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A number of experimental platforms relevant for quantum simulations, ranging from arrays of
superconducting circuits hosting correlated states of light to ultracold atoms in optical lattices in the
presence of controlled dissipative processes, are described as open quantum many-body systems. Their
theoretical understanding is hampered by the exponential scaling of their Hilbert space and by their
intrinsic nonequilibrium nature, limiting the applicability of many traditional approaches. In this work, we
extend the nonequilibrium bosonic dynamical mean-field theory (DMFT) to Markovian open quantum
systems. Within DMFT, a Lindblad master equation describing a lattice of dissipative bosonic particles is
mapped onto an impurity problem describing a single site embedded in its Markovian environment and
coupled to a self-consistent field and to a non-Markovian bath, where the latter accounts for fluctuations
beyond Gutzwiller mean-field theory due to the finite lattice connectivity. We develop a nonperturbative
approach to solve this bosonic impurity problem, which dresses the impurity, featuring Markovian
dissipative channels, with the non-Markovian bath, in a self-consistent scheme based on a resummation of
noncrossing diagrams. As a first application of our approach, we address the steady state of a driven-
dissipative Bose-Hubbard model with two-body losses and incoherent pump. We show that DMFT
captures hopping-induced dissipative processes, completely missed in Gutzwiller mean-field theory, which
crucially determine the properties of the normal phase, including the redistribution of steady-state
populations, the suppression of local gain, and the emergence of a stationary quantum-Zeno regime. We
argue that these processes compete with coherent hopping to determine the phase transition toward a
nonequilibrium superfluid, leading to a strong renormalization of the phase boundary at finite connectivity.
We show that this transition occurs as a finite-frequency instability, leading to an oscillating-in-time order
parameter, that we connect with a quantum many-body synchronization transition of an array of quantum
van der Pol oscillators.
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I. INTRODUCTION

Developments in quantum science and quantum engi-
neering have brought forth a variety of platforms to store,
control, and process information at genuine quantum levels.
Examples include trapped atoms and ions [1], quantum
cavity-QED systems [2], superconducting qubits [3], or
quantum optomechanical systems [4]. These architectures
are of great relevance not only for quantum technologies
but also for the quantum simulation of emergent collective
many-body phenomena. We now have several experimental
quantum simulators worldwide running on a variety of
architectures, from ultracold atoms in optical lattices [5],
Rydberg gases [6], trapped ions [7], and coupled cavity
arrays [8]. Such simulators have led to significant advances
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in our understanding of quantum many-body phases
and offer us an opportunity to address deep unanswered
questions concerning the behavior of quantum matter in
novel unexplored regimes, particularly far away from
thermal equilibrium.
Many of these systems are typically characterized by

excitations with a finite lifetime, due to unavoidable losses,
dephasing, and decoherence processes originating from
their coupling to external environments and, therefore,
feature an intrinsic nonequilibrium nature. Arrays of circuit
QED cavities, for example, are emerging as a unique
platform for the quantum simulation of driven-dissipative
quantum many-body systems [8–11], where the balance of
drive and loss processes and the presence of strong non-
linearities allows one to reach interesting nonequilibrium
stationary states. Experiments have recently started to show
a variety of dissipative quantum phases and phase tran-
sitions [12–15], including the recent experimental realiza-
tion of a dissipatively stabilized Mott insulator [16]. On a
different front, recent advances with ultracold atoms in
optical lattices allow the engineering of controlled dis-
sipative processes, such as correlated losses [17,18] or
heating due to spontaneous emission [19,20], and to study
the resulting quantum many-body dynamics over long
timescales. These experimental settings offer fresh new
inputs for quantum simulation of strongly correlated
driven-dissipative quantum many-body systems, at the
interface between quantum optics and condensed matter
physics [21–26].
From a theoretical standpoint, these experimental plat-

forms can be well described as open Markovian quantum
systems, of either fermionic or bosonic particles or quan-
tum spins, evolving through a Lindblad master equation for
the many-body density matrix ρ [27]:

∂tρ ¼ −i½H; ρ� þ
X
α

�
LαρL

†
α −

1

2
fL†

αLα; ρg
�
: ð1Þ

The crucial aspect of this problem lies in the interplay
between unitary dynamics and the dissipative evolution
controlled by jump operators Lα, out of which nontrivial
stationary states can be engineered [28–31]. Open
Markovian quantum many-body systems are predicted to
displayabroad rangeofnew transient dynamical phenomena
[32–35] and dissipative quantum phase transitions [36–41].
Solving the Lindblad equation for many-body systems is

extremely challenging. Exact numerical solutions based on
the diagonalization of the Lindbladian superoperator, or
direct time evolution, are limited to very small systems, and
only slightly larger systems can be addressed with quantum
trajectories [42]. For one-dimensional systems, an efficient
representation of the problem in the language of matrix
product operator is possible [43,44] and has been success-
fully used in the recent past [45]; however, its extension
to higher-dimensional systems poses problems, although
some recent results have been obtained [46–48]. As a

result, a number of theoretical approaches have been
developed in recent years to tackle driven-dissipative lattice
systems [47,49–59]. Driven-dissipative correlated bosons,
such as those described by Bose-Hubbard and related
models, are particularly challenging to tackle numerically
due to the unbounded Hilbert space.
A powerful nonperturbative approach to quantum lattice

models, based on the limit of large lattice connectivity z
[60,61], is provided by the dynamical mean-field theory
(DMFT) of correlated electrons [62] and bosons [63–65].
When applied to equilibrium lattice bosons, DMFT cap-
tures, nonperturbatively, the 1=z corrections to Gutzwiller
mean-field theory through the solution of a quantum
impurity model. Originally introduced for equilibrium
problems, DMFT has been successfully applied to a variety
of nonequilibrium fermionic problems with or without
dissipation [66], including Markovian fermions [67], and
to study unitary dynamics of correlated bosons [68].
In this work, we introduce a new approach to Markovian

bosonic quantum many-body systems. Specifically, we
extend the bosonic nonequilibrium DMFT [68] to systems
evolving under the Lindblad master equation (1) and
combine it with a strong coupling impurity solver tailored
for correlated dissipative processes described by many-
body jump operators. In the large connectivity limit,
DMFT maps the Lindblad dynamics (1) onto a dissipative
quantum impurity model describing a single interacting
bosonic mode, subject to many-body Markovian dissipa-
tion, coupled to a coherent field and a non-Markovian
environment, both to be determined self-consistently. The
non-Markovian DMFT bath describes the effect of hopping
processes from neighboring sites, which are completely
missed by Gutzwiller mean-field theory. We show that
these processes are particularly interesting in open quantum
systems, since they not only introduce coherent effects but
also provide new dissipative channels. Solving the resulting
quantum impurity model in the presence of multiple many-
body jump operators remains highly nontrivial, and state-
of-the-art impurity solvers for nonequilibrium DMFT
cannot be efficiently used in this setting. Here, we build
upon our recent work on Markovian impurity models [69]
to develop and benchmark a DMFT solver for driven-
dissipative bosonic systems. This approach is based on a
superoperator hybridization expansion and resummation of
an infinite class of diagrams known as noncrossing
approximation (NCA).
As first application of the DMFT+NCA method, we

study a Bose-Hubbard model subject to two-particle losses
and single-particle incoherent pumping. This model is
directly relevant for recent experiments with ultracold
bosonic atoms in optical lattices under controlled dissipa-
tion [18,20] as well as for arrays of superconducting
circuits [16]. We predict the emergence of a dissipative
phase transition from a normal to a superfluid phase, where
above a critical hopping or pump strength the system
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spontaneously develops a coherent field oscillating in time,
and discuss the effect of finite-connectivity corrections to
Gutzwiller mean-field theory. We highlight how this
transition can be naturally interpreted as the onset of
many-body synchronization in an array of quantum Van
der Pol oscillators, a phenomenon which recently attracted
lots of attention [70–82]. We show that DMFT allows one
to predict results which are qualitatively missed by
Gutzwiller mean-field theory, including the redistribution
of steady-state population and the suppression of gain due
to hopping processes, a stationary quantum-Zeno regime,
and a new competition between coherent and dissipative
processes toward symmetry breaking. These results reflect
in large quantitative corrections to the Gutzwiller mean-
field phase diagram.
The paper is organized as follows. In the next section II,

we summarize the main concepts and results of this
work, which are presented in more detail in the rest of
the paper. In Sec. III, we introduce DMFT in more detail
and discuss its physical content. In Sec. IV, we discuss two
methods to solve the quantum impurity problem: a strong
coupling perturbative approach and a more powerful self-
consistent NCA method. In Sec. V, we present our results
for an interacting Bose-Hubbard driven-dissipative lattice
problem. Section VI is devoted to conclusions. In the
Appendixes, we provide technical details on the derivation
of DMFT (Appendix A), a nontrivial consistency check on
the NCA (Appendix B), and various analytical results
quoted in the main text (Appendixes C–G).

II. SUMMARY OF MAIN RESULTS

In this section, we present a summary of the main results
of this work, which are discussedmore in detail in the rest of
the paper. In particular, in Sec. II A, we discuss the
formulation of DMFT for Markovian bosons and of the
NCA impurity solver, and, in Sec. II B, we discuss our
theoretical approach in relation to prior work on open
quantummany-body systems,while, in Sec. II C, we present
the application to a driven-dissipative Bose-Hubbard model
with two-body losses and a single-particle incoherent pump.

A. Dynamical mean-field theory
for open Markovian bosons

The class of models that we consider describe driven-
dissipative bosonic particles on a lattice with coordination
number z. The many-body density matrix of the system
evolves according to a Lindblad master equation

∂tρ ¼ −i½H; ρ� þ
X
iμ

�
LiμρL

†
iμ −

1

2
fL†

iμLiμ; ρg
�

ð2Þ

with a set of local jump operators for each lattice site Liμ,
accounting for dissipative processes, and with coherent
evolution governed by the Hamiltonian

H ¼ −
J
z

X
hiji

ðb†i bj þ H:c:Þ þ
X
i

Hloc½b†i ; bi�: ð3Þ

Here, ½bi; b†i � ¼ 1 are bosonic modes localized around
the lattice site i, coupled together by a nearest-neighbor
hopping term J. Hloc½b†i ; bi� is a generic local Hamiltonian,
which can contain arbitrary local interactions. In order for
the problem to remain well defined in the limit of infinite
connectivity z → ∞, to which we compare our DMFT
results, we scale the hopping with a 1=z factor which is the
correct scaling for bosons [63,64,83] (see also Sec. III A for
further details).
The DMFTapproach considers the master equation (2) in

the limit of large, but finite, lattice connectivity z ≫ 1.
In fact, when the number of neighbors z of a given lattice
site is large, statistical and quantum fluctuations induced by
the neighboring sites get small and can be treated in an
approximate way, while the local, on-site physics is
accounted for exactly. As we discuss in detail in
Sec. III, in the z ≫ 1 limit, the Lindblad lattice problem
formally maps onto a quantum impurity model describing
an interacting Markovian single site, characterized by the
same local Hamiltonian Hloc and local jump operators Liμ

entering Eq. (1), coupled to a time-dependent field ΦeffðtÞ
acting as a coherent drive and a non-Markovian quantum
bath (Fig. 1, top). These take into account the effect of
the neighboring sites and have to be determined self-
consistently through the calculation of impurity properties.
As a result of the nonequilibrium nature of the problem, the
non-Markovian environment is described in terms of two
independent bath hybridization functions, the retarded
ΔRðt; t0Þ and Keldysh ΔKðt; t0Þ, which in a stationary state
encode information about the spectrum and occupation of
the single-particle excitations. In a generic nonequilibrium
condition, these are independent and not related by the
fluctuation-dissipation theorem.
To appreciate the physical content of DMFT, it is

instructive to compare it with the widely used Gutzwiller
mean-field theory. As we show in Sec. III A, the latter
coincides with the z → ∞ solution of the many-body
master equation and corresponds to DMFT when the
non-Markovian bath is set to zero. Gutzwiller mean-field
theory amounts to decoupling the hopping term in the
Hamiltonian (3) or, equivalently, assumes a product-state
density matrix over different lattice sites, thus reducing
the full many-body problem to a single site coupled to a
self-consistent coherent field (Fig. 1, bottom). An obvious
shortcoming of the Gutzwiller approach is that it cannot
capture any coherent or dissipative processes arising from
the coupling to neighboring sites, unless the system is in a
broken-symmetry phase with a nonvanishing local order
parameter, leading to a finite self-consistent field. The result
is a particularly poor description of strongly interacting, yet
incoherent, normal phases such as bosonic Mott insulators or
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many-body quantum-Zeno phases that we discuss in this
work, whose local properties within Gutzwiller are com-
pletely independent on the hopping and identical to those of
an isolated site. In this perspective, DMFT accounts non-
perturbatively, through the solution of a quantum impurity
model with a non-Markovian bath Δ ∼ 1=z, for finite-
connectivity corrections to Gutzwiller mean-field theory,
thus capturing fluctuations induced by the neighboring sites
even in the absence of an order parameter.
Although simplified with respect to the full master

equation, the solution of DMFT equations and, in particu-
lar, of the quantum impurity problem sketched in Fig. 1 still
poses tremendous challenges. In particular, the presence a
Markovian environment containing arbitrary, possibly non-
linear, jump operators, in addition to local interactions
and the non-Markovian DMFT bath, makes this problem
hard to solve efficiently with state-of-the-art approaches for
nonequilibrium DMFT. A major result of the present work
is the development and benchmark of an impurity solver for
Markovian bosonic DMFT based on the superoperator
hybridization expansion formulated in Ref. [69] and
applied there to a simple noninteracting fermionic resonant
level model. As we discuss more in detail in Sec. IV B, this
approach fully captures the underlying Markovian dynam-
ics of the impurity problem in Fig. 1 and accounts for the
non-Markovian bath Δ through the resummation of an
infinite class of diagrams in the impurity-bath coupling
known as NCA.
As we discuss further on in the paper, the self-consistent

nature of the NCAwe use, as opposed to bare perturbative

expansions to which we compare our results, is crucial to
fully capture the nontrivial correlations associated to the
DMFT bath. We give a more complete picture of the DMFT
formalism, including a discussion of the basic equations
and of impurity solvers in Secs. III and IV.

B. Relation to prior works

Here, we wish to relate our approach with respect to
previous works on nonequilibrium dissipative many-body
systems. In the context of fermionic nonequilibrium
DMFT, dissipation at the single-particle level (i.e., tunnel-
ing to external metallic leads) has been included before
in several works, focusing, for example, on steady-state
transport [84–89], Floquet-driven systems [90–92], or
photodoping [93]. We note that this type of dissipation
is straightforward to handle within DMFT and poses no
additional methodological challenges, since it can be
included within any impurity solver used for nonequili-
brium DMFT in the absence of dissipation. On the other
hand, many-body dissipative processes, such as those we
focus on here in the Lindblad context or those modeling the
coupling between fermions and bosonic baths, are more
challenging to handle, since they induce effective inter-
actions. Up to date, these have been included in non-
equilibrium DMFT studies of dissipative problems only
through perturbative expansions [94–98]. In this respect,
our work goes beyond those studies in that all Markovian
dissipative couplings (single and many-body) are treated on
the same footing and encoded in the local Lindbladian of

FIG. 1. Sketch of the DMFT mapping for open Markovian bosonic quantum systems. A lattice of interacting, driven-dissipative
bosons coupled by hopping [left; see Eqs. (2) and (3) in the main text] is mapped in the large connectivity limit z ≫ 1 onto a single-site
problem, with interactions, local Markovian drive, and losses, coupled to a self-consistent environment (right, top). This single-site
problem includes a coherent drive and a non-Markovian bath [characterized by two independent hybridization functions ΔRðt; t0Þ and
ΔKðt; t0Þ] which accounts for fluctuations due to neighboring sites. In the infinite coordination limit z ¼ ∞, one recovers the Gutzwiller
mean-field theory (right, bottom), where the effect of the lattice is simply encoded in a self-consistent field.
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the impurity model, which opens up the possibilities for
nonperturbative treatments of those couplings. This strat-
egy is similar in spirit to what is done for Markovian
fermionic systems in Ref. [67], where a discretization of the
DMFT bath is used to solve the impurity problem with
exact diagonalization. Here, instead, we use the NCA
impurity solver, which works directly in the thermody-
namic limit of an infinite bath and does not introduce any
discretization, which would be particularly severe for
bosonic problems such as the one we focus on here.
In the context of Markovian quantum many-body sys-

tems, there have been recent methodological developments
to include correlations beyond mean-field theory. Although
a precise comparison with DMFT is beyond the scope of
this work, it is worth discussing some of those methods
here. The cluster mean-field theory [51], developed for
driven-dissipative quantum spin models, is similar to
DMFT in that it adds short-range correlations on top of
a Gutzwiller mean field, although this addition is achieved
through the exact solution of a finite-size cluster rather than
through an infinite (noninteracting) bath. The corner-space
renormalization method [49] performs a diagonalization
of the Lindbladian in a corner of the full Hilbert space,
whose size is iteratively increased. As opposed to DMFT,
which works in the thermodynamic limit, this method is
finite size, which can, however, produce converged results
for sizes much larger than brute-force methods [99].
Both those approaches focus naturally on static correlations
encoded in the stationary-state density matrix, while DMFT
is constructed around the frequency-resolved Green’s
functions.

