see that repeating this procedure eventually either

produces Bð3Þ
1 at the position of the first three gates, or we

end up with SðnÞ1 , i.e., the canonical configuration with

p ¼ 1. If we have the situationRBð3Þ
1 , we continuewith step

2, which describes a generic step starting with RBðiÞ
1 . It

either increases the number of brick-wall gates, bringing us

to ABðiþ2Þ
1 , or it will end up in Sðn−iÞiþ1 BðiÞ

1 .

Step 2.—Starting with RBðiÞ
1 (with odd i), we see that

BðiÞ
1 , which acts on sites 1;…; iþ 1, does not commute

only with two gates, Mn;1 and Miþ1;iþ2. It behaves
in exactly the same way as gate M1;2 in step 1 because
none of the gates in R acts on the inner qubits 2;…; i of

the block BðiÞ
1 . Following exactly the same steps as in

step 1, we try to add two gates to BðiÞ
1 in order to obtain

Miþ1;iþ2B
ðiÞ
1 Miþ2;iþ3 ¼ Bðiþ2Þ

1 . In step 1(b), we used that

MT
1;2 ¼ M1;2, which is not true for BðiÞ

1 ; however, the

transpose of BðiÞ
1 can always be transformed into BðiÞ

1 by
using cyclic permutations and the fact that all the “inner”

gates in BðiÞ
1 acting on qubits 2;…; i commute with all the

gates in R. The procedure analogous to the one in step 1

will therefore either result in RBðiÞ
1 ≃ ABðiþ2Þ

1 or in RBðiÞ
1 ≃

Sðn−iÞiþ1 BðiÞ
1 , which is the canonical configuration with

p ¼ ðiþ 1Þ=2. This concludes the proof. ▪

3. Proof of eigenvalue 1=9

We can also prove that λ ¼ 1=9 is an eigenvalue ofM for
the brick-wall configuration with PBC and the XY gate.
Proof.—Let us, for simplicity, focus on even n. Taking

PBC BW M ¼ BðnÞ
1 with the XY gate, we can explicitly

construct an eigenvector v of M with eigenvalue 1=9. The
ansatz for the eigenvector is

v ¼
Xn=2
i¼1

T 2iðvα ⊗ vα ⊗ … ⊗ v3Þ; ðD2Þ

where vα ¼ v1 þ αv2, where v1;2;3 are the eigenvectors of a
2-qubit Mi;iþ1 [Eq. (19)] and T is the translation operator
by one site on a circle, e.g., T 2a ⊗ b ⊗ c ¼ c ⊗ a ⊗ b.
Let us write the brick-wall step M as M ¼ MeMo, where
Mo is the first layer (half-step) of the BW; i.e., it contains all
Mi;iþ1 with odd i, and Me is the second layer (Mi;iþ1 with
even i). For an arbitrary α, the ansatz vector v is already the
eigenvector of Mo with λ ¼ −1=3. If we want it to be the
eigenvector of the whole M, we must fix the constant α so
that it is also the eigenvector ofMe. Let us focus on a pair of

qubits ði; iþ 1Þ with even i. We can expand v as a linear
combination of n4ðn=2Þ−1 basis vectors ek [we choose the
same basis as in Eq (16)]. Each basis vector can be further
decomposed as ek ¼ wk

1;i−1 ⊗ vki;iþ1 ⊗ wk
iþ2;n, where the

subscripts denote the range of qubits that these decom-
position vectors describe. For every vki;iþ1, we want either
Mi;iþ1vki;iþ1 ¼ vki;iþ1 or Mi;iþ1vki;iþ1 ¼ − 1

3
vki;iþ1, so vki;iþ1

must be either (3,0,0,1) or ð0;�1; 1; 0Þ. The vectors vki;iþ1

depend on the neighboring pairs ði − 1; iÞ and (iþ 2),
which can be vα ⊗ vα, vα ⊗ v3, or v3 ⊗ vα [Eq. (D2)]. We
have 32 possible combinations on qubits ði; iþ 1Þ, but for
now, let us focus on four instances: ð9; 0; 0; α2Þ,
ðα2; 0; 0; 1Þ, ð0; 3; α2; 0Þ, and ð0; α2; 3; 0Þ. We obtain the
desired vector if we fix α ¼ ffiffiffi

