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We show experimentally that a dc-biased Josephson junction in series with two microwave resonators
emits entangled beams of microwaves leaking out of the resonators. In the absence of a stationary phase
reference for characterizing the entanglement of the outgoing beams, we measure second-order coherence
functions to prove the entanglement. The experimental results are found in quantitative agreement with
theory, proving that the low-frequency noise of the dc bias is the main limitation for the coherence time of
the entangled beams. This agreement allows us to evaluate the entropy of entanglement of the resonators,
estimate the entanglement flux at their output, and to identify the improvements that could bring this device
closer to a useful bright source of entangled microwaves for quantum-technological applications.

DOI: 10.1103/PhysRevX.11.031008 Subject Areas: Mesoscopics, Quantum Physics,
Superconductivity

I. INTRODUCTION

Although the link between electrical transport and
emission of radiation has been understood since the
invention of electrical lamps, its complete description in
the context of quantum conductors requires a comprehen-
sive treatment of the conductor itself, of the charge
reservoirs connected to it, and of the electromagnetic
modes of the environment that sustain radiation. Despite
numerous achievements [1–7], a full understanding is still
missing in the general case. A voltage-biased Josephson
junction connected to a small number of modes originally
in the vacuum state provides a simple model system for this
physics. For a dc bias V smaller than the gap voltage 2Δ=e,
no quasiparticle excitation can absorb the energy 2 eV
provided by the biasing circuit upon the tunneling of a
Cooper pair. As a result, a dc current flows through the
junction only if this energy can be absorbed by creating
photons in the environmental modes [8–11]. Consequently,

the properties of the emitted light depend both on the
control voltage and on the coupling of the junction to the
modes, described by their impedance Re½ZðνÞ�. Previous
experiments have shown that shaping Re½ZðνÞ� by micro-
wave engineering allows for the creation of various non-
classical states of light [12–14] and have thereby led to the
emergence of the field of Josephson photonics. In the case
where the junction is coupled to two modes at frequencies
νa ≠ νb (see Fig. 1), setting the voltage bias such that
2 eV ¼ hνa þ hνb results in the emission of photon pairs,
with one photon created in each mode for each Cooper pair
tunneling. The experimental observation of this pair-emis-
sion mechanism demonstrated that the beams leaking out of
the two resonators have nonclassical population correla-
tions [13] but did not provide information on their quantum
phase correlations. Are the two microwave beams
entangled? If so, how dowe describe precisely and quantify
this entanglement? In order to characterize the precise
nature of the quantum correlations present in this unique
nonclassical two-beam source, we have built a new
measurement setup able to probe entanglement between
the output microwave beams.
The two resonator fields are coherently driven by the

Josephson junction. This driving is described by an
effective two-mode squeezing Hamiltonian, resulting in
nonlocal quadrature correlations of the emitted light which
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we evidence experimentally. However, in our experiment,
the absence of a well-defined microwave phase reference,
due to the dc bias noise and leading to thermal diffusion of
the squeezing angle [6], forbids the use of standard tech-
niques to reveal these correlations [15–22]. To demonstrate
entanglement in such a scenario without phase stability,
i.e., first-order coherence, we rely on the measurement of
second-order correlation functions following a detection
scheme inspired by Franson interferometry [23]. A simple
entanglement witness based on these correlators allows us
to prove the entanglement between the outgoing fields.

II. CIRCUIT MODEL AND PHOTON
CORRELATIONS

The model circuit implemented in this paper is presented
in Fig. 1: the series combination of a Josephson junction
with Josephson energy EJ, and of two resonators with
different frequencies νa;b but similar characteristic imped-
ances Za;b and energy leak rates κa;b ¼ 2πνa;b=Qa;b, is
biased by an ideal dc voltage source V. The voltages vx and
phases φx ¼ 2e=ℏ

R
vxdt across each passive dipole x obey

Kirchhoff’s law,

φJ þ φa þ φb ¼ φV¼ 2πνJt; ð1Þ

with νJ ¼ 2 eV=h the Josephson frequency.

