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We study many-body quantum dynamics using Floquet quantum circuits in one space dimension as
simple examples of systems with local interactions that support ergodic phases. Physical properties can be
expressed in terms of multiple sums over Feynman histories, which for these models are paths or many-
body orbits in Fock space. A natural simplification of such sums is the diagonal approximation, where the
only terms that are retained are ones in which each path is paired with a partner that carries the complex
conjugate weight. We identify the regime in which the diagonal approximation holds and the nature of the
leading corrections to it. We focus on the behavior of the spectral form factor (SFF) and of matrix elements
of local operators, averaged over an ensemble of random circuits, making comparisons with the predictions
of random matrix theory (RMT) and the eigenstate thermalization hypothesis (ETH). We show that
properties are dominated at long times by contributions to orbit sums in which each orbit is paired locally
with a conjugate, as in the diagonal approximation, but that in large systems these contributions consist of
many spatial domains, with distinct local pairings in neighboring domains. The existence of these domains
is reflected in deviations of the SFF from RMT predictions, and of matrix element correlations from ETH
predictions; deviations of both kinds diverge with system size. We demonstrate that our physical picture of
orbit-pairing domains has a precise correspondence in the spectral properties of a transfer matrix that acts in
the space direction to generate the ensemble-averaged SFF. In addition, we find that domains of a second
type control non-Gaussian fluctuations of the SFF. These domains are separated by walls that are related to
the entanglement membrane, known to characterize the scrambling of quantum information.

DOI: 10.1103/PhysRevX.11.021051 Subject Areas: Condensed Matter Physics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

In this paper we are concerned with generic features of
spectral and eigenstate correlations for a class of ergodic
many-body systems. Random matrix theory (RMT) and the
eigenstate thermalization hypothesis (ETH) provide a
baseline description of these features [1–10]. Our objective
is to identify when these approximations are accurate and to
characterize the behavior when they break down, focusing
on the regime of large times and distances for which one
can expect a degree of universal behavior. We start from
expressions for physical properties in terms of sums over
Feynman histories, or paths in Fock space, and aim to
identify the dominant contributions to these sums.
Analogous approaches involving sums over histories

have been applied very successfully to single-particle
quantum systems in a variety of settings. In particular,
the Gutzwiller trace formula provides a connection between

the periodic orbits of a classical system and the spectrum of
its quantum counterpart [3,11]. Contributions from pairs of
orbits that carry opposite phases are dominant in the
semiclassical limit, and the restriction to these pairs is
known as the diagonal approximation [12]. RMT spectral
correlations are then a consequence of the nature of
periodic orbits in classical systems that are chaotic, and
the diagonal approximation is the starting point for a
systematic semiclassical expansion [13–15]. As a second
example, in the theory of mesoscopic conductors, the
spectral and transport properties are expressed in terms of
paths of electrons undergoing multiple scattering by
impurities [16–18]. Pairs of paths with opposite phases,
known as diffusons and Cooperons, survive a disorder
average and determine long-distance and low-energy
properties. They are also the basis for an expansion in
inverse powers of the mean free path that captures weak
localization effects in disordered conductors. Here, we
refer quite generally to the approximation of retaining
only those pairs of paths with opposite phases as the
diagonal approximation.
The many-body systems we discuss are quantum cir-

cuits. These systems offer a minimal description of time
evolution in lattice models: Each lattice site carries a “spin”
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with Hilbert space dimension q, and pairs of sites are
coupled by unitary gates during discrete time steps of the
evolution. The examples we treat are one-dimensional
brickwork models, in which every site is coupled alter-
nately to its nearest neighbors on either side in successive
time steps. In an obvious way, matrix elements of the
evolution operator for a single time step define amplitudes
for the steps of a path in Fock space. The transition
amplitude between particular initial and final states under
evolution over multiple time steps is a sum of contributions
from multiple paths, labeled by states at intermediate times
and weighted by products of amplitudes for the individual
steps. These sums over Feynman histories will be at the
center of our discussion.
Following the spirit of RMT, many useful insights have

been obtained recently by considering quantum circuits in
which gates are drawn from a random distribution and
properties of a circuit are averaged over an ensemble. In
this way, two classes of model arise: random unitary
circuits (RUCs) [19–24], in which gates are chosen
independently at different time steps, and random
Floquet circuits (RFCs) [25–30]. RFCs may equally be
viewed as examples of kicked spin chains, which have been
studied extensively in their own right [31–35]. In RFCs, the
evolution operator is the same over each whole period and
is known as a Floquet operator. RUCs with gates chosen
from the Haar distribution are particularly simple to analyze
because the diagonal approximation is exact, following an
ensemble average. By contrast, RFCs, even with Haar-
distributed gates, are not amenable to an exact analysis
except in the large-q limit [26]. There is nevertheless a
strong interest in understanding their properties because
time evolution in a RFC provides information on the
spectral and eigenstate correlations of the evolution oper-
ator for a simple form of local many-body dynamics. This
motivates the study of RFCs that we present here.
The spectral statistics of a Floquet operator are charac-

terized by the spectral form factor (SFF). Denoting
the Floquet operator by W and its tth power for integer
time t byWðtÞ, the SFF is KðtÞ ¼ jTrWðtÞj2. Similarly, the
matrix elements of a local operator τ in the basis of
eigenstates of W are characterized, in the off-diagonal
case, by the autocorrelation function Tr½τWðtÞτW†ðtÞ� and,
in the diagonal case, by jTr½τWðtÞ�j2. A key technical fact is
that the ensemble average of the SFF can be generated
using a transfer matrix that acts in the spatial direction. One
of the central ideas that we present in this paper is that
questions about the pairings of Feynman histories that
contribute to the ensemble-averaged SFF and matrix
element correlators can be rephrased as questions about
the eigenvectors associated with the leading eigenvalues of
this average transfer matrix. Similarly, deviations of the
SFF from RMT predictions are controlled by the behavior
of these eigenvalues as a function of t. Although the
dimension of this matrix grows very rapidly with t (for

a brickwork RFC, it is of dimension q4t × q4t), we are
able to probe its properties numerically for sufficiently
large t that we believe we have established its asymptotic
behavior. On this basis, we argue that the character of the
relevant pairs of histories is determined by the relative size
of t and of the system length L. In large systems, the
diagonal approximation becomes exact for times that are
large but much smaller than the inverse level spacing. On
the other hand, at sufficiently large L for fixed large t, the
contributing Feynman histories are locally paired, with
multiple domains in the orbit pairing and distinct pairings
in neighboring domains.
This work builds on and complements other recent

research in a number of ways. Most directly, the possibility
that domains arise in the pairing of Feynman histories was
shown for a model solvable in the large-q limit by one of
the present authors and others [27]. The current paper
shows how to formulate and test this idea in a generic
setting, demonstrates that it has consequences beyond the
behavior of the SFF, and links it to the notion of the
entanglement membrane, which characterizes the scram-
bling of quantum information in chaotic quantum systems
[36–38]. The idea of using a transfer matrix to generate the
SFF and to calculate other quantities has been applied
previously in several settings [28,29,34,35,39–44]. This
approach arose from discussions of periodic orbits in many-
body systems [45], was developed as a method for treating
kicked spin chains [34], and has been elaborated further as
a way of accessing the semiclassical limit and making
connections with periodic orbit theory [35,40]. Such a
transfer matrix also forms the basis for the analysis of self-
dual kicked spin chains [28,46], which display exact RMT
behavior of the SFF. Away from the self-dual point, recent
work has investigated the evolution of this transfer matrix
from ergodic to many-body localized behavior [42]. The
important distinction between those works and ours is that
we are concerned with generic behavior unrelated to self-
duality, and at late times.
Both the RFCs we consider and the kicked spin chains

investigated by other groups naturally lead to a description
in terms of Feynman histories in Fock space. This per-
spective has also been adopted in studies of thermalization,
through the introduction of an influence matrix [43,44]. We
note that there have been complementary efforts to study
many-body quantum dynamics in the semiclassical limit by
relating the orbits of classical models to properties of their
quantum counterparts. These include studies of the spectral
properties, many-body versions of coherent backscattering,
and the out-of-time-order correlator [47–50].
The models we study here differ in two ways from

standard random-matrix systems, such as the Gaussian and
circular ensembles [1]. In our case, the nonzero matrix
elements are local in space. There is a long history of work
on systems with two-body random interactions [51,52] but
without the restriction of locality. The behavior of the SFF
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in ensembles of that type has been examined from the
current perspective in Ref. [53], and we comment on this
further in Sec. VI.
The remainder of this paper is organized as follows. In