3
p

. For the other 28
possibilities, our demands are automatically fulfilled with-
out the specification of α; one can check this by writing
down all 32 possibilities that come from terms vα ⊗ vα,
vα ⊗ v3, and v3 ⊗ vα. For small systems (n ¼ 4, 6, 8), we
numerically checked the correctness of our guess. The
eigenvector v does not have a good parity and can be
decomposed as v ¼ ve þ vo, into even- and odd-parity
parts, both of which are, because of parity conservation
of M, still eigenvectors. This concludes the proof. ▪

4. Numerical data for λ2
Here, we present the numerical results used to determine

the fastest asymptotic scrambler for PBC and OBC pro-
tocols. To calculate λ2, we use either exact diagonalization
or the power method as described in Appendix E.
Figure 20 shows color-coded plots of jλ2j for the S

configuration with OBC for different values of all three

FIG. 20. Second-largest eigenvalue jλ2j of M for the OBC S
protocol and different canonical gate parameters a [Eq. (3)]. The
columns represent a fixed number of qubits, and the rows are for
different az. The dotted triangles indicate the relevant set of
irreducible parameters ax; ay.
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canonical parameters aj. Looking for the smallest jλ2j and
for how things change with increasing n, a promising
candidate for the smallest jλ2j is a ¼ ð1; 1; 0Þ, i.e., the XY
gate. Studying more closely how jλ2j depends on n for this
XY gate, Fig. 21, we can conjecture that, in the TDL,
one has jλ2j ¼ 1=4 for any protocol with OBC (remember
that, for OBC, the spectrum does not depend on the
configuration).
Figure 22 shows the values of jλ2j for different 2-qubit

gates (parameters ax; ay; az) with PBC and different con-
figurations (parameter p) for fixed n ¼ 10. From Fig. 22,
we learn that jλ2j monotonically decreases as we increase
p. Moreover, the fastest entanglement generation comes
from the region az ¼ 0. Figures 23 and 24 show the
dependence of jλ2j on ax; ay; az ¼ 0 and n for p ¼ 1

(slowest scrambler) and p ¼ bn=2c (fastest scrambler),
respectively. Contrary to OBC protocols, where the fastest
asymptotic scrambler is obtained for all ax ¼ ay ¼ 1; az ∈
½0; ac ≈ 0.32�, the smallest jλ2j for PBC protocols comes
from a single choice of 2-qubit gates, namely, ax ¼ ay ¼ 1;
az ¼ 0 (XY gates).

APPENDIX E: NUMERICAL CALCULATION OF
SPECTRAL GAPS FOR LARGE n

Whenever exact numerical diagonalization is too
demanding in terms of memory, we calculate the dominant
eigenvalue jλ2j using the power method. Briefly, the power
method consists of iterations of the form

uiþ1 ¼ Mwi; ðE1Þ

wiþ1 ¼ uiþ1=kuiþ1k; ðE2Þ

whereM is the matrix for which we want jλ2j and wk is the
vector we iterate. For almost all initial vectors w0, the
power method converges to the vector with the greatest
eigenvalue in absolute value.
In our case, the matrix M has one even-parity eigen-

vector Φ∞ with eigenvalue equal to 1 (for details, see
Appendix B). If we wish to get jλ2j from our power
iteration, we must subtract the component corresponding to
Φ∞ from wi at every step i. We iterate

uiþ1 ¼ Mwi −Φ∞hΦ∞;wii; ðE3Þ

wiþ1 ¼ uiþ1=kuiþ1k; ðE4Þ

where h�; �i is the standard inner product.
If jλ2j is nondegenerate, the power iteration converges to

the corresponding eigenvector. In general, λ2 ∈ C. Because
the product M is real, if λ2 ∈ C there is also a λ̄2 in the
spectrum of M. Suppose we want to extract the value jλ2j

FIG. 21. Eigenvalue jλ2j for OBC, and PBC with the S
configuration (the equivalence class p ¼ 1) and BW configura-
tion (p ¼ n=2) for the 2-qubit XY gate. The extrapolated values
in the TDL (lines) are obtained from the fits (full curves) to
numerical data (symbols). The fits are jλ2ðnÞj ¼ 0.252þ
0.008=n − 0.43=n2 (OBC), jλ2ðnÞj ¼ 0.334–0.44=nþ 0.83=n2

(PBC, p ¼ 1), and jλ2ðnÞj ¼ 0.114–0.20=nþ 4.7=n2 − 16=n3

(PBC, p ¼ n=2).

