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Condensed matter systems admit topological collective excitations above a trivial ground state, an
example being Chern insulators formed by Dirac bosons with a gap at finite energies. However, in contrast
to electrons, there is no particle-number conservation law for collective excitations, which gives rise to
particle-number-nonconserving many-body interactions whose influence on single-particle topology is an
open issue of fundamental interest in the field of topological quantum materials. Taking magnons in
ferromagnets as an example, we uncover topological magnon insulators that are stabilized by interactions
through opening Chern-insulating gaps in the magnon spectrum. This finding can be traced back to the fact
that the particle-number nonconserving interactions break the effective time-reversal symmetry of the
harmonic theory. Hence, magnon-magnon interactions are a source of topology that can introduce chiral
edge states, whose chirality depends on the magnetization direction. Importantly, interactions do not
necessarily cause detrimental damping but can give rise to topological magnons with exceptionally long
lifetimes. We identify two mechanisms of interaction-induced topological phase transitions—one driven by
an external field, the other by temperature—and show that they cause unconventional sign reversals of
transverse transport signals, in particular, of the thermal Hall conductivity. We identify candidate materials
where this many-body mechanism is expected to occur, such as the metal-organic kagome-lattice magnet
Cu(1,3-benzenedicarboxylate), the van der Waals honeycomb-lattice magnet CrI3, and the multiferroic
kamiokite (Fe2Mo3O8). Our results demonstrate that particle-number-nonconserving many-body inter-
actions play an important role in generating nontrivial single-particle topology.
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I. INTRODUCTION

Over the last decades, the field of solid-state physics has
seen the consolidation of quantum state geometry and
topology [1] in Bloch’s band theory [2], a prominent result
of which is the concept of Chern insulators, exhibiting the
quantum anomalous Hall effect due to topologically pro-
tected chiral edge states [3–7]. Besides electrons, the
collective excitations of crystals also obey Bloch’s band
theory, e.g., phonons or magnons, the latter being quanta
of spin waves in magnetically ordered materials [8].
With magnetic properties easily manipulated by magnetic
fields, magnonic topology offers a unique external handle
to explore the rich and still surprising fundamentals of
band theory. So far, several topological magnon phases
have been proposed and material candidates identified; the
list includes magnon Chern insulators [9–16] in Cu(1,3-
benzenedicarboxylate) [17], CrI3 [18], and YMn6Sn6 [19];

topological magnon Z2 insulators [20–24]; Dirac magnons
[25] in CrBr3 [26,27], Cu3TeO6 [28–30], and CoTiO3

[31,32]; Weyl magnons [33–39] in Lu2V2O7 [34] and
Cu2OSeO3 [39]; nodal-line magnons [32,40–43]; chiral
topological magnon insulators [44]; and second-order
topological phases [45–50]. Out of the first-order phases,
the magnonic Chern-insulating phase is the most funda-
mental because the others rely on additional symmetries:
It takes an effectively fermionic time-reversal symmetry
(causing magnonic Kramers partners) for magnon Z2

insulators; Dirac magnons need the simultaneous pres-
ence of an (effective) time-reversal and an inversion
symmetry; Weyl and nodal-line magnons are well defined
only for translationally invariant systems; and the chiral
symmetry stabilizes chiral insulators. Hence, in princi-
ple, arbitrarily small symmetry-breaking perturbations
destroy topology. In contrast, the Chern-insulating phase
is stable against considerable disorder [51–54] (too weak
to close the topological band gap), promoting the topo-
logically protected chiral edge magnons to robust, uni-
directional information highways, which are free of Joule
heating due to the chargelessness of magnons. Hence,
the actively studied field of “topological magnonics”
emerged [12,13,55–60].
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In contrast to electrons, the absence of a conservation
law for the magnon particle number admits number-
nonconserving many-body interactions and spontaneous
decays [61]. Nonetheless, neglecting magnon-magnon
interactions is widely assumed in studies on magnon
topology, typically supplemented by the statements that
they are frozen out at low temperatures and/or negligible
because of their 1=S smallness, where S is the spin length.
However, these statements do not generally apply, render-
ing magnon-magnon interactions one of the most pressing
issues in the field of magnon topology, as also acknowl-
edged in recent review articles [62–64].
The few existing studies of how interactions between

magnons influence topology have predominantly taken a
pessimistic point of view by following the suspicion that
interactions may render results obtained within the non-
interacting limit obsolete. Chernyshev and Maksimov
identified spontaneous magnon decays at zero temperature
as the main obstacle [65]. For topological magnon insula-
tors in kagome ferromagnets, they predicted a very large
zero-field magnon broadening (damping) of the size of the
topological gap. With the gap no longer well defined, the
notion of chiral in-gap states is jeopardized. Nonetheless,
McClarty and Rau pointed out that since topological
magnon gaps or band crossings necessarily occur at
finite energy, the interaction-induced self-energy is non-
Hermitian, opening up possibilities to explore non-
Hermitian magnon topology [66]. An anisotropy of the
magnon lifetime was identified as a crucial, indirect
experimental signature of non-Hermitian topology. A direct
detection of typical hallmarks of non-Hermitian topology,
e.g., exceptional points, is still impeded by the global
magnon linewidth broadening.
In principle, spontaneous magnon decays may be frozen

out at high fields, which energetically separate the one-
magnon from the two-magnon sector, rendering decays
from the former into the latter kinematically impossible
[67]. Hence, the damping of magnons can be reduced in
large fields, reinstating the notion of gaps and in-gap states.
For example, field-polarized Kitaev magnets feature well-
defined topological edge magnons despite interactions
[68]. Unfortunately, the field polarization trick is not
always applicable. If the nontrivial magnon topology relies
on noncollinearity as, for example, in kagome antiferro-
magnets [69–72], large magnon damping is inevitable
[73–75]. An exception to the rule are ferromagnetic sky-
rmion crystals that feature topologically nontrivial magnon
bands at very low energy [57,60,76]. Even for ultrasmall
skyrmions built from but a few tens of magnetic moments,
the energetically lowest nontrivial magnon band exhibits
damping much smaller than the band gaps to its adjacent
bands [77]. Hence, ferromagnetic skyrmion crystals are a
unique platform to study magnonic topology and the
validity of the noninteracting theory. Similar results
may hold for ferromagnetic bimeron crystals [78] and

antiferromagnetic skyrmion crystals [79], a subclass of
which [80] was shown to exhibit topological magnons at
lowest possible energies [81], thereby minimizing the
kinematically allowed phase space for decays.
The above-outlined state-of-the-art suggests that magnon-

magnon interactions need to be suppressed for Hermitian
magnon topology to be appreciated. Herein, we explore
particle-number-nonconserving interactions beyond their
detrimental lifetime broadening effect. Rather than ana-
lyzing if magnon topology is present “in spite of inter-
actions,” we look for nontrivial magnon topology “because
of interactions.” Our main result is that interactions can
break symmetries of the harmonic theory, causing topo-
logical phase transitions. Taking honeycomb ferromagnets
as a contemporarily experimentally relevant example
[18,26,31,82–91], we account for interactions within
many-body perturbation theory to demonstrate how zero-
temperature interactions cause a spontaneous mass gap of
magnonic Dirac cones. We construct an effective theory to
show that the interaction-induced mass gap is topologically
nontrivial. Hence, a nontrivial Chern marker and winding
number are found, signaling topologically protected chiral
edge magnons in finite samples, a prediction that we
explicitly verify numerically; the handedness of the chiral
edge magnons is linked to the magnetization direction. This
finding establishes the existence of nontrivial Hermitian
magnon topology of genuinely quantum mechanical origin,
i.e., due to spontaneous decays at order 1=S, in sharp
contrast to existing studies of Hermitian magnon topology,
whose results could equally be arrived at by solving the
linearized classical Landau-Lifshitz equation.
Our analysis reveals two unconventional mechanisms for

topological magnon phase transitions from left- to right-
handed chirality (or vice versa): one field induced, the other
temperature induced. We relate the field-induced transition
to a Lifshitz transition in the two-particle decay contours,
signaling a saddle point in the two-magnon continuum. The
saddle point comes with a sign change in the interaction-
induced Dirac mass term, which reverses Chern numbers.
Hence, single-particle magnons can exhibit a rich topo-
logical phase diagram by virtue of their interplay with the
two-magnon manifold. Moreover, we uncover the possibil-
ity of temperature-driven topological magnon phase tran-
sitions, brought about by thermally activated collision
processes that compete with decays in that they cause
Dirac masses of opposite sign. This result establishes
temperature as an external control of topology, opening
up new avenues in topological magnonics. Both types
of topological phase transitions come with an experi-
mental signature in transport experiments. Since nontrivial
magnon topology has an impact on anomalous magnon-
mediated transverse transport of spin and heat at finite
temperatures [10,92–94], the field or temperature-induced
change in topology causes unconventional sign changes in
spin Nernst and thermal Hall conductivities.
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Furthermore, we identify two working principles that
allow for tailoring interactions in such a way that their
influence on magnon damping is suppressed, without
compromising their effect on the band-gap opening:
(i) using magnetic fields to tune Dirac cones close to the
lower threshold of the two-magnon continuum and
(ii) externally enhancing interactions because strong inter-
actions—rather than completely wiping out the spectral
weight of single-particle bands—expel the quasiparticle
peaks from the continuum, reinstating long lifetimes. These
two mechanisms, in principle, allow for arbitrarily long-
lived topological magnons brought about by magnon-
magnon interactions.
By means of exact diagonalization (ED), we extend our

analysis to the ultimate quantum limit of S ¼ 1=2 and
demonstrate the qualitative consistency between the semi-
classical spin-wave theory and a full-quantum treatment.
We conclude that, in principle, there can be a competition
between noninteracting and interacting origins of topology,
whose relative influence can be tuned by external fields.
Hence, a priori, it is not sufficient to restrict a discussion of
magnon topology to the noninteracting limit. We give an
account of how interactions could influence the magnon
topology and/or magnon-mediated anomalous transport of
several experimentally available materials that have pre-
viously been discussed in such contexts.
Overall, our results demonstrate that magnon-magnon

interactions should not be dismissed as being detrimental to
magnon topology. In contrast, they may be utilized to
stabilize topology, a finding that gives rise to the paradigm
of “interacting topological magnonics” and contributes to
the fundamental understanding of interacting topological
matter without particle-number conservation, in which
single- and many-particle sectors cannot be considered
separately.
The remainder of this paper is organized as follows.

In Sec. II, we introduce two models of honeycomb-
lattice ferromagnets—one “achiral,” the other “chiral.”
These two models differ in their symmetries, with the
achiral model featuring a Dirac-cone stabilizing symmetry
and the chiral model breaking this symmetry (Sec. II A).
Within spin-wave theory, the symmetry-breaking part of
the Hamiltonian is shown to cause particle-number-
nonconserving many-body interactions (Sec. II B), which
we account for within lowest-order perturbation theory
(Sec. II C). These interactions are shown to gap out the
Dirac cone of the chiral magnet (Sec. III B), introducing
nontrivial topology (Sec. III B 1) and chiral edge states
(Sec. III B 2). The gap is demonstrated to depend on the
magnetic field (Sec. III B 3), the strength of interactions
(Sec. III B 4), and temperature (Sec. III B 5). A topological
phase diagram is mapped out, and the topological tran-
sitions are predicted to cause unconventional sign changes
in transverse transport (Sec. III B 6). We complement the
spin-wave analysis by exact diagonalization studies in

Sec. IV. After a discussion in Sec. V, we finally conclude
in Sec. VI. Appendixes A–E provide more detailed
information on selected arguments.

II. MODELS: ACHIRAL AND CHIRAL
FERROMAGNETS ON THE
HONEYCOMB LATTICE

We consider both achiral (A) and chiral (C) two-
dimensional ferromagnets on the honeycomb lattice, as
depicted in Fig. 1. Their spin Hamiltonians read

ĤA=C ¼ ĤZ þ ĤXC þ ĤA=C
DMI; ð1Þ

where the Zeeman energy

ĤZ ¼ −
X
r

B · Ŝr ð2Þ

accounts for a magnetic field B that acts on all spin
operators Ŝr (r points to a lattice site). In both cases,
we consider

ĤXC ¼ −
J
2

X
hr;r0i

Ŝr · Ŝr0 ; ð3Þ

with positive Heisenberg exchange J between nearest
neighbors stabilizing a ferromagnetic phase. The two
models only differ in their antisymmetric exchange

ĤA
DMI ¼

Dz

2

X
⟪r;r0⟫

νr;r0z · ðŜr × Ŝr0 Þ; ð4aÞ

ĤC
DMI ¼

D
2

X
hr;r0i

dr;r0 · ðŜr × Ŝr0 Þ: ð4bÞ

In Eq. (4a), the out-of-plane, relativistic, Dzyaloshinskii-
Moriya interaction [95,96] (DMI) Dz acts between second-
nearest neighbors, with νr;r0 ¼ �1 chosen to be negative

(a) (b)

Achiral Chiral

FIG. 1. Honeycomb-lattice ferromagnets with DMI, which are
minimal models to realize nonconserved interacting Dirac mag-
nons. Red arrows depict field-polarized spin moments, small
arrows at the bonds indicate DMI vectors, and the large arrow
shows the direction of the magnetic field. (a) Achiral in-plane
magnetized ferromagnet with second-nearest-neighbor DMI.
(b) Chiral ferromagnet with interfacial DMI due to structural
inversion asymmetry, as indicated by a substrate layer. The
texture is out-of-plane field polarized.
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(positive) for (counter)clockwise circulation around a
hexagon [cf. Fig. 1(a); clockwise circulation applies].
This type of DMI does not compromise the classical
ferromagnetic ground state, hence the name “achiral
magnet.” To select a particular axis of magnetization, the
magnetic field is applied within the honeycomb plane; in
Fig. 1(a), we take Bk − y.
In contrast, in Eq. (4b), the interfacial nearest-neighbor

DMI D, with dij ¼ z × ðrj − riÞ=jrj − rij [cf. Fig. 1(b)],
favors noncollinear ordering, rendering the magnetic
ground state a Néel spin spiral with a fixed chirality, hence
the name “chiral magnet.” Applying Bkz out of the plane,
the classical ground state first changes into a skyrmion
crystal [97] and then into the field-polarized phase, which
is approximately the case for jBj≳ 0.8D2=J [98]. In the
remainder of this paper, we exclusively focus on the limit of
field polarization.

