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Spreading processes on networks are ubiquitous in both human-made and natural systems. Under-
standing their behavior is of broad interest: from the control of epidemics to understanding brain dynamics.
While in some cases there exists a clear separation of timescales between the propagation of a single
spreading cascade and the initiation of the next—such that spreading can be modeled as directed
percolation or a branching process—there are also processes for which this is not the case, such as spiking
cascades in neural networks. For a large class of relevant network topologies, we show here that in such a
scenario the nature of the overall spreading fundamentally changes. This change manifests itself in a
transition between different universality classes of critical behavior, which determines the onset and the
properties of neural activity turning epileptic, for example. We present analytical results in the mean-field
limit, giving the critical line along which scale-free behavior can be observed. The two limits of this critical
line correspond to the universality classes of directed and undirected percolation, respectively. Outside
these two limits, this duality manifests itself in the appearance of critical exponents from the universality
classes of both directed and undirected percolation. We find that the transition between these exponents is
governed by a competition between merging and propagation of activity, and we identify an appropriate
scaling relationship for the transition point. Finally, we show that commonly used measures, such as the
branching ratio and dynamic susceptibility, fail to establish criticality in the absence of timescale
separation, calling for a reanalysis of criticality in the brain.
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I. INTRODUCTION

Diseases spreading on human contact networks [1–3],
worms and malware tunneling through computer networks
[4], rumors shared on social networks [5], power failures
cascading on electrical networks [6,7], and neuronal
avalanches in the brain [8–15] are all spreading processes
unfolding on a network. Such processes typically exhibit a
directed-percolation (i.e., branching process) phase tran-
sition as the probability of spreading passes a critical
threshold.

At this critical point, these systems exhibit shared scale-
free statistics exhibiting characteristic power-law distribu-
tions of spreading cascades. Neuronal spreading cascades
or avalanches with critical exponents similar to that of
directed percolation have been observed experimentally in
neural systems that differ in size by many orders of
magnitude, from in vitro slices of a few hundred neurons,
to whole-brain in vivo calcium imaging and functional
magnetic resonant imaging (fMRI) [8,9,11,16,17]. These
neuronal avalanches are at the core of the critical brain
hypothesis and link together self-organizing principles in
brain dynamics and connectivity with optimal information
processing [13,15]. Equivalent power-law distributions
have been found to emerge naturally in the course of
training artificial neural networks, suggesting that they are
a fundamental property of neural networks [18].
Although the mapping of neuronal avalanches to branch-

ing processes has proven quite successful, unavoidable
discrepancies have appeared in recent years. There is an
ongoing debate on whether these systems are really critical,
quasicritical, subcritical, or a different definition altogether
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[19,20]. This debate stems at least in part from challenges
identifying a suitable order parameter and determining
whether observed avalanches are truly power-law distrib-
uted following the predicted mean-field values. Although
an avalanche-size distribution pðsÞ ∼ s−τ with τ ≈ 1.5
(consistent with the mean-field exponents) has been widely
reported in the literature [11,16,21], avalanches with
exponents ranging from 1.2 to 2.5 have also appeared
[10,14,22–24]. Whether the critical exponents even belong
to directed percolation has also been challenged, with some
proposing a oscillation-synchronization transition instead
of a percolation transition [12,23–25]. These observations
are complicated by the experimental limitations of sub-
sampling and coarse-graining [26]. Further, experimental
constraints make it challenging to distinguish subcritical
avalanches from those truncated by finite-size effects.
Some of these issues, however, might be due to the often-

overlooked fact that real systems rarely show proper time-
scale separation; a classical branching process only allows
for nodes to be excited when induced to do so by an
antecedent node, and branching processes typically presup-
pose one “root” node. In other words, a branching process
description assumes avalanches propagate and terminate on
timescales much faster than the initiation of new avalanches.
In neural systems, however, neurons can spontaneously
activate due to internal stochastic dynamics, “minis” (the
spontaneous release of neurotransmitter vesicles at the
synaptic cleft), and external inputs, amongst other reasons.
For smaller and intermediate systems, where multiple
independent cascades are rare, the assumption of timescale
separation is not particularly limiting. If the rate of sponta-
neous activity is not too high and all activity is aggregated
into a single avalanche, then τ changes from the expected
1.5 to 1.25 [27]. However, in large neural systems, there are
no global quiet periods with which to delimit neuronal
avalanches as in smaller systems. One approach is to define
avalanches as the periods during which activity exceeds a
certain threshold, but it is not clear whether these thresh-
olding methods identify a genuine critical point [12,25]. This
uncertainty reflects the general challenge of defining
criticality in strongly driven systems. However, some
progress has been made. To disentangle neural avalanches
in whole-brain fMRI and study their statistics, Tagliazucchi
et al. used physical proximity (i.e., nearest-neighbor con-
nections) to delimit avalanches, instead of binning all activity
together [11]. The same method was necessary to assess
criticality in whole-brain zebrafish data [17]. The approach
of using network topology to identify avalanches makes
sense, as information processing can only occur between
connected elements of the network. To this end, neuronal
avalanches have been generalized by “causal webs,” which
use the network structure to separate out independent
avalanches [28].
It has remained an open question whether a genuine

critical point with scale-free activity can exist alongside

spontaneous activity, particularly as other markers of a
directed-percolation transition (such as a unity branching
ratio and the appearance of an active fraction) are all
affected in different ways by spontaneous activity. We
address the issue here using a minimal spreading process
with a spontaneous activation rate, making it a discrete-
time susceptible-infected-susceptible (ε-SIS) model in
terms of the epidemic dynamics, and study it on a variety
of complex networks.
Without spontaneous activations, there are no concurrent

independent cascades of activity, and a directed-percolation
phase transition is present. We show that the introduction of
spontaneous activations means that the macroscopic mark-
ers used to identify the directed-percolation transition (i.e.,
the appearance of an active fraction, or a branching ratio
of 1) no longer identify a phase transition. Nonetheless, by
using the network structure to disentangle causally unre-
lated avalanches, we can define a phase transition even
in the presence of spontaneous activations, with scaling
relations between exponents and finite-size scaling. We
perform an extensive study of the critical properties at this
phase transition on a variety of network structures and show
that the presence of any spontaneous activation changes the
underlying universality class from that of directed perco-
lation to that of undirected percolation, while preserving
some features of directed percolation. To explain these
results, we derive an analytical mean-field theory for
branching processes with spontaneous activations and
show that the appearance of undirected percolation expo-
nents is a direct result of the merging of initially indepen-
dent avalanches.

II. RESULTS

A. Model

To study the effect of spontaneous activations, here
we consider a discrete-time ε-SIS process [29] on directed
networks equipped with spontaneous activations (see
Fig. 1). At each time step, a given node can be activated
by means of a spontaneous activation with probability p or
through an incoming link by an infected (activated) parent
with probability q. More precisely, the probability that node
i is activated at time tþ 1 is given by

Pði; tþ 1Þ ¼ 1 − p̄q̄mði;tÞ; ð1Þ

where p̄ ¼ 1 − p and q̄ ¼ 1 − q denote the complementary
probabilities andmði; tÞ counts how many parents of node i
were active at time t. In this model, activity in a node
spreads to its neighbors in a single time step. Therefore,
spontaneous activations occur on a timescale of p−1, while
the timescale of avalanches will depend on q, network
structure, and p in a nontrivial way. This model can also be
considered a type of Domany-Kinzel cellular automaton
[30] or akin to some form of mixed percolation [31]. In our
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model, nodes do not remain activated but recover and may
be reactivated the following time step.
Large systems with spontaneous activations will have

concurrent and possibly unrelated avalanches. We employ
the network structure itself to identify independent ava-
lanches, using the causal-webs approach described in
Ref. [28]. To summarize the approach, we identify nodes
with no active parents (i.e., no possible source of network-
borne activation) as “roots” of newly initiated avalanches
(see Fig. 1). Nodes with active parents inherit the avalanche
labels of their parents. As avalanches overlap, they are
merged together, so nodes only ever have one label. This
merging reflects the fact that true causal information is
often obscured in real systems or that contributions from
both streams of activity are necessary for activation. This
description of avalanches maps naturally to the clusters of
traditional percolation.
The model has two limiting cases: (i) For p ¼ 0, this

model is a pure branching process with branching param-
eter q, which belongs to the directed-percolation univer-
sality class. This case corresponds to neural activity where
avalanches are infrequent and a single leading neuron can
be positively identified in each avalanche. (ii) Here, q ¼ 0
corresponds to the ordinary percolation model on a directed
network with probability p, which corresponds to neural
activity that is entirely driven by external sources or
spontaneous activation and does not spread on the network,
such as in the retina. Both limits exhibit continuous phase
transitions but fall into different universality classes and are
characterized by power laws exhibiting different critical
exponents. Our principle goals in this paper are to show that
a phase transition exists for p and q, which are simulta-
neously nonzero, and to establish the universality class of
this transition.

B. Numerical results

The most experimentally accessible indicator of criti-
cality in systems with activity spreading is the size
distribution of clusters, which shows a different critical
exponent in directed and undirected percolation. For all p,
at some critical qcðpÞ, we observe a transition that defines a
critical line. Below the critical point, with q < qcðpÞ,
avalanches are limited in size (see Fig. 2), while above
the critical point, a permanent giant component affecting a
nonzero fraction of the network appears. Note, however,
that for all p > 0, there is a nonzero active fraction, even for
q < qcðpÞ. Therefore, this transition is not marked simply
by the appearance of an active fraction, as is the case in a
traditional absorbing phase transition. At the critical point,
the exponential cutoff that characterizes the subcritical
phase diverges, and the avalanche distribution is described
asymptotically by a power law. The appearance of these
power laws is used to identify the critical line in our
simulations. By studying the critical exponent character-
izing these power laws, we can identify the universality
class of the critical line.
Because critical exponents depend on the network top-

ology and dimension, we study avalanche distributions
with extensive simulations on a variety of relevant network
architectures, including small-world [32] [Figs. 3(a)
and 3(b)], power-law networks [Figs. 3(c) and 3(d)], the
hierarchical modular network [22] recently used as a brain
connectome analogue [Fig. 3(f)], and the analytically
tractable k-regular network [Fig. 3(e)]. Simulation details
are explained in the Appendix A. Strikingly, for every level
of spontaneous activity, there is a transition between two
power-law exponents in the critical avalanche distribution.
We find that, in all cases, the first power-law exponent is

consistent with the directed-percolation exponent for that

FIG. 1. Example dynamics of the branching process with
spontaneous activations. Multiple spontaneous activations are
initiated on a simple linear bidirectional network (left). The
dynamics here exhibit two independent avalanches, one with two
roots (node 1 at time t ¼ 1 and node 4 at time t ¼ 2) and one with
a single root (node 0 at time t ¼ 3). With spontaneous activations,
spatially distinct events can overlap in time (e.g., t ¼ 3 and
t ¼ 4), and initially distinct cascades of activity can overlap to
form larger avalanches.