FIG. 22. jλ2j for the PBC case at n ¼ 10. The columns
represent a fixed configuration, and the rows represent a fixed
value for the parameter az.

FIG. 23. jλ2j of configurations p ¼ 1 for different values of
parameters ax; ay at az ¼ 0.

FIG. 24. jλ2j of configurations p ¼ bn=2c for different values
of parameters ax; ay at az ¼ 0.
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from our power iteration. We begin with a vector w0 and
denote with w∞ the eigenvector of M with eigenvalue λ2.
After k ≫ 1 iterations, we can write

Mkw0 ¼ λk2cw∞ þ λ̄k2c̄w̄∞; ðE5Þ

where c ¼ hw∞;w0i. In Eq. (E5), we use the fact that, at
every step, we subtract the component resulting from the
eigenvector with λ ¼ 1; we can, equivalently, start with a
vector orthogonal to Φ∞: hw0;Φ∞i ¼ 0.
We are interested only in the value jλ2j, so we can

compute the norm of Mkw0 and compare it with Mkþ1w0.
Writing λ2 ¼ jλ2jeiϕ, c ¼ jcjeiψc , and hw∞; w̄∞i ¼ Veiψv ,
we get

kMkw0k ¼ 2jλ2j2kjcj2½1þ V cosðk̃ϕÞ�: ðE6Þ

For the sake of simplicity, we define k̃ ¼ kþ ðψc=2ψÞ þ
ðψv=2ψÞ ¼ kþ const.
An arbitrary quotient of the (kþ 1)th and kth steps can

be written as

kMkþ1w0k
kMkw0k

¼ jλ2j2
1þ V cosððk̃þ 1ÞϕÞ

1þ V cosðk̃ϕÞ ¼ jλ2j2
vkþ1

vk
;

ðE7Þ
where we use the notation vk ¼ 1þ V cosðk̃ϕÞ. Now,
suppose ϕ ¼ ðl=mÞ2π for integers l, m, and then vkþm ¼
vk for every k. Taking the geometric mean of norms
kMkw0k of m subsequent iterations, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vkþ1

vk

vkþ2

vk þ 1
…

vkþm

vk þm − 1
m

r
¼ jλ2j2: ðE8Þ

We find that, for most cases, ϕ ≈ ðl=mÞ2π holds; hence, a
good estimation of jλ2j is possible.

APPENDIX F: FURTHER ENTANGLEMENT
DATA

1. von Neumann entropy

In Fig. 25, we compare the von Neumann entropy with
the logarithm of the average purity that we studied in the
rest of the paper. As we can see, von Neumann entropy
behaves rather similarly to purity or, more precisely, as
− loghIðtÞi. In particular, it also exhibits a phase transition
in the local rate at t ≈ t∞ (t∞ ≈ 8 in the figure).

2. Fluctuations and randomness

For sufficiently large times, the state reached under
random-circuit evolution is close to a random state.
Because of the measure concentration in a large Hilbert
space, one can obtain good self-averaging properties even
for a single random-circuit realization. In Fig. 26, we
numerically check such a self-averaging property for the S

configuration with PBC and two different system sizes in
order to get insight into how fluctuations behave with n.
First, we notice that a single realization with random
Haar independent identically distributed 1-qubit unitaries
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FIG. 25. Exact average results for purity (black curves) are
compared with the von Neumann entropy SðtÞ (red squares). In
the upper data, the thermal value is subtracted (left label), while
for the lower two saturating sets, it is not (right label). We use
n ¼ 30 and the S configuration with PBC and the XXZ gate with
az ¼ 0.5 [the same parameters as in Figs. 10(c) and 10(d)] for
which the rate is rE ¼ 2 ln 2.
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FIG. 26. Single random-circuit realization results for a single
random-product initial state (four colored curves with labels) and
the average purity (smooth black solid curves). We use the S
configuration with PBC and az ¼ 0.5 [the same parameters as in
Figs. 10(c) and 10(d)] and system size n ¼ 22 (top) and n ¼ 30
(bottom). Labels for the colored curves denote whether 1-qubit
Haar unitaries are different on each site (“diff.x”) or the same
(“hom.x”), as well as whether they are the same at every time step
(“hom.t”) or different at every circuit layer (“diff.t”).