A. Symmetry analysis

For discussing symmetries, we have to consider both the
Hamiltonian and its magnetically ordered classical ground
state. We drop the hat symbol to indicate ground-state spin
directions (Ŝr → Sr).
Spectral Dirac points on the honeycomb lattice are stable

in the simultaneous presence of inversion symmetry
(P; also called sublattice or parity symmetry) and time-
reversal symmetry (T ). Although ferromagnetism violates
actual T symmetry (spin flip), there can be an effective
time-reversal symmetry T 0 ¼ Rðn; πÞT , composed of T
and a rotation Rðn; πÞ by π in spin space about an axis n
normal to the magnetizationM ≡ ð1=NÞPN

r Sr to map the
texture back onto itself (N is the total number of spins). If
this rotation leaves all terms of the Hamiltonian invariant,
T 0 is a good symmetry of the magnet.
Achiral magnet.—For M within the honeycomb plane,

as in Fig. 1(a), we find that T 0 ¼ Rðz; πÞT is a symmetry
of the system. After the action of T has flipped the spins, a
rotationRðz; πÞ by π about the z axis maps the texture back
onto itself and leaves the Dz terms invariant. To see this,
recall that

Rðz; πÞSr ¼ ð−Sxr ;−Syr ; SzrÞ; ð5Þ

which has no effect on DzðSxrSyr0 − SyrSxr0 Þ.
Moreover, although DMI relies on local inversion

asymmetry at a bond’s midpoint [96], the achiral magnet
isP invariant, with the center of inversion being located at a
hexagon’s center of mass. (Recall that both the spins and
the DMI vectors are axial vectors.) Hence, both stabilizing
symmetries of the Dirac cone are present.
Chiral magnet.—There is no possibility of constructing

a T 0 symmetry for the chiral magnet in Fig. 1(b) because
there is no in-plane axis about which the spins can be
rotated back without changing the DMI terms. This lack of

a rotation axis traces back to the DMI vectors spanning a
plane. Hence, the chiral magnet breaks T 0 symmetry.
Surprisingly, in spite of broken interfacial inversion

symmetry, there is an effective parity symmetry P0 ¼
Rðz; πÞP. After the action of P, the substrate is on top
of the magnet, and hence, the DMI vectors are opposite,
which amounts to the mapping D → −D. By a Rðz; πÞ
rotation in spin space, we compensate for the minus sign
because the DMI terms always connect Szr with an in-plane
spin component, the latter of which acquires a minus sign
upon rotation [cf. Eq. (5)]. Hence, the parity-breaking effect
of interfacial DMI can be “rotated away.”
As summarized in Table I, the achiral magnet obeys both

symmetries, but the chiral magnet is only parity symmetric.
Hence, stable Dirac points are expected for achiral
magnets, but a mass gap is expected for chiral magnets.
Although these symmetry arguments appear to be straight-
forward, the situation is more intricate, as we elaborate on
in the following section.

B. Spin-wave theory

Relying on a magnetically ordered classical ground
state, we proceed with a Holstein-Primakoff (HP)
transformation [99]

Ŝr ¼
ffiffiffi
S

p
ðf̂râre−r þ â†r f̂reþr Þ þ ðS − â†r ârÞezr ; ð6Þ

where S is the spin length. The axes of the local reference
frame read e�r ¼ ð1; 0;�iÞ= ffiffiffi

2
p

, and ezr ¼ ð0;−1; 0Þ for the
achiral magnet and e�r ¼ ð1;�i; 0Þ= ffiffiffi

2
p

, and ezr ¼ ð0; 0; 1Þ
for the chiral magnet; i2 ¼ −1. The bosonic operators obey
the usual commutation relation ½âr; â†r0 � ¼ δr;r0 . A Taylor
expansion of

f̂r ¼
�
1 −

â†r âr
2S

�1=2

¼ 1 −
1

2

â†r âr
2S

−… ð7Þ

effectively expands the Hamiltonian as Ĥ ¼ P∞
p¼0 Ĥp,

where p denotes the number of bosonic operators.
Formally, this is an expansion in 1=

ffiffiffi
S

p
, with

Ĥp ∝ O½ðS−1Þp=2−2�. Up to quartic order, Hamiltonian (1)
reads

ĤA=C ≈ E0 þ Ĥ2 þ ĤA=C
3 þ Ĥ4: ð8Þ

TABLE I. Presence or absence of Dirac-cone stabilizing sym-
metries in the two model systems depicted in Fig. 1.

Achiral [Fig. 1(a)] Chiral [Fig. 1(b)]

Time-reversal symmetry Yes No
Parity symmetry Yes Yes
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Importantly, the two magnets differ only in their DMI-
induced number-nonconserving three-particle Hamiltonian
ĤA=C

3 . The remaining terms, i.e., the ground-state energy E0,
the bilinear Hamiltonian Ĥ2, and the number-conserving
four-particle Hamiltonian Ĥ4, derive from the exchange
energy, which is identical in both models.
Harmonic theory.—Linear spin-wave theory amounts to

diagonalizing the Fourier-transformed quadratic Hamiltonian
Ĥ2 ¼

P
k Â

†
k ·Hk · Âk, with Â†

k ¼ ðâ†k;1; â†k;2Þ and

Hk ¼
�
3JSþ B −JSγk
−JSγ−k 3JSþ B

�
; γk ¼

X3
i¼1

eik·δi ; ð9Þ

by a unitary transformation to the normal modes B̂k ¼ U†
kÂk,

where B̂†
k ¼ ðb̂†k;−; b̂†k;þÞ. The âk;i’s are the Fourier-

transformed bosonic annihilators of a spin deviation (or
HP boson) at the ith basis site (i ¼ 1, 2). Similarly, the
b̂k;γ’s are the annihilators of a magnon in the γth band
(γ ¼ �). The off-diagonal γk contains the nearest-neighbor
bonds

δ1 ¼ ð1; 0Þ; ð10aÞ

δ2 ¼ ð−1=2;
ffiffiffi
3

p
=2Þ; ð10bÞ

δ3 ¼ ð−1=2;−
ffiffiffi
3

p
=2Þ: ð10cÞ

The distance between nearest neighbors is set to one. Using

Uk ¼
1ffiffiffi
2

p
�

eiξk=2 eiξk=2

e−iξk=2 −e−iξk=2

�
; ξk ¼ argðγkÞ; ð11Þ

we find that Ek ¼ U†
kHkUk ¼ diagðεk;−; εk;þÞ contains the

single-particle magnon energies

εk;� ¼ JSð3� jγkjÞ þ B: ð12Þ

(Note, again, that B≳ 0.8D2=J must hold for the chiral
magnet to become field polarized [98], i.e., for the ferro-
magnetic phase to be the ground state.) Hence, the spectrum
of the free theory is identical to that of “spinless” electrons on
the honeycomb lattice. The magnonic collective excitations,
which come in two flavors, exhibit a graphenelike band
structure, as depicted in Fig. 2 by white lines. The two bands
touch linearly at the Dirac point energy

εD ¼ 3JSþ B ð13Þ

at the corners (K and K0 points) of the hexagonal unit cell,
where jγkj ¼ 0. Hereinafter, we measure the excitation
energies relative to εD, such that the harmonic Dirac cone
appears at “zero energy.”

The Dirac cones have zero mass (no gap). Since the
harmonic theory of a ferromagnet without quantum fluc-
tuations coincides with the linearized equation of motion of
classical spin vectors (Landau-Lifshitz equation without
damping), the Dirac magnons are also said to have zero
classical mass.
Anharmonic theory.—Note that the DMI did not enter the

harmonic theory. This is because DMI vectors orthogonal to
the magnetization direction connect longitudinal with trans-
verse spin components (e.g., Ŝzi Ŝ

x;y
j in a local reference

frame, where z is chosen along the magnetization direction),
which contribute to the Ĥp’s with odd p. The contributions
to Ĥ1 cancel, such that the lowest-order appearance of the
DMI is in Ĥ3, which comprises magnon decay (one magnon
decays into two) and coalescence (two magnons coalesce
into one). This particle-number-nonconserving interaction is
in line with the DMI-induced nonconservation of spin, i.e.,
½Pi Ŝi ·m; Ĥ� ∝ D (or ∝ Dz), with m ¼ M=M being the
magnetization direction. Thus, the spin-orbit coupling-
induced DMI connects the magnons to the lattice bath, into
(from) which angular momentum can be dumped (drawn)
during a magnon coalescence (decay).
The cubic Hamiltonian reads

ĤA=C
3 ¼ 1

2
ffiffiffiffi
N

p
X2

l;m;n¼1

Xp¼kþq

k;q;p

½ðVlm←n
k;q←pÞA=Câ†k;lâ†q;mâp;n þ H:c:�

ð14Þ

0

1

2

3

4

5

6

7

E
ne

rg
y

(
)

FIG. 2. Single- and two-magnon sectors in honeycomb ferro-
magnets along high-symmetry paths of the Brillouin zone. At
B ¼ 0, the harmonic single-particle energies [white lines;
cf. Eq. (12)] overlap with the two-magnon density of states
[color plot; cf. Eq. (27)]. Dark blue (yellow) color indicates zero
(maximal) two-magnon density of states. The red rectangle
around the Dirac cone at the K point indicates the momentum
and energy window shown in Fig. 4. For increasing fields, the
single-particle energies are shifted upwards in energy by B, while
the two-magnon continuum is shifted by 2B. Hence, for large
enough fields, the continuum is shifted past the single-particle
energies. In particular, the Dirac cones at the K and K0 points
leave the continuum at B=ðJSÞ ¼ 1.
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and accounts for an incoming HP boson âp;n, with
momentum p being destroyed but two bosons â†k;l and

â†q;m being created. This process has to obey momentum
conservation, p ¼ kþ q, modulo reciprocal lattice vectors.
The Hermitian conjugate (H.c.) part in Eq. (14) describes
the opposite process with two incoming bosons and one
outgoing boson. The HP interaction vertices ðVlm←n

k;q←pÞA=C
are given in Appendix A. Importantly, they are linear in
DMI Dz (achiral magnet) or D (chiral magnet) and
independent of the exchange energy J.
Eventually, we work in the eigenbasis, such that the

cubic Hamiltonian must be expressed in terms of normal
modes,

ĤA=C
3 ¼ 1

2
ffiffiffiffi
N

p
X

λ;μ;ν¼�

Xp¼kþq

k;q;p

½ðVλμ←ν
k;q←pÞA=Cb̂†k;λb̂†q;μb̂p;ν þ H:c:�;

ð15Þ

where the three-magnon vertices

ðVλμ←ν
k;q←pÞA=C ¼

X2
l;m;n¼1

ðVlm←n
k;q←pÞA=CU�

k;lλU
�
q;mμUp;nν ð16Þ

are constructed from the HP vertices and the eigenvectors
given in Eq. (11).
At higher-order spin-wave theory, we encounter the

number-conserving four-magnon interactions, which derive
exclusively from the exchange energy but not from DMI.
Their explicit expression has been derived in Ref. [27] and is
reproduced here for the sake of self-containedness:

Ĥ4 ¼
J
4N

Xt¼kþq−p

k;q;p;t

ðγ�qâ†k;1â†q;2âp;1ât;1 þ γtâ
†
k;1â

†
q;1âp;1ât;2

þ γqâ
†
k;2â

†
q;1âp;2ât;2 þ γ�t â

†
k;2â

†
q;2âp;2ât;1

− 4γt−qâ
†
k;1â

†
q;2âp;1ât;2Þ: ð17Þ

Apart from being frozen out at zero temperature anyway,
Ĥ4 shares the symmetries of Ĥ2 and, hence, does not
play a significant role. Section II C gives more detailed
arguments.
We close by noting that we are faced with the theoreti-

cally intriguing situation that particular magnetic inter-
actions (here, DMI) between spins appear exclusively as
number-nonconserving interactions between excitations.
Since DMI is the crucial ingredient to break the effective
time-reversal symmetry of the chiral magnet (cf. Sec. II A),
DMI-derived interactions break accidental symmetries of
the harmonic theory, and a highly nontrivial renormaliza-
tion of the Dirac cones is expected. Since it does not take
any thermal excitation for a magnon to spontaneously
decay, the genuinely quantum-mechanical effects of ĤA=C

3

persist down to zero temperature, which is the limit we
explore first. Any gap of the Dirac cone is hence associated
with a spontaneous quantum mass.

C. Many-body perturbation theory

To account for the effects of ĤA=C
3 and Ĥ4, we invoke

many-body perturbation theory for the single-particle
Green’s function, from which we ultimately extract the
renormalized magnon spectrum in terms of the spectral
function. The latter is related to the dynamical structure
factor (i.e., the spin-spin correlation function) probed in
neutron scattering experiments [100].
Up to order 1=S, the interacting (Matsubara) one-

magnon Green’s function is given by [101]

Gk;αβðτÞ

≈ Gð0Þ
k;αβðτÞ þ

Z
β

0

dτ1hT τĤ4ðτ1Þb̂k;αðτÞb̂†k;βiconð0Þ

−
1

2!

