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We introduce the time-dependent density matrix renormalization group (tDMRG) as a solution to a long-
standing problem in spintronics—how to describe spin-transfer torque (STT) between flowing spins of
conduction electrons and localized spins within a magnetic material by treating the dynamics of both spin
species fully quantum mechanically. In contrast to conventional Slonczewski-Berger STT, where the
localized spins are viewed as classical vectors obeying the Landau-Lifshitz-Gilbert equation and where
their STT-driven dynamics is initiated only when the spin polarization of flowing electrons and localized
spins are noncollinear, quantum STT can occur when these vectors are collinear but antiparallel. Using
tDMRG, we simulate the time evolution of a many-body quantum state of electrons and localized spins,
where the former are injected as a spin-polarized current pulse while the latter comprise a quantum
Heisenberg ferromagnetic metallic (FM) spin-1

2
XXZ chain initially in the ground state with spin

polarization antiparallel to that of injected electrons. The quantum STT reverses the direction of localized
spins, but without rotation from the initial orientation, when the number of injected electrons exceeds the
number of localized spins. Such nonclassical reversal, which is absent from Landau-Lifshitz-Gilbert
dynamics, is strikingly inhomogeneous across the FM chain, and it can be accompanied by reduction of the
magnetization associated with localized spins, even to zero at specific locations. This feature arises because
quantum STT generates a highly entangled nonequilibrium many-body state of all flowing and localized
spins, despite starting from the initially unentangled ground state of a mundane FM. Furthermore, the
mutual information between localized spins at the FM edges remains nonzero even at infinite separation as
the signature of dynamical buildup of long-range entanglement. The growth in time of entanglement
entropy differentiates between the quantum and conventional (i.e., noncollinear) setups for STT, reaching a
much larger asymptotic value in the former case.

DOI: 10.1103/PhysRevX.11.021062 Subject Areas: Condensed Matter Physics,
Quantum Information, Spintronics

I. INTRODUCTION

The conventional spin-transfer torque (STT) has been
at the forefront of basic [1] and applied [2] research in
spintronics since the seminal theoretical predictions of
Slonczewski [3] and Berger [4] and its experimental
confirmations, initially in spin valves [5–7] and later in
magnetic tunnel junctions [8–10]. Its key requirement is
that the spin polarization of flowing conduction electrons
injected into a ferromagnetic metal (FM) must be noncol-
linear to FM magnetization, as illustrated in Fig. 1(b).

Thus, it came as a great surprise when current-
driven magnetization dynamics was recently observed at
ultralow T ∼ 1 K temperatures [11,12] in FM-polarizer/
normal-metal/FM-analyzer spin valves with collinear
magnetizations. Although thermal fluctuations of magneti-
zation can create the required noncollinearity of magne-
tizations of two ferromagnetic layers within spin valves (or
magnetic tunnel junctions) at room temperature [12], they
are frozen at ultralow temperatures of the experiment in
Ref. [11]. Thus, the effect observed in Ref. [11] is dubbed
“quantum STT” [12] and believed to be dissociated from
conventional STT. In fact, few earlier experiments [13–15]
have reported current-driven excitation of high-energy
magnons (with ∼1 THz frequencies, which is orders
of magnitude higher than typical ∼1 GHz magnetization
dynamics driven by conventional STT), suggesting that
collinear [but antiparallel, as illustrated in Fig. 1(c)] spin
polarization of flowing conduction electrons and localized
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magnetic moments drives the dynamics of the latter, which
is, therefore, also apparently dissociated from conven-
tional STT.
The “standard model” [1] of conventional STT involves

localized magnetic moments Mi, viewed as classical
vectors of fixed length, which interact with a nonequili-
brium electronic spin density si, computed by some steady-
state [19–22] or time-dependent [16,23,24] single-particle
quantum transport formalism. The nonequilibrium elec-
tronic spin density is then fed into the Landau-Lifshitz-
Gilbert (LLG) equation [17] for MiðtÞ in order to include
Slonczewski-Berger STT ∝ si ×Mi. Thus, in the context
of collinear spin valve setup of Ref. [11], where the
conventional Slonczewski-Berger STT ∝ si ×Mi ≡ 0,
the standard model predicts no effect. This result is also
illustrated by static MiðtÞ, despite injected current pulse,
in the movies in Supplemental Material [18] animating
Figs. 1(a) and 1(c), which are obtained from time-
dependent nonequilibrium Green function combined with
LLG (TDNEGFþ LLG) simulations [16,23,24] as an
example of quantum-for-electrons–classical-for-localized-
spins approach falling into the category of the standard
model. In contrast,MiðtÞ exhibit nontrivial dynamics in the
TDNEGFþ LLG-computed movie [18] which animates
Fig. 1(b), as expected from conventional STT∝ si×Mi≠0
being nonzero in the noncollinear setup in Fig. 1(b).
Let us recall that, in general, the LLG description [17] of

the dynamics of localized spins is justified [25,26] only in
the limit of large localized spins S → ∞ and ℏ → 0 (while