FIG. 2. Representative example of the directed-percolation
phase transition. Avalanche statistics for low values of the
spreading parameter q are an exponentially truncated power
law pðsÞ ∼ s−3=2 exp½−s=sc�. At criticality, with q ¼ qc, the
cutoff diverges as sc → ∞, so PðsÞ ∼ s−3=2. For q > qc, a fraction
g of all active nodes are part of the giant component, an eternal
avalanche (see inset). The absolute size of the giant avalanches
therefore scales extensively with the network size N ¼ 104

(empty circles), N ¼ 105 (filled circles). Simulations are on a
10-regular directed network.
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system, while the latter exponent is indistinguishable from
the pure percolation exponent (see Table I). Yet, to the best
of our knowledge, no directed-percolation avalanche expo-
nent has been reported for directed small-world networks.
To check the consistency of our findings for these net-
works, we can lower the density of long-range connections.
Indeed, we find that the directed-percolation exponent
for small-world networks tends toward the (1þ 1)-
dimensional directed-percolation limit of approximately
1.108 expected of a circulant graph (see Fig. 12 in
Appendix F). For the power-law network, the correspond-
ing degree exponent is chosen such that the undirected-
percolation exponent would change (from the 5=2
mean-field value to 8=3 as predicted in Ref. [33]) while
leaving the directed-percolation exponent at 3=2 (as pre-
dicted in Ref. [34]).
In hierarchical modular networks [22], we observe non-

scale-free behavior for avalanches below the base module
sizeM (s < M), a p-dependent power law for intermediate-
size avalanches (M < s < Mp−2=3), and finally, a single
power law in the tail [cf. Fig. 3(f) in Appendix H]. The
varying exponent for intermediate-size avalanches is con-
sistent with reports of a Griffiths phase in modular net-
works with the SIS model [22,36,39], which belongs to
the universality class of directed percolation. The largest
avalanches are governed by an exponent of approximately
2.1, which matches with the undirected-percolation expo-
nent for q ¼ 0 [cf. Fig. 16(b)]. We hypothesize that this
exponent is close to the pure two-dimensional percolation
exponent because the hierarchical modular network has a
backbone that is very nearly one dimensional, so the
percolation process sees an effectively two-dimensional
lattice upon the introduction of time. All critical-avalanche
distributions exhibit a universal curve collapse for vari-
ous p by rescaling the distribution by p−2=3 [Figs. 3(b),
3(d)–3(f)], which indicates that for all p > 0, the critical
point belongs to the same universality class for that network
topology. In the supercritical regime, a giant component
appears, just as in directed and undirected percolation. The
probability that a randomly selected node is in the giant
component is g, which exhibits a power-law scaling,

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Critical avalanche statistics on critical line for various
network topologies. (a) Small-world networks with N ¼ 105 and
average degree hki ¼ 10. (b) Same as in (a) but rescaled to
produce a curve collapse. (c) Uncorrelated power-law in- and out-
degree distributions, pðkÞ ∼ k−3.5, with N ¼ 107 nodes. (d) Same
as in (c) but rescaled to produce a curve collapse. (e) Rescaled
avalanche distributions from 10-regular networks. Lines are
simulations on infinite networks, while transparent circles are
from finite simulations with N ¼ 107; both are at q ¼ qcðpÞ, the
analytically determined critical point. (f) Rescaled avalanche
distributions from a hierarchical modular network, with N ¼
M × 215 nodes, on a 15-layer hierarchy with base module size
M ¼ 102. Black solid lines are guides for the eye. Unscaled
panels (e) and (f) can be found in Figs. 16(a) and 16(b). The
critical lines arising in each network topology are presented in
Fig. 6 in Appendix A.

TABLE I. Calculated critical exponents for different network structures. In each column, we report both the theoretical value from
percolation theory and the value determined in this work, either analytically (by application of generating functions) or from numerical
simulations (where they are reported with decimal values). Errors in 1=ν̄ indicate the range over which an acceptable curve collapse was
obtained. Here, sm is the crossover from the first, directed percolation, power law to the second. A number of additional critical
exponents were determined for the k-regular network, which are summarized in Table III.

Exponent τDP τ β 1=ν̄

Quantity PðsÞ ∼ s−τDP for s < sm PðsÞ ∼ s−τ for s > sm g ∼ ðq − qcÞβ qcðNÞ − qc ∼ N−1=ν̄

Small-world � � � ≈1.35 5=2 [35] ≈2.5 1 [35] ≈1.0 � � � 0.35(5)
Power-law 3=2 [34] ≈1.5 8=3 [33] ≈2.67 2 [33] ≈2.0 1=5 [33] 0.25(5)
Hierarchical modular network Varies [22,36] Varies � � � ≈2.1 � � � ≈0.8 � � � 0.15(5)
k-regular network 3=2 [37] 3=2 5=2 [38] ≈2.5 1 [38] 1 1=3 [33] 0.36(2)
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g ¼ ðG=NTÞ ∼ ðq − qcÞβ, where G denotes the size of the
largest cluster, N the number of nodes in the system, and T
the simulation duration. However, g exhibits a strong finite-
size effect, with smaller systems having a larger effective
critical point. Below the effective critical point, the largest
cluster G does not scale with the simulation duration and is
not percolating. For this reason, we resort to finite-size
scaling to reveal the critical behavior of g on finite networks
(Fig. 4). As N → ∞, the effective critical point qcðNÞ tends
towards the true critical point, with (qcðNÞ − qc) ∼ N−1=ν̄.
The correctness of our finite-size scaling is confirmed by
considering the finite cluster susceptibility χ ≡ hs2ic ∼
ðqc − qÞγ (where the subscript c denotes an average over
all clusters), which should obey the same scaling collapse
with χN−γ=ν̄ [Fig. 4(c)]. Mean-field theory predicts
1=ν̄ ¼ 1=3, and for pure percolation on power-law net-
works [with degree distribution pðkÞ ∼ k−3.5], we expect
that 1=ν̄ ¼ 1=5 [33]. Here, we find that the best scaling
collapse occurs near these values, with ð1=ν̄Þ ≈ 0.36 for
10-regular networks and ð1=ν̄Þ ≈ 0.25 for power-law
networks.
Above the effective critical point, the giant component

agrees with our analytical predictions for the infinite-size

limit [Fig. 4(a)]. As expected, the giant components emerge
with β ¼ 1 for the mean-field case of random 10-regular
networks [Figs. 4(a) and 4(b)]. As can be seen in Fig. 4(d),
the giant component grows with β ¼ 2 for the given power-
law networks. Since pðkÞ ∼ k−3.5 and there are no corre-
lations between the in-degree and out-degree, it is known
that β ¼ 2 for undirected percolation [33] and β ¼ 1 for
directed percolation [34], which implies that the emerging
giant component in our system is in the universality class of
undirected percolation.

C. Analytical results

In this section, we analytically establish that the univer-
sality class of the phase transition is lifted from directed to
undirected percolation by the addition of spontaneous
activations. To understand the transition between directed-
and undirected-percolation exponents, we consider the
analytically tractable k-regular network. Using the gener-
ating function formalism, we can explicitly derive scaling
exponents related to the avalanche size and emergence of
the giant component, as well as derive a critical line. By
studying the sizes of singly rooted avalanches on this
critical line, we can identify the size at which the merg-
ing of independent clusters of activity becomes the pre-
dominant mechanism for cluster growth and thereby
explain the scaling collapse effected by p2=3 observed in
Figs. 3(c)–3(f). Additionally, we identify a diverging
correlation time ξk ∼ ðqc − qÞ−νk at the critical point, with
the undirected-percolation value of νk ¼ ν ¼ 1=2 rather
than the νk ¼ 1 of directed percolation, reinforcing that this
is an undirected-percolation transition.
The avalanche distribution of our model is akin to the

cluster-size distribution of percolation and directed perco-
lation; this distribution has been analytically determined on
a variety of infinite random networks for both types of
percolation by using probability generating functions
(PGFs) [1,33,34,40]. The technique’s key assumption is
that there are no loops and that all nodes are equivalent, in
the sense that their network properties are independent of
the properties of their neighbors. Although this is only an
approximation, this treelike approximation can still per-
form well in cases where loops are prevalent [41]. This
assumption lets one write down a self-consistent equation
for the PGF in terms of the number of connected neighbors
where the cluster that each neighbor connects to is
distributed according to the original PGF. Our approach,
detailed in Appendix B, follows that same spirit, except
that a system of two self-consistently coupled PGFs is
required to describe the total cluster distribution. One PGF
corresponds to the sizes of clusters reached from a direct
descendant, while the other describes the cluster size
reached when two independent cascades merge. On a
treelike network, merging occurs when spontaneous acti-
vations meet and become a larger avalanche. Therefore, the

(a)

(c) (d)

(b)

FIG. 4. Finite-size scaling effects on giant component size and
susceptibility. (a) Giant components on 10-regular networks of
varying sizes. Circles and triangles are p ¼ 10−3 (N ¼ 104 to
106) and p¼10−4 (N¼1014=3 to N ¼ 1020=3), respectively, while
solid lines are the analytical calculations for infinite lattices.
(b) As in panel (a) but rescaled to produce a finite-size scaling
curve collapse. (c) Same symbols as in panel (a), but studying the
susceptibility χ ¼ hs2ic for finite clusters, which shares the same
finite-size scaling exponent. (d) Curve collapse for power-law
networks [degree distribution pðkÞ ∼ k−3.5] with p ¼ 10−4

(N ¼ 1014=3 to N7). The solid line is g ∼ ðq − qcÞβ for β ¼ 2,
consistent with the theoretical prediction.
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directed-percolation-like behavior is entirely contained
within the first PGF, while the second PGF captures the
effect of new spontaneous activations.
This pair of PGFs combines to define the PGF

H0ðxÞ ¼
P∞

s¼1 PnðsÞxs, which corresponds to the ava-
lanche-size distribution PnðsÞ obtained from sampling
random active nodes (denoted with the subscript n).
Derivatives of H0ðxÞ evaluated at x ¼ 0 directly yield
PnðsÞ. Since the giant component is the unique infinite-size
avalanche, the probability that a random active node
belongs to it is 1 −H0ð1Þ, so the giant component is
also determined by H0. The average cluster size is just
given by hsin ¼ H0

0ð1Þ and the susceptibility χ ¼ hs2ic ¼
H0

0ð1Þ=
R
1
0 H0ðxÞdx, where the subscript c indicates sam-

pling over clusters as opposed to active nodes. Analytically,
we find

χ ∼ hsin ¼
1 − σ

k ðσ − σmÞ
ð1 − σÞ2 − k−1

k σσm
; ð2Þ

where σðp; qÞ is the reproduction number or branching
ratio, and σmðp; qÞ is the merging number, corresponding
to the number of cascades of activity leading to a randomly
selected active node with at least one parent (see
Appendix B 3 for details). For sufficiently small p and
q, the giant component is zero and all clusters are finite,
but as the critical line is approached, the susceptibility χ
diverges as χ ∼ jqc − qj−1 (for fixed p) or χ ∼ jpc − pj−1
(for fixed q), as derived in Appendix B. This divergence
defines the critical line and occurs when