Z
β

0

dτ1

Z
β

0

dτ2hT τĤ3ðτ1ÞĤ3ðτ2Þb̂k;αðτÞb̂†k;βiconð0Þ ;

ð18Þ

where Gð0Þ
k;αβðτÞ ¼ −hT τb̂k;αðτÞb̂†k;βið0Þ is the noninteracting

Green’s function, β ¼ ðkBTÞ−1 is inverse temperature (kB
being Boltzmann’s constant), T τ orders imaginary times τi,
and averages h·iconð0Þ are taken with respect to Ĥ2 over

connected (con) diagrams.
After applying Wick’s theorem, the first-order perturba-

tion proportional to Ĥ4 yields self-energies associated with
the Hartree diagram in Fig. 3(a). For the second-order
perturbation (Ĥ3), one finds four “forward bubble” dia-
grams [upper diagram in Fig. 3(c)], and eight each of
“upwards tadpole” [left diagram in Fig. 3(b)], “downwards
tadpole” [right diagram in Fig. 3(b)], and “circle bubble”
[lower diagram in Fig. 3(c)].
Hartree diagram.—TheHartree contribution in Fig. 3(a) is

most conveniently evaluated before the diagonalization
procedure, as demonstrated by Pershoguba et al. [27].
Extending their analysis to finite fields, we may approximate

(a) (b) (c)

FIG. 3. Feynman diagrams contributing to 1=S many-body
corrections in anharmonic spin-wave theory. (a) Hartree diagram
with the number-conserving four-magnon vertex indicated by a
green circle. (b) Upwards and downwards tadpole diagrams,
with the three-magnon vertices indicated by red circles.
(c) Forward (top) and circle (bottom) bubble diagrams. At zero
temperature, only the forward bubble diagram is contributing to
the self-energy.
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ΣHartree
k ðTÞ ≈ −

λ

β2
Hk ð19Þ

(given in HP basis Âk) at low temperatures, βðSJ þ BÞ ≫ 1.
The constant

λ ¼ Li2ðe−βBÞ
4

ffiffiffi
3

p
πJ2S3

ð20Þ

contains a thermal-activation-like factor (with the dilogarithm
Li2), which accounts for field freezing of four-magnon
interactions [102]. Hence, without DMI, the renormalized
magnon energies read

ε̃k;� ¼
�
1 −

λ

β2

�
εk;�: ð21Þ

There are neither interaction-induced band gaps nor magnon
lifetimes. The spectrum ismerely compressed, which reduces
the Dirac velocity. Note also the 1=S3 dependence of λ in
Eq. (20), which reveals that the low-temperature influence of
Hartree contributions is even weaker than the nominal order
1=S. Hence, we disregard the Hartree contributions in the
remainder of our study.
Tadpole diagrams.—The self-energy of the two tadpole

diagrams in Fig. 3(b) reads

Σtad;αβ
k ðTÞ ¼ 1

N

X
q∈BZ

X
γ;γ0¼�

ðVα←βγ
k←k;0V

γγ0←γ0
0;q←q þ Vγ0←γγ0

q←0;qV
αγ←β
k;0←kÞ

×
ρðεq;γ0 ; TÞ

ε0;γ
ð22Þ

(given in eigenmode basis B̂k). The summation is over
momenta q in the Brillouin zone (BZ), and the indices
α; β ¼ � label a self-energy matrix element. Because of the
Bose factor, this self-energy is zero at T ¼ 0 and, hence,
a priori plays an insignificant role. Moreover, our numeri-
cal evaluation of Eq. (22) reveals that Σtad;αβ

k ðTÞ is zero at
all temperatures, rendering tadpole diagrams irrelevant.
Bubble diagrams.—We are thus left with “bubbles”

[Fig. 3(c)], whose self-energy (given in the eigenmode
basis B̂k)

Σαβ
k ðε; TÞ ¼ 1

N

X
q∈BZ

X
γ;γ0¼�

�
1

2

Vα←γγ0
k←q;k−qV

γγ0←β
q;k−q←k

εþ i0þ − εq;γ − εk−q;γ0

× ½ρðεq;γ; TÞ þ ρðεk−q;γ0 ; TÞ þ 1�

þ Vγ0←βγ
kþq←k;qV

αγ←γ0
k;q←kþq

εþ i0þ þ εq;γ − εkþq;γ0

× ½ρðεq;γ; TÞ − ρðεkþq;γ0 ; TÞ�
�

ð23Þ

has two contributions. The first term of Eq. (23) derives
from the “forward bubbles” and is called the “decay term,”
and the second one is from the “circle bubbles” and is
coined the “collision term” [103].

III. RESULTS

A. Interaction-induced gap opening at zero
temperature: Spontaneous quantum mass

To analyze the many-body renormalized magnon spec-
trum, we calculate the spectral function

AkðεÞ ¼ −
1

π
ImfTr½GkðεÞ�g ð24Þ

from the retarded Green’s function matrix

GkðεÞ ¼ ½εþ i0þ − Ek − ΣkðεÞ�−1: ð25Þ

At T ¼ 0, only the spontaneous contribution from the þ1
summand in Eq. (23) remains, and the self-energy reads

Σαβ
k ðεÞ ¼ 1

2N

X
q∈BZ

X
γ;γ0¼�

Vα←γγ0
k←q;k−qV

γγ0←β
q;k−q←k

εþ i0þ − εq;γ − εk−q;γ0
: ð26Þ

Hereinafter, we take S ¼ 1 if not stated otherwise.
We evaluate AkðεÞ in the vicinity of the harmonic Dirac

cones (cf. red window in Fig. 2) both for the achiral and
the chiral magnet at B=ðJSÞ ¼ 1; results are shown in
Figs. 4(a) and 4(b), respectively. We see that the Dirac cone

−0.10

−0.05

0.00

0.05

−0.10

−0.05

0.00

0.05
(a) (b)

E
ne

rg
y

(
D
)

Achiral Chiral

FIG. 4. Tomographic cut of the interaction-renormalized mag-
non Dirac cones in (a) achiral and (b) chiral magnets. Black
transparent (orange opaque) color indicates the zero (maximal)
spectral function AkðεÞ. The momentum and energy window
shown here coincides with that marked by a red rectangle in
Fig. 2. The parameters read S ¼ 1,B=J ¼ 1, and (a)Dz=J ¼ 0.15,
(b) D=J ¼ 0.15.
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of the achiral magnet, although being renormalized both in
energy and “sharpness” (lifetime broadening), is stable. In
contrast, we find signatures of a spectral gap opening for
the chiral magnet, suggesting that the Dirac magnons
acquire a spontaneous quantum mass. These findings are
in accordance with the symmetry analysis in Sec. II A.
Next, we focus on the K (and K0) point and study the

evolution of AKðεÞ with D (or Dz) and B. The results in
Fig. 5 corroborate the above finding. For the achiral magnet
(left column in Fig. 5), the quasiparticle peaks stay degen-
erate, but they split for the chiral magnet (right column).
Figures 5(a) and 5(c) reveal a uniform downwards shift

of the degenerate quasiparticle peaks of the achiral magnet
at B=J ¼ 0.1 and B=J ¼ 1, respectively. This uniform
renormalization is quadratic in DMI, which complies with
the observation that the self-energy in Eq. (26) contains
products of two interaction vertices, each of which is linear
in DMI [cf. Eqs. (A1a)–(A1d)]. Similarly, the splitting of
the Dirac cone in chiral magnets, as depicted in Figs. 5(b)
and 5(d), also grows quadratically with DMI.
Comparing results at B=J ¼ 0.1 and B=J ¼ 1 (top and

middle rows in Fig. 5, respectively), one finds that the
quasiparticle line widths are larger in the former case,
which is due to the fact that, for B=ðJSÞ ≤ 1, the harmonic

magnon energies overlap with the two-magnon continuum,
rendering spontaneous decays kinematically possible.
The momentum-resolved two-magnon density of states
(DOS) reads

DkðεÞ ¼
1

N

X
γ;γ0¼�

X
q∈BZ

δðε − εq;γ − εk−q;γ0 Þ ð27Þ

and is indicated by color in Fig. 2. One can show that at
k ¼ K (or k ¼ K0), its lower boundary has energy
εbound ¼ 2JSþ 2B, where the 2B arises from the two-
magnon excitations being built from two single-particle
excitations, each of which grows with B [cf. Eq. (12)].
Hence, by equating εD ¼ εbound, we find that the harmonic
Dirac cone leaves the continuum at the critical field

Bc ¼ JS: ð28Þ

The imaginary part of the self-energy follows the two-
magnon DOS and, thus, exhibits a step at the lower
boundary of the two-magnon continuum; see Fig. 6.
According to the Kramers-Kronig relation, a step in the
imaginary part translates into a logarithmic singularity of
the real part [61,73]. The explicit expressions for these
singularities are derived in Appendix B; they read

ReΣαβ
K ðεKÞ ∼ CαβJ

�
D
J

�
2

log

���� δBJ
����; ð29aÞ

ImΣαβ
K ðεKÞ ∼ CαβJ

�
D
J

�
2
�
Θ
�
δB
J

�
− 1

�
; ð29bÞ

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Magnonic spectral function AKðεÞ at the K point as a
function of DMI D and Dz and magnetic field B for the achiral
(left) and chiral (right) magnets, respectively. Dark blue (bright
yellow) color indicates zero (maximal) AKðεÞ; S ¼ 1. (a,b) DMI
dependence of AKðεÞ at B=J ¼ 0.1 and (c,d) at B=J ¼ 1. (e,f)
Magnetic field dependence of AKðεÞ for (e) Dz=J ¼ 0.15 and
(f) D=J ¼ 0.15. In the chiral magnet (right column), a finite Dirac
cone mass is witnessed by the splitting of the quasiparticle peak.

FIG. 6. Sketch of an element of the self-energy matrix at the
lower threshold of the two-magnon continuum for D=J ¼ 0.15.
At B ¼ Bc ¼ JS and S ¼ 1, the lower threshold of the two-
magnon continuum is exactly at εD [see Eq. (13)], where the
imaginary part of the self-energy exhibits a step; ImΣ is zero
outside of the continuum (ε − εD < 0) and finite inside
(ε − εD > 0). As enforced by the Kramers-Kronig relations,
the real part of the self-energy exhibits a logarithmic singularity
that appears to be cut only because of a finite numerical
linewidth: 0þ → 10−4J. Hence, ReΣ is much larger than ImΣ
outside of the continuum.
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where δB ¼ B − Bc and Cαβ is a constant. (Note that a tiny
numerical linewidth of order 10−4J was assumed in the
numerical calculations, which is why the divergence of the
real part is cut in Fig. 6.) For B > Bc, the imaginary part is
zero, and the real part is still very large due to the
singularity. Hence, considerably renormalized magnon
quasiparticles with negligible damping are expected for
magnetic fields that are slightly detuned from Bc.
Figures 5(e) and 5(f) explicitly show this behavior for

S ¼ 1. For fields B < Bc ¼ J, the single-magnon excita-
tions overlap with the two-magnon continuum, and the
quasiparticle peaks are blurred because of lifetime broad-
ening. However, they become sharp once B > Bc. Since the
real part of the self-energy exhibits a logarithmic singu-
larity, the magnon renormalization is particularly promi-
nent at B ≈ Bc. As B increases further, the degree of energy
renormalization reduces only logarithmically. The same is
true for the splitting observed in Fig. 5(f), which is also due
to the real part of the self-energy as we show below.
To further understand the Dirac cone splitting in the

chiral magnet, we continue our analytical considerations.
The renormalized magnon energies ε̃k;� are the solutions of
the Dyson equation Det½G−1

k ðεÞ� ¼ 0, where G−1
k ðεÞ ¼ ε −

Ek − ΣkðεÞ is the inverse of the interacting matrix Green’s
function, containing the self-energy matrix

ΣkðεÞ ¼
� Σ−−

k ðεÞ Σ−þ
k ðεÞ

Σþ−
k ðεÞ Σþþ

k ðεÞ

�
; ð30Þ

as given by Eq. (26).
At the Dirac points, k ¼ K or k ¼ K0, the harmonic

magnons are in resonance, εK;þ ¼ εK;− ¼ εD, and we may
invoke the on-shell approximation by replacing the argument
of the self-energy by ε → εD. Since Σ−−

K ðεDÞ¼Σþþ
K ðεDÞ≡

ΣdiagðεDÞ and Σ−þ
K ðεDÞ¼Σþ−

K ðεDÞ≡Σoff-diagðεDÞ, the real
part of the renormalized magnon energies becomes

Reðε̃K;�Þ ≈ εD þ Re½ΣdiagðεDÞ � Σoff-diagðεDÞ�; ð31Þ

from which we read off that the diagonal self-energy
ΣdiagðεDÞ causes a shift and the off-diagonal self-energy
Σoff-diagðεDÞ a splitting

Δε ¼ 2Re½Σoff-diagðεDÞ� ð32Þ

of the magnon energy at the Dirac point.
Importantly, the achiral magnet has zero off-diagonal

self-energies at the K and K0 points, such that there is no
splitting, i.e., no Dirac mass. In contrast, the chiral magnet
has a nonvanishing Σoff-diag, which explains the splitting
observed in Figs. 4(b), 5(b), 5(d), and 5(f).
Logarithmic singularity.—Within the on-shell solution

of the Dyson equation in Eq. (31), the logarithmic
singularity encountered in Eq. (29) directly enters the

renormalized spectrum, which indicates the failure of
lowest-order (1=S) perturbative spin-wave expansion,
i.e., a violation of the assumption that jΣkðεÞj ≪ εk.
Although the self-energy scales with D2 and, hence, is
hardly larger than 1% of the Dirac energy εD for D=J ¼
0.15 [cf. Fig. 6], eventually, its real part grows indefinitely
as B → Bc. This singularity defines a small field window
about Bc, within which RejΣkðεÞj≳ εD and the lowest-
order-in-1=S perturbation theory is inconsistent. The log-
arithmic singularity may be cut due to higher-order dia-
grams which physically account for the two-magnon
continuum and, in particular, its thresholds, being renor-
malized once its building blocks, i.e., the single-particle
energies, have been renormalized. Unfortunately, such an
analysis is severely hindered by the small-wavelength
nature of the problem [73].
However, one notes that the spectral function in

Figs. 5(e) and 5(f) does not show divergent quasiparticle
peaks at B ¼ Bc ¼ J because it amounts to a nonperturba-
tive solution of the Dyson equation that is no longer
on shell nor strictly of order 1=S. Alternatively, self-
consistency may be enforced by iteratively solving the
Dyson equation off shell to cut the singularity [73]. We
detail the latter idea in Appendix C. Importantly, the off-
shell solution agrees very well with the spectral function.
Since we also find independent numerical evidence for the
spectrum by means of exact diagonalization in Sec. IV, we
conclude that lowest-order perturbation theory is sufficient
to qualitatively capture the signatures of magnon-magnon
interactions.

B. Interaction-induced topology

We restrict our further analysis to the chiral magnet
to obtain insight into the nature of the interaction-
induced gap.