JAŠ BENSA and MARKO ŽNIDARIČ PHYS. REV. X 11, 031019 (2021)

031019-24



in both space and time (red curves labeled by “diff.t,diff.x”)
is, for large n, almost on top of the average purity.
Therefore, while an explicit averaging over single-site
Haar random unitaries simplifies the analytical treatment
(and results in a Markovian process), it is not necessary for
the observed phenomena.
We also check how randomness in one-site unitaries

influences our results. To that end, we compare our canonical
case where one-site unitaries at each site and time step are
independent (“diff.t,diff.x”) with a situation where unitaries
are the same at every site (“hom.x”) and/or the same at every
time step (“hom.t”). Interestingly, we see that if we use the
same random 1-qubit unitary at every site, as well as at every
time (“hom.x,hom.t”)—i.e., the whole single realization of a
circuit uses only one Haar 1-qubit unitary—one will get the
same behavior in the thermodynamic limit. Based on the
data, we can conjecture that, in theTDL, explicit randomness
is not necessary neither in space nor in time. Comparing
fluctuations between the four cases shown, they are expect-
edly the smallest for 1-qubit unitaries that are independently
random in space and time, followed by the case of random in
space and the same in time (every circuit layer uses the same
1-qubit unitaries), and then the case with no spatial random-
ness but with new unitaries at every time. Lastly, the largest
fluctuations are observed for the circuits that are homo-
geneous in space and time.

APPENDIX G: RANDOM ALL-TO-ALL
COUPLING

Here, we compute the spectral gap of the transfer matrix
describing random quantum circuits, where, on every step,
we randomly choose two qubits i, j on which we apply a
2-qubit gate. Unlike in the main text, we therefore allow
coupling between an arbitrary pair of qubits (not just NN).
The average step can be written as

M̄ ¼ 2

nðn − 1Þ
Xn

i;j¼1;i<j

Mi;j; ðG1Þ

where Mi;j is the familiar matrix from Eq. (16). We follow
the procedure from Ref. [24], where the gap has been
calculated for Clifford gates. Using Pauli notation (17) and
rewriting everything in terms of total spin operators
Sα ¼ 1=2

P
n
i¼1 σ

α
i , we get

M̄ ¼ 2h
n
Sz þ

4

nðn − 1Þ ðJxS
2
x þ JyS2y þ JzS2zÞ

þ
�
d −

Jx þ Jy þ Jz
n − 1

�
1: ðG2Þ

This represents the Lipkin-Meshkov-Glick (LMG) model
[79], for which one can calculate the spectral gap by taking
the semiclassical limit n ≫ 1 (i.e., spin size S → ∞) and
replacing spin operators with classical spins

Sx ¼ S cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
; ðG3Þ

Sy ¼ S sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
; ðG4Þ

Sz ¼ Sμ: ðG5Þ

Expanding M̄ around the energy maximum and quantizing
the resulting harmonic oscillator, we get the spectral gap

1 − λ2 ¼
3h
n

þOð1=n2Þ; ðG6Þ

where h ¼ 1
9
ð3 − vÞ, v¼ cosðπaxÞcosðπayÞþ cosðπaxÞ×

cosðπazÞþ cosðπayÞcosðπazÞ. The gap is maximal and
equal to 1 − λ2 ¼ ð4=3nÞ at ax ¼ 1; az ¼ 0, and an arbi-
trary ay, which includes both XY (ay ¼ 1) and CNOT
(ay ¼ 0). Those gates are therefore the fastest scramblers
for the all-to-all coupling (numerically identified in
Ref. [38]). For the Clifford XY and CNOT gates, the
gap has already been calculated in Ref. [24]; Eq. (G6),
though, extends it to any gate. Note that the normalization
in Eq. (G1) means that M̄ represents the average action of a
single 2-qubit gate. If we measure time in such units that
T ¼ n gates are applied per unit of time, we have
IðtÞ − I∞ ≍ ð1 − 3h=nÞtn → exp ð−3htÞ, giving the purity
rate rE ¼ 3h, which is equal to rE ¼ 4

3
for optimal gates.
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