S × ℏ → 1), as well as in the absence of entanglement in
many-body quantum state of localized spins. Entanglement
describes genuinely quantum and nonlocal correlations
between different parts of a physical system. While the
LLG description often captures experiments on realistic
materials where S is finite, it inevitably becomes
inapplicable [25,26] in the presence of such many-body
entanglement [27,28], because the length jMiðtÞj is then
changing in time with smaller values signifying higher
entanglement. For example, even if we start with a
separable (unentangled) state of NFM localized spins as
the ground state of the FM-analyzer at t ¼ 0,
jΦðt ¼ 0Þilspins ¼ j↓1↓2…↓NFM

i, spin-polarized current
injection in the collinear setup in Fig. 1(c) or noncollinear
setup in Fig. 1(b) eventually generates superpositions
[Eq. (15)] of such separable states. This result means that
the quantum state of localized spins will become both
mixed [29], due to being a subsystem of a larger composite
quantum system which includes flowing electrons, and
entangled with its measures of entanglement monotonically
increasing in time (Fig. 7). In general, nonequilibrium
quantum systems left unobserved (i.e., without their unitary
evolution being punctuated by nonunitary projective
measurements) tend to evolve toward states of higher
entanglement [30], as observed experimentally [31] at
sufficiently low temperature ensuring that decoherence
due to external environment is suppressed. In addition,
jΦðt ¼ 0Þilspins could be entangled from the outset, as is the
case of strongly electron-correlated and/or exotic solid-
state materials such as quantum antiferromagnets [32,33],
Mott insulators [32], and quantum spin liquids [34]—in all
three cases, many-body entanglement [27,28] in the ground
state in equilibrium leads to Miðt ¼ 0Þ≡ 0 so that one
again encounters a situation where the conventional
Slonczewski-Berger STT ∝ si ×Mi ≡ 0 cannot be initi-
ated. Thus, either due to entanglement already present in
jΦðt ¼ 0Þilspins or due to dynamical buildup of entangle-
ment in the time-dependent quantum state, the LLG
equation for localized spins—which evolves them as
classical vectors while assuming that their trajectories
mimic trajectories of the quantum-mechanical spin expect-
ation values—becomes inapplicable. Instead, time evolu-
tion of localized spins must be treated quantum
mechanically with their individual expectation values
SiðtÞ [or MiðtÞ ∝ SiðtÞ] calculated only at the end—we
term any such situation where the current-driven dynamics
of localized spins must be described fully quantum
mechanically as quantum STT.
Surprisingly, despite a long history of STT, an estab-

lished fully quantum-mechanical framework for coupled
dynamics of localized spins and flowing electron spins, as
well as transfer of spin angular momentum between them,
is still lacking [11,12,35,36]. Since both electrons and
localized spins have to be evolved quantum mechanically
by such a framework, it invariably has to be constructed

(a)

(b)

(c)

FIG. 1. Illustration of three types of geometries of flowing
conduction electron spins (blue arrow), assumed to be polarized
by the FM-polarizer layer (not shown explicitly), with respect to
localized spins (red arrows) within the FM-analyzer layer onto
which electrons are impinging: (a) parallel; (b) noncollinear; and
(c) antiparallel. The conventional STT [1,3,4] is nonzero only in
(b), while quantum STT is nonzero in both (b) and (c). Blue and
red arrows represent expectation values of the corresponding
quantum-mechanical spin operators. For conventional STT, red
arrows are modeled as classical vectors of fixed length [1,16,17],
whose time evolution due to conventional STT is animated by
three TDNEGFþ LLG-computed movies in Supplemental
Material [18] [showing no dynamics for (a) and (c)].
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using the tools of nonequilibrium quantum many-body
theory. A handful of recent theoretical studies [33,37–40]
offer insights into possible microscopic mechanisms of
quantum STT. However, they rely on either (i) a mapping of
original operators of localized spins to bosonic operators
and additional approximations [41,42] that do not [43]
allow one to track the time evolution of localized spins once
they deviate too far from the initial orientation set by the
anisotropy axis [37,38] or (ii) considering only one injected
spin-polarized electron [33,39,40], which is insufficient to
reverse many localized spins because of demand posed by
spin angular momentum conservation.
In this study, we introduce the adaptive time-dependent

density matrix renormalization group (tDMRG) [44–48] as
a numerical framework capable of describing quantum and
conventional STT on the same footing. Since this simu-
lation method works directly with the original quantum-
mechanical operators of the localized spins, it can capture
reversal of localized spins due to STT which is highly
sought in spintronic applications [1,2,22,24]. We demon-
strate this reversal by applying the tDMRG framework to a
one-dimensional (1D) setup depicted in Fig. 2, where a
quantum Heisenberg FM spin-1

2
XXZ chain is attached to

the left (L) and right (R) fermionic leads [49,50] modeled
as 1D tight-binding chains of finite length. The nonzero
electron hopping between the sites of the XXZ chain means

that the FM chain models the metallic FM-analyzer layer
that is receiving STT. From the viewpoint of the physics of
strongly correlated electrons, this model can also be
interpreted as a Kondo-Heisenberg chain [51] sandwiched
by fermionic leads, with ferromagnetic exchange interac-
tion between localized spins, as well as between localized
spins and injected flowing electrons.
The role of the FM-polarizer layer is simulated by filling

Nconf ¼ 10 sites within the L lead with Ne ∈ f1; 5; 8g
electrons, which are spin polarized in a desired direction by
applying an external magnetic field Be [see Fig. 2(a)
depicting the region where this field is applied] in that
direction. They are also confined into a quantum well for
times t < 0, as illustrated in Fig. 2(a). By removing the
confining potential for times t ≥ 0, electrons spread into
the region of the localized FM moments, as illustrated in
Fig. 2(b), simulated in Fig. 3, and animated in the tDMRG-
computed movie in Supplemental Material [18]. This
protocol mimics injection of a spin-polarized current
pulse often employed in STT-operated spintronic devices
[1,2,22,24]. Prior to explaining our principal results in
Figs. 3–8 for the STT-driven quantum dynamics of the local
magnetization across the FM chain, we first introduce
useful concepts and necessary notation.