1. Effective Hamiltonian

In the limit B ≫ Bc, the two-magnon continuum (∼2B)
and the single-particle excitations (∼B) are well separated,
causing damping to vanish because decays are kinemati-
cally forbidden. Moreover, since the distance between the
two magnon bands is negligible compared to their distance
to the continuum, the difference between Σkðεk;þÞ and
Σkðεk;−Þ is negligible as well. Hence, we set Σkðεk;þÞ ≈
Σkðεk;−Þ ≈ ΣkðεDÞ to construct an effective Hamiltonian,

Heff
k ≡Hk þ UkΣH

k ðεDÞU†
k; ð33Þ

where ΣH
k ðεDÞ ¼ ½ΣkðεDÞ þ Σ†

kðεDÞ�=2 is the Hermitian part
of the self-energy at εD. Note the appearance of Uk in
Eq. (33), necessary for transforming ΣH

k ðεDÞ, which is
evaluated in the eigenbasis, back into the HP basis. Here,
Heff

k describes a two-level system, which may be written as
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Heff
k ¼ d0kσ0 þ dk · σ: ð34Þ

This decomposition, in terms of Pauli matrices σ ¼
ðσ1; σ2; σ3Þ and the unit matrix σ0, resembles a spin-1=2
Zeeman Hamiltonian with d0k and the components of the
“effective field” dk given by

d0k ¼ 3JSþ Bþ 1

2
ðΣ−−

k þ Σþþ
k Þ; ð35aÞ

d1k ¼ −
JS
2
ðγk þ γ−kÞ þ

1

2
½Reðγ̃kÞðΣ−−

k − Σþþ
k Þ

þ iImðγ̃kÞðΣþ−
k − Σ−þ

k Þ�; ð35bÞ

d2k ¼ −i
JS
2
ðγk − γ−kÞ þ

i
2
½Reðγ̃kÞðΣþ−

k − Σ−þ
k Þ

þ iImðγ̃kÞðΣ−−
k − Σþþ

k Þ�; ð35cÞ

d3k ¼
1

2
ðΣ−þ

k þ Σþ−
k Þ; ð35dÞ

where γ̃k ¼ sgnðγkÞ. For notational ease, we suppress both
the dependence on εD and the “H” label.
The eigenvalues of Heff

k are given by

ε̃effk;� ¼ d0k � jdkj: ð36Þ

Importantly, at k ¼ K and k ¼ K0, we obtain d1k ¼ d2k ¼ 0,
but d3k ≠ 0, implying a mass gap [104]. Figure 7 shows a
representative d3k within the entire Brillouin zone, from
which it is obvious that the Dirac mass has opposite signs at
the K and K0 points. Hence, the Berry curvature

Ωk;� ¼ ∓ 1

2d3k
dk ·

�∂dk
∂kx ×

∂dk
∂ky

�
ð37Þ

integrates to a nonzero Chern number

C� ¼ 1

2π

Z
BZ

Ωk;�d2k: ð38Þ

According to the bulk-boundary correspondence [105,106],
the nontrivial winding number [107]

w¼ C− ¼ 1

2
½sgnðd3KÞ− sgnðd3K0 Þ� ¼ 1

2
½ð−1Þ− ðþ1Þ� ¼ −1

ð39Þ

suggests a topologically protected chiral edge magnon in
finite systems (see Sec. III B 2).

2. Interaction-induced chiral edge magnons

To verify that the interacting chiral magnet indeed
features chiral edge magnons, we proceed by simulating
a honeycomb-lattice slab with open (periodic) boundary
conditions in the x (y) direction (cf. coordinate system in
Fig. 1). Hence, the edges exhibit a zigzag termination. A
width of 12 honeycomb-lattice unit cells is chosen. Further
details on the numerical implementation are given in
Appendix D.
Figure 8(a) shows the magnonic spectral function

AkyðεÞ of the interacting slab. Note that AkyðεÞ almost
resembles the harmonic spectrum, exhibiting projections
of Dirac cones connected by a flat edge state. For a slab
of large width, the Dirac cone projections appear at
ky ¼ 2π=3 and ky ¼ 4π=3. Here, because of finite-
size effects, the Dirac cone projections are shifted in

5×10

0

5×10

FIG. 7. Mass term d3k in the first Brillouin zone at B=ðJSÞ ¼ 4.
Blue, white, or red color indicates negative, zero, or positive
values. Note the opposite sign of d3k at the K and K0 points,
causing nonzero Chern and winding numbers. The parameters
used are S ¼ 1 and D=J ¼ 0.15.

FIG. 8. Interaction-corrected magnonic spectral function AkyðεÞ
of a honeycomb-lattice slab of finite width (in the x direction),
revealing chiral edge states. (a) AkyðεÞ of a slab with a width of
12 unit cells. Blue (yellow) color indicates zero (maximal) values;
D=J ¼ 0.15, S ¼ 1 and B=ðJSÞ ¼ 1. (b) Position-resolved
AkyðεÞ, with blue (red) color indicating localization at the left
(right) edge. Black lines indicate the flat harmonic edge state
connecting the edge projections of the Dirac cones for zigzag
termination.
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reciprocal space towards each other. Nonetheless, the flat
edge states are clearly discernible.
Upon zooming into the relevant energy window [see

Fig. 8(b)], we find that the edge states do not coincide with
the flat harmonic bands (black lines). The edge modes have
acquired both a uniform downwards shift and a dispersion
due to many-body interactions. A spatially resolved cal-
culation of the spectral function (details in Appendix D)
reveals that they are chiral. States on the left (right) edge
have positive (negative) slope as dictated by the winding
number w in Eq. (39). This result confirms that interactions
open a topologically nontrivial gap, which hosts chiral edge
states and establishes the notion of “interacting magnon
Chern insulators.”We point out the difference from conven-
tional “harmonic” magnon Chern insulators in Sec. V B.

3. Field-induced topological phase transition

Having collected evidence that Σoff-diagðεDÞ ¼
Σ−þ
K ðεDÞ—or, analogously, d3K in Eq. (35d)—is a useful

indicator of topology, we may now explore its behavior in
the regime B < Bc, in which the Hermitian effective model
(33) is nominally a bad approximation because of both
lifetime broadening (non-Hermitian contributions) and the
self-energy being considerably energy dependent. Still,
crucial information can be extracted, as we explain below.
First, let us study the energy-conserving decay contours

of a Dirac magnon at the K0 point, which are depicted in
Fig. 9. At small fields (blue and orange lines), there are two
decay channels. The first one is a decay into a magnon
close to the Γ point and another one close to the initial K0
point. The second channel consists of two decay products
situated at a ring around the K point. As the field increases,
the decay contours grow until they meet at a critical value
B0
c ≈ 0.464JS (green line). A further increase of the field

causes a Lifshitz transition of the decay contours, which are
now centered about the midpoint of the Γ-to-K0 paths.
Eventually, the decay contours shrink to a point and
disappear at B ¼ Bc (red and purple lines). Similar con-
tours are obtained for Dirac magnons at the K point; only
the role of the K and K0 points is interchanged.
A Lifshitz transition of the decay contours at B0

c signals a
saddle point of the two-magnon continuum. Hence, the
two-magnon DOS exhibits a logarithmic singularity, which
is also found in the imaginary part of the self-energy as
shown in Fig. 10(a) by the purple line. According to the
Kramers-Kronig relations, a logarithmic singularity in the
imaginary part of the self-energy translates into a sign
change of the real part [green line in Fig. 10(a)] [73]. For
the Hermitian effective model, this finding translates into a
sign change of d3K [because Σoff-diagðεDÞ flips sign] at B0

c. A
global minus sign of the mass term also flips the sign of the
winding number w in Eq. (39), and we expect a chirality
reversal of the edge states.
Figures 10(b)–10(d) show the spectral function of a

honeycomb-lattice slab (similar to the one studied in

Sec. III B 2) at three selected values of B, which are
indicated by dashed lines in Fig. 10(a). These field values
are chosen (b) below B0

c, (c) almost at B0
c, and (d) above B0

c.
The antisymmetric blue-red feature due to the edge states is
seen to reverse as the field increases. The blue (red) state at
the left (right) corner has positive (negative) group velocity
below B0

c that turns negative (positive) above B0
c. Right at

B0
c, the edge states are flat, complying with the presence of

a topological phase transition from positive to negative
winding number w.
Hence, the effective model has predictive power even in

the limit of overlapping single- and two-particle sectors,
thereby linking geometric properties of the two-magnon
DOS to single-magnon topology. One might conjecture that
there is a more general principle at work, rigorously
relating the topology of the decay surface to the band
topology of single-particle bands. However, higher-order
DMI-induced decay processes (e.g., decays into four
magnons) can add a nonsingular offset to the real part of
the self-energy, misaligning the topological transition with
the Lifshitz transition of the two-magnon decay contours.
For a more general statement, a systematic treatment of
higher-order 1=S corrections is necessary, but this is
beyond the scope of the present work and is left for future
investigation.

FIG. 9. Energy-conserving decay contours in reciprocal space
for an initial Dirac magnon at the K0 point (see ✗ symbol) with
energy εD. Colored lines correspond to selected values of
magnetic field B=ðJSÞ as indicated. At small fields (blue and
orange lines), there are three contours, respectively centered
around the Γ, K0, and K points. At large fields (red and purple
lines), the decay contours are centered about the midpoints of the
lines from Γ to K0. At a critical field, there is a Lifshitz transition
of the decay contours from the low-field to the high-field case, as
indicated by the green lines. This transition corresponds to a
saddle point of the two-magnon continuum and, hence, a
logarithmic singularity in the imaginary part of the self-energy.
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4. Revival of magnon topology for strong interactions

As already mentioned in the Introduction, band gaps Δε
and, hence, in-gap chiral states are meaningful terms only
if the broadening Γþ and Γ− of the gapped bands is smaller
than the gap. Hence, Δε=

ffiffiffiffiffiffiffiffiffiffiffi
ΓþΓ−

p
> 1 must hold. In

principle, we may consider the following two sources
for damping.
(1) The phenomenological Gilbert damping α leads

to a magnon damping Γk;γ ¼ αεk;γ. At the Dirac
point, for S ¼ 1 and B ¼ Bc, we extractΔε ≈ 2.15 ×
JðD=JÞ2 from our numerical data [cf. Fig. 5(d)].
Hence, we get the approximate relation

Δεffiffiffiffiffiffiffiffiffiffiffi
ΓþΓ−

p ≈
Δε
Γ

≈
1

α

�
D
J

�
2

ð40Þ

and conclude that ðD=JÞ2 > α must hold. (We set
Γþ ¼ Γ− ¼ Γ ¼ αεD.) Since Gilbert damping can

be as small as α < 10−3 (down to α ≈ 10−4), already
small ratios D=J should cause a well-defined gap.

(2) As for the magnon-magnon interactions, we have
seen in Sec. III B 3 that for B < Bc ¼ JS, the single-
particle states overlap with the continuum, resulting
in damping. However, quite counterintuitively, this
reasoning holds only for weak interactions. As
shown by Verresen et al. [108], who built upon
the work of Gaveau and Schulman [109], strong
interactions do not fully wipe out the quasiparticle
but rather expel it from the continuum. The expelled
single-particle state retrieves a long lifetime, which
comes at the price of a reduced quasiparticle residue.

In principle, the second mechanism can “revive” a
single-particle state and, in particular, topological magnon
band gaps and chiral in-gap states: Although being blurred
out for weak interactions, the gapped bands (and the chiral
edge states) may get expelled from the continuum by strong
interactions, thereby suppressing damping. However, a
crucial requirement for this effect to happen is that the
region of the continuum from which the single-particle
peak is expelled is not built from two such single-particle
excitations. In other words, the continuum and the single
particle must be different excitations [108]. Otherwise,
the continuum gets renormalized in the same way as the
renormalized single particle, rendering it impossible to
expel the latter. This requirement is met by the Dirac
magnons under consideration because the relevant lower
part of the two-magnon continuum atK (orK0) is built from
states approximately halfway along the line from Γ to K
(orK0). To see this, observe the red and lilac decay contours
in Fig. 9. Hence, expelling the Dirac magnons does not
renormalize the relevant part of the continuum at K (or K0).
In the following, we present this effect for the gapped Dirac
magnons of the chiral ferromagnet in Fig. 1(b).
Figure 11(a) shows how the Dirac cone is expelled from

the two-magnon continuum for increasing interactions, i.e.,
for increasing DMI D. With S ¼ 1, and B=ðJSÞ ¼ 0.8, the
harmonic Dirac cone is energetically located well within
the continuum, whose lower threshold is indicated by the
horizontal dotted gray line. At D=J ¼ 0, the Dirac magnon
has zero mass, and the two quasiparticle peaks are
degenerate. Small D=J ratios lead to appreciable lifetime
broadening because decay processes are kinematically
allowed. Hence, along a path in reciprocal space through
the K0 point, the spectral function resembles the harmonic
Dirac cone with additional broadening [Fig. 11(b)]. For
D=J ¼ 0.2, the damping is already so large that only a very
blurred quasiparticle feature can be identified. The Dirac
cone shape is almost invisible [Fig. 11(c)]. As D=J
increases further, spectral weight is transferred from the
continuum to the quasiparticle peak clinging to the lower
boundary of the continuum, and the lower band of the Dirac
cone leaves the continuum [Fig. 11(d)]. Eventually, the
second quasiparticle peak is also expelled [Fig. 11(e)].

FIG. 10. Field-induced topological phase transition with
damped chiral edge states for S ¼ 1 and D=J ¼ 0.15. (a) Real
and imaginary parts of the self-energy Σ−þ

K0 ðεDÞ at the K0 point
and Dirac energy εD as a function of the magnetic field B. At
B ¼ Bc ¼ J, the Dirac cone leaves the two-magnon continuum,
and ImΣ−þ

K0 ðεDÞ exhibits a step. At B0
c ≈ 0.464JS, there is a saddle

point in the two-magnon continuum, associated with the Lifshitz
transition in the decay contours shown in Fig. 9. This results in a
logarithmic singularity of ImΣ−þ

K0 ðεDÞ (labeled ImΣ for brevity),
which is accompanied by a sign change of ReΣ−þ

K0 ðεDÞ (labeled
ReΣ). (b)–(d) Position-resolved AkyðεÞ of a honeycomb-lattice
slab (similar to that in Fig. 8) at field values indicated by dashed
lines in panel (a). Blue (red) color indicates localization at the left
(right) edge. Black lines indicate the flat harmonic edge state
connecting the edge projections of the Dirac cones for zigzag
termination.