Sec. II, we first gather definitions of the models and
physical quantities we consider and describe how sums
over histories appear in our calculations. We then give a
brief overview of our results. In Sec. III, we show how to
construct the transfer matrices generating the SFF of a
RFC, Haar-average these transfer matrices, and then study
the spectral properties of the average. Our analysis reveals a
picture of local pairings of paths, in this case closed orbits
in Fock space, and correspondingly deviations of the SFF
from RMT which diverge in the thermodynamic limit.
Through the transfer matrices, we also highlight a con-
nection between the spectral statistics of chaotic many-
body systems and their behavior under local coupling to a
bath. Then, in Sec. IV, we show that local orbit pairing
implies strong correlations between the diagonal matrix
elements of local observables. Relative to the predictions of
ETH, these correlations grow without bound in the thermo-
dynamic limit, and we verify this growth numerically.
Following this in Sec. V, we consider the statistical
fluctuations of the SFF. By writing the higher moments
of the SFF in terms of multiple sums over histories, we
show that a distinct freedom in their local pairing gives rise
to non-Gaussian statistics. We also highlight a connection
with the entanglement membrane. In Sec. VI, we extend
aspects of our discussion to a class of models with gates
whose distribution can be tuned continuously from Haar to
the identity, and we discuss how their behavior differs away
from the Haar case. In Sec. VII, we provide a summary,
discussion, and outlook. Various technical details are
described in a series of Appendixes.

II. OVERVIEW

Before discussing our work in detail, we first introduce
the Floquet models and the physical quantities that we
consider throughout the paper. Following this, we discuss
sums over histories and the diagonal approximation in the
context of quantum circuits. We then give an overview of
our main results.

A. Models and correlators

We focus on one-dimensional Floquet circuits with
brickwork structure [26], illustrated in Fig. 1. The unitary
evolution operator over integer time t is WðtÞ≡Wt, where
W ¼ W2W1 is the Floquet operator.With localHilbert space
dimension q, W1 and W2 are tensor products of two-site
(q2 × q2) unitary matrices Ux;xþ1 coupling alternate pairs
of neighboring sites ðx; xþ 1Þ. We label sites x¼ 0;1…
ðL−1Þ for a system of length L, and so with Fock-space
dimension qL. For periodic boundary conditions, which
necessitates L even, the two half-steps W1;2 are given by

W1 ¼ U0;1 ⊗ U2;3 ⊗ … ⊗ UL−2;L−1;

W2 ¼ U1;2 ⊗ U3;4 ⊗ … ⊗ UL−1;0: ð1Þ
With open boundary conditions and L even, we replace
UL−1;0with theq2 × q2 identitymatrix.With open boundary
conditions and odd L, we instead have

W1 ¼ U0;1 ⊗ U2;3 ⊗ …UL−3;L−2 ⊗ 1;

W2 ¼ 1 ⊗ U1;2 ⊗ U3;4 ⊗ …UL−2;L−1; ð2Þ
where now q × q identitymatrices act on site x ¼ ðL − 1Þ in
W1 and x ¼ 0 inW2. With the exception of Sec. VI, we are
concerned with circuits constructed from Haar-random
gates, or Haar-RFCs. For all numerical investigations, we
focus on a local Hilbert space dimension q ¼ 2 (a form of
kicked spin-1

2
chain). To demonstrate that our choice ofHaar-

random gates is not crucial to the results we obtain, in
Appendix G, we compare with behavior for a kicked
Heisenberg model.
The central quantity considered in this work is the SFF,

which probes correlations in the level density. The SFF is
defined, for integer t, by

KðtÞ ¼ jTrWðtÞj2 ¼
X
nm

eiðθn−θmÞt: ð3Þ

Here, θn is the quasienergy of the Floquet operator W
associated with eigenstate jni, Wjni ¼ eiθn jni.
RMT, in the standard Wigner-Dyson sense [1], will be a

key reference point. For W a Haar-random N × N unitary
matrix, TrWðtÞ is normally and isotropically distributed in
the complex plane in the limit of large N [54]. In RMT, for
all N, we have the average SFF for integer t,

K̄RMTðtÞ ¼
8<
:

N2 t ¼ 0

t 1 ≤ t ≤ N

N N ≤ t:

ð4Þ

FIG. 1. Diagram of the Floquet operator of a brickwork model
with periodic boundary conditions, with time running verti-
cally. The vertical lines mark positions of sites, and the Floquet
operator is W ¼ W2W1. W1 and W2 are tensor products of
two-site unitary gates Ux;xþ1, where Ux;xþ1 couples the sites
ðx; xþ 1Þ.
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An important timescale is the Heisenberg time tH ¼ N, set
by the mean level spacing 2π=N. For circuit models
N ¼ qL, and except where stated explicitly, we consider
times below tH.
For many examples of chaotic quantum systems, it is

known that RMT behavior of the SFF sets in only beyond a
characteristic timescale. In some circumstances, this scale
reflects specific microscopic features of the system, but for
spatially extended models, it may diverge with system size
and arise from physical processes that are common to a
class of systems. Diffusive mesoscopic conductors provide
a key example, for which this timescale is known as the
Thouless time, and is given in terms of the diffusion
constant D and the linear system size L by tTh ¼ L2=D.
For the chaotic many-body systems we consider, we also
refer to the timescale at which RMT behavior of the SFF
sets in as the Thouless time [27,55–58] (see also Ref. [53]).
However, we note that there are a number of alternative
definitions, based on the behavior of local observables [59],
the sensitivity to boundary conditions [60], and on many-
body return probabilities [61].
The characterization of the behavior of a system involves

the matrix elements of local observables, and here the
predictions of the ETH provide a useful reference. In
Floquet systems, the ETH is as follows: For a set of
eigenstates drawn from a sufficiently narrow window of
quasienergies, the statistical properties of the matrix ele-
ments of local observables are as for random vectors.
The diagonal matrix elements of the operator τ at site x

can be written in terms of the reduced density matrices at
this site, ρxðnÞ ¼ Tr0xjnihnj for the eigenstate jni, in the
form Tr½τρxðnÞ�. Here and throughout this paper, we use
Trx to denote a trace over site x and Tr0x to denote a trace
over its complement, the other (L − 1) sites. A correlator
between the eigenstates jni and jmi can then be defined as
Trx½τρxðnÞ�Trx½τρxðmÞ�. To avoid referencing a specific
observable, it is useful to average over a complete ortho-
normal set of operators (see Sec. IV), which leads us to
consider the correlator of reduced density matrices
Trx½ρxðnÞρxðmÞ�. It is convenient to work in the time
domain, so we define the reduced form factor (RFF) at
site x,

RxðtÞ ¼
X
nm

Trx½ρxðnÞρxðmÞ�eiðθn−θmÞt

¼ Trx½Tr0xWðtÞ½Tr0xWðtÞ�†�: ð5Þ

We also see that a straightforward generalization,

R0
xðtÞ ¼ Tr0x½TrxWðtÞ½TrxWðtÞ�†�; ð6Þ

describes spectral structure in the off-diagonal matrix
elements of operators local to site x.