C. Application to a driven-dissipative
Bose-Hubbard lattice

In this work, we apply DMFT to a lattice model of
driven-dissipative interacting bosons by specifying the
local Hamiltonian and local jump operators entering
Eqs. (2) and (3). We consider for the former

Hloc ¼ ω0b
†
i bi þ

U
2
ðb†i biÞ2; ð4Þ

i.e., a characteristic frequency ω0 and on-site Kerr non-
linearity of strength U, while for the latter we consider two
kinds (μ ¼ 1, 2) of jump operators for each lattice site i:

Li2 ¼
ffiffiffi
η

p
bibi; ð5Þ

Li1 ¼
ffiffiffi
r

p ffiffiffi
η

p
b†i : ð6Þ

We emphasize the correlated nature of the dissipative
process encoded by Li2 which acts only on states with
multiple bosonic occupancy. This term plays a key role for
our results. Interestingly, this kind of loss process can be
realized both with ultracold atoms [17,18] as well with

superconducting circuits [100]. The resulting lattice model
[Eqs. (3)–(6)], therefore, describes a driven-dissipative
realization of the Bose-Hubbard model [83], whose proper-
ties in the presence of incoherent drive and dissipation
has been the subject of tremendous attention recently
[32,40,54,101–109]. The specific form of dissipation we
consider in Eq. (5) is rather unexplored in a many-body
context, although few results are available in the literature
that we recall briefly here.
The many-body master equation (1), (4)–(6) has a global

U(1) symmetry, associated with the invariance of the
Liouvillian with respect to the transformation bi → bieiθ,
and is time translational invariant (TTI). In the limit
of a large number of bosons per site, one expects a
semiclassical description to work. The model reduces then
to a discretized version of the Gross-Pitaevskii equation,
largely studied in the context of exciton-polariton
condensation [36], which predicts a coherent phase of
bosons for any r > 0, independently of J=U. This phase,
which spontaneously breaks both the U(1) and TTI
symmetry, corresponds to a nonequilibrium superfluid.
In the opposite regime of uncoupled sites, J=U ¼ 0, the
steady-state density matrix is known analytically from
Refs. [110,111] and describes an incoherent state: It is a
statistical mixture of Fock states with hbii ¼ 0, as might be
expected given the lack of any coherent driving. How those
two different phases are connected upon increasing J=U, in
the quantum regime of few bosons per site and finite lattice
connectivity, is one of the main focuses of this paper.
In Fig. 2, we plot the DMFT phase diagram for our Bose-

Hubbard model as a function of r (the dimensionless pump-
to-loss ratio) and J=U, for different values of the lattice
connectivity z, together with the Gutzwiller mean-field
phase boundary corresponding to the z ¼ ∞ limit [112].
For a given fixed value of z, we find a critical line rcðJÞ
separating a small-hopping normal phase where the bosons
remain incoherent, hbii ¼ 0, from a large-hopping phase
where the system develops a local order parameter breaking
the U(1) symmetry of the master equation. A first striking
result that clearly appears from Fig. 2 is that, upon
decreasing the connectivity, i.e., increasing the strength
of fluctuations on top of the Gutzwiller mean-field result,
the phase diagram changes substantially. In particular, the
broken symmetry phase shrinks and moves toward larger
values of pump and hopping. Interestingly, the DMFT
corrections to the phase diagram turn out to be substantially
larger than for equilibrium lattice bosons [64,65,68]. The
effect of finite-connectivity fluctuations is, however, not
only quantitative. As we discuss below, and more exten-
sively in Sec. V, these corrections arise from a qualitatively
new physics that is captured by the DMFT NCA descrip-
tion of the normal phase and completely missed by
Gutzwiller mean-field theory.
As we discuss in more detail in Secs. VA and V B,

the normal phase of our model comes with unique
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nonequilibrium properties, inherited from the local many-
body physics of the single-site problem [113]. Above a
pump threshold rNDOS, the system develops a negative
density of states (NDOS) at positive frequencies, a sig-
nature of incipient gain, i.e., energy emission in response to
a weak coherent drive. Upon further increasing the pump-
to-loss ratio above rinv > rNDOS, the steady-state reduced
density matrix shows population inversion; namely, higher-
energy states become more occupied than lower-energy
ones. Within Gutzwiller mean-field theory, which describes
the normal phase as a product state of single sites, those
scales are independent from the hopping J. DMFT instead
shows that fluctuations due to finite connectivity reshape
completely the spectral and distribution properties of the
normal phase, leading, in particular, to a suppression of
NDOS and population inversion. This suppression arises
from hopping-induced losses, a hallmark of the interplay
between coherent and dissipative dynamics in our model,
which are the key physics captured by DMFT through the
non-Markovian bath.
In Sec. V C, we show that an interplay of NDOS and

sufficiently strong hopping J controls the true normal phase
instability for values of the pump above rcðJÞ, when the
system develops full phase coherence and enters the
superfluid phase. In particular, we find that the unstable
mode is modulated in time and that the system displays a
finite-frequency phase transition corresponding to an order

parameter which develops undamped oscillations, thus
breaking TTI [109,114,115]. The large reduction of the
normal phase at finite connectivity can be interpreted as
an effect due to hopping-induced losses arising from the
non-Markovian DMFT bath, which is able to wipe out
the NDOS and absorb part of the energy emitted by the
system, as we discuss more in detail in Sec. V C 2. This
mechanism for the destruction of an ordered phase is of
genuine nonequilibrium origin and cannot be understood
in terms of an effective heating. Indeed, as we show in
Sec. V C 3, while an effective thermalization is captured
by DMFT through an effective temperature, this result
remains comparable to the Gutzwiller mean-field result
up to small values of the connectivity and, therefore,
cannot explain by itself the substantial reshape of the
phase diagram.
The finite-frequency transition toward an oscillating

nonequilibrium superfluid shares similarities with phenom-
ena such as lasing, limit cycles, and synchronization. As we
show more in detail in Sec. V D, the driven-dissipative
Bose-Hubbard (3)–(5) reduces in the semiclassical limit to
an array of coupled classical Van der Pol (VdP) oscillators
[116–118], which admits a stable limit cycle phase, a
coherent phase with an order parameter oscillating in time
at finite frequency, for any finite pump r > 0 and any
coupling J. In the quantum regime of few bosons per site,
the picture qualitatively changes, and a transition arises as a
function of hopping J depicted in Fig. 2. This transition can
be interpreted, in light of this analogy, as a many-body
quantum synchronization [70–82,119], where above a
certain coupling J all quantum VdP oscillators enter into
a collective limit cycle phase.
Finally, in order to highlight the role of hopping-induced

dissipative processes and the qualitative differences
between DMFT NCA and Gutzwiller, in Sec. V E, we
consider the limit of large two-body losses η ≫ J for our
Bose-Hubbard model. We note that this regime is exper-
imentally accessible with ultracold gases in the presence of
inelastic collisions [17,18]. For large two-body losses, and
in the absence of any external pump, perturbation theory
shows that one can restrict the Bose-Hubbard dynamics to a
subspace made by hard-core bosonic states, the dark states
of the local dissipator [120]. Within this quantum-Zeno
subspace [121,122], the dominant dissipative processes
left are those among neighboring sites, controlled by a
hopping-induced loss rate Γeff ¼ ð2ðJ=zÞ2=U2 þ η2Þη.
This scale is shown to affect the transient dynamics
[17,120,123], featuring a power-law decay toward the
trivial zero-density steady state. Here, we use DMFT
NCA to show that in the presence of an additional small
residual pump f ≪ η one can stabilize a quantum-Zeno
stationary state in which physical properties are controlled
by the scale Γeff (see Sec. V E for a detailed discussion). An
example is provided in Fig. 3, where we plot the DMFT
NCA steady-state occupation probability of the n ¼ 1

FIG. 2. Phase diagram of the Bose-Hubbard model [see
Eqs. (3)–(5)] obtained with DMFT and NCA, as a function of
pump/loss ratio r and hopping/interaction ratio J=U, for different
values of the lattice connectivity z, compared to the Gutzwiller
mean-field one (z ¼ ∞). A critical line rcðJÞ separates a normal
low-hopping phase from a broken symmetry phase where the
system develops a local order parameter oscillating in time at
finite frequency. Decreasing the lattice connectivity, i.e., increas-
ing quantum fluctuations due to the finite number of neighbors,
the ordered phase shrinks and the entire phase boundary is
reshaped. In particular, the reentrant behavior of the normal phase
found in the mean field disappears at small values of z.
Parameters: η=U ¼ 0.02, dt ¼ 0.004, tmax ¼ 10, and dimH ¼ 10
(see Sec. V).
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bosonic state versus η=U, for different values of J=U,
and compare it with Gutzwiller results. The latter shows,
independently of J, a very weak dependence from η
which would be completely absent if not for the small
residual pump. DMFT results instead show a clear non-
monotonic behavior as J=U increases, with a minimum at
η ∼U. This behavior is a signature of the emergence
of the Zeno scale Γeff controlling the physics, as we
clearly reveal in the inset, where a scaling collapse is
shown. We emphasize that the emergence of a quantum-
Zeno stationary state represents a stringent test for the
ability of DMFT of capturing hopping-induced losses,
which are instead completely missed by Gutzwiller mean-
field theory.
We give a more complete picture of our results for the

Bose-Hubbard model in Sec. V.

III. DYNAMICAL MEAN-FIELD THEORY FOR
MARKOVIAN BOSONS

In this section, we present the formalism of DMFT for
Markovian bosons, including the basic self-consistency
equations, its formal relation with Gutzwiller mean-field
theory, and its physical interpretation, leaving its derivation
to Appendix A. The starting point is to cast the Lindblad
master equation (2) in the language of nonequilibrium
Keldysh field theory, as discussed extensively in the
literature [52]. The result is an action written in terms of
bosonic coherent fields b̄iα and biα on each lattice site i and
on the upper and lower Keldysh contours, α ¼ �, which
takes the form

S ¼
Z

∞

−∞
dt
X
iα

αb̄iαi∂tbiα −
Z

∞

−∞
dtiL; ð7Þ

where the Lindbladian L is given by

L ¼ −iðHþ −H−Þ

þ
X
μ;i

γμ

�
LiμþL̄iμ− −

1

2
L̄iμþLiμþ −

1

2
Liμ−L̄iμ−

�
ð8Þ

withHα and Liμα the expectation values of the Hamiltonian
(3) and of the jump operators (5), respectively, expressed in
terms of creation and annihilation operators belonging to
the α contour, taken on bosonic coherent states. The full
solution of the Keldysh action in Eq. (7) is, of course, not
possible, in general, due to the coupling between many
interacting modes and the presence of interaction, drive,
and dissipation.
The key idea of DMFT is to write down an effective

Keldysh action for the boson field of a single site of the
lattice, obtained after integrating out all its neighbors [68].
As we show in Appendix A, in the limit of large lattice
connectivity, z ≫ 1, this effective action has the closed
form

Seff ½b†
α;bα� ¼ Sloc½b†

α;bα� þ
Z∞
−∞

dt
X
α¼�

αΦ†
effαðtÞbαðtÞ

−
1

2

Z∞
−∞

dtdt0
X
α;β¼�

αβb†
αðtÞΔαβðt; t0Þbβðt0Þ;

ð9Þ

where α and β are Keldysh contour indices and we drop the
site index from the local boson field for simplicity (we
assume translational invariance) and group together crea-
tion and annihilation fields into a Nambu field

b†
α ¼ ð b̄αbα Þ; bα ¼

�
bα
b̄α

�
: ð10Þ

The above local Keldysh action describes a driven-dis-
sipative quantum impurity model [69]. The first term in
Eq. (9), Sloc½b†

α;bα�, is the local, on-site contribution of the
original lattice action (7) and (8) and, therefore, includes
interactions, as well as Markovian incoherent drive and
dissipation leading to off-diagonal terms in Keldysh
space. The second and third terms describe the feedback
of the rest of lattice onto the site through its neighbors, in
terms of an effective coherent drive Φ†

effαðtÞ and an
effective non-Markovian bath with hybridization function
Δαβðt; t0Þ. Both these quantities have to be determined
self-consistently; in particular, the effective coherent
drive reads

FIG. 3. Emergence of a quantum-Zeno regime at fixed drive rate
f=U ¼ rη=U ¼ 0.013 z ¼ 6,U ¼ 15 and increasing two-particle-
loss rate η. Parameters: tmax ¼ 20, dt ¼ 0.002, and dimH ¼ 6.
Probability of having one boson per site in the steady state ρ1 as a
function of η=U, rescaled by its value at η=U ¼ 2.67 for conven-
ience. It follows a nonmonotonic behavior with a minimum at
η ¼ U, which is more pronounced the larger the hopping J. This
behavior is a manifestation of quantum-Zeno physics, controlled
by the hopping-induced loss rate Γeff as we show clearly in the
inset, which is instead completely missed by Gutzwiller.
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Φ†
effα ¼ JΦ†

αðtÞ þ
Z∞
−∞

dt0
X
β¼�

βΦ†
βðt0ÞΔβαðt0; tÞ ð11Þ

and has two contributions, the first coming from the
average of the bosonic field as in Gutzwiller mean-field
theory:

Φ†
α ¼ hb†

αiSeff ð12Þ
and the second one coming from the non-Markovian bath,
a nontrivial finite z correction accounting for the feedback
of neighboring sites on the local effective field [64,65,68].
This latter term, whose origin is discussed more in detail
in Appendix A, plays a key role within DMFT, in
particular, for what concerns the corrections to the phase
diagram as we discuss in Sec. V C.
The self-consistency relation for the Green’s function

depends on the specific choice of the lattice. In the
following, we use the simplified relation for the Bethe
lattice [68]:

Δαβðt; t0Þ ¼ J2

z
Gαβðt; t0Þ; ð13Þ

which directly relates the hybridization function of the non-
Markovian bath to the impurity connected Green’s function

Gαβðt; t0Þ ¼ −ihbαðtÞb†
βðt0ÞiSeff þ iΦαðtÞΦ†

βðt0Þ: ð14Þ

The DMFT solution of the original Markovian lattice
problem, thus, requires one to solve the Keldysh action
(9), computing, in particular, the impurity Green’s function
(14) and the average of the bosonic field (12), for given
values of the non-Markovian bath Δ and effective field Φ,
and to iterate Eqs. (11)–(13) until self-consistency.

