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Distributed quantum sensing can provide quantum-enhanced sensitivity beyond the shot-noise limit
(SNL) for sensing spatially distributed parameters. To date, distributed quantum sensing experiments have
mostly been accomplished in laboratory environments without a real space separation for the sensors.
In addition, the post-selection is normally assumed to demonstrate the sensitivity advantage over the SNL.
Here, we demonstrate distributed quantum sensing with discrete variables in field and show the
unconditional violation (without post-selection) of SNL up to 0.916 dB for the field distance of
240 m. The achievement is based on a loophole-free Bell test setup with entangled photon pairs at the
averaged heralding efficiency of 73.88%. Moreover, to test quantum sensing in real life, we demonstrate the
experiment for long distances (with 10-km fiber), together with the sensing of a completely random
parameter. The results represent an important step towards a practical quantum sensing network for
widespread applications.

DOI: 10.1103/PhysRevX.11.031009 Subject Areas: Optics, Quantum Physics,
Quantum Information

I. INTRODUCTION

By exploiting the quantum mechanical effects, quantum
metrology can provide superior sensitivity compared to
classical strategies [1]. Its sensitivity can beat the shot-noise
limit (SNL) or even reach the Heisenberg limit [2,3],
which is the maximum sensitivity bound optimized over
all possible quantum states. Considerable efforts have been
made to harness different types of quantum resources [4,5],
such as the entangled N00N state [6–10], the squeezed state
[11], and quantum coherence [12,13].
Distributed metrology has attracted considerable atten-

tion for applications [14–17]. In most of the applications,
the distributed sensors are encoded with independent

parameters and collectively processed to estimate the linear
combination of multiple parameters [18,19]. Recently, it
has been shown, by both theory [18–22] and experiments
[23–25], that the sensitivity of sensing networks can be
considerably improved using entanglement among distri-
buted sensors.
From the theory, we see that both continuous-variable

and discrete-variable protocols can achieve the Heisenberg
limit [26,27]. In continuous-variable quantum metrology,
the distributed quantum sensing network is prominently
achieved without post-selection [23], while in discrete-
variable quantum metrology, the experimental demonstra-
tion of the distributed quantum sensing network is realized
under the assumption of post-selection [24]. In fact, most of
the experiments showing the sensitivity advantage were
operated under the assumption of post-selection [6–9,
12,13,24]. In other words, only the detected photons are
counted in previous experiments. Actually, in most appli-
cations, all the photons used should be taken into account.
Under such a condition, most of the previous experiments
could not beat the SNL or show a quantum advantage.
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The main technical challenge is to improve the system
efficiency. A remarkable work by Slussarenko et al. [28]
demonstrated the violation of SNL [8,9] with a single
sensor in a laboratory without post-selection. The setup in
Ref. [28], however, cannot be used to realize distributed
quantum sensing. A discrete-variable distributed quantum
sensing network with multiple distributed sensors that can
beat the SNL unconditionally remains to be solved. So far,
the experiments on quantum metrology have largely been
demonstrated in laboratories [6–9,12,13], including the
recent distributed quantum metrology demonstrations
[23–25]. A real-world distributed quantum sensing network
has not been implemented yet.
Interestingly, besides distributed quantum sensing, the

relation between system efficiency and unconditional
quantum information tasks appears in various fields, like
loophole-free Bell tests, quantum key distribution, and so
on. On one side, the highly efficient entanglement gen-
eration, distribution, and detection can be shared among the
various fields. On the other side, a very interesting question
is whether all of these efficiency requirements are related.
Does any fundamental relation exist?
In this paper, we study a field test of discrete-variable

distributed quantum sensing, which unconditionally beats
the SNL. The linear function of two phase parameters is
realized with two entangled photons, where one of the
photons passes the phase shifts twice. By establishing a
theoretical model corresponding to our experiment (see the
Appendix A for more details), we anticipate that a violation
of SNL can be observed with an overall threshold effi-
ciency of ηmin ≈ 59.1%. Our experiment demonstrates the
state-of-the-art averaged heralding efficiency of 73.88%
[29–32] and achieves a phase precision of 0.916 dB below
the SNL for a field distance of 240 m. Such high efficiency
is mainly attributed to the entanglement source and single-
photon detectors, bringing about a wide range of high
accuracy. In addition, we show that the setup can perform
distributed quantum sensing using up to 10-km fiber
spools. Moreover, to simulate the actual working circum-
stances where the phase of each sensor may vary along with
the environmental random variations, we use the quantum
random number generators to introduce random phase
changes and precisely measure the random phases.

