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The Raman effect, inelastic scattering of light by lattice vibrations (phonons), produces an optical
response closely tied to a material’s crystal structure. Here we show that resonant optical excitation of IR
and Raman phonons gives rise to a Raman-scattering effect that can induce giant shifts to the refractive
index and induce new optical constants that are forbidden in the equilibrium crystal structure. We complete
the description of light-matter interactions mediated by coupled IR and Raman phonons in crystalline
insulators—currently the focus of numerous experiments aiming to dynamically control material properties
—by including a forgotten pathway through the nonlinear lattice polarizability. Our work expands the
toolset for control and development of new optical technologies by revealing that the absorption of light
within the terahertz gap can enable control of optical properties of materials over a broad frequency range.
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I. INTRODUCTION

The Raman effect arises from the inelastic scattering
of light by phonons in crystals or vibrations in molecules.
The simplest theories describing the effect assume that the
optical polarizability—that is, the general frequency-
dependent polarizability of a crystalline material—is pre-
dominantly electronic in origin [1,2], and that it is a
function only of the displacements of so-called Raman-
active phonon modes. However, Herzberg [3] and Raman
[4] noted over 70 years ago that when infrared (IR)-active
vibrational modes are driven to large amplitudes, nonlinear
coupling between infrared- and Raman-active modes alters
the optical polarizability. The relevant terms are complex
and were difficult or impossible to verify and explore using
the methods available at the time [5–14].
The Raman effect has widespread scientific importance

because it produces a basic optical response that is closely
tied to a material’s crystal structure. Raman spectroscopy
exploits this tie and is an essential tool for understanding
crystal symmetry, structure, and defects. For this reason,
the effect predicted by Herzberg and Raman noted above—
changes to optical polarizability induced as a result of
strongly driven IR vibrational modes—invites exploration
as a potential tool for materials probing or control and, from

an optics community perspective, also as a route to uncover
new ways to control optical properties through the inter-
action of laser light with material structure. The recent
development of bright midinfrared and THz sources
capable of resonantly exciting collective modes in crystals
has created new opportunities for exploring such novel
optical phenomena [15–17].
In this work, we show that resonant optical excitation of

IR phonons strongly contributes to the optical polarizability
via a Raman-scattering mechanism mediated by the dis-
placements of IR phonons and that such excitations can
be exploited to significantly modify a material’s optical
properties, including inducing new optical constants that
are forbidden in the equilibrium crystal structure. This
mechanism, which we refer to as infrared-resonant Raman
scattering (IRRS), differs from the conventional Raman
effect, in which typically only changes in the electronic
polarizability due to displacements of Raman phonons are
considered. In contrast, IRRS involves the inelastic scatter-
ing of light and subsequent changes in the optical polar-
izability due to both changes in the electronic polarizability
and ionic polarizability due to Raman and IR phonon
displacements. Additionally, IRRS is distinct from the ionic
Raman-scattering mechanism, which indirectly produces
an optical response through the coupling of phonons by the
anharmonic lattice potential, rather than directly through
the nonlinear lattice polarizability. IRRS has a broad and
distinct frequency response, which we find is orders of
magnitude larger than ionic Raman scattering in an
archetypal perovskite due to its direct nature.
Our work is significant in two general respects. First,

selective optical pumping of IR phonons by frequency and
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field polarization direction can lead to control of the tensor
components of the electric susceptibility, enabling control of
effective linear and nonlinear optical responses of the
material. This control of the linear and nonlinear optical
response can enable enhancement or suppression of funda-
mental optical properties such as absorption, birefringence,
and electro-optic coefficient. Such control may aid the
development of ultrafast optical technologies including
optical switches, amplitude and phase modulators, and
quantum optical logic gates. Second, we predict that the
IRRS mechanism contributes to unidirectional displacement
of Raman phonons and therefore changes of crystalline
symmetry, giving rise to opportunities for ultrafast control of
functional properties of crystalline materials tied to sym-
metry. Thus IRRS provides a pathway to ultrafast optical
control of material symmetry and properties that is comple-
mentary to the so-called nonlinear phononics effect of
phononic rectification, which has been the focus of much
recent work for its ability to tune superconducting properties
[18–21] and magnetic order [22–25] in perovskites by
intense laser pumping of an IR phonon.
To illustrate IRRS, we develop a semiclassical perturba-

tion method approach in order to derive two-laser fre-
quency contributions to the dielectric function from
nonlinear contributions to the optical polarizability due
to IR phonon displacements and IR-Raman phonon cou-
pling. We further employ first-principles computational
techniques (density-functional theory) to investigate the
effect in SrTiO3, an archetypal insulating perovskite [26]
that has received recent attention in nonlinear phononics
studies [27,28]. We find that the IRRS effect can be
measured using a two-laser optical experiment where
one laser is tuned to resonantly excite an IR-active phonon.
In addition to resonant enhancement of Stokes and anti-
Stokes Raman peaks through IRRS, broad optical suscep-
tibility changes are predicted that extend far above and
below the IR phonon resonance. Furthermore, these
changes are polarization direction dependent and can result
in modification of the number of optical axes and their
directions. Additionally, we find that the mechanism
responsible for IRRS induces unidirectional displacement
of Raman-active phonons. IRRS therefore presents an
alternative pathway to the nonlinear phononics mechanism
for quasistatic optical control of crystalline structure and
properties.
In the following pages, we develop a theory of IRRS as

follows: (1) We define a potential for describing a cen-
trosymmetric crystalline lattice driven to large phonon
mode displacements by IR light including the lowest-order
nonlinear term in the lattice polarizability, which gives
rise to IRRS. (2) We summarize the dependence of the
linear electric susceptibility tensor on Raman phonon
mode displacements and related symmetry considerations.
The purpose of this section is to understand how basic
optical properties and symmetries can be modified through

control of specific Raman modes. (3) We employ a
perturbation method approach to derive a third-order
polarization and a Raman-scattering susceptibility that
capture the IRRS effect. These quantities may be used
to explore the intensity-dependent modification of the
linear susceptibility tensor for a second laser as a result
of resonant or near-resonant IR pumping by a first laser.
(4) We employ first-principles computational techniques
for the perovskite SrTiO3 to investigate the physical
mechanism of IRRS and opportunities for ultrafast material
optical property control.

II. SYMMETRY CONSIDERATIONS

A. The lattice potential

We start by expanding the lattice energy for the simpler
case of a centrosymmetric crystal, in which IR and Raman
modes have different symmetry (in noncentrosymmetric
crystals, some phonons are both IR and Raman active; this
lack of distinction between IR and Raman phonons leads
to additional terms in the nonlinear polarizability and
anharmonic potential, which we do not consider here).
The lattice energy U for the process we consider is then
defined as

Ulattice ¼
1

2
KIRQ2

IR þ 1

2
KRQ2

R

− BQ2
IRQR − ΔP⃗lattice · E⃗ðtÞ; ð1Þ

where Kσ ¼ Mσω
2
σðσ ¼ IR; RÞ is the effective spring con-

stant of the IR and Raman phonons, respectively. Qσ is the
real-space eigendisplacement of the phonon mode found
by solvingMω2

σQσ ¼ KQσ , whereM is the mass matrix, K
the force constant matrix at zero crystal momentum, and ωσ

is the corresponding phonon frequency. In addition to the
harmonic energy associated with the IR and Raman
phonons, we include an anharmonic potential term that
has been the focus of recent works on nonlinear phononics
[16,29,30]. The last term contains the polarization change
in the crystal ΔP⃗ due to optical excitation (E⃗).
There are both lattice and electronic contributions to ΔP⃗.