A. Limit of infinite coordination number:
Gutzwiller mean-field theory

It is instructive at this point to take explicitly the limit
of infinite coordination number z → ∞. In this limit, the
DMFT effective action (15) becomes completely local in
time:

Seff ½b†
α;bα� !z¼∞

Sloc½b†
α;bα�þ

Z∞
−∞

X
α

αdtΦ†
effαðtÞbαðtÞ; ð15Þ

since the non-Markovian bath scales as 1=z [see Eq. (13)]
and as such can be unfolded back into a master equation for
a single-site density matrix ρ, which satisfies

∂tρðtÞ ¼ i½b†ΦðtÞ; ρ� þ LρðtÞ;

where L is the local part of the Lindbladian and the
feedback from the neighboring sites is carried by

ΦðtÞ ¼ tr½bρðtÞ�. This equation corresponds to a factorized
Gutzwiller-like ansatz for the lattice many-body density
matrix

ρlattðtÞ ¼
Y
i

ρiðtÞ;

where i is the site index and ρiðtÞ≡ ρðtÞ because of
translational invariance. In other words, we explicitly show
that, as for equilibrium or closed systems [64,68] also for
driven-dissipative lattice systems, the infinite-connectivity
limit of bosons coincides with Gutzwiller mean-field
theory. We note that, whenΦ ¼ 0, this mean field describes
completely uncoupled sites, while DMFT (z < ∞) captures
the feedback from neighboring sites through the self-
consistent bath Δ. In the following section, we are going
to add some physical intuition on how the DMFTaction (9)
describes the effect of neighboring sites through a fictitious
non-Markovian bath.

B. DMFT effective action in the basis of
classical and quantum fields

We now give a physical interpretation to the various
terms entering the DMFT effective action in Eq. (9), in
particular, to the non-Markovian term. It is useful to
introduce the so-called classical and quantum components
of the bosonic field:

bcl=qðtÞ ¼
bþ � b−ffiffiffi

2
p ; ð16Þ

b†
cl=qðtÞ ¼

b†
þ � b†

−ffiffiffi
2

p ; ð17Þ

in terms of which we can rewrite the Keldysh action as

Seff ¼ Sloc½b†
cl=q;bcl=q� þ

Z∞
−∞

dtΦ†
effclbq

−
1

2

Z∞
−∞

dtdt0½b†
qðtÞΔRðt; t0Þbclðt0Þ þ H:c:�

−
1

2

Z∞
−∞

dtdt0b†
qðtÞΔKðt; t0Þb†

qðt0Þ: ð18Þ

In this basis, only two independent combinations of the
non-Markovian kernels Δαβ enter, namely, the retarded
component ΔRðt; t0Þ ¼ θðt − t0Þ½Δ−þðt; t0Þ − Δþ−ðt; t0Þ�,
which couples the classical and quantum components
of the field and encodes the spectral properties of the
bath resulting in a frequency-dependent damping for the
bosonic mode and the Keldysh component ΔK ¼
Δ−þðt; t0Þ þ Δþ−ðt; t0Þ, encoding the occupation of the
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bath and resulting in a frequency-dependent noise for the
bosonic mode. It is worth stressing that the above Keldysh
action contains quadratic, non-Markovian terms in the
classical and quantum fields as well as nonlinearities
and higher powers of the classical and quantum fields
included in the local part of the action Sloc½b†

cl=q;bcl=q�.
While the structure of Eq. (18) is a generic feature of
DMFT, the local part of the action depends on the particular
form of local interaction and jump operators.
Finally, we can express also the impurity Green’s

functions Eq. (14) in this basis to obtain the retarded
Green’s function and the Keldysh one:

GRðt; t0Þ ¼ −ihbclðtÞb†
qðt0ÞiSeff þ iΦclðtÞΦ†

qðt0Þ;
GKðt; t0Þ ¼ −ihbclðtÞb†

clðt0ÞiSeff þ iΦclðtÞΦ†
clðt0Þ: ð19Þ

Those correlation functions contain crucial physical infor-
mation about the local physics of the driven-dissipative
lattice problem. The retarded Green’s function, in particular,
encodes information about the local excitation spectrum of
the system, and it is known to be a crucial probe for
the transition from delocalization to Mott-ness in strongly
correlated systems at equilibrium [62]. For open Markovian
quantum systems, the retarded Green’s function contains,
much like for closed equilibrium systems, information on
the structure of the excitations on top of the stationary state
[113], and it directly probes dissipative phase transitions
where those excitations become unstable. Its poles corre-
spond to eigenvalues of the Lindbladian in the single-
particle sector, which come with a characteristic frequency
and lifetime, and their (possibly complex) weight. The
retarded Green’s function has also a directly physical
meaning: It describes the linear response of the expectation
hbðtÞi to a weak, classical field hðt0Þ, which couples linearly
to b†. In the case where b describes a photonic cavity mode,
GRðtÞ can be directly measured by weakly coupling the
cavity to an input-output waveguide and measuring the
reflection of a weak probe tone (see, e.g., Refs. [124,125]).
The Keldysh Green’s function, on the other hand,

contains information about how the finite-frequency
excitations above the stationary state are populated. In
thermal equilibrium, those two functions are not indepen-
dent but constrained to satisfy the fluctuation-dissipation
theorem [126].

C. Computing lattice quantities

Solving the DMFT effective action and computing
the impurity Green’s functions (19) gives direct informa-
tion on the local properties of the driven-dissipative
lattice problem. Furthermore, one can access nonlocal
quantities, such as momentum distribution or nonlocal
correlation functions, through the lattice Green’s functions
at momentum k:

Gαβ
k ðt; t0Þ ¼ −ihbkαðtÞb†

kβðt0Þi þ iΦkαðtÞΦ†
kβðt0Þ: ð20Þ

These satisfy a Dyson equation with a lattice self-energy
Σαβðt; t0Þ, that within DMFT is momentum independent
[61,66]:

Gαβ
k ðt; t0Þ ¼ gαβ

k ðt; t0Þ þ
X
γδ

gαγ
k ⊗ Σγδ ⊗ Gδβ

k ðt; t0Þ; ð21Þ

and coincides with the self-energy of the impurity problem

Gαβðt; t0Þ ¼ gαβðt; t0Þ þ
X
γδ

gαγ ⊗ Σγδ ⊗ Gδβðt; t0Þ; ð22Þ

where in the above equations ⊗ indicates time convolu-
tions, gαβðt; t0Þ are the Green’s functions of the quantum
impurity problem with no interactions, but including the
non-Markovian bathΔ, and gαβ

k ðt; t0Þ are the noninteracting
lattice Green’s functions.

IV. QUANTUM IMPURITY SOLVERS

The main challenge behind our DMFT approach is to
solve the Markovian quantum impurity model described
by the Keldysh action (9), computing, in particular, the
Green’s functions. We stress that this task remains difficult
due to the presence of interactions on the impurity site,
nonlinear jump operators (such as our two-body losses),
and the non-Markovian DMFT bath. While several impu-
rity solvers have been developed in recent years for
nonequilibrium DMFT [66], none of them can be effi-
ciently applied in our case (see Sec. II B for a detailed
discussion). To make progress, we take explicit advantage
of the Markovian structure of the impurity, which allows us
to treat nonlinear jump operators as dissipative couplings of
a local Lindbladian. This treatment unleashes the possibil-
ity of developing strong-coupling impurity solvers for
bosonic Markovian problems, which treat exactly the local
Lindblad problem and include the effect of the non-
Markovian DMFT bath through perturbative or nonpertur-
bative schemes. We note that for nonequilibrium closed
systems these strong-coupling methods represent the
current state of the art of DMFT impurity solvers [66].
Here, we develop two such schemes for bosonic Markovian
systems, the Hubbard-I approximation and the more power-
ful noncrossing approximation, that we present below.
We comment in Sec. VI on possible methodological
extensions.

A. Hubbard-I approximation

The simplest approximation to solve the impurity prob-
lem (9) is based on perturbation theory in the non-
Markovian bath kernel Δ, and its lowest order is known
as the Hubbard-I approximation [62,127]. As we see, this
approach already gives a hopping dependence of

DYNAMICAL MEAN-FIELD THEORY FOR MARKOVIAN OPEN … PHYS. REV. X 11, 031018 (2021)

031018-9



correlation functions which goes beyond Gutzwiller mean-
field theory but misses important correlations due to the
non-Markovian bath. Our DMFT approach is based on
the more powerful noncrossing approximation solver
which we introduce in the next section, but we use
Hubbard-I results for comparison and to motivate the need
of a more powerful solver.
For simplicity, we formulate Hubbard-I in the normal

phase, where Φ ¼ 0 and anomalous correlation functions
vanish; thus, we can restrict to the first Nambu component
and refer to it with nonbold symbols, e.g., Gαβ ¼ Gαβ

11 ,
where α; β ¼ � are Keldysh indexes. We also focus on the
stationary-state regime, where Green’s functions depend
on time differences and we can move to the frequency
domain, i.e., GαβðωÞ, which is the case we consider in our
application in Sec. V.
The impurity Green’s function obeys a Dyson equation

[seeEq. (22)] in termsofa self-energyΣαβðωÞwhichcontains
the effect of interaction, incoherent drive, anddissipation and
which is, in general, a functional of the non-Markovian bath
kernel ΔαβðωÞ. Hubbard-I consists in approximating the
impurity self-energy by its value for Δ ¼ 0, i.e., in the
absence of the bath, when it can be written as

ΣαβðωÞ ≈ ½gαβ0 ðωÞ�−1 − ½Gαβ
0 ðωÞ�−1: ð23Þ

Here,Gαβ
0 ðωÞ is theGreen’s functionof the impurity sitewith

interaction, incoherent drive, and dissipation but without the
bath (the latter condition is indicated by the index 0); it can
be computed numerically [113]. In contrast, gαβ0 ðωÞ corre-
sponds to the Green’s function of the impurity site in the
absence of the bath and without interactions (lowercase
letter), which is known analytically. Plugging this self-
energy back in the Dyson equation (22) and using the
self-consistency condition on the Bethe lattice, we obtain
a closed matrix equation for the Keldysh components of the
local lattice Green’s functions:

½GαβðωÞ�−1 ¼ ½Gαβ
0 ðωÞ�−1 − J2

z
GαβðωÞ: ð24Þ

The expressions of the retarded and Keldysh components are
givenexplicitly inAppendixE. In theAppendix,wealso show
that the Hubbard-I approximation, despite introducing a
beyond-mean-fieldhoppingdependenceofGreen’s functions,
still yields the same phase diagram as mean-field theory,
motivating the need for a more powerful solver.

B. Superoperator hybridization expansion and
noncrossing approximation

To go beyond the Hubbard-I approximation, we build
upon the method recently formulated in Ref. [69] and
applied so far only to a simple toy model fermionic system,
to develop a DMFT NCA impurity solver for bosonic

Markovian systems. The idea is to perform a diagrammatic
expansion in powers of the non-Markovian bath Δ and to
resum an infinite set of diagrams by solving a self-
consistent Dyson-type equation. We remark that this
expansion is carried out around an interacting problem,
the single-site Markovian impurity; hence, it is not based on
Wick’s theorem as in weak-coupling perturbation theories.
As such, working directly with Green’s functions is not
convenient and the more natural formulation is in terms of
evolution superoperators, that we denote in the following
with a hat [69]. We start by defining the evolution super-
operator V̂ of the reduced density matrix of the impurity:

ρimpðtÞ ¼ V̂ðt; 0Þρimpð0Þ ð25Þ
formally obtained by tracing out the bath degrees of
freedom. We note that Eq. (25) assumes that at time
t ¼ 0 the non-Markovian bath is not entangled with the
impurity site; i.e., in the original lattice problem, the initial
condition corresponds to the limit of decoupled sites. Since
the bath degrees of freedom are treated as noninteracting,
only the single-particle Green’s function of the bath enters
the reduced dynamics, the hybridization function Δ intro-
duced in Eq. (9). Expanding the superoperator V̂ðt; 0Þ in
powers of Δ, we obtain a series which can be represented
diagrammatically as shown in Fig. 4, where bold solid lines
describe the propagator V̂ðt; 0Þ and dashed lines represent
the hybridization function Δ, while simple solid lines
represent the bare Markovian evolution superoperator
V̂0ðt; 0Þ ¼ T exp½R t0 dt0L̂effðt0Þ�, where T is the time order-
ing and L̂effðtÞ ¼ L̂0 þ i½b̂†Φ̂ðtÞ; •� the effective single-site
Lindblad superoperator with argument •.
This diagrammatic representation allows one to define

the self-energy Ŝ of the series as the sum of one-particle-
irreducible (1PI) diagrams, which cannot be cut into two
disconnected parts by removing a solid line, and, thus, to
formally resum the series into the Dyson equation

V̂ðt;t0Þ¼ V̂0ðt;t0Þþ
Z

t

t0
dt1

Z
t1

t0
dt2V̂0ðt;t1ÞŜðt1;t2ÞV̂ðt2;t0Þ:

ð26Þ

(a)

(b)

FIG. 4. (a) Diagrammatic representation of the Dyson series in
Eq. (26). The bold (thin) solid lines represent the full, non-
Markovian (bare, Markovian) impurity superoperator V̂ (V̂0),
while the dashed lines correspond to the non-Markovian bath Δ.
(b) Expression of the self-energy Ŝ in the NCA, where only
diagrams with noncrossingΔ lines are retained whose sum can be
explicitly evaluated; see Eq. (27).
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We remark that V̂0, V̂, and Ŝ here are superoperators and
that the self-energy Ŝ is a functional of the propagator V̂
whose closed form is not known, in general. The resulting
series (26) generalizes to the case of Markovian impurities
the hybridization expansion obtained for unitary quantum
impurity models [128–132]. For the latter, exact resumma-
tion techniques based on diagrammatic Monte Carlo meth-
ods [133] are employed but generically suffer from the so-
called sign problem, especially out of equilibrium, limiting
the propagation time. Here, instead, we adopt a self-
consistent approximation for the self-energy Ŝ. This
approximation can be written, in general, as a systematic
expansion in diagrams with an increasing number
of crossing hybridization lines, an approach which is
extensively used for unitary quantum impurity models
[134–137]. The lowest-order contribution is given by
noncrossing diagrams, e.g., in Fig. 4, giving an explicit
expression for the NCA self-energy:

Ŝðt1; t2Þ ¼ −
i
2

X
αβ
ab

αβ½Δβα
baðt1; t2Þb̂†βbV̂ðt1; t2Þb̂αa

þ Δαβ
abðt2; t1Þb̂βbV̂ðt1; t2Þb̂†αa�: ð27Þ

In the above expression, α; β ¼ � are Keldysh indices and
a; b ¼ f1; 2g are Nambu indices. Thus, Δαβ

ab is a given
component of the bath hybridization function introduced in
Eq. (9), i.e., Δαβ

ab ¼ ðΔαβÞab. We also introduce the super-
operator analogs of the Nambu fields of Eq. (10), that we
define as

b̂†
α ¼ ð b̂†αb̂α Þ; b̂α ¼

�
b̂α
b̂†α

�
; ð28Þ

and denote their a Nambu component as b̂αa in Eq. (27).
The Keldysh index α ¼ � for a superoperator specifies
whether it should act from the left or the right of its
argument, i.e.,

b̂þ ¼ b•; b̂− ¼ •b; ð29Þ

and similarly for b̂†α. We notice that the self-energy depends
on the full propagator V̂ rather than on the bare one V̂0, thus
containing diagrams to all orders in Δ. Corrections to the
NCA can be obtained systematically including self-energy
diagrams with higher numbers of crossings, although the
resulting computational cost increases. In this work, where
we focus on the normal phase and its instability, we limit
ourselves to the NCA scheme, while we expect that, to
access the superfluid phase or for lower values of the
connectivity, higher-order corrections would become
important. We note, in fact, that self-energy corrections
including higher numbers of crossing diagrams come with

higher powers of the DMFT bath, which for bosons is of the
order of J2=z [see Eq. (13)] and, therefore, subleading at
least for large to moderate values of the connectivity.
Once the self-energy Ŝ is known in closed form, the

propagator V̂ can be obtained numerically by solving
Eqs. (26) and (27). To use this NCA impurity solver in
our DMFT approach, we need to compute the one-particle
Green’s functions of the impurity [Eq. (14)]. This value can
be obtained by taking the functional derivative with respect
to Δ of the partition function Z ¼ tr½ρimpð∞Þ� in Eq. (25)

and using the Dyson equation for V̂ (see Appendix G). The
final result reads

Gαβ
abðt; t0Þ ¼ −iftr½b̂αaV̂ðt; t0Þb̂†βbρimpðt0Þ�θðt − t0Þ

þ tr½b̂†βbV̂ðt0; tÞb̂αaρimpðtÞ�θðt0 − tÞg
þ iΦαaðtÞΦ†

βbðt0Þ; ð30Þ

where as beforewewrite explicitly both theKeldysh indicesα
and β and the Nambu ones a and b and where ΦαaðtÞ ¼
tr½b̂αaρimpðtÞ�. We notice that this result, which resembles a
quantum regression theorem [27] for the non-Markovianmap
V̂ðt; t0Þ, is valid only within NCA, while including higher-
order diagrams into the self-energy leads to further terms
which can be interpreted as vertex corrections.
Finally, we conclude by emphasizing that the solver

introduced in this section is different from other NCA
approaches to quantum impurity models with or without
dissipation [68,96,98,136,138], which treat at the non-
crossing level all couplings to the baths. Here, by for-
mulating the hybridization expansion at the superoperator
level, we are able to fully capture the underlying local
Markovian dynamics, resorting to an NCA only for the
non-Markovian DMFT bath. This approach introduces
several differences with respect to the NCA literature,
including the way the Green’s functions are evaluated [see
Eq. (30)] and in the way the stationary-state theory is
constructed, as we discuss further in the next section.