II. THEORY AND EXPERIMENTS

We begin by introducing the basic tools and techniques
used in this work. The scheme to estimate the linear
function of independent phase shifts uses a combination
of two techniques: entanglement and multiple sampling of
the phase shift [12,13,28,33]. In a distributed multiphase
quantum sensing network with M nodes, the essential
feature of multiple sampling of the phase shift is that the
phase shift θk in each node k is coherently accumulated
over the pk applications of the local phase gate Uθk

[12,13,33]. Thus, it promises to estimate any function(s)
of fθkg, e.g.,

P
k pkθk.

To demonstrate the distributed quantum sensing, we
consider two separated quantum sensors, Alice (A) and Bob
(B), with two independent unknown phase shifts θA and θB;
the global function (normalized) θ̂ to be estimated is
θA=3 − 2θB=3. The sensors A and B are entangled by
the single state 1=

ffiffiffi
2

p ðjHVi − jVHiÞ, and the local unitary
evolution for each sensor is set to UθA ¼ e−iθAσ

A
z =2 and

UθB ¼ e−iθBσ
B
z =2, respectively. To estimate θ̂, the overall

evolution Uθ̂ should be given by Uθ̂ ¼ UθA ⊗ ðU2
θB
Þ,

where U2
θB

represents two applications of UθB or that the
photon in sensor B passes the phase gate twice. Therefore,
the entanglement state after the evolution becomes
1=

ffiffiffi
2

p ðjHVi − ei3θ̂jVHiÞ. Theoretically, by implementing
the σx basis measurement in sensors A and B, the
probabilities that can be observed are PA1B1

¼ PA2B2
¼

ð1 − cosð3θ̂ÞÞ=4 and PA1B2
¼ PA2B1

¼ ð1þ cosð3θ̂ÞÞ=4,
where AiBj represents two-photon coincidence events
of detectors Ai and Bj for i; j ∈ f1; 2g. To quantify the
phase sensitivity, we use the Cramer-Rao bound [1]
Δθ̂ ≥ ðαTα=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kαTFα

p
Þ, where k denotes the number of

independent measurements, and α ¼ ð1=3;−2=3Þ is the
coefficient vector of the phase shift. Here, F denotes
the classical Fisher matrix with elements ðFÞkl ¼P

i Pi½ð∂=∂θkÞPi�½ð∂=∂θlÞPi� for i ∈ fA1B1; A1B2; A2B1;
A2B2g. The effective Fisher information (FI), Fðθ̂Þ, which
is used for evaluating the estimation sensitivity, is given by

Fðθ̂Þ ¼ αTFα
ðαTαÞ2 : ð1Þ

However, in practice, the entanglement states are
generated probabilistically at random times by the spon-
taneous parametric down-conversion (SPDC) source.
Owing to the imperfect transmission and detection effi-
ciency η, some photons do not lead to detection.
Furthermore, owing to higher-order SPDC events (the
occasional simultaneous emission of 4, 6,… photons),
the resources are equivalent to multiple (2, 3,…) trials.
Therefore, we obtain 15 types of detection events as
follows: (a) one-channel-click events, where only one
of the four channels clicks, A1, A2, B1, and B2;
(b) twofold coincidence events, where Alice and Bob both
have one of the two channels click, AiBjðθ̂Þ, i; j ∈ f1; 2g,
or Alice (Bob) has two clicks on her (his) side, A1A2 and
B1B2; (c) threefold coincidence events, where any
three of the four channels click, A1A2B1ðθ̂Þ, A1A2B2ðθ̂Þ,
A1B1B2ðθ̂Þ, A2B1B2ðθ̂Þ; and (d) fourfold coincidence
events, where all the four channels click, A1A2B1B2ðθ̂Þ.
We count k such events to complete the protocol, and each
detection event represents a recorded trial.
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Because one-channel-click events and two of the
twofold coincidence events, A1A2 and B1B2, do not yield
information about the global function θ̂, only the other nine
detection events can be used to estimate θ̂. By ignoring
the events of no-channel click, the quantity of useful
events equals the sum of the other nine types of events,
which is defined as Csumðθ̂Þ. Because the quantity of
threefold and fourfold coincidence events is usually very
low, we mainly consider the probabilities of two-photon
coincidence events. The probabilities of these four types
of double matches as a function of phase shift are given
by PðAiBjðθ̂ÞÞ ¼ CAiBj