II. MODEL HAMILTONIAN

The setup illustrated in Fig. 2 is a 1D chain of N sites
where electrons and localized spins are described by the
Hamiltonian

(a)

(b)

FIG. 2. Schematic view of a two-terminal setup for tDMRG
calculations where a 1D tight-binding chain (blue dots) of N ¼
75 sites, with electron nearest-neighbor hopping γ between all
sites, hosts NFM ¼ 5 localized spins-1

2
(red arrows) comprising a

ferromagnetic quantum Heisenberg XXZ chain. The initial NL ¼
35 sites within the left fermionic lead also include Nconf ¼ 10
sites where the confining potential V is applied to Ne ∈ f1; 5; 8g
electrons filling those sites. For t < 0, external magnetic fieldsBe
and BFM polarize electron spins along the þz axis or þx axis and
localized spins along the −z axis, respectively. For t ≥ 0, both
magnetic fields and the confining potential are switched off, so
that electrons spread from left to right, as also animated by the
tDMRG-computed movie in Supplemental Material [18].

(a)

(b)

FIG. 3. Spatiotemporal profiles of electronic (a) charge density
and (b) spin-z density for a spin-polarized current pulse composed
of Ne ¼ 8 electrons injected into the FM region in Fig. 2. The
green horizontal lines in both panels mark the first and the last
localized spin of the FM region. Electrons are initially (t < 0) spin
polarized along the þz axis, while localized spins are polarized
along the−z axis. The strength of sd exchange interaction between
electron spin and localized spins is Jsd ¼ 0.5γ. Both panels are
animated as the tDMRG-computed movie in Supplemental
Material [18] for Jsd ¼ 0.5γ and Jsd ¼ 2.0γ.
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Ĥ ¼ Ĥe þ Ĥlspins þ Ĥe−lspins þ ĤV;Bðt < 0Þ: ð1Þ

The tight-binding Hamiltonian for electrons

Ĥe ¼ −γ
XN−1

i¼1

ðĉ†i↑ĉiþ1↑ þ ĉ†i↓ĉiþ1↓ þ H:c:Þ ð2Þ

operates on all N ¼ 75 sites, where ĉ†iσ (ĉiσ) creates
(annihilates) an electron with spin σ ¼ ↑;↓ on site i.
The nearest-neighbor (NN) hopping parameter γ ¼ 1 eV
sets a unit of energy. Each site hosts one of the four
possible electronic quantum states—empty j0i, spin-up
j↑i ¼ ĉ†i↑j0i, spin-down j↓i ¼ ĉ†i↓j0i, and doubly

occupied j↑↓i ¼ ĉ†i↑ĉ
†
i↓j0i—from which one can construct

4N many-body states that span the Fock space F e. The
operators for the total number of electrons, N̂e ¼

P
N
i¼1 n̂i,

and total electron spin along the α axis, ŝαe ¼
P

N
i¼1 ŝ

α
i ,

are given by the sums of local (per-site) charge
and spin density operators, n̂i ¼

P
σ¼f↑;↓g ĉ

†
iσ ĉiσ and

ŝαi ¼
P

σ¼f↑;↓g ĉ
†
iσσ̂

α
σσ0 ĉiσ0 , respectively, where σ̂α is the

Pauli matrix. Out of N ¼ NL þ NFM þ NR sites in
Fig. 2, the first NL ¼ 35 belong to the L fermionic lead,
and the last NR ¼ 35 belong to the R fermionic lead.
The middle NFM ¼ 5 sites host localized spins whose

mutual interaction is described by ferromagnetic XXZ
spin-1

2
quantum Heisenberg Hamiltonian

Ĥlspins ¼ −
XNFM−1

i¼1

½JzŜzi · Ŝziþ1 þ JðŜxi · Ŝxiþ1 þ Ŝyi · Ŝ
y
iþ1Þ�:

ð3Þ

Here, Ŝαi ¼ Î1 ⊗ � � � ⊗ σ̂α ⊗ � � � ⊗ ÎNFM
acts nontrivially

only on the Hilbert spaceHi of localized spin at site i; Îj is
the unit operator in Hj; and the NN exchange interactions
between localized spins are J ¼ 0.1γ and Jz ¼ 0.1005γ,
thereby including anisotropy along the z axis. The
2NFM-dimensional Hilbert space of all localized spins is
constructed as Hlspins ¼ H1 ⊗ H2 ⊗ � � � ⊗ HNFM

. Thus,
the total Hamiltonian in Eq. (1) acts on the space
F e ⊗ Hlspins, where the interaction between conduction
electron spins and localized spins is described by

