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We devise a machine learning technique to solve the general problem of inferring network links that have
time delays using only time series data of the network nodal states. This task has applications in many
fields, e.g., from applied physics, data science, and engineering to neuroscience and biology. Our approach
is to first train a type of machine learning system known as reservoir computing to mimic the dynamics of
the unknown network. We then use the trained parameters of the reservoir system output layer to deduce an
estimate of the unknown network structure. Our technique, by its nature, is noninvasive but is motivated by
the widely used invasive network inference method, whereby the responses to active perturbations applied
to the network are observed and employed to infer network links (e.g., knocking down genes to infer gene
regulatory networks). We test this technique on experimental and simulated data from delay-coupled
optoelectronic oscillator networks, with both identical and heterogeneous delays along the links. We show
that the technique often yields very good results, particularly if the system does not exhibit synchrony. We
also find that the presence of dynamical noise can strikingly enhance the accuracy and ability of our
technique, especially in networks that exhibit synchrony.
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I. INTRODUCTION

Dynamically evolving complex networks are ubiquitous
in natural and technological systems [1]. Examples include
food webs [2], biochemical [3,4] and gene interaction [5,6]
networks, neural networks [7], human interaction networks
[8], and the Internet, to mention a few. Inference of the
structure of such networks from observation of their
dynamics is a key issue with applications such as

determination of the connectivity in nervous systems [9–
11], mapping of interactions between genes [12] and
proteins in biochemical networks [13], distinguishing
relationships between species in ecological networks
[14,15], understanding the causal dependencies between
elements of the global climate [16], and charting of the
invisible dark web of the Internet [17]. In many of these
problems, we can only passively observe time series data
for the states of the network nodes and cannot actively
perturb the systems in any way. Network inference for these
cases has led to several different computational and statistical
approaches, including Granger causality [18,19], transfer
entropy [20], causation entropy [21], event timing analysis
[22], Bayesian techniques [12,15,23,24], inversion of
response functions [25,26], random forest methods [27],
and feature ranking methods [28], among others.
In this work, we are interested in the common situation

of dynamics that evolves through interactions mediated by
the network links along which information transfer is
subject to time delay and dynamical noise. We propose
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and test, both experimentally and computationally, a
machine learning methodology to infer these time-delayed
network interactions. For this purpose, we use only the
sampled time series data of the network nodal states. We
find that our method is successful in both experimental and
computational tests, for a wide variety of network topol-
ogies, and for networks with either identical or hetero-
geneous delay times along their links, provided the time
series we use contains sufficient information for the net-
works to be inferred.
Applications of machine learning techniques for network

inference have recently begun to be explored [27,29–32].
However, all of these treat networks without link delay. For
example, Ref. [32] uses machine learning but considers
inference of generalized synchronization, rather than infer-
ence of links, between two systems. In particular, to our
knowledge, there is no paper in which the common general
situation considered in our paper is treated by machine
learning, namely, link inference in delay-coupled networks
with arbitrary topology and noise. Furthermore, a key
feature of our work is that, in contrast with
Refs. [27,29–32], we present an experimental validation
with known ground truth. Based on the surprising success
of machine learning across a wide variety of data-based
tasks [33,34], we believe machine learning is a particularly
promising approach to the general network inference
problem that we address.
Our approach is based on the demonstrated ability of

machine learning for the prediction and analysis of
dynamical time series data. In particular, we shall use a
specific neural network architecture called reservoir com-
puting (RC) [35,36], which has previously been used to
analyze time series data from complex and chaotic systems
for such tasks as forecasting spatiotemporally chaotic
evolution [37–40], determination of Lyapunov exponents
and replication of chaotic attractors [41], chaotic source
separation [42,43], and inference of networks (without link
time delays) [29]. Reservoir computers are implemented in
a variety of platforms [35,44,45], e.g., in photonic [46–48],
electronic, and optoelectronic [49,50] systems. In our
technique, we first use time series data from an unknown
delay-coupled network to train an RC to predict the future
evolution of the network. We then employ this trained
network to predict how the effect of imagined applied
perturbations would spread through the network, thus
enabling us to deduce the network structure. This approach
allows us to retain the noninvasive nature of computational
tools like the transfer entropy while also retaining the
conceptual advantage of invasive methods [51–53].
We test our network inference method on both simulated

and experimental time series data from delay-coupled
optoelectronic oscillator networks. An optoelectronic oscil-
lator with time-delayed feedback is a dynamical system that
can display a wide variety of complex behaviors, including
periodic dynamics [54], breathers [55], and broadband

chaos [56]. Optoelectronic oscillators find applications in
highly stable microwave generation for frequency refer-
ences [54], neuromorphic computing [57,58], chaotic
communications [59], and sensing [60]. The nonlinear
dynamics of individual [61–63] and coupled optoelectronic
oscillators [64–67] are well understood, making networks
of optoelectronic oscillators an excellent test bed for
network inference techniques.
We find that our method accurately reconstructs the

network from experimentally measured time series data, as
long as the coupling is sufficiently strong and the network
does not display strong global synchronization. We also
find that the presence of dynamical noise, and hetero-
geneity of delays along network links, may have a
significant positive effect on the ability to infer links.
Our results provide a clear demonstration that reservoir
computing, and possibly other related machine learning
methods, can provide accurate network inference for real
networks, including situations where complications like
noise and time delays in the coupling are present.
This paper is organized as follows. In Sec. II, we

introduce our network inference method for a general
delay-coupled network dynamical system. In Sec. III, we
present the optoelectronic oscillator networks that we use
for testing our method, along with a brief description of the
collective dynamics of these networks in different param-
eter regimes. Section IV presents results of our tests of the
effectiveness of our method for both simulated and exper-
imental time series data. Finally, we conclude in Sec. V
with further discussion, suggested future directions, and
possible generalizations of our method.

II. RESERVOIR COMPUTING METHODOLOGY
FOR NETWORK INFERENCE

A. The general delay-coupled network

In this section, we present the principles of our RC-based
network link inference method. We consider a system ofDn
nodes, with the interactions among them mediated by a
network of time-delayed links. For simplicity of presenta-
tion, in this section, we restrict ourselves to networks with
identical delays along different links. Later in this paper
(Sec. IV C), we consider application of our framework to
networks with heterogeneous link delays. For the present
purpose, we assume that the state of the ith node in the
network is given by a time-dependent vector Xi½t� of
dimension Ds, with i ¼ 1; 2; 3;…; Dn. We denote the
components of this vector by Xμ

i with μ ¼ 1; 2; 3;…; Ds.
The coupled dynamics of the full system is governed by a
general delay differential equation of the form

dXμ
i ðtÞ
dt

¼Fμ
i ½XiðtÞ;X1ðt− τÞ;X2ðt− τÞ;…;XDn

ðt− τÞ; t�:
ð1Þ
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Here, Fμ
i is the function governing the dynamics of the μth

component of the state vector of the ith node. Fμ
i is a

function of Xν
j if and only if there is a network link

(connection) from the νth component of the state vector of
the jth node to the μth component of the state vector of the
ith node. Note that, as previously noted, for simplicity, in
the above equation, we assume that the couplings have only
a single time delay τ, which is the time it takes a signal to
propagate from one component of the system to another. In
the experiments we consider here, the time series data from
the above dynamics is sampled at a time interval Δt ¼ τ=k
(with k being an integer) and are denoted by
fXi½Δt�g; fXi½2Δt�g; fXi½3Δt�g, and so on.
The problem we wish to address can be formalized as