ðθ̂Þ=Csumðθ̂Þ; i; j ∈ f1; 2g, where

CAiBj
ðθ̂Þ denotes the quantity of two-photon coincidence

events. In the experiment, the projective measurements are
performed in the σx basis, which can achieve the maximum
visibility for the interference fringe.
Figure 1 shows the experimental diagram from entangled

photon-pair emission to the detection process. The two
sensors are named Alice and Bob. The actual fiber distance

between the two sensors is 240 m (10 km after adding
the spools). The pump photons are injected into the
PPKTP crystal in a Sagnac loop. For the pump lasers
with a wavelength of 780 nm, a pulse width of 10 ns, and a
frequency of 4 MHz, the polarization-entangled photon
pairs are generated from the loop at 1560 nm. According to
the theory, we create the maximally polarization-entangled
two-photon state jϕi ¼ 1=

ffiffiffi
2

p ðjHVi − jVHiÞ. Then, the
photon pairs are sent through fibers to two sensors for
phase shifts and measurements. For Alice, one phase
parameter is introduced, injecting each photon into three
plates, i.e., quarter-wave plate (QWP), half-wave plate
(HWP), and quarter-wave plate, in sequence one time;
the phase shift is denoted as eiθA . While for Bob, there
is a loop, and each photon passes through the same plate
group two times; thus, the number of photon passes [12] is
two in each trial, and the phase shift is ei2θB . We implement

the entanglement state jϕ0i ¼ 1=
ffiffiffi
2

p ðjHVi − ei3θ̂jVHiÞ
with a linear function defined as θ̂ ¼ ðθA − 2θBÞ=3;

FIG. 1. Schematics of the experiment. (a) Bird’s-eye view of the experimental layout. Alice and Bob are on different sides of the
entanglement source, and the linear distance between Alice (Bob) and the source is 93� 1ð90� 1Þ m. (b) Creation of pairs of entangled
photons: By injecting a 1560-nm-wavelength laser into the periodically poled lithium niobate (PPLN) waveguide, the wavelength of
generated photons is up-converted to 780 nm. The pump photons of 780 nm are injected into the periodically poled potassium titanyl
phosphate (PPKTP) crystal in the Sagnac loop to generate polarization-entangled photon pairs of 1560-nm wavelength. Then, the
photons are sent by fibers in opposite directions to Alice and Bob for different phase shifts and measurements. (c) Realization
of different phase shifts: With the combination of QWP, HWP, and QWP, the phase shift is implemented between two optical axes. HWP
can be controlled by a quantum random number generator (QRNG) (see the main text for more details). (d) Single-photon polarization
measurement: Photons are projected into one of the σx bases and are then detected by superconducting nanowire single-photon detectors
(SNSPDs). The time-digital convertor (TDC) is applied to record the single-photon detection and random number generation events.
DM: dichroic mirror; RM: reflection mirror; PC: polarization controller; WDM: Wavelength Division Multiplexer.
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then, we perform the σx basis measurement using the
combination of HWP and polarizing beam splitter (PBS).
After performing the detection procedure using SNSPDs, a
TDC is used to record the single-photon detection events.
Both Alice and Bob have two channels after PBS, includ-
ing the reflected channel (ch1) and the transmitted
channel (ch2).
For a fair comparison with the SNL, we need to

accurately count the quantity of resources [9,28]. Owing
to the imperfect transmission and detection efficiency, the
actual number of photons (number of photons passing
phase shifts) is larger than the number of recorded photons.
Considering all the losses and imperfections, the actual
number of photons Ñi is related to the recorded number of
photons Ni by (see Appendix B for more details)

Ñi ¼
Ni

ηi
×
ð4þ μÞηi − 4ð2þ μÞ
2ð2þ μÞðηi − 2Þ ; ð2Þ

where i ∈ fA1; A2; B1; B2g. Because the ideal classical
scheme is assumed to be lossless and to use all photon
resources passing the phase shifts, it must be attributed to
the effective number of resources. In our distributed
multiphase quantum sensing with multipasses, the effective
number of resources is n ¼ ÑA1

þ ÑA2
þ 2ÑB1

þ 2ÑB2
.