0 ¼ kð1 − σÞ2 − ðk − 1Þσσm: ð3Þ

Clearly, then, the critical line has σ < 1 for all σm > 0,
meaning that giants can occur even before an average
reproduction number of 1 is attained.
As shown in Fig. 5(a), σ ¼ 1 on the critical line only in

the p → 0 and q → ð1=kÞ limit of directed percolation for a
k-ary tree [38]. At the directed-percolation critical point,
the active fraction of nodes Φ ¼ hΦðtÞi exhibits a diver-
gence in its dynamic susceptibility χ0, with χ0 ≡ ð∂Φ=∂pÞ
diverging as χ0 ∼ jð1=kÞ − qj−1. In the context of neural
systems with mixed timescales and a fixed level of
spontaneous activation, the maximum of this dynamic
susceptibility defines a “Widom” line (cf. Fig. 10 and
associated text in Appendix D) and has been proposed as a
quasicritical line [42]. Although all three of these measures
identify the directed-percolation critical point p ¼ 0 and
q ¼ ð1=kÞ, they disagree as soon as spontaneous activation
is introduced (p ≠ 0) and exhibit distinct scaling
(cf. Fig. 11 in Appendix E). In the p ≪ 1 limit, the
Widom line scales as p ∼ ½ð1=kÞ − q�, the σ ¼ 1 line scales
as p ∼ ½ð1=kÞ − q�2, and the critical line scales as

�
1

k
− qc

�
3

≈
ðk − 1Þ2ð2k − 1Þ

k5
pc: ð4Þ

As for the q ¼ 0 endpoint to the critical line, χ diverges
when p ¼ ½1=ð2k − 1Þ� and q ¼ 0, the pure percolation
critical point for the Bethe lattice of coordination number
2k. Hence, the critical line contains members belonging to
two distinct universality classes.
To understand the appearance of the p−2=3 scaling of

the transition point shown in Fig. 3, we can consider
the distribution of avalanches with only one root. These
avalanches are described by a branching process, on a

(a) (b)

(d)

(f)

(c)

(e)

FIG. 5. Power-law transitions governed by merging. (a) Phase
diagram for the k-regular network, with k ¼ 10. Points on the
critical line correspond to the ½p; qcðpÞ� in the other panels of this
figure, with the p ranging from 10−2 to 10−9. (b) Rescaled
avalanche-size distribution for various p simulated on an infinite
10-regular network, partitioned into those avalanches with a
single initiation site (empty circles) and those with multiple
initiation sites (crosses). The theoretical distribution of mergeless
avalanches is indicated with the solid line [cf. Eq. (C2)]. (c) Re-
scaled average number of roots R for avalanches of a given size
for simulations on an infinite 10-regular network. (d) Rescaled
susceptibility near the critical point, where δq ¼ qc − q, calcu-
lated by the generating functionH0. Subcritical values δq < 0 are
shown with empty circles and exhibit two power laws, while
supercritical values δq > 0 show only one. (e) Average avalanche
duration for simulations of a given size collapse onto a single
curve. (f) Avalanche duration distribution collapsing onto a single
curve with two power laws. Unscaled data for panels (c)–(f) are
found in Fig. 17.
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k-ary tree, with a branching probabilityPd1¼ Φ̄k−1ð1− p̄q̄Þ
corresponding to the probability that a daughter branch
activates with exactly one parent. The probability dis-
tribution for the size of the singly rooted avalanche
is PmergelessðsÞ ∼ s−3=2 exp½−s=sm�, where sm ¼ −1=
lnfkPd1½Pd=ð1 − 1=kÞ�k−1g [see Eq. (C3)] denotes the
characteristic scale above which avalanches merge and
Pd is the probability a site does not activate, despite having
an active parent. Hence, we expect that the exponent s−3=2

should be exponentially suppressed at sm. In the limit of
p → 0 on the critical line [see Eq. (C5)], sm scales as

sm ≈
2ðk − 1Þ
3k3

�
1

k
− q

�
−2
: ð5Þ

Combining Eqs. (4) and (5) shows that the characteristic
size before merging scales as sm ∼ p−2=3 on the critical line.
Simulations confirm that the smallest avalanches typi-

cally only have one root [Fig. 5(b)], while the largest
avalanches have a number of roots that scale with the
avalanche size [Fig. 5(c)]. Thus, there are two competing
processes at play in these avalanches, both the propagation
of the avalanche, which belongs in the directed-percolation
universality class, and the merging of initially independent
events, which falls into the percolation universality class.
This competition explains the appearance of the two power
laws and the associated curve collapse in Fig. 3. The first
power law is governed by the spreading of activity from a
single initiation site, while the second power law is
governed by the merging of activity springing from
multiple sites. This − 2

3
scaling is a good approximation

for random graphs that are close to the mean-field limit. In
Appendix F, we consider small-world networks with a low
shortcut density. These networks are locally one dimen-
sional and, as a consequence, exhibit a different scaling,
sm ∼ p−0.75 (cf. Fig. 12) due to the directed-percolation
phase being (1þ 1)-dimensional instead of the mean-
field limit.
This transition between the directed and undirected

exponents also manifests itself in the approach to the
critical point. For instance, for q − qc ¼ δq < 0, the
susceptibility χ ¼ hs2ic can be approximated using PðsÞ∼
s−τDPF 1ðs=smÞ þ Θðsξ − smÞs−τF 2ðs=sξÞ, where the F 1=2

represent universal scaling functions, Θ is the Heaviside
step function, and sξ ∼ jδqj−1=σ is the size cutoff of the
pure-percolation tail. Then,

χ≈
Z∞

1

s2s−τDPF 1

�
s
sm

�
dsþΘðsξ−smÞ

Z∞

1

s2s−τF 2

�
s
sξ

�
ds;

so χ ≈ s3−τDPm þ s3−τξ ; thus, using that sm ∼ ð1=k −
qÞ−1=σDP ∼ ðp1=3 þ δqÞ−1=σDP from Eqs. (4) and (C4), we
obtain (up to arbitrary multiplicative constants C1, C2)

χ ¼ C1p−ð3−τDP=3σDPÞð1þ δq=
ffiffiffiffi
p3

p Þ−ð3−τDP=σDPÞ
þ C2Θðsξ − smÞδq−ð3−τ=σÞ;

which suggests that we see a transition between exponents
when δq ≈ ffiffiffiffi

p3
p

, precisely as observed in Fig. 5(d).
Furthermore, since χ ∼ δqγ defines γ, we have arrived at
the usual scaling relation γ ¼ ð3 − τ=σÞ, which holds for
both the directed (γDP ¼ 3, σDP ¼ 1

2
, and τDP ¼ 3

2
) and

undirected (γ ¼ 1, σ ¼ 1
2
, and τ ¼ 5

2
) percolation regimes.

A transition from directed-percolation exponents also
appears in the dynamical exponents relating the size of
avalanches to their duration [cf. Fig. 5(e)], where the
exponent transitions from s ∼ hTiσνz¼1

2 to a power law
consistent with s ∼ T

1
4. The onset of this transition again

occurs with avalanches of size sm ∼ p−2
3, which defines a

characteristic time to merging, Tm ∼ ffiffiffiffiffi
sm

p ∼ p−1
3. The

scaling of this characteristic time captures an exponent
transition in the distribution of the avalanche durations
[cf. Fig. 3(f)], with PðTÞ ∼ Tα, with αDP ¼ 2 and a new
asymptotic α ≈ 7.0. Intriguingly, the directed-percolation
scaling relation ðτ − 1=α − 1Þ ¼ σνz is satisfied even in the
merging regime, assuming α ¼ 7, τ ¼ 5=2, and σνz ¼ 1

4
.

The existence of robust scaling relations and of
curve collapses [Figs. 5(b)–5(f)] that appear universal
indicates that the critical line (for p > 0) belongs to a
single universality class. Since this includes the point p ¼
ð1=2k − 1Þ and q ¼ 0, which we know is exactly undi-
rected percolation, it suggests that the entire critical line
(save for p ¼ 0, q ¼ 1=k) belongs to the universality class
of undirected percolation.
We can further strengthen the argument that the critical

line is an undirected-percolation transition by studying
the correlation lengths of the system. Undirected percola-
tion exhibits a single isotropic diverging correlation length
ξ ∼ jδqj−ν, while directed percolation exhibits two diverg-
ing correlation lengths, ξ⊥ ∼ jδqj−ν⊥ and ξk ∼ jδqj−νk , cor-
responding to spatial and temporal correlation lengths,
respectively. We probe these correlation lengths and
related ones using the two-point connectedness function,
γði; ti; j; tjÞ, which measures the probability that node i at
time ti and node j at time tj belong to the same cluster
over the ensemble average. If the shortest path connec-
ting nodes i and j has length dij, then we expect that the
average connectedness function should decay with dij.
This decay can be seen by studying the exponential
decay of the average connectedness function, cðd; tÞ ¼
hPj for dij¼d γði; ti; j; tjÞit¼tj−ti;i active, which measures the
decay of active sites away from an active node.
We show the existence of a diverging spatial correlation

length by analytically showing that cð2d; 0Þ ∼ exp½−d=l⊥�
and that l⊥ ∼ δq−1. This length is given by l⊥ ¼
−1= ln½σ2ð1þ ffiffiffiffi

ϒ
p Þ2� (see Appendix G), which implies
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that the perpendicular correlation length diverges when
ð1 − σÞ2 ¼ σ2ϒ. This independently reproduces the critical
line on which hsin diverges. We stress that l⊥, though it is a
diverging spatial length scale that implies the divergence of
ξ⊥, is conceptually distinct from ξ⊥. In infinite-dimensional
systems such as ours, the latter is defined based on the
characteristic cluster size and the associated “fractal”
dimension [38].
For the temporal correlation length, one candidate is

the direct-descendant correlation time ξt defined by
cðt; tÞ ∼ σt ∼ exp½−t=ξt�, which diverges when σ ¼ 1.
Yet, this definition neglects the contribution of merging.
To capture the effect of merging, we define ξk ∼P

d cðd; tÞ ¼ cðtÞ, which counts the average number of
connected nodes that are t time steps from an active node
[30]. We find (see Fig. 15) that for a cutoff with δq > p1=3,
ξk ∼ δq−1.0 (consistent with directed percolation), while for
δq < p1=3, ξk ∼ δq−0.5 (consistent with isotropic percola-
tion). This result precludes the directed-percolation
transition except at p ¼ 0, and it is consistent with the
scaling of χ.
In summary, the critical line is an undirected (as

opposed to directed) percolation transition except at the
singular point p ¼ 0. This is supported by avalanche
distribution exponents, exponents of the order parameter
g, undirected-percolation scaling relations, and the scaling
of the temporal correlation length. Many critical expo-
nents of the directed percolation remain observable on
small scales, such as in the beginning of the avalanche-
size distribution or in the susceptibility χ. These expo-
nents then shift to the undirected exponents when the
merging of initially independent avalanches becomes
prevalent. Meanwhile, other measures of criticality that
hold for directed percolation, such as the divergence of
the dynamical susceptibility χ0 and a reproduction num-
ber of 1, no longer capture critical behavior. Instead, they
predict phase curves that agree only in the p ¼ 0 limit
and scale with different power laws near the directed-
percolation limit. Specifically, ð1=kÞ − q ∼ pa, with a ¼ 1

for the Widom line, a ¼ 2 for the σ ¼ 1 line, and a ¼ 3

for the critical line (cf. Fig. 11 in Appendix E). Thus, the
directed-percolation transition is not robust with respect to
the introduction of spontaneous activation—any level of
exogenous driving will introduce independent outbreaks,
which, on the largest scales, will begin to merge.