follows: If the observed time series data fXi½t�g is the only
information from the system we have, can we infer the
connections of the network assuming that the underlying
dynamical equations are of the general form as in Eq. (1)?
Wenote that we lack any explicit knowledge of the functions
fFμ

i g. However, except in Sec. IV C, we henceforth assume
that we know the delay τ ¼ kΔt, which, as shown in
Appendix A, can, in the case of our optoelectronic test
system, be inferred from the available time series data.
Furthermore, we note that the performance of our method is
not strongly dependent on the accuracy with which we infer
the delay time τ. For example, in our cases where we
typically have k ¼ 34 (corresponding to a delay time
τ ¼ 1.4 ms) in the simulations and experiments, setting
the inferred value of k anywhere between 34 and 37 (delay
time of 1.4 and 1.5 ms, respectively) gives us essentially the
same link inference results. (We choose the delay time in
order to work in a regime where the dynamics for our
particular experimental test network is well characterized
[65–68]). While the dynamics of the network depend on the
delay time, we do not expect any change in the efficacy of our
link inference technique for different delay times. In
those cases, we need only to change the value of k [as in
Eqs. (4)–(9)] in our inference procedures. Finally, we note
that, in ageneral situation, itmightnot be feasible to sample all
the components of the state vectors. So, henceforth, we
assume that we may sample only a subset of the components
of each of the nodal state vectors fXi½t�g, which, without loss
of generality,we designate as the firstD0

sð≤ DsÞ components.
We now turn to a description of RC machine learning.

B. Time series prediction with a reservoir computer

In this work, our first step is to train an RC to predict the
time evolution of the node states one delay time τ ¼ kΔt
into the future, following which we use that training
information to extract the network structure of the system.
A schematic of our RC implementation [29,36,37] is shown
in Fig. 1. We consider an RC network consisting of a large
number of nodes Dr (such that Dr ≫ Dn ×D0

s ≡DX).
Each of the nodes has a time-dependent scalar state, all of
which are collected in a column vector R of length Dr.

These reservoir nodes receive measured inputs of the
unknown network system states fXi½t�g. We concatenate
the sampled input measurements of the time-dependent
node state vectors fXi½t�g and place them in a single time-
dependent column vector X ½t� of length DX, such that the
components of X ½t� are arranged as follows:

X ½t� ¼ ðX1
1½t�; X2

1½t�;…; XD0
s

1 ½t�; X1
2½t�;

X2
2½t�;…; XD0

s
2 ½t�;…; XD0

s
Dn
½t�ÞT: ð2Þ

This vector is fed into the reservoir via a Dr ×DX input-to-
reservoir coupling matrix Win (Fig. 1). Furthermore, the
reservoir nodes are coupled among themselves with a
Dr ×Dr adjacency matrix H. The time evolution of the
reservoir node states R are given by the equation

R½nΔt� ¼ σfHR½ðn − 1ÞΔt� þWinX ½nΔt�g; ð3Þ

which maps the reservoir state at time ðn − 1ÞΔt to the
reservoir state at the next time step nΔt, where n is a
positive integer and σ is a sigmoidal activation function
acting componentwise on its vector argument (which has
the same dimension Dr as R).
Keeping in mind the form of Eq. (1), our first step is to

predict the future values of the sampled components of
fXi½ðnþ kÞΔt�g in the concatenated form X ½ðnþ kÞΔt�
[Eq. (2)] from their current observed values X ½nΔt� using
the reservoir state vector R½nΔt�. In our case, this pre-
diction is done by using a suitable linear combination of the
reservoir node states with a DX ×Dr reservoir-to-output
coupling matrix Wout (Fig. 1) according to the equation

XP½ðnþ kÞΔt� ¼ WoutR½nΔt�; ð4Þ

FIG. 1. Schematics of the RC trained for predicting the time
series k time steps ahead. Lower: the four time series represent
scalar components of X ½t�.
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where the superscript P indicates that the vector is a
prediction from the RC, as opposed to being sampled
from the actual system. During the training time, we
measure the system training time series data fX ½t�g from
the unknown system of interest for a large number of time
steps. We use these data along with Eq. (3) to generate the
time series data for the RC nodal states fR½nΔt�g, which
we store. For the training of the RC, we then find the
elements of the matrix Wout by doing a linear regression
from these stored reservoir states R½nΔt� to the measured
time-advanced system states fX ½ðnþ kÞΔt�g, such that
Eq. (4) provides a best mean squared fit of the prediction
XP½ðnþ kÞΔt� to the measured stateX ½ðnþ kÞΔt�. This fit
amounts to the minimization of a cost function C given by

C ¼
X

training steps n

kX ½ðnþ kÞΔt� −WoutR½nΔt�k2

þ λkWoutk2; ð5Þ

where the last term (λkWoutk2) is a “ridge” regularization
term [69] used to prevent overfitting to the training data and
λ is typically a small number.
To completely specify the training procedure that we use,

we now specify the structures of the different associated
matrices. The elements of the input matrix Win are chosen
randomly from a uniform distribution in the interval
½−w;w�. The reservoir connectivity matrix H is a sparse
random matrix, corresponding to an average in-degree dav
of the reservoir nodes. The nonzero elements of H are
chosen randomly from a uniform distribution ½−h; h�, and h
is chosen such that the spectral radius of H (i.e., the
maximum magnitude of the eigenvalues of H) is equal to
some predefined value ρ. The hyperparameters w and dav
are chosen using a Nelder-Mead optimization procedure
where we minimize C for a representative training data and
the corresponding output matrix Wout found from the
training data. [We use w ¼ 1.17 and dav ¼ 2.38 for tests
on simulated data and w ¼ 1.19 and dav ¼ 2.56 for tests on
experimental data. We typically use values λ ¼ 10−4 and
ρ ¼ 0.9 for the other two hyperparameters, 3 × 104 steps
(about 880 delay times) for training, and the sigmoidal
activation function σ is taken to be the hyperbolic tangent
function. The reservoirs we use typically have 3000 nodes.]
After a successful training of the RC with these specifi-
cations, Eq. (4) can be seen as an in silico model for the
dynamics of the actual system. Explanations for the special
properties of trained RCs, which allow us to use RCs for
our purpose, can be found in Refs. [41,70–72].