Up to the zero-point energy of the resonators, the
resulting time-dependent Hamiltonian of the circuit reads

Ĥ ¼ hνan̂a þ hνbn̂b − EJ cosðφ̂a þ φ̂b − 2πνJtÞ: ð2Þ

Here n̂ξ ¼ ξ̂†ξ̂ and ξ̂ are the photon number and annihi-
lation operators of mode ξ ∈ fa; bg, and φ̂ξ ¼ ffiffiffiffiffi

αξ
p ðξ̂þ ξ̂†Þ

with αξ ¼ πZξð2eÞ2=h. The coupling constant αξ for the
interaction between the junction and mode ξ plays the same
role as the fine-structure constant in quantum electrody-
namics. The cosðφÞ term of Eq. (2) may be expanded
exactly, yielding an infinite series of terms oscillating at
νJ þmνa þ nνb with fm; ng ∈ Z2. The particular case of
interest in this work is the resonance condition
2 eV ≃ hνa þ hνb, for which the energy delivered by the
voltage source for each tunneling Cooper pair is entirely
converted into a pair of photons, one in each mode. Moving
to a frame rotating at frequency νa þ νb ¼ νJ − δ and
performing a rotating-wave approximation, for a detuning
δ small enough compared to νa, νb, we arrive at the
effective Hamiltonian,

ĤRWA ¼ B
2
∶
X∞
k;l

ð−1Þkþlðαan̂aÞkðαbn̂bÞl
k!l!ðkþ 1Þ!ðlþ 1Þ!

× e−2iπδtâ†b̂†∶þ H:c:; ð3Þ

in terms of the creation and annihilation operators, or
equivalently at

ĤRWA ¼ B
2
ðe−2iπδtâ†b̂†L̂aL̂b þ H:c:Þ: ð4Þ

Here, B ¼ E�
J

ffiffiffiffiffiffiffiffiffiffi
αaαb

p
, with E�

J ¼ EJe−ðαaþαbÞ=2 is a reduced
Josephson energy [14,24–29], the colons indicate normal

ordering, and L̂ξ ¼
P∞

k¼0 L
ð1Þ
k ðαξÞ=ðkþ 1Þjkihkj is a

diagonal operator in the Fock basis fjkig involving

the generalized Laguerre polynomials Lð1Þ
k . In the regime

αξ ≪ 1 of weak coupling to the modes, and of low
resonator populations αξhn̂ξi ≪ 1, the ðk; lÞ ≠ ð0; 0Þ terms
may be neglected in Eq. (3) and L̂ξ ≃ 1̂ in Eq. (4), so that
ĤRWA reduces to the two-mode squeezing Hamiltonian:

ĤTMS ¼
B
2
e−2iπδtâ†b̂† þ H:c: ð5Þ

The coherent driving term â†b̂† with absolute amplitude
B creates photon pairs in a and b and entangles the two
resonators. The corresponding fields leak out at rates κa;b,
which brings the resonators in a stationary state and form
two entangled beams of light centered on frequencies
≃νa þ δ=2 and ≃νb þ δ=2. A natural dimensionless driving
strength is thus β ¼ B=ℏ

ffiffiffiffiffiffiffiffiffi
κaκb

p
, proportional to EJ and not

to the amplitude of an ac drive as in usual two-mode

V

J

b

a

J

a a

b b

a

b

a b

FIG. 1. Principle of the experiment. A simple superconducting
circuit made of a Josephson junction (green cross, Josephson
energy EJ) in series with two microwave resonators (red and blue
LC circuits) having different frequencies νa;b, similar coupling
αa;b to the junction (see text), and similar energy leak rates κa;b, is
dc biased by a voltage source V. Phases φ entering the circuit
Hamiltonian are also indicated. At a particular voltage (indicated
at the bottom), each Cooper pair 2e passing through the junction
(green arrow) creates in a coherent way a pair of photons (vertical
red and blue wiggles) in the two resonators; entangled microwave
fields a and b grow in the resonators, as well as two stationary
entangled microwave beams aout and bout. By measuring corre-
lations between aoutðtÞ and boutðtÞ, we experimentally demon-
strate this effect.
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squeezers. An input-output model [6] allows us to relate the
properties of the outgoing fields âoutðνÞ; b̂outðν0Þ to β, κa;b,
and δ. The field quadratures at frequency ν in the a band are
found to be correlated with field quadratures at frequency
ν0 ¼ νJ − ν in the b band: a sum of properly chosen
quadratures of âoutðνÞ and b̂outðν0Þ displays fluctuations
below their value in the vacuum state. This two-mode
squeezing is predicted to be the largest at the maximum of
the emission spectral density.
Detection of such a squeezing is usually achieved by

filtering the aoutðνÞ and boutðν0Þ fields in narrow frequency
bands and correlating their quadratures after demodulation
[15–22]. In the ideal noiseless bias case, a nonzero expect-
ation value of the first-order correlation function (second
order in the fields) hâoutb̂outðtÞi ∝ e−2iπδt [where ξ̂outðtÞ ¼R
ξ̂outðνÞe2iπνtdν] reveals the correlations between âoutðνÞ