The lattice contribution to the polarization typically takes
the form Z̃�QIR, where Z̃� is the mode-effective charge
induced by the displacement of the IR phonon [31].
Expanding ΔP⃗lattice to second order in phonon amplitude
for a centrosymmetric crystal, we find

ΔP⃗lattice ¼ Z̃�QIR þ bQRQIR: ð2Þ

QIR induces a dipole to which an electric field can be
coupled directly. To preserve the dipole character of ΔP⃗,
QR must transform as either a monopole or a quadrupole.
Since the product of a dipole (QIR) and a monopole or
quadrupole (QR) includes a dipole component, it follows
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that bQRQIR is allowed in centrosymmetric crystals. Both
terms of Eq. (2) are illustrated in Figs. 1(a) and 1(b). The
schematic shows that the first term Z̃�QIR is produced by
relative displacements of nuclei through the IR phonon
[31]. Displacements of Raman phonons can change how
the lattice polarizes through QIR, and this is captured
through the nonlinear contribution bQRQIR. The math-
ematical interpretation of this statement is that b can be
understood as the change in the mode-effective charge (Z̃�)
with respect to the Raman phonon. We note that the
nonlinear lattice polarization bQRQIR is, in general, a
wave-vector-dependent quantity so that bQIRQR →
bðq⃗1 − q⃗2ÞQ1ðq⃗1ÞQ2ð−q⃗2Þ, where we assume discrete
translational symmetry in a crystal [32]. Since light cannot
impart significant momentum on IR phonons, q⃗1 ≈ 0⃗. It
follows that q⃗2 ¼ 0⃗.
Previous experimental and theoretical works on the

nonlinear phononics mechanism have focused on the
anharmonic lattice potential (BQ2

IRQR) and not nonlinear
changes to the polarizability (bQRQIR) [16,29,30]. In one
recent exception, a nonlinear contribution to the polar-
izability ΔP⃗NL ∝ Q3

IR was included in order to describe the
optical changes in the reststrahlen band of SiC when IR
phonons were excited to large amplitude [33]. As we show
below, including the lowest-order nonlinear contribution to
the polarizability [Eq. (2)] is critical to understanding the

optical response of a crystalline material in the mid- or far
infrared when IR phonons are strongly excited.

B. The optical susceptibility

To lowest order in a perturbative expansion of the
polarizability in the electric field amplitude, the response
of a crystalline material to light is captured by its fre-
quency- and wave-vector-dependent linear susceptibility
χð1Þðω; kÞ, which connects the electric field of light to

the induced polarization Pα ¼ χð1Þαβ Eβ, where α and β are
Cartesian directions. For frequencies within the electronic
gap of a centrosymmetric material, the susceptibility is
dominated by the frequency-dependent electronic polar-

izability. χð1Þαβ ðωÞ is a second-rank polar tensor, which is a
function of the amplitudes of particular lattice vibrations. In

general, χð1Þαβ ðωÞ can be decomposed into spherically
irreducible components (we use the notation of Ref. [34]),

χð1Þαβ ðωÞ ¼ χðMÞ 1
3
δαβ þ ϵαβγχ

ðDÞ
γ þ χðQÞ

αβ ; ð3Þ

where δ is the Kronecker delta, ϵ is a Levi-Civita symbol,

and χðMÞ are the scalar (monopole), χðDÞ
γ the vector (dipole),

and χðQÞ
αβ the deviator (quadrupole) contributions to the

susceptibility:

χðMÞ ¼ χð1Þαα ðωÞ; ð4Þ

χðDÞ
γ0 ¼ 1

2
ϵαβγ0χ

ð1Þ
αβ ðωÞ; ð5Þ

χðQÞ
αβ ¼ 1

2
½χð1Þαβ ðωÞ þ χð1Þβα ðωÞ� − χðMÞ 1

3
δαβ: ð6Þ

Note, it is important to remember that while these irre-
ducible components will always have the symmetry of
the stated multipoles, the actual multipoles contributing to
each can and usually are of higher order in the reduced
(compared with free space) symmetry of a material’s crystal
field [35].
In this work, we are considering systems that have

ground states that are centrosymmetric and time-reversal
invariant (that is, nonmagnetic and/or in zero-applied
magnetic field). In such cases, Onsager’s reciprocity
relation dictates that χð1Þαβ ðωÞ ¼ χð1Þβα ðωÞ. It follows that

the antisymmetric tensor χðDÞ
γ0 vanishes by symmetry. In

that case, the susceptibility is totally symmetric χð1Þαβ ðωÞ ¼
χðMÞ 1

3
δαβ þ χðQÞ

αβ , and the 1þ 5 independent components of

χð1Þαβ ðωÞ are written explicitly as

FIG. 1. Contributions to ΔP⃗ in centrosymmetric crystals. (a) In
an electric field, relative displacements of cations (blue) and
anions (green) contribute to the lattice (ionic) polarizability. The
lattice polarizability is responsible for the dominant features of
the low-frequency dielectric response in the mid- and far infrared.
(b) Displacement of Raman phonons (shown, for example, as a
distortion of the octahedral oxygen environment) alters the
strength, and possibly direction, of the lattice polarizability.
(c) A cloud of electrons bound to a nucleus displaces in response
to an electric field. This electronic polarizability is responsible for
the high-frequency dielectric response. (d) Displacement of
Raman phonons alters the electronic polarizability. This is the
conventional Raman effect. A single atom is shown, although
collective motion of Raman phonons is necessary for this
effect.
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The crystallographic symmetry of a particular material
imposes additional constraints that dictate which elements

are zero or nonzero and how many components of χð1Þαβ ðωÞ
are independent.

C. The Raman tensor

Now considering the Raman effect, we express the
polarizability as a function of the amplitude Qi of the
lattice displacements associated with a particular phonon
mode,

Pα ≈
�
χð1Þ0;αβðωÞ þQi

∂χð1Þ
∂Qi

����
Qi→0

�
E; ð8Þ

where χð1Þ0;αβðωÞ is the susceptibility of the undistorted
crystal, and the second term describes the Raman effect.
Note that Qið∂χð1Þ=∂QiÞjQi→0 is constrained by the same

symmetry as χð1Þ0;αβðωÞ. This constraint results in two distinct
situations: (1) Qi transforms as a monopole, and therefore,
ð∂χð1Þ=∂QiÞjQi→0 has the same nonzero elements as

χð1Þ0;αβðωÞ. In this case, the modulation of the nonlinear
susceptibility can affect only the relative size of each term

in χð1Þ0 , but not induce new components. (2) Qi transforms
as a quadrupole, and therefore, ð∂χð1Þ=∂QiÞjQi→0 has new

nonzero elements when compared to χð1Þ0;αβðωÞ. In this case,
new optical constants are induced by displacing Qi.
In both of these cases, Qi is called a Raman-active

phonon, and hence, we refer to the process described
above as the infrared-resonant Raman effect. In terms of
Eq. (3), displacing a monopolar Raman phonon alters

nonzero elements of χðMÞ
αβ and χðQÞ

αβ that already exist in
the equilibrium structure. A quadrupolar Raman phonon
lowers the symmetry of the crystal when displaced. As a
result, the new induced optical constants—constrained by

symmetry to be zero at equilibrium—are described by χðQÞ
αβ .

We use SrTiO3 as a test material in this study. At
temperatures below 105 K, SrTiO3 is a tetragonal crystal
[36] with space-group symmetry I4=mcm (#140—D4h
point group). SrTiO3 therefore has only two distinct non-

zero optical constants, χð1Þ0;xx ¼ χð1Þ0;yy ≠ χð1Þ0;zz. The primitive
unit cell contains ten atoms and therefore has 30 phonons at
the Γ point that transform as

Γ ¼ Γþ
1 ðA1gÞ þ Γþ

2 ðB1gÞ þ 2Γþ
4 ðB2gÞ þ 3Γþ

5 ðEgÞ
þ 4Γ−

3 ðA2uÞ þ 6Γ−
5 ðEuÞ þ 2Γþ

3 ðA2gÞ
þ Γ−

1 ðA1uÞ þ Γ−
2 ðB1uÞ;

where the first two lines describe the symmetries of the
Raman-active phonons, the third line shows the symmetries
of the IR-active phonons (which include acoustic modes),
and the fourth and fifth lines are, respectively, even- and
odd-symmetry silent phonons. The Γþ

1 ðA1gÞ phonon is the
only monopolar Raman phonon. Displacing this phonon
preserves the crystal symmetry and the number of optical

constants. However, the relative size of each term in χð1Þ0

may change, as we explain above. The remaining Raman-
active phonons induce quadrupoles, and therefore, new
optical constants. As an example, consider the two Γþ

4 ðB2gÞ
Raman phonons, which transform like xy. Displacing either
one of these quadrupolar phonons introduces new optical
constants χxy ¼ χyx, which induces, for example, a crystal
polarization field along the y direction when the crystal is
illuminated with light polarized along the x direction—a
property that is forbidden in the equilibrium structure.

III. THEORETICAL MODEL

Having discussed symmetry principles that govern the
infrared-resonant Raman effect in crystals, we now present
a theoretical model that can be used to describe it. While the
infrared-resonant Raman effect is expected to be present in
small-band-gap materials and metals, we focus our dis-
cussion and modeling on wide-band-gap insulators in order
to distill the physical implications of the infrared-resonant
Raman effect. This approach avoids obfuscation of the
infrared-resonant Raman effect from other considerations
in metals (e.g., free-charge screening) and semiconductors
(e.g., Zener breakdown [37], avalanche ionization [38]).