III. DISCUSSION

A. General model observations

We have described a two-parameter spreading process
that includes spontaneous activations and exhibits a phase
line along which the critical exponents and behavior of
both directed and undirected percolation appear. When
there is no spontaneous activation, the model exhibits a

directed-percolation transition, marked by a divergence in
the dynamical susceptibility, a reproduction number of 1,
power-law distributed outbreak sizes, and the appearance of
a giant component. However, the introduction of sponta-
neous activation means that the dynamical susceptibility no
longer diverges and that the reproduction number is shifted.
Nonetheless, by considering the cluster-size distribution
and statistics related to the cluster size, a critical line—
exhibiting universal curve collapses, diverging correlation
lengths, and finite-size scaling—can be defined, which
means that, even in the presence of spontaneous activity, a
genuine phase transition exists.
The introduction of spontaneous activity destroys the

transition to the absorbing state and shifts the phase line
into the universality class of undirected percolation.
This result is perhaps surprising because the undirected-
percolation limit q ¼ 0 obeys detailed balance and is an
equilibrium phase transition, while for the remainder of the
critical line with q > 0, detailed balance is not respected
and the system is a nonequilibrium one. We showed
numerically, on a variety of relevant network topologies,
that in the largest clusters, merging becomes increasingly
prevalent, causing the undirected-percolation exponents to
dominate. The dominance of the undirected-percolation
exponents suggests that under renormalization group flow,
q is an irrelevant parameter, meaning the time asymmetry
introduced by q is destroyed and the phase transition is
effectively an equilibrium one.
As such, whether the time-directed spreading can be

called critical can be debated. Although the temporal
correlation length ξk diverges (with the percolation expo-
nent ν ¼ 1=2), the direct-descendant correlation time
ξt ∼ −1= logðσÞ is finite along the critical line when
p > 0. This implies that, unlike at the directed-percolation
p ¼ 0 critical point, an active site can only propagate
information over a finite time interval.
Although all the networks we considered were nominally

directed, we expect that our results survive on undirected
networks, as our small-world networks are comprised
predominately of bidirectional connections.

B. Critical brain hypothesis

Our results have repercussions for the critical brain
hypothesis. Although the hypothesis itself is not new
[43,44], it gained traction with the seminal work on
neuronal avalanches [16,21] and with the development
of large-scale brain recording techniques. It is still a highly
debated topic [19,20], and recent work has focused mostly
on (i) the appropriate definition of an order parameter and
its tuning and (ii) whether neural activity distributions show
critical power-law statistics.
Regarding point (i), the main objective is to find a

plausible mechanism by which the brain is able to tune its
own activity to a critical point; ongoing research focuses
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on self-organized criticality [45,46], excitatory-inhibitory
activity balance [47], up and down states [48,49], adaptive
mechanisms [50], and learning [51], amongst other topics.
Many of these concepts are deeply related, and all of them
might play a role. Regarding point (ii), early work focused
on whether the measured statistics followed a real power
law or just an approximation, and whether the activity was
subcritical or supercritical instead [52]. However, this is a
challenging issue to solve experimentally because of the
role of finite-size and subsampling effects [53–55] and
because of the real lack of separation of timescales as we
report here. The initial studies on neuronal avalanches
reported an exponent close to τ ≈ 1.5 for the size distri-
butions, consistent with a mean-field branching process
[9,16], but experiments on a variety of neural systems have
reported a range of exponents, usually in the range 1.2–2.5.
While this discrepancy might be partly explained by the
technical challenges in probing the tails of power-law
distributions or attributed to variation in network topology
between studies and heterogeneous dynamical properties
[14], there remain reasons to think spontaneous activation
has a significant bearing on the critical brain hypothesis.
For instance, critical in vivo neuronal avalanches have only
been reported for waking states, when animals presumably
are stimulated by sensory input [48,52,56]. In light of our
work, this might indicate that criticality is only attained
with the help of an external drive.
Our work addresses both points (i) and (ii). For point

(i), we show that a susceptibility χ based on causal webs
accurately identifies the critical line, with the excellent
finite-size scaling one expects from a true phase tran-
sition. This approach offers a well-defined observable
that is coherent in the presence of spontaneous activity,
unlike the branching ratio or a global measure like the
dynamic susceptibility. As for point (ii), we show that
power laws (with exponents that vary based on network
structure) are present at the critical point for any level of
spontaneous activation. While power-law statistics can
also appear in noncritical systems with simpler dynamics
as a recent critique showed [57], the presence of scaling
relations between the critical exponents [9] is only true in
pure critical systems. We demonstrate such scaling
relations in our model with coexisting power-law
regimes, showing, for the first time, that neural networks
with spontaneous activity can still be genuinely critical.
Additionally, our prediction of two power laws may help
to explain the variety of exponents fitted to power laws
in the literature.
Much of the literature definitions and requirements for

criticality cannot be satisfied in the presence of sponta-
neous activity since timescale separation is barely satisfied
for any realistic activity rate. Only recently have other
works started to focus on the role of spontaneous activity
for the critical brain hypothesis [27,28,42,58–62]. Similar
to the causal webs we use here, the introduction of “causal

avalanches” allows for independent cascades to overlap in
time when in the active phase, but it explicitly prevents the
merging of clusters [59]. Because causal avalanches cannot
overlap, they compete for activations, and their statistics are
governed by neutral theory. This approach produces
directed-percolation avalanche exponents in the limit of
vanishing input, but nonuniversal statistics appear as the
external input is increased [59].
Several approaches have been taken to allow only one

avalanche at a given time. In the limit where spontaneous
activations only contribute to an already existing ava-
lanche, spontaneous activations can change avalanche
exponents from directed percolation while leaving them
otherwise scale-free [27]. Others have attempted to re-
cover the original definition of criticality and power-law
statistics by reducing the temporal bin size for the
avalanche definition [14]; but it is still not clear whether
that approach really recovers the same underlying dynam-
ics, and it might only hold if the system is exactly at the
critical point and for intermediate-size systems. Others
have attempted to restore the classical definition by
introducing a “threshold” to only count avalanches as
activity above the steady-state active fraction Φ; however,
this approach relies on an ad hoc threshold and can alter
measured critical exponents [60]. Finally, even with self-
tuning mechanisms tying the system close to the σ ¼ 1
critical line for several decades in external driving
strength, the requisite of nonoverlapping avalanches
means scale-free avalanches are observed only in the
limit of vanishing external drive [63].
It is clear that in the thermodynamic limit, with a fixed

spontaneous activation rate, there will always be unrelated
avalanches occurring, so avalanches defined by global
observables (such as fluctuations in Φ or those delimited
by global quiescence) are not well defined. As shown in the
present work, in the absence of timescale separation, it is
essential to know the network structure to resolve the
underlying dynamics. There is currently no way to recover
the correct exponents without access to the network
structure, but approaches that first try to infer the structure
from the dynamics appear to be promising [28].
Another question of interest in the context of the critical

brain hypothesis is the effect of (weakly) correlated
external inputs. In our minimal model, the spontaneous
activity mimics a random Poisson process with no
quenched disorder in activation rate, and the effect of
any initially correlated input would die away. However, the
rate of spontaneous activations in real neurons due to minis
likely depends on the number of input synapses. Moreover,
brains typically operate on correlated inputs and pass
information between brain modules also by means of
correlated inputs [64], which is rather far from the random
inputs we consider in our model. Yet, some of our findings
are expected to hold under weakly correlated inputs based
on our simulations on hierarchical modular networks. In
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these networks, the connections between modules intro-
duce correlated inputs to the modules. The effect of these
correlations seems to vanish, and avalanches appear scale-
free for sizes larger than the typical module size [Fig. 3(f)].
The robustness of criticality to continuous and more
strongly correlated external inputs should be studied
further. Another key point to tackle in the future in relation
to the critical brain hypothesis in the presence of sponta-
neous activity has to do with information transmission. Can
it still be optimal in this regime? Spontaneous activity can
indeed enhance information transmission from a sensory
system [65] or shift an inherently subcritical system closer
to the critical point (see Fig. 5). However, a read-out of this
activity might require an error-correction code.

C. Other applications

The generality of our model makes it applicable to other
systems where the timescales of spontaneous activation
and propagation of activity are comparable, e.g., rumor
spreading on social networks [5] or the distribution and
propagation of computer viruses [4]. It remains to be seen
how our findings translate to self-organized systems
and, in particular, to those that are known to exhibit a
self-organized critical (SOC) regime under timescale
separation [66–68]. Previous studies have shown that a
sufficiently high driving rate can induce a transition
from avalanche dynamics to continuous flow in SOC
systems [69].
Our results also apply to epidemiology and disease-

spreading processes. A small number of studies have
relaxed the patient-zero assumption of the typical spreading
process by including multiple initial spreaders [70–76].
A limited few reflect a disease reservoir that can cause
new outbreaks even as old ones spread [29,77,78]. This
might be an appropriate description for diseases like Zika
virus, which can spread via human sexual networks but also
“off-network” via mosquito [79]. Alternatively, it might
describe the population of a nation under lockdown, with
occasional exogenous disease input. To the best of our
knowledge, the question of the universality class in such
situations has not yet been answered in the literature.
Within the context of zoonotic diseases, a multilayer
network approach that incorporates human-animal inter-
actions directly [80] or includes cooperative diseases [81]
might open the door for novel dynamics in the absence of
timescale separation. It would also be interesting to see
which metrics, such as k-shell decomposition [82] or a local
analysis [83], identify significant spreaders in our model
and if network interventions, such as those connected to
explosive percolation [84–86] and others [87], could be
used to stymie or promote epidemics in the presence of
spontaneous activation. These remain exciting challenges
for the future.

IV. CONCLUSIONS

Spreading processes on networks frequently appear in
natural and human systems. The inclusion of spontaneous
activity changes the phase transition in these systems from
directed percolation to isotropic percolation because pre-
viously independent streams of activity can merge together.
These universality classes have differing critical exponents,
meaning that activity clusters will show different growth
profiles near the critical point. Our findings have several
implications for the critical brain hypothesis. Global
quantities—such as the active fraction and its susceptibility,
the branching ratio, or avalanches defined by global periods
of quiescence—do not capture critical behavior when
spontaneous activity is considered. As such, criticality in
the brain should be reassessed using measures that tolerate
spontaneous activity, which requires that the use of network
structure (e.g., tractography) be paired with dynamics
measurement (e.g., fMRI). Proximity to criticality should
be assessed using an order parameter based on causal webs,
such as susceptibility χ. Other measures of criticality, like
the branching ratio, might lead to critical behavior being
interpreted as subcritical. If the brain as a whole is critical,
then the largest avalanches will have isotropic, rather than
directed, percolation critical exponents as merging
becomes the dominant growth mechanism.
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APPENDIX A: METHODS

1. Network generation

For the finite networks, we generate finite directed
k-regular networks via the configuration model, shuffling
connections to avoid self-links and multilinks. To generate
power-law networks, we employ a variation of the con-
figuration model described in Ref. [88], with degree
distributions pin=outðkÞ ¼ k−3.5 within a domain k ∈
½5;…; 1000�, with rejection parameters (κ ¼ 0.5, δ ¼
0.05 [89]). We generate the small-world networks using
a directed network generalization of the Watts-Strogatz
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model [32], using rewire probability 10−2 and with average
degree 10 (a rewire probability of 10−3 is also considered in
Appendix F). We generate the hierarchical modular net-
works described as “HMN-2” in Ref. [22] as a backbone for
our modular networks. Within each base module with nc
connections in the module backbone, we place 102 þ 4nc
nodes so that each intermodular connection is supported by
four nodes. The firstM ¼ 102 nodes we draw from the out-
degree distribution pðkÞ ∼ e−ðk−10Þ2=ð2×0.52Þ and connect to
other uniformly drawn nodes in the same module. For the
next 4nc nodes, we draw from the same out-degree
distribution but connect to the first 102 nodes in the other
modules, according to the module backbone wiring.