B. Histories in circuits

We now discuss sums over histories in quantum circuits,
and how they appear in the quantities of interest. Consider
the probability for a Floquet system to evolve from an
initial state ja0i to final state jati over time t,

jhatjWðtÞja0ij2 ¼
X

a1…at−1

Watat−1…Wa1a0

×
X

a�
1
…a�t−1

W�
ata�t−1

…W�
a�
1
a0
: ð7Þ

This is a discrete sum over all pairs of paths
between states a0 and at. The forward ða0a1…atÞ and
backward ða0a�1…atÞ paths are labeled by integers
ar; a�r ¼ 0…ðN − 1Þ. The transition amplitudes are simply
the matrix elements of the Floquet operator.
The weights of the Nt−1 diagonal pairs of paths, with

ar ¼ a�r for all r, give real non-negative contributions to
Eq. (7). If the weights of the Nt−1ðNt−1 − 1Þ off-diagonal
pairs behave like a set of independent random variables,
their sum gives a real contribution of the same order as the
sum of the diagonal pairs. The off-diagonal contributions
may, however, vanish after a suitable average. We then
arrive at the diagonal approximation. The dynamics within
the diagonal approximation is described by the diagonal
propagator, which could also be thought of as the analogue
of a diffuson in Fock space,

Parþ1ar ¼ Warþ1arW
�
arþ1ar : ð8Þ

For example, provided the ensemble average can be
performed independently for each step, the transition
probability, Eq. (7), becomes P̄t

ata0 (see Sec. VI for a

discussion of the distinction between P̄t and Pt). For
definiteness, in the following, we use the term diagonal
approximation to refer to calculations based on the average
diagonal propagator P̄. Unitarity constrains P to be a
doubly stochastic matrix (the sum along any row or column
is unity), so it has a leading eigenvalue of unity.
To construct the SFF in the diagonal approximation, we

write TrWðtÞ as a sum over all closed paths of t steps,

TrWðtÞ ¼
X

a0…at−1

Wa0at−1…Wa1a0 : ð9Þ

We refer to these closed paths as orbits. The SFF is a sum
over all pairs of forward and backward orbits,

KðtÞ¼
X

a0…at−1

Wa0at−1…Wa1a0

X
a�
0
…a�t−1

W�
a�
0
a�t−1

…W�
a�
1
a�
0
: ð10Þ

The amplitude of an orbit ða0; a1…atÞ is invariant under a
cyclic permutation. Consequently, in a system without
time-reversal symmetry, for a typical forward orbit in

S. J. GARRATT and J. T. CHALKER PHYS. REV. X 11, 021051 (2021)

021051-4



Eq. (10), there are t backward orbits with the complex
conjugate amplitude. In Fig. 2, we illustrate two of these
diagonal orbit pairings. The diagonal approximation to the
average SFF is

K̄ðtÞ ¼ tTrP̄t: ð11Þ

For a propagator with just one unit-modulus eigenvalue,
TrP̄t → 1 at late times. In the regime t < tH, the diagonal
approximation to the SFF therefore approaches the RMT
result of Eq. (4).
As a concrete example, consider again the SFF within

RMT. For W Haar random, and in the limit of large N, the
ensemble average of Eq. (11) is [62,63]

K̄ðtÞ ¼
X

a0…at−1
a�
0
…a�

t−1

1

Nt

Xt−1
s¼0

Yt−1
r¼0

δara�rþs
¼ t; ð12Þ

for nonzero integer t ≪ N. The sum over s ¼ 0…ðt − 1Þ is
the sum over t diagonal orbit pairings. Here, the diagonal
approximation coincides with the exact result.
In circuit models, we are concerned with sums over paths

in Fock space. Choosing our Fock-space basis states jari to
be product states, the sum in Eq. (9), for example, can be
recast as a multiple sum over the local orbits of individual
sites. TrWðtÞ and the SFF can then be written in terms of
transfer matrices acting on these orbits (see Sec. III for
details). For the Haar-RFCs we study, all choices of site
basis are statistically equivalent.
These transfer matrices are associated with individual

gates Ux;xþ1. Writing the transfer matrices generating KðtÞ
as T x;xþ1ðtÞ, with open boundary conditions, we find, for
example,

KðtÞ ¼ hBLjT 0;1T 2;3…T L−2;L−1jBRi: ð13Þ

The vectors hBLj and jBRi encode the boundary conditions
at the left and right ends of the system, respectively. For
independently and identically distributed gates, the average
SFF is determined by powers of the average transfer
matrix T̄ ðtÞ,

K̄ðtÞ ¼ hBLjT̄ L−1ðtÞjBRi: ð14Þ

Fixing t and taking the limit of large L, the average SFF is
dominated by contributions from the leading eigenvalues of
T̄ ðtÞ. We show, for a system without time-reversal sym-
metry, that there are exactly t leading eigenvalues, and we
denote these by λðω; tÞ, where ω is a t-valued symmetry
label associated with time periodicity.

C. Results

In this work, we study behavior beyond RMT in chaotic
many-body Floquet systems with local interactions. For
Haar-RFCs, the deviations of the SFF from RMTarise from
a particular class of off-diagonal pairings of paths.
Simplicity, in the form of the diagonal approximation or

something beyond, is only to be expected after a degree of
averaging. Moreover, the SFF is not self-averaging [64],
and it typically exhibits large system-dependent fluctua-
tions around the RMT result [54]. Averaging can, in
principle, be approached in various ways. For a specific
model or a specific realization drawn from an ensemble,
one can average the SFF over a time window. This window
should be narrow on the scale set by its midpoint, to avoid
distortion, but wide enough to contain many Floquet
periods, to ensure efficient averaging [64]. Alternatively,
one can average over a small region in the space of possible
models. In this case, the average may be representative of
all systems in this region, but system-dependent fluctua-
tions will only be washed out at late times. A final
alternative, which is the one we follow, is to average over
a wide variety of systems: in our case, the Haar distribution
for gates. In practice, however, quite limited averaging is
sufficient. In Fig. 3, we show that an average over just one

FIG. 2. Two of the diagonal orbit pairings that contribute to the
spectral form factorKðtÞ ¼ jTrWðtÞj2. The outer circles represent
the forward orbit, and the inner the backward, corresponding to
terms in the sum-over-histories representations of TrWðtÞ and
TrW�ðtÞ, respectively. The dashed lines represent the pairing of
forward and backward orbits. Diagonal pairings have ar ¼ a�rþs,
with addition defined modulo t. On the left and right, we show the
s ¼ 0 and s ¼ 1 pairings, respectively.

FIG. 3. SFF of the Haar-RFC with different degrees of
averaging. All data are for periodic boundary conditions, with
the number of sites L shown on the legend. (a) No averaging: For
each L, this is the SFF for an individual realization of the gates.
(b) Average over only a single gate, with all others fixed.
(c) Average over all of the gates.
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gate is enough to dramatically suppress fluctuations of
the SFF.
In Sec. III, we show that the spectral structure in Haar-

RFCs, with local Hilbert space dimension q ¼ 2, is not
captured by the diagonal approximation. To understand the
form of the SFF, we develop the picture of local orbit pairing
that first appeared in the large-q limit in Ref. [27], demon-
strating here its appearance in a generic setting. To do this,
we show how to express the SFF of a Haar-RFC in terms of
transfer matrices T ðtÞ acting in the space direction. For
independently and identically distributed gates, the average
SFF K̄ðtÞ is then expressible in terms of powers of the
average transfer matrix T̄ ðtÞ. Through this average transfer
matrix, the accuracy of the diagonal approximation, as well
as the corrections arising in large systems, acquire a sharply
defined meaning in the language of local orbit pairing.
The transfer matrices are too large to study directly in the

regimes of interest. To probe the spectral properties of T̄ ðtÞ,
we instead impose a variety of boundary conditions on the
model, thereby coupling to the eigenvectors in controlled
ways. By analyzing the length scaling of the SFF and
related objects, we separate the leading eigenvalues of T̄ ðtÞ
according to their symmetry sector and determine their
magnitudes. In practice, our approach requires only very
small systems of L ≤ 8 sites for the times of interest, and
our results allow us to reconstruct the SFF for arbitrarily
large L. By studying the corresponding eigenvectors, we
then directly probe the local orbit pairing.
In Fig. 4, we illustrate the different regimes of the many-

body spectrum for the Haar-RFC and relate these regimes
to the transfer matrix spectrum. At fixed L, increasing t
brings us into the diagonal regime (for t < tH ¼ qL). Here,
K̄ðtÞ is dominated by the sum over the t diagonal orbit
pairings, each contributing unity, so we find the RMT result