The SNL can be achieved when Alice and Bob locally
estimate their phase shifts θA and θB, respectively. Because
the global function to be estimated is θA=3 − 2θB=3, the
optimal strategy is to send n=3 photons to Alice, and
Bob uses the rest of the (2n=3) photons to estimate θB
without multipassing. Therefore, the SNL is obtained byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
9
ð3=nÞ þ 4

9
ð3=2nÞ

q
, i.e., 1=

ffiffiffi
n

p
.

To realize the unconditional violation of SNL, we
develop an entangled photon source with high heralding
efficiency and high visibility. The beam waist of the pump
beam (780 nm) is set to 180 μm; then, the beam waist of the
created beam (1560 nm) is set to 85 μm, which optimizes
the efficiency of coupling 1560 nm entangled photons into
the single mode optical fiber, and the coupling efficiency is
approximately 92.3%. The transmission efficiency for
entangled photons passing through all optical elements
in the source is approximately 95.9%. In the Sagnac loop,
the clockwise and anticlockwise paths are highly over-
lapped, and we measure the visibility of the maximally
polarization-entangled two-photon state to be 98.11% with
mean photon number μ ¼ 0.0025 to suppress the multi-
photon effect (see Appendix C). Using the superconducting
nanowire single-photon detectors with high efficiencies of
more than 92.2%, we achieve an average overall heralding
efficiency of 73.88% (see Appendix D). To perform the
field test, we apply clock synchronization between the
source and sensors with a repetition rate of 100 kHz to
guarantee the procedure of distributed quantum sensing.
Because the outer environmental change leads to the

irregular vibration of fibers, the stability of the field-test
system is worse than that of the laboratory system. Thus,
before collecting data, we need to calibrate the system to
ensure that the photon polarization will not be affected by
fibers. In addition, we overcome the problem of efficiency
instability by tightly placing optical elements to reduce
the light path (especially for the loop in Bob) and increas-
ing the repetition rate to 4 MHz to shorten the data
collection time.

III. RESULTS

The experiment is implemented with different fiber
distances between sensors. First, we consider a distance
of 240 m. For each phase where θ̂ ∈ ½0; ð2π=3Þ�, there are
approximately 9,500,000 recorded trials being collected to
depict the interference fringes. The efficiencies of A1, A2,
B1, and B2 are 74.32%, 76.67%, 74.77%, and 69.74%,
respectively. As shown in Fig. 2(a), the interference fringe
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FIG. 2. Experimental results for a distance of 240 m. (a) Ex-
perimental interference fringes of four detection events
versus different phase shifts. The horizontal axis represents
θ̂ ¼ ðθA − 2θBÞ=3, θ̂ ∈ ½0; ð2π=3Þ�. (b) Experimental phase
standard deviation (purple line) per trial versus different phase
shifts. The shaded areas (blue narrow bands) correspond to the
99.7% confidence regions, which are calculated from the
uncertainty of the fit parameters. Orange dashed line: theoreti-
cal limit for SNL. Red dashed line: theoretical bound for HL.
The error bars of the standard deviations are discussed in the
main text.
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visibilities of A1B1, A1B2, A2B1, and A2B2 are 98.27%,
97.93%, 98.23%, and 97.74%, respectively. After adding
10-km spools between Alice and Bob, for each phase,
where θ̂ ∈ ½0; ð2π=3Þ�, we collect approximately 7,000,000
recorded trials to portray the interference fringes. The
efficiencies are 58.10%, 60.46%, 58.37%, and 52.84%,
and the interference fringe visibilities are 96.50%,
94.86%, 95.60%, and 96.48%, respectively, as shown in
Appendix F. Then, we can obtain the Fisher information F
corresponding to each θ̂ from the interference fringes. The
standard deviation of the estimate, δθ̂, is based on k̄ mea-
surement outcomes (k̄ trials). To experimentally acquire the
δθ̂, we repeat this k̄ measurement s times and obtain the
distribution of θ̂. For the distance of 240 m, s ¼ 1595, and
k̄ is approximately 6200 for each phase shift. For the
distance of 10 km, s ¼ 1579 and k̄ ≈ 4650. The exper-
imental Fisher information F and δθ̂ have the relationshipffiffiffiffi
F

p ¼ 1=ðδθ̂
ffiffiffī
k

p
Þ. The experimental error of δθ̂, Δðδðθ̂ÞÞ,

is well approximated by Δðδðθ̂ÞÞ ¼ δθ̂=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs − 1Þp