2. Simulation of model on finite networks

Networks are initiated with no active nodes. Each time
step, the number of nodes that will activate is drawn from
the binomial distribution, with activation probability p.
That number of nodes is randomly selected with uniform
weighting, redrawing duplicates. Nodes that activate spon-
taneously and had no active parents in the preceding time
step initiate a new cluster. Then, all nodes that had active
parents in the preceding time step that were not already
activated spontaneously are checked for activation. Each
node with m active parents in the previous time step is
activated with probability 1 − q̄m. Nodes inherit the cluster
label of their parents. If a node would inherit more than
one cluster label, then those clusters are merged into a
single cluster by relabeling all nodes belonging to the
smaller cluster with the label of the larger cluster. Clusters
that are found to have no active nodes in a given time step
are terminated, and their size, duration, and number of roots
are recorded.

3. Simulations on infinite k-regular networks

For the infinite networks, we begin at a randomly
selected active node. We then check its immediate neigh-
bors to see whether they are part of the same cluster. For
those neighbors that are included, we then check their
neighbors for inclusion. We can perform this process such
that we need only count the number of unexplored
neighbors, of which there are two types: (I) daughters that
have not been checked for inclusion and (II) parents that are
known to be included but whose neighbors have not been
checked. If we are beginning from a root node, there are
initially k unchecked daughter branches (type I). If we are
beginning from a randomly active node, we begin with one
type-I neighbor and one type-II neighbor. The algorithm
proceeds to check each unevaluated connection (of type I or
type II), possibly adding more as it goes, until none remain
or the cluster exceeds a given size (typically 1010). Each
type of connection is added as follows:

(i) Type I: We check each type-I neighbor, by assuming
it has md other active parents [drawn from a

binomial distribution PðmdÞ ¼ ðk−1md
ÞΦmdΦ̄k−1−md

of k − 1 other parents, activated with probability
Φ, the active fraction, given by Eq. (B11)], and
include each type-I neighbor with probability
1 − p̄q̄md . If it is included, then we add k type-I
connections from this daughter and md type-II
connections.

(ii) Type II: Each type-II neighbor is included with
probability 1. It adds k − 1 additional type-I con-
nections and mp type-II parents, with mp drawn
from the distribution in Eq. (A1):

pðmpÞ ¼
ð k
mp
ÞΦmpΦ̄k−mp

Φ
ð1 − p̄q̄mpÞ: ðA1Þ

The probabilities of adding a daughter or parent are as
derived in Appendix B. For the purposes of measuring the
two-point connectedness function, the above algorithm can
be easily extended to also include the number of time steps
by simply tracking how many times each active front has
followed a daughter branch or a parent branch.

4. Critical-point determination

Accurate determination of the critical point is necessary
to effect accurate finite-size scaling. In the case of the
k-regular network, the critical point can be determined
analytically. However, for the power-law, small-world, and
hierarchical modular networks, determination of the critical
point can be done in two ways. The naive approach is to
simply tune q for fixed N and p until power laws appear in
the avalanche distribution. However, this approach is prone
to finite-size effects: For fixed p and N, the largest power
laws in the PðsÞ distribution will appear at the pseudoc-
ritical point, corresponding to a larger qcðNÞ value than the

FIG. 6. Numerically determined critical lines for various net-
works. Points correspond to the avalanche simulations plotted in
Fig. 3 in the main article, except for the small-world network with
a rewire of 10−3, which is only studied in Appendix F. Solid lines
are approximate fits of the form pðqÞ ¼ cðqc;DP − qÞa for
constant c, a, and qc;DP, whose values are summarized in Table II.
The k-regular phase curve is exact.
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true qcðN → ∞Þ. Finite-size effects similarly cripple
approaches based on just the appearance of the giant
component or the diverging susceptibility.
Instead, we employ the method of D’Souza et al. [90]

and consider the quantity B ¼ gðhs2ic=hsi2cÞ, which was
shown to have no finite-size dependence at the critical
point. Therefore, for fixed p, the critical point qc can be
found as the intersection point of the BðqÞ curves for
different values of N [see Fig. 12(a)]. This procedure
enables the numerical determination of the p, q critical
lines for the networks discussed in the main text (cf. Fig. 6
and Table II).

APPENDIX B: GENERATING FUNCTIONS

Before deriving the generating functions associated with
the average cluster size, we begin with a brief review of
probability generating functions (PGFs). For a discrete
random variable X drawn from the probability mass
function pðxÞ, the probability generating function can be
defined as

gXðzÞ ¼ EðzXÞ ¼
X∞
x¼0

pðxÞzx:

Here, gX generates the probability pðxÞ in the sense
that gXð0Þ ¼ pð0Þ, and the nth derivative yields

ð1=n!ÞgðnÞX ð0Þ ¼ pðnÞ. The probability generating function
can be used to obtain the moments of X, as hXi ¼ g0Xð1Þ,
hXðX − 1Þi ¼ g00Xð1Þ, and so on. The final property of
probability generating functions we use is perhaps its most
useful: When a family of independent and identically
distributed variables fX1; X2;…; XNg generated by gXðzÞ
are summed, Y¼P

N
i Xi, with N also being a random

variable generated by gNðzÞ, then gYðzÞ¼EðzYÞ¼EðzNXÞ¼P∞
n¼1pðn¼NÞ(EðzXÞ)n¼gN(gXðzÞ). Although this may

seem esoteric, it means that the sum of a collection of some

random number of random variables can be concisely
expressed using generating functions.
We derive the PGFs corresponding to the cluster-size

distribution beginning from randomly selected active sites
on a random network. If there are no loops in the network
(the treelike approximation), we can express the cluster size
s starting from a random active site as

s ¼ 1þ
Xnd
l¼1

sd;l þ
Xnp
m¼1

sp;m; ðB1Þ

where nd is the number of active daughters of the initial
site, np is the number of active parents of the initial site, sd;l
is the size of the cluster reached from the lth active
daughter, and sp;m is the size of the cluster reached from
the mth active parent. Thus, the PGF for the total cluster
size s is

H0ðxÞ ¼ xAo(HpðxÞ)Bi(HdðxÞ); ðB2Þ

for the PGFs Ao (generating nd), Bi (generating np), HpðxÞ
(generating the sd;l), and HdðxÞ (generating the sp;m). The
connection between the activation pattern and Eqs. (B1)
and (B2) is illustrated in Fig. 7.
An active daughter of I, here labeled Y, has one fewer

unexplored parent branch because of I, so

sd ¼ 1þ
X̃np
l¼1

sp;l þ
Xnd
m¼1

sd;m;

where ñp ranges from 0 to k − 1 and counts the parents
other than I. Therefore, sd is generated byHp, which obeys
the following self-consistent equation:

HpðxÞ ¼ xAo(HpðxÞ)Ai(HdðxÞ): ðB3Þ

Similarly, an active parent of I, here labeled X, has one
fewer daughter branch to consider, so its cluster-size
contribution is

sp ¼ 1þ
Xnp
l¼1

sp;l þ
X̃nd
m¼1

sd;m;

where ñd ranges from 0 to k − 1, and counts the daughters
other than I. Here, sp is generated by Hd, which obeys the
following self-consistent equation:

HdðxÞ ¼ xBo(HpðxÞ)Bi(HdðxÞ): ðB4Þ

The relationship between the three size-generating func-
tions H0, Hd, and Hp is illustrated in Fig. 8.
To summarize, Hp corresponds to the cluster size

reached when arriving at a node from one of its parent

TABLE II. Fit parameters for the critical lines of Fig. 6. Fits are
power-law fits of the form p ¼ cðqc;DP − qÞa. Entries for the
k-regular network correspond to the low-p approximation given
in Eq. (4).

Fit parameters

Network c a qc;DP

Small-world,
rewire ¼ 10−2

6.00 2.97 0.112665

Small-world,
rewire ¼ 10−3

7.99 3.09 0.117104

Hierarchical
modular network

2.78 1.94 0.10482

Power-law network 2.29 2.94 0.131118
k-regular network k5=ð2k − 1Þðk − 1Þ2 3 1=k
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branches, and Hd corresponds to the cluster size reached
when arriving at a node from one of its daughter branches.
The two pairs of generating functions (Ai, Ao) and (Bi, Bo)
describe the number of active neighbors for Hp and Hd,
respectively. In terms of the nodes labeled in Fig. 8, the
neighbor generating functions and their corresponding
probability mass functions are

Ai ↔ Pðñp active parents of Y excluding

IjY active & I activeÞ; ðB5Þ

Ao ↔ Pðnd active daughters of YjI activeÞ; ðB6Þ

Bi ↔ Pðnp parents of XjX activeÞ; ðB7Þ

(a) (b) (c)

FIG. 7. Firing pattern example represented both as the sum of variables and the product of generating functions. (a) Example activation
pattern beginning from a randomly selected initial active node I on a 4-regular network. Thick edges indicate connected active nodes.
(b) Number of parent and daughter edges contributing to the cluster labeled by np and nd, which are random variables that could vary
from 0 to k. Nodes are labeled with their size contribution to the cluster—nodes that do not activate contribute zero, the initially
considered node contributes one activation, while active parents and daughters contribute a random variable. (c) Same activity pattern
labeled with the probability generating functions corresponding to each random variable.

(a) (b) (c)

FIG. 8. Example of the three size-generating functions. To illustrate the difference betweenH0, Hd, and Hp, we consider the example
firing pattern of Fig. 7 but centered on three different nodes, X, I, and Y. (a) Corresponding to H0 and beginning from a randomly
selected initial active node I on a 4-regular network. Thick edges indicate connected active nodes. Two neighboring active nodes, a
parent and daughter (X and Y, respectively), are highlighted as corresponding to the other two generating functions. (b) Example
activation pattern near X. Since one daughter connection leads to I, only k − 1 are available for other connections. This restriction on
daughters is why Hd differs from H0. (c) Example activation pattern near Y. Since one of the parents of Y is I, only k − 1 other parents
need to be considered. Partly because of the restrictions on parents, Hp differs from H0.
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Bo ↔ Pðñd active daughters of X excluding IjX activeÞ:
ðB8Þ

As the giant component appears, the average cluster size
diverges. Therefore, identifying the conditions under which
the average cluster size diverges is a natural way to identify
the critical line. For q ≤ qc, when H0ð1Þ ¼ Hpð1Þ ¼
Hdð1Þ ¼ 1, the average cluster size is given by

hsin ¼ H0
0ð1Þ ¼ 1þ A0

oð1ÞH0
pð1Þ þ B0

ið1ÞH0
dð1Þ; ðB9Þ

where the subscript n denotes an average found by
sampling randomly selected nodes instead of averaging
over clusters. Now, since A0

oð1Þ and B0
ið1Þ correspond to the

mean number of daughters and parents of the initial
randomly selected node, quantities that are necessarily
bounded above by the mean (in- or out-) degrees, A0

oð1Þ
and B0

ið1Þ, cannot diverge. Therefore, hsin can only diverge
if H0

pð1Þ or H0
dð1Þ do. Using Eqs. (B3) and (B4), the

following self-consistency relation for H0
pð1Þ and H0

dð1Þ
(with q ≤ qc) can be obtained:

�
1 − A0

oð1Þ −A0
ið1Þ

−B0
oð1Þ 1 − B0

ið1Þ

��
H0

pð1Þ
H0

dð1Þ

�
¼

�
1

1

�
: ðB10Þ

Therefore, H0
pð1Þ and H0

dð1Þ diverge when the
determinant of the above matrix is zero, i.e., when
0 ¼ (1 − A0

oð1Þ)(1 − B0
ið1Þ) − B0

oð1ÞA0
ið1Þ. This condition

will yield the critical line, when supplied with the PGFs for
A and B.