1. Stationary-state DMFT/NCA

While the formalism introduced so far allows us to
compute the whole transient dynamics, in this section,
we show how to directly address the stationary-state
properties of the system within our DMFT NCA approach.
At stationarity, we expect the local Green’s functions (14)
and, through the self-consistent condition (13), the bath
hybridization function Δαβ to depend only on time
differences. We can then solve the NCA Dyson equa-
tion (26) for the stationary-state propagator V̂ðt − t0Þ, which
also depends only on time differences. This approach
allows us to significantly reduce the computational cost
for time propagating this equation fromOðt3maxÞ toOðt2maxÞ,
where tmax is the maximum integration time.
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A complete steady-state DMFT NCA procedure requires
one to compute, in addition to the stationary-state propa-
gator, also the steady-state density matrix of the impurity
ρs ≡ V̂ð∞; 0Þρimpð0Þ, which is needed to evaluate the
impurity Green’s functions [see Eq. (30)]. While, in
principle, this constraint would require one to perform
the full transient dynamics from an arbitrary initial con-
dition, here we show how to obtain ρs directly from the
stationary-state propagator V̂ðt − t0Þ. We note that for
Markovian open quantum systems the stationary-state
density matrix can be directly obtained as zero eigenvalue
of the Lindblad superoperator generating the dynamics.
This argument, however, does not directly apply to the
present case, since the DMFT bath makes the map V̂ðt; t0Þ
non-Markovian. A generalized stationarity condition for
the non-Markovian map (26) can be obtained [69] by
requiring the derivative of Eq. (26) to vanish at long times,
i.e., limt→∞ ∂tV̂ðt; 0Þρ0 ¼ 0. This equation, however, still
requires the knowledge of the full transient propagator.
A major simplification arises in DMFT if the system
reaches a stationary state, becoming time-translational
invariant. Then, the condition for the impurity density
matrix simplifies to (see Appendix F)�

L̂effð∞Þ þ
Z

∞

0

dτŜðτÞ
�
ρs ¼ 0; ð31Þ

where the self-energy ŜðτÞ depends only on the steady-state
propagator V̂ðτÞ and not on the transient dynamics,
allowing us to compute ρs in a steady-state DMFT
procedure. Equation (31) is analogous to the well-known
condition for the stationary state of Markovian master
equations, with an additional contribution of the non-
Markovian bath given by the time integral of the NCA
self-energy. In practice, to solve DMFT NCA for the
stationary state, we solve the Dyson equation (26) for
V̂ðtÞ starting from an initial ansatz for Δðt − t0Þ, Φðt0Þ,
and ρs. As an initial condition, we usually compute these
quantities from the steady-state solution of the single-site
problem. Then, we compute the updated stationary density
matrix ρs using Eq. (31) and the updated Δðt − t0Þ;Φðt0Þ
from Eqs. (11) and (13) and iterate until convergence is
reached. We conclude by noting that, in principle, the
stationary-state approximation could break down, leading
to oscillatory behaviors. It is, therefore, important to study
the stability of the steady state, which is encoded in the
retarded Green’s function as we discuss more in detail in
Sec. V C.

V. DMFT RESULTS FOR A DRIVEN-DISSIPATIVE
BOSE-HUBBARD LATTICE

In this section, we discuss our results for the driven-
dissipative Bose-Hubbard model introduced in Sec. II C,
comparing different impurity solvers (NCA and Hubbard-I

approximation) and highlighting the effect of introducing
fluctuations beyond Gutzwiller mean-field theory due to the
finite lattice connectivity. We start by discussing the proper-
ties of the normal phase at low hopping as encoded in its
local spectral function (Sec. VA). We then move on to
occupation properties of the nonequilibrium normal phase
(Sec. V B) from the point of view of the local density and
populations of the stationary-state reduced density matrix. In
Sec. V C, we discuss the finite-frequency instability of the
normal phase, leading to the DMFT NCA phase diagram,
and provide a physical interpretation based on hopping-
induced dissipation for the large reduction of the ordered
phase found in DMFT with respect to the Gutzwiller mean-
field result. In Sec. VD, we connect the phase transition in
our driven-dissipative Bose-Hubbard model to the physics of
an array of quantum Van der Pol oscillators, in particular, to
the onset of many-body synchronization and limit cycles,
and discuss their fate at finite lattice connectivity. Finally, in
Sec. V E, we discuss the regime of large two-body losses,
where quantum-Zeno physics emerges and the qualitative
differences between Gutzwiller and DMFT NCA results
appear even more clearly.
Unless stated otherwise, we work in the regime where

the interaction strength dominates the dissipation scale, i.e.,
we fix η=U ¼ 0.02, and study the model as a functions
of the pump/loss ratio r and the hopping-to-interaction ratio
J=U. We set U ¼ 5 and ω0 ¼ 1, although we note that
this latter scale only sets the zero of energy and can be
eliminated by going to a rotating frame, so it does not play
any role in the physics.
We introduce a cutoff on the local Hilbert space dimH,

whose value is specified for each result. We solve DMFT
for the normal phase, where Φ ¼ 0 and the anomalous
(Nambu) Green’s function components vanish so that the
self-consistent bath retains only Keldysh indexes Δαβ. The
NCA propagator in the stationary regime VðtÞ is obtained,
as described in Sec. IV B 1, by propagating in time the
derivative of the Dyson equation (26) assuming time-
translational invariance:

∂tV̂ðtÞ ¼ L̂0V̂ðtÞ þ
Z

t

0

dt1Ŝðt − t1ÞV̂ðt1Þ ð32Þ

with an implicit second-order Runge-Kutta scheme [66], a
propagation time tmax ¼ 10, and a time step dt ¼ 0.004.
We note that, in the regime under consideration in
this work, the dynamics of the Dyson equation is domi-
nated by the non-Markovian bath rather than by the
two-particle losses, and, therefore, a tmax ¼ 10 ¼ 1=η is
sufficient to reach convergence. Convergence of the
implicit Runge-Kutta at each time step is assumed to be

reached when 1=ðdimHÞ4
P

jk jVðiÞ
jk ðtÞ − Vði−1Þ

jk ðtÞj < 10−5,
with i the iteration index. The convergence of the
DMFT scheme is assessed by checking that
1=ð2tmaxÞ

P
α

R tmax
0 jðΔα;−αÞðiÞðtÞ − ðΔα;−αÞði−1ÞðtÞj < 10−5,
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with i the index of the DMFT iteration. We check that our
results essentially do not change by decreasing those
thresholds or increasing the Hilbert space cutoff.

A. Spectral function in the normal phase

To characterize the properties of the system, we first
focus on the local retarded Green’s function defined in
Eq. (19). Since in the normal phase all anomalous (Nambu)
Green’s function components vanish as well as the average
of the order parameter, we have only one independent
Nambu component GRðtÞ ¼ −iθðtÞh½bðtÞ; b†ð0Þ�i. Its
imaginary part defines the local spectral function

AðωÞ ¼ −
1

π
ImGRðωÞ: ð33Þ

In Fig. 5, we plot the local spectral function in the low
pump regime, r ¼ 0.6, for different values of J=U and
compare the DMFT NCA results with those obtained with
Hubbard-I impurity solver and Gutzwiller mean-field
theory.
The Gutzwiller mean-field spectral function shows a

series of narrow peaks, whose broadening is controlled
only by the local dissipation. We remark that in this
approach, corresponding to the infinite coordination num-
ber limit z ¼ ∞, all properties of the normal phase are
independent on the hopping and coincide with the single-
site J ¼ 0 limit. Indeed, as we discuss in Sec. III A, for
z ¼ ∞ the only feedback from neighboring sites comes

through the order parameter Φ, which vanishes in this
normal phase.
DMFT instead is able to capture the effect of coherent

hopping processes, resulting in a further broadening of the
resonances. This finite hopping correction to the spectral
function reflects the fact that the stationary density matrix
in the normal phase is not a tensor product of single-site
density matrices, as predicted by Gutzwiller, but rather
includes correlations among neighboring sites encoded
within DMFT in the non-Markovian bath.
A comparison between Hubbard-I and NCA shows that

the former largely underestimates the effect of the bath.
Indeed, within NCA the sharp peaks of the isolated single-
site problem are largely broadened already for a moderate
value of the hopping rate J=U ¼ 0.2, a trend that further
increases for larger values of J=U. At the same time, the
location of the poles is found to be weakly dependent on
the hopping rate and, at least for J=U ¼ 0.2, essentially
captured already by Hubbard-I and Gutzwiller mean-field
theory. This difference can be understood by noticing that
there are two main sources of resonance broadening within
our DMFT approach, one coming from the bare non-
Markovian bath ΔðωÞ and the other coming from the
Markovian interacting single-site problem, encoded in
the self-energy ΣðωÞ (see Sec. III C). Within Hubbard-I,
the latter is independent of J and set only by pump and
losses. NCA, on the other hand, accounts for many-body
scattering channels mediated by the bath and results in an
imaginary part of ΣðωÞ, also scaling with the hopping
strength and responsible for the larger broadening. We
emphasize that, while the main effect of the DMFT bath in
this regime is to broaden the resonances, this broadening is
not uniform in frequency; i.e., it could not be reproduced by
treating the DMFT bath with a Markov approximation. In
fact, the self-consistent condition Eq. (13) implies that the
spectrum of the DMFT bath is given by the local spectral
function itself; namely, it comes with a rich multipeak
structure in frequency which prevents the use of a simple
Markovian approximation. Overall, the spectral function in
this low-drive, low-hopping normal region is very remi-
niscent of an equilibrium Bose-Hubbard model in the Mott
insulating phase [127], with Hubbard bands, describing
doublons and holons and multiparticle excitations, which
are partially filled by incoherent pump and dissipation. As
we show in the next section, increasing the pump strength
reveals a spectral feature which is instead unique to
interacting driven-dissipative systems.

1. Negative density of states

We now discuss how the spectral features of the normal
phase evolve upon increasing the strength of the drive/loss
ratio r. While in the low pump regime all the peaks of the
spectral function are positive (see Fig. 5), a novel effect
appears at large drives. Above a threshold rNDOS, the lowest
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FIG. 5. Local spectral function AðωÞ for different values of
J=U, as computed within Gutzwiller mean-field theory (blue
line), DMFT with Hubbard-I impurity solver (dashed red line)
and NCA impurity solver (green and violet full lines), for fixed
z ¼ 6 and r ¼ 0.6. Gutzwiller results show a series of narrow
peaks broadened by the local dissipation only. DMFT instead is
able to capture additional broadening processes, already evident
for J=U ¼ 0.2 within Hubbard-I, which, however, largely
underestimates the effect of the non-Markovian bath as con-
firmed by the comparison with the more accurate NCA.
Parameters: dimH ¼ 10.
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Hubbard band flips sign and a region of NDOS appears in a
positive frequency range [139].
We show this region in Fig. 6, where we plot the spectral

function obtained within DMFT+NCA for different values
of drive/loss ratio r, at fixed J=U ¼ 0.2. The region of
NDOS extends up to ω ¼ Ω0, a frequency at which the
imaginary part of the retarded Green’s function linearly
vanishes; i.e., we have

AðωÞ ¼ γðω − Ω0Þ for ω ≃Ω0 ð34Þ
with γ > 0, while for ω > Ω0 the conventional positive
sign is recovered. As we show in Fig. 6, the spectral range
of NDOS increases with the drive r, and so does the
frequency Ω0ðrÞ. We stress that a negative spectral function
at positive frequency is a genuine nonequilibrium phe-
nomenon that cannot happen for closed systems in thermal
equilibrium [113]. It has direct physical consequences on
the response of the system to a weak local coherent drive
oscillating at frequency ω, VðtÞ ¼Pi ½v�i ðtÞbi þ H:c:� with
v�i ðtÞ ¼ v0δi;0eiωt. Indeed, for an open system, the power
absorbed from the perturbation, defined as [140–142]
_W ¼ TrρðtÞ _V, can be written within linear response theory
as (see Appendix D)

_W ¼ v20ωAðωÞ: ð35Þ

This expression highlights how the spectral function at
frequency ω controls the power absorbed by the system
under an external drive. A change in sign of this quantity,
i.e., a negative absorbed power, signals the onset of energy
emission and gain, a condition which is generally asso-
ciated with optical amplification and lasing [143–146].
As we discuss in Sec. V C, the NDOS effect and the

frequency Ω0 play a crucial role in the nonequilibrium
phase transition from the normal to the superfluid phase.
We emphasize that the NDOS effect arises already in the

single-site problem, i.e., for J ¼ 0 in our model, above a
threshold pump rNDOS which depends on the strength of
Kerr nonlinearity, as discussed in Ref. [113]. As a result, it
naturally appears at large drive in the normal-phase spectral
function of our lattice model calculated within Gutzwiller
mean-field theory as well as DMFT+Hubbard-I, both built
out of the exact solution of the single-site problem.
We now discuss the dependence of the NDOS effect

from the hopping J. Clearly, such a question goes beyond
Gutzwiller mean-field theory, which as we stress cannot
capture any effect due to coherent hopping within the
normal phase. In Fig. 7, we plot the spectral function
obtained with DMFT+Hubbard-I and NCA, for increasing
values of J=U, and compare with the results obtained from
Gutzwiller. We find that the NCA spectral function is
strongly affected by the hopping, which broadens the sharp
high-energy peaks and decreases the strength of the
negative peak around Ω0, up to a value of J=U ≃ 0.8, at
which this peak turns back to positive, washing away the
NDOS effect. In other words, NCA is able to capture a
renormalization of the scale Ω0 from the hopping J. This
result is surprising at first, since J is a purely coherent
energy scale, while we seen in Fig. 6 that the strength of the
peaks and the NDOS is controlled by the dissipative scales,
i.e., the pump-to-loss ratio. We interpret this effect as a first
example of hopping-induced losses, a mechanism that is
unique to open quantum systems and that plays a key role
in the physics of our model. Importantly, this effect is
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FIG. 6. Local spectral function AðωÞ obtained from DMFT
NCA for different values of the pump/loss ratio r at fixed
J=U ¼ 0.2 and z ¼ 6. Upon increasing r, the lowest Hubbard
band flips sign and a region of NDOS emerge at positive
frequencies, up to ω ¼ Ω0ðrÞ, where the spectral function
vanishes, AðΩ0Þ ¼ 0. The spectral range of NDOS increases
with r. Parameters: dimH ¼ 14.