C. Our network inference procedure

We now describe how we use the training results of the
previous subsection to obtain the network structure of the
unknown system. We first briefly discuss how the form of
Eq. (1) allows us to relate the network structure to the

spread of the effect of small perturbations to the system.
Suppose that, at a time point t ¼ nΔt, we perturb the νth
component of the state of node j by an infinitesimal amount
δXν

j ½nΔt�. Differentiating both sides of Eq. (1), we see that
this perturbation changes the μth component of the state of
node ið≠ jÞ at a later time ðnþ kÞΔt ¼ tþ τ via the
corresponding change in the time derivative:

δ

�
dXμ

i

dt

����
tþτ

�
¼ ∂Fμ

i

∂Xν
j
δXν

j ½t� þOfðδXν
j ½t�Þ2g: ð6Þ

This equation shows that, to lowest order, the effect of the
small perturbation on component ν of the state of node j is
propagated to the component μ of the state of node i with a
delay of τ ¼ kΔt provided that there is a corresponding
network link between them, i.e., if ∂Fμ

i =∂Xν
j ≠ 0. In

particular, propagation of a perturbation from component
ν of the state of node j to component μ of the state of node i
with a delay of k time steps implies that a directional
network link, ðj; νÞ → ði; μÞ, exists between them.
While the above discussion is predicated on application

of an active perturbation, we see that the result is essentially
determined by the partial derivative ∂Fμ

i =∂Xν
j . Thus, we

wish to determine whether this partial derivative is zero
(corresponding to the absence of a link) or not (corre-
sponding to the presence of a link). We attempt to do this
determination by use of the trained RC (which, as we
emphasize, is obtained solely from observations, i.e.,
noninvasively). Indeed, when Eq. (4) is approximately true
for a well-trained RC withXP½ðnþ kÞΔt� ≈X ½ðnþ kÞΔt�,
we can use that equation to consider the RC-predicted
dynamics as a proxy for the dynamics of the actual system.
In that case, within this assumed RC proxy model, we can
analytically assess the effects of small perturbations and
compare them to Eq. (6). To do so, we first combine
Eqs. (3) and (4) for the RC and assume the relation
XP½ðnþ kÞΔt� ¼ X ½ðnþ kÞΔt� for the training data to
obtain the equation

X ½ðnþ kÞΔt� ¼ WoutσfHR½ðn − 1ÞΔt� þWinX ½nΔt�g;
ð7Þ

where the time points belong to the training time series. In
order to evaluate the effect of a perturbation to one node
on another, we desire to eliminate reservoir variables R
from this equation. Naively, this elimination could be
done by solving Eq. (4) for R½ðn − 1ÞΔt� in terms of
X ½ðnþ k − 1ÞΔt�. However, the number of components
ofR is large compared to the number of components of X ,
and so there are many solutions of Eq. (4) for R. As in our
previous work [29], we hypothesize (and subsequently test)
that, for our purpose, the Moore-Penrose pseudoinverse [73]
(symbolically denoted by Ŵ−1

out) provides a useful solution
of the equation X ½ðnþ k − 1ÞΔt� ¼ WoutR½ðn − 1ÞΔt� for
R½ðn − 1ÞΔt�. With this result, Eq. (7) becomes
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X ½ðnþ kÞΔt� ¼ WoutσfHŴout
−1X ½ðnþ k − 1ÞΔt� þWinX ½nΔt�g; ð8Þ

yielding a putative dynamical model for the system from which we now study the effect of small perturbations. Thus, an
infinitesimal amount of change in the network node states at time step nΔt, written as δX ½nΔt�, propagates to a change at time
ðnþ kÞΔt as described by differentiating Eq. (8):

δX ½ðnþ kÞΔt� ¼ ð1 −WoutĤ½nΔt�Ŵ−1
outÞ−1WoutŴin½nΔt�δX ½nΔt�≡M½nΔt�δX ½nΔt�; ð9Þ

where we use Eq. (3), assume that Δt is sufficiently small
that δX ½ðnþ kÞΔt� ≈ δX ½ðnþ k − 1ÞΔt�, and define the
new matrix elements Ĥij½nΔt� ¼ Hijσ

0fRi½nΔt�g and
ðŴinÞij½nΔt� ¼ ðWinÞijσ0fRi½nΔt�g, where σ0fug ¼
dσfug=du. We now employ this equation in component
form in the place of Eq. (6) as a proxy approximating how
small perturbations spread across the network. In particular,
just like the partial derivative ∂Fμ

i =∂Xν
j determineswhether a

change at the νth component of the state of node j results in a
change of theμth component of the state of node i after k time
steps in Eq. (6), Mi;j½nΔt� determines the same in Eq. (9),
when used in conjunctionwith our definitionEq. (2) forX ½t�.
We now describe how we use our determination of M in

Eq. (9) to recover the network structure. For this purpose,
based on our knowledge of Mi;j½nΔt�, we are interested
only in determining whether ∂Fμ

i =∂Xν
j is zero [no link

ðj; νÞ → ði; μÞ] or not. In the true Jacobian, the absence of a
link would imply ∂Fμ

i =∂Xν
j ¼ 0 exactly. However, in our

procedure, there are errors, and, thus, the elements of
M½nΔt� are never zero. These errors are due to finite
reservoir size, finite training data length, noise in the
training data, and the Moore-Penrose inversion, which,
as we hypothesize, is useful but not exact.
Generally speaking, in past link inference methods, the

common approach is to somehow obtain a time-independent,
continuous-valued score Sij hopefully accurately reflecting
the likelihood that node i is linked to j. Once the score is
found, as explained below, one can then choose an appro-
priate statistical technique for translating the score into a
good binary choice ofwhether or not i → j corresponds to an
actual link. In essence, the key goal of our paper is to use
machine learning to obtain good scores, and for that purpose
we use our machine learning determination of M.
To form an appropriate score corresponding to each of

the time-dependent elements Mij, we use Sij ≡ hjMijjit,
where hit denotes time averaging over a time sufficiently
long that the scores Sij do not change appreciably upon,
e.g., doubling the averaging time. In our tests (Sec. IV), the
averaging time is 1000Δt. Here, the absolute value ofMij is
to be taken so that the positive and negative values do not
cancel each other while doing the time averaging. If this
assigned score Sij is above a threshold for a particular
element Mij, we assume that there is a network link
corresponding to that element, and if the score is less than

a threshold, we assume that the corresponding network link
is absent.
With the scores Sij defined and calculated, choosing the

threshold is a well-known problem of binary categorization
of a collection of continuous numerical scores. Since
obtaining a useful score for the network link inference is
the goal of our machine-learning-based methodology, we
regard a detailed discussion of thresholding or other follow-
up statistical analysis of the obtained scores to be beyond
the scope of this work. We comment only that, once the
scores Sij are found, one can then choose an appropriate
statistical technique for translating the score into a good
binary choice. This choice depends on circumstances that
are specific to the situation at hand (e.g., the cost of a false-
positive link choice versus the cost of a false-negative link
choice). This problem is basic in statistics and addressed
extensively in earlier works with methods such as receiver
operating characteristic curves [74,75], precision-recall
curves [74,75], fitting to mixtures of statistical distributions
[74], Bayesian techniques [74], etc. A recent paper [76]
proposes a binary classification technique specifically
designed for network inference purposes.
To avoid the details of the statistical methodologies, we

adopt a procedure which is simple but sufficient for the
purpose of evaluating the goodness of the scores of
candidate links resulting from our link inference method.
Thus, we henceforth assume that we know the total number
of links (denoted by L) in the unknown network and
designate the largest L scores Sij as corresponding to
inferred network links, while those Mij with scores below
the largest L scores are inferred to not correspond to
network links. The performance of this link inference
technique is measured by the corresponding number of
falsely inferred links (false positives). Since we assume that
we know the total number of links, the number of falsely
inferred links is also equal to the number of missed links
(false negatives). As we show below, this method, applied
to our machine-learning-determined scores, can produce
excellent results in link inference tasks over a wide range of
coupling strengths, network topologies, and noise levels.
While, in practice, L may be unknown, and, depending on
the situation, a user may wish to employ an appropriate
statistical technique for making the above binary choice
from our score, we claim that the results we obtain with L
assumed known indicate the value of our technique for
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score determination, without having to introduce and
discuss more involved methods and their appropriateness
in different situations (e.g., precision recall is more appro-
priate for sparse networks than receiver operating charac-
teristic [75]). Later in this paper, at the end of Sec. IVA, we
present results that support this claim.