1. Neighbor generating functions
for k-regular networks

So far, we have been quite generic in developing the
generating functionH0. To proceed further, we must supply
Ai=o and Bi=o for a given network. For simplicity, we focus
on the k-regular network. This approach allows us to
develop expressions for Φ (the active fraction) and Pd
(the probability that the daughter of an active site is
activated in the next time step). The first quantity we need
is the active fraction—the proportion of nodes activated
in each time step. A randomly selected (not necessarily
active) node will have m active parents with probability
ðkmÞΦmΦ̄k−m, as each parent is independent. Withm parents,
the probability of activation is 1 − p̄q̄m. Now, since the
probability of activation for a random node is also Φ, we
can write the self-consistent equation

Φ ¼
Xk
m¼0

�k
m

�
ΦmΦ̄k−mð1 − p̄q̄mÞ

¼ 1 − p̄qΦk: ðB11Þ

It will be useful, when performing asymptotic analysis in
the limit that p → 0, to have a closed-form approximation
for Φ. If we assume that Φ ≪ 1, we can truncate the
expression Φ̄ ¼ p̄f1 − kqΦþ ½kðk − 1Þ=2�q2Φ2 þ…g to
first or second order in Φ and solve for Φ, from which we
obtain the first-order approximation

Φ ≈
p

1 − kq
ðB12Þ

and the second-order approximation (choosing the positive
root, since Φ > 0)

Φ ≈
kp̄q − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2p̄2q2 − 2kp̄qpq

p
ðk − 1Þkp̄q2 : ðB13Þ

For Pd, we have one active parent, and k − 1 parents that
are independently active with probability Φ. Hence,

Pd ¼
Xk−1
m¼0

�
k − 1

m

�
ΦmΦ̄k−1−mð1 − p̄q̄mþ1Þ

¼ 1 − p̄ q̄ qΦk−1;

and simplifying using Eq. (B11),

Pd ¼ 1 −
q̄ Φ̄
qΦ

: ðB14Þ

Note that σ ¼ kPd defines the branching ratio.
Now that we have both Pd and Φ, we can derive Ai=o

and Bi=o. The simplest ones to derive are AoðxÞ and BoðxÞ
because they describe the number of activated daughters,
and the activation of each daughter is independent of the
others. We consider a single daughter, whose activation can
be described by a single random variable m ∈ f0; 1g, with
m ¼ 1 only if the single daughter activates. The PGF
corresponding to m is CðxÞ ¼ EðxmÞ ¼ Pdx0 þ Pdx1 ¼
Pd þ Pdx. If n is the number of activated daughters for a
site with l available daughters, then n ¼ P

l
i¼1mi for ml

being independent and identically distributed (iid)
Bernoulli variables generated by CðxÞ. Then, taking

l ¼ k for Ao, we have AoðxÞ ¼ EðxnÞ ¼ Eðx
P

l
i¼1

miÞ ¼Q
k
i¼1 EðxmiÞ ¼ CðxÞk, so

AoðxÞ ¼ ðPd þ PdxÞk: ðB15Þ

For Bo, we have one fewer daughter from which to choose
because we arrived at the node in question by means of one
active daughter, so we take l ¼ k − 1 to find

BoðxÞ ¼ ðPd þ PdxÞk−1: ðB16Þ

Now, for Ai and Bi, we cannot treat the parents’
activation as independent because it is conditional on the
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knowledge that their daughter must activate and, in the case
of Ai, also on the presence of other active parents.
Treating BiðxÞ first, we consider an active site (labeled X)

that we arrive at by means of an active daughter (in Fig. 8, I).
Therefore, we have no knowledge about the number of
active parents, save for the fact that they successfully
activated the node in question. Considering the probability
mass function in Eq. (B7), Bayes’ theorem allows us to write

Pðnp active parents of XjX activeÞ

¼ PðX activejnp active parentsÞPðnp active parentsÞ
PðX activeÞ :

However, PðX activejnp parentsÞ ¼ 1 − p̄q̄np by definition
of the model [Eq. (1) of the main text], while the probability
of np active parents, unconditioned on anything else, is just
given by Pðnp active parentsÞ ¼ ð k

np
ÞΦnpΦ̄k−np. Lastly, the

probability that X is active, conditioned on nothing else, is
just the active fraction Φ. Thus,

Pðnp active parents of XjX activeÞ

¼
ð1 − p̄q̄npÞ(ð k

np
ÞΦnpΦ̄k−np)

Φ
; ðB17Þ

which is exactly Eq. (A1). The generating function corre-
sponding to Bi is therefore given by

BiðxÞ ¼
Xk
np¼0

Pðnp active parents of XjX activeÞxnp

and can therefore be expressed as

BiðxÞ ¼
1

Φ
½ðΦ̄þΦxÞk − p̄ðΦ̄þΦq̄xÞk�: ðB18Þ

For AiðxÞ, we consider a node Y that we arrived at from
an active node (labeled I in Fig. 8), which is one of Y ’s
parent branches. Here, AiðxÞ is the generating function for
the number of additional active parents of Y. Considering
the probability mass function in Eq. (B5) and applying
Bayes’ theorem, we find

Pðñp active parents of Y excluding IjY active& I activeÞ
¼ PðY activejI active& ñp other active parents of YÞ

×
Pðñp of the k − 1 parents other than I activeÞ

PðY activejI activeÞ :

Each of these probabilities is known:

PðY activejI active& ñp other parents of Y activeÞ
¼ 1 − p̄q̄ñpþ1 ðB19Þ

by definition of the model [Eq. (1) of main text],

Pðñp of k − 1 parents other than I activeÞ

¼
�
k − 1

ñp

�
ΦñpΦ̄k−1−ñp ; ðB20Þ

and PðY activejI activeÞ ¼ Pd. Hence,

Pðñp parents of Y other than I activejY active& I activeÞ

¼ 1

Pd
ð1 − p̄q̄ñpþ1Þ(

�
k − 1

ñp

�
ΦñpΦ̄k−1−ñp): ðB21Þ

Now, the generating function Ai is given by

AiðxÞ ¼
Xk−1
ñp¼0

xñpPðñp active parents of Y excluding

IjY active& I activeÞ;

so after some algebra, we have

AiðxÞ ¼
1

Pd
½ðΦ̄þΦxÞk−1 − p̄ q̄ ðΦ̄þΦq̄xÞk−1�:

This concludes the calculation of the four generating
functions Ai=o and Bi=o for the k-regular network. These
calculations can also be conducted for other random
networks, although the calculation is more technically
involved when the in-degree can vary or correlations exist
between the in- and out-degrees.
In summary, and in terms ofΦ and Pd, the PGFs Ai=o and

Bi=o for the k-regular network may be expressed as

AoðxÞ ¼ ðPd þ PdxÞk; ðB22Þ

BoðxÞ ¼ ðPd þ PdxÞk−1; ðB23Þ

AiðxÞ ¼
1

Pd
½ðΦ̄þΦxÞk−1 − p̄ q̄ ðΦ̄þΦq̄xÞk−1�; ðB24Þ

and

BiðXÞ ¼
1

Φ
½ðΦ̄þΦxÞk−1 − p̄ðΦ̄þΦq̄xÞk�: ðB25Þ

2. Observables from the generating function

Here, we summarize how to extract observables, such as
the size fraction of the giant component g, susceptibility χ,
and cluster distribution PcðsÞ from the generating function
H0ðxÞ. Practically speaking, we solve Eqs. (B3) and (B4)
self-consistently for HdðxÞ and HpðxÞ via a Newton-
Raphson scheme for a given set of model parameters p,
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q, and x. With HdðxÞ and HpðxÞ in hand, we can insert
these into Eq. (B2) and obtain H0ðxÞ.
The first quantity we can obtain from H0ðxÞ is the frac-

tion of nodes involved in finite clusters, which is just
H0ð1Þ ¼

P
s pðsÞ ¼ P̄∞, where P∞ denotes the probability

of belonging to the infinite cluster. So the giant component
fraction g, the fraction of all nodes at all times that are part
of the infinite cluster, is just g ¼ Φ(1 −H0ð1Þ). For the
susceptibility χ ¼ hs2i ¼ P

s2PcðsÞ, we must make the
distinction between the cluster-size distribution PcðsÞ [for
numerical simulations, reported simply as PðsÞ] and the
per-node cluster-size distribution PnðsÞ. The latter describes
the cluster sizes observed by sampling random active
nodes and is directly calculated by the generating function
approach or accessed by simulating avalanches on the
infinite lattice. Clearly, PnðsÞ ¼ AsPðsÞ, for a normalization
factor A. Since

P
PðsÞ ¼ 1, A ¼ R

1
0 ð1=xÞH0ðxÞdx. So, χ ¼

ð1=AÞP sPnðsÞs ¼ ðhsin=AÞ ¼ ½H0
0ð1Þ=

R
1
0 H0ðxÞdx�. Of

course, we can directly access PnðsÞ by using PnðsÞ ¼
ð1=s!Þ½dsH0ðxÞ=dxs�jx¼0. As was pointed out in Ref. [35],
numerically evaluating this derivative for large s is most
easily accomplished via a contour integral

dsH0ðxÞ
dxs

				
x¼0

¼ 1

2πi

H
H0ðzÞdz
zsþ1

; ðB26Þ

on the circle z ¼ eiϕ for ϕ ∈ ½0; 2π�. Note that zd becomes
highly oscillatory at large d, so convergence of this integral
can be improved via standard numerical techniques for
oscillatory integrals [91]. The cluster probability distribution
can then be accessed as PðsÞ ¼ ð1=AsÞPnðsÞ.