K̄ðtÞ ¼ t. We refer to these contributions as the global
diagonal orbit pairings. By contrast, taking the limit of
large L at fixed t, the SFF is dominated by orbits that are
diagonally paired only locally, with distinct diagonal
pairings in neighboring domains. These two regimes can
be understood by considering only the leading eigenvalues
λðω; tÞ of the average transfer matrix, of which there are
exactly t. The deviations of these eigenvalues from unity
control the contributions of domain walls to the SFF. For
example, increasing t, these eigenvalues approach unity,
and we move from a picture of local orbit pairing to one of
global orbit pairing. Conversely, taking the limit of large L
at fixed t, the largest of these close-lying eigenvalues
dominates. Small deviations of the eigenvalues from unity
are then responsible for large deviations of the SFF from
RMT. We show that under certain assumptions, the time-
scale for the crossover between these two regimes, which
we refer to as the Thouless time, scales logarithmically with
system size L. A third regime is entered on increasing t
beyond the Heisenberg time. There, the subleading eigen-
values of T̄ ðtÞ control the SFF.
A natural question is whether this picture of local orbit

pairing has implications for local observables and eigen-
state correlations, and we investigate this in Sec. IV. The
trace structure of the RFF RxðtÞ in Eq. (6) is, away from the
site x, identical to that of the SFF, and we show that this
implies exponential growth of R̄xðtÞ with increasing L.
Remarkably, on transforming this behavior from the time
domain to that of quasienergies, we find that the deviations
from ETH are most prominent on small quasienergy scales,
where the ETH is conventionally expected to be most
accurate. We find enhancements of the correlations relative
to RMT by 2 orders of magnitude even in systems of L ≤
14 sites, so our results represent a substantial correction to
the ETH for one-dimensional chaotic Floquet systems.
We investigate the statistical fluctuations of the SFF in

Sec. V. Focusing on its second moment, we highlight the
presence of another kind of domain wall, in the pairing of
the multiple copies of orbits that appear. While these are
distinct from the domain walls in the orbit pairing consid-
ered in earlier sections, their role also becomes more
prominent with increasing system size. These domain walls
in the pairing of copies of orbits are closely related to
entanglement membranes. Our results here also provide an
understanding of the striking effect of the single-gate
average in Fig. 3(b).
In Sec. VI, we discuss deviations of the SFF from RMT

that arise within the diagonal approximation. These devia-
tions result from the subleading eigenvalues of the diagonal
propagator [25,56,58,65]. We consider this effect both for
Haar-RFCs and more generally.

III. LOCAL ORBIT PAIRING

The diagonal approximation to sums over pairs of orbits
is blind to locality. In this section, which contains the

FIG. 4. Different regimes of behavior for the average SFF. See
main text for discussion.
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central arguments of the paper, we demonstrate how the
picture of paired orbits must be extended in one-dimen-
sional many-body systems with local interactions. First, in
Sec. III A, we show that the diagonal approximation fails to
describe the spectral correlations in Haar-RFCs. We then
discuss the model of Ref. [27], where the breakdown of the
diagonal approximation is evident even in the large-q limit.
There, an exact treatment is possible, and this reveals
the picture of local orbit pairing. Motivated by this, in
Sec. III B, we express the SFF of a brickwork model (with
arbitrary q) in terms of transfer matrices for the local orbits
that act in the spatial direction. On averaging these transfer
matrices, the picture of local orbit pairing emerges.
In Secs. III C and III D, we extract information on the

average transfer matrix by imposing various boundary
conditions on the orbits. This allows us to determine the
leading eigenvalues, as well as the relationship between the
corresponding eigenvectors and the local orbit pairing. As a
test of our results, we show that this information is
sufficient to reconstruct the average SFF accurately in
large systems (see Fig. 16). In Sec. III E, we further explore
the connection between the eigenvectors of the average
transfer matrix and the local orbit pairing, and then in
Sec. III F, we discuss the behavior of individual circuit
realizations.

A. Breakdown of the diagonal approximation

First, we demonstrate the necessity of moving beyond
the diagonal approximation. In particular, we show that for
Haar-RFCs, K̄ðtÞ ¼ t within the diagonal approximation.
This is also the large-q result [26], and should be compared
with numerical results for q ¼ 2 in Fig. 5. The diagonal
propagator for brickwork models takes the form

Pab ¼
X
cc�

ðW2ÞacðW1ÞcbðW�
2Þac�ðW�

1Þc�b; ð15Þ

where all subscripts are many-body indices (taking qL

values). Each independent gate appears once in P, as does
its conjugate. The matrix P̄ is given by averaging over the
gates. For example, the average over the gateU0;1 acting on
sites 0 and 1 in the first half-step W1 is

½U0;1�c0c1;b0b1 ½U�
0;1�c�0c�1;b0b1 ¼

1

q2
δc0c�0δc1c�1 ; ð16Þ

where we have made the single-site indices explicit. The
result is the same for gates acting in the second half-step.
Multiplying the expressions in Eq. (16) for each indepen-
dent gate and summing over the internal c; c� indices, we
find the average propagator

P̄a0…aL−1;b0…bL−1 ¼
1

qL
; ð17Þ

which is a matrix with constant entries. The leading
eigenvalue of P̄ is unity, and all others are zero. As a
result, we find the diagonal approximation to the SFF
K̄ðtÞ ¼ t as in RMT. By contrast, in Fig. 5, there are
obvious deviations of the SFF from RMT. These deviations
grow with increasing system size and, furthermore, are
significantly larger with open boundary conditions than

FIG. 5. Average SFF K̄ðtÞ in the q ¼ 2 brickwork model with
(a) periodic and (b) open boundary conditions. The system size
3 ≤ L ≤ 12 is shown on the legend, where L is necessarily even
with periodic boundary conditions. In the diagonal regime
K̄ðtÞ ¼ t, and beyond the Heisenberg time tH ¼ qL, we have
K̄ðtÞ ¼ qL.
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with periodic. In this section, we set out to understand this
behavior.
The diagonal approximation to the SFF involves an

overall factor of t, the number of diagonal orbit pairings.
The breakdown of the diagonal approximation in a chaotic
Floquet system with local interactions was demonstrated in
Ref. [27]. There, a calculation of the SFF in the large-q
limit revealed deviations from RMT that grow exponen-
tially with increasing L. We now briefly review certain
aspects of that work.
The Floquet operator W ¼ W2W1 of Ref. [27] is made

up of two half-steps. The first, W1, consists of independent
q × q Haar-random gates ux acting on individual sites of a
chain,W1 ¼ u0 ⊗ … ⊗ uL−1, for L sites. The second,W2,
consists of weak interactions between adjacent sites with
coupling strength ε.
In KðtÞ, each of the q × q gates ux appears t times in

TrWðtÞ, and its conjugate appears t times in ½TrWðtÞ��. To
calculate K̄ðtÞ, we must average independently over each
ux, and this gives a sum over orbit pairings sx ¼ 0…ðt − 1Þ
as in Eq. (12). This immediately promotes the
orbit pairing to a local degree of freedom. Then, K̄ðtÞ is
given by a sum over the orbit pairings sx at each site
x ¼ 0…ðL − 1Þ, and takes the form of a partition function