and b̂outðν0Þ. However, in our experiment we cannot
implement this protocol because of the thermal fluctuations
of the voltage bias, and consequently of δ, which blur
correlations between ν and ν0 faster than we can average
them. Instead, we resort to a measurement scheme analog
to the one originally developed by Franson [23]. We use the
particular second-order correlation function (fourth order in
the fields) hâ†outðtÞb̂†outðtÞâoutðtþ τÞb̂outðtþ τÞi in which
the unknown phase of âoutðtþ τÞb̂outðtþ τÞ is compen-
sated by the counterrotating phase of â†outðtÞb̂†outðtÞ. This
compensation is exact for time delays τ shorter than the
Josephson frequency jitter autocorrelation time. The cor-
relator averages to a finite value for such time delays and
makes it possible to define an entanglement witness for the
propagating fields. This concept for the detection of
entanglement is not limited to the present system and
can generally be applied to any system lacking phase
stability.
Starting from the theorem demonstrated in Ref. [30], we

developed an entanglement witness on the basis of the
Franson-type correlator: for any separable state of aout and
bout the following inequality holds,

jgð2Þϕ ðτÞj ≤ gð2Þab;symðτÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2Þab ðτÞ × gð2Þab ð−τÞ

q
; ð6Þ

where

gð2Þϕ ðτÞ ¼ hâ†outð0Þb̂†outð0ÞâoutðτÞb̂outðτÞi=D ð7Þ

and

gð2Þab ðτÞ ¼ hâ†outð0Þâoutð0Þb̂†outðτÞb̂outðτÞi=D; ð8Þ

with D ¼ κanaκbnb and nξ ¼ hn̂ξi. Measuring a violation
of inequality (6) is thus a sufficient condition for aout and

bout to be entangled. Both jgð2Þϕ ðτÞj and gð2Þab;symðτÞ initially
decay quickly on a scale set by the photon lifetime, which

determines for how long photons created by the same
tunneling event are observed. After this initial decay

gð2Þab;symðτÞ → 1 becomes constant, while the further decay

of jgð2Þϕ ðτÞj reflects how phase correlations between a and b
modes are scrambled by the low-frequency voltage noise.
This implies that the witness can prove entanglement of the
outgoing modes only if photons leave the resonator faster
than phase coherence is washed out. As previous experi-
ments [14] have shown that the dephasing time expected
from the voltage noise across the junction is in the
microseconds range in our experimental setup [31], we
design our resonator with energy decay times of a few
nanoseconds.
Note that the gð2Þab ðτÞ correlation function in Eq. (8) is

equal to the coherence function that was measured in
Ref. [13] in order to prove the nonclassical character of the
two emitted beams. In this previous experiment, the
correlations between the populations of the two modes
were found to be larger than possible in a classical wave
theory of light, indicating that light was indeed created as
pairs of quanta (photons). This result obtained from power
fluctuation measurements was, however, not enough to
prove entanglement, which requires measuring the phase
coherence of the two beams as in the present work.

III. EXPERIMENTAL SETUP

The implementation of our experiment is shown in
Fig. 2. The Josephson element is implemented as an
Al=AlOx=Al superconducting quantum interferometer
device [SQUID; see Fig. 2(b)] whose Josephson energy
can be tuned by a magnetic flux applied to its loop. Each
resonator at ∼5 and ∼7 GHz is made of three cascaded
niobium coplanar waveguide segments with different wave
impedances [see Fig. 2(a)], which allows reaching high
enough impedance of the modes. The sample is anchored at
the 15 mK cold stage of a dilution refrigerator and
connected [see Fig. 2(c)] to a low-temperature circuitry
similar to that described in Ref. [14]. A small current-
biased coil applies the tuning magnetic flux. The sample is
voltage biased through two commercial bias tees (black
rectangles) connected to a voltage divider fed by a room-
temperature voltage source and heavily filtered at 0.8 K and
15 mK. The two emitted beams are available at the
capacitive outputs A and B of the bias tees. They are then
routed through filters and isolators to a −3 dB hybrid
coupler that sends both of them to two nominally identical
amplification chains 1 and 2, each equipped with a high
electron mobility transistor (HEMT) amplifier. This
Hanbury-Brown–Twiss-like setup allows us to reject the
uncorrelated noise from the two chains 1 and 2, without
affecting the entanglement. Because the aout and bout field
components along 1 and 2 have well-separated frequencies,
they do not interfere and can be processed by the same
wideband HEMT.
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The room-temperature setup [see Fig. 2(c)] is designed
to measure cross-correlation functions of the signals
emitted in two frequency bands around νa and νb. Each
of the signal outputs 1 and 2 is further amplified and split
into the two original microwave components (red and blue),
which are then filtered and heterodyned to bring them in the
dc 600 MHz frequency range (magenta and cyan). The four
temporal signals (a1, b1, a2, b2) are finally digitized and
postprocessed in order to compute power spectral densities
(PSDs) and time-domain correlators. The effective acquis-
ition bandwidth of 525 MHz imposed by the whole
acquisition chain is chosen to be wide enough to capture