A. Equations of motion

In order to derive the IRRS susceptibility, we first derive
the equations of motion from Eqs. (1) and (2) in order to
identify Raman-scattering pathways. To capture the high-
frequency response, we add the harmonic energy of an
effective electronic coordinate Qe (a phenomenological
parameter that describes the high-frequency dielectric
response) and its coupling to the electric field and define
a total potential U ¼ Ue þ Ulattice, where

Ue ¼
1

2
KeQ2

e − ΔP⃗e · E⃗: ð9Þ

Ke is an effective spring constant, and the electronic
polarizability includes coupling to the Raman phonon
through

ΔP⃗e ¼ ζQe þ βQRQe: ð10Þ

KHALSA, BENEDEK, and MOSES PHYS. REV. X 11, 021067 (2021)

021067-4



Here, ζ is an effective charge that describes the high-
frequency optical response of the crystal. The coefficient β
describes the conventional electronically mediated Raman
effect. Figures 1(c) and 1(d) show schematic representa-
tions of linear and nonlinear electronic polarizability terms
in Eq. (10). Incidentally, comparing Eqs. (2) and (10), we
can see that since both QIR and Qe transform as vectors,
they both couple to Raman phonons in the same way. It
follows that all of the symmetry arguments presented above
are true for both the conventional electronically mediated
Raman effect and the infrared-resonant Raman effect.
Considering Eqs. (1), (2), (9), and (10), and taking

derivatives of U with respect to Qe, QIR, and QR, we find
the following equations of motion:

LeQe ¼ ζEþ βQRE; ð11aÞ

LIRQIR ¼ Z̃�Eþ bQREþ 2BQIRQR; ð11bÞ

LRQR ¼ βQeEþ bQIREþ BQ2
IR: ð11cÞ

We define the linear operator Lσ ¼ Mσ½ðd2=dt2Þ þ
2γσðd=dtÞ þ ω2

σ� for notational convenience. We include
a damping parameter γσ and note thatMσ is a reduced mass
coordinate. The right-hand side of Eq. (11) describes the
driving terms through the electric field, coupling through

the anharmonic lattice potential, and coupling through the
nonlinear polarizability.
Numerous scattering pathways present themselves

through Eq. (11) as illustrated in Fig. 2.
(i) Conventional (electronic) Raman scattering. The

conventional Raman scattering mechanism (top
panel of Fig. 2) is described by the β coefficient.
The effective electronic coordinate Qe can respond
to any frequency of light at or below its fundamental
frequency ωe. The combined motion of Qe with the
electric field induces a driving force for the Raman
coordinateQR through the parameter β [first term on
the right-hand side of Eq. (11c)].

(ii) Infrared resonant Raman scattering. The IRRS
mechanism (middle panel of Fig. 2) is analogous
to the conventional Raman-scattering pathway, ex-
cept it substitutes the displacement of the electron
cloud characterized by Qe, with the displacement of
an IR phononQIR. Displacement of an IR phonon in
the presence of an electric field induces displace-
ments of Raman phonons through the nonlinear
polarizability described by the coefficient b. The
largest IR phonon response is when a component of
the applied field is tuned to the frequency ωIR. Once
resonantly excited, the combined motion of QIR and
the electric field drive QR through b.

FIG. 2. Comparison between the conventional (top), infrared-resonant (middle), and ionic Raman-scattering (bottom) mechanisms.
Blue, green, and orange panels represent the effect of the three electric field components, while the induced polarization is shown in the
red panels. Driving terms in Eq. (11) are shown in ovals with induced motion represented in rectangles with the allowed frequency
response written below. The connection to linear and nonlinear polarization, and the anharmonic potential are shown in the text in each
panel with resonance conditions for each effect called out in the polarization panels. Dashed arrows leading into the light-blue region in
the middle of the figure show that cross-coupling is allowed between all three effects. The conventional and infrared-resonant Raman
responses have potential for third-order resonance in the polarization [see Eqs. (13) and (A7)–(A10)], while ionic Raman scattering has
potential for a fifth-order resonance [see Eqs. (A7)–(A10)].
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(iii) Ionic Raman scattering. An additional Raman-
scattering mechanism (bottom panel of Fig. 2) is
provided by the anharmonic lattice potential. After
resonant excitation ofQIR, there is a driving force on
QR induced by the parameter B proportional to Q2

IR.
This scattering pathway is an example of nonlinear
ionic source terms in the dielectric response arising
from the anharmonic lattice potential [39] and has
been described in the literature as ionic Raman
scattering [10–12,40]. It should be noted that this
pathway is distinct from the other two in that the
applied field directly induces only a displacement to
an IR phonon; i.e., the presence of an electric field is
not required to couple IR phonon motion to Raman
phonon motion. It should also be noted that this
pathway prevents fully resonant excitation of the
Raman phonon except for the singular case where
the frequency of the applied electric field is half the
frequency of the Raman phonon. In contrast, in
conventional Raman scattering and in IRRS, reso-
nant Raman excitation may be achieved through the
combination of any two laser frequencies such
that ω1 � ω2 ≈ ωR.

B. Perturbative approach to the
nonlinear susceptibility

We derive expressions for the optical susceptibility using
a perturbative approach in the parameters β, b, and B and
solve Eq. (11) in the presence of a multicomponent electric
field, expressing Qσ in terms of components of E. These
solutions are used to removeQe,QIR, andQR from Eqs. (2)
and (10) and express the polarizability in terms of only the
electric field so that the linear and nonlinear contributions
to the polarizability can be collected. By symmetry, we can
see that the dipole active coordinates Qe and QIR will be
replaced by a parallel electric field E, while each Raman
phonon will be replaced by two factors of the electric field.
From Eqs. (2) and (10), we see that Z̃�QIR and ζQe will
contribute to first order in E, while bQRQIR and βQRQe
will contribute terms to third order in E. In this way, we find
that the polarizability includes both linear and third-order
susceptibilities P⃗ ¼ χð1ÞE⃗þ χð3ÞE⃗ E⃗ E⃗.

To simplify the presentation, we focus on a scenario
where one laser is used to drive an IR phonon on, or
near, resonance, while a second laser samples the optical
response at another frequency taken to vary over a large
range. This scenario can be viewed as intensity-dependent
dielectric changes due to the excitation of an IR phonon.
The electric field is taken to be

EðtÞ ¼ 1

2
ðE1e−iω1t þ E−1eiω1t þ E2e−iω2t þ E−2eiω2tÞ

ð12Þ

with the field strength defined with the constraint E−n ¼ E�
n

to enforce real fields. Notice that with this convention,
we can take ω−n ¼ −ωn and define the general multi-
component electric field as EðtÞ ¼ 1

2

P
n¼�1;�2;… Ene−iωnt

by summing over both negative and positive components of
the field. The third-order susceptibility for the process
under investigation χð3Þðω2;ω1;−ω1;ω2Þ≡χð3Þð2;1;−1;2Þ
describes the macroscopic nonlinear polarizability at ω2

due to the mixing of light at ω1 (taken to be near the IR
resonance) and ω2. To simplify χð3Þ further, we assume
that all laser frequencies are far below the electronic
resonance ωe, but include general expressions for the
polarizability in the Appendix [see Eq. (A7)]. The non-
linear polarization of the crystal is then defined by Pð3Þ ¼
χð3Þð2; 1;−1; 2ÞjE1j2E2e−iω2t þ c:c:≡ δχð1ÞðI1ÞE2e−iω2t þ
c:c: We see that the polarization is measured at the
frequency ω2 and can be interpreted as an intensity-
dependent change to the linear susceptibility
δχð1Þðω2; I1Þ ∝ I1, where the intensity I1 ¼ jE1j2. With
this definition, the effective linear susceptibility at ω2 takes

the form χð1Þeff ðω2; I1Þ ¼ χð1Þðω2Þ þ δχð1Þðω2; I1Þ, which
reflects that the linear optical properties for E2 are altered
by the presence of a strong E1.
Even with these assumptions, the perturbative approach

leaves us with cumbersome expressions. Focusing on the
component of the third-order susceptibility due solely to the
nonlinear contribution to the polarizability with coefficient
b (corresponding to the IRRS effect introduced here; see
middle pathway in Fig. 2), we define and find