K̄ðtÞ ¼
Xt−1

s0…sL−1¼0

YL−1
x¼0

½δsxsxþ1
þ ð1 − δsxsxþ1

Þe−εt�: ð18Þ

Here and throughout this paper, we refer to a configuration
sx ≠ sxþ1 as a domain wall. The statistical weights of
domain walls are suppressed by factors e−εt; the coupling
strength ε appears here as the domain-wall line tension. In
this way, K̄ðtÞ has been expressed in terms of the transfer
matrix of a ferromagnetic t-state Potts model. At late times,
the domain walls are suppressed, and we recover the RMT
result K̄ðtÞ ¼ t, corresponding to a sum over t global
diagonal orbit pairings.
The first corrections to RMT with open boundary

conditions come from configurations with one domain
wall,

K̄ðtÞ ¼ tþ tðt − 1ÞðL − 1Þe−εt þ…; ð19Þ

and with periodic boundary conditions, they come from
configurations with two domain walls,

K̄ðtÞ ¼ tþ 1

2
tðt − 1ÞLðL − 1Þe−2εt þ…: ð20Þ

The factors tðt − 1Þ correspond to the choices of orbit
pairing in the two domains. With open boundary condi-
tions, (L − 1) is the translational entropy of one domain
wall, and with periodic, 1

2
LðL − 1Þ is the translational

entropy of two domain walls. It is clear that with open
boundary conditions, where it is possible to have just one

domain wall with weight e−εt rather than e−2εt for two
domain walls, the deviations of K̄ðtÞ from RMT are larger.
Although these results were derived in the limit of large

q, in this work, we show that the picture of local orbit
pairing is more general. For example, it describes the
spectral statistics of Haar-RFCs at small q. Indeed, the
deviations from RMT displayed in Fig. 5, including their
dependence on both the system size and on the boundary
conditions, illustrate the phenomenology of domain walls
in the orbit pairing. Specifically, for fixed t, the deviations
from RMT behavior grow with L and are larger with open
than with periodic conditions.

B. Transfer matrix for orbits

Here, we show how to construct the transfer matrices
generating the SFF of a brickwork model, discuss their
spectral properties, and connect the behavior of their
average to the behavior observed in Fig. 5. Similar
approaches have appeared in the study of kicked Ising
models [34]. By writing the average spectral form factor of
the brickwork model in terms of a transfer matrix, we make
the local orbit pairing degrees of freedom explicit.
Throughout this section, we work with single-site orbits,

so here we introduce some notation. Two unitary gates
act on each site during a time step, so at time t, each single-
site orbit is a string of 2t integers, each taking a value
0…ðq − 1Þ. We denote the forward orbits appearing in
TrWðtÞ by ða0b0…at−1bt−1Þ. For integer r, ar represents
the state of the site at time r, and br represents the state of

FIG. 6. Circuit diagram for the SFF of a brickwork model, with
time t running vertically. Left: KðtÞ with t ¼ 2 and open
boundary conditions. The foreground (light) shows TrWðtÞ,
and the background (dark) shows its complex conjugate. Dashed
lines exiting at the top of the figure are connected to those
entering from below, giving independent traces TrWðtÞ and
TrW�ðtÞ. Right: segment of the doubled time evolution, high-
lighting notation for forward ða0b0…Þ and backward ða�0b�0…Þ
orbits.
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the site at time ðrþ 1=2Þ, in the middle of the step. We
denote the backward orbits appearing in ½TrWðtÞ�� by
strings ða�0b�0…a�t−1b

�
t−1Þ. In Fig. 6, we illustrate the SFF

of a brickwork model, as well as a pair of forward and
backward single-site orbits.

1. Construction of the transfer matrix

Consider a unitary gate Ux;xþ1 acting on sites ðx; xþ 1Þ
in the first half of the Floquet step, with x even (see Fig. 1).
This matrix evolves the state of the two sites from a time r
to ðrþ 1

2
Þ, with r integer. We can also think of Ux;xþ1 as a

nonunitary matrix acting on the orbit of site (xþ 1) at times
ðr; rþ 1

2
Þ, and we refer to this matrix as Ũx;xþ1. Writing the

components of Ux;xþ1 as ½Ux;xþ1�brb0r;ara0r , where unprimed
indices ar, br correspond to site x and primed a0r; b0r to site
(xþ1), the components of Ũx;xþ1 are ½Ũx;xþ1�arbr;a0rb0r ¼
½Ux;xþ1�brb0r;ara0r , as illustrated in Fig. 7.
In TrWðtÞ, each gate Ux;xþ1 appears t times. By taking a

tensor product of the t copies of Ũx;xþ1, we create a q2t ×
q2t matrix Ũ⊗t

x;xþ1 acting on the entire forward orbit of site
(xþ 1). To construct TrWðtÞ from the standard matrix
multiplication of these operators, we introduce an orthogo-
nal matrix S that acts on orbits as a translation of one half-
step in time,

Sja0b0a1b1…bt−1i ¼ jb0a1b1…a0i: ð21Þ

The matrices S and Ũ⊗t are illustrated in Fig. 8. With
periodic boundary conditions,

TrWðtÞ ¼ tr½Ũ⊗t
0;1SŨ

⊗t
1;2S

T…SU⊗t
L−1;0S

T�; ð22Þ

where L is the number of sites, which is necessarily even
with these boundary conditions. Here, tr is a trace over
single-site orbits, to be distinguished from Tr, a trace over
many-body states. Since the evolution operator is periodic,

we have ½S2; Ũ⊗t� ¼ 0, where S2 translates an orbit one full
step in time. Clearly, S2t ¼ 1, where 1 is the q2t × q2t

identity acting in the space of single-site orbits. Using these
properties, we can write TrWðtÞ in terms of one type of
transfer matrix, SŨ⊗t,

TrWðtÞ ¼ tr½SŨ⊗t
0;1…SŨ⊗t

L−1;0ðSTÞL�: ð23Þ

A similar expression can be derived for open boundary
conditions,

TrWðtÞ ¼ hBjSTSŨ⊗t
0;1…SŨ⊗t

L−2;L−1jBi; ð24Þ

where the boundary state jBi has components

ha0b0a1b1…at−1bt−1jBi ¼
Yt−1
r¼0

δbrarþ1
ð25Þ

and is invariant under time translation by a full
step, S2jBi ¼ jBi.
The transfer matrices that generate the SFF KðtÞ ¼

jTrWðtÞj2 are straightforwardly expressed as tensor prod-
ucts of the transfer matrices that generate TrWðtÞ and
½TrWðtÞ��,

T x;xþ1ðtÞ ¼ ½SŨ⊗t
x;xþ1� ⊗ ½SŨ⊗t

x;xþ1��; ð26Þ

and are also illustrated in Fig. 8. The transfer matrix
T x;xþ1ðtÞ acts on the product space of forward and back-
ward orbits at site (xþ 1), which has dimension q4t. These
matrices have some obvious symmetries associated with
translation in the time direction, which we now discuss (see

FIG. 8. Construction of the transfer matrix generating
KðtÞ ¼ jTrWðtÞj2, here for t ¼ 2. The dashed lines exiting above
and entering below are connected. Left: orthogonal matrix S.
Center: tensor product of identical matrices Ũ acting in the space
direction, Ũ⊗t. Right: transfer matrix T ðtÞ ¼ ½SŨ⊗t� ⊗ ½SŨ⊗t��.
In the foreground, we show the transfer matrix for the forward
orbits, SŨ⊗t, and in the background, the transfer matrix for
backward orbits, ½SŨ⊗t��.

FIG. 7. Components Ubrb0r;ara0r of the q
2 × q2 unitary matrix U,

and components Ũarbr;a0rb0r of the q2 × q2 nonunitary matrix Ũ.
Time runs vertically and space horizontally. Here, U acts in the
first half-step of the Floquet operator, so it describes the evolution
from time step r to ðrþ 1

2
Þ. Where U acts on the state of a pair of

sites ðx; xþ 1Þ at time r, Ũ acts on the state of site (xþ 1) at
times ðr; rþ 1

2
Þ.
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also Ref. [42] for a related treatment in the context of the
kicked Ising model).
The transfer matrices T x;xþ1ðtÞ commute with the trans-

lation operators for a full time step of either of the forward
and backward orbits,

½S2 ⊗ 1; T x;xþ1� ¼ ½1 ⊗ S2; T x;xþ1� ¼ 0: ð27Þ

Since ðS2Þt ¼ 1, T x;xþ1 can be block diagonalized into t2

sectors, having eigenvalues eiωþ under S2 ⊗ 1 and eiω−

under 1 ⊗ S2. The frequencies are ω� ¼ 2πn=t for n ¼
0…ðt − 1Þ defined modulo t. The transfer matrices for each
bond ðx; xþ 1Þ are different. Our focus, however, is on the
full ensemble average. Following such an average, all the
transfer matrices are the same.