MOOK, PLEKHANOV, KLINOVAJA, and LOSS PHYS. REV. X 11, 021061 (2021)

021061-12



Since they are no longer located within the continuum, both
peaks are sharp.
A technical note is needed here. Within lowest-order

perturbation theory, as carried out here, only the renorma-
lization of the single-particle energies is captured. That
this renormalization also renormalizes, in turn, the con-
tinuum escapes our theory; the continuum is still built from
two “bare” single particles. Thus, the expected repulsive
interaction between single particles and the continuum
[108] is only found in the single-particle sector.

5. Thermal topological phase transition

We have already seen in Sec. II C that the most important
Feynman diagrams are the bubble diagrams because the
tadpoles integrate to zero and the Hartree term merely
compresses the spectrum. Hence, as far as magnon topo-
logy at finite temperatures is concerned, we may also
restrict to the bubble self-energy in Eq. (23). So far, we
considered the decay term at zero temperature. At finite
temperatures, the spontaneous contribution is accompanied
by two Bose factors ρðεq;γ; TÞ þ ρðεk−q;γ0 ; TÞ, which
enhance the efficiency of decays. Still, as long as decays
are kinematically forbidden (B > Bc), finite temperatures
will not cause damping.

A qualitatively new contribution comes from the therma-
lly activated collision term, which is proportional to a
difference of Bose functions: ρðεq;γ; TÞ − ρðεkþq;γ0 ; TÞ. It
may contribute to damping, if the single-particle energies
overlap with the collision DOS

CkðεÞ ¼
1

N

X
γ;γ0¼�

X
q∈BZ

δðεþ εq;γ − εkþq;γ0 Þ; ð41Þ

which is depicted in Fig. 12. However, one verifies that
the single-particle energies leave the collision DOS at the
same critical field Bc at which they also leave the two-
magnon DOS. Hence, for B > Bc, damping is strongly
suppressed at all temperatures (within 1=S perturbation
theory). The most relevant influence of temperature is
then found in its contribution to the real part of the self-
energy, with logarithmic singularities arising both from
the (lower) two-magnon and from the (upper) collision
DOS thresholds.
Figure 13(a) shows the temperature dependence of the

magnonic spectral function AKðεÞ for B ¼ 1.1JS > Bc and
S ¼ 1 at the Dirac cones, taking only bubble diagrams into
account. The two quasiparticle peaks stay well defined, in
agreement with the aforementioned kinematic reasoning.
Just below kBT=J ≈ 2, there is a band-gap closing and
reopening. Within the effective model (33), this transition is
associated with a vanishing of the off-diagonal self-
energies and, hence, of the mass term d3k in Eq. (35d).
One verifies that d3k flips sign at the K and K0 points, as
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FIG. 11. Topological magnon “revival” brought about by
strong interactions in the chiral magnet for S ¼ 1 and B=ðJSÞ ¼
0.8 (i.e., B < Bc). (a) Spectral function AK0 ðεÞ at the K0 point
as a function of DMI D. Dark blue (bright yellow) color indi-
cates zero (maximal) AK0 ðεÞ. The dotted horizontal line at
ðε − εDÞ=J ¼ −0.2 indicates the lower threshold of the two-
magnon continuum, from which the two quasiparticle peaks are
expelled at about D=J ¼ 0.2 and D=J ¼ 0.4, respectively.
Vertical dashed lines indicate D=J ratios for which band
structures are shown in the lower panels. (b)–(e) Many-body
renormalized magnon band structure along a high-symmetry path
in reciprocal space through the K0 point for (b) D=J ¼ 0.1,
(c) D=J ¼ 0.2, (d) D=J ¼ 0.4, and (e) D=J ¼ 0.6.
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FIG. 12. Collision density of states in honeycomb ferromag-
nets. At B ¼ 0, the harmonic single-particle energies [white lines;
cf. Eq. (12)] overlap with the collision density of states [color
plot; cf. Eq. (41)]. Dark blue (yellow) color indicates zero
(maximal) collision density of states. For increasing fields, the
single-particle energies are shifted upwards in energy by B, while
the collision continuum is fixed. Hence, for large enough fields,
the single-particle bands are shifted past the continuum. In
particular, the Dirac cones at the K and K0 points leave the
continuum at B ¼ Bc ¼ JS, similar to the two-magnon density of
states in Fig. 2.
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shown in Figs. 13(b)–13(d), leading to a temperature-
driven topological phase transition from negative chirality
(w ¼ −1) to positive chirality (w ¼ þ1).
To get some intuition as to why such a transition can

happen, let us ignore the interaction vertices in the self-
energy [Eq. (23)]. Then, decays and collisions are fully
characterized by the respective DOS. Note that the two-
magnon DOS in Eq. (27), the single-particle energies in
Eq. (12), and the collision DOS in Eq. (41), respectively,
grow with 2B, 1B, and 0B. At the K and K0 points, for
B ¼ Bc ¼ JS, the lower threshold of the two-magnon
DOS, the Dirac cone in Eq. (13), and the upper threshold
of the collision DOS coincide in energy. Thus, for B > Bc,
the two-magnon (collision) DOS is energetically above
(below) the Dirac cone, whence it follows that

εD − εq;γ − εK−q;γ0 < 0; ð42aÞ

εD þ εq;γ − εKþq;γ0 > 0 ð42bÞ

(for all q), and the two denominators in Eq. (23) have
opposite sign. Consequently, decays and collisions cause
mass terms of opposite sign. At low temperatures, when
collisions are frozen out, decays dominate. However,
thermally activated collisions may eventually take over,
causing the topological transition.
A comment on the consistency of spin-wave theory at

large temperatures is needed. Above, we pushed the lowest-
order anharmonic spin-wave theory to temperatures
kBT > J. In this limit, temperature-enabled higher-order
1=S corrections can be expected to alter our findings. For
example, at order 1=S2, sunset diagrams, as obtained within
second-order many-body perturbation theory in Ĥ4, are the
leading source of damping [27]. The resulting magnon
lifetimes will blur the quasiparticle peaks in Fig. 13.

Whether or not the topological transition in the spectrum
will be visible depends again on the ratio of the spectral gap
to the damping (cf. discussion in Sec. III B 4). Moreover,
thermal fluctuations eventually destroy the magnetic order.
In Sec. III B 6, we estimate the region in parameter space
spanned by B and T within which field freezing efficiently
counteracts thermal fluctuations.
Thus, the main insight of our analysis of temperature

effects is that thermal fluctuations harbor, in principle, the
potential to cause topological phase transitions. For more
quantitative predictions, higher anharmonic spin-wave
interactions have to be taken into account.

6. Interaction-induced topological phase diagram
and transverse transport

Armed with the knowledge of both field-induced
(cf. Sec. III B 3) and temperature-induced topological
phase transitions (cf. Sec. III B 5), we can now map out
the full topological phase diagram shown in Fig. 14. To that
end, we assume the on-shell approximation and extract the
winding number w from the sign of the gap in Eq. (32). We
point out that this is an approximation, the accuracy of
which may be judged by comparing the gap closing in
Fig. 13 (below kBT=J ¼ 2; obtained from the spectral
function) with the temperature-induced topological phase
transition in Fig. 14 (above kBT=J ¼ 2; obtained within the
effective model). Despite this slight quantitative disagree-
ment, all qualitative features are captured. We find that
there are no topologically trivial phases (w ¼ 0).
Since finite temperatures try to destroy magnetic order,

we have to make sure that the relative magnetization
(per spin)

(a)

(b) (c) (d)

FIG. 13. Temperature dependence of the interaction-induced
magnonic Dirac mass at B=ðJSÞ ¼ 1.1 for S ¼ 1 and
D=J ¼ 0.15. (a) Magnonic spectral function AKðεÞ as a function
of temperature. Dark blue (bright yellow) color indicates zero
(maximal) AKðεÞ. (b)–(d) Mass term d3k in the hexagonal unit cell
at kBT=J ¼ 0, kBT=J ¼ 1.8, and kBT=J ¼ 3, respectively.
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FIG. 14. Interaction-induced magnonic topological phase dia-
gram of the chiral honeycomb ferromagnet in Fig. 1(b) as
extracted from the effective model Hamiltonian (33); S ¼ 1
and D=J ¼ 0.15. Both a change in magnetic field B and in
temperature T causes topological phase transitions. Dashed lines
indicate the relative magnetization M [see Eq. (43); note
MðT ¼ 0Þ ¼ 1], as evaluated within linear spin-wave theory.
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MðTÞ ≈ 1 −
1

N

X
k

½ρðεk;−; TÞ þ ρðεk;þ; TÞ�; ð43Þ

evaluated within linear spin-wave theory, is well above
zero. Dashed lines in Fig. 14 indicate lines of constant M.
We find that the temperature-induced topological transition
happens at temperatures at whichM is already considerably
reduced. Hence, large fields B=ðkBTÞ > 1 are necessary to
freeze the magnetization and to appreciate this transition.
We note that such a topological phase diagram can never

be obtained within the noninteraction theory of ferro-
magnetic topological magnon insulators. This is because
(i) the influence of temperature on the spectrum escapes
harmonic theory as it may only be incorporated as an
effective scaling, and (ii) external magnetic fields cause but
a mere uniform energetic shift to the single-particle
excitations [cf. Eq. (12)] without influencing topology.
In the language of the effective Hamiltonian, fields only
enter the irrelevant constant shift d0k [cf. Eq. (36)]. Hence,
Fig. 14 summarizes the possibilities of interaction-induced
topological phase transitions.
To search for experimental signatures of these transi-

tions, we propose performing transport measurements.
We recall that time-reversal breaking is one of the two
necessary ingredients for transverse particle transport, the
other being compatibility of the magnetic point group with
ferromagnetism. With both requirements met by the chiral
magnet, we expect anomalous transverse magnon transport
at finite temperatures, namely, Hall, Nernst, and Righi-
Leduc effects (also called the thermal Hall effect). They are,
respectively, quantified by off-diagonal elements of the
magnetization conductivity σ, magnetothermal conduc-
tivity ϒ, and thermal conductivity κ. These conductivities
relate magnetization currents j and heat currents q to
gradients in magnetic fields, ∇B, and temperature, ∇T.
The constitutive equations read

j ¼ Lð0Þ∇B − Lð1ÞT−1∇T; ð44aÞ

q ¼ Lð1Þ∇B − Lð2ÞT−1∇T; ð44bÞ

and the conductivities are defined as σ ¼ Lð0Þ,ϒ ¼ Lð1Þ=T,
and

κ ¼ 1

T
ðLð2Þ − Lð1ÞðLð0ÞÞ−1Lð1ÞÞ: ð45Þ

Notice that κ is composed of two contributions, with the
second one deriving from a particle backflow, establishing
a magnonic Wiedemann-Franz law [110] both for longi-
tudinal [111] and transverse transport [112]. The transport
tensors LðiÞ, with i ¼ 0, 1, 2, are 2 × 2 matrices, whose
elements read [10,20,22,92,112–119]

LðiÞ
xy ðTÞ ¼ −

ðgμBÞ2−i
ℏ

ðkBTÞi
X
γ¼�

Z
BZ

ci½ρðεk;γ; TÞ�Ωk;γd2k;

ð46aÞ

LðiÞ
μμðTÞ¼ðgμBÞ2−i

X
γ¼�

Z
BZ

τk;γðvμk;γÞ2εik;γ
�
−
∂ρðεk;γ;TÞ

∂ε
�
d2k;

ð46bÞ

where μ ¼ x, y; moreover, note that LðiÞ
yx ðTÞ ¼ −LðiÞ

xy ðTÞ.
We introduced the g-factor g, Bohr magneton μB, the
transport relaxation time τk;γ , the group velocity vμk;γ, and
the weights

c0ðxÞ ¼ x; ð47aÞ

c1ðxÞ ¼ ð1þ xÞ lnð1þ xÞ − x lnðxÞ; ð47bÞ

c2ðxÞ ¼ ð1þ xÞ ln2½ð1þ xÞ=x� − ln2ðxÞ − 2Li2ð−xÞ:
ð47cÞ

First, we study the off-diagonal elements LðiÞ
xy ðTÞ in

Eq. (46a) and note that we restrict our analysis to intrinsic
contributions to transport. Thus, the transverse conductiv-
ities are related to the magnon Berry curvature Ωk;� in
Eq. (37) of the effective Hamiltonian Heff

k . Note that
temperature enters both explicitly via the thermal weights
ciðxÞ and implicitly because Heff

k and Ωk;� inherit the
temperature dependence of the self-energy in Eq. (23).
Figure 15 shows the dimensionless off-diagonal entries

of the transport tensors,

L̃ðiÞ
xy ¼ −

ℏLðiÞ
xy

ðgμBÞ2−iðkBTÞi
¼

X
γ¼�

Z
BZ

ci½ρðεk;γ; TÞ�Ωk;γd2k;

ð48Þ

as a function of selected parameters. At low fields, L̃ðiÞ
xy is

positive over a large temperature window [cf. Fig. 15(a)],
which complies with the positive-winding low-field phase
in Fig. 14 (lower yellow phase with w ¼ þ1). In contrast, at

higher fields, L̃ðiÞ
xy is negative, but the temperature-induced

transition (from the cyan w ¼ −1 to the yellow w ¼ þ1
phase in Fig. 14) eventually flips the sign of the dimen-
sionless conductivities [cf. Fig. 15(b)]. Another sign
change is found for a magnetic field sweep, as shown in
Fig. 15(c). Large fields eventually freeze out magnonic
transport because the single-particle bands are shifted
towards high energies, suppressing thermal occupation.
Finally, an increase in DMI D also causes an increase in
transverse conductivities [cf. Fig. 15(d)].
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The sign changes of Lð0Þ
xy and Lð1Þ

xy may be detected by
transverse spin transport experiments [120]. However, the
most frequently measured signatures of transverse magnon
transport are heat currents [121–123]. According to

Eq. (45), Lð2Þ
xy is not sufficient for a quantitative prediction

because the off-diagonal element of Lð1ÞðLð0ÞÞ−1Lð1Þ has to
be subtracted. In contrast to electrons, whose internal
energy scale given by the Fermi energy renders this
correction negligible at low temperatures, bosons do not
come with such a scale [111,112]. Hence, we need the
full Lð0Þ and Lð1Þ tensors, in particular, their diagonal
elements given by Eq. (46b). We approximate the transport
relaxation time by the magnon lifetime due to Gilbert
damping α, i.e., τk;γ ≈ ℏ=ð2αεk;γÞ. Setting α ¼ 10−3 results
in κxy=κxx ∼ 10−3, a ratio typically found in experiments
[121,123]. Moreover, to obtain more wieldy units, we
study the three-dimensional thermal conductivity
κ3D ¼ κ=l, which is given as the ratio of conductivity
per layer, κ, and a typical interlayer spacing l ¼ 1 nm.
Thus, the units of the thermal conductivity are
½κ3D� ¼ W

Km.