most of the short-time features of the correlators in
inequality (6), while limiting the noise window and
measurement times. A loss of measured entanglement is
thus to be expected from this filtering.

IV. RESULTS

The two resonances at νa ¼ 5.092 GHz and νb ¼
6.955 GHz as well as their quality factors Qa ¼ 60.8
and Qb ¼ 97.0 are first obtained in situ from the shot
noise at bias voltage above the superconducting gap [14].
They lead to similar energy leak rates κa ¼ 5.26 × 108 s−1

and κb ¼ 4.51 × 108 s−1. The resonator characteristic
impedances yield similar coupling factors αa ¼ 0.070
and αb ¼ 0.061.
The transfer functions of the four acquisition chains

(a1, b1, a2, b2) between points A or B and the digitizer in
Figs. 2(c) and 2(d) are then calibrated. These functions
shown in Figs. SM2(a) and SM2(b) of the Supplemental
Material (SM) [32] result from the filtering, attenuation,
gains, and partial reflections by the different components
all along the lines. They have globally the shape of a
bandpass filter with ∼3 dB ripples that will slightly distort
the measured time-domain correlators. We also measure the
real part of the impedance Re½ZðνÞ� seen by the Josephson
element [see Figs. 3(a) and 3(b)], which displays two
Lorentzian lines centered at νa and νb, slightly distorted by
the spurious reflections mentioned above.
We then measure the radiation emitted by each reso-

nator in single photon processes corresponding to the ac-
Josephson regime, that is when 2 eV ≃ hνa or 2 eV ≃ hνb,
with a low enough Josephson energy to ensure that
αξnξ ≪ 1, thus avoiding stimulated emission effects [13].
An example of the correspondingPSDs is shown inFigs. 3(a)
and 3(b). Both emission lines display aGaussian shapewith a
standard deviation of σ ¼ 3.3 MHz corresponding to a
hσ=2e ¼ 6.8 nV rms bias voltage noise. This σ value was
observed to decrease slowly in time as the experiment was
thermalizing, with sudden rises at each liquid helium transfer
in the cryostat. Complementary measurements allowed us to
attribute this noise mostly to a parasitic LCmode of the bias
tees around 70 kHz, expected to yield σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT=Cbias tee

p
.

The lowest observed value σ ¼ 2.6 MHz corresponds to a
20 mK temperature of the bias circuit, in reasonable agree-
ment with the 15 mK temperature of the fridge.
We then set the voltage to the targeted resonance

condition 2 eV ≃ hνa þ hνb, and observe the simultaneous
emission around νa and νb, for several driving strengths β
between 0.4 and 1. Figure 3(c) shows two examples of PSD
at β ¼ 0.631 and β ¼ 0.905. The identical shape of the two
peaks of the same pair, their common total power κana ¼
κbnb ¼ 180 and 450 Mphotons/s (yielding an average
resonator population n ¼ ffiffiffiffiffiffiffiffiffiffi

nanb
p ¼ 0.4 and 1.5), as well

as their larger width compared to the single photon
case 2 eV ≃ hνa;b, reflect the emission by photon-pair

(d)

(c)

(a) (b)

FIG. 2. Implementation of the experiment sketched in Fig. 1.
(a) Optical micrograph of the circuit on its silicon chip (see text).
The green arrow indicates the position of the SQUID. (b) Scan-
ning electron micrograph of the SQUID used as a tunable
Josephson element. (c) Schematic electrical circuit connecting
the chip at 15 mK (green SQUID and red and blue LC resonators)
to room temperature (see text). (d) Schematic room-temperature
setup for heterodyning and digitizing the outgoing fields. The red
and blue filters are ∼700 MHz wide and centered around νa and
νb, respectively. The microwave signals are then down-converted,
amplified, and low-pass filtered with a ∼600 MHz cutoff
frequency and then digitized, as shown by the magenta and
cyan symbols.
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production. In Sec. II of the SM we show that all the
measured PSDs are well reproduced by the analytical
expression computed from the pure two-mode squeezing
Hamiltonian (5) [32]. As shown by Fig. 3(d), we observe a
narrowing of the width of the emission spectra with
increasing β, as commonly observed in ac pumped
Josephson parametric amplifiers [19,21,33]. However,
contrarily to what occurs in these devices, the peak
emission frequencies do not shift with increasing pumping
strength [see Fig. 3(c)], provided that the dc voltage V
across the junction is kept constant (taking into account the
voltage drop across the 342 Ω output resistance of the
biasing circuit shown in Fig. 2). This is due to the absence
of Kerr and cross-Kerr nonlinearities in the normal-ordered