III. OPTOELECTRONIC OSCILLATOR
NETWORKS

A. Description of the experiment

In this section, we introduce our optoelectronic network
that is used as a platform to test our network inference
procedure. An individual optoelectronic oscillator is a
nonlinear, time-delayed feedback loop. Our network con-
sists of four nominally identical optoelectronic oscillators
with time-delayed optical coupling between them. The
individual and coupled dynamics of optoelectronic oscil-
lators have been studied extensively [56,62,63,65–67,
77,78].
An optoelectronic oscillator essentially consists of a

nonlinearity whose output is fed back into its input with
some feedback time delay τf. This feedback delay τf is
inherent to the oscillator, and, without it, the system would
have no dynamical behavior. A description of one of our
optoelectronic oscillators follows.
A fiber-coupled continuous-wave laser emits light of

constant intensity. The light passes through an intensity
modulator, which serves as the nonlinearity in the feedback
loop and can be modeled by cos2ðπv=2VπÞ, where v is the
voltage applied to the modulator. For our modulators,
Vπ ¼ 3.4 V. The feedback optical signal is converted to
an electrical signal by a photodiode, which is then delayed
and filtered by a digital signal processing (DSP) board
(Texas Instruments TMS320C6713). This signal is output
by the DSP board, amplified, and fed back to drive the
modulator. The voltage vðtÞ applied to the intensity
modulator is measured, and the normalized voltage xðtÞ≡
πvðtÞ=2Vπ serves as our dynamical variable. If there were
no DSP board, the delay would be controlled by the optical
fiber length, and the filtering would be done by the analog
electronic components, such as the amplifier. The DSP
board simply provides enhanced control over the delay and
filter parameters.
In general, when one couples two oscillators together, a

coupling delay is induced by the finite propagation time of
the signal. That coupling delay becomes important when it
is not too much shorter than the fastest system timescale,
which is the case for our network of coupled optoelectronic
oscillators. In general, for a network of oscillators with L
links, there are L different coupling delays. We use the
notation τcij to refer to the coupling delay in the link from
node j to node i. In our experiments, we choose all the
coupling delays to be identical, such that τcij ¼ τc (hetero-
geneous delays are considered in Sec. IV C).

An illustration of a single networked optoelectronic
oscillator is shown in Fig. 2. In order to couple the
optoelectronic oscillator to other nodes in the network, a
1 × 4 fiber optic splitter is introduced after the intensity
modulator. One of the optical outputs of the splitter is
converted to an electrical signal by a photodiode, and then
fed back into that node’s DSP board, creating a self-
feedback electrical signal. The other three splitter outputs
are sent to the other three nodes in the network. Incoming
optical signals from the other nodes pass through variable
optical attenuators, which control the link strengths, and
then are combined by a 3 × 1 fiber optic combiner. This
combined optical signal is converted into a coupling
electrical signal by a second photodiode.
The feedback and coupling signals are delayed inde-

pendently in the DSP board such that τf and τc represent
the feedback and coupling delay times, respectively. The
outputs of the two delay lines are weighted and combined
in the DSP board. This combined signal is output by the
DSP, amplified, and used to drive the modulator. The ratio
of amplification factors of the coupling signal and feedback
signal is given by the coupling strength ϵ.
The amplifier gain is set such that each feedback loop has

identical round-trip gain β ¼ 3.8, phase bias ϕ0 ¼ π=4, and
feedback time delay τf ¼ 1.4 ms such that a single
uncoupled node behaves chaotically. The digital filter
implemented by the DSP board is a two-pole
Butterworth bandpass filter with cutoff frequencies
ωH=2π ¼ 100 Hz and ωL=2π ¼ 2.5 kHz and a sampling
rate of 24 kSamples/s. These parameters are chosen
because the experimental system with these parameters
is well characterized [65–68].
For each set of measurements, the nodes are initialized

from noise from the electrical signal into the DSP board.
Then feedback is turned on without coupling, and the
optoelectronic oscillators are allowed to oscillate independ-
ently until transients die out. At the end of this period, the
coupling to the other nodes is turned on, and the voltage
reading xðtÞ of each optoelectronic oscillator is recorded on
an oscilloscope.

FIG. 2. Illustration of optoelectronic oscillator and coupling
scheme. Red lines indicate signal paths in optical fibers. Black
lines are used to indicate electronic signals, and green indicates
the DSP board.
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B. Mathematical model and numerical simulations of the optoelectronic network

The equations governing the dynamics of our network of optoelectronic oscillators are derived in Ref. [77] and are
given by

dXiðtÞ
dt

¼ EXiðtÞ − βGcos2½X1
i ðt − τfÞ þ ϕ0�

− ϵβG
X
j

Aijfcos2½X1
jðt − τcijÞ þ ϕ0� − cos2½X1

i ðt − τfÞ þ ϕ0�g þ ξiðtÞ; ð10Þ

where

E ¼
�−ðωL þ ωHÞ −ωL

ωH 0

�
; G ¼

�
ωL

0

�
: ð11Þ

Here, Xi ¼ ½X1
i ðtÞ; X2

i ðtÞ�T [corresponding to Ds ¼ 2 in
Eq. (2)] is the state of the digital filter of node i (with
i; j ∈ f1; 2; 3; 4g, corresponding to Dn ¼ 4). By virtue of
the second component of G being zero, coupling between
nodes occurs only between X1

i and X
1
jði ≠ jÞ, where X1

i ðtÞ,
the normalized voltage of the electrical input to the intensity
modulator, is also the only observed variable [i.e.,
X1
i ðtÞ ¼ xðtÞ, corresponding to D0

s ¼ 1]. The nodes are
coupled via the adjacency matrix Aij, such that Aij ¼ 1 if
there is a link to the first component of the state vector of node
i from the first component of the state vector of node j and
Aij ¼ 0 otherwise. Since the coupling is between only the
first components of the vectors Xi, we drop the component
indices in the adjacency matrix in Eq. (10). The coupling
strength is given by ϵ, andE andG arematrices that describe
the filter. Finally, ξiðtÞ ¼ ½ξ1i ðtÞ; ξ2i ðtÞ�T is a vector corre-
sponding to white noise acting independently at each
oscillator, and its components have the property that
hξμi ½s�ξνj ½t�i ¼ 2ζδðs − tÞδijδμν with ζ denoting the strength
of the noise.
In our experiments, we choose all the feedback delays

and coupling delays to be nominally equal (i.e.,
τf ¼ τcij ¼ τ). In this case, Eq. (10) describes a network
with Laplacian coupling:

dXiðtÞ
dt

¼ EXiðtÞ − βGcos2½X1
i ðt − τÞ þ ϕ0�

− ϵβG
X
j

Lijcos2½X1
jðt − τÞ þ ϕ0� þ ξiðtÞ: ð12Þ

In this case, the nodes are coupled via the Laplacian
connectivity matrix Lij, defined so that Lij ¼ 1 if there
is a link to the first component of the state vector of node i
from the first component of the state vector of node j, Lij ¼
0 if there is no such link, and Lii ¼ −