χð3Þb;bð2; 1;−1; 2Þ ¼
ðbZ̃Þ2
ϵ0V

× ½2ðGIR
1 þGIR

−1 þ GIR
2 þ GIR

−2ÞGIR
2 GRðω1 − ω1 ¼ 0Þ

þ ðGIR
2 GIR

2 þ GIR
1 GIR

2 þ GIR
2 GIR

−1 þ GIR
1 GIR

−1ÞGRð−ω1 þ ω2Þ
þ ðGIR

2 GIR
2 þ GIR

1 GIR
2 þ GIR

2 GIR
−1 þ GIR

1 GIR
−1ÞGRðω1 þ ω2Þ�: ð13Þ

In this expression, Gσ
n ¼ GσðωnÞ is the inverse of the linear operator Lσ in the frequency domain [see Eq. (11)] evaluated

at ωn. That is,
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GIR
n ¼ GIRðωnÞ ¼

1=MIR

ðω2
IR − ω2

nÞ − 2iγIRωn
; ð14aÞ

GR
mn ¼ GRðωmnÞ ¼

1=MR

ðω2
R − ω2

mnÞ − 2iγRωmn
; ð14bÞ

where ωmn ¼ ωm þ ωn. Equation (13) is organized by the
frequency response of the Raman phonon. The right-hand
side of the first line shows the contribution from static
displacement of the Raman phonon through rectification of
the electric field components (ωmn ¼ 0, remembering that
ωnðmÞ is summed over positive and negative frequencies).
The remaining lines are due to dynamical responses of the
Raman phonon. The second line gives the contribution
from the motion of the Raman phonon at −ω1 þ ω2.
Since the function GR is peaked at the Raman frequency,
the second line of Eq. (13) is resonant when
ð−ω1 þ ω2Þ ¼ �ωR, while the third line is resonant when
ðω1 þ ω2Þ ¼ �ωR.
Each term in Eq. (13) includes two contributions

from GIR and one from GR. This corresponds to a double
resonance due to the IR phonon response and a single
resonance from the Raman response. An overall triply
resonant response is therefore possible in the two-laser
scenario we are describing. As an example, consider a first
laser resonant with the IR phonon (ω1 ¼ ωIR) and a second
laser tuned to a frequency ω2 away from the IR resonance
so that −ω1 þ ω2 ¼ �ωR, as is expected with a Stokes
(−ωR) or anti-Stokes Raman (þωR) response. We note that
this triply resonant response is analogous to conventional
resonant stimulated Raman scattering, wherein the first
laser is tuned to an electronic resonance (ω1 ¼ ωe).
However, these responses are found in disparate ranges
of the optical spectrum.
Figure 3 shows the magnitude and phase of

χð3Þð2; 1;−1; 2Þ schematically when coupling between a
single IR phonon at fIR ¼ ωIR=2π ¼ 20 THz, and a single
Raman phonon at fR ¼ ωR=2π ¼ 12 THz is allowed
through the nonlinear dipole moment. The curves indicate

the contribution from χð3Þb;b, i.e., from IRRS. Two peaks are

seen in the magnitude of χð3Þb;b at the difference and sum
frequencies of 8 and 32 THz, respectively. While the
magnitude remains constant below 8 THz, it falls off as
f−2 for high frequency (above 32 THz). At the difference
frequency, the phase of χð3Þ approaches −π=2, suggesting
χð3Þb;b is purely imaginary and that there will be emission of
radiation at 8 THz. At the sum frequency, the phase
approaches þπ=2, suggesting absorption of radiation at
32 THz. This is consistent with the classical theory of
Stokes and anti-Stokes Raman scattering. We therefore find
that the nonlinear contribution to the polarization shown in
Eq. (2) resonantly enhances the Stokes and anti-Stokes
response known from the conventional Raman effect
through excitation of an IR phonon.
In between the difference and sum frequencies, the phase

of the response is zero, indicating that the real part of the

dielectric constant will increase through χð3Þb;b. Below the
difference frequency and above the sum frequency,

the phase of χð3Þb;b becomes ∓ π, suggesting a decrease in
the real part of the dielectric constant in these frequency
ranges. These effects are also consistent with conventional
Raman scattering.

IV. FIRST-PRINCIPLES CALCULATIONS

The model described in the previous section requires
various inputs, which we obtain from first-principles
calculations. Density-functional-theory calculations are
performed using projector-augmented-wave potentials
and the local density approximation (LDA), as imple-
mented in VASP. We use a 600-eV plane-wave cutoff and
a 6 × 6 × 4 Monkhorst-Pack k-point grid for a

ffiffiffi
2

p
a ×ffiffiffi

2
p

a × 2a supercell, where a is the optimized lattice
constant of SrTiO3 in the cubic Pm3̄m phase. The
calculated lattice constants a ¼ b ¼ 5.44 Å and c ¼
7.75 Å underestimate the experimental [41] lattice con-
stants of a ¼ b ¼ 5.51 Å and c ¼ 7.81 Å as expected in
LDA. Phonons and Born effective charges are calculated
using density-functional-perturbation theory within VASP

and used to calculate dynamical-mode-effective charges.
Further details are given in Ref. [42].
For the anharmonic potential terms B, we compute

the total energy Ulattice on a mesh of IR and Raman
phonon amplitudes up to �20 pm in 2-pm steps and fit
to a symmetry-constrained polynomial. B is then inter-
preted as the derivative of the total energy fit with respect
to the real-space eigendisplacements of each phonon
B ¼ ð∂3U=∂Q2

IR∂QRÞ. Similarly, the coefficient control-
ling the strength of the nonlinear contribution to the lattice
polarization b is evaluated by taking derivatives of a
symmetry-constrained-polynomial fit to the polarization
b ¼ ð∂ΔP⃗=∂QIR∂QRÞ calculated using the modern theory
of polarization [43].

FIG. 3. Magnitude (black) of the third-order IRRS susceptibil-
ity χð3Þb;b resulting from bQIRQR for an IR phonon at 20 THz with
effective charge Z̃� ¼ 1e coupled to a Raman phonon at 12 THz
with a coupling strength b ¼ 1e=Å. The sum and difference
frequencies are 32 and 8 THz, respectively. The phase (red) is
referenced to the right vertical axis.
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The damping parameters γσ are temperature-dependent
quantities. Because they require evaluation of, minimally,
all third-order force constants, and often all electron-
phonon coupling pathways and defect scattering pathways,
their calculation from first principles is prohibitively
expensive. Instead of calculating damping terms from first
principles, we explore a range of values 0.1–1.0 THz
consistent with typical damping parameters for phonons.
In what follows, we fix damping parameters to 0.1 THz
corresponding to 10-ps lifetimes and comment on any
strong dependence of the optical response on this value
when necessary.

V. RESULTS

We employ the theoretical model of Sec. III together
with the first-principles calculations of Sec. IV to inves-
tigate the changes to optical material properties that can be
induced in SrTiO3 through IRRS. Table I summarizes the
first-principles parameters for SrTiO3. As we are most
interested in the changes to optical constants and optical
symmetry that arise from resonant or near-resonant IR
pumping, we explore cubic susceptibility terms, in the
form of the intensity-dependent change to the linear
susceptibility, for an applied field E⃗2 due to the applica-

tion of an infrared-resonant field E⃗1, δχ
ð1Þ
ij ½ω2; I1ðω1Þ� ¼

χð3Þijjið2; 1;−1; 2ÞjE1;jj2, as defined in Sec. III B. The

symmetry of χð3Þ for the infrared-resonant Raman
response depends on the symmetry of the displaced
Raman phonons as we discuss in Sec. II. The frequency
dependence of the tensor components of χð3Þ, as is seen
below, has the expected form of a Raman scattering
susceptibility as seen in Fig. 3, with Stokes and anti-
Stokes peaks corresponding to differences and sums of the
IR and Raman phonons of the material, respectively. The
response, however, is complicated by the presence of
multiple IR-Raman phonon couplings for each activated
IR phonon and the different χð3Þ symmetries correspond-
ing to each Raman phonon. As a result, the intensity-
dependent dielectric response through the excitation of the
IR phonons [see Eq. (13) and discussion] and the resulting
changes to the optical symmetry are intimately tied to the
frequency range spanned in the experiment and the
polarizations of the applied fields.