Hamiltonian (3) [32]. As shown by Fig. 3(e), fitting the
frequency width of the emitted radiation with the two-mode
squeezing expressions yields a pumping strength β in
quantitative agreement with the one deduced from a
determination of E�

J using the ac Josephson effect [32].

The second-order correlators gð2Þϕ ðτÞ and gð2Þab ðτÞ are
deduced from the measurements of several correlation
functions, as explained in the SM [32]. Figure 4(a) shows

the corresponding functions jgð2Þϕ j and gð2Þab;sym for six driving
strengths β ¼ 0.4, 0.51, 0.67, 0.75, 0.82, 0.9 (and inde-
pendently measured small detunings δ ¼ 6.7, 2.1, −12.1,
1.8, −11.1, and −11.6 MHz) leading to the average
resonator populations n ¼ 0.10, 0.2, 0.4, 0.7, 1, and 1.5,
respectively. These two correlators coincide at τ ¼ 0 as
expected from their definition. They both present an initial
rapid decay over a timescale set by n and the resonator’s

lifetime. The correlator gð2Þab;sym converges to 1 while jgð2Þϕ j
subsequently follows a slower Gaussian decay down to
zero, as expected from the low-frequency voltage noise
already mentioned. The experimental entanglement witness

jgð2Þϕ j − gð2Þab;sym > 0 at short time testifies that the two beams
at 5 and 7 GHz are entangled. When increasing β,
entanglement was detected up to n ¼ 5 (data not shown),
although full numerical simulations could not be performed
at such high occupation numbers (see Sec. V of SM [32]).

V. ENTANGLEMENT ANALYSIS

In order to probe our theoretical modeling of the system
dynamics and measurement schemes, we perform numeri-
cal quantum simulations of the dynamics of the circuit
using the parameters measured in the experiment. The
steady-state density matrix ρ of the two resonators is
obtained in the Fock state basis using the Lindblad master
equation [34] corresponding to Hamiltonian (3) and to the
relaxation superoperators

ffiffiffiffiffi
κa

p
â and

ffiffiffiffiffi
κb

p
b̂. This allows us

to check that the field departs negligibly from Gaussian
statistics up to 1 photon in each resonator. Then, using the
quantum regression theorem [35,36], we simulate the
dimensionless correlators hb̂†ðτÞâ†ð0Þâð0Þb̂ðτÞi=ðnanbÞ
and hâ†ð0Þb̂†ð0ÞâðτÞb̂ðτÞi=ðnanbÞ (see Sec. V of SM
[32]). Using the standard input-output theory [37], one
can show that these simulated intraresonator correlators are
actually equal to the expressions (7) and (8) for the
outgoing fields, immediately at the resonator outputs.

We thus plot in dashed lines the simulated jgð2Þϕ ðτÞj
functions in the panels of Fig. 4(a), and observe that they
are significantly above the measured ones at all times. This
is due to the already mentioned frequency filtering by the
lines, which has to be included in the simulations. As
explained in Sec. V of the SM, this can be done by

convoluting simulated four-time gð2Þϕ correlators with the
four transfer functions of the lines (in the time domain)

(a)

(c)

(d) (e)

(b)