Ĥe−lspins ¼ −
XNFM

i¼1

JsdðŝxiþNL
· Ŝxi þ ŝyiþNL

· Ŝyi þ ŝziþNL
· Ŝzi Þ:

ð4Þ

Here, Jsd ¼ 0.5γ (the tDMRG-computed movie in
Supplemental Material [18] shows an additional case with
Jsd ¼ 2.0γ) is interpreted as either sd [1] or Kondo

ferromagnetic exchange [51] interaction in the fields of
spintronics or strongly correlated electrons, respectively.
For the purpose of preparing a many-electron spin-

polarized current pulse, we employ the following term:

ĤV;Bðt < 0Þ ¼ −V
XNconf

i¼1

ðĉ†i↑ĉi↑ þ ĉ†i↓ĉi↓Þ

−
XNconf

i¼1

gμBŝi ·Be −
XNFM

i¼1

gμBŜi · BFM ð5Þ

in Eq. (1) which acts at times t < 0 and is used only once to
initialize the system. The first term in Eq. (5) is a confining
on-site potential of magnitude V ¼ 10γ acting within the
first Nconf ¼ 10 sites of NL ¼ 35 sites of the L fermionic
lead, as illustrated in Fig. 2(a). In addition, the second
term in Eq. (5) polarizes spins of the confined electrons, via
an external magnetic field jgμBBej ¼ 100γ, along the þz
axis for the collinear setup of quantum STT analyzed in
Figs. 3, 4, 6(a), 6(b), 7, and 8, as well as in the tDMRG-
computed movie in Supplemental Material [18]; or it
polarizes spins of the confined electrons along the þx
axis for the noncollinear setup of conventional STT [1]
analyzed in Figs. 5, 6(c)–6(e), and 7. The third term in
Eq. (5) is employed to polarize the localized spins along the
−z axis using an external magnetic field jgμBBFMj ¼ 100γ.
The electron gyromagnetic ratio is denoted by g, and μB is
the Bohr magneton.

III. TDMRG METHODOLOGY ADAPTED TO
QUANTUM SPIN-TRANSFER TORQUE

The exact time evolution of the system in Fig. 2 can, in
principle, be obtained by brute-force application of the
evolution operator for sufficiently small time step δt

jΨðtþ δtÞi ¼ e−iĤδt=ℏjΨðtÞi: ð6Þ

Such an approach is, however, limited to small systems due
to the exponential increase of the basis with system size.
For example, for a system ofN ¼ 75 sites hostingNFM ¼ 5

localized spin-1
2
, onto which a spin-polarized current

pulse composed of Ne ¼ 8 electrons is impinging in
Fig. 2(b), the vectors and matrices in Eq. (6) have size
ð2NNe

Þ2NFM ≈ 1.68 × 1014.
To overcome this unfavorable scaling, we employ

adaptive tDMRG framework [44–48] for which computa-
tional complexity is polynomial (instead of exponential) in
system size. Let us first recall that the ground state DMRG
[52–54] method can provide extremely accurate results
for a many-body Hamiltonian [such as Ĥ in Eq. (1)]. The
premise is to obtain a wave function that approximates
the actual ground state in a reduced Hilbert space. The
proposed solution has the very peculiar form of a “matrix-
product state” (MPS) [55]
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jΨi ¼
X
fsg

A½s1�α1A½s2�α1;α2…A½sN−1�αN−1αN

× A½sN �αN js1…sNi; ð7Þ

where the coefficients of an MPS are generated by
contracting matrices A that are identified by a label
corresponding to the state of the physical degree of freedom
(the spin s, for instance). The row and column indices of the
matrices correspond to the so-called “bond indices,” with a
“bond dimension” χ, also referred to as the number of
DMRG basis states. One has to find the coefficients of this
wave function variationally, and the DMRG is one way
to do it efficiently. The accuracy of the wave function
increases with the bond dimension and can be made
asymptotically exact, as this bond dimension approaches
the total number of degrees of freedom. Most importantly,
no a priori assumptions are made about the form of the
coefficients or the underlying physics. The power of the
method is precisely that it is “smart” enough to be able
to find for us the best possible candidate wave function of
that form. Moreover, it can find numerically exact results
(within machine precision) even with small matrices (small
bond dimension). Even though the accuracy is finite, it is
under control, so that we can obtain results that are
essentially exact by just increasing the matrix size.
The generalization of DMRG to time-dependent prob-

lems requires one to iteratively optimize the matrices,
which is known as the adaptive tDMRG algorithm, such
that the balanced least-squares representation of the wave
function is achieved for the whole time interval of propa-
gation. We use the adaptive tDMRG formulation of
Ref. [44], where the small-time evolution operator is
decomposed into

e−iĤδt=ℏ ≈ e−iĤ1δt=2ℏ…e−iĤN−1δt=2ℏ

×e−iĤN−1δt=2ℏ…e−iĤ1δt=2ℏ; ð8Þ

for an arbitrary many-body Hamiltonian Ĥ ¼ P
N−1
i¼1 Ĥi

with nearest-neighbor interactions between N sites and Ĥi
denoting its term on the bond i. Such approximation incurs
an error of the order Oðδt3Þ. The small time step is chosen
as δt ¼ 0.1ℏ=γ. We start the propagation with χ ¼ 100