[34],
which is used for drawing the error bars. Given the
experimental device stability and substantial amount of
data, the mean photon number μ is set to 0.056 (0.072) for
240 m (10 km), and the lowest efficiency of 240 m exceeds
the threshold efficiency. Our results demonstrate a wide
range of violation of the SNL, and the system achieves the
phase precision of 0.916 dB below the corresponding SNL
for a distance of 240 m, where the precision is given as the
ratio of the standard deviations. In the meantime, we also
implement the unconditional violation of the SNL with the
linear function as θA=2 − θB=2, and we achieve a phase
precision of 0.326 dB below the corresponding SNL for a
distance of 240 m. Further experimental details are shown
in Appendix E.
To promote the pragmatic development of quantum

sensing and simulate the actual situation of irregular phase
transformation, we employ the quantum random number
generators (QRNG) for Alice and Bob to generate random
numbers in real time and introduce truly random phase
changes without any external controls. A TDC is used to
time-tag the random number signals of 200 kHz, which are
generated from local QRNG in real time. Then, the
generated random bits “0” and “1” are divided into a
group of 64 bits; next, they are converted into decimal
numbers, which control the rotating angles of HWP. We
collect six data points with different random phases, where
θ̂ ∈ ½0; ðπ=3Þ�, and accumulate approximately 7,500,000
trials per phase. Figure 3 shows the experimentally mea-
sured probabilities of the random events and their calibra-
tion probability curves from Appendix F. We repeat the
k̄ ≈ 4750measurement 1579 times and acquire the standard
deviations of the estimated phases, as listed in Table I. The
results cannot beat the SNL due to the efficiency problem.
It is possible, in the future, that the lowest efficiency of
10 km exceeds the threshold efficiency, so the random
phases could be precisely measured with the phase pre-
cision below the SNL, and the real pragmatic quantum
sensing network would be realized in the immediate future.

IV. CONCLUSION

In summary, we analyzed the efficiency requirement for
unconditionally beating the SNL in theory and demon-
strated the distributed multiphase quantum sensing with
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FIG. 3. Experimentally measured phase estimate of the random
detection events and phase standard deviations for a distance of
10 km. (a) Experimental measurement of the random detection
events, as shown by the markers. Lines represent the four
probabilities from Appendix F. (b) Experimental phase standard
deviation per trial of random detection events. Purple line:
expected phase standard deviation calculated from the Fisher
information from Appendix F. The shaded areas (blue bands)
correspond to the 99.7% confidence regions, which are calculated
from the uncertainty of the fit parameters. Orange dashed line:
theoretical limit for SNL. Red dashed line: theoretical bound for
HL. The error bars of the standard deviations are discussed in the
main text.

TABLE I. Standard deviation of phase estimation.

Estimated phase (rad) Standard deviation (×10−2)

1 0.768486 0.536� 0.010
2 0.547627 0.520� 0.009
3 0.462277 0.503� 0.009
4 0.440517 0.511� 0.009
5 0.267731 0.526� 0.009
6 0.427480 0.522� 0.009
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two remote sensors by considering the imperfections and
losses of the system, taking all the photons used into
account, and removing the post-selection of results. By
utilizing the entanglement of quantum resources and
appropriate measurements, the phase sensitivity, comparing
with the SNL, has been distinctly enhanced. Furthermore,
the random phases were measured with high accuracy. Our
work advances the development of the quantum sensing
network with more nodes and a larger scale. We anticipate
that this work will result in further improvements that will
transition the quantum sensing network towards practical
applications.
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APPENDIX A: THEORETICAL MODEL

In this Appendix, we derive the overall threshold
efficiency when a violation of the SNL can be observed.
Given the two separated sensors Alice (A) and Bob (B)
with two independent unknown phase shifts θA and θB,
the global function θ̂ to be estimated is aθA=cþ bθB=c,
where the parameters a, b, and c are integers, and
ja=cjþjb=cj¼1. The single state [1=

ffiffiffi
2

p ðjHVi − jVHiÞ]
after the evolution becomes 1=

ffiffiffi
2

p ðjHVi − eicθ̂jVHiÞ.
Theoretically, by implementing the σx basis measurements
for Alice and Bob, the one-channel-click events PA1