0 1 2 3 4 5
-0.06

-0.03

0.00

0.03

0.06

0.09
0.10

FIG. 7. Local spectral function AðωÞ for different values of
J=U, as computed within Gutzwiller mean-field theory (dashed
blue line), DMFT with Hubbard-I impurity solver (dashed red
line), and NCA impurity solver (green and pink full lines), for
fixed z ¼ 6 and r ¼ 2. Within NCA, we see that increasing
the hopping J changes qualitatively the structure of the low-
frequency spectrum, washing out the NDOS and restoring a
positive spectrum at ω > 0. This effect of the DMFT bath is
completely missed by Gutzwiller mean-field as well as Hubbard-I
approximations. Parameters: dimH ¼ 10.
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completely missed by the simple impurity solver Hubbard-I,
whose spectral function, also shown in Fig. 7, changes very
little with respect to the Gutzwiller mean-field one [147].
In summary, we see that changing drive and hopping

largely affects the spectral properties of the normal phase.
In particular, we identify for positive frequencies 0 < ω <
Ω0ðr; J=UÞ a region of NDOS emerging above a threshold
drive strength r > rNDOSðJ=UÞ. Both these quantities
depend within DMFT NCA from the hopping-to-interac-
tion ratio J=U, an effect which is completely missed by
Gutzwiller mean-field theory as well as by Hubbard-I. As
we discuss in Sec. V C, these dependencies of the critical
frequency Ω0 and of the threshold drive rNDOS from the
hopping strength J have direct consequences on the phase
diagram of the model.

B. Steady-state local density matrix
and population inversion

We now discuss the occupation properties of the sta-
tionary-state distribution in the normal phase. For a lattice
problem, computing the full many-body density matrix can
be done only for very small systems. Nevertheless, within
our DMFT NCA approach, describing the thermodynamic
limit of infinitely many sites, we can compute the reduced
steady-state density matrix of a given site of the lattice,
say, site i ¼ 0, obtained by performing a partial trace on all
other sites, namely, ρs ¼ trj≠0ρlatt;s. This result corresponds
to the steady-state density matrix of the DMFT self-
consistent quantum impurity model (9) and, thus, of the
non-Markovian map V̂ (25), and it obeys Eq. (31). This
reduced on-site stationary density matrix allows us to study
the change of the local populations of bosons due to
hopping processes, which is completely missed by
Gutzwiller mean-field theory. Also, for open systems, these
hopping processes enable new, effective dissipative chan-
nels. For example, a particle can be injected from the
Markovian environment on one site, hop to another site,
and escape the system rather than just being created and
annihilated on the same site. Those processes are captured
by our DMFT approach and mimicked by the non-
Markovian environment Δ and unlock interesting new
physics which we discuss here.

1. Local occupation versus J

From the knowledge of the on-site reduced stationary-
state density matrix ρs, we can obtain the average local
density hni ¼ trðb†bρsÞ. We notice that the local density
can be also obtained from the Green’s functions, in
particular, from the Keldysh component at equal times:

GKðt;tÞ¼−ihfbðtÞ;b†ðtÞgi¼−i½2hb†ðtÞbðtÞiþ1�; ð36Þ

which gives consistently the same result in our NCA
approach.

Within DMFT, the local density acquires a dependence
from the hopping J, which is obviously missing in
Gutzwiller mean-field theory. In Fig. 8, we plot the density
as a function of J=U at z ¼ 6 and for different values of the
drive, normalized to the mean-field value (z ¼ ∞). We see
that quite generically the density decreases smoothly upon
increasing the hopping within the normal phase, i.e., for
J < Jc. This result can be understood as an interplay of two-
particle losses and coherent hopping between neighboring
sites, an effect that is further explained by discussing the
stationary-state populations in the next section. Interestingly,
the rate of decrease of the density with hopping changes
quite strongly with the strength of the pump r, and, in
particular, we notice in Fig. 8 that a large drive seems to
make the density more pinned to the single-site value.
The result in Fig. 8 turns out to be a specific feature of

dissipative lattices with two-particle losses. In fact, one can
generically prove that, for a driven-dissipative Bose-
Hubbard model with only single-particle losses and sin-
gle-particle drive, the stationary-state density matrix is
independent of any Hamiltonian parameter [148], leading
to a density of particles independent of J (although not
necessarily integer, as it would be in the equilibrium Mott
ground state of the Bose-Hubbard model) and set only by
drive-loss balance. In Appendix B, we show that this effect
is correctly captured by our DMFT NCA approach, a
highly nontrivial benchmark for its validity.

2. Steady-state populations and population inversion

In this section, we discuss the effect of coherent hopping
processes on the steady-state reduced density matrix,
which as we show exhibits richer physics than the local
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FIG. 8. Local density of particles as a function of the hopping-
to-interaction ratio J=U, within DMFT NCA, for different values
of the pump-to-loss ratio r, normalized to the values of the single-
site problem. We see that the density decreases with J=U, a
specific feature of driven-dissipative lattices with two-body losses
(see the main text), which is captured by DMFT. Parameters:
z ¼ 50 and dimH ¼ 10. The drive values used are marked on the
y axis in Fig. 10.
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occupancy. In the normal phase, this quantity is diagonal in
the basis of Fock states with n bosons per site, and the
steady-state populations ρn are shown in Fig. 9 for different
hopping values and for z ¼ 6 and r ¼ 3.
First, we observe that the single-site model, correspond-

ing to J ¼ 0, shows a nonmonotonic behavior of the
populations as a function of the number of bosons per
site, for drive/loss ratio r > 1 and any value of the Kerr
nonlinearityU (which, in fact, does not affect the stationary
state as has been long known [111]). This population
inversion at J ¼ 0 appears clearly in Fig. 9, where the
probability of finding n bosons per site is maximum at
n ¼ 1 despite the fact that a finite bosonic occupation costs
energy En ¼ ω0nþ Un2=2 ∼U and should be, therefore,
thermodynamically suppressed.
Increasing the hopping changes the populations at low

occupancy while leaving essentially unaffected the tail at
large n. In particular, the coherent hopping from and into
the neighboring sites increases the probability of having an
empty site at the expense of finite occupation. This increase
is a genuine feature of our dissipative many-body lattice
problem with local two-body losses: Starting from a state
with average filling n ∼ 1, hopping processes toward
neighboring sites create double occupations which escape
at a rate η, reducing the total occupation. This trend goes
on upon further increasing J, ultimately suppressing the
population inversion above a threshold hopping. This
mechanism also explains more in detail the observed
overall decrease of average occupation with J (Fig. 8),
which we discuss in the previous section.
An interesting question concerns the relation between

the NDOS effect discussed in Sec. VA and the population

inversion in the reduced stationary density matrix. In closed
quantum systems described by unitary evolution, the two
concepts are directly related; namely, an NDOS could
emerge only in the presence of an inversion of populations
where higher-energy states are more occupied than lower-
energy ones. For open quantum systems, the situation is
more subtle, and the two concepts are not in one-to-one
correspondence [113]. In Fig. 10, we plot the behavior of
the threshold for population inversion rinv and for NDOS
rNDOS as a function of J=U. We notice that those thresholds
are independent from the hopping within Gutzwiller mean-
field theory (see dashed lines, which coincide with the
J ¼ 0 values of DMFT), while they are substantially
renormalized in DMFT. In particular, the two scales
rNDOS < rinv further deviate from each other as the hopping
is increased. We note that rinv increases monotonically with
the hopping strength J in DMFT. Based on closed system
arguments, this hopping-induced suppression of population
inversion would suggest that the NDOS is also always
suppressed by hopping, as, for example, Fig. 7 shows.
Surprisingly, this suppression is not always the case.
Figure 10 shows that rNDOS has a nonmonotonic behavior
with the hopping rate J; namely, its behavior changes from
small and large hopping values. While for large values of J
the NDOS threshold rNDOS indeed increases following the
behavior of the rinv threshold, as expected from closed
system arguments, for small values of J it is actually
reduced below the J ¼ 0 threshold, corresponding to the
single site. Namely, for small values of J, the non-
Markovian bath Δ actually generates an NDOS, even in
a regime where the single-site model would not present any
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FIG. 9. Steady-state populations of the reduced density matrix
ρn ¼ hnjρsjni, within DMFT NCA, for different values of the
hopping-to-interaction ratio J=U and for drive-to-loss ratio
r ¼ 1.22. We see that increasing J=U changes the populations
at low values of n and ultimately washes away the population
inversion found in the single-site limit J=U ¼ 0. Parameters: z ¼
50 and dimH ¼ 10. The drive-to-loss ratio value used is marked
on the y axis in Fig. 10.
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FIG. 10. Threshold drives for NDOS rNDOSðJÞ and for pop-
ulation inversion in the density matrix rinvðJÞ, as a function of the
hopping and compared with the critical drive rcðJÞ (yellow
points) for the finite-frequency superfluid transition. The ticks of
the y axis correspond to the values of r used for Figs. 8 and 9. We
see that for a small value of r the phase transition occurs even in
the absence of a population inversion; i.e., it is the NDOS the key
effect leading to the instability of the normal phase. Parameters:
z ¼ 50. Red curve: tmax ¼ 10 and dimH ¼ 14. Gray curve:
tmax ¼ 20 and dimH ¼ 10.
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signature of this effect. This result is a unique feature of
dissipative quantum systems, where an NDOS can be
generated even in the absence of population inversion.
For Markovian systems, it is shown that this feature can be
traced back to the structure of excitations on top of the
stationary state, which come with characteristic complex
weights, leading to anti-Lorentzian line shapes [113].

C. Finite-frequency instability of the normal phase

In this section, we discuss how the peculiar spectral and
occupation properties of the normal phase contribute to
an instability toward a spontaneous breaking of U(1)
symmetry. We show that the conventional static superfluid
transition of the equilibrium Bose Hubbard model as a
function of the hopping-to-interaction ratio J=U is pushed
to finite frequency as a result of drive and dissipation,
leading to an order parameter oscillating in time. We
emphasize the role of the NDOS for the onset of the phase
transition and compare the DMFT NCA and Gutzwiller
phase boundaries. We argue that the effect of finite-
connectivity fluctuations not only is quantitative, but rather
underlines a qualitatively new physical mechanism for the
onset of an ordered phase in open quantum lattices with
two-body losses, which cannot be simply interpreted as the
destruction of an ordered phase by thermal fluctuations in
an effective equilibrium problem.

1. DMFT phase boundary

Within our DMFT approach, we can derive an equation
for the phase boundary separating the normal and the
broken symmetry phases. We assume to be in the early
symmetry-broken phase, where the order parameterΦðtÞ ¼
hbðtÞi has just formed and it is small. This assumption
implies a small external field ΦeffðtÞ (11) in the DMFT
effective action (9). We also assume to be in a stationary
regime at long times, such that two-point correlators
depend only on time differences and move to Fourier
space. The average value of the bosonic field ΦðωÞ≡
hbðωÞi is, to linear order in Φeff ,

ΦðωÞ ¼ −GRðωÞΦeffðωÞ; ð37Þ

where we use the fact that hbðωÞiΦeff¼0 ¼ 0. A key point
now is that at finite z the effective field ΦeffðωÞ in DMFT
has two contributions, one from the local order parameter
itself and the other from neighboring sites encoded in the
non-Markovian bath; see Eq. (11), which now reads (using
Φþ ¼ Φ− as well as Φeffþ ¼ Φeff−)

ΦeffðωÞ ¼ JΦðωÞ þ ΔRðωÞΦðωÞ: ð38Þ

Plugging Eq. (38) into Eq. (37) and using the DMFT self-
consistency on the Bethe lattice (13), one finally gets

ΦðωÞ ¼
�
−JGRðωÞ − J2

z
GRðωÞGRðωÞ

�
ΦðωÞ: ð39Þ

The critical coupling Jc and critical frequency Ωc needed
for a self-consistent broken-symmetry solution,ΦðΩcÞ ≠ 0
corresponding to an order parameter whose phase oscillates
in time hbðtÞi ∼ e−iΩct for J > Jc, are given by

1

Jc
þGRðΩc; JcÞ þ

Jc
z
½GRðΩc; JcÞ�2 ¼ 0: ð40Þ

Equation (40), which to the best of our knowledge is an
original result of this paper, is generic for bosonic DMFT
theories on the Bethe lattice, and it holds also for equilib-
rium problems. Its solution, leading to the phase boundary
in Figs. 2 and 10, strongly depends on the driven-
dissipative nature of the problem, as we discuss now. First,
Eq. (40) has real and imaginary parts, which both need to
vanish simultaneously, resulting in the two conditions

ImGRðΩc; JcÞ ¼ 0; ð41Þ

1

Jc
þ ReGRðΩc; JcÞ þ

Jc
z
½ReGRðΩc; JcÞ�2 ¼ 0: ð42Þ

We remark that there is another solution possible, where
ImGRðΩc; JcÞ ≠ 0, but this result is never realized in our
simulations. In thermal equilibrium, the first condition
Eq. (41) can be satisfied only at zero frequency, where
fluctuation-dissipation theorem constrains the imaginary
part of a bosonic retarded Green’s function to vanish, thus
allowing for static symmetry-breaking patterns (as in equi-
librium superfluids). Far from equilibrium, this situation does
not need to be the case [109,149], and indeed we see that the
normal phase shows, above a threshold drive rNDOS, a spectral
function vanishing at a positive frequency, corresponding to
the formation of anNDOS and the onset of gain in the system.
The critical frequency Ωc solving Eq. (41) corresponds,
therefore, to the frequency at which the local spectral function
of the normal phase vanishes:

Ωc ¼ Ω0½r; JcðrÞ� ð43Þ

for a critical value of hopping Jc determined by jointly
solving Eq. (42). The energy scale Ω0 for the NDOS is,
therefore, a precursor of the mode that becomes unstable at
the transition.We conclude that the NDOS effect discussed
in the previous section is a key, necessary condition for a
phase transition into the nonequilibrium superfluid phase.
This transition is clearly shown in Fig. 10, where we plot
the threshold pump rNDOS for NDOS and the critical drive
rc obtained from solving Eq. (40) with DMFT NCA as a
function of J=U. We see that generically rNDOS < rc;
namely, the system first develops gain and then becomes
truly unstable toward U(1) symmetry breaking. On the
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other hand, from Fig. 10, we see that one can obtain an
instability even in the absence of population inversion.

2. Role of finite-connectivity fluctuations
and comparison with Gutzwiller

We now go back to an important aspect mentioned at
the beginning of our paper, namely, the large renormaliza-
tion to the phase boundary obtained within DMFT NCA
upon decreasing the connectivity z. As we show in Figs. 2
and 11, fluctuations due to the finite number of neighbors
shift the phase boundary toward larger values of the
hopping J and pump/loss ratio r. We now provide a
physical interpretation of this effect based on the properties
of the normal phase discussed so far.
We start by considering the condition for the normal

phase instability obtained within Gutzwiller mean-field
theory, which corresponds to the z → ∞ limit of Eq. (40).
In this limit, the problem reduces to a quantum single
site, while the feedback from neighboring sites is treated at
a purely classical level (see Sec. III A), in terms of a self-
consistent coherent field which reads Φeff ¼ JchbðtÞi ∼
JeiΩct near the instability. As such, if we repeat the
argument of the previous section, we can obtain a condition
for the Gutzwiller phase boundary, which reads

1

Jcðz ¼ ∞Þ þ GR
0 ½Ωcðz ¼ ∞Þ� ¼ 0; ð44Þ

where the first term is the effective field contribution and
GR

0 ðωÞ is the retarded Green’s function of the isolated

single-site problem and is, therefore, independent from the
hopping. Within Gutzwiller mean-field theory, the hopping
J has only the role of triggering the symmetry breaking,
through the self-consistent field Φeff , while the onset of
gain is controlled by the pump-to-loss ratio r. Indeed, we
know that the single-site spectral function develops an
NDOS above a constant threshold pump rNDOS (see the
gray dashed line in Fig. 11). The feedback from the
neighboring sites acts as a seed for a single site which is
on the verge of energy emission [negative absorbed power
atΩc; see Eq. (35)] and leads, above a threshold hopping Jc
shown in Fig. 11, to amplification of the local coherent field
at frequency Ωc and a spontaneous breaking of U(1) and
time-translation symmetry. Interestingly, the Gutzwiller
phase boundary is very close to the line rNDOS (see
Fig. 11), suggesting that at large hopping as soon as the
system develops gain the symmetry breaking occurs.
DMFT NCA, on the other hand, accounts for a more

subtle effect of neighboring sites, which are encoded in the
non-Markovian quantum bath, in addition to the classical
coherent field. As we know, this effect provides an
increased effective dissipation, due to hopping processes
from lossy neighboring sites, which is responsible for
wiping out the NDOS region in the local spectral function,
a necessary condition for the onset of the instability. This
result is clearly shown in Fig. 10, where for large values of
J=U the threshold for NDOS eventually becomes larger
than the Gutzwiller mean-field one (see the gray dashed
line in Fig. 10), leaving a normal phase which would be
superfluid at z ¼ ∞. These hopping-induced losses pro-
vide, therefore, a clear physical mechanism behind the
finite-connectivity renormalization of the phase boundary.
The picture that emerges from DMFT is one of a single site
on the verge of energy emission, coupled to an oscillating
seed field which would favor optical amplification and
embedded in a non-Markovian bath which is instead able
to absorb part of the emitted power from the system, thus
reducing the effective gain and requiring a stronger value of
pump to trigger the instability. This mechanism is presum-
ably also effective at an intermediate value of the hopping
where, as we see in Fig. 11, the DMFT NCA threshold for
NDOS remains well below the critical drive responsible for
the true many-body instability at intermediate coupling
while approaching it at large hopping.
We conclude that this hopping-induced dissipation is a

qualitatively new mechanism for the destruction of an
ordered phase, which is unique to open systems settings
and one of the hallmarks of our DMFT NCA approach.
Quite interestingly, this mechanism is completely missed
not only by the Gutzwiller mean-field approach, but also by
a perturbative solver such as the Hubbard-I approximation.
In fact, we discuss (see Fig. 7) how the NDOS is changed
very little within this scheme. In Appendix E, we also show
that the Hubbard-I phase diagram, obtained using the
DMFT equation for the critical point (40), still reduces
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FIG. 11. Phase diagram in the pump versus hopping plane
obtained by DMFT NCA for z ¼ 50 (yellow points) and
Gutzwiller mean-field theory (z ¼ ∞, yellow dashed line). We
further plot the thresholds for NDOS obtained within the two
approaches. We see that fluctuations due to finite connectivity
reduce the broken symmetry phase, pushing it toward higher
values of hopping and drive. We interpret this effect as a signature
of hopping-induced losses, which reduce the local gain and
prevent the system from becoming unstable at finite frequency.
Parameters: dimH ¼ 10.
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to the Gutzwiller mean-field one. This result further high-
lights the nonperturbative nature of the fluctuations respon-
sible for the observed renormalization of the NDOS and the
importance of using a self-consistent scheme such as our
NCA approach.