3. Phase diagram for the k-regular network

We can study the divergence of χ ∼ hsin by solving
Eq. (B10) and inserting the solution into Eq. (B9) to obtain

hsin ¼
1 − σ

k ðσ − σmÞ
ð1 − σÞ2 − k−1

k σσm
; ðB27Þ

where σm¼A0
ið1Þ¼ðk−1ÞPp1¼ðk−1ÞðΦ=PdÞ½1−ðPd

2=Φ̄Þ�
is the expected number of other active parents, to an
active node with one already known parent. In other
words, σm describes the rate of merging of initially
independent clusters. Clearly, hsin diverges when kð1 −
σÞ2 − ðk − 1Þσσm ¼ 0 [Eq. (3) of the main text]. We could
also arrive at this result by setting the determinant of
Eq. (B10) to zero. A reparametrization that will be
convenient when considering the correlation length is to
replace σm with ϒ ¼ ½ðk − 1Þσm=kσ�, meaning that the
critical line diverges when

ð1 − σÞ2 ¼ σ2ϒ: ðB28Þ

The set of ðpc; qcÞ that causes this divergence defines a
critical line [see Fig. 5(a) in the main text].
Solving 0 ¼ ð1 − σÞ2 − σ2ϒ for q, and assuming Φ ≪ 1

(as occurs in the p ≪ 1 limit with q < qc) yields
ð1=kÞ − p1 ¼ ðk − 1=k2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2k − 1
p ffiffiffiffi

Φ
p

. Inserting the first-
order closed-form approximation for Φ ≪ 1 [Eq. (B12)]
into the solution for q yields the small p expansion for the
phase curve [Eq. (4) in the main text]

�
1

k
− q

�
3

¼ ðk − 1Þ2ð2k − 1Þ
k5

p: ðB29Þ

The average cluster size hsin (and therefore susceptibility
χ) diverges for ðp; qÞ near points on the critical line ðpc; qcÞ
as hsin ∼ jpc − pj−γ (for q ¼ qc) and hsin ∼ jqc − qj−γ (for
p ¼ pc) with γ ¼ 1, which is a direct consequence of the
fact that the numerator and denominator of Eq. (B27)
cannot both be simultaneously zero (except for the
degenerate q ¼ 1 case). Hence, the behavior near the
critical line will depend only on how the denominator
fðp; qÞ ¼ ð1 − σÞ2 − ðk − 1=kÞσσm scales near its zero pc,
qc. As ð∂f=∂pÞ ≠ 0 and ð∂f=∂qÞ ≠ 0 at ðpc; qcÞ, the
Taylor series approximation fðp; qÞ ≈ ð∂f=∂pÞðp − pcÞ þ
ð∂f=∂qÞðq − qcÞ. Choosing p ¼ pc or q ¼ qc immedi-
ately yields the power-law scaling exponent γ ¼ 1. This
divergence can be visualized in Fig. 9.

4. Giant component

The giant component fraction g is given by g ¼
Φ½1−H0ð1Þ�¼Φð1−Hdð1Þ½PdþPdHpð1Þ�Þ. At the criti-
cal point, Hpð1Þ ¼ Hdð1Þ ¼ 1. So for δ ¼ q − qc ≪ 1, we
have that g ≈ ½ΦPdð∂Hp=∂qÞ þΦð∂Hd=∂qÞ�δ. Since both
Hdð1Þ and Hpð1Þ are strictly decreasing functions of q,
g ∼ ðq − qcÞ, identifying the critical exponent β ¼ 1.

FIG. 9. Average cluster size for k-regular networks approaching
criticality. Numerical simulations (points represent the mean of
106 realizations) on an infinite 10-regular graph yield good
agreement with analytical predictions (lines) for hsin.
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APPENDIX C: MERGELESS AVALANCHES

The mergeless clusters are exactly those clusters with
one root. The number of configurations of singly rooted
clusters of size s is given by the Fuss-Catalan numbers

CðkÞ
s ¼ 1

ðk−1Þsþ1
ðkss Þ, which count the number of incomplete

k-ary trees with s vertices [92]. Such a tree has perimeter
(unoccupied branches) of length t ¼ ðk − 1Þsþ 1. Nodes
are included in the tree with probability

Pd1 ¼ Φ̄k−1ð1 − p̄ q̄Þ; ðC1Þ

denoting the probability that a given daughter node is
activated while having exactly one parent. The excluded
nodes on the perimeter occur with probability P̄d, which is
the probability of not activating, despite having an active
parent. Hence, the probability of observing a mergeless

cluster of size s is given by PðsÞ ¼ CðkÞ
s Ps−1

d1 Pd
t. Applying

Stirling’s approximation, we find

PðsÞ ∼ s−3=2
�

Pd1k

(ð1 − 1
kÞ=Pd)

k−1

�
s
¼ s−3=2e−s=sm ; ðC2Þ

where the characteristic mergeless size is

sm ¼ −1= log
�
kPd1

�
Pd

1 − 1
k

�k−1�
: ðC3Þ

In the limit of p ≪ 1 and ð1=kÞ − q ≪ 1, expressing Pd
[Eq. (B14)] and Pd1 [Eq. (C1)] in p, q, and Φ, and again
using the closed-form approximation forΦ [Eq. (B12)], we
find to lowest order in p and ½ð1=kÞ − q�,

s−1m ≈
ð2k − 1Þðk − 1Þ

k2
p

�
1

k
− q

�
−1

þ k3

2ðk − 1Þ
�
1

k
− q

�
2

;

ðC4Þ

and if we apply Eq. (4) to observe how the cutoff scales on
the critical line, we find

sm ≈
2ðk − 1Þ
3k3

�
1

k
− q

�
−2
; ðC5Þ

which is Eq. (5) from the main text. Since qc;DP ¼ ð1=kÞ
and the relation sm ∼ ðqc;DP − qÞ−1=σDP defines the directed-
percolation exponent σDP, we have also recovered the usual
directed-percolation exponent σDP ¼ 1

2
(cf. Table III).

APPENDIX D: WIDOM LINE

In equilibrium critical points, divergence in the correla-
tion length is associated with a divergence in the suscep-
tibility of the order parameter to an infinitesimal application
of an external field. In directed percolation, the order
parameter is Φ. The susceptibility measures the activity

TABLE III. Critical exponents for the k-regular network, beyond those reported in Table I of the main text, where δq ¼ jqc − qj and
δqDP ¼ jqc;DP − qj, where qc;DP denotes the directed-percolation critical point (i.e., at p ¼ 0). Exponents related to temporal dynamics
(i.e., α and 1=σνz) reflect numerical observations from Fig. 17, while all other exponents are analytically determined.

Exponent Quantity This work Literature

γDP χ ¼ hs2ic ∼ δq−γDP for ðδq=pÞ ≫ 1 3 3 [37] (using γ ¼ ð3 − τ=σÞ)
γ χ ∼ δq−γ for ðδq=pÞ ≪ 1 1 1 [38]
αDP PðTÞ ∼ T−αDP for T < Tm ≈2 2 [37] (using α ¼ δþ 1Þ
α PðTÞ ∼ T−α for T > Tm ≈7 � � �
1=σνzDP T ∼ s1=σνzDP for s < sm ≈2 2 [37]
1=σνz T ∼ s1=σνz for s > sm ≈4 -
νk ξk ∼ δq−νk 1=2 1=2 (isotropic percolation) [38]
1=σDP sm ∼ δq−1=σDPDP

2 2 [37]

1=σ PðsÞ ∼ s−τGðs=sξÞ for s > sm 2 2 [38]
and Gðx ≫ 1Þ → 0 then sξ ∼ δq−ð1=σÞ

FIG. 10. Dynamic susceptibility for various p and q as
calculated for an infinite 10-regular graph. For each p, there
is a corresponding q that maximizes the susceptibility. These
maxima are labeled by the squares, and they fall on the
Widom line.
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of the system in response to an external stimuli. We can
imagine that the external stimuli is an infinitesimal increase
in the average spontaneous activity of the system, and
hence we can define the dynamic susceptibility as
χ0 ≡ ð∂Φ=∂pÞ. So, using Eq. (B11), we find

χ0 ¼ Φqk þ qkp̄Φqk−1χ0;

⇒ χ0 ¼
p̄Φqkþ1

p̄ðΦq − qkp̄ΦqkÞ ;

and simplifying with Eq. (B11), we obtain

χ0 ¼
Φ̄Φq

p̄ðΦq − kqΦÞ : ðD1Þ

In the limit p → 0 with Φ → 0 and q → 1=k, χ0 is,
asymptotically, χ0 ∼ ð1=kÞ½ð1=kÞ − q�−1 and therefore
diverges at the directed-percolation critical point q ¼
ð1=kÞ and p ¼ 0. This susceptibility has been studied
in the context of neural systems, where the mixing of
initiation and spreading timescales means χ0 no longer
diverges (cf. Fig. 10) but instead is maximized on
a quasicritical “Widom” line, where the fluctuations
var½ΦðtÞ� are also maximized [42].

APPENDIX E: PHASE-CURVE SCALING

In directed percolation, there are several indicators of the
critical point. The mean cluster size diverges, the branching
ratio is 1, and the dynamic susceptibility diverges.
However, with the introduction of spontaneous activation,
it is clear that these indicators no longer agree [cf. Fig. 5(a)
of the main text, or Fig. 11]. In fact, the branching ratio is
no longer a clear signal because independent streams of
activity can merge together and nodes can spontaneously

activate. Meanwhile, the dynamic susceptibility no longer
diverges but instead attains a maximum on a set of ðp; qÞ
that define the Widom line.
Although the Widom line, the unity branching ratio

(σ ¼ 1) line, and the line of diverging cluster size all agree
as p → 0, they obey different power laws in their approach
to that point (Fig. 11). In this section, we derive the
different scalings associated with these critical and quasi-
critical lines.
The scaling for the σ ¼ 1 line is given by ½ð1=kÞ − q�2∼

p, which can be seen by solving Eq. (B14) for q and using
the closed form for Φ [Eq. (B12)], which immediately
yields ðk2=k − 2Þ½ð1=kÞ − q�2 ≈ p on the σ ¼ 1 line.
As for the Widom line, by setting ð∂χ0=∂qÞ ¼ 0 and

applying some simple algebraic manipulation, the Widom
line can be found to consist of the q and p satisfying
0 ¼ 1 − kqΦ̄2 − 2Φþ qΦ2. The first-order approximation
for Φ given by Eq. (B12) is poor in the vicinity of the
Widom line (after all, it is in the vicinity of the point of
maximum susceptibility in Φ), so a second-order approxi-
mation for Φ [Eq. (B13)] is necessary. With this approxi-
mation, the Widom line becomes (upon expansion around
p ¼ 0 and q ¼ ð1=kÞ) p ≈ ðk=2Þ½ð1=kÞ − q�.
The critical line was previously shown [Eq. (4)] to obey

the scaling ½ð1=kÞ − q�3 ∼ p. These scalings are illustrated
in Fig. 11.

APPENDIX F: PHASE DIAGRAM AND SCALING
COLLAPSE ON SMALL-WORLD NETWORKS

By numerically determining the critical point for differ-
ent p values, we can build a critical line for the small-world
networks. In the main text, we showed that the avalanche
distribution PðsÞ exhibits a scaling collapse when assuming
sm ∼ p−2=3, for a small-world network with a rewire
probability of 10−2. This result was somewhat surprising,
as the small-world network still exhibits a large number of
recurrent connections and is very nearly a circulant graph.
However, for a lower rewire probability of 10−3, recurrent
connections play an even larger role, and p−2=3 does not
provide such a robust scaling. Instead, we find the collapse
is best for p−0.75 (cf. Fig. 12), which can be understood by
considering the root-size distribution at the critical point, as
is done in Fig. 12(c). Clearly, the characteristic merging
size sm scales as sm ∼ p−0.75.
Interestingly, this method also allows us to estimate

the directed-percolation 1=σDP exponent for the small-
world network. Given a phase line that scales as p ∼
ðqc;DP − qÞa ¼ δaDP and a curve collapse effected by p

b, and
given the fact that we expect the curve collapse to scale as
sm ∼ δ1=σDPDP , we have the scaling relation 1=σDP ¼ ab. The
phase diagram for this small-world network [Fig. 12(b)]
relates p ∼ ðqc;DP − qÞ3.0908 for qc;DP ≈ 0.11533, which
implies σDP ≈ 1

3.09×0.75 ¼ 0.43 for the small-world network

FIG. 11. Power-law scaling of the critical and quasicritical lines
near the directed-percolation limit. From bottom to top, we show
the critical line, σ ¼ 1, and the Widom line in the p → 0 limit.
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with a rewire probability 10−3. When the shortcut density is
low, the small-world network is approximately a one-
dimensional circulant graph, which suggests we should
use the (1þ 1)-dimensional directed-percolation exponents.
Our result of σDP ≈ 0.43 compares reasonably well with the
σDP ¼ 0.391 reported in the literature [37]. Similarly, we
should identify the avalanche exponent τDP ¼ 1.108, which
matches well with our numerical results (cf. Fig. 12).