states and limit the truncation error to 10−7, while the
maximal number of states allowed during the evolution is
set to χmax ¼ 400.
For t ≥ 0, ĤV;B ≡ 0 so that spin-polarized conduction

electrons spread out from the region of Nconf sites and are
injected into the FM chain. This process is illustrated
schematically in Fig. 2(b), while the local charge and
spin-z densities are computed numerically in Fig. 3 and
animated in the tDMRG-computed movie in Supplemental
Material [18]. Since fermionic leads are not semi-infinite
as in the usual single-particle quantum transport calcula-
tions [16,19–24], the many-body system composed of

conduction electrons and localized spins can be evolved
only for a limited time [49,50] before electrons are back-
scattered by the right boundary which breaks L → R
current flow. For example, in Fig. 3, such backscattering
occurs at t ≃ 40ℏ=γ for Ne ¼ 8 injected electrons.
Nevertheless, the quantum dynamics of flowing electron
spins and localized spins captured by tDMRG calculations
before the boundary reflection is fully equivalent to that in
an open quantum system.

IV. PURELY QUANTUM SPIN-TRANSFER
TORQUE IN COLLINEAR GEOMETRY

In the collinear setup [11,12], as one of the generators of
purely quantum STT, the spin polarization of the injected
conduction electrons is collinear but antiparallel to that
of the localized spins at t ¼ 0. In the Fock space sector
with zero electrons Ne ¼ 0, the many-body quantum state
jΨðtÞi for t ≥ 0 within F e ⊗ Hlspins space is trivially
jΨðtÞi ¼ jvacie ⊗ jΦilspins, where the first factor of such
a separable quantum state is the electron vacuum state
jvacie ∈ F e and the second factor jΦilspins ¼
j↓1…↓NFM

i ∈ Hlspins is the ground state of the FM chain.
The Fock space sector Ne ¼ 1 has been studied for an
infinite (NFM → ∞) metallic FM chains long before [56]
theoretical predictions for STT, but with the focus on
magnetic polarons as the bound state of the injected
electron and low-energy excitations (spinons or magnons)
of all localized spins. In such a case, and for a FM chain
[39,40] of finite length, we find jΨðt≥0Þi¼c0ðtÞjorbi⊗
j↑ei⊗ jΦiþc1ðtÞjorbi⊗ j↓ei⊗ j↑1…↓NFM

iþ���þcNFM
ðtÞ

jorbi⊗ j↓ei⊗ j↓1…↑NFM
i. This superposition is con-

structed by including all possible states allowed by the
conservation of the z component of total spin:

½Ĥ; ŝze þ Ŝzlspins� ¼ 0; ð9Þ

where Ŝzlspins ¼ Ŝz1 þ � � � ŜzNFM
. Here, jorbi is orbital state

of a single injected electron, and the coefficients
c0ðtÞ;…; cNFM

ðtÞ studied in Ref. [39] can be much more
complicated than those for magnons (or spinons) in an
infinite FM chain [56] due to different boundary
conditions.
The quantum state jΨðtÞi also defines the pure state

density matrix jΨðtÞihΨðtÞj. Since such a state for Ne ≥ 1
is a sum of separable states and, therefore, entangled,
the quantum state of subsystems must be described by
the reduced density matrix [27–29]. This description is
exemplified by

ρ̂1 ¼ TrotherjΨðtÞihΨðtÞj ¼
1

2
½Î þ S1 · σ̂�; ð10Þ

which is the density matrix of the first localized spin within
the FM region in Fig. 2. It is obtained by partial trace over
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all states within F e ⊗ Hlspins that are not in H1. Here, Î is
the unit 2 × 2 matrix, and σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ is the vector of
the Pauli matrices. The magnitude jS1j of the expectation
value of localized spin-1

2
,

S1 ¼ Tr½ρ̂1σ̂�; ð11Þ

also serves as purity specifying whether its quantum state is
fully (jS1j ¼ 1) or partially (0 < jS1j < 1) coherent. We
use label O≡ hÔi for the expectation value of an operator
Ô in a pure many-body state of the total system electrons
plus localized spins or in a mixed quantum state of a
relevant (depending on observable Ô) subsystem. Thus,
true decoherence (i.e., decoherence that cannot be attrib-
uted to any classical noise [57]) due to many-body
entanglement [27,28] can lead to reduction of local and
total magnetization, Mi ¼ gμBSi and M ¼ PNFM

i¼1 gμBSi,
respectively, because of reduction of Si expectation
values. Such behavior is obviously forbidden [25,26] in
classical magnetization dynamics described by the LLG
equation [16,17,20].
The time evolution of S1ðtÞ is shown in Figs. 4(a)–4(c)

for Ne ¼ 1, 5, 8 injected electrons, respectively, as well as
in the tDMRG-computed movie in Supplemental Material
[18] for all SiðtÞ using Ne ¼ 8. Because of spin angular
momentum conservation, only Szi ðtÞ ≠ 0. The magnetiza-
tion reversal sought in spintronic applications [1,2], where
Szi ðtÞ evolves from Szi ¼ −1 at t ¼ 0 to Szi > 0 at some later