3. Thermal versus nonthermal origin
of finite-connectivity fluctuations

A different perspective on the role of finite-connectivity
fluctuations on the phase boundary can be obtained by
looking at the occupation of single-particle modes at finite
frequency, describing excitations on top of the stationary
state and their effective thermal character. In fact, in an
effective equilibrium picture, one could expect heating to
provide an efficient mechanism for the reduction of a
broken symmetry phase. To investigate this physics, we
look at the Keldysh Green’s function, defined in Eq. (36),
which heuristically describes the fluctuations of the observ-
able b. If the system was in true thermal equilibrium,
the quantum fluctuation-dissipation theorem (FDT) would
constrain the Keldysh and the retarded components to obey
the relation [126]

GKðωÞ
−2πiAðωÞ≡ FeqðωÞ ¼ coth

�
ω

2T

�
; ð45Þ

where T is the system temperature. At low frequency or
high temperatures, ω ≪ T, one has FeqðωÞ ∼ T=ω. In a
nonequilibrium system, on the contrary, there is no

well-defined temperature and the FDT does not hold, in
general. Nonetheless, it is useful to use the left-hand side
of the FDT relation in Eq. (45) to define an effective
distribution function

FneqðωÞ ¼
iGKðωÞ
2πAðωÞ

and to study its frequency dependence. Within the DMFT
and Gutzwiller normal phases, for pump above the
threshold for NDOS r > rNDOS, the spectral function
AðωÞ vanishes at frequency Ω0, with linear corrections
[see Eq. (34)]. On the other hand, we find that the Keldysh
component has a finite nonzero value at Ω0, which gives a
distribution function of pseudoequilibrium form at least for
the modes around Ω0:

FneqðωÞ ≃
Teff

ω − Ω0

: ð46Þ

From this expression, we can therefore identify an effective
temperature Teff , which emerges quite ubiquitously in
nonequilibrium quantum systems [52,150–154]. At
z ¼ ∞, when the normal phase is described as a collection
of independent sites, an effective temperature emerges due
to the interplay of local drive and Kerr interaction [113].
Within DMFT NCA, one could, in principle, expect
important corrections due to the non-Markovian bath, as
we see for the NDOS. To assess this point, we sit at the
phase boundary JcðrÞ, choose the corresponding critical
frequency Ω0ðJc; rÞ ¼ Ωc, and plot in Fig. 12 the behavior
of Teff , scaled with respect to the z ¼ ∞ value, as a function
of the lattice connectivity z and for different values of the
pump-to-loss ratio r. We see that at large values of r the
effective temperature slightly increases upon decreasing z,
while at smaller pumps, i.e., r ¼ 3, it shows a weak
nonmonotonic behavior with z. Overall, the relative varia-
tion of Teff with respect to the Gutzwiller mean-field value
remains rather moderate. On the other hand, in the same
range of variation of z, the DMFT critical hopping shows
instead strong renormalizations. This result is particularly
true for the small drive regime, where already for r ¼ 3 and
z ¼ 30 the ordered phase is completely washed out. This
observation suggests that effective thermal fluctuations and
heating are not enough to explain the large renormalization
of the phase diagram observed in DMFT, which is instead
mainly driven by the reduction of local gain by virtual
hopping processes, through the mechanism of hopping-
induced losses.

D. Nonequilibrium superfluidity, lasing, and
many-body synchronization of Van der Pol arrays

We now discuss how the nonequilibrium superfluid
transition in our Bose-Hubbard model is connected to
other dynamical phenomena associated with breaking of

FIG. 12. Change of the effective temperature Teff at the critical
point ðΩc; JcÞ as a function of lattice connectivity z, with respect
to its mean-field value at z ¼ ∞, for different values of the pump-
to-loss ratio r. We see that the relative change in Teff remains of
the order of a few percent up to connectivity z ¼ 50 and slightly
increases up to 20% for the lowest connectivity z ¼ 20. This
result should be compared to the DMFT renormalization of the
critical hopping for similar values of drive and connectivity,
which is instead much stronger as shown in Fig. 2. In particular,
for z ¼ 30 and r ¼ 3 the critical hopping is pushed to infinity
corresponding to a complete destruction of the normal phase.
Parameters: dimH ¼ 14.
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time-translation symmetry, such as nonequilibrium Bose-
Einstein condensation, lasing, and synchronization of Van
der Pol oscillators. To appreciate this point, it is useful to
start from the semiclassical limit of our model (see
Appendix C), where nonlinear quantum fields contribu-
tions are disregarded. The dynamics of the bosonic field at
site j takes the form of a Langevin equation:

i _bjcl ¼ ½ω̃0ðbjclÞ þ iγðbjclÞ�bjcl þ
J
z

X
hj0i

bj0cl þ ξjðtÞ ¼ 0

ð47Þ

with an effective frequency and damping terms which
depend nonlinearly on the field itself, i.e., ω̃0ðbjclÞ ¼ ω0 þ
Ujbjclj2=2 and γðbjclÞ ¼ f=2 − ηjbjclj2=2, and where ξjðtÞ
is a zero average white noise hξiðtÞξjðt0Þi ¼ fδðt − t0Þδij.
In the continuum limit, this form reduces to a complex
Gross-Pitaevskii equation [155,156] with pump and non-
linear losses which describes a variety of nonlinear phe-
nomena from exciton polariton condensates to multimode
lasers [157]. In the absence of any noise, the spatially
uniform stationary state admits a stable limit cycle, i.e.,
βðtÞ ¼ jβje−iωvdpt for r > 0 and any J with frequency ωvdp:

ωvdp ¼ ω0 − J þUjβj2=2 ð48Þ

and amplitude set by the incoherent drive, jβj ¼ ffiffiffi
r

p
.

Equation (48) is, therefore, the semiclassical version of
our condition for finite-frequency instability in the normal
phase. A major difference exists between the lasing thresh-
old and our case, namely, that the threshold for the onset of
gain and the one for development of full coherence is well
separated, while it coincides in the usual lasing regime
[149]. This difference can be seen easily by looking at the
Green’s function which develops an NDOS as soon as the
system becomes unstable.
The equation above describe also an array of coupled

classical Van der Pol oscillators. Our driven-dissipative
Bose-Hubbard model can be, therefore, also seen as a
quantum many-body version of the VdP array. From this
perspective, the onset of finite-frequency oscillations at
JcðrÞ described in the last section can be seen as a signature
of a quantum synchronization [70–82], where above a
certain coupling J all quantum VdP oscillators enter into a
collective limit-cycle phase. As we discuss next, these
oscillations share qualitative features with the semiclassical
solution at least at large drive values, while they deviate
significantly for smaller drives where quantum fluctuations
are important.
Despite the similarities, the semiclassical limit described

above is rather different from the large connectivity limit: In
the former case, one has a deterministic nonlinear equation,
and desynchronization can appear only due to the noise. In
the latter, instead, corresponding to DMFT, one reduces to a

quantum VdP oscillator coupled to a self-consistent field
and a quantum bath. This difference is responsible for
the large separation between the onset of gain and the
true instability.

1. Critical frequency versus drive/loss ratio
and Kerr nonlinearity

In this section, we discuss the behavior of the critical
frequency Ωc, signaling the onset of a quantum synchron-
ized phase, as a function of pump/loss ratio r and Kerr
nonlinearity U. In Fig. 13, we plot this frequency as a
function of the incoherent drive amplitude r, both for
DMFT (for z ¼ 50) and for Gutzwiller mean-field theory
(z ¼ ∞). We see that Ωc scales linearly with the drive at
large values of r (see the fit in Fig. 13), a result which is in
agreement with the semiclassical result obtained for the
VdP array Eq. (48) where ωvdp=U ∼ r=2.
As the pump is reduced and the number of bosons per

site decreases, one expects quantum fluctuations to become
more important. Indeed, we see significant deviations from
the semiclassical result at small r, already captured by
Gutzwiller mean-field theory but more pronounced for
DMFT. Another interesting aspect is the role played by the
Kerr nonlinearity. In Fig. 14, we plot the local density of
states for a fixed value of hopping and drive/loss ratio and
for different values of the interaction U. A first interesting
observation is that the frequency Ω0 at which NDOS
emerges, related to the mode becoming critical at the
synchronization transition [see Eq. (43)], decreases upon
reducing the Kerr nonlinearity. A detailed analysis shows
Ωc ∼U. We notice the analogy with the semiclassical
result (48); nevertheless, we stress that in this picture the
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FIG. 13. Critical frequency for quantum synchronization Ωc as
a function of the pump/loss ratio r, within DMFT NCA for
connectivity z ¼ 50 and Gutzwiller mean-field theory (z ¼ ∞).
In the region of large drive, the fit shows that Ωc=U ∼ r=2, in
agreement with the semiclassical result for the limit cycle in the
VdP array. At lower drives, in the regimes of few bosons per site,
quantum fluctuations become relevant and the critical frequency
is strongly renormalized. Parameters: dimH ¼ 14.
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critical frequency is proportional to the modulus square of
the order parameter jhbij2 ≠ 0, while within DMFTwe find
Ωc ∼U at the critical point, where by definition hbi ¼ 0.
This result further highlights the quantum nature of the
synchronization transition considered in this work. Indeed,
we see how Ωc is smoothly connected to the frequency Ω0

where NDOS emerges, a scale that exists already well
inside the normal incoherent phase and that is a genuine
feature of the quantum impurity model. Furthermore, this
result implies that the Kerr nonlinearity is crucial in order to
push the transition at finite frequency, implying undamped
oscillations of the order parameter. We indeed observe
that, for a related model of all-to-all coupled quantum VdP
oscillators, recent Gutzwiller mean-field analysis reports a
static (first-order) transition in the absence of any Kerr
nonlinearity [70,119].
We conclude by noting that an oscillating phase in the

order parameter could be, in principle, gauged away by
going to an appropriate rotating frame. This gauging,
however, could not be done a priori, since as we see the
critical frequency Ωc itself depends on the many-body
physics of the problem. We are considering here only the
instability of the normal phase rather than the dynamics in
the full broken symmetry phase which could show a more
complex dynamical behavior, whose description goes
beyond the scope of the stationary-state-oriented approach
(see Sec. IV B 1) used here.

2. Limit cycles at finite connectivity

Limit cycles emerge ubiquitously within mean-field
approaches [38,158–160], and, indeed, even in the present
problem the Gutzwiller solution at z ¼ ∞ predicts one. The
role of fluctuations on their stability has been discussed
before, in particular, in the context of a coherently driven

anisotropic Heisenberg model with spontaneous decay
[161]. There, an approach based on self-consistent Mori
projection [162] and cluster mean field [51] predicts that
limit cycles disappear as the coordination number z is
decreased below a threshold value z�, which depends on the
system parameters.
On the basis of these results, it is particularly interesting

to study the fate of our synchronization transition beyond
Gutzwiller mean-field theory. In Fig. 15, we plot the
behavior of the critical frequency Ωc obtained from
DMFT NCA, as a function of z for different values of r.
We observe that finite z corrections tend to reduce the
value of Ωc with respect to the mean-field value, which
nevertheless remains finite down to the lowest value of
connectivity at which, for a given value of drive, a
synchronization transition exists, consistently with the
phase boundary moving to higher values of r for decreasing
z (see Fig. 2). In other words, we find that, within our
treatment, finite connectivity does not destroy the limit
cycle phase which is pushed only at higher values of the
incoherent drive. Indeed, in Fig. 15, we show that, for drive
r ¼ 7, the highest value that we can numerically access
given the constraints on the local Hilbert space truncation, a
limit cycle exists down to z ¼ 20. We, therefore, expect that
at higher drives the synchronized phase would survive
down to low connectivity values. The regime of strong
drive is, however, difficult to access within NCA, and we
leave this question open for future works. We remark,
nevertheless, that our model is different from the one of
Ref. [161]. In the present case, the existence of a limit cycle
phase is tightly related to a U(1) symmetry present in the
original Lindblad problem and spontaneously broken at the
transition [109].
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FIG. 14. Local spectral function AðωÞ for increasing values of
the Kerr nonlinearity U, at a fixed value of hopping J ¼ ω0 and
drive-to-loss ratio r ¼ 3 within DMFT NCA. We see that the
frequency Ω0 at which the density of states vanishes decreases
with U and eventually disappears for small enough values of U.
Parameters: z ¼ 6 and dimH ¼ 14.
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FIG. 15. Critical frequency for quantum synchronization, Ωc,
within DMFT NCA, as a function of the lattice connectivity z, for
different values of the drive-to-loss ratio r and hopping fixed on
the phase boundary J=U ¼ ðJ=UÞc. For clarity, we normalize Ωc
to the mean-field value obtained for z ¼ ∞. We see that
decreasing z renormalizes down the frequency but does not
destroy the limit cycle. Parameters: dimH ¼ 14.
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E. Quantum-Zeno regime

In the previous sections, we see that the key feature of
DMFT is the ability to capture hopping-induced dissipative
processes in the normal phase, which are missed by
Gutzwiller mean-field theory and ultimately responsible
for the large corrections to the phase boundary due to finite
connectivity. In this section, we discuss a different param-
eter regime of our model, corresponding to large two-
particle losses η ≫ J, which allows us to highlight even
more the qualitative difference between DMFT and
Gutzwiller predictions. In the large two-particle-losses
limit, and in the absence of any external drive, a perturba-
tive analysis shows that the dissipative dynamics of the
Bose-Hubbard model effectively takes place in the sub-
space with zero and one boson per site, which are dark
states of the local dissipator [120]. These emergent hard-
core bosons are subject to next-neighbor losses controlled
by the scale