A. Optical symmetry breaking

Figure 4 shows the simulated third-order susceptibility
χð3Þð2; 1;−1; 2Þ for SrTiO3 when E⃗1 is polarized along the
x direction (taken to be parallel to the crystallographic
a axis) and resonant with the Γ−

5 ðEuÞ IR phonon at
fIR ¼ 16.40 THz. The nonlinear susceptibility is notably
more complex than that of the simplified response in Fig. 3.
This is due to the coupling to multiple Raman-active

phonons of SrTiO3. Through these IR-Raman couplings
mediated by IRRS, intensity-dependent changes to the
effective linear susceptibility for a second field E⃗2

occur for E⃗2 fields polarized along x, δχð1Þxx ðω2; I1Þ ¼
χð3Þxxxxð2; 1;−1; 2ÞjE1;xj2 and along y, δχð1Þyy ðω2; I1Þ ¼
χð3Þyxxyð2; 1;−1; 2ÞjE1;xj2.
We first consider the case where both E⃗1 and E⃗2 are

polarized along the x axis. The Raman phonons that
contribute to the optical response in this case [via

χð3Þxxxxð2; 1;−1; 2Þ] are the Γþ
1 ðA1gÞ mode, which is fully

symmetric, and the Γþ
2 ðB1gÞ, which transforms as x2-y2

[Fig. 4(a)]. The resonance peaks are then the sums (anti-
Stokes peaks) and differences (Stokes peaks) of the IR
resonance and the Γþ

1 ðA1gÞ and Γþ
2 ðB1gÞ Raman phonons.

We see peaks at 12.18 and 20.62 THz through coupling
to Γþ

1 ðA1gÞ, and 1.19 and 31.61 THz through coupling
to Γþ

2 ðB1gÞ Raman phonons. The phase of the nonlinear
susceptibility is also complicated, showing multiple
absorption and emission pathways. However, there are
broad spectral regions where the IRRS susceptibility
remains purely real [that is, when argðχð3ÞÞ ¼ f0;�πg]
in ranges of frequencies not near resonances.

FIG. 4. Simulated magnitude (black) and phase (red) of the
third-order susceptibility due to IRRS χð3Þb;b in SrTiO3 when
the highest-frequency Γ−

5 ðEuÞ IR phonon is resonantly excited

(fIR ¼ 16.40 THz). (a) χð3Þxxxxð2; 1;−1; 2Þ exhibits coupling to the
Γþ
1 ðA1gÞ and Γþ

2 ðB1gÞ Raman phonons. The difference and sum
frequencies that identify peaks are 12.18 and 20.62 THz for the
Γþ
1 ðA1gÞ phonon, and 1.19 and 31.61 THz for the Γþ

2 ðB1gÞ
phonon. (b) χð3Þyxxyð2; 1;−1; 2Þ exhibits coupling to the two
Γþ
4 ðB2gÞ phonons. The difference frequencies are 3.38 and

11.88 THz, while the sum frequencies are 29.42 and
20.92 THz. Also shown (dashed), the corresponding magnitude
of the third-order susceptibility due to the anharmonic lattice

potential (ionic Raman scattering) χð3ÞB;B.
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The intensity-dependent changes to the effective linear
susceptibility induced by the Γþ

1 ðA1gÞ Raman phonon
preserve the uniaxial optical symmetry. That is,

δχð1Þxx ðω2; I1Þ ¼ δχð1Þyy ðω2; I1Þ ≠ δχð1Þzz ðω2; I1Þ, a result of

χð3Þxxxxð2;1;−1;2ÞjE1;xj2 ¼ χð3Þyyyyð2;1;−1;2ÞjE1;yj2 ≠ χð3Þzzzzð2;
1;−1;2ÞjE1;zj2. However, the response of the Γþ

2 ðB1gÞ
Raman phonon alters the linear susceptibility so that

δχð1Þxx ðω2; I1Þ ≠ δχð1Þyy ðω2; I1Þ, which is the property of a

biaxial optical symmetry, since χð3Þxxxxð2; 1;−1; 2ÞjE1;xj2 ≠
χð3Þyyyyð2; 1;−1; 2ÞjE1;yj2. Since both Raman modes are
driven by the IR mode simultaneously through IRRS
and thus their effects on the optical response cannot be
disentangled, the net result of resonant pumping of the
Γ−
5 ðEuÞ IR phonon is a shift from uniaxial to biaxial

symmetry, with the angle that splits the two optical axes
controlled by I1.
If we instead consider the case where E⃗2 is polarized

along the y axis [and the Γ−
5 ðEuÞ IR phonon at fIR ¼

16.40 THz is still pumped by an E⃗1 polarized along the x
axis], we now observe a cross-polarization effect. The two
Γþ
4 ðB2gÞ Raman phonons at 13.02 and 4.52 THz now

facilitate the response through χð3Þyxxyð2; 1;−1; 2Þ [Fig. 4(b)].
Again, complicated amplitude peaks and phase responses
are seen with difference frequencies (Stokes peaks)
and sum frequencies (anti-Stokes peaks) of 3.38 and
11.88 THz, and 29.42 and 20.92 THz, respectively.
Interpreting this response from the perspective of the
intensity-dependent linear susceptibility, we find that

δχð1Þxy ðω2; I1Þ ¼ δχð1Þyx ðω2; I1Þ are nonzero. That is, an opti-
cal constant not allowed by the symmetry of the equilib-
rium structure appears and becomes intensity dependent.
This implies an intensity-dependent shift to the principal
optical axes.
Figure 4 also shows that the contribution to

χð3Þð2; 1;−1; 2Þ coming purely from the anharmonic lattice
potential (blue dashed line in Fig. 4) is many orders of
magnitude smaller than the contribution due to IRRS in
SrTiO3. This could have been anticipated by the definition
of the induced polarization [Eqs. (2) and (10)] and the
equations of motion Eq. (11) along with the perturbation
approach shown schematically in the bottom panel of Fig. 2
and developed in Sec. III B. In the absence of b and β, the
only possible changes to the polarization are through
changes in QIR. While the anharmonic lattice potential
induces a first-order change in the Raman coordinateQR, it
induces only a second-order change inQIR; thus, we should
expect the pure anharmonic lattice contribution to the third-
order susceptibility to be small. An expression for the
changes to χð3Þ induced by the anharmonic lattice potential
and all possible cross-coupling pathways for χð3Þ up to
second order in perturbation theory are given in the
Appendix [see Eqs. (A9) and (A10)].

The splitting and shift of the optical axes due to the
IRRS response in SrTiO3 through excitation of the Γ−

5 ðEuÞ
IR-active phonon at 16.40 THz and the Γþ

4 ðB2gÞ Raman
phonon at 13.02 THz—both of which primarily involve
motion of oxygen atoms—is shown schematically in Fig. 5.
Here the Cartesian coordinates fx; y; zg are taken to be
parallel to the crystallographic axes fa; b; cg, and the
amplitudes of distortions are exaggerated for viewing.
For light incident along the z axis and polarized in the
x-y plane, only Γ−

5 ðEuÞ IR-active phonons can be excited

directly. For E⃗1kbx; the induced polarization P⃗ through
excitation of the Γ−

5 ðEuÞ IR phonon is along the x axis
[top panel of Figs. 5(b) and 5(c)]. Considering only the
linear susceptibility, SrTiO3 remains uniaxial [top panel of
Fig. 5(d)]. Through IRRS measured by a second field E⃗2kŷ,
motion of the Γþ

4 ðB2gÞ is also induced [middle panel
of Figs. 5(b) and 5(c)] but on its own does not induce a
dipole and therefore cannot affect the polarization direc-
tion. The combined response of these IR and Raman
phonons [bottom panel of Figs. 5(b) and 5(c)] causes
the frequency-dependent canting of the polarization
which is seen in the induced off-diagonal terms in the
effective linear susceptibility, as we describe above. The
biaxial optical axes induced by the IRRS are shown in the
bottom panel of Fig. 5(d), where the off-diagonal compo-
nents of the effective linear susceptibility have now forced
the direction of the in-plane principle axes (shown as
fx0; y0; z0g).
We note that the canting of the polarization in SrTiO3 is

not directly due to the displacement of ions through the
motion of the IR and Raman phonons. Rather, the com-
bined motion of the IR and Raman phonons lowers the
symmetry of the crystal; this induces changes to the
electronic structure of the occupied states, which conse-
quently cants the polarization. Although motion of the ions
does not contribute directly to the canting of the polariza-
tion in SrTiO3, it is unclear how general this is in arbitrary
crystalline systems.

B. Giant refractive index shifts

When E⃗1 is instead resonant with the lowest-frequency
Γ−
5 ðEuÞ IR-active phonon at 2.67 THz, χð3Þ can be remark-

ably large—approaching unity at resonance peaks when
jE1j approaches 1 MV=cm. That is, the shift in the effective
linear susceptibility for the infrared-resonant Raman
response in SrTiO3 can be comparable to the typical linear
dielectric response of many optical materials (χð1Þ ≈ 1–10).