time t > 0, occurs only when Ne > NFM. The reversal is
nonclassical, since Sxi ðtÞ ¼ Syi ðtÞ≡ 0, unlike classical
magnetization reversal [1,17,22], where Mi vectors must
rotate away from the −z axis to reach the þz axis. The
decoherence of localized spin states makes the reversal
strikingly inhomogeneous (see the tDMRG-computed
movie in Supplemental Material [18]), because localized
spins away from the L-lead/FM-chain interface have
smaller jSij or Szi can remain negative. The decoherence
can be partially suppressed and all localized spins reversed
by increasing Jsd, despite larger Jsd concurrently enhancing
reflection of the current pulse at the L-lead/FM-chain
interface (see the tDMRG-computed movie in
Supplemental Material [18]). The spin expectation value
per electron, s̃e ¼ se=Ne, plotted in Figs. 4(d)–4(f), shows
that, due to many-body entanglement, electron spin states
also decohere with purity js̃ej < 1.

V. QUANTUM AND CONVENTIONAL
SPIN-TRANSFER TORQUE IN
NONCOLLINEAR GEOMETRY

As a comparison with purely quantum STT analyzed in
Sec. IV for collinear setup, in Fig. 5, we apply tDMRG
framework to noncollinear setup where conventional STT
also exists [Fig. 1(b)] due to injected electrons being spin
polarized along the þx axis while localized spins are
polarized along the −z axis. Although this setup is
considered [11,12] as a completely different situation
from quantum STT in a collinear geometry, the state j→x

ei
in quantum language corresponds to the injection of a
superposition of spin-up and spin-down states, j →x

ei ¼
ðj↑ei þ j↓eiÞ=

ffiffiffi
2

p
. In this case, we find in Figs. 5(a)–5(c)

how localized spins always rotate, Sxi ≠ 0 and Syi ≠ 0, away
from the easy z axis for t ≥ 0 akin to classical localized

(a) (b) (c)

(d) (e) (f)

FIG. 4. Time evolution of the expectation value of first
localized spin S1 ¼ ðSx1; Sy1; Sz1Þ and the purity jS1j of its
quantum state (gray background) for a different number of
injected electrons which are initially spin polarized along the
þz axis: (a) Ne ¼ 1; (b) Ne ¼ 5; and (c) Ne ¼ 8. (d)–(f) plot
average electron spin expectation value s̃e ¼ se=Ne and purity
js̃ej. The sd exchange interaction between electron spin and
localized spins is Jsd ¼ 0.5γ. (c) and (f) are animated as the
tDMRG-computed movie in Supplemental Material [18] for
Jsd ¼ 0.5γ and Jsd ¼ 2.0γ.

(a) (b) (c)

(d) (e) (f)

FIG. 5. (a)–(f) are counterparts of Figs. 4(a)–4(f), but for
injected electrons which are spin polarized at t < 0 along the
þx axis. This polarization creates a noncollinear geometry of
flowing and localized spins, as required for conventional STT [1].
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spins [1,17,22]. However, jS1j < 1 in Figs. 5(a)–5(c)
signifies the same decoherence due to many-body entan-
glement found for quantum STT in Fig. 4.

VI. WHAT IS “TRANSFERRED” IN
SPIN-TRANSFER TORQUE?

The conventional STT is commonly computed using
some type of single-particle steady-state quantum transport
formalism [19,20,22] to obtain the nonequilibrium electron
spin density si injected into the FM-analyzer. Because of
noncollinearity between si and the classical magnetization
M of the FM-analyzer, contributions to si from propagating
states oscillate as a function of position without decaying.
Nevertheless, the transverse (with respect toM) component
of si is brought to zero within ∼1 nm away from the
normal-metal/FM-analyzer interface by averaging over
propagating states with different incoming momenta ℏk,
because the frequency of spatial oscillations rapidly
changes with k [19]. The angular dependence of STT ∝P

i si ×M can be fed [20,22] into the LLG calculations,
which often consider only the macrospin [1,17,58]
M ¼ P

i Mi. Thus, in this picture, the microscopic mecha-
nism of how spin angular momentum is transferred from
electron subsystem to magnetization remains hidden.

The tDMRG simulations unveil such a mechanism
in Figs. 6(a) and 6(b) for quantum STT, as well as in
Figs. 6(c)–6(e) for conventional STT, where the total spin
of all electrons szeðtÞ decays in time while the total spin of
all localized spins SzlspinsðtÞ increases as injected flowing
spins try to align localized spins in the same direction.
Figures 6(a), 6(b), and 6(e) also validate our calculations
by confirming that szeðtÞ þ SzlspinsðtÞ remains constant, as
expected from the conservation law in Eq. (9). Because of
the complex superposition of many-body states of electrons
plus localized spins, the quantum dynamics of localized
spins is always highly inhomogeneous and, therefore,
quite different from the macrospin approximation [17]
or simple spin-wave excitations [58] assumed in the
modeling of classical magnetization dynamics driven by
conventional STT.