2. Average transfer matrix

The notion of orbit pairing takes on a concrete meaning
in the ensemble average of the SFF. For identically and
independently distributed gates, K̄ðtÞ is determined by
powers of a single averaged transfer matrix, T̄ ðtÞ. From
here on, T̄ ðtÞ will be at the center of our discussion.
To calculate T̄ ðtÞ, we must Haar-average the tensor

product Ũ⊗t ⊗ ½Ũ⊗t��. Writing the first indices of Ũ⊗t and
½Ũ⊗t�� as orbits ða0b0…at−1bt−1Þ and ða�0b�0…a�t−1b

�
t−1Þ,

respectively, the only nonvanishing matrix elements of their
average tensor product have ar ¼ a�σðrÞ and br ¼ b�τðrÞ, for
r ¼ 0…ðt − 1Þ, where σ and τ denote permutations of t
objects [62,63]. The same is true of the second indices.
To arrive at a succinct expression for the average transfer
matrix, it is convenient to introduce vectors jσ; τi in the
product space of forward and backward orbits that have
nonzero entries only where indices are paired in this way:

ha0b0…a�0b
�
0…jσ; τi ¼

Yt−1
r¼1

δara�σðrÞδbrb�τðrÞ : ð28Þ

Note that the vectors jσ; τi are neither normalized nor
orthogonal. The average of Ũ⊗t ⊗ ½Ũ⊗t�� can be expressed
in terms of the vectors jσ; τi and the (q2-dependent)
Weingarten functions Wgðστ−1Þ, here taking the composed
permutation στ−1 as an argument.
From the Haar average over the gate, we find the average

transfer matrix

T̄ ðtÞ ¼ S
X
στ

Wgðστ−1Þjσ; τihσ; τj; ð29Þ

where the sum is over all pairs of permutations of t objects.
We have also introduced the doubled half-step time-
translation operator S ¼ S ⊗ S. Only t terms in the sum
in Eq. (29) contribute to K̄ðtÞ in the large-q limit, and these
are essentially the local orbit pairings discussed in
Sec. III A. We elaborate on this in Appendix C.

As discussed above, the transfer matrices have a block
structure associated with symmetry under time translation.
Focusing on the average T̄ ðtÞ, we write the left and right
eigenvectors in the block ωþ;ω− as hωþω−αL; tj and
jωþω−αR; ti, respectively, and the corresponding eigenval-
ues as λðωþω−α; tÞ. Here, α ¼ 0; 1;… label eigenstates in
descending order of magnitude, so λðωþω−; 0; tÞ is the
leading eigenvalue in the block ωþ;ω−. The spectral
decomposition of the average transfer matrix T̄ ðtÞ is then

T̄ ðtÞ ¼
X

ωþω−α

λðωþω−α; tÞjωþω−αR; tihωþω−αL; tj: ð30Þ

We are now in a position to write down expressions
for the average SFF in terms of the average transfer
matrix. With periodic boundary conditions, where L is
necessarily even,

K̄ðtÞ ¼ tr½T̄ LðtÞðSTÞL�
¼
X

ωþω−α

½λðωþω−α; tÞ�Le−iðL=2Þðωþþω−Þ: ð31Þ

For the case of open boundary conditions, we
define the doubled boundary vectors jBRi≡jBi⊗ jBi
and hBLj≡ hBRjST , for the right and left ends of the
chain, respectively. These vectors are in the ωþ ¼ ω− ¼ 0
sector. From Eq. (24), we then have

K̄ðtÞ¼ hBLjT̄ L−1jBRi;
¼
X
α

½λð0;0;α; tÞ�L−1× hBLj0;0;αR; tih0;0;αL; tjBRi;

ð32Þ

which is illustrated in Fig. 9.
An immediate question is how, for general L, RMT level

statistics emerge from the average transfer matrix T̄ ðtÞ at

FIG. 9. SFF with open boundary conditions in terms of the
transfermatrix (for t¼2 andL¼3 sites),KðtÞ¼ hBLjT 0;1T 1;2jBRi.
The vectors jBL;Ri encode the boundary conditions.
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late times. We anticipate that, in the diagonal regime, the
result K̄ðtÞ ¼ t is expressible as a sum over the t global
diagonal orbit pairings, each contributing unity. In the
language of the average transfer matrix T̄ ðtÞ, this corre-
sponds to having t leading eigenvalues, which, at late times,
approach unity.
Different behavior sets in beyond tH ¼ qL, where the

average SFF plateaus at K̄ðtÞ ¼ qL. To see how this
behavior could arise, note that the number of nonzero
subleading eigenvalues of T̄ ðtÞ grows very rapidly with t,
but that the contributions of these eigenvalues to the SFF
are suppressed for large L. In Appendix D, we show, based
on exact diagonalization of T̄ ðtÞ for t ≤ 5, that the pro-
liferation of subleading eigenvalues with increasing t is
responsible for the plateau.
Our analysis is focused on the regime 1 ≪ t ≪ tH for

large L and therefore on the late-time behavior of the t
leading eigenvalues of T̄ ðtÞ. General features then emerge
because the only microscopic timescale in T̄ ðtÞ is q2, the
Heisenberg time for a single gate. As we show in Sec. III D,
each of the sectors ω ¼ ωþ ¼ −ω− contains one of the t
leading eigenvalues, and since our attention is effectively
limited to these and the corresponding eigenvectors, it is
convenient to introduce the shorthand notation

λðω; tÞ≡ λðω;−ω; 0; tÞ;
jω; t;Ri≡ jω;−ω; 0R; ti;
hω; t;Lj≡ hω;−ω; 0L; tj: ð33Þ

In the regime of interest, the transfer matrix is too large to
compute directly. In the next two sections, we study the
length scaling of the average SFF and related objects with a
variety of boundary conditions. In this way, we determine
λðω; tÞ as well as certain properties of the corresponding
eigenvectors.

C. Open boundary conditions

In this section, we study the length scaling of the
average SFF K̄ðtÞ with open boundary conditions. From
Eq. (32), this probes the ωþ ¼ ω− ¼ 0 block of the average
transfer matrix. Based on the discussion in Sec. III A, we
anticipate that the leading correction to the SFF relative to
RMT can be understood in terms of a domain wall, so here
we also aim to infer an effective domain-wall tension.
If the leading eigenvalue in the ωþ ¼ ω− ¼ 0 sector

dominates the SFF in Eq. (32), we have

K̄ðtÞ ¼ λL−1ð0; tÞhBLj0; t;Rih0; t;LjBRi þ…; ð34Þ
where the ellipses indicate contributions from subleading
eigenvalues. By following the L dependence of K̄ðtÞ for
each time t, we extract the leading eigenvalue λð0; tÞ
and the overlap of the corresponding eigenvector with the
boundary states, hBLj0; t;Rih0; t;LjBRi. The results are

shown in Fig. 10, and details of the analysis are presented
in Appendix F. We find that λð0; tÞ approaches unity from
above at large t. We find also that the overlap, shown in
the inset, approaches t at late times. This is exactly the
value expected if the leading eigenvector of T̄ ðtÞ repre-
sents a locally diagonal orbit pairing, as we discuss in
Sec. III E.
Expanding the average SFF around the RMT result, at

large t, we then have

K̄ðtÞ ¼ tþ tðL − 1Þδλð0; tÞ þ…; ð35Þ

where we have defined δλð0; tÞ ¼ λð0; tÞ − 1. We can
interpret the deviation from RMT as a domain-wall con-
tribution in analogy with Eq. (19). Here, (L − 1) is the
translational entropy, and δλð0; tÞ in Eq. (35) plays the role
of ðt − 1Þe−εt, the sum of statistical weights of the (t − 1)
different domain walls. This interpretation motivates the
definition of an effective domain-wall tension εeff ¼ εeffðtÞ
via

e−εeffðtÞt ¼ δλð0; tÞ
t − 1

: ð36Þ

In the model of Ref. [27], all domain walls have the same
tension ε, so εeff ¼ ε, which is also time independent. This
is not the case in general [27,66]. We show in Fig. 11 that
the effective domain-wall tension in the q ¼ 2 Haar-RFC
decreases monotonically with time. To understand this