P
j≠i Lij. Laplacian

coupling tends to lead to global synchronization, which is a

particularly challenging case for link inference, as we show
in the following sections.
Since the coupling is between only the first components of

the vectors Xi, we drop the component indices in the
Laplacian adjacency matrix in Eq. (10). Comparison with
Eq. (1) shows that, in our example, Fi¼EXiðtÞ−
βGcos2½X1

i ðt− τÞþϕ0�− ϵβG
P

j Lijcos2½X1
jðt− τÞþϕ0�þ

ξiðtÞ, where we drop the component superscripts. The
oscillators are identical, so these functions are independent
of i, except for the noise term. The relevant partial derivative
controlling the propagation of perturbation is ∂Fμ

i =∂Xν
j ∝

Lijδμ1δν1, for i ≠ j.
While Eq. (10) accurately describes the behavior of our

network of optoelectronic oscillators, numerical simula-
tions are inherently discrete in time. Instead of discretizing
Eq. (10) directly, our simulations use a discrete-time model
based on the discrete-time filter equations implemented on
the DSP board, which can be found in Ref. [79] and is
explained in Appendix B. In particular, for this case, we
characterize the noise strength by the variable κ, so that
κ ¼ ζΔt. For the discrete equation that we simulate, the
time step is 0.04 ms, which corresponds to the 2.4 × 104

samples per second sampling rate used by the digital filter
in our experiment.
Our model is verified by comparison with the experi-

ment, as shown in Fig. 3 for two sets of examples. The
upper panel shows experimentally measured (left) and
simulated (right) time series of the four optoelectronic
oscillators arranged in the six-link network shown. The
dynamics are synchronized and are also the dynamics of an
individual uncoupled optoelectronic oscillator, since the
effect of the Laplacian coupling vanishes for global
synchronization. The lower panel shows a measurement
(left) and simulation (right) of the four optoelectronic
oscillators coupled in the nine-link network shown. In this
case, the optoelectronic oscillators do not synchronize even
though the coupling is strong (ϵ ¼ 0.6). In both cases, the
simulations are in good agreement with the experiment.
As we see, the degree of synchronization of the oscil-

lators in the network is an important factor in the success of
our method to infer the network topology. In order to
quantify the degree of global synchrony, we define syn-
chronization error as
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synchronization error¼ 1

DnðDn−1Þ
�X

i;j
jxiðtÞ−xjðtÞj

�
t
;

ð13Þ

where hit means time average over a sufficiently long time.
This non-negative measure decreases with the amount of
synchronization in the system and is zero for perfect global
synchrony. For example, in Fig. 3, the synchronized
examples (upper) have synchronization error of approx-
imately 0.07, whereas the desynchronized examples
(lower) have synchronization error of approximately 1.04.

Using computer simulations, we study the dependence of
the synchronization error on the network coupling strength
ϵ and the number L of network links for all possible
directed and connected networks with four optoelectronic
oscillator nodes. The list of the 62 possible networks is
shown in Fig. 4 and is adapted from Ref. [65]. Figure 5
shows the synchronization behavior of these networks as a
function of the coupling strength ϵ for fixed β ¼ 3.8 and
ϕ0 ¼ π=4. In Fig. 5, the color-coded synchronization error
for each of the 62 networks in Fig. 4 is shown as one of the

FIG. 3. Examples of experimental and simulated time series from two optoelectronic oscillator networks showing globally
synchronous (upper) and completely desynchronized (lower) behavior, respectively. For the simulations, we use the noise strength
κ ¼ 10−6. In the plots, purple overlays orange, which overlays red, which overlays blue.

FIG. 4. List of possible connected directed four-node networks
[65] with different numbers of links (L).

Synchronized

Desynchronized

FIG. 5. Synchronization error for simulated time series of the
networks in Fig. 4 realized with optoelectronic oscillator nodes
with different coupling strengths for random initial conditions.
The color-coded synchronization error for each of the 62 net-
works in Fig. 4 is shown as one of the 62 horizontal bars for each
value of the coupling strength. Here, the convention we follow is
that, for a fixed number of links (L), moving upward, the
horizontal bars correspond to the networks listed in Fig. 4 left
to right. The same convention is followed in Figs. 6, 7, and 10.
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62 horizontal bars for each value of the coupling strength.
Here, the convention we follow is that, for a fixed number of
links (L), moving upward, the horizontal bars correspond to
the networks listed inFig. 4 left to right. The sameconvention
is followed in Figs. 6, 7, and 10. The results in Fig. 5 are
obtained from numerical simulations without noise (κ ¼ 0).
We see that, for intermediate coupling strengths, the net-
works synchronize, but for small and large coupling
strengths, the networks do not synchronize. The seemingly
counterintuitive behavior that large coupling strengths lead to
desynchronization has been studied for our network of
optoelectronic oscillators [68] and is characteristic of
delay-coupled systems in general [80]. Furthermore, for
coupling strengths in the range ϵ > 0.5, for a fixed value of
coupling strength, sparser networks are seen to synchronize
more readily than densely connected networks. This behav-
ior has also been studied and explained in earlier
works [68,81].

IV. RESULTS OF LINK INFERENCE TESTS

In this section, we present tests of the efficacy of our
machine learning technique. These include numerical
simulation tests for simulations with homogeneous link
delays (Sec. IVA), optoelectronic experimental tests with
nominally homogeneous link delays (Sec. IV B), and
numerical simulation tests with inhomogeneous link delays
(Sec. IV C).

A. Performance on simulated
data—Homogeneous delays

1. When the number of links is known

In this section, we test our methodology on simulated
time series for our coupled optoelectronic oscillator net-
works where links have identical delays. We use these
simulation tests to study the effects of noise and coupling
strength on the amount of synchrony in the system and their
effect on the performance of link inference tasks. In
particular, in Sec. III B, we show that our optoelectronic
oscillator networks show synchronized dynamics for cer-
tain ranges of the coupling strength ϵ. As we now show, our
method works excellently when the system dynamics does
not show pronounced global synchrony, while it does not
work well when there is pronounced global synchrony.
Furthermore, we show that our technique gives excellent
results when there is a small amount of dynamical noise
present so that the global synchrony among the optoelec-
tronic oscillators is appreciably broken.
In order to directly demonstrate the effect of loss of

synchrony on link inference, we vary the noise level and
coupling strength in the following two sets of examples. In
the first example set, the system starts with a random initial
condition with no noise for 5 × 104 time steps (about 1470
delay times) and is allowed to settle down to an attractor.
Then, we continue the simulation but with the noise

strength κ set to 10−6 for the next 5 × 104 steps, then with
the noise strength set to κ ¼ 10−4 for the next 5 × 104 steps,
and so on, keeping the coupling strength fixed at ϵ ¼ 0.6
[Figs. 6(a) and 6(b)]. As shown in Fig. 6(b), as the noise
strength increases, it drives the system away from the
attractor and disrupts its global synchrony, resulting in
larger synchronization error, which allows better link
inference performance, as shown in Fig. 6(a). In these
figures, for each of the time series segments with a fixed
noise strength, we use the first 3 × 104 time steps (about
880 delay times) to train our RC and infer links using our
procedure described in Sec. II. We repeat this process for
each of the 62 possible connected networks of four
optoelectronic oscillators [65], each one with a different
random initial condition.