FIG. 3. Characterization of the emission. (a),(b) In situ mea-
sured real part of the impedance across the Josephson element
(dashed lines, right-hand axis), and example of measured (dots)
and Gaussian-fitted (lines) power spectral densities (left-hand
axis) recorded separately around 2 eV ¼ hνa (a) and 2 eV ¼ hνb
(b) at small EJ yielding na ¼ 0.34 and nb ¼ 0.39, respectively.
The emission linewidth results from the voltage-noise-induced
distribution pðνJ ¼ 2 eV=hÞ of the Josephson frequency. The
corresponding standard deviation σ is the same for both lines but
drifts slowly back and forth over hours and days. (c) Same real
part of the impedance (dashed lines, right-hand axis) as in (a), and
examples of emitted power spectral densities (PSDs, left-hand
scales) measured at 2 eV ¼ hνa þ hνb and driving strengths β ¼
0.67 (open circles)and β ¼ 0.9 (solid dots) corresponding to
average photon numbers n ¼ 0.4 and n ¼ 1.5. (d) Measured
(symbols) reduced intraresonator amplitude (magenta, left-hand
scale) and emission width (dark cyan, right-hand scale) of the
PSDs of Fig. SM2 [32], compared to the corresponding analytical
expressions (lines) known for Hamiltonian (5). (e) Dimensionless
pumping strength fitted from the same PSD versus the
calibrated one.
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[32]. But because such a rigorous program would result in
much too long simulation times, we use a two-time correlator
approach by applying to all lines the same filtering function
chosen as the average of the four symmetrized transfer
functions [see Figs. SM2(a) and SM2(b) [32] ]. We now

obtain the dotted lines jgð2Þϕ;filterðτÞj, which are in good
agreement with the experiment at short time, but do not
decay to zero at long times. Finally, we also account for the
low-frequency voltage fluctuations: we model them as a
purely static δ noise with Gaussian distribution and standard

deviation σ, and compute the weighted average of gð2Þϕ;filterðτÞ
over δ. To a very good approximation, this averaging simply

multiplies the simulated value by exp½−2ðπστÞ2�. As σ
was observed to vary slowly in time, we use it as the only

fitting parameter to fit each experimental gð2Þϕ ðτÞ. The fits
shown in Fig. 4(a) are now satisfactory at all times and yield
σ ¼ 2.57, 2.61, 2.40, 4.98, 3.10, and 3.64 MHz (in order of
increasing β or n). This good agreement validates our model
of voltage-noise-induced slow dephasing: on a timescale
shorter than τbias tee ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lbias teeCbias tee

p ¼ 2.3 μs, the pump
frequency can be considered as fixed and the junction creates
a standard two-mode squeezed state in the resonators.

VI. LOG NEGATIVITY AND
ENTANGLEMENT WITNESS

The amount of entanglement between two subsystems a
and b can be quantified by their log negativity [38],

EN ¼ log2ðjjρTb jj1Þ; ð9Þ

where ρTb is the partial transpose of the density operator ρ
of the total system with respect to subsystem b, and jj:jj1 is
the trace norm. It is an upper bound on the number of
entangled bits (ebits) that can be distilled from the system.
This quantity is directly available from our numerical
simulations of the intraresonator fields. It is plotted as a
function of n in Fig. 4(b): EN increases rapidly to a very flat
maximum of about 0.8 ebits between n ¼ 1 and 2 photons.
In the case of a two-mode squeezed Gaussian state of a

and b, EN can be linked to observable quantities through

EN ¼ log2½1þ na þ nb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna − nbÞ2 þ 4jhabij2

q
�: ð10Þ

We first checked that in our simulations using the full
Hamiltonian Eq. (3), the values of EN computed using
Eq. (10) agreed with the one computed using Eq. (9) with
minute deviations. This allows us to deduce EN from the

gð2Þϕ ðτÞ function measured on the outgoing fields. For a
noiseless voltage bias, the correlator in Eq. (10) is given by

jhâoutb̂outij2 ¼ κaκbjhâ b̂ij2 ¼ nanbg
ð2Þ
ϕ ðτ → ∞Þ. Although

the measured gð2Þϕ ðτ → ∞Þ vanishes due to quasistatic
noise, we can retrieve its corresponding noiseless values
by dividing it by the Gaussian envelopes fitted above (see
SM Sec. III [32]). The corresponding apparent log neg-
ativities [shown as error bars in Fig. 4(b)] are 40% below
the theoretical estimate (blue dashed line). This discrepancy
is again due to the filtering by the lines, which cuts out part
of the quantum correlations, and makes our measured
apparent log negativity only a lower bound of EN . This
is confirmed by simulations of hâoutb̂outi taking into
account the measured filtering, which yields the ENðnÞ
curve shown by the black solid line, in better overall
agreement with the measurements. However, the two points
at 1 and 1.5 photons are markedly below our prediction,
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FIG. 4. Demonstration of entanglement. (a) Measured (dots)
and simulated (solid lines) two-times fourth order in field
correlators gð2Þab;sym and gð2Þϕ (see text) as a function of delay τ,
for different Josephson energies leading to the indicated pop-
ulation n. Dashed and dotted lines correspond to simulations
without voltage noise and with (dotted) and without (dashed)
filtering by the measuring lines. (b) log2 negativity of the
intraresonator fields as a function of population n. Exact value
obtained directly from the numerically simulated density matrix
of the system (dashed line), and experimental (error bars) and
simulated (solid line) lower bound value corresponding to the
filtering by the measuring lines (see text).
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which we attribute to a stronger coupling of the Josephson
junction to its low-frequency environment. Indeed, when
the detuning δ is positive (negative), the dc differential
conductance of the junction happens to be negative
(positive), which amplifies (cools down) the low-frequency
noise of its environment. At positive detuning (and even
zero detuning in the presence of large voltage fluctuations),
the amplifying effect makes the system unstable and
hysteretic, especially at large drive amplitude β. To avoid
this instability, we actually applied slightly negative detun-
ings to measure the points at n ¼ 1 and n ¼ 1.5. The
junction then cools down the low-frequency environment
[39], converting its energy to the much higher frequencies
νa;b, and degrading the detected entanglement. A system-
atic and quantitative investigation of this effect goes beyond
the scope of the present work, and is left for further
investigations.
Although a quantitative account could be reached for the