APPENDIX G: CORRELATION LENGTH

In the main text, we introduce the pair-connectedness
function cðd; tÞ. Typically in directed percolation, the pair-
connectedness function can be used to define the correla-
tion lengths ξk and ξ⊥ by means of ck=⊥ðdÞ ∼ exp½−d=ξk=⊥�
(where ck=⊥ measures connectedness in the temporal or
spatial directions, respectively). While this approach works
well for finite-dimensional lattices, the loopless k-regular
graphs we consider are effectively infinite dimensional, as
the perimeter grows exponentially with network distance.
As a consequence, the diverging (spatial) characteristic
network length l⊥ defined by cð2d; 0Þ [in Eq. (G1) as in
the main text] can differ from the correlation length ξ
defined by the radius of gyration [38]. In particular, on the
Bethe lattice, l ∼ jδqj−1, while ξ ∼ jδqj−1=2 [38].
We will show analytically that the perpendicular corre-

lation length l⊥ corresponding to the decay of cðd; 0Þ
diverges on the critical line.

1. Divergence of perpendicular characteristic length

We can derive the divergence of the perpendicular
characteristic length l⊥ by computing cð2d; 0Þ and iden-
tifying the scaling

cð2d; 0Þ ∼ exp½−d=l⊥�: ðG1Þ

We consider 2d because when a daughter branch is
followed, t advances by 1, while a parent branch decreases
t by 1. However, Δt ¼ 0, so the number of parent and
daughter branches must both be equal and their sum even.
Thus, not all routes with d daughters and d parent

connections are equally likely. For instance, whenever a
parent connection follows a daughter connection, the route
requires that two initially independent avalanches merge at
that point. It turns out that the most convenient way to
compute cð2d; 0Þ is to sum over collections of routes that
have a fixed number of merges. The number of routes with
m merges is given by

��
d
m

�
þ 1

k − 1

�
d − 1

m − 1

��
2

k2d−1
�
k − 1

k

�
2m
: ðG2Þ

Given a sequence of parent-daughter network hops, the
combinatorial factor ðdmÞ counts the number of ways that the
parent-daughter network hops could be rearranged without
altering the number of merges. A network hop that follows
a network hop of the same kind (i.e., a parent hop following
a parent hop, or a daughter hop following a daughter)
contributes k possible paths. Every time a change in
direction occurs (i.e., a daughter followed by a parent or
a parent by a daughter), only k − 1 links are available
because we exclude the link by which we arrived at the
node. The factor of k2d−1ðk − 1=kÞ2m captures the number
of possible paths, given a sequence of daughter-parent
network hops. A correction of 1=k − 1ðd−1m−1Þ is required to
account for those paths with one or two fewer changes in
direction (a boundary condition effect). A daughter or
parental connection occurs with weight Pd or Pp ¼ Pd,
except when a parental connection follows a daughter
connection, when it instead contributes Pp1. So, since the
number of merges could range from 0 to d, we can write

cð2d; 0Þ ¼
Xd
m¼0

��
ðk − 1Þ

�
d
m

�
þ
�
d − 1

m − 1

��
2

×

�
k − 1

k

�
2m−1 ðkPdÞ2d

k2

�
Pp1

Pd

�
m
�
:

This expression is compared to simulations on the infinite
lattice in Fig. 13 and has the closed-form expansion

(a) (b)

(d)(c)

FIG. 12. Critical line and avalanche scaling of small-world
network with a low rewire probability. The phase diagram and
curve collapse along that phase line for N ¼ 106 small-world
networkswith rewire probability 10−3. (a) RatioB ¼ gðhs2ic=hsi2cÞ
for p ¼ 10−5 identifying the critical point qc ¼ 0.115333�
0.000010. (b) Numerically derived critical line represented with
symbols. The black line is the nonlinear least-squares fit to the data.
(c) Average number of roots, which exhibits a transition that scales
with sm ∼ p−0.75. (d) Avalanche distribution partitioned into merg-
ing and mergeless avalanches is collapsed when rescaled by sm.
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cð2d; 0Þ kσ − ðk − 1Þ2Pp1

σd

¼ −ð2ðσ − ðk − 1ÞPp1Þ2F1ð1 − d;−d; 1;ϒÞ
þ (ðkþ 1Þσ þ kPp1)2F1(1 − d; 1 − d; 1;ϒÞ);

where 2F1 denotes the Gauss hypergeometric function, and
σ ¼ kPd and ϒ¼½ðk−1Þ2Pp1=k2Pd�¼ ½ðk−1Þσm=kσ� as
before. Since in the limit of large d, ½2F1ð1 − d;−d; 1;ϒÞ=
2F1ð1 − ðd − 1Þ;−ðd − 1Þ; 1;ϒÞ� ¼ ½2F1ð1 − d; 1 − d; 1;
ϒÞ=2F1ð1 − ðd − 1Þ; 1 − ðd − 1Þ; 1;ϒÞ�, we need only
treat one of them asymptotically. By way of Kummer’s
24 solutions [93], we have that 2F1ð1 − d;−d; 1;ϒÞ ¼
ð1 −ϒÞd2F1(d;−d; 1;ϒ=ð1 −ϒÞ). Using an identity
from Wilson [94], we have 2F1ð1 − d;−d; 1;ϒÞ∼
½ð1þ ffiffiffiffi

ϒ
p Þd= ffiffiffi

d
p �, so in the limit of large d,

cð2ðdþ 1Þ; 0Þ
cð2d; 0Þ ≈ (σð1þ

ffiffiffiffi
ϒ

p
Þ)2; ðG3Þ

which yields l⊥ ¼ ½−1=2 log (σð1þ ffiffiffiffi
ϒ

p Þ)�. Now, as
ð∂=∂qÞσð1þ ffiffiffiffi

ϒ
p Þ > 0 at q ¼ qc [which can be seen by

using Eqs. (4) and (B12)], we can write σð1þ ffiffiffiffi
ϒ

p Þ ≈ 1þ
cðq − qcÞ þOððq − qcÞ2Þ by way of a Taylor expansion,
implying l⊥ ∼ ðqc − qÞ−1. Finally, it is clear that the
divergence in correlation length occurs precisely when
σ2ð1þ ffiffiffiffi

ϒ
p Þ2 ¼ 1. Simple algebra shows that this is

equivalent to σ2ϒ ¼ ð1 − σ2Þ, which is the same critical
line derived by considering the divergence of the average
cluster size [see Eq. (B28)].

(a) (b)

FIG. 13. Perpendicular characteristic length near criticality on infinite k-regular networks. (a) Simultaneous (perpendicular) path
connectedness function with an exponentially decaying tail, with the exact form predicted analytically. Solid lines are analytical results,
while symbols are numerical simulations on infinite 10-regular networks (averaged over 20,000,000 clusters), simulated at p0 ¼ 10−3.
(b) Perpendicular characteristic length diverging with a power law as l⊥ ∼ ðqc − qÞ−1.

(a)

(b)

FIG. 14. Isotropic characteristic network length near criticality
on infinite k-regular networks. (a) Isotropic path connectedness
function cisoðdÞ for all paths of length d decaying exponentially,
which is the result of simulations of infinite 10-regular networks,
simulated at p ¼ 10−3. (b) Corresponding isotropic characteristic
network length l, which diverges with a power law of ðqc − qÞ−1.
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2. Isotropic characteristic length

We have considered a characteristic spatial length l⊥, in
analogy to the directed-percolation perpendicular correla-
tion length. Note that l⊥ is anisotropic, which may appear
to make it unrelated to the isotropic correlation length
of undirected percolation. However, the presence of a
diverging anisotropic characteristic length implies that
any isotropic characteristic length will also diverge. To
illustrate this, consider the isotropic characteristic length l
defined by the mean number of sites active after d
(isotropic) network hops away from an active node, i.e.,
cisoðdÞ ¼

P
d
t¼−d cðd; tÞ ∼ exp½−d=l�. Since this sum con-

tains cðd; 0Þ ∼ exp½−d=ð2l⊥Þ�, which tends to a constant as
q → qc, we know that l also diverges in the same limit, as
can be seen in Fig. 14.

3. Temporal correlation lengths

Directed-percolation phase transitions have a diverging
temporal length scale. In pure directed percolation, we can
directly measure this by considering the decay in activity
from an active site, cðt; tÞ ¼ σt ∼ exp½−t=ξt�, which counts
the number of direct descendants from an active site.
Then, ξt ¼ −1= log½σ�, implying that this correlation length
diverges on the σ ¼ 1 line, with ξt ∼ jδqj−1, consistent with
νk as expected in mean-field directed percolation.
However, cðt; tÞ can only have t network hops, which

restricts it to including only direct causal descendants.
Nonetheless, activity at a node can still be correlated with

FIG. 15. Timelike correlation length ξk on infinite k-regular
networks, collapsed for different values of spontaneous activity p,
exhibiting a divergence with ξk ∼ ðqc − qÞ−1.

(a) (b)

FIG. 16. Unscaled critical avalanche distributions. (a) Avalanche distributions for 10-regular networks as in Fig. 3(e). Solid lines are
analytical PðsÞ determined from the generating function, while the crosses and circles are simulations on infinite and finite (N ¼ 107)
networks. (b) Avalanche distributions for HMN networks as in Fig. 3(f) of the main text.

(a) (b)

(d)(c)

FIG. 17. Exponent transitions for critical avalanches, without
the curve collapse presented in the main text. Exponent tran-
sitions for 10-regular networks, without the rescaling presented in
Fig. 5 of the main text. Data are for p ¼ 10−2 to p ¼ 10−8.
(a) Average number of roots for avalanches of a given size, as
simulated on infinite networks. (b) Analytically determined
susceptibility χ. (c) Avalanche duration-size relation. (d) Ava-
lanche duration distribution.
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activity at much later times, even if its direct descendants
are extinct, because of activity from its progenitors. We
define the correlation length ξk by cðtÞ ∼P

d cðd; tÞ∼
exp½−t=ξk�. We measure the evolution of ξk in infinite
k-regular network simulations and find two power-law
regimes (cf. Fig. 15), separated by jδqj ≈ p1=3. For low
values of p, we have νk ¼ 1, as in directed percolation.
However, for sufficiently small δq, we have νk ¼ 1=2, as in
isotropic percolation.

APPENDIX H: ADDITIONAL FIGURES

In this section, we include several figures to supplement
the main text. Figure 16 contains unscaled avalanche
distributions for the hierarchical modular networks and
10-regular networks corresponding to Fig. 3. Similarly,
Fig. 17 consists of the exponent transitions for 10-regular
graphs without the exponent transitions presented in Fig. 5.
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