We decompose the transverse thermal conductivity as

κ3Dxy ¼ Lð2Þ
xy

Tl|{z}
κ3D;nominal
xy

þ 1

Tl
ð−Lð1ÞðLð0ÞÞ−1Lð1ÞÞxy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

κ3D;correctionxy

: ð49Þ

Figures 16(a) and 16(b) show the two contributions to the
thermal conductivity and Fig. 16(c) their sum for a realistic
ratio ofD=J ¼ 0.15. Importantly, the sign of the correction
term [Fig. 16(b)] is opposite to that of the nominal term
[Fig. 16(a)], which is a result of the backflow current.
Because of the missing internal energy scale of magnons
(zero chemical potential), both contributions have a similar
magnitude. However, since the backflow cannot be larger
than what drives the magnonic density imbalance in the
first place, jκ3D;nominal

xy j > jκ3D;correctionxy j holds, and the total
thermal Hall conductivity κ3Dxy [Fig. 16(c)] has the same sign
as the nominal contribution. Consequently, a measurement
of κ3Dxy probes the unconventional topological phase tran-
sitions associated with magnon-magnon interactions. Sign
changes of κ3Dxy are expected for both the field-induced and
the temperature-induced transition. We find that κ3Dxy is of
the order of 10−4 W

Km to 10−3 W
Km. Hence, the interaction-

induced thermal Hall conductivity can be as large as that
obtained within the free theory [68,93] and, in particular,
as that frequently observed in experiments [121–123].
It should be considered when interpreting transport
experiments.
We reiterate that we concentrated on intrinsic transport

and worked with the effective Hamiltonian constructed in
Sec. III B 1. If skew-scattering and side-jump effects due to
disorder can be neglected, this approximation is expected to
capture the relevant physics. However, it does not capture
the potential effect of the reduced quasiparticle weight of
expelled single-particle states (see Sec. III B 4) on trans-
port. Future theoretical studies may develop a full many-
body theory of transverse transport effects. In principle, one
would not only expect intrinsic contributions due to the
magnon Berry curvature but also skew-scattering-like
extrinsic contributions due to asymmetric three-magnon
scattering [124].

IV. ULTIMATE QUANTUM LIMIT:
EXACT DIAGONALIZATION FOR SPIN 1=2

So far, we relied on a large-S approximation, which we
pushed to S ¼ 1, a procedure that may be met with
scepticism. To confirm the validity of this procedure, we
push our analysis even further down to the ultimate
quantum limit of S ¼ 1=2 and compare the results to those
obtained from ED of the chiral magnet. Simulations are
performed on a cluster of 12 honeycomb unit cells (24 spins
in total) with tilted periodic boundary conditions.

(a) (b)

(c) (d)

FIG. 15. Interaction-induced transverse conductivities L̃ðiÞ
xy

[see Eq. (48)] for S ¼ 1. (a) Low-field temperature dependence

of L̃ðiÞ
xy ; the parameters read B=J ¼ 0.25 and D=J ¼ 0.3.

(b) High-field temperature dependence of L̃ðiÞ
xy ; the parameters

read B=J ¼ 1.2 and D=J ¼ 0.3. (c) Field dependence of L̃ðiÞ
xy at

kBT=J ¼ 1, with D=J ¼ 0.3. (d) DMI dependence of L̃ðiÞ
xy on

DMI D at kBT=J ¼ 1 and B=J ¼ 1. Notice the zero crossings
that are associated with topological phase transitions in the
magnon spectrum: The zero crossing in (b) [(c)] is associated
with the thermal phase transition (field-induced transition)
studied in Sec. III B 5 (Sec. III B 3).
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For D ¼ 0, the z component of the spin is conserved,
and the eigenstates can be labeled by their spin
Δsz ¼ 1; 2; 3;…, with Δsz ¼ 1 being magnons, Δsz ¼ 2
being two-magnon states, and so on. Large fields ener-
getically separate distinct Δsz sectors, facilitating a com-
parison with spin-wave theory. Figure 17(a) shows the
eigenspectrum (red crosses) as obtained from ED at
B=J ¼ 6. The states lowest in energy are Δsz ¼ 1 states
that excellently agree with the single-particle magnon
dispersion obtained within spin-wave theory [Eq. (12)
for S ¼ 1=2]. In particular, the two Δsz ¼ 1 states are

degenerate at theK andK0 points. At these points, one finds
that the Δsz ≥ 2 states cross the single-magnon states for
sufficiently low fields, as depicted in Fig. 17(b). At fields
slightly above Bc ¼ JS ¼ 0.5, the single-magnon states cut
into the two-magnon manifold. However, because of spin
conservation, there is no hybridization between different
spin sectors, as can be verified in Fig. 17(c).
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FIG. 17. Spectrum of the chiral magnet obtained from ED in the
quantum limit of S ¼ 1=2. Energies are given with respect to
the ground-state energy εGS. (a) Momentum dependence of the
spectrum for D=J ¼ 0 at B=J ¼ 6, causing an energetic sepa-
ration between Δsz ¼ 1 excitations (magnons) and higher-spin
excitations. Black lines indicate the spin-wave spectrum given in
Eq. (12), and the inset shows the hexagonal Brillouin zone with a
highlighted path connecting high-symmetry points. (b) Field
dependence of the spectrum at the K (or K0) point, at which the
Δsz ¼ 1 excitations (magnons) are degenerate forD=J ¼ 0. Note
that the ordinate shows ðε − εGS − BÞ=J, such that Δsz ¼ 1
excitations appear as a horizontal line and only higher-spin
excitations (indicated by gray continua) shift with increasing
field. For fields just above Bc ¼ JS ¼ 0.5 (see arrow), the
Δsz ¼ 1 excitations cut into the Δsz ¼ 2 excitations. Eigenstates
with different spin quantum numbers do not hybridize because of
the absence of DMI. (c) Zoom in of the energy and field window,
within which the Δsz ¼ 1 and Δsz ¼ 2 excitations overlap.
(d) Same as panel (c) but with finite DMI D=J ¼ 0.15, causing
spin nonconservation and a hybridization between different spin
sectors. Importantly, the formerly degenerate Δsz ¼ 1 excitations
get gapped. This gap increases the closer they get to the Δsz ¼ 2
excitations. (e) Splitting of the Δsz ¼ 1 excitations as a function
of DMI at B=J ¼ 1. For all simulations, a cluster of 24 spins was
considered. In panels (b)–(d), the lowest 100 eigenvalues are
plotted.

FIG. 16. Interaction-induced transverse thermal conductivity
κ3Dxy ¼ κ3D;nominal

xy þ κ3D;correctionxy [see Eq. (49)] as a function of
temperature for selected magnetic field values B=J. (a) The

nominal contribution κ3D;nominal
xy shows the same features as L̃ð2Þ

xy

[cf. Fig. 15], i.e., a sign change with both magnetic field and
temperature. (b) The correction term κ3D;correctionxy has a sign
opposite to that of the nominal contribution and is of the same
magnitude. (c) The total thermal Hall conductivity κ3Dxy exhibits

features identical to that of κ3D;nominal
xy , but its magnitude is

reduced. The inset shows κ3Dxy for fields B=J > 1. For each
magnetic field value, we define an upper threshold temperature
T⋆ by MðT⋆Þ ¼ 0.5 [see Eq. (43) and Fig. 14]. For T < T⋆, the
spin-wave theory carried out in this paper is expected to be a
good approximation. In contrast, temperatures T > T⋆ require
higher-order spin-wave corrections. The parameters are S ¼ 1
and D=J ¼ 0.15.

INTERACTION-STABILIZED TOPOLOGICAL MAGNON … PHYS. REV. X 11, 021061 (2021)

021061-17



Hybridization between spin sectors is brought about by
finite DMI (D=J ¼ 0.15) that violates spin conservation.
As depicted in Fig. 17(d), the Dirac magnons split and get
downwards renormalized as they are approached by two-
magnon states. The splitting increases quadratically with
growing D=J, as shown in Fig. 17(e) for B=J ¼ 1.
Overall, we find very good qualitative agreement with

the anharmonic spin-wave theory, e.g., with Figs. 5(d)
and 5(f). We refrain from a quantitative comparison
because ED is prone to finite-size effects. By changing
the simulated cluster geometry, the gap between single-
magnon states can vary considerably; the existence of the
gap, however, is not subject to finite-size effects. (In
Appendix E, we also use ED to show that the Dirac
magnons are gapped for S ¼ 1.) We are thus content with
concluding that spin-wave theory is a surprisingly good
approximation even for S ¼ 1=2, and we attribute this
finding to the collinear texture and negligible frustration.

V. DISCUSSION

A. Working principles for undamped interacting
topological magnons

From our results, we identify two working principles to
minimize the damping caused by interactions without
compromising their band-gap-inducing quality.
(i) Tuning the Dirac point just below the lower threshold

of the continuum.—To take full advantage of the logarith-
mic singularity in the real part of the self-energy
(cf. Sec. III A), the Dirac cone must be energetically
positioned close to but still outside of the continuum,
which is easily realized by application of a magnetic field.
Real materials may only be quasi-two dimensional because
of some (weak) interlayer coupling. Any degree of three
dimensionality regularizes the DOS of the two-magnon
continuum and, hence, also the singular behavior of the
self-energy. The logarithmic singularity and step of the real
and imaginary parts are replaced by a nonsingular square-
root behavior [73]. Still, the gap-inducing real part is
strongly enhanced at the threshold of the continuum.
(ii) Artificially enhance interactions to expel the single-

particle states from the continuum.—If principle (i) is not
an option, e.g., because it would take inaccessibly large
magnetic fields, one can try to make the continuum “expel”
the single-particle states by artificially increasing inter-
actions (cf. Sec. III B 4). It is known that strong electric
fields E cause DMI interactions because they break
inversion symmetry [125–127]. Hence, by applying an
out-of-plane E, which mimics the electric field due to a
structural potential gradient, Rashba-type DMI [such as
that considered in the chiral magnet in Fig. 1(b)] is
enhanced. Moreover, recently, several ideas on light-
induced effective magnetic interactions were discussed
[128–133], which, when carefully designed, could cause
considerable magnon-magnon interactions.

B. Comparison between harmonic and interacting
magnon Chern insulators

We reiterate that it is only due to the particle-number-
nonconserving interactions that the broken (effective) time-
reversal symmetry of the chiral magnet in Fig. 1(b)
becomes apparent (also cf. Sec. II A). It is worth pointing
out the difference from conventional magnon Chern
insulators (e.g., Refs. [11,134]) that exhibit nontrivial
topology already at the harmonic level. There, a reversal
of the sign of the DMI flips the winding number and, hence,
the edge state’s chirality because the harmonic theory sees
D ·M, i.e., the projection of the DMI vectors D onto the
magnetization M. Hence, a reversal of D is equivalent to a
reversal of M, the latter being the actual crucial ingredient
to flip the sign of topological invariants. In contrast, the gap
opening due to interactions observed in Sec. III A is
quadratic in DMI and, thus, independent of a sign flip
of DMI. We argue that it is not necessary for the sign of
DMI to be the relevant parameter. Instead, one verifies that
it is still the magnetization reversal that leads to a sign flip
of the mass and, hence, also to a sign reversal of the
winding number. To see this, we recall that upon magneti-
zation reversal, not all spin components acquire a minus
sign but that the sign of one in-plane component stays
invariant; e.g., for a rotation Rðy; πÞ, the sign of Syr stays
invariant. Effectively, this rotation is like flipping the sign
of the x components of the in-plane DMI vectors. Hence,
the DMI-induced phases φδi ¼ argðdyδi − idxδiÞ, which enter
the interaction vertices via terms of the form eiðφδi

−k·δiÞ in
Eqs. (A1a)–(A1d), are reversed, φδi → −φδi . For the
interaction vertices, such a flip amounts to the mapping
ðVl;m←n

k;q←p ÞC → ðVl;m←n
−k;−q←−pÞC;�, i.e., to complex conjugation

and reversal of crystal momentum, the two operations
usually associated with time reversal. Hence, upon mag-
netization reversal, the interaction-induced mass term at the
K point is now found at the K0 point and vice versa.
Obviously, the winding number in Eq. (39) has to
change sign.
One may also discuss what happens under a gradual

rotation of M from up-pointing to down-pointing.
Somewhere in between, there has to be a topological phase
transition associated with a gap closing. As M is fully
rotated into the plane, the chiral magnet in Fig. 1(b) exhibits
an effective time-reversal symmetry T C2;z. Taking a
hexagon’s center of mass as the center for the C2;z rotation,
which rotates both spins and space (and, hence, maps the
DMI vectors onto each other), actual time-reversal T maps
the in-plane texture back onto itself. Hence, Dirac cones are
stable; i.e., the band gap has closed.