entanglement witness probed, the absence of a stable phase
reference for the two-mode squeezing does not allow us to
measure sufficiently rapidly the entanglement entropy of
each pair of outgoing modes ðν; ν0 ¼ νJ − νÞ [40]. It is
nevertheless interesting to estimate the instantaneous flux
of entanglement entropy, during microsecond-long stability
periods. We use for this purpose the two-mode squeezing
Hamiltonian model (5) that yielded emission [see Figs. 3(d)
and 3(e)] and entanglement properties (see Fig. 4) in
agreement with the experimental data. As described in
the SM [32], we calculate the entanglement spectral density
ENðνÞ defined in Ref. [40] or the related density of entropy
of formation EFðνÞ [41], and integrate it over the emission
bandwidth Δν. This procedure yields total entanglement
fluxes ΓNðνÞ and ΓFðνÞ at the outputs of the resonators
reaching up to about 115 and 103 Mebit/s, respectively.
However, we stress here that this appealing figure of merit
compared to the one achieved with Josephson parametric
amplifiers or converters [19,22,42] is only an estimate.
Because of the diffusion of the squeezing angle, it is
moreover not directly exploitable for encoding quantum
information in continuous variables using presently known
protocols. A possible way to directly detect the entangle-
ment between the ðν; ν0Þ outgoing modes would be to
incorporate an additional Josephson junction sharing the
same dc bias and to use its Josephson radiation as a phase
reference.

VII. DISCUSSION

We now discuss the advantages and limitations of our
circuit and its potential developments. We first stress
that our dc-biased circuit does not suffer from the Kerr
nonlinearities governing the saturation of ac-pumped
Josephson parametric amplifiers and converters [19,
21,33]. The nonlinearity of Hamiltonian (3) is of a different
nature and is always easy to push to higher photon

numbers, allowing for a higher entanglement brightness:
in our experiment, the Gaussian character of the emitted
light was ensured up to only 1–1.5 photons in the
resonators (αξnξ ≪ 1), but lowering by a factor 10 the
impedance of the two-modes (and consequently of the
couplings αa;b), while increasing the Josephson energy EJ
by the same factor, one could make our entangled micro-
wave source 10 times brighter. Conversely, coupling a dc-
biased Josephson junction to several high impedance
resonators such as the one described in Ref. [14] would
generate highly non-Gaussian entangled beams of photons
[43], and combining a high and a low impedance mode has
been predicted to stabilize a Fock state of the high
impedance mode with a mere dc bias using the two photons
processes exploited in this paper [44]. Using Josephson
junctions based on superconductors with larger energy gaps
(like NbN) [12] should allow one to observe the entangle-
ment evidenced here up to terahertz frequencies. Then,
transforming our circuit into a source of entangled beams
useful for continuous variables protocols requires main-
taining the stability of the squeezed two-mode quadrature
over long enough times. This implies a significant reduc-
tion of the noise on the bias voltage V, which could be done
on chip using a Shapiro voltage step of an additional
Josephson junction. Last, we note that our device can be
useful for phase-insensitive applications, such as two-
photon light sources for quantum illumination [45].
In a broader picture, it is worth noting that the entangle-