, PA2
,

PB1
, and PB2

do not yield information about the global
function. Therefore, we only need to consider the twofold
coincidence events, and the probabilities that can be
observed are PA1B1

¼ PA2B2
¼ η2ð1 − V cosðcθ̂ÞÞ=4 and

PA1B2
¼ PA2B1

¼ η2ð1þ V cosðcθ̂ÞÞ=4, where η is the her-
alding efficiency and V is the visibility of the interference
fringes observed in experiments. We count k such events
to complete the protocol, and each detection event repre-
sents a recorded trial. By normalizing the four probabilities,
the Fisher information of the global function θ̂ is
Fðθ̂Þ ¼ c2V2( sinðcθÞ)2=ð1 − V2( cosðcθÞ)2Þ ≤ c2V2.
Here, N0 denotes the number of total generated events, and
we have k ¼ N0η

2. The standard deviation of θ̂ can be

calculated as δðθ̂Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
kFðθ̂Þ

q
. Since the total number of

photons used is cN0, the SNL is obtained by
δSNLðθ̂Þ ¼ 1=

ffiffiffiffiffiffiffiffi
cN0

p
. To beat the SNL, we should have

δðθ̂Þ ≤ δSNLðθ̂Þ, which requires η ≥
ffiffiffi
c

p
=ðcVÞ.

In the first experiment (240 m), the parameters a=c and
b=c are set to 1=3 and −2=3, respectively, and the smallest

interference fringe visibility from the previous results is
Vmin ¼ 97.74%. To beat the SNL, the efficiency threshold
is η ≥

ffiffiffi
3

p
=ð3VminÞ ≈ 0.591.

APPENDIX B: ACCURATE STATISTICS
ON THE PHOTON RESOURCES

Given a SPDC source with a Poisson statistics,

PðnÞ ¼ μn

n!
e−μ; ðB1Þ

where PðnÞ denotes the probability of generating n pair of
photons, and μ is the mean photon number. Because of the
low mean photon number in the experiment, we estimate
the resources with one and two pairs of photons, and ignore
the higher-order (3, 4, 5,…) events. The ratio between Pð2Þ
and Pð1Þ is Pð2Þ=Pð1Þ ¼ μ=2. The number of photons
detected by each detector for Alice (Bob) is composed of
three parts: (a) one photon from one pair of photons goes to
the detector, and the probability is 1=ð1þ μ=2Þ; (b) two
photons from two pairs of photons go to the same detector,
and the probability is ðμ=4Þ=ð1þ μ=2Þ; (c) two photons
from two pairs of photons go to the different detector,
and the probability is ðμ=4Þ=ð1þ μ=2Þ. The actual number
of photons Ñi is related to the recorded number of photons
Ni by

Ñi ¼
Ni

ηi
×

1

1þ μ=2
þ Ni

1 − ð1 − ηiÞ2
×

μ=4
1þ μ=2

× 2

þ Ni

ηi
×

μ=4
1þ μ=2

¼ Ni

ηi
×
ð4þ μÞηi − 4ð2þ μÞ
2ð2þ μÞðηi − 2Þ ; ðB2Þ

where i ∈ fA1; A2; B1; B2g. Considering the multipasses,
the total number of photon resources used in the experiment
is n ¼ ÑA1

þ ÑA2
þ 2ÑB1

þ 2ÑB2
.

Given that the linear function θ̂ to be estimated is
aθA=cþ bθB=c, where the parameters a, b, and c are
integers, and ja=cj þ jb=cj ¼ 1, the total number of photon
resources used is n ¼ aÑA1

þ aÑA2
þ bÑB1

þ bÑB2
.

APPENDIX C: TOMOGRAPHY
OF QUANTUM STATE

In this experiment, we create the maximally polarization-
entangled two-photon state jϕi ¼ 1=

ffiffiffi
2

p ðjHVi − jVHiÞ.
The mean photon number is set as μ ¼ 0.0025 to suppress
the multiphoton effect in SPDC. The tomography meas-
urement is performed for the entangled state with a fidelity
of 98.58%, as shown in Fig. 4. We assume that the
imperfection originates from the multiphoton components,
imperfect optical elements, and imperfect spatial or spectral
mode matching.