C. Potential role of two-magnon bound states

We emphasize that the topological phase diagram in
Fig. 14 was extracted from the effective model Hamiltonian
(33) and only captures single-particle topology. Thus,
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potential influences of two-magnon bound states—brought
about by attractive magnon-magnon interactions—are
neglected. For the case without DMI, two-magnon bound
states in honeycomb-lattice ferromagnets were studied in
Ref. [135]: At the K and K0 points, there are three bound
states (two of which are degenerate) just below the two-
magnon continuum. Their binding energies, i.e., their
energetic distance from the bottom of the continuum, are
ΔE1 ¼ 0.017JS and ΔE2 ¼ 0.044JS [135]. Since DMI
breaks spin conservation, two-magnon bound states
and single-particle Dirac magnons could hybridize at B ¼
Bc þ ΔE1;2 and gap out. Such potentially topological
effects between excitations with different spin quantum
numbers are not captured by our analysis. It remains an
intriguing open question for future studies to describe
topological spin excitations with mixed multipolar charac-
ter, i.e., excitations that are neither fully magnons (dipolar,
spin 1) nor two magnons (quadrupolar, spin 2). Such a
hybridization was recently experimentally observed in the
antiferromagnet FeI2 [136,137].

D. Relevance in real materials

In real materials, magnonic topology is determined by a
competition between harmonic and anharmonic mecha-
nisms. For example, if we include a small Dz second-
nearest-neighbor term [as considered in the achiral magnet,
Fig. 1(a)] into the model of the chiral magnet [cf. Fig. 1(b)],
a Dirac mass and nontrivial topology are already found at
the harmonic level [134], with the winding number deter-
mined by the sign ofDz. Additionally, sublattice-dependent
on-site potentials, e.g., in the form of on-site anisotropies,
may be considered. They break inversion symmetry and
open a topologically trivial gap at the harmonic level. As is
known from the electronic Haldane model [5], a rich
topological phase diagram with both topologically non-
trivial and trivial phases is found at the single-particle level.
For magnons, the effects of particle-number-nonconserving
interactions due to in-plane DMI (D) add to the complexity
of the problem. Since Dz and D can be independent—the
former derives from spin-orbit coupling intrinsic to the
material, while the latter is due to structural asymmetry,
e.g., in the presence of a substrate—D may be larger than
Dz. Then, despite the 1=S smallness and the quadratic
influence of D on the dispersion, interactions may counter-
act and even undo or reverse harmonic topology, causing an
opposite winding number or a transition from a topologi-
cally trivial into a nontrivial phase. With these effects being
field as well as temperature dependent, both magnon
topology and transverse transport become highly nontrivial
subjects. Since experimental studies of magnon topology
and transverse transport have so far relied on the harmonic
approximation for the interpretation of results, a careful
reexamination may be necessary. Let us quickly go over
selected materials for which there is experimental evidence
compatible with nontrivial magnon topology and/or

thermal Hall effects of magnonic origin. We restrict the
discussion to (almost) collinear magnets [138].
Kagome ferromagnet Cu[1,3-benzenedicarboxylate

(bdc)].—The metal-organic kagome ferromagnet Cu(1,3-
bdc), which exhibits Dirac gaps [17] as well as transverse
thermal transport [123] for an out-of-plane field, orders in
plane with (negligible) antiferromagnetic interplane cou-
pling in the absence of an external field [139]. Similar to the
achiral model magnet in Fig. 1(a), the in-plane ordered state
exhibits Dz-induced magnon damping [65]. However, also
similar to the achiral magnet, Dz does not break time-
reversal symmetry, such that magnon-magnon interactions
due to Dz do not serve as an independent source of
topology. However, note that since the kagome layers
are not mirror planes in Cu(1,3-bdc), in-plane DMI
components that span the entire plane are allowed [140].
An in-plane ordered ferromagnetic state has finite projec-
tion onto some of the in-plane DMI vectors but is
orthogonal to others. Hence, the time-reversal breaking
influence of in-plane DMI enters both the harmonic and the
cubic theory. An intricate interaction and/or counterplay is
expected, influencing both magnon topology and the
associated thermal Hall effect [141].
Similarly, for the experimentally considered scenario of

out-of-plane magnetized Cu(1,3-bdc), Dz causes harmonic
topology [10,11,15,93], but the in-plane DMI vectors enter
the cubic theory. Importantly, similar to the chiral model
magnet in Fig. 1(b), the in-plane DMI vectors break the
effective time-reversal symmetry even in the absence of Dz
and, hence, constitute an independent source of topology,
which has been neglected so far [93,114]. With the three-
magnon interactions being easily “field-frozen,” a study of
the magnetic-field dependence of topological magnonic
gaps could clarify the relative importance of in-plane and
out-of-plane DMI. Such results could shed new light on
the origin of the experimentally observed sign changes in
transverse transport [123].
Bilayer kagome antiferromagnet YMn6Sn6.—The inter-

metallic room-temperature kagome antiferromagnet
YMn6Sn6 exhibits both gapped magnon bands and Dirac
magnons [19]. With the kagome lattice admitting both in-
plane and out-of-plane DMI vectors (the kagome planes are
not mirror planes), any magnetization or Néel vector
direction will select a subsection of DMI components
entering the harmonic theory, with the remaining compo-
nents appearing in the cubic Hamiltonian. Hence, with
interactions and the free theory sharing symmetries, inter-
actions should be considered for explaining neutron scat-
tering data. Their effect may, however, be overshadowed by
the rather large electron-magnon interaction causing
Landau damping due to Stoner excitations [19].
Transition metal trihalides CrBr3 and CrI3.—A tem-

perature-driven many-body renormalization of magnons
has been studied in the honeycomb-ferromagnet
CrBr3, both by inelastic neutron scattering [26] and by
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magnon-assisted tunneling through a CrBr3 barrier [144].
The renormalization of Dirac magnons was successfully
explained in terms of number-conserving four-particle
interactions (Ĥ4), which derive from the exchange energy
[27] and, hence, do not gap out the Dirac magnons. The
intrinsically small spin-orbit coupling (SOC) of CrBr3
renders anisotropic spin-spin interactions irrelevant.
However, one may think of depositing CrBr3 on a semi-
conductor with large SOC (as was done recently in
Ref. [145]) to induce interfacial DMI for a realization of
the chiral magnet model in Fig. 1(b).
The situation is drastically different in CrI3, which

exhibits monolayer ferromagnetism due to SOC-induced
anisotropies [146,147]. To explain the experimentally
observed gapped Dirac magnons [18], two models—the
J-Dz model and the J-K-Γ model [148]—are debated [150],
with the latter one having theoretical support [151–153]. The
anisotropic off-diagonal exchange interactions (sometimes
called “Γ terms”) between nearest neighbors have a similar
time-reversal symmetry-breaking influence as the nearest-
neighbor DMI in our chiral model magnet in Fig. 1(b).
Hence, the associated three-magnon interactions may
support or compete with the Kitaev terms that cause non-
trivial magnon topology at the harmonic level. Such con-
siderations may complement the study of four-magnon
interactions carried out in Ref. [156]. Furthermore, one
may induce DMI by considering the intrinsically inversion
asymmetric Janus monolayers [157]; recent theoretical
studies have predicted very large DMI [158–160].
Three-dimensional pyrochlore ferromagnet Lu2V2O7

and multiferroic ferrimagnet Cu2OSeO3.—Pyrochlore
ferromagnets like Lu2V2O7 exhibit a thermal Hall effect
[121,122] and were predicted to host Weyl magnons at high
energies [34,35]. However, neutron scattering data revealed
a rather blurred magnon spectrum [161], which may be
brought about by spontaneous magnon decays due to the
DMI vectors spanning the entire three-dimensional space.
Hence, no matter which direction the magnetization is
pointing, DMI is distributed over harmonic as well as
anharmonic Hamiltonians, rendering nonlinear spin-wave
calculations necessary.
Similar considerations apply to the Weyl magnon-

hosting multiferroic ferrimagnet Cu2OSeO3 [39].
However, note that on top of DMI-derived three-magnon
interactions, there are also number-nonconserving four-
magnon interactions (of type b†b†b†b) due to the ferri-
magnetic spin alignment. Although they contribute to
zero-temperature spontaneous decays only at order 1=S2,
they are proportional to the exchange energy and do not
suffer from the smallness of SOC. Hence, since S ¼ 1=2,
the additional 1=S “smallness” does not compensate for the
four-magnon vertices being larger by a factor of J=D than
the three-magnon vertices. Zero-temperature decays into
the three-magnon continuum are expected to be the
dominating source of damping.

Nonetheless, the Hermitian part of the interaction-
induced self-energy due to DMI is expected to renormalize
the position of the Weyl points. Moreover, the non-
Hermitian part—so far only explored in two dimensions
[66]—may introduce a new topological phase of magnons,
which is the magnonic analog of an “exceptional topo-
logical insulator” [162].
Kamiokite Fe2Mo3O8.—The multiferroic kamiokite

Fe2Mo3O8 [and its derivatives ðZnxFe1−xÞ2Mo3O8] exhi-
bits a giant thermal Hall effect [163], which is argued to
derive from phonon skew scattering (extrinsic contribution)
and DMI-induced magnon-phonon interactions (intrinsic
contribution) [164]; intrinsic contributions due to magnons
are dismissed. The geometry between magnetization and
DMI vectors is very similar to the chiral model magnet
in Fig. 1(b), and the arguments of Refs. [163,164] for
dismissing purely magnonic contributions rely on the
accidental effective time-reversal symmetry of harmonic
theory. Our results challenge this conclusion; the in-plane
DMI vectors of Fe2Mo3O8 break the effective time-reversal
symmetry via three-magnon interactions and will cause a
purelymagnonic thermal Hall effect. Hence, a full theory of
transverse thermal transport in kamiokite must consider
magnons and phonons, as well as the interactions among
themselves and among each other.

VI. CONCLUSION

We considered the influence of particle-number-non-
conserving many-body interactions on single-particle top-
ology by taking the elementary excitations of ferromagnets,
i.e., magnons, as an example. We demonstrated that
magnon-magnon interactions may break a symmetry of
the harmonic theory, admitting a different topological phase
from that found for noninteracting magnons. In particular,
Dirac magnons in out-of-plane polarized honeycomb-lat-
tice ferromagnets obtain a mass gap due to spontaneous
three-magnon interactions, giving rise to a topologically
nontrivial gapped phase with chiral edge states. Topological
phase transitions brought about either by magnetic fields or
temperature flip the chirality of the edge magnons, an
experimental signature of which is a sign change in the
thermal Hall conductivity.
These results show that magnon-magnon interactions not

only harbor detrimental lifetime broadening effects on the
magnonic spectrum but also constitute an origin of non-
trivial topology on their own. Hence, they should not be
neglected in studies of magnon topology. The chiral
honeycomb-lattice ferromagnet, which may be considered
a minimal model to prove the existence of interaction
effects on topology, carries immediate significance for van
der Waals layer ferromagnets. Examples are the chromium
trihalides CrI3, CrBr3, and CrCl3. Other potential material
candidates to experimentally identify interaction-induced
signatures either in the magnon spectrum or in transverse
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magnon transport are the kagome ferromagnet Cu(1,3-
benzenedicarboxylate) and the multiferroic Fe2Mo3O8.
Since we relied on a spin-to-boson transformation and

extracted our results for the effective bosonic theory, the
bosons may retrospectively be interpreted as different
collective modes in solids. Hence, our general statements
on the effect of interactions on single-particle topology also
apply to, for example, phonons [165], triplons [166,167],
bosonic spinons (Schwinger bosons) [168], magnon
polarons [169,170], and magnon polaritons [171].
Overall, our findings suggest that particle-number-
nonconserving many-body interactions are a crucial player
in the field of topology of collective excitations in quantum
condensed matter systems.
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APPENDIX A: THREE-MAGNON INTERACTION
VERTICES FOR ACHIRAL AND CHIRAL

HONEYCOMB FERROMAGNETS

In Eq. (14), we defined the Holstein-Primakoff three-
boson vertices. For the chiral magnet, the only nonzero
vertices are

ðV1;2←1
k;q←pÞC ¼ −D

ffiffiffi
S
2

r X3
i¼1

eiðφδi
−q·δiÞ; ðA1aÞ

ðV2;1←1
k;q←pÞC ¼ −D

ffiffiffi
S
2

r X3
i¼1

eiðφδi
−k·δiÞ; ðA1bÞ

ðV2;1←2
k;q←pÞC ¼ D

ffiffiffi
S
2

r X3
i¼1

eiðφδi
þq·δiÞ; ðA1cÞ

ðV1;2←2
k;q←pÞC ¼ D

ffiffiffi
S
2

r X3
i¼1

eiðφδi
þk·δiÞ; ðA1dÞ

where φδi ¼ argðdyδi − idxδiÞ is the “phase” of the DMI
vector belonging to the nearest-neighbor bond δi [see
Eqs. (10a)–(10c)]. Explicitly, the directions of the DMI
vectors read

dδ1 ¼ ð0; 1Þ; ðA2aÞ

dδ2 ¼ ð−
ffiffiffi
3

p
=2;−1=2Þ; ðA2bÞ

dδ3 ¼ ð
ffiffiffi
3

p
=2;−1=2Þ: ðA2cÞ

For the achiral magnet, the nonzero vertices are

ðV1;1←1
k;q←pÞA ¼ −

ffiffiffiffiffiffi
2S

p
Dz

X3
i¼1

½sin ðτi · kÞ þ sin ðτi · qÞ�;

ðA3aÞ

ðV2;2←2
k;q←pÞA ¼

ffiffiffiffiffiffi
2S

p
Dz

X3
i¼1

½sinðτi · kÞþ sin ðτi · qÞ�; ðA3bÞ

where

τ1 ¼ ð0;−
ffiffiffi
3

p
Þ; ðA4aÞ

τ2 ¼ ð3=2;
ffiffiffi
3

p
=2Þ; ðA4bÞ

τ3 ¼ ð−3=2;
ffiffiffi
3

p
=2Þ ðA4cÞ

connect second-nearest neighbors.