(a)

(b)

FIG. 6. Simulation test results with varying noise strength κ.
(a) Number of false positives and (b) synchronization error for
simulated time series from different networks with progressively
increasing noise. As described in the text, each horizontal cut of
the plots represents a single trajectory of the system, starting from
a random initial condition. The convention for the sequence of the
networks is the same as in Fig. 5.
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We use the same procedure in the next set of examples
[Figs. 7(a) and 7(b)], but this time we keep the noise level
fixed at its nominal experimental value of κ ¼ 10−6 and vary
the coupling strength ϵ stepwise. The results are summarized
in Fig. 7. For both Figs. 6 and 7, we simultaneously plot the
number of false positives and synchronization error and
follow the same convention as in Fig. 5.
As we see from Fig. 6, a greater degree of global

synchronization generally corresponds to a larger number
of false positives, consistent with the hypothesis that global
synchrony is detrimental to the performance of link
inference. This result is expected, because exact synchro-
nization makes the time series from the four optoelectronic
oscillators indistinguishable, and, hence, the observed
dynamics yields no information about their underlying

causal interactions. In particular, we see that networks with
eight or more links do not synchronize sufficiently even in
the absence of the noise, and we are indeed able to infer the
links well, with, at most, only one false positive. In
contrast, for networks with smaller numbers of links, which
are strongly synchronized for noise levels κ ≲ 10−3, we
have many false-positive link inferences. Again, as we see
from Fig. 6, all the networks show a loss of global
synchrony for sufficiently strong noise levels (κ ≳ 10−2),
and this loss results in almost perfect link inference until the
noise strength becomes significant compared to the noise-
less optoelectronic oscillator signal amplitudes (κ ≳ 100).
Other examples of a similar beneficial role of noise in link
inference can be found at earlier works as well, e.g., in
Refs. [25,29,82–86]. Of these, Ref. [86] describes a net-
work inference technique based solely on noise correla-
tions. However, Ref. [86] proposes a technique applicable
only in the case of Laplacian coupling, unlike our work,
which does not employ this model-specific restriction.
Furthermore, unlike our method, their method does not
work in the absence of dynamical noise and is not validated
using experimental data.
In the second set of examples [Figs. 7(a) and 7(b)], we fix

the noise at a particular strength κ ¼ 10−6 and progressively
increase the coupling strength ϵ. We estimate that this noise
level approximates that for the experimental tests reported in
the next subsection (Sec. IV B). As in the previous examples,
Fig. 7 shows that our link inference method performs well
when the global synchrony is not too strong. A difference in
this set of results from the previous ones is the nontrivial
relationship between the coupling strength ϵ and global
synchrony, which we discuss in the last section (Fig. 5).
Furthermore, we notice that, even in the absence of global
synchrony, the coupling strength needs to exceed aminimum
value (about 0.1) for successful link inference. For smaller
coupling, the off-diagonal elements of the matrix M½nΔt�
could be so small inmagnitude that the values corresponding
to actual links are of the same order as those corresponding to
absent links. Thus, sufficiently large coupling strength ϵ is
beneficial for our link inference technique because of the
better contrast among the elements of M½nΔt� and dimin-
ished global synchrony.

2. When the number of links is unknown

Finally, to show the effectiveness of our procedure in
situations where the number of links L is unknown, in
Fig. 8, we plot the distribution of the scores Sij calculated
from the matrix M½nΔt�, for all the 62 networks listed in
Fig. 4 with coupling strength ϵ ¼ 0.6 and noise strength
κ ¼ 10−3, where, in determining the statistics, for each of
the networks, we use a single random realization of initial
condition and reservoir couplings. Figure 8 also shows the
numerical values and properties of the scores we typically
get in our method. In Fig. 8(a), we label individual scores
into two types [those corresponding to actual network links

(a)

(b)

FIG. 7. Simulation test results with varying coupling strength ϵ.
(a) Number of false positives and (b) synchronization error for
simulated time series from different networks with progressively
increasing coupling strength. As described in the text, each
horizontal cut of the plots represents a single trajectory of the
system, starting from a random initial condition. The convention
for sequence of the networks is the same as in Fig. 5.
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(colored blue) and those corresponding to absence of links
(colored red)] and plotted the scores with the respective
synchronization errors in the network. We see that, in the
cases with complete desynchronization, where we obtain
perfect network inference with known L [as seen in
Fig. 6(a)], it is also easy to predict a binary decision
threshold on our scores [the top histogram, Fig. 8(b)].
These scores separate into two distinct populations accord-
ing to their magnitudes, with a gap in between them
[Fig. 8(b)], and the populations correspond to actual links
or absence of links. In the cases for which Fig. 6(a) shows a
finite but small number of false positives with known L, the
two populations overlap, but there are still two distinct
histogram peaks [the middle histogram, Fig. 8(c)], so that
one can expect good inference results in cases where L is
not known by choosing a suitable threshold based on the
shape of the histogram. However, when the histogram
overlap is so great that two peaks are not discernible, we
expect that the ability to infer links no longer exists [the
bottom histogram, Fig. 8(d)]. In Fig. 6(a), this scenario
corresponds to cases with a large number of false positives,

even with a known L, because the network exhibits global
synchrony.

B. Performance on experimental data

Having established the usefulness of our network infer-
ence method on simulated time series, we now report our
experimental tests on the optoelectronic oscillator networks
described in Sec. IVA. In Fig. 9, we show some repre-
sentative examples of the performance of our method on
experimental time series. Each column in the figure
corresponds to a time series from a distinct network
indicated above the column, with the respective global
synchronization error indicated on the horizontal axis. The
height of the columns gives the total number of links in the
corresponding network. The columns are each divided into
three parts (colored in red, green, and black in the plot). The
height of the red portion indicates the number of falsely
inferred links [“false positives: (FP)]. This portion is absent
in the many cases where we have perfect network inference.
The number of correctly inferred links [“true positives”
(TP)] is indicated by the total height of the green plus black

(a)

(b)

(c)

(d)