SI-RAN ZHAO et al. PHYS. REV. X 11, 031009 (2021)

031009-6



APPENDIX D: DETERMINATION OF
SINGLE-PHOTON EFFICIENCY

The efficiencies are listed in Table II. The single-photon
heralding efficiency is defined as ηA1 ¼ C11=NB1,
ηB1 ¼ C11=NA1, ηA2 ¼ C22=NB2, ηB2 ¼ C22=NA2, where
C11 and C22 denote the two-photon coincidence events
about the reflected channels and transmitted channels,
respectively. Here, NA1 and NB1 represent the single-
photon events of reflected channels, and NA2 and NB2
represent the single-photon events of transmitted channels.
The heralding efficiency is listed in Table II, where ηsc

denotes the efficiency for entangled photons coupled
into the single mode optical fiber, ηso is the transmission
efficiency for entangled photons crossing over optical
elements in the source, ηfiber is the transmittance of a
120-m fiber between the source and sensor, ηm is the
efficiency for photons passing through the measurement
apparatus, and ηdet is the single-photon detector efficiency.
The heralding efficiency and the transmittance of individual
optical elements are listed in Table II, and the loss of a 5-km
fiber spool for Alice (Bob) is 1.05 dB (1.14 dB). Owing to
the diameter limitation of HWP and QWP, there is an

efficiency loss of approximately 4% for light-path clipping
in Bob’s loop.

APPENDIX E: EXPERIMENTAL RESULTS
OF 240 m

Besides the experiment with a linear function of
θA=3 − 2θB=3, we also realize the unconditional violation
of the SNL with a linear function as θA=2 − θB=2 for a
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FIG. 4. Tomography of the produced two-photon state. The real
and imaginary components are demonstrated in panels (a) and
(b), respectively.

TABLE II. Characterization of optical efficiencies in the experi-
ment.

Heralding
efficiency (η) ηsc ηso ηfiber ηm ηdet

Alice 1 74.32% 92.3% 95.9% 99.0% 91.0% 93.2%
Bob 1 74.77% 92.5% 95.9% 99.0% 87.5% 97.3%
Alice 2 76.67% 92.3% 95.9% 99.0% 91.6% 95.5%
Bob 2 69.74% 92.5% 95.9% 99.0% 86.1% 92.2%
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FIG. 5. Experimental results with a linear function of
θA=2 − θB=2 for a distance of 240 m. (a) Experimental interfer-
ence fringes of four detection events versus different phase shifts.
The horizontal axis represents θ̂ ¼ ðθA − θBÞ=2, θ̂ ∈ ½0; π�.
(b) Experimental phase standard deviation (purple line) per trial
versus different phase shifts. The shaded areas (blue narrow
bands) correspond to the 99.7% confidence regions, which are
calculated from the uncertainty of the fit parameters. Orange
dashed line: theoretical limit for SNL. Red dashed line: theo-
retical bound for HL. The error bars of the standard deviations are
discussed in the main text.
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distance of 240 m. For each phase where θ̂ ∈ ½0; π�, there
are approximately 11,000,000 recorded trials being col-
lected to depict the interference fringes. The efficiencies of
A1, A2, B1, and B2 are 75.25%, 80.33%, 81.91%, and
75.83%, respectively. As shown in Fig. 5(a), the interfer-
ence fringe visibilities of A1B1, A1B2, A2B1, and A2B2 are
97.66%, 98.47%, 98.02%, and 98.04%, respectively. To
experimentally acquire the standard deviation of the esti-
mate, δθ̂, we repeat the k̄ ≈ 6100 measurement with times
of s ¼ 1797, and obtain the distribution of θ̂. From the
relationship

ffiffiffiffi
F

p ¼ 1=ðδθ̂
ffiffiffī
k

p
Þ, we get the experimental

Fisher information F corresponding to each θ̂ from the
interference fringes. The system achieves a phase precision
of 0.326 dB below the corresponding SNL for a distance of
240 m, and the unconditional violation of the SNL is
implemented without multipasses for Alice and Bob. Here,
the mean photon number is set as μ ¼ 0.025, which leads to
longer data collection times and bigger error bars.
Different from the results in the main text, the total

number of photon resources used without multipasses
is n ¼ ÑA1

þ ÑA2
þ ÑB1

þ ÑB2
.

APPENDIX F: INTERFERENCE FRINGES
FOR A DISTANCE OF 10 km

The interference fringes for a distance of 10 km are
shown in Fig. 6.
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