Figure 6 shows χð3Þzxxxð2; 1;−1; 2Þ for this case. Here, the
Γþ
5 ðEgÞ Raman phonons, which have fyz; zxg symmetry,

are activated in the optical process, so the optical changes
are again along a perpendicular axis (that is, E⃗2 is polarized
along the z axis). The 1.25- and 4.35-THz Γþ

5 ðEgÞ phonons
dominate the IRRS process, while the 13.09-THz Γþ

5 ðEgÞ
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is not significantly altering the optical response because
of its weak coupling to the 2.57-THz IR phonon.
Difference-frequency (Stokes) and sum-frequency (anti-
Stokes) responses are clearly seen in the amplitude and
phase of χð3Þ at 1.68 and 1.42 THz, and 7.02 and 3.92 THz,
respectively. Interpreting the nonlinear optical changes
as intensity-dependent susceptibility changes suggests

δχð1Þyz ðω2; I1Þ ≠ 0 and δχð1Þzx ðω2; I1Þ ≠ 0. Focusing on the
response above 10 THz, we again note a phase of π=2 and a
falloff with frequency proportional to f−2 showing that the
large intensity-dependent changes to the real parts of the

FIG. 5. Activation of IR and Raman phonons, and symmetry breaking in SrTiO3 through IRRS. (a) Equilibrium crystal structure of
SrTiO3 from two perspectives. (b) Schematic representation of the IR, Raman, and combined IR and Raman phonons. The Γ−

5 IR
phonon at 16.40 THz and the Γþ

4 Raman phonon at 13.02 THz are shown here. (c) Distorted structure when IR, Raman, and the
combined IR and Raman phonons are included. The induced polarization is canted by the activation of the Γ−

5 IR phonon polarized in the
x-y plane and the Γþ

4 Raman phonon that transforms like xy. (d) Away from equilibrium, the uniaxial nature of SrTiO3 is altered—
splitting and tilting the optical axes. Here, x0; y0; z0 are the principle axes of the distorted crystal with the optical axes canted from z0 in the
z0-x0 plane.

TABLE I. Coupling coefficients for SrTiO3 used in Figs. 4 and
6. The reduced mass and effective charges for the high- and low-
frequency Γ−

5 ðEuÞ IR phonons are M ¼ 16.01μ and Z̃� ¼ 6.92e,
and M ¼ 20.12μ and Z̃� ¼ 14.97e, respectively.

Γ−
5 ðEuÞ IR phonon at 16.40 THz

Symmetry fðTHzÞ MðmuÞ bðe=ÅÞ
Γþ
1 ðA1gÞ: 1 4.22 16.00 0.33

Γþ
2 ðB1gÞ: x2 − y2 15.21 16.00 −0.35

Γþ
4 ðB2gÞ: xy 13.02 16.02 −0.68

4.52 86.95 −0.28

Γ−
5 ðEuÞ IR phonon at 2.67 THz

Symmetry fðTHzÞ MðmuÞ bðe=ÅÞ
Γþ
5 ðEgÞ: fyz; zxg 13.09 16.03 −0.03

4.35 80.05 −1.33
1.25 16.25 0.26

FIG. 6. Simulated magnitude (black) and phase (red) of the
third-order susceptibility due to IRRS χð3Þb;b in SrTiO3 when the
lowest-frequency Γ−

5 ðEuÞ IR phonon is resonantly excited

(fIR ¼ 2.67 THz). χð3Þzyxxð2; 1;−1; 2Þ is now facilitated by the
Γþ
5 ðEgÞ Raman phonons. The difference and sum frequencies are

now 1.68 and 1.42 THz, and 7.02 and 3.92 THz, respectively. The
coupling to the 13.09-THz Raman phonon is weak and does not
alter the response significantly.
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effective χð1Þyz and χð1Þzx extend far above the region where
optical phonons are present.

VI. DISCUSSION

The findings of Secs. III and V suggest a broad relevance
to the fields of optics and materials physics.
In optics, IRRS offers a previously unidentified route to

strong control of optical material properties. In the analysis
of SrTiO3 in Sec. V, large, broad-frequency changes to the
dielectric response are observed in the form of new tensor
elements—in one case reflecting an intensity-dependent
shift from uniaxial to biaxial symmetry—as well as the
induction of strong absorption and emission peaks, and
large refractive-index shifts. Extending these ideas to
include circularly polarized fields, we might expect
IRRS to give strong control of chiral optical response as
well. Such large effects are possible via a triply resonant
Raman-scattering susceptibility through the coupling of IR
and Raman phonons mediated by nonlinear contributions
to the polarizability, as shown in Eq. (2).
Whereas it is akin to the conventional electronically

mediated resonant Raman response, which couples Raman
phonons to virtual electronic dipole transitions through the
nonlinear polarizability, IRRS is relevant over a vastly
different frequency range relevant to the emergent fields of
midinfrared and THz optics. The theoretical approach we
use is quite general and can be used to analyze IRRS in a
wide variety of optical materials, including other complex
oxides and III-V semiconductors. The main features of a
material allowing strong IRRS response are large nonlinear
polarizability b ¼ ð∂ΔP⃗=∂QIR∂QRÞ and effective charge
Z̃. SrTiO3 has modest values of these parameters, and while
the evaluation of other materials is beyond the scope of this
article, we might anticipate optical materials with signifi-

cantly larger χð3Þb;b.
The parameter b can be viewed as the change in the

mode-effective charge Z̃� due to the Raman phonon [see
discussion below Eq. (2)]. In SrTiO3 we find that the
parameter b is dominated by changes to so-called anoma-
lous charge contributions to the mode-effective charge—
changes to the electronic structure of occupied electronic
states. This finding suggests that materials with large
anomalous charge should be the focus of the initial search
for materials with sizable infrared-resonant Raman
response. Perovskites are well known to exhibit large
anomalous charges and are therefore a useful theoretical
and experimental test ground for IRRS.
The principle of IR resonant modification of χð1Þ via

IRRS could be readily extended to explore infrared-driven
control of higher-order susceptibilities in both centrosym-
metric and noncentrosymmetric crystals where large

changes to χð2Þeff , χ
ð3Þ
eff , etc., may be anticipated due to the

dependence of the symmetry and size of these optical

constants on Raman phonon displacements. Since some
Raman phonons in noncentrosymmetric media have the
same symmetry as IR-active phonons, evaluation of IRRS-
induced shifts of χð2Þ is considerably more involved.
However, such media present a complex response to IR-
driven light that might be used to simultaneously tailor
linear, electro-optic, and higher-order constants through the
application of IR-resonant light fields. For example, in
AlN, the Γ1ðA1Þ optical phonon is simultaneously IR and
Raman active, and invariant under all symmetry operations.
Extending the discussion of Sec. II C, every optical con-
stant, of every order, will be proportional to the displace-
ment of this phonon while also directly excitable.
We anticipate that the potential utility provided by IRRS

through the effects seen in Sec. V for optical technologies
will rely on three considerations: the applicability of having
strong absorption of a control pulse over a short length
scale, the possible utility of achieving relative shifts in
propagation constants with field polarization, and the
degree to which the use of multiple laser frequencies is
practical. Through the application of propagating or stand-
ing-wave infrared light fields, one might imagine signifi-
cant applications on the scale of integrated optical devices,
e.g., in which side pumping of a waveguide is used to
induce effects such as light-induced wave retardation,
polarization ellipse rotation, Bragg reflection, etc.
We note that the optical effects described in this article

offer a route to control of optical symmetry akin to that
provided by the Pockels effect (linear electro-optic effect),
but by a very different physical mechanism. The Pockels
effect induces an optical-field-dependent shift to the linear
electric susceptibility via the action of a strong dc or low-
frequency electric field through a nonzero quadratic electric

susceptibility, δχð1Þij ¼ 2χð2ÞijkEkðω ≈ 0Þ. The low-frequency
field shifts the electronic distribution from its equilibrium
coordination, thus, breaking the original symmetry of the
electronic potential with respect to new electronic displace-
ments induced by a second electric field. In contrast, IRRS
induces a change to the lattice from its equilibrium
structure, thus, also breaking the original symmetry of
the electronic potential, as the electronic displacements
induced by a second electric field are now with respect to
the electronic distribution of the changed lattice.
Experimental verification of IRRS in mid-IR experi-