VII. DYNAMICAL BUILDUP OF LONG-RANGE
ENTANGLEMENT

The nonequilibrium many-body states of electrons and
localized spins generated by STT exhibit (Fig. 7) growth
of entanglement entropy [31,59]. Using entanglement
measures [27,28] beyond entropy, we also predict that
they will exhibit long-range [27,28] entanglement (Fig. 8).
Massively and long-range entangled many-body quantum
states have been sought among ground states of exotic
phases of solid-state materials [27,28,34] and synthetic
quantum matter like Rydberg atoms and trapped ions [60].
In the latter case, entanglement growth has been measured
experimentally [31] in a system of ∼10 trapped ion qubits.
To quantify entanglement growth as a function of time, we
compute the time evolution of the standard [27,28,59] von
Neumann entanglement entropy for half of the system:

SðNþ1Þ=2ðtÞ ¼ −Tr½ρ̂ðNþ1Þ=2ðtÞ ln ρ̂ðNþ1Þ=2ðtÞ�; ð12Þ

where ρ̂ðNþ1Þ=2ðtÞ is a many-body density matrix of a
subsystem composed of three localized spins and of all
electrons residing at time t within the first 38 sites of the
system in Fig. 2. In addition, we also calculate the so-called
Meyer-Wallach (MW) measure [28] of global entanglement
[61], which is defined for a multipartite quantum system
composed of two-level subsystems as

QMW¼2

�
1−

1

NFMþNe

�XNFM

i¼1

Trρ̂2i þ
XNe

j¼1

Trρ̂2e;j

��
: ð13Þ

It quantifies average entanglement of each subsystem with
the remaining NFM þ Ne − 1 spins. The nonequilibrium
dynamics driven by quantum STT and local interactions
in the Hamiltonian in Eq. (1) conspire to increase both
SðNþ1Þ=2 [Fig. 7(a)] andQMWðtÞ [Fig. 7(b)]. The latter stays
slightly below its maximum possible value QMW ¼ 1

(obtained for Trρ̂2i ¼ Trρ̂2e;j ¼ 0) when Ne > NFM because

)b()a(

(e)(d)(c)

FIG. 6. Time evolution of the sum of spin expectation values of
all NFM ¼ 5 localized spins SzlspinsðtÞ and all injected (a) Ne ¼ 8
or (b) Ne ¼ 5 electrons szeðtÞ in collinear and antiparallel setup
of quantum STT analyzed in Figs. 4(b), 4(c), 4(e), and 4(f). The
same time evolution, but for noncollinear setup of conventional
STT using Ne ¼ 8 as analyzed in Figs. 5(c) and 5(f), is shown in
(c)–(e). The z component of total spin is manifestly conserved
(dashed blacked line) in (a), (b), and (e).
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of the initial condition sze þ Szlspins ≠ 0. Both SðNþ1Þ=2ðtÞ
and QMWðtÞ reach smaller asymptotic values (Fig. 7) at
longer times in the case of conventional STT in noncol-
linear geometry, so that they clearly differentiate between
purely quantum and conventional STT.
For the purpose of demonstrating dynamical buildup

of long-range entanglement in nonequilibrium quantum
many-body states generated by quantum STT, we addi-
tionally analyze the mutual information [28]

Ið1jNFMÞ ¼ S1 þ SNFM
− S1;NFM

ð14Þ

between localized spins at the edge of the FM region, i.e., at
sites 1 and NFM. Here, S1 is the von Neumann entropy
computed via Eq. (12) from the density matrix ρ̂1 [Eq. (10)]
of localized spin 1 at the left edge of FM; SNFM

is the von
Neumann entropy of localized spin at the right edge of the
FM region; and S1;NFM

is the von Neumann entropy of a
subsystem composed of these two localized spins. The
three entropies are evaluated for a many-body state
generated after Ne electrons are injected into FM with
NFM ¼ Ne localized spins, so that at t ¼ 0 the state is
separable: jΨðt ¼ 0Þi ¼ jorbi ⊗ j↑e↑e…↑ei ⊗ j↓1↓2…
↓NFM

i. To show explicitly the type of state generated
and also to be able to analyze its properties in the limit
NFM → ∞, we do not evolve the initial state by tDMRG but
instead write for t > 0

jΨðt ≥ 0Þi ¼ jorbi ⊗ 1ffiffiffiffi
C

p ðj↑e↑e…↑ei ⊗ j↓1↓2…↓NFM
i

þ j↓e↑e…↑ei ⊗ j↑1↓2…↓NFM
i þ � � �

þ j↓e↓e…↑ei ⊗ j↑1↑2…↓NFM
i þ � � �

þ j↓e↓e…↓ei ⊗ j↑1↑2…↑NFM
iÞ: ð15Þ

The individual terms in this sum are all possible separable
states obeying the spin conservation law in Eq. (9), where
we employ simplification that coefficients in front of
each term are identical and time independent. Our
tDMRG simulation effectively generates proper nonuni-
form [39] time-dependent coefficients, and it can be
conducted for NFM ¼ Ne ∼ 100, but the state in Eq. (15)
can be written and analyzed for arbitrarily large NFM.
There are C ¼ ð2NFM

NFM
Þ ∼ 4NFM=

ffiffiffiffiffiffiffiffiffi
NFM

p
terms in the sum in

Eq. (15). Thus, the subspace of dimension ∼4NFM=
ffiffiffiffiffiffiffiffiffi
NFM

p
capturing time evolution of nonequilibrium states of the
type in Eq. (15) also furnishes an example where the
majority of all possible 4NFM states in the Hilbert space are
unphysical in the sense of not being utilized in the course of
time evolution [62].
The von Neumann entropies of the edge localized spins,