Γeff ¼
2ðJ=zÞ2
U2 þ η2

η: ð49Þ

This effective dissipation is hopping mediated—namely,
it is nonzero only at finite hopping J—and, remarkably,
it shows a nonmonotonic behavior as a function of the
physical dissipation η: For η ≪ U, it increases linearly
with η. Instead, when η ≫ U, the effective dissipation Γeff
is suppressed by increasing the physical dissipation η. The
latter is a quantum-Zeno regime [121,122], in which the
coherent hopping dynamics bringing the system outside of
the hard-core bosons subspace is suppressed due to the
large coupling to the environment [120]. In the absence of
an external pump, the effective loss rate (49) ultimately
leads the system to a zero density state, and the Zeno scale
(49) manifests itself in the transient dynamics [120,123].
Here, instead, we demonstrate how, in the presence of a
small pump, the quantum-Zeno regime emerges in the
stationary-state properties of the system and how this effect
is completely missed by Gutzwiller, even at a qualitative
level, while captured by our DMFT NCA approach.
We consider the regime of η ≫ J and a parametrically

small pump rate f ≪ η. In this case, we expect the local
occupation of all the states with more than one boson per
site to be largely suppressed upon increasing the two-
particle losses, since the small residual pump is not
sufficient to counterbalance the losses. This result is indeed
shown in Fig. 16, where we plot the occupation proba-
bilities of the on-site reduced density matrix obtained
from DMFT NCA and see that only the occupation of
the states n ¼ 0, 1 remain of the order of one, while ρn≥1 is
exponentially suppressed. We emphasize that in this case
the long-time limit of the problem remains nontrivial within
this subspace, due to the interplay between the small
residual pump and the coherent dynamics generated by
the Hamiltonian. In Fig. 3, we show that our DMFT NCA

approach is able to capture the emergence of a stationary
Zeno regime, through a nonmonotonic behavior of the
steady-state probability of having exactly one bosons per
site, namely, ρ1, versus η=U, showing a universal collapse
when plotted against Γeff . This result is remarkable, since
the dissipative scale in Eq. (49) describes particle losses
which are nonlocal in space [120] which a priori could
have been expected to be beyond reach for a local approach
such as DMFT. Instead, the non-Markovian bath is able to
capture this hopping-induced dissipative process. We
emphasize that DMFT goes beyond the effective hard-core
model in Ref. [120] in that the full crossover from normal to
Zeno phase is captured as η=J is increased. In this sense, we
can see DMFT as providing a nonperturbative solution of
the effective hard-core model in the limit of large lattice
connectivity.
The presence of Zeno scale Γeff in the system not only

affects the steady-state populations, but is also expected to
influence the lifetime of excitations of the steady state,
which can be extracted from the Green functions computed
in DMFT. In Fig. 17(a), we show the behaviour of the
spectral function, defined in Eq. (33), for increasing η=J.
We work in a regime in which U is large so that different
resonances in the spectrum, corresponding to single-
particle transitions between states with occupation n and
nþ 1, are well separated [113]. By increasing η=J, all the
peaks but the first one decrease in amplitude, as the former
are proportional to the occupation of states with n ≥ 2,
which decreases with η (see Fig. 16). The amplitude of the
lowest-frequency peak, instead, increases with η due to
the increased probability of being in the subspace with

FIG. 16. Quantum-Zeno regime. Occupation probabilities of
the DMFT NCA on-site reduced density matrix ρn ¼ hnjρsjni, as
a function of the number of particles per site and for different
values of two-particle-loss rates η=J and for z ¼ 6, J=U ¼ 0.133
and U ¼ 15. For large η=J, we see that probabilities ρn≥2 are
suppressed exponentially (note the log scale), with a rate that
increases with η=J, while the states with n ¼ 0, 1 bosons, not
affected by the losses, retain a population of the order of one.
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occupation n ¼ 0, 1. We concentrate on this peak in
order to extract its width. In order to do so, we fit the
peak with a generalized Lorentzian AðωÞ ¼ a½ðω − ω0Þbþ
1�=½ðω − ω0Þ2 þ γ2�, with fitting parameters a, b, and γ,
which exactly describes the shape of the peak at zero
hopping and which approximates it at small hopping,
whose lifetime is given by the fitting parameter γ.
We remark that the width γ of the first peak has three

contributions: γ ¼ γdiss þ γcoh þ γZeno. The first term
comes from dissipation and pump at zero hopping
γdiss ¼ γðJ ¼ 0; η; f; UÞ, and it can be well estimated with
perturbation theory [113], which shows it does not depend
on η, as the transition n ¼ 0 → n ¼ 1 is unaffected by the
two-particle losses at J ¼ 0. The second contribution to the
lifetime is given by the hybridization of the energy levels of
different sites at finite hopping, which is a purely coherent
effect, independent of drive and dissipation. For example,
this effect is responsible for the formation of the holon and
doublon bands in the local spectral functions of the isolated
Bose-Hubbard model; see, e.g., Ref. [127]. We call this
term γcoh ¼ γðJ; η ¼ 0; f ¼ 0; UÞ.
Finally, we expect a contribution coming from the

hopping-induced decay, which we call γZeno, which is
present only for finite hopping and dissipation or drive.
In Fig. 17(b), we show that the latter contribution follows a
similar nonmonotonic behavior as Γeff as a function of η=U,
witnessing the presence of quantum-Zeno behavior in
steady-state excitations. Analogously to populations, in
Fig. 17(c), we show that, plotting γZeno=U as a function of
Γeff=U, the data points at different values of J=U all

collapse on the same curve, demonstrating that γZeno
depends on J and η only through Γeff .

VI. CONCLUSIONS

In this paper, we formulate the dynamical mean-field
theory for bosonic open quantum many-body systems
described by a Lindblad master equation on the lattice.
This method is based on a systematic expansion in the limit
of large lattice connectivity z. Within DMFT, fluctuations
due to finite lattice connectivity are treated nonperturba-
tively through the solution of a self-consistent quantum
impurity model, which in our case amounts to a Markovian
single-site problem coupled to a coherent field and to a non-
Markovian quantum bath mimicking the rest of the lattice.
The non-Markovian bath contains the key new ingredient
of DMFT, which makes it different from the Gutzwiller
mean-field theory, to which it reduces in the z ¼ ∞ limit. In
particular, with respect to the former, DMFT is able to
capture both coherent and dissipative processes arising
from the neighboring sites, the former playing a particularly
crucial role in open quantum systems with correlated jump
operators.
Using DMFT, together with a nonperturbative bosonic

impurity solver based on a superoperator hybridization
expansion truncated at the NCA level, we solve a Bose-
Hubbard model in the presence of two-particle losses and
single-particle pump, relevant for dissipative ultracold
atoms as well as for arrays of superconducting circuits.
We show that this model features a dissipative phase

(a) (b)

(c)

FIG. 17. Quantum-Zeno regime in the spectral function, increasing two-particle-loss rate η at fixed drive rate f=U ¼ rη=U ¼ 0.013
and for z ¼ 6; U ¼ 15. Parameters: tmax ¼ 20, dt ¼ 0.002, and dimH ¼ 6. (a) Spectral function at increasing η=J and for J=U ¼ 0.133.
The first peak corresponds to transitions between states with on-site occupation n ¼ 0 and n ¼ 1, while higher-energy peaks are
suppressed at large η=J. We fit the first peak as described in the main text in order to extract a measure of its lifetime γ. (b) Partial lifetime
γZeno=U of the first peak of the spectral function obtained by removing the zero hopping and zero drive or dissipation contributions. We
show that this quantity has a nonmonotonic behavior, analogous to the populations in Fig. 3, manifesting a quantum-Zeno behavior in
the lifetime of excitations of the steady state. (c) γZeno=U depends only on the dissipative scale Γeff=U, analogously to the occupation
probability ρ1 as shown in the inset in Fig. 3. In (b), (c) J=U ¼ ½0.067; 0.133; 0.2�.
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transition from an incoherent normal phase to a non-
equilibrium superfluid, which occurs above a critical
hopping or pump strength.
Within DMFT NCA, the phase boundary is strongly

renormalized with respect to the Gutzwiller one and pushed
toward higher values of the couplings, leading to an
increase of the normal phase. We identify a new mechanism
for this reduction of the broken symmetry phase which is
unique to open quantum systems and arises from the
suppression of local gain due to hopping-induced losses.
This mechanism is a key feature brought forth by NCA,
which treats the non-Markovian DMFT bath nonperturba-
tively, and it is instead missed by a simpler perturbative
DMFT solver based on the Hubbard-I approximation. We
further discuss how the increased effective dissipation due
to the finite number of lossy neighbors affects all the
unusual properties of the DMFT NCA normal phase, from
the renormalization of the gain (NDOS) threshold and
steady-state populations due to hopping to the emergence
of a stationary-state quantum-Zeno regime for large two-
body losses. These effects are all qualitatively missed by
Gutzwiller mean-field theory.
Finally, we show that the transition into the nonequili-

brium superfluid phase occurs at finite frequency, corre-
sponding to a local order parameter that oscillates in time at
a frequency Ω�. Within DMFT NCA, this scale depends on
both coherent and dissipative couplings, another important
aspect which is missed by Gutzwiller mean-field theory.
Drawing from the physics of quantum VdP oscillators, we
interpret this phenomenon as the onset of quantum many-
body synchronization and limit cycles at finite lattice
connectivity.
Our DMFT holds the promise to be applied to a variety

of driven-dissipative quantum many-body problems.
Different bosonic models or driving schemes can be
considered and readily studied with the NCA approach
developed here, such as the recently introduced quadrati-
cally driven Kerr resonator [40], the coherently driven case
explored in the context of quantum bistability [47,54,105,
107,108], or models relevant for the dissipatively stabilized
Mott insulators of photons [16]. Interesting directions for
the future involve the development of other quantum
impurity solvers, made possible by the Markovian structure
of the quantum impurity problem. In particular, one could
go beyond the noncrossing approximation by including
higher-order diagrams or resumming the full hybridization
expansion [69] with real-time diagrammatic Monte Carlo
methods [130,132]. Alternatively, one could map back the
non-Markovian Keldysh action into a Lindbladian problem
with a finite number of bath levels [86] which could then be
solved by exact diagonalization [163], quantum trajecto-
ries, through a matrix product operator representations of
the density matrix [164,165], or using an extension of the
numerical renormalization group [166]. Further extensions
of this approach could include the development of a cluster

version of DMFT building upon recent developments for
Markovian problems [51].
Finally, we notice that a similar DMFT NCA impurity

solver could be developed for driven-dissipative fermionic
problems [67,167] or quantum spins [168], which are also
being actively investigated and relevant for different exper-
imental platforms [169–173].
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APPENDIX A: DERIVING DMFT FOR OPEN
MARKOVIAN QUANTUM SYSTEMS

We present here a sketch of the derivation of the DMFT
action and self-consistency conditions, using the quantum
cavity method and following and extending Ref. [68] to the
open case. The main idea is to single out a given site of the
lattice, i ¼ 0 in the following, and to write down its
effective Keldysh action obtained after integrating out all
the other sites:

iSeff ½b̄0; b0� ¼ log
Z Y

i≠0
D½b̄i; bi�eiS: ðA1Þ

This effective single-site action describes, in principle,
all the effects on site i ¼ 0 due to the coupling to the
other sites by the hopping J, which, for our assumption of
local jump operators and interactions (Sec. II), is the only
term responsible for the coupling between different sites.
To proceed, we notice that the full action Eq. (7) can be
divided into three terms:

S ¼ S0 þ δS þ Sð0Þ
cav;

respectively, S0 ¼ S½b̄0; b0� containing only the terms in
Eqs. (7) and (8) involving fields at site i ¼ 0, a term δS
containing the hopping terms to the 2z fields (b̄j; bj) at the
neighboring sites

δS ¼ J
z

Z
dt
X
α

α
X
h0ji

ðb̄0αbjα þ H:c:Þ; ðA2Þ
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and a term Sð0Þ
cav describing a lattice with a cavity, namely,

including all the degrees of freedom except those at site
i ¼ 0; see Fig. 18. For an interactingmany-body problemon
a finite-dimensional lattice, integrating over the neighboring
sites can be done only formally, as a cumulant expansion in
δS, and leads to an effective action containing arbitrary
powers of the local fields b̄0 and b0, with coefficients given
by themultipoint correlation functions of the cavity problem
[62]. In the large connectivity limit z ≫ 1, one can formally
organize this expansion in power of 1=z and obtain

Seff ½b†
0α;b0α� ¼ S0 þ

Z
dt
X
α¼�

αΦ†
effαðtÞb0αðtÞ

þ i2

2

Z
dtdt

X
α;β¼�

αβb†
0αðtÞΔαβðt; t0Þb0βðt0Þ;

ðA3Þ

where, in order to allow for condensed phases, we introduce
the Nambu-spinor notation

b†
0 ¼ ð b0 b̄0 Þ; b0 ¼

�
b0
b̄0

�
:

The coefficients entering the effective action (A3) are related

to quantum averages over the cavity action Sð0Þ
cav:

Φ†
effαðtÞ ¼ J=z

X
hj0i

hb†
jαðtÞið0Þcav; ðA4Þ

Δαβðt; t0Þ ¼ J2=z2
X

hj0ihk0i
hbkαðtÞb†

jβðt0Þið0Þcav: ðA5Þ

The final step, in order to obtain the self-consistent conditions,
is to relate the average of bosonic fields on the cavity action to
those evaluated to the effective action (A3). Forwhat concerns
the non-Markovian bath in Eq. (A5), this relation depends on
the lattice geometry: It becomes particularly transparent for a
Bethe lattice, a latticewith no loops such that, once a cavity is

created, two neighbors j and k are completely disconnected,
where one gets

hbkαðtÞb†
jβðt0Þið0Þcav ¼ δkjhbjαðtÞb†

kβðt0Þið0Þcav

¼ δkjhbjαðtÞb†
jβðt0ÞiS

¼ δkjhb0αðtÞb†
0βðt0ÞiSeff ; ðA6Þ

where we use the property of the Bethe lattice in the first
equality, the fact that in the thermodynamic limit the local
property of the cavity action and the original action must be
the same in the second equality, and translational invariance in
the last step. Plugging this equation into Eq. (A5) gives
the self-consistency condition (13). We notice that similar
arguments can be used for a different lattice, to relate averages
over cavity and effective action; the only difference would be
a more complicated self-consistency relation between the
bath and local Green’s function [62]. Finally, the average of
the bosonic field taken on the cavity action can be related to
the one on the effective action (A3) as [68]

hb†
jαið0Þcav ¼ hb†

0αiSeff ðA7Þ

þ
Z

dt0
X
β¼�

βhb†
0βðt0ÞiSeff hbkβðt0Þb†

jαðtÞið0Þcav ðA8Þ

which can be plugged in Eq. (A4) to give the second self-
consistent condition (11).

APPENDIX B: NCA BENCHMARK:
LOCAL OCCUPATION WITH
SINGLE-PARTICLE LOSSES

In this Appendix, we report a benchmark our DMFT
NCA approach for driven-dissipative many-body master
equations defined by Eqs. (2) and (3). We consider a
different model from the main text, namely, the driven-
dissipative Bose-Hubbard model with single-particle losses
and single-particle drive. This model is specified by the
same Bose-Hubbard Hamiltonian Eqs. (3) and (4) as in the
main text, but with the jump operators

L̂i;l ¼
ffiffiffi
κ

p
b̂i; ðB1Þ

L̂i;p ¼
ffiffiffi
f

p
b̂†i ; ðB2Þ

where there are single-particle losses instead of the two-
particle losses of the main text.
One can prove [148] that the stationary-state density

matrix of this model is independent from any Hamiltonian
parameter; thus, for example, the on-site occupation is
constant with the hopping rate J. Obtaining this constant
occupation with J is a highly nontrivial benchmark for
our DMFT NCA approach. Figure 19 shows that this
behavior is correctly reproduced by our approach. Small

FIG. 18. Sketch of the quantum cavity method to derive the
effective action of DMFT for Markovian lattice problems (see the
text). A given lattice site is singled out (white dot in the figure),
and all the remaining degrees of freedom are integrated out.
Because of the coupling between the site and its 2z neighbors
(dashed lines), this integration of degrees of freedom reduces to
evaluating correlation function of a lattice with a cavity, con-
taining all the remaining sites.