FIG. 10. Leading eigenvalue λð0; tÞ of the average transfer
matrix T̄ ðtÞ. In the inset, the solid line shows the overlap of the
corresponding eigenvectors with the boundary states jBL;Ri,
which approaches t (dotted) at late times.
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decrease, suppose a domain wall can be located on a
particular bond with corresponding gate U and that we can
associate a tension εðUÞ with this gate. The average of the
statistical weight e−εðUÞt over U is, at late times, increas-
ingly dominated by those gates with small εðUÞ.
Consequently, it is natural for the effective tension derived
from this average to decrease with time.
We can relate this behavior to the Thouless time tTh as

follows. From Eqs. (35) and (36), we see that the crossover
to RMT occurs when the decreasing statistical weight
e−εeffðtÞt associated with a domain wall overwhelms the
translational entropy (L − 1). If the effective domain-wall
tension approaches a nonzero constant εeffð∞Þ at late times,
the timescale for the crossover of the SFF to RMT behavior
is tTh ¼ lnL=εeffð∞Þ.
In this section, we have determined one of the t leading

eigenvalues of the average transfer matrix. Next, we will
determine the other (t − 1) and provide further evidence for
domain walls in the orbit pairing.

D. Twisted boundary conditions

In order to access t different symmetry blocks of T̄ ðtÞ,
here we impose local diagonal orbit pairings at the two ends
of the system. This approach allows us to force domain
walls into the many-body orbit pairing and gives us
information on λðω; tÞ, hω; t;Lj and jω; t;Ri for all ω.
By determining all of these leading eigenvalues, we show
that they alone are sufficient to calculate the SFF with
periodic boundary conditions to a remarkable degree of
accuracy.

1. Domain walls

The local diagonal orbit pairings are represented
by vectors jsi in the product space of forward and
backward orbits. The pairing jsi is a normalized member
of the set of vectors jσ; τi introduced in Eq. (28), with
σ ¼ τ the permutation mapping r → ðrþ sÞ modulo t, for
s ¼ 0; 1…ðt − 1Þ. The components are

ha0b0…;a�0b
�
0…jsi ¼ 1

qt
Yt−1
r¼0

δara�rþs
δbrb�rþs

: ð37Þ

Imposing the orbit pairing sL on the left and sR on the right
of an L-site system, we find

ZðsR − sL; tÞ ¼ hsLjT 0;1ðtÞ…T L−2;L−1ðtÞjsRi: ð38Þ

For sL ¼ 0 and sR ¼ 1, these boundary conditions
correspond to the two pairings shown in Fig. 2. We
illustrate Zðs; tÞ in Fig. 12. For sL ¼ sR, we force equal-
time pairings, and for sL ≠ sR, we force a domain wall into
the orbit pairing. In practice, we impose these boundary
conditions using a Monte Carlo method and give details on
the implementation in Appendix B. For the particular case
of Zð0; tÞ, these boundary conditions can also be thought of
as local couplings to Markovian baths. We discuss this
further in Sec. III F.
Via the ensemble average,

Z̄ðs; tÞ ¼ h0jT̄ L−1ðtÞjsi; ð39Þ

we probe the average transfer matrix T̄ ðtÞ. Suppose that the
RMT behavior K̄ðtÞ ¼ t at late times arises from the sum
over the t possible global diagonal orbit pairings. The
boundary conditions imposed for Zð0; tÞ are compatible

FIG. 12. Twisted boundary conditions on a pair of forward and
backward orbits, Zðs; tÞ. At the top, we show the two orbit
pairings of Fig. 2 imposed on the left and right sites, sL ¼ 0 and
sR ¼ 1, so s ¼ sR − sL ¼ 1. Below this, we show Zð1; 2Þ for
L ¼ 3 sites in terms of the transfer matrices T for bonds (0,1) and
(1,2), Zð1; 2Þ ¼ hsL ¼ 0jT 0;1ð2ÞT 1;2ð2ÞjsR ¼ 1i. The states hsLj
and jsRi are represented by gray lines.

FIG. 11. Evolution of the effective tension εeffðtÞ defined in
Eq. (36), calculated using numerical results for the leading
eigenvalue λð0; tÞ in Fig. 10.
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with one of these pairings, whereas those for Zðs ≠ 0; tÞ are
not compatible with any of them. We therefore expect that
Z̄ð0; tÞ → 1 and Z̄ðs ≠ 0; tÞ → 0 with increasing t, on the
grounds that contributions from pairs of many-body orbits
with domain walls should vanish at late times. We show
that this is indeed the case in Fig. 13 for s ¼ 0 and s ¼ 1 for
various L, and in Fig. 14(a) for L ¼ 8 and various s.
Making a connection with the model of Ref. [27] at large q
(see also Sec. III A), we expect Z̄ðs ≠ 0; tÞ ≃ ðL − 1Þe−εt at
late times, where (L − 1) is the translational entropy of the
domain wall. The observed increase of Z̄ðs; tÞ with L in
Fig. 13 is then understood as a consequence of this entropy
and furthermore demonstrates the failure of the diagonal
approximation. In principle, and in contrast to Ref. [27],
we expect the decay rate of Z̄ðs ≠ 0; tÞ to depend on s
(see Appendix C), and behavior of this kind is evident in
Fig. 14(a).

2. Leading eigenvalues

Using our numerics on Z̄ðs; tÞ, we can extract the leading
eigenvalues λðω; tÞ. The local diagonal pairings jsi defined
in Eq. (37) are eigenvectors of S2 with unit eigenvalue, so
they are linear combinations of vectors in sectors with
ωþ ¼ −ω−. We define their Fourier transform in sector
ω ¼ ωþ ¼ −ω− as

jωi ¼ 1ffiffi
t

p
Xt−1
s¼0

e−iωsjsi: ð40Þ

Using Eq. (40) and the spectral decomposition of T̄ ðtÞ in
Eq. (30), we have the Fourier transform of Z̄ðs; tÞ,

Z̄ðω; tÞ ¼
Xt−1
s¼0

e−iωsZ̄ðs; tÞ

¼
X
α

½λðω;−ω; α; tÞ�L−1

× hωjω;−ω; αR; tihω;−ω; αL; tjωi: ð41Þ

For fixed t and large L,

Z̄ðω; tÞ ¼ λL−1ðω; tÞhωjω; t;Rihω; t;Ljωi þ…; ð42Þ

where the ellipses represent the contributions of subleading
eigenvalues.
We show Z̄ðω; tÞ for L ¼ 8 and various ω as a function

of t in Fig. 14(b). The qualitative behavior of the leading
eigenvalues and corresponding eigenvectors at large t can
be deduced as follows. First, note that Z̄ð0; tÞ → 1 and
Z̄ðs ≠ 0; tÞ → 0 at large t for all L. Substituting this
behavior into the first line of Eq. (41), we find Z̄ðω; tÞ ≃ 1
for large t, for all L and ω. From Eq. (42), this implies that
the leading eigenvalues λðω; tÞ ≃ 1, and the overlaps
hωjω; t;Rihω; t;Ljωi ≃ 1, at large t.
Moving beyond this qualitative analysis, the leading

eigenvalues λðω; tÞ and the overlaps hωjω; t;Rihω; t;Ljωi
can be extracted from the length scaling of Z̄ðω; tÞ, and the
results are shown in Figs. 15(a) and 15(b), respectively. We
give details of the analysis in Appendix F and repeat it for
another model in the same symmetry class in Appendix G.
For comparison with length scaling of Z̄ðω; tÞ we show
(i) the exact results for t ≤ 5, determined from the exact
diagonalization of T̄ ðtÞ (see Appendix D), and (ii) the
calculation of λð0; tÞ from Fig. 10; we find excellent
agreement between the different approaches. We see that
λð0; tÞ ≥ 1 and λðω ≠ 0; tÞ ≤ 1, with all t of the leading
eigenvalues approaching unity at late times. In Fig. 15(b),
hωjω; t;Rihω; t;Ljωi also approaches unity, and we dis-
cuss this in Sec. III E.
We can conduct a stringent test of the accuracy of the

eigenvalues that we have extracted in Fig. 15(a), and of the
adequacy of focusing on only the t leading eigenvalues.