ments is most straightforward through observation of an
IR-resonant enhancement of Stokes or anti-Stokes Raman
peaks. Inspecting Fig. 4, it is clear that the spectral features
for IRRS and ionic Raman scattering in SrTiO3 are
different, allowing for the experimental distinction between
the two effects. Additionally, our first-principles evaluation
of the coupling terms in SrTiO3 suggests that the resonant
enhancement is overwhelmed by IRRS, with many orders
of magnitude smaller contribution from ionic Raman
scattering, that is, through the anharmonic lattice potential.
The degree to which IRRS overwhelms ionic Raman
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scattering in general requires further investigation and
broad sampling of crystalline optical materials that is
beyond the scope of this study. Additionally, the fre-
quency-dependent falloff at high frequency is different
between the two pathways with IRRS falling off as f−2 and
ionic Raman scattering falling off as f−4, providing another
measurable confirmation of IRRS. We note that additional
cross-coupling Raman pathways exist and provide expres-
sions for the polarization and susceptibility in the most
general case applied to centrosymmetric crystals in
Eqs. (A7)–(A10). With these findings, our view is that,
while the anharmonic lattice potential is certainly contrib-
uting to the material response, the nonlinear lattice polar-
izability is providing a primary mechanism for change of
the dielectric response and therefore experimental inter-
action with, and control of, the materials optical properties.
The IRRS process between the IR-active Γ−

5 phonons
and the Raman-active Γþ

5 phonons (Fig. 6) provides a
symmetry-constrained strategy for comparison of IRRS
and ionic Raman scattering. The induced polarization along
the z axis measured by E2 in IRRS through the nonlinear
lattice polarizability ΔP ∝ QRQIR is not allowed in con-
ventional ionic Raman scattering. In ionic Raman scatter-
ing, an additional IR-active phonon polarized along the z
axis (Γ−

3 ) is required to mediate the interaction through an
anharmonic lattice potential term ∝ QRQIR1QIR2. This
difference in form leads to a distinction in the resonance
conditions for ionic Raman scattering and IRRS, with
fIR � f2 ¼ fR in the IRRS case and fR ¼ fIR1 � fIR2 in
the ionic Raman-scattering case, where fIR1;2 describe the
Γ−
5 and Γ−

3 phonons (see the right column of Fig. 2). The
peak at 7.02 THz in Fig. 6 should experimentally distin-
guish the two effects since there is no IR resonance in
SrTiO3 polarized along the z axis at that frequency.
For materials science, IRRS also provides a new para-

digm for light-induced structural control and analysis.
Notably, it provides a flexible strategy for structural control
in addition to the nonlinear phononics effect mediated by
the anharmonic potential and therefore expands the toolbox
for ultrafast structural control of novel functional materials.
The unidirectional force induced by the anharmonic poten-
tial in response to intense resonant IR excitation is also
found through IRRS. This can be seen from the first line of
Eq. (13) where the response of the Raman phonon is
frequency independent. In Eq. (A5), perturbative results for
the Raman coordinate show that the resonant conditions for
unidirectional Raman displacement are different between
the two effects allowing for experimental separation of the
two mechanisms. In addition to the differing resonant
conditions between IRRS and ionic Raman scattering,
the appearance of b and B in the equations of motion
[Eq. (11)] suggest the two effects will have different
timescales in the transient response, with IRRS depending
sensitively on the timescale of the pulse, and ionic Raman
scattering potentially depending sensitively on the lifetime

of the excited IR phonon. For structural verification of the
IRRS pathway, we predict that future mid-IR pump-
and–x-ray-probe experiments will find a unidirectional
displacement of Raman phonons that initially overshoots
or undershoots the long-lived quasistatic displacement for a
timescale comparable to the excitatory mid-IR pump pulse.
We note, additionally, that the strong dependence of optical
constants on light-driven phonon displacements via IRRS
suggests another possible physical mechanism for the
spectral features attributed to the nonlinear phononics
effect in optical probe measurements.
While the anharmonic potential pathway to displace-

ments of Raman phonons is restricted to frequencies
defined by the IR phonon resonance frequencies through
the effective force BQ2

IR, the force induced by the IRRS
pathway bQIRE depends continuously on the electric field
of a second laser. IRRS therefore provides a flexible
polarization-dependent pathway for lattice excitation. We
anticipate that in addition to the optical symmetry consid-
erations and breaking described in Secs. II and V, IRRS and
its extension to noncentrosymmetric crystals, through the
use of multiple lasers, will provide tailored transient out-of-
equilibrium structural symmetry control.
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APPENDIX: PERTURBATIVE RESULTS FOR
THE PHONON COORDINATES, POLARIZATION,

AND SUSCEPTIBILITY

In this Appendix, we derive perturbative results for the
electronic and phonon coordinates, as well as expressions
for the polarization and third-order susceptibility including
all possible coupling pathways good to second order in the
coupling parameters b, β, and B.
We define the perturbation expansion in the parameters

b, β, and B for each coordinate Qσ as

Qσ ¼ Qð000Þ
σ þ βQð100Þ

σ þ bQð010Þ
σ þ BQð001Þ

σ

þ βbQð110Þ
σ þ βBQð101Þ

σ þ bBQð011Þ
σ

þ β2Qð200Þ
σ þ b2Qð020Þ

σ þ B2Qð002Þ
σ þ � � � ; ðA1Þ

where σ ¼ fe; IR; Rg.
To derive the perturbation theory results, we define

electric field as a general multicomponent field of the form

EðtÞ ¼ 1

2

X�N

n¼�1

Ene−iωnt; ðA2Þ
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where we take E−n ¼ E�
n and ωn ¼ −ω−n to enforce real

fields. Since the zeroth-order solution is proportional to the
electric field, we expect similar expansion coefficients, but
the first- and second-order solutions are driven by higher-
order expressions in the electric field. To accommodate this
dependence on electric field, we expand Qσ as

QðlmnÞ
σ ¼ 1

2

X
n

e−iωntQσ;n; lþmþ n ¼ 0;

QðlmnÞ
σ ¼ 1

4

X
mn

e−iωmntQσ;mn; lþmþ n ¼ 1;

QðlmnÞ
σ ¼ 1

8

X
lmn

e−iωlmntQσ;lmn; lþmþ n ¼ 2; ðA3Þ

where the frequencies are constrained by ωmn ¼ ωm þ
ωn ¼ −ω−m−n and ωlmn ¼ ωl þ ωm þ ωn ¼ −ω−l−m−n,
and the expansion coefficients Qσ;−m−n ¼ Q�

σ;mn and
Qσ;−l−m−n ¼ Q�

σ;lmn are defined to enforce real response
functions.
After plugging the expansion from Eqs. (A1)–(A3) into

Eq. (11) and collecting terms, we iteratively find the
perturbation coefficients. The zeroth-order results are

Qð000Þ
e;n ¼ ζGe

nEn;

Qð000Þ
IR;n ¼ Z̃�GIR

n En; ðA4Þ

from which we find the following first-order expressions:

Qð100Þ
R;mn ¼ ζGR

mnGe
nEmEn;

Qð010Þ
R;mn ¼ Z̃�GR

mnGIR
n EmEn;

Qð001Þ
R;mn ¼ Z̃�2GR

mnGIR
m GIR

n EmEn; ðA5Þ

and the second-order expression

Qð011Þ
IR;lmn ¼ Z̃�2GIR

lmnðGR
mnGIR

m GIR
n þ 2GIR

l GR
mnGIR

n ÞElEmEn;

Qð200Þ
e;lmn ¼ ζGe

lmnG
R
mnGe

nElEmEn;

Qð020Þ
IR;lmn ¼ Z̃�GIR

lmnG
R
mnGIR

n ElEmEn;

Qð002Þ
IR;lmn ¼ 2Z̃�3GIR

lmnG
IR
l GR

mnGIR
m GIR

n ElEmEn: ðA6Þ

These results can be inserted into Eqs. (2) and (10) to find
the polarization to second order in the perturbed quantities,