ment of the outgoing modes originates from successive
two-photon emission processes associated to Cooper pair
tunneling between superconducting condensates with a
controlled superconducting phase difference. The proper-
ties of the radiation emitted by an out-of-equilibrium
quantum conductor arise from charge quantization and
from the quantum correlations of its electronic reservoirs.
The present work is thus a prime example of the emerging
field of mesoscopic quantum electrodynamics of coherent
conductors where numerous interesting phenomena were
already recently predicted and demonstrated for producing
e.g., sub-Poissonian photon sources [12,14,46–50], novel
types of lasers [51–54], near-quantum-limited amplifiers
[55,56], squeezed radiation [2,3,5,57], or new types of
qubits [58], or two-photon losses [59].
As a conclusion, by measuring an entanglement witness,

we have shown that when combined with a purely classical
voltage source, a simple Josephson junction in series with
two resonators can emit two continuous entangled micro-
wave beams at different frequencies. We extracted a lower
bound on the value of the logarithmic negativity of the two
resonator fields, and showed that our experiment imple-
ments a simple and bright source of entangled microwave
light beams. This new method for the detection of two-
mode entanglement in the absence of a known phase
reference could be adapted to probe other quantum systems
lacking first-order coherence.

GENERATING TWO CONTINUOUS ENTANGLED MICROWAVE … PHYS. REV. X 11, 031008 (2021)

031008-7



ACKNOWLEDGMENTS

We gratefully acknowledge stimulating discussions with
C. Padurariu, S. Wölk, A. Aspect, E. Flurin, F. Grosshans,
and N. Treps, and technical help from P. Jacques. This work
received funding from the European Research Council
under the European Union’s Program for Research and
Innovation (Horizon 2020)/ERC Grant Agreement
No. 639039. We gratefully acknowledge partial support
from LabEx PALM (ANR-10-LABX-0039-PALM), ANR
contract GEARED (ANR-14-CE26-0018-01) and SIM-
CIRCUIT (ANR-18-CE47-0014-01), from the ANR-
DFG Grant JosephCharli, and from the ERC through the
NSECPROBE grant, from IQST and the German Science
Foundation (DFG) through AN336/11-1. S. D. acknowl-
edges financial support by the Carl Zeiss Foundation and
the German Academic Exchange Service (DAAD).

It is with the deepest sorrow and gratitude that we
acknowledge especially the inspiration for, and contribu-
tion to, this work from its principal investigator and our
friend, Fabien Portier. His untimely passing in December,
2020, at the age of 45 is a big loss to the mesoscopic
physics community.

[1] A. Cottet, T. Kontos, and B. Douçot, Electron-Photon
Coupling in Mesoscopic Quantum Electrodynamics, Phys.
Rev. B 91, 205417 (2015).

[2] O. Dmytruk, M. Trif, C. Mora, and P. Simon, Out-of-
Equilibrium Quantum Dot Coupled to a Microwave Cavity,
Phys. Rev. B 93, 075425 (2016).

[3] C. Mora, C. Altimiras, P. Joyez, and F. Portier, Quantum
Properties of the Radiation Emitted by a Conductor in the
Coulomb Blockade Regime, Phys. Rev. B 95, 125311
(2017).

[4] C. Altimiras, F. Portier, and P. Joyez, Interacting Electro-
dynamics of Short Coherent Conductors in Quantum
Circuits, Phys. Rev. X 6, 031002 (2016).

[5] A. L. Grimsmo, F. Qassemi, B. Reulet, and A. Blais,
Quantum Optics Theory of Electronic Noise in Coherent
Conductors, Phys. Rev. Lett. 116, 043602 (2016).

[6] J. Leppäkangas, G. Johansson, M. Marthaler, and M.
Fogelström, Input-Output Description of Microwave
Radiation in the Dynamical Coulomb Blockade, New J.
Phys. 16, 015015 (2014).

[7] J. Leppäkangas, G. Johansson, M. Marthaler, and M.
Fogelström, Nonclassical Photon Pair Production in a
Voltage-Biased Josephson Junction, Phys. Rev. Lett. 110,
267004 (2013).

[8] D. V. Averin, Yu. V. Nazarov, and A. A. Odintsov, Incoher-
ent tunneling of the cooper pairs and magnetic flux quanta
in ultrasmall Josephson junctions, Physica (Amsterdam)
165–166B, 945 (1990).

[9] G.-L. Ingold and Y. V. Nazarov, Charge Tunneling Rates in
Ultrasmall Junctions, in Single Charge Tunneling, edited by
H. Grabert and M. H. Devoret (Plenum, New York, 1992).

[10] T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Effect of
a Transmission Line Resonator on a Small Capacitance
Tunnel Junction, Phys. Rev. Lett. 73, 3455 (1994).

[11] M. Hofheinz, F. Portier, Q. Baudouin, P. Joyez, D. Vion, P.
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