APPENDIX B: LOGARITHMIC SINGULARITIES

In Sec. III A, we encountered a logarithmic singularity
in the real part of the self-energy at the lower threshold of
the two-magnon continuum. Here, we derive the analytic
expression for this singularity.
We consider the kinematic situation that the Dirac energy

εD coincides with the lower threshold of the two-magnon
continuum, which is the case for the critical magnetic field
Bc ¼ JS. The only decay channel for which the deno-
minator of the self-energy in Eq. (26) can be resonant is that
with both decay products in the lower branch: γ ¼ γ0 ¼ −.
The only possible energy and momentum-conserving
decay channels for a Dirac magnon at K are those that
involve two identical decay products at K=2 (there are three
such momenta, each halfway along the high-symmetry
line connecting the Γ point with the K point; see also
Sec. III B 3). Hence, we expand the field B about Bc, and q
about the two-magnon minimum at K=2. In terms of

δB ¼ B − Bc; ðB1aÞ

δq ¼ q − K=2; ðB1bÞ

the denominator of the self-energy becomes

εK þ i0þ − εq;− − εK−q;− ≈ i0þ − δB −
�
δqx
a

�
2

−
�
δqy
b

�
2

;

ðB2Þ

where a and b characterize the minimum of the
two-magnon continuum along the x and y directions,
respectively.
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As far as the singular behavior of the self-energy is
concerned, we may replace the interaction vertices by

Vα←−−
K0←K0=2;K0=2V

−−←β
K0=2;K0=2←K0 → CαβD2; ðB3Þ

where we made the dependence on DMI dependence
explicit. Here, Cαβ is a constant. For the achiral magnet,
Cαβ ¼ 0 for α ≠ β, indicating the absence of an off-
diagonal self-energy and, hence, of the gap. In contrast,
for the chiral magnet, Cαβ ≠ 0 for all α and β.
The singular part of the self-energy thus reads

Σαβ
K ðεKÞ ∼ CαβD2

Z
d2δq

i0þ − δB − ðδqxa Þ2 − ðδqyb Þ
2
; ðB4Þ

and we extract

ReΣαβ
K ðεKÞ
J

∼ Cαβ

�
D
J

�
2

log

���� δBJ
����; ðB5aÞ

ImΣαβ
K ðεKÞ
J

∼ Cαβ

�
D
J

�
2
�
Θ
�
δB
J

�
− 1

�
; ðB5bÞ

from which Eqs. (29a) and (29b) follow. This singular
behavior agrees with the general considerations of Ref. [73].

APPENDIX C: OFF-SHELL SOLUTION OF THE
DYSON EQUATION

To cut singularities in the renormalized magnon spec-
trum encountered within lowest-order perturbation theory,
the authors of Ref. [73] proposed a self-consistent off-shell
solution of the Dyson equation. The main idea is to
iteratively solve the Dyson equation, evaluating the self-
energy at the so-obtained complex energies ε̃k, i.e.,

ε̃ðνÞk ¼ εk − iηþ Σkðε̃ðν−1Þ;�k Þ; ðC1Þ

where the complex conjugate ε̃�k accounts for causality [73].
Here, ν denotes the iteration step. As an initial value, one

chooses ε̃ð0Þk ¼ εk − iη, with η ≪ εk being a small numeri-
cal linewidth. Hence, after the first iteration, one obtains the

on-shell spectrum ε̃ð1Þk . One then feeds ε̃ð1Þk back into the
self-energy, calculates the new energies, and repeats this

process until ε̃ðνÞk converges. Since ε̃ð1Þk contains a finite
imaginary part, i.e., a finite damping Γk, the on-shell
singularities in Eqs. (B5a) and (B5b) are cut. Effectively,
the finite damping smears out the threshold of the two-
magnon continuum, giving rise to a finite damping also for
magnons below the continuum, that is, to those magnons
that are nominally stable within the Born approximation. To
see this, replace i0þ in Eq. (B4) by iΓk. Dropping Cαβ, and
concentrating on the singularity at δB ¼ 0, one obtains

ReΣKðεK þ iΓKÞ
J

∼ −
�
D
J

�
2

log

�
1þ Λ2

Γ2
K

�
; ðC2aÞ

ImΣKðεK þ iΓKÞ
J

∼ −
�
D
J

�
2

arctan

�
Λ
ΓK

�
; ðC2bÞ

where Λ is an artificial ultraviolet integration cutoff. In
principle, one would have to solve self-consistently both for
the real and the imaginary part, accounting for an energy
shift of the point where the single-particle energies cut into
the continuum. For the sake of simplicity, here we only
solve Eq. (C2b) self-consistently for the damping ΓK ¼
−ImΣKðεK þ iΓKÞ in the limit Λ ≫ ΓK, resulting in
ΓK ∼D2=J. Thus, the damping is still perturbatively small
but sufficient to cut the singularity of the real part in
Eq. (C2a),

ReΣKðεK þ iΓKÞ
J

∼ −
�
D
J

�
2

log

�
ΛJ
D2

�
: ðC3Þ

Hence, the real part exhibits a nonperturbative D2 log jDj
dependence. Both the damping and the real part of the self-
energy vanish as D → 0. The divergence as Λ → ∞ in
Eq. (C3) is artificial because Λ is physically bounded from
above by the inverse of the lattice constant.
In writing Eq. (C1), we ignored the two-band nature of

the honeycomb magnet. For the chiral magnet, there will be
a spectral gap at K in the renormalized spectrum for ν ≥ 1.
Hence, we decided to evaluate the new self-energy at the
average energy, resulting in the equation

ε̃ðνÞK;� ¼ εD − iηþ Σ−−
k ð ¯̃εðν−1Þ;�K Þ � Σþ−

K ð ¯̃εðν−1Þ;�K Þ; ðC4Þ

with

¯̃εðν−1Þ;�K ¼ ε̃ðν−1Þ;�K;þ þ ε̃ðν−1Þ;�K;−

2
: ðC5Þ

Note that Σ−−
k ¼ Σþþ

K and Σþ−
K ¼ Σ−þ

K .
First, we demonstrate the convergence behavior of

Eq. (C4) at the critical field B ¼ Bc for S ¼ 1 at D=J ¼
0.15. Figure 18(a) depicts the renormalized magnon ener-
gies as a function of the iteration step ν. Error bars, given by
�ΓK;�, indicate the damping. At ν ¼ 0, we show the
harmonic magnon spectrum for which the Dirac cone is
closed (zero mass). While the on-shell spectrum (ν ¼ 1)
exhibits the logarithmic divergence as η → 0, the con-

verged spectrum ε̃ðν→∞Þ
K;� is independent of the numerical

linewidth. We find that ten iteration steps are sufficient to
ensure convergence at B ¼ Bc. In contrast, more iteration
steps (about 30) are necessary to converge results for fields
slightly below the critical field, as shown in Fig. 18(b) for
B=J ¼ 0.981. This is because the singularity is not only cut
but also shifted towards lower energies.
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Second, we explore the magnon spectrum at the K point
as a function of B, using η=J ¼ 10−5 and 30 iteration steps.
As shown in Fig. 18(b), the magnon spectrum of the chiral
magnet is gapped, in general. For B > Bc ¼ J, the two
magnon branches are well separated and have negligible
damping. However, for B < Bc, decays into the two-
magnon continuum cause strong lifetime broadening, as
indicated by the colored areas. With the damping being
larger than the gap, the notion of the gap ceases to exist.
Interestingly, the gap becomes larger than the damping
again for small fields. Overall, the off-shell solution for the
magnon spectrum agrees very well with the spectral
function in Fig. 5(f). In particular, there is no divergence
at B ¼ Bc but merely a cusp.

APPENDIX D: DETAILS OF SLAB
CALCULATIONS FOR THE CHIRAL MAGNET

Finite samples (slabs) feature boundary spins that miss
neighbors. Hence, the chiral DMI is no longer compen-
sated, and there is an edge-located relaxation of the
magnetic texture away from the collinear state. This
phenomenon is known as “surface twist,” and its amplitude
decays exponentially towards the bulk [172]. To quantify
this effect, we study the tilt angle ϑ of the boundary spins as
a function of DMI and magnetic field, as obtained from a
classical energy minimization procedure based on an
overdamped Landau-Lifshitz-Gilbert equation. The results
in Fig. 19 show that for D=J ¼ 0.2, the tilt decreases from
ϑ ≈ 16° to 6° as the field increases from B=ðJSÞ ≈ 0.2 to
B=ðJSÞ ≈ 1. Upon rotating slightly into the plane, the edge
spins exhibit a finite projection onto the in-plane DM
vectors, hence contributing to the harmonic theory that
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FIG. 18. Magnon spectrum of the chiral magnet at the
K point within the off-shell solution of the Dyson equation.
(a) Convergence behavior of the iterative off-shell solution at
the singular point B ¼ Bc for selected values of the numerical
linewidth η. No more than ten iteration steps are necessary to
obtain converged results. Error bars indicate the damping.
(b) Convergence behavior at B=J ¼ 0.981. About 30 iteration
steps are necessary to obtain converged results for η=J ¼ 10−5.
(c) Magnon spectrum as a function of magnetic field B for
η=J ¼ 10−5. Black lines indicate the real part of the spectrum,
and the colored regions indicate the linewidth (damping). The
parameters read S ¼ 1 and D=J ¼ 0.15.
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angle ϑ as a function of magnetic field B and D=J.
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leads to nonreciprocal features of boundary-located mag-
nons (εk ≠ ε−k), as expected for a locally broken inversion
symmetry. It does not, however, lead to a band-gap opening
on the harmonic level because the bulk magnetization is
still pointing out of the plane. Hence, we neglect the
boundary twist altogether and consider the texture to be
strictly collinear. (By doing so, we also neglect the
renormalizing effect of many-body interactions on the
ground-state directions of edge spins.)
The reduced coordination of edge spins has another

effect: Edge excitations are shifted downwards in energy
relative to bulk excitations. Colloquially speaking, since
edge spins are “more floppy” than bulk spins, it does not
cost as much energy to excite them. For our study, this
becomes relevant when analyzing edge states. For example,
a zigzag-terminated edge of the electronic honeycomb
lattice is known to feature a flat state, which connects
the projections of the two Dirac cones [173–176]. For
magnons, however, this state is no longer flat but looks like
a loose drumhead [177]. Such phenomena have been
observed, e.g., for the drumhead surface states associated
with magnonic nodal lines [27,40]. Although, in principle,
this is not a major road block, it increases the energy
window covered by the edge states. With the slab calcu-
lations being computationally demanding, any reduction of
the relevant energy window facilitates the analysis. Hence,
we apply local magnetic fields only to the edge spins.
(Physically, this situation mimics proximitizing the magnet
with another magnet.) The magnitude of the local field is
chosen to exactly compensate for the effective field of the
missing neighbors. Hence, without interactions, the mag-
nonic edge states of a zigzag-terminated honeycomb
ferromagnet become flat, akin to their electronic analogs.
We reiterate that the local field, by itself, has no influence
on topology and just shifts the edge states in energy.
Moreover, the edge field also decreases the effect of the
boundary twist even more, providing an additional reason
to neglect any twists.
With the necessary approximations established, we

continue by considering a slab with periodic boundary
conditions along the y direction but open boundary con-
ditions in the x direction. Hence, the edges are zigzag
terminated. We choose a width of 12 honeycomb-lattice
unit cells, resulting in a slab supercell of 24 spins. The
harmonic Hamiltonian

Ĥslab
2 ¼

X
k

Â†
k ·H

slab
k · Âk; ðD1Þ

with Â†
k ¼ ðâk;1;…; âk;24Þ and a 24-by-24 Hamilton kernel

Hslab
k , is readily constructed numerically by a straightfor-

ward application of linear spin-wave theory. It is diagon-
alized by the matrix Uslab

k .
We also use numerics to construct the three-magnon

interaction vertices between the 24 types of magnon normal

modes. We rely on Refs. [68,77] for the general expressions
of the vertices. The numerical calculation of the self-energy
Σslab
k ðεÞ and Green’s function Gslab

k ðεÞ follows the standard
procedure and is done in the eigenbasis. To facilitate
numerical efforts, we only evaluate the tridiagonal entries
of Σslab

k ðεÞ (main diagonal and the first diagonals above and
below it) because those are sufficient to capture band-gap
openings between degenerate bands to order 1=S.
To obtain a spatially resolved spectral function

Aslab
i;ky

ðεÞ ¼ −
1

π
Im½Uslab

k Gslab
k ðεÞUslab;†

k �i;i; ðD2Þ

where i ¼ 1;…; 24 labels a site of the slab unit cell (i ¼ 1
and i ¼ 24 label the leftmost and rightmost spins, respec-
tively), we transform the Green’s function back to the
Holstein-Primakoff basis. Then, we define

Aleft
ky
ðεÞ ¼

X12
i¼1

Aslab
i;ky

ðεÞ; ðD3aÞ

Aright
ky

ðεÞ ¼
X24
i¼13

Aslab
i;ky

ðεÞ ðD3bÞ

and plot Aleft
ky
ðεÞ − Aright

ky
ðεÞ in Fig. 8(b), choosing blue (red)

color for positive (negative) values.

APPENDIX E: EXACT DIAGONALIZATION
FOR S= 1

For S ¼ 1, ED of a nine-unit cell honeycomb flake with
periodic boundary conditions is considered (18 spins in
total). Figure 20(a) shows a comparison between the results
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FIG. 20. Spectrum of the chiral magnet obtained from exact
diagonalization for S ¼ 1. Energies are given with respect to the
ground-state energy εGS. (a) Momentum dependence of the
spectrum for D=J ¼ 0.15 at B=J ¼ 6, causing an energetic
separation between Δsz ¼ 1 excitations (magnons) and higher-
spin excitations. Black lines indicate the spin-wave spectrum
given in Eq. (12). (b) Zoom into the relevant energy window of
Dirac magnons, which are clearly gapped. A cluster of 18 spins
was considered.
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of ED (red marks) and the spin-wave dispersion [Eq. (12)
for S ¼ 1] in the limit of large fields that cause a separation
betweenΔsz ¼ 1 and higher-spin excitations. However, the
field B=J ¼ 6 is still too small to fully separate one-
magnon from two-magnon excitations, causing an overlap
of the two sectors at the Γ point. Since DMI is nonzero
(D=J ¼ 0.15), the Dirac magnons at the K point get
downwards renormalized and gapped [see Fig. 20(b)].
Hence, the spectra obtained within ED for both S ¼ 1=2
and S ¼ 1 exhibit the same qualitative features as those
calculated from nonlinear spin-wave theory.
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