ϵ0VΔP¼ ζðQð000Þ
e þ βbQð110Þ

e þ βBQð101Þ
e þ β2Qð200Þ

e Þ þ βðβQð100Þ
R þ bQð010Þ

R þBQð001Þ
R ÞQð000Þ

e

þ Z̃�ðQð000Þ
IR þ βbQð110Þ

IR þ bBQð011Þ
IR þ b2Qð020Þ

IR þB2Qð002Þ
IR Þ þ bðβQð100Þ

R þ bQð010Þ
R þBQð001Þ

R Þ

¼ ζ2
1

2

X
n

Ge
ne−iωntEn þ Z̃�2 1

2

X
n

GIR
n e−iωntEn þ ζ2β2

1

8

X
lmn

ðGe
lG

R
mnGe

n þGe
lmnG

R
mnGe

nÞe−iωlmntElEmEn

þ Z̃�2b2
1

8

X
lmn

ðGIR
l GR

mnGIR
n þGIR

lmnG
R
mnGIR

n Þe−iωlmntElEmEn þ Z̃�4B2
1

8

X
lmn

ð2GIR
lmnG

IR
l GR

mnGIR
m GIR

n Þe−iωlmntElEmEn

þ ζβZ̃�b
1

8

X
lmn

ðGe
lG

R
mnGIR

n þGe
lmnG

R
mnGIR

n þGIR
l GR

mnGe
n þGIR

lmnG
R
mnGe

nÞe−iωlmntElEmEn

þ ζβZ̃�2B
1

8

X
lmn

ðGe
lmnG

R
mnGIR

m GIR
n þGe

lG
R
mnGIR

m GIR
n Þe−iωlmntElEmEn

þ Z̃�3bB
1

8

X
lmn

ðGIR
l GR

mnGIR
m GIR

n þGIR
lmnG

R
mnGIR

m GIR
n þ 2GIR

lmnG
IR
l GR

mnGIR
n Þe−iωlmntElEmEn; ðA7Þ

where V is the unit cell volume and ϵ0 is the free-space permitivity. From this result, we can construct the linear and cubic
susceptibilities, but we focus on the case of a wide-band-gap insulator where the electronic resonance ωe is much larger
than all working frequencies. In this case, we can make the approximation that Ge

n ¼ Ge
lmn ¼ Geðω → 0Þ and redefine

ξR ¼ ffiffiffi
2

p
ζβGeðω ¼ 0Þ and χð1Þe;0 ¼ ζ2Geðω ¼ 0Þ=ϵ0V. We are then left with the polarization of

ULTRAFAST CONTROL OF MATERIAL OPTICAL PROPERTIES … PHYS. REV. X 11, 021067 (2021)

021067-13



ϵ0VΔP ¼ 1

2
ϵ0Vχ

ð1Þ
e;0

X
n

e−iωntEn þ
1

2
Z̃�2X

n

GIR
n e−iωntEn þ

1

8
ξ2R
X
lmn

GR
mne−iωlmntElEmEn

þ 1

8
Z̃�2b2

X
lmn

ðGIR
l GR

mnGIR
n þGIR

lmnG
R
mnGIR

n Þe−iωlmntElEmEn þ
1

8
Z̃�4B2

X
lmn

ð2GIR
lmnG

IR
l GR

mnGIR
m GIR

n Þe−iωlmntElEmEn

þ 1

8

ξRZ̃�bffiffiffi
2

p
X
lmn

ð2GR
mnGIR

n þ GIR
l GR

mn þ GIR
lmnG

R
mnÞe−iωlmntElEmEn þ

1

8

ξRZ̃�2Bffiffiffi
2

p
X
lmn

ð2GR
mnGIR

m GIR
n Þe−iωlmntElEmEn

þ 1

8
Z̃�3bB

X
lmn

ðGIR
l GR

mnGIR
m GIR

n þ GIR
lmnG

R
mnGIR

m GIR
n þ 2GIR

lmnG
IR
l GR

mnGIR
n Þe−iωlmntElEmEn: ðA8Þ

Collecting terms proportional to ElEmEn gives the ðlmnÞth components of the third-order susceptibilities. We find

χð3ÞξR;ξR;lmn ¼ ξ2RG
R
mn;

χð3Þb;b;lmn ¼ Z̃�2b2ðGIR
l GR

mnGIR
n þ GIR

lmnG
R
mnGIR

n Þ;
χð3ÞB;B;lmn ¼ Z̃�4B2ð2GIR

lmnG
IR
l GR

mnGIR
m GIR

n Þ;

χð3ÞξR;b;lmn ¼
ξRZ̃�bffiffiffi

2
p ð2GR

mnGIR
n þGIR

l GR
mn þ GIR

lmnG
R
mnÞ;

χð3ÞξR;B;lmn ¼
ξRZ̃�2Bffiffiffi

2
p ð2GR

mnGIR
m GIR

n Þ;

χð3Þb;B;lmn ¼ Z̃�3bBðGIR
l GR

mnGIR
m GIR

n þGIR
lmnG

R
mnGIR

m GIR
n þ 2GIR

lmnG
IR
l GR

mnGIR
n Þ: ðA9Þ

In these expressions, we explicitly separate the possible contributions to the third-order susceptibilities. The first three
terms describe the conventional electronic response, the IRRS contribution from b, and the response from B, respectively.
The last three terms describe cross-coupling between the b, β, and B pathways.
The expressions derived above can be used for an arbitrary electric field. In order to study the IRRS for two frequencies of

light, we must account for the all combinatoric possibilities in the sums over l,m, and n. When the electric field is defined as
it is in the main text

EðtÞ ¼ 1

2
ðE1e−iω1t þ E−1eiω1t þ E2e−iω2t þ E−2eiω2tÞ;

we find the following expressions for the cubic susceptibilities contributing to ΔP ¼ χð3Þð2; 1;−1; 2ÞjE1j2E2e−iω1t,

χð3ÞξR;ξR
ð2; 1;−1; 2Þ ¼ ξ2R

ϵ0V
× f4GRðωmn ¼ 0Þ þ 2GRð−ω1 þ ω2Þ þ 2GRðω1 þ ω2Þg;

χð3ÞξR;b
ð2; 1;−1; 2Þ ¼ ξRZ̃�bffiffiffi

2
p

ϵ0V
× f½2ðGIR

1 þGIR
−1 þ GIR

2 þ GIR
−2Þ þ 8GIR

2 �GRðωmn ¼ 0Þ

þ ½4GIR
2 þ 2ðGIR

1 þ GIR
−1Þ�GRð−ω1 þ ω2Þ þ ½4GIR

2 þ 2ðGIR
1 þGIR

−1Þ�GRðω1 þ ω2Þg;

χð3Þb;bð2; 1;−1; 2Þ ¼
ðbZ̃�2Þ
ϵ0V

× f2ðGIR
1 þGIR

−1 þ GIR
2 þGIR

−2ÞGIR
2 GRðωmn ¼ 0Þ

þ ðGIR
2 GIR

2 þGIR
1 GIR

2 þ GIR
2 GIR

−1 þ GIR
1 GIR

−1ÞGRð−ω1 þ ω2Þ
þ ðGIR

2 GIR
2 þGIR

1 GIR
2 þ GIR

2 GIR
−1 þ GIR

1 GIR
−1ÞGRðω1 þ ω2Þg;

KHALSA, BENEDEK, and MOSES PHYS. REV. X 11, 021067 (2021)

021067-14



χð3ÞξR;B
ð2; 1;−1; 2Þ ¼ ξRZ̃�2Bffiffiffi

2
p

ϵ0V
× f4ðGIR

1 GIR
−1 þ GIR

2 GIR
−2ÞGRðωmn ¼ 0Þ

þ 4ðGIR
−1G

IR
2 ÞGRð−ω1 þ ω2Þ þ 4ðGIR

1 GIR
2 ÞGRðω1 þ ω2Þg;

χð3Þb;Bð2; 1;−1; 2Þ ¼
Z̃�3bB
ϵ0V

× f2ðGIR
1 GIR

−1 þGIR
1 GIR

2 þGIR
−1G

IR
2 þGIR

2 GIR
2 þ 2GIR

2 GIR
−2ÞGIR

2 GRðωmn ¼ 0Þ

þ 2ð2GIR
1 GIR

−1 þ GIR
1 GIR

2 þGIR
−1G

IR
2 ÞGIR

2 GRð−ω1 þ ω2Þ
þ 2ð2GIR

1 GIR
−1 þ GIR

1 GIR
2 þGIR

−1G
IR
2 ÞGIR

2 GRðω1 þ ω2Þg;

χð3ÞB;Bð2; 1;−1; 2Þ ¼
Z̃�4B2

ϵ0V
× f2ðGIR

1 GIR
−1 þ GIR

2 GIR
−2ÞðGIR

2 Þ2GRðωmn ¼ 0Þ

þ 2ðGIR
1 GIR

−1ÞðGIR
2 Þ2GRð−ω1 þ ω2Þ þ 2ðGIR

1 GIR
−1ÞðGIR

2 Þ2GRðω1 þ ω2Þg: ðA10Þ
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