S1 ¼ SNFMþ1 ¼ ln 2, are obtained from ρ̂1 ¼ 1
2
ðj↑1ih↑1j þ

j↓1ih↓1jÞ as an incoherent mixture with zero off-diagonal
elements, while

S1;NFM
¼ NFM

2NFM − 1
ln
2NFM − 1

NFM

þ NFM − 1

2NFM − 1
ln
4NFM − 2

NFM − 1
ð16Þ

is obtained from Eq. (12) using ρ̂1;NFM
¼ TrotherjΨihΨj that

contains also nonzero off-diagonal elements. The coher-
ences encoded by the off-diagonal elements lead to nonzero
mutual information in Fig. 8 even at infinite separation
between the edge spins:

lim
NFM→∞

Ið1jNFMÞ ¼
ln 2
2

; ð17Þ

as the signature of long-range entanglement. This result
demonstrates that pure nonequilibrium many-body states of
the type displayed in Eq. (15) is macroscopically entangled
and quantum correlated. Notice that this entanglement

)b()a(

FIG. 7. (a) Time evolution of the von Neumann entropy
[Eq. (12)] of half of the whole system in Fig. 2, which includes
all electrons at time twithin the first 38 sites and three of localized
spins within the FM region. (b) Time evolution of global
entanglement measure [Eq. (13)] for a subsystem composed of
all conduction electron spins and all localized spins.

FIG. 8. Mutual information Ið1jNFMÞ [Eq. (14)] between
localized spins 1 and NFM at the edges of FM region in Fig. 2
as a function of its length NFM. The entangled nonequilibrium
many-body state characterized by Ið1jNFMÞ is generated by
quantum STT exerted by Ne ¼ NFM injected electrons [with the
simplification that all possible terms in this state enter with equal
weight in Eq. (15)]. In the limit of infinite separation between the
edges, as NFM → ∞ ⇒ Ið1jNFMÞ → ðln 2Þ=2.
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persists even as the electrons leave FM region and are no
longer interacting with the localized spins, as demonstrated
by the tDMRG-computed movie in Supplemental
Material [18].

VIII. CONCLUSIONS AND OUTLOOK

In conclusion, we introduce tDMRG as a fully quantum
many-body framework for describing transfer of spin
angular momentum between flowing electrons, comprising
a current pulse, and localized spins. Unlike the standard
model approaches to conventional Slonczewski-Berger
STT [1,16,20,23,24], which are all based on single-particle
quantum mechanics for electrons and classical LLG
description of localized spins, tDMRG can describe spin
transfer even when such approaches predict completely
absent STT. This description includes experimentally
explored collinear but antiparallel localized and flowing
spins in spin valves [11] or in schemes exciting high-energy
magnons [13–15], as well as possible future experiments
on spin-polarized current injection into strongly electron-
correlated materials like quantum antiferromagnets [32,33]
and Mott insulators [32] or exotic materials like quantum
spin liquids [34] where the expectation value of localized
spins is zero in equilibrium. In all of these situations, a
classical LLG equation description of localized spins is
inapplicable due to many-body entanglement [27,28] in
either an equilibrium state or in a nonequilibrium quantum
many-body state (or both) of all flowing electrons and
localized spins. The entanglement entropy of nonequili-
brium quantum many-body state driven by quantum STT
grows in time (Fig. 7), while the state additionally becomes
long-range entangled (Fig. 8). Thus, instead of LLG
dynamics of classical vectors assumed to mimic trajectories
of the quantum-mechanical spin expectation values, such a
nonequilibrium quantum many-body state must be evolved
and expectation values of localized spins computed only at
the end—we term any such situation quantum STT.
Looking to the future, since tDMRG is limited to 1D and

quasi-1D (such as two-leg ladders [47]) systems, modeling
of quantum STT in two-dimensional [22] and three-
dimensional [20] realistic spintronic devices over long
times requires one to develop many-body NEGF-based
algorithms [63] (as opposed to presently widely used
single-particle NEGF algorithms [16,20–24] applied to
conventional STT) where a number of technical challenges
[41,43] remain to be solved. For such necessarily pertur-
bative efforts, our tDMRG approach to quantum STToffers
rigorous nonperturbative benchmarking [63] using 1D
examples like the one in Fig. 2.
Although experimental measurement of many-body

entanglement [27,28] has been achieved in cold gases of
∼10 atoms using atomic-molecular-optical physics tech-
niques [31], it remains an outstanding challenge [27] for
solid-state materials and devices. For the special case of
quantum-STT-driven many-body entanglement in

nonequilibrium spintronic devices studied here,
we propose that, by injecting an electronic current pulse
of sufficient magnitude, many-body entanglement of a
macroscopically large number of flowing and localized
spins can be detected: (i) by first measuring the spectrum of
excitations via inelastic light scattering (Raman or
Brillouin) [64] of the FM-analyzer layer in equilibrium,
where magnons peaks will be observed; (ii) immediately
after the pulse has ceased, measure the spectrum of
excitations again where a broad continuum [34] could be
observed due to long-range entangled (Fig. 8) localized
spins of the FM-analyzer. Beyond spintronics, STT-driven
quantum dynamics of localized spins can be employed [65]
to manipulate individual spin qubits and entangle them over
very long distances.
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