DYNAMICAL MEAN-FIELD THEORY FOR MARKOVIAN OPEN … PHYS. REV. X 11, 031018 (2021)

031018-25



deviations from constant occupation show that this property
is not exactly enforced by our numerical scheme and, thus,
is a good test to validate our approach. Deviations from
constant occupation are mostly a result of local Hilbert
space truncation, which become more severe increasing the
drive, but they are reduced by increasing the cutoff dimH.

APPENDIX C: KELDYSH FIELD THEORY AND
SEMICLASSICAL LIMIT

In this Appendix, we write down the Keldysh field
theory associated to the Lindblad master equation for our
driven-dissipative Bose-Hubbard model in Eqs. (3)–(5),
which is done by writing a coherent path-integral repre-
sentation of the trace over the density matrix [52,126]:

Z ¼ TrρðtÞ ¼
Z Y

i

Db̄i clDbi clDb̄iqDbiq exp ðiSÞ

in terms of bosonic fields in the basis of classical and
quantum fields bjcl=q ¼ ðbjþ � bj−Þ=

ffiffiffi
2

p
, where the

Keldysh action reads

S ¼
Z

dt
X
j

½b̄jqði∂t −ω0 − iχ−Þbjcl þH:c:�

−
1

2

Z
dt
X
j

½ðU þ iηÞðb̄2jclbjclbjq þ b̄2jqbjclbjqÞ þH:c:�

ðC1Þ

þ
Z

dt
X
j

ð2iχþ − iηjbjclj2Þb̄jqbjq

−
J
z

Z
dt
X
hjj0i

ðb̄jqbj0cl þ H:c:Þ; ðC2Þ

where the first line describes the local noninteracting
contribution, including the dissipative couplings
χ� ¼ ðγp � γlÞ=2 which in the case considered in the main
text, where γl ¼ 0 and γp ¼ f ¼ rη, reduce to χ� ¼ f=2.
The second line includes nonlinearities due to interaction
and two-body losses, while the last term accounts for the
hopping between neighboring sites. The semiclassical limit
is obtained by disregarding terms with more than two
quantum fields, which leaves the action at most quadratic in
the quantum fields bjq [52]. Those quadratic terms are
decoupled using a classical stochastic field [126], which
allows one to write the action as

S ¼
Z

dt
X
j

fb̄jq½i∂t − ω0 − iχ− þ ξjðtÞ�bjcl þ H:c:g

− ðU − iηÞ
Z

dt
X
j

b̄jqjbjclj2bjcl þ H:c:

−
J
z

Z
dt
X
hjj0i

ðb̄jqbj0cl þ H:c:Þ: ðC3Þ

We can now take the saddle point conditions

δS

δb̄jq
¼ 0 ¼ δS

δb̄jcl

and obtain the Langevin equation given in Eq. (47) of the
main text. We note that the noninteracting retarded Green’s
function of the problem reads

GR
0 ðωÞ ¼

1

ω − ω0 − iχ−
;

which has NDOS as soon as χ− ≥ 0, i.e., r > 0, which is in
the condition for the instability toward an oscillating
solution.

APPENDIX D: NDOS AND RESPONSE
TO A WEAK COHERENT DRIVE

In this Appendix, we show that a direct consequence of
the NDOS effect is that the average power absorbed from
a weak coherent drive becomes negative, indicating the
onset of gain and energy emission. We consider our lattice
model in the presence of a time-dependent perturbation of
the Hamiltonian describing a weak coherent drive with
frequency ω:

HðtÞ¼HþVðtÞ≡Hþ
X
i

ðv�i eiωtbiþvie−iωtb
†
i Þ; ðD1Þ

where H is the Bose-Hubbard Hamiltonian defined in
Eqs. (3) and (4). The evolution of the density matrix of the
system is described by the Lindblad master equation in the
presence of HðtÞ:
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FIG. 19. Local density of particles for the BH model with
single-particle losses, as a function of the hopping-to-interaction
ratio J=U, for different values of the drive amplitude f,
normalized to the values of the single-site problem. Parameters:
z ¼ 30, κ ¼ 0.2, and dt ¼ 0.005.
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∂tρ̂¼−i½HðtÞ; ρ̂�þ
X
iμ

�
L̂iμρ̂L̂

†
iμ−

1

2
fL̂†

iμL̂iμ; ρ̂g
�
: ðD2Þ

We notice that the time derivative of the internal energy
EðtÞ ¼ hHðtÞi in an open quantum system has two con-
tributions, respectively coming from the derivative of the
system Hamiltonian and from the time derivative of the
density matrix

_EðtÞ ¼ TrρðtÞ _HðtÞ þ Tr _ρðtÞHðtÞ; ðD3Þ

the latter being identified as heat flow which would be zero
in a closed system evolving with unitary dynamics. We are
interested in the first term, which measures the absorbed
power from the external perturbation [142] and can be
written as

_WðtÞ ¼ TrρðtÞ _HðtÞ ¼
X
i

ðiωv�i eiωthbii þ H:c:Þ: ðD4Þ

Within linear response theory, the average of the bosonic
field can be written as

hbii ¼
X
j

Z
dt0GR

ijðt − t0Þvjðt0Þ; ðD5Þ

where GR
ijðt − t0Þ ¼ −iθðt − t0Þh½biðtÞ; b†jðt0Þ�i. Plugging

this expression into Eq. (D4), we obtain the average
absorbed power

_W ¼
X
ij

v�i vjωAijðωÞ ðD6Þ

written in terms of the spectral function AijðωÞ ¼
ð−1=πÞImGR

ijðωÞ. For a localized perturbation vi¼v0δi;0,
we obtain the result given in the main text, showing how an
NDOS implies a negative absorption rate; namely, the
system transfers some of the energy from the perturbation
to the emitted radiation.

APPENDIX E: HUBBARD-I IMPURITY SOLVER

In this Appendix, we compute the impurity Green’s
functions in the simple Hubbard-I approximation discussed
in Sec. IVA and show that the phase diagram computed in
Hubbard-I coincides with the mean-field one. We restrict to
study the symmetric phase, i.e., Φ ¼ 0, where equations
involve one Nambu component and to the stationary regime
where convolutions turn into product under Fourier
transform.
Equation (24) is a closed second-order algebraic equa-

tion for GαβðωÞ, which is easily solved for the retarded and
Keldysh components. The retarded Green’s function is
simply given by taking its retarded component, yielding

J2=zGRðωÞ ¼ ½GR
0 ðωÞ�−1 − ½GRðωÞ�−1; ðE1Þ

which can be solved and gives

GRðωÞ ¼ z
2J2

GR
0 ðωÞ−1

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4J2

z
GR

0 ðωÞ2
s !

: ðE2Þ

The inverse Keldysh Green’s function is given by
½G−1�K ¼ ½G−1

0 �K − ðJ2=zÞGK , that we invert with the
standard relation GK ¼ −GR½G−1�KGA, giving

GKðωÞ ¼ jGRðωÞj2GK
0 ðωÞ

jGR
0 ðωÞj2ð1 − J2

z jGRðωÞj2Þ : ðE3Þ

We finally show that the Hubbard-I impurity solver
gives the same phase boundary and critical frequency as
Gutzwiller mean-field theory. In fact, if we plug the
equation for the Hubbard-I retarded Green’s function
[Eq. (E1)] into the equation for the finite-frequency
transition in DMFT [Eq. (40)] that we rewrite for conven-
ience here

1

Jc
þGRðΩc; JcÞ þ

Jc
z
½GRðΩc; JcÞ�2 ¼ 0; ðE4Þ

we obtain

GRðΩc; JcÞðJc þ ½GR
0 ðΩcÞ�−1Þ ¼ 0; ðE5Þ

where the term in parentheses is exactly the Gutzwiller
mean-field condition for critical hopping and frequency
[see Eq. (44) or (40) for z ¼ ∞]. We conclude, therefore,
that the reduction of the ordered phase discussed in the
main text and the dependence of Ωc from the hopping are
key features of the NCA impurity solver.

APPENDIX F: STATIONARY STATE
IN DMFT NCA

A complete steady-state DMFT NCA procedure requires
one to compute the steady-state density matrix of the
impurity, which is defined by ρs ¼ V̂ð∞; 0Þρ0, where we
assume a unique steady state. While, in principle, this
computation would require one to perform the full transient
dynamics from an arbitrary initial condition, here we show
how to obtain ρs directly from the stationary-state propa-
gator V̂ðt − t0Þ. The steady-state density matrix satisfies the
condition limt→∞ ∂tρðtÞ ¼ limt→∞ ∂tV̂ðt; 0Þρ0 ¼ 0, where
ρ0 is an arbitrary initial state. Using the Dyson equa-
tion (26), this condition translates into the equation

lim
t→∞

h
L̂effðtÞV̂ðt; 0Þ þ

Z
t

0

dτŜðt; t − τÞV̂ðt − τ; 0Þ
i
ρ0 ¼ 0;

ðF1Þ
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where we perform a change of variable in the convolution
integral. The NCA self-energy Ŝðt; t − τÞ in the equation
above depends on the hybridization function of the bath Δ
[see Eq. (27)], which is itself related to the local Green’s
function of the system by the DMFT self-consistency.
Therefore, the assumption that for t → ∞ the system
reaches a unique steady state, forgetting about its initial
condition, translates within DMFT to a requirement on
the behavior of the NCA self-energy for large values
of its argument. In particular, Ŝðt; t − τÞ must vanish for
τ ∼ t → ∞, restricting the time convolution in the Dyson
equation to times of the order τ ∼ τ� ≪ t. We can, therefore,
safely take the long time limit t → ∞ in Eq. (F1), use the
fact that in this limit the self-energy becomes translational
invariant, Ŝðt; t − τÞ → ŜðτÞ, and the state V̂ðt − τ; 0Þρ0
approaches the stationary state ρs, and finally send the scale
τ� to infinity, yielding the eigenvalue condition

�
L̂effð∞Þ þ

Z
∞

0

dτŜðτÞ
�
ρs ¼ 0: ðF2Þ

This condition depends only on the stationary-state propa-
gator V̂ðτÞ through the NCA self-energy ŜðτÞ, allowing us
to compute the stationary density matrix ρs in the steady-
state DMFT procedure.

APPENDIX G: NCA GREEN FUNCTIONS
DERIVATION

In this Appendix, we show how to compute impurity
Green functions knowing Vðt; t0Þ. From the impurity action
Eq. (9), the trace of the density matrix at infinite time is
obtained by

Z ¼ trρð∞Þ ¼
Z

D½b̄αbα�e
iSloc½b̄α;a;bβ;b�þi

R
∞
0

dt
P

α
a

αΦ̄effαaðtÞbαaðtÞ−ði=2Þ
R

∞
0

R
∞
0

dt1dt2
P

αβ
ab

b̄αaðt1ÞαβΔαβ
abðt1;t2Þbβbðt2Þ

; ðG1Þ

where we make explicit both Keldysh α; β ∈ fþ;−g and Nambu a, b indices, as in Sec. IV B. One-particle Green functions
can be obtained as functional derivatives of Z:

Gαβ
abðt; t0Þ − iϕαaðtÞϕ†

βbðt0Þ ¼ −ihbαaðtÞb̄βbðt0Þi ¼ 2αβ
δZ

δΔβα
baðt0; tÞ

: ðG2Þ

We remark that the derivative overΔ gives both the connected componentsGαβ
ab, as defined in the main text Eq. (14), and the

disconnected ones −iϕαaðtÞϕ†
βbðt0Þ. The density matrix trace can equally be expressed in terms of the evolution

superoperator: Z ¼ tr½ρð∞Þ� ¼ tr½V̂ð∞; 0Þρð0Þ�. Using the Dyson equation (26) for V̂ð∞; 0Þ, we get

−ihbαaðtÞb̄βbðt0Þi ¼ 2αβtr

�Z
∞

0

dt1

Z
t1

0

dt2

�
V̂0ð∞; t1Þ

δŜðt1; t2Þ
δΔβα

baðt0; tÞ
V̂ðt2; 0Þ þ V̂0ð∞; t1ÞŜðt1; t2Þ

δV̂ðt2; 0Þ
δΔβα

baðt0; tÞ

�
ρð0Þ

�
: ðG3Þ

In the last expression, we first drop all V̂0’s, as they leave the trace unchanged. The second contribution to the trace vanishes,
because trðŜðt1; t2Þ•Þ ¼ 0 for t1 > t2, as dictated by the time integrals, as we now show. In order to do this integration, we
report here the NCA self-energy Eq. (27) for simplicity:

Ŝðt1; t2Þ ¼ −
i
2

X
αβ
ab

αβ½Δβα
baðt1; t2Þb̂†βbV̂ðt1; t2Þb̂αa þ Δαβ

abðt2; t1Þb̂βbV̂ðt1; t2Þb̂†αa�: ðG4Þ

We remark that, for the cyclic property of the trace, it holds that tr½X̂þ•� ¼ tr½X̂−•�, X̂β being a generic superoperator. Then,
we can fix the b̂†β; b̂β superoperators to be b̂†þ; b̂þ under the trace, getting

tr½Ŝðt1; t2Þ•� ¼
X
a;b

X
αβ∈fþ;−g

−αβ
i
2
tr½Δβα

baðt1; t2Þb̂†βbV̂ðt1; t2Þb̂αa •þΔαβ
abðt2; t1Þb̂βbV̂ðt1; t2Þb̂†αa•�

¼
X
a;b

X
α∈fþ;−g

−α
i
2
tr

� X
β∈fþ;−g

½βΔβα
baðt1; t2Þ�b̂†þbV̂ðt1; t2Þb̂αa •þ

X
β∈fþ;−g

½βΔαβ
abðt2; t1Þ�b̂þbV̂ðt1; t2Þb̂†αa•

�
: ðG5Þ
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Finally, we remark that the two sums over β in the last line vanish, respectively, because of the identities on the
Keldysh components Δþþ

ba ðt1; t2Þ ¼ Δ−þ
ba ðt1; t2Þ, Δþ−

ba ðt1; t2Þ ¼ Δ−−
ba ðt1; t2Þ and Δþþ

ab ðt2; t1Þ ¼ Δþ−
ab ðt2; t1Þ, Δ−þ

ab ðt2; t1Þ ¼
Δ−−

ab ðt2; t1Þ, which hold for t1 > t2 according to the definition of Δ in terms of bath Green functions: Schematically, its
Keldysh components are given byΔβαðt1; t2Þ ∼

P
…hTCcðt1; βÞc†ðt2; αÞiwith c and c† bath operators and TC the contour-

time-ordering operator. Going back to Eq. (G3), from its first term we get

Gαβ
abðt; t0Þ − iϕαaðtÞϕ†

βbðt0Þ ¼ 2αβtr

�Z
∞

0

dt1

Z
t1

0

dt2
δŜðt1; t2Þ
δΔβα

baðt0; tÞ
V̂ðt2; 0Þρð0Þ

�
: ðG6Þ

Taking derivatives of the NCA self-energy, we get two contributions of the form ≃tr½ðδΔ=δΔÞX1VX2 þ ΔX1ðδV=δΔÞX2�.
The second one vanishes, and the proof is analogous to Eq. (G5), where we show that the trace of the NCA self-energy
vanishes. For the first term, we need to remember that t1 > t2 and, thus, that we have to distinguish the two cases t > t0 and
t < t0, getting

δŜðt1; t2Þ
δΔβα

baðt0; tÞ
¼ −

i
2
αβ½b̂αaV̂ðt; t0Þb̂†βbθðt − t0Þδðt1 − tÞδðt2 − t0Þ þ b̂†βbV̂ðt0; tÞb̂αaθðt0 − tÞδðt1 − t0Þδðt2 − tÞ�; ðG7Þ

and the Green functions are eventually given by

Gαβ
abðt; t0Þ − iϕαaðtÞϕ†

βbðt0Þ ¼ −iftr½b̂αaV̂ðt; t0Þb̂†βbV̂ðt0; 0Þρð0Þ�θðt − t0Þ þ tr½b̂†βbV̂ðt0; tÞb̂αaV̂ðt; 0Þρð0Þ�θðt0 − tÞg ðG8Þ

that is equivalent to Eq. (30) of the main text. This equation
has the same form of the quantum regression formulas for
one-particle Green functions for Markovian systems and
shows that these generalize to the case of non-Markovian
baths within the NCA approximation.
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