Scores derived from reservoir computers 
FIG. 8. This figure shows statistics of our results for the link scores Si;j of all the possible networks (listed in Fig. 4) with ϵ ¼ 0.6 and
κ ¼ 10−3, where, in determining the statistics, for each of the networks, we use a single random realization of the initial condition and
reservoir couplings. In (a), for each individual directed node pair ði; jÞ, i.e., each candidate link, a point is plotted in the sync-error or
score plane with true links plotted in blue and link absences denoted in red, with red overlaying blue. The two black horizontal lines
divide the sync-error or score plane into three regions corresponding to networks that are highly desynchronized, moderately
synchronized, and strongly synchronized. (b)–(d) show histograms of the node scores for each of the three levels of network
synchronization demarcated in (a). Bins with scores that all correspond to true links (absence of links) are colored blue (red). Bins with
scores corresponding to both true links and link absence are vertically stacked into upper and lower pieces, where the lower piece (blue)
corresponds to the number of true links in the bin and the upper piece (red) corresponds to the number of missing links.
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portions of a column. The height of the black portion
indicates the expected number of true positives on average
(to nearest integer) that would be obtained if all L links were
to be guessed randomly, while the height of the green portion
indicates the increase of true positives overwhatwould result
from random selection. To evaluate the expected number of
randomly selected true positives, we note that, for L links
randomly and uniformly assigned among the DnðDn − 1Þ
ordered pairs of Dn nodes, the expected number of false-
positive links is Lf1 − ½L=DnðDn − 1Þ�g, and the expected
number of true-positive links is, thus,L2=DnðDn − 1Þ. If our
method yieldsmore true positives thanL2=DnðDn − 1Þ, then
weconsider ourmethod to be successful, even if it gives some
false positives.
To summarize our experimental results, consistent with

the simulation results in Figs. 5 and 7, the time series from
the experimental optoelectronic oscillator networks (Fig. 9)
are either globally well synchronized or else are strongly
desynchronized, and, when strong desynchronization
applies, our method correctly identifies all of the links.

C. Performance on simulated
data—Heterogeneous delays

So far, we consider cases where the link time delays τcij in
Eq. (1) are the same along all links (i.e., τcij ¼ τ). We now

present results on simulated data for which the link delays
τcij are chosen randomly from a uniform distribution of
mean τ0 and width 2Δτ, where the mean link delay τ0 is
assumed known. We then apply our previously described
method treating all links as if they have the same delay τ0,
and assess the results as a function of the link delay
heterogeneity, as characterized by the fractional spread
2Δτ=τ0 of the link delays. We do this process for all
networks listed in Fig. 4. For purposes of discussion, we
divide these networks into two categories: (i) networks for
which we obtain perfect inference with homogeneous
delays and (ii) networks for which synchronization hinders
link inference performance with homogeneous delays
[Fig. 6(a)]. For a fixed mean delay time τ0 (corresponding
to k ¼ 34 with τ0 ¼ kΔt), the results for different amounts
of spread of the delay times Δτ are plotted in Fig. 10. The
results indicate that, in case (i), we continue obtaining good
results, with the average of maximum number of false
positives around 1, if the heterogeneity of the spread in
delays is not too large [Fig. 10(a)]. In case (ii), we obtain
better, and, in some cases, perfect (i.e., zero false positives),
results with moderate delay heterogeneity. This improve-
ment can be attributed to a change in network dynamics:
The heterogeneity of the link delays inhibits global
synchronization, as is evident from the corresponding

FIG. 9. Typical performance of our network inference method on experimental data. Each of the vertical bars corresponds to the
experimental realization of a distinct optoelectronic oscillator network, with the height indicating the corresponding number of links.
Each bar is separated into three segments as shown, but in many of them only two are seen if there is a perfect link inference. The
numbers inside the segments indicate the corresponding heights of the segments, rounded to the nearest integers. Ranges of coupling
strength (ϵ) and synchronization error for all the examples are indicated as well.
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synchronization error plot in Fig. 10(b). Thus,moderate delay
heterogeneity can be beneficial to theworking of ourmethod.
This study confirms that our formalism can be applied to
realistic networks with distributed link delay time, broad-
ening the scope of ourmethodology. Further investigations in
which we include the delay heterogeneity in the reservoir
computer formalism itself are reserved for the future.

V. DISCUSSION

In this work, we develop a reservoir-computer-based
technique for the general problem of link inference of noisy

delay-coupled networks from their nodal time series data
and demonstrate the success of our method on simulated
and experimental data from optoelectronic oscillator net-
works with identical and distributed link delay times. Our
main findings are as follows.

(i) Testing on experimental and simulated time-series
datasets from networks, we find that, in the absence
of dynamical noise, our method yields extremely
good results, as long as there is no synchrony in the
system.

(ii) We find that dynamical noise and/or a moderate
amount of link time delay heterogeneity can greatly
enhance the performance of our method when
synchrony is present, provided that the noise am-
plitude or link time delay heterogeneity is large
enough to perturb the synchrony.

(iii) Since dynamical noise is ubiquitous in natural and
experimental situations, we anticipate that this tech-
nique may be useful in network inference tasks
relevant to fields like biochemistry, neuroscience,
ecology, and economics.

Among the important issues for future investigation, our
work in this paper could be extended to cases when the
dynamics of the network nodal states are partially
synchronized (e.g., cluster synchronization of nodes
[87]) or display generalized synchronization [88–91].
Effects of network symmetries [87,92], nonuniform cou-
pling [93], and nonidentical nodes [94]—all of which can
affect the synchrony of nodal states—would also be very
interesting to study. Another important issue that awaits
study is the effects of incomplete [95] or erroneous nodal
state data [96,97] on link inference; e.g., a case of particular
interest is that where measured nodal time series is
available only from a subset of N0 < N of the N network
nodes, and the value of N itself is unknown.
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APPENDIX A: DETERMINATION OF THE TIME
DELAY FROM CROSS-CORRELATION

In this appendix, we demonstrate that the duration of the
delay along a link in our network can be accurately
estimated from the cross-correlation between the measured
time series of the two nodes connected by that link. In
particular, we show that the location of the peak of the
cross-correlation between the two nodes provides a good
estimate of the delay time. We also show that the cross-
correlation cannot determine causality, because it cannot

(a)

(b)

FIG. 10. Tests on networks with heterogeneous link delays.
(a) Average number of false positives and (b) the corresponding
synchronization error for different networks listed in Fig. 4, with
ϵ ¼ 0.6 and κ ¼ 10−6, and different amounts of link delay
heterogeneity, presented as the ratio of link delay variation range
2Δτ and mean link delay τ0. The results are based on simulated
data with different network configurations and different random
link delays along the network links. In each case, the averaging is
done over 100 different random realizations of reservoir con-
nections, initial conditions, and assignments of interaction delays
to different links. The convention for sequence of the networks is
the same as in Fig. 5.
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determine the direction of a given putative link or if the link
even exists at all.
Consider the network depicted in Fig. 11(a), where each

node is an optoelectronic oscillator as described in Sec. III.
The delay in each link is τ ¼ 1.44 ms. We define the cross-
correlation between the sampled time series of two nodes i
and j as

ρijðlagÞ ¼
1

σiσj

X
k

xi½kþ lag�xj½k�; ðA1Þ

where xi½k� is the measured time series of node i at discrete
time k and σi is the rms value of xi. The time series should
be mean subtracted so that hxii ¼ 0. The time series used

here are obtained from experimental measurements of our
optoelectronic oscillator network.
First, we compute ρ12, the cross-correlation between

node 1 and node 2, shown in Fig. 11(b). A peak is located at
−1.44 ms. This peak corresponds to the delay in the link
from node 1 to node 2. This correspondence suggests that
the dynamics of node 2 lag behind the dynamics of node 1,
as one might expect, since the delayed link is from node 1
to node 2.
Next, we compute ρ23, the cross-correlation between

node 2 and node 3, shown in Fig. 11(c). The largest
(negative, in this case) peak is located at 1.44 ms, correctly
identifying the absolute value of the delay time of the link
from node 2 to node 3. However, in contrast to ρ12, the peak
location in ρ23 shows that node 3 leads node 2. There is no

(a)

(b) (c)

(d) (e)

FIG. 11. Time delay determination by cross-correlation of measured time series. In all cases, the coupling delay time is 1.44 ms.
(a) The network to be inferred from time series measurements. (b) The cross-correlation between the time series of nodes 1 and 2. A
strong peak is observed near −1.44 ms. (c) The cross-correlation between the time series of nodes 2 and 3. A strong negative peak is
observed near 1.44 ms and a strong positive peak near −1.44 ms. (d) The cross-correlation between the time series of nodes 2 and 4. A
strong peak is observed near 1.44 ms. (e) The cross-correlation between the time series of nodes 1 and 4. Peaks are observed at 1.44 and
−1.44 ms, even though there is no link from node 1 to node 4.
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peak at a lag of −1.44 ms. This result shows that the cross-
correlation can identify the delay time but not the link
direction.
We now consider ρ24. Nodes 2 and 4 have a bidirectional

link; however, the cross-correlation ρ24 shown in Fig. 11(d)
has a prominent peak at 1.44 ms but not at −1.44 ms. There
is no indication that the link is bidirectional.
Finally, we consider ρ14. There is no direct link between

nodes 1 and 4. Still, the cross-correlation ρ24 shown in
Fig. 11(e) has peaks at both 1.44 and −1.44 ms.
This example demonstrates that the cross-correlation can

provide an accurate estimate of the duration of the delay in
the coupling between two nodes but that it does not provide
sufficient information to determine the existence or direc-
tionality of a link. We find similar results in all the networks
of optoelectronic oscillators we test.

APPENDIX B: DERIVATION OF THE DISCRETE-
TIME EQUATION FOR SIMULATING THE

OPTOELECTRONIC SYSTEM

In this appendix, we derive the discrete-time equations
implemented by the DSP board in our experimental setup
and used in our simulations. These discrete-time equations
are derived using standard techniques for approximating an
analog filter as a digital filter and are essentially a trapezoid
rule approximation to Eqs. (10) and (11).
The derivation here closely follows that presented in

Ref. [77]. The missing details from Ref. [77] are filled in
here, drawing from Ref. [98] for the details of the z
transform and bilinear transform.
The continuous-time filter equations that describe a two-

pole bandpass filter are

duðtÞ
dt

¼ EuðtÞ − FrðtÞ; ðB1Þ

xðtÞ ¼ GuðtÞ; ðB2Þ

where

E ¼
�−ðωL þ ωHÞ −ωL

ωH 0

�
; F ¼

�
ωL

0

�
;

and G ¼
�
1 0

�
: ðB3Þ

Here, uðtÞ is a 2-vector that describes the state of the
filter, rðtÞ is the filter input, and xðtÞ is the filter output. In
the case of one of our optoelectronic oscillators,
rðtÞ ¼ β cos2½xðt − τÞ þ ϕ0�. In order to implement this
filter digitally, one derives the digital filter equations by
computing the transfer function of the analog filter and then
applying the bilinear transform with frequency prewarping
to the continuous-time transfer function to obtain the

discrete-time transfer function. From there, the discrete-
time digital filter equations can be written down.
The transfer function HðsÞ of the analog filter can be

found by HðsÞ≡ XðsÞ=RðsÞ, where the capital letters X
and R indicate the Laplace transform of x and r, respec-
tively. We compute the Laplace transform of Eq. (B1):

sUðsÞ ¼ EUðsÞ þ FRðsÞ: ðB4Þ

Then, performing the Laplace transform of Eq. (B2) and
inserting Eq. (B4), we have

HðsÞ≡ XðsÞ
RðsÞ ¼ GðsI −EÞ−1F ¼ sτH

ð1þ τLsÞð1þ τHsÞ
;

ðB5Þ

where τH ¼ 1=ωH and τL ¼ 1=ωL. Equation (B5) is the
continuous-time filter transfer function for the filter
described by Eqs. (B1)–(B3).
Two standard tools used in the design and analysis of

digital filters are the z transform and the bilinear transform.
The z transform is the discrete-time analog of the Laplace
transform. The bilinear transform is a tool used to turn a
continuous-time filter into a discrete-time filter. It can be
shown that the result obtained by the bilinear transform
method we use here is equivalent to applying the trapezoi-
dal integration rule to Eqs. (B1)–(B3) [98].
The z transform is defined as

Zfx½n�g≡ X∞
n¼−∞

x½n�z−n; ðB6Þ

where z is a continuous complex variable and n is discrete
time. One important z-transform relation is that a delay by
m time steps in the discrete-time domain is equivalent to
multiplication by z−m in the z domain.
The bilinear transform is used to convert our continuous-

time filter transfer function [Eq. (B5)] into a discrete-time
filter transfer function. An exact conversion is done by
discretizing with a time step of T and equating z ¼ esT .
Since T is small, we can approximate

s ¼ 1

T
lnðzÞ ¼ 2

T
1 − z−1

1þ z−1
: ðB7Þ

Equation (B7) is the bilinear transform. This approximation
is equivalent to applying the trapezoid rule to the continu-
ous-time filter equations [98]. When Eq. (B7) is substituted
into Eq. (B5), we obtain the transfer function for a discrete-
time filter with similar characteristics to the desired analog
filter:
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HðzÞ¼ 1

4
ð1− zLÞð1þ zHÞ

1− z−2

ð1− zLz−1Þð1− zHz−1Þ
: ðB8Þ

This change of variables is a nonlinear mapping, so
frequency warping occurs. This effect is minimal when the
frequencies are significantly less than the Nyquist fre-
quency (in this case, fL ¼ 2.5 kHz, and the Nyquist
frequency is 12 kHz) and can be further mitigated by
prewarping the frequencies of the continuous-time filter by
Ω ¼ ð2=TÞ tanðω=2Þ, where Ω is the discrete-time fre-
quency and ω is the continuous-time frequency [98].
Therefore, we find that

zH ¼ 1 − tanðT=2τHÞ
1þ tanðT=2τHÞ

and

zL ¼ 1 − tanðT=2τLÞ
1þ tanðT=2τLÞ

:

Now, one can use the definition of the transfer function
HðzÞ≡ XðzÞ=RðzÞ to find

½1 − ðzL þ zHÞz−1 þ zLzHz−2�XðzÞ

¼ 1

4
ð1 − zLÞð1þ zHÞð1 − z−2ÞRðzÞ: ðB9Þ

We arrive at the discrete-time filter equation by perform-
ing the inverse z transform on Eq. (B9):

x½n� ¼ ðzL þ zHÞx½n − 1� − zLzHx½n − 2�

þ 1

4
ð1 − zLÞð1þ zHÞðr½n� − r½n − 2�Þ: ðB10Þ

For the filter used in this work, zL þ zH ¼ 1.4845,
zLzH ¼ 0.4968, and 1

4
ð1 − zLÞð1þ zHÞ ¼ 0.242.
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