FIG. 14. Z̄ðs; tÞ and Z̄ðω; tÞ for q ¼ 2 and L ¼ 8. (a) Z̄ðs; tÞ,
with s on the legend. Note that Z̄ð0; tÞ tends to unity, and
Z̄ðs ≠ 0; tÞ decays approximately exponentially as in Fig. 13.
(b) Z̄ðω; tÞ, defined in Eq. (41) as the Fourier components of
Z̄ðs; tÞ with respect to s. The legend shows n ¼ ωt=2π.

FIG. 13. Z̄ðs; tÞ, defined in Eq. (39), with system size L shown
on the legend. For s ¼ 1 (solid lines), the boundary conditions
force a domain wall into the orbit pairing, whereas for s ¼ 0
(dashed lines), they do not. See main text for discussion.
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To do so, we use our results to reconstruct the SFF with
periodic boundary conditions, and the results are shown in
Fig. 16. We find remarkable agreement with exact diag-
onalization from Fig. 5(a). To demonstrate the power of the
transfer matrix approach, and the exponential growth of
deviations from RMT, we also extrapolate to larger systems
than are directly accessible. For fixed t, our restriction
to only the leading eigenvalues of T̄ ðtÞ is exact in the
large-L limit.

Within the framework of the average transfer matrix,
the mechanisms giving rise to the RMT result K̄ðtÞ ¼ t in
the diagonal regime are different with periodic and open
boundary conditions. In the periodic case, the t leading
eigenvalues each contribute unity. In the open case, just
one of these eigenvalues, in the ω ¼ 0 sector, contributes
to K̄ðtÞ, but this contribution is enhanced by a fac-
tor hBLj0; t;Rih0; t;LjBRi ≃ t.

3. Domain-wall tensions

Having established the approximate equality K̄ðtÞ ≃P
ω λ

Lðω; tÞ in Fig. 16, we now relate the average SFF
with periodic boundary conditions to properties of the
domain walls studied in, for example, Fig. 13. At late times
and for a nonzero twist s, the Fourier transform of Eq. (41)
gives

Z̄ðs; tÞ ≃ ðL − 1Þ × 1

t

X
ω

δλðω; tÞeiωs þ…: ð43Þ

Here, we have written δλðω; tÞ ¼ λðω; tÞ − 1 and used
hωjω; t;Rihω; t;Ljωi ≃ 1. The ellipses represent terms
higher order in δλðω; tÞ and the contributions from sub-
leading eigenvalues. With no twist, we instead have
Z̄ð0; tÞ ≃ 1 from Fig. 13. Equation (43) and the observed
decay of Z̄ðs; tÞ in Fig. 13 motivate the definition of the
domain-wall tensions εðs; tÞ through

e−εðs;tÞt ¼ 1

t

X
ω

δλðω; tÞeiωs: ð44Þ

Since Z̄ðs ¼ 0; tÞ ¼ 1 for large t, independently of L, we
see that

P
ω δλðω; tÞ ¼ 0. The statistical weight e−εeff t

defining the effective tension εeff in Eq. (36) is then simply
the average over s ≠ 0 of the statistical weights e−εðs;tÞt.
To write an expression for the SFF with periodic

boundary conditions in terms of the domain-wall tensions,
we invert Eq. (44) and use K̄ðtÞ ≃Pω λ

Lðω; tÞ. Expanding
around the RMT result, we find

K̄ðtÞ ¼ tþ 1

2
LðL − 1Þt

X
s≠0

e−2εðs;tÞt þ… ð45Þ

to second order in δλðω; tÞ. From this, we see that the first
correction to RMT with periodic boundary conditions can
be interpreted as arising from pairs of many-body orbits
with two domain walls, as opposed to pairs with just one
domain wall in the case of open boundary conditions.

E. Pairing domains

In this section, we investigate the character of the orbit-
pairing domains. We probe the space-time-local pairing of
orbits across domain walls and within the different

FIG. 16. Calculations of the average SFF K̄ðtÞ with periodic
boundary conditions for various L (legend), using (dashed lines)
the leading t eigenvalues λðω; tÞ of the average transfer matrix
T̄ ðtÞ, from Fig. 15(a), and (solid lines) exact diagonalization of
the Floquet operators for L ≤ 12, from Fig. 5. For 4 ≤ L ≤ 12, we
can compare the approaches, and we find the difference
jPω λ

Lðω; tÞ − K̄ðtÞj < 0.1 for all t < tH shown.

FIG. 15. Spectral properties of T̄ ðtÞ. (a) Leading eigenvalues in
the sectors ω ¼ ωþ ¼ −ω−. The solid lines are extracted from L
scaling of Z̄ðω; tÞ (see Appendix F) with n ¼ ωt=ð2πÞ on the
legend. The dotted line shows the ω ¼ 0 data in Fig. 10 for
comparison, and the white data points are from exact diagonal-
ization of T̄ ðtÞ for t ≤ 5, detailed in Appendix D. (b) Overlaps of
the leading eigenvectors with the vectors jωi.
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domains. Our tools are the twisted boundary conditions
from Sec. III D and a suitable correlator defined below.
Our results on the leading eigenvectors of T̄ ðtÞ in Figs. 10

and 15(b) highlight a close connection with the vectors jωi
and therefore with the local diagonal orbit pairings jsi. In
particular, at late times, we find hBLj0; t;Rih0; t;LjBRi ≃ t,
to be compared with hBLjω ¼ 0ihω ¼ 0jBRi ¼ t. Addi-
tionally, we have hωjω; t;Rihω; t;Ljωi ≃ 1. Since jω; t;Ri
and hω; t;Lj are vectors in a space of very high dimension for
large t, it is quite remarkable to find that they have such large
overlap with jωi, and even more striking that this overlap
approaches unity at large t. However, because the left and
right eigenvectors of T̄ ðtÞ form a biorthogonal set as
opposed to being orthonormal, this does not imply equality
of the leading eigenvectors and the jωi vectors.
To probe pairing beyond these overlaps, we

construct a correlator as follows. Writing the forward orbit
of site x as ða0b0…at−1bt−1Þ and the backward orbit as
ða�0b�0…a�t−1b

�
t−1Þ, our space-time-local pairing correlator

for the step r will be chosen to take the value 1 if ar ¼ a�r ,
and −1=q otherwise. In this way, the correlator vanishes if
ar and a�r are uncorrelated q-valued random numbers. To
calculate this correlator, we introduce the operator CðrÞ,
acting in the product space of forward and backward single-
site orbits,

CðrÞja0b0…i ⊗ ja�0b�0…i

¼ δara�r − 1=q

1 − 1=q
ja0b0…i ⊗ ja�0b�0…i: ð46Þ

Imposing the local diagonal orbit pairing sL on the site
x ¼ 0, and sR on site (L − 1), the average correlator on a
site with x odd is given by inserting CðrÞ into a product of
transfer matrices in Eq. (39). If we probe the orbit pair-
ing of a site with x even, we redefine C → SCST . For an
individual realization, our correlator for site x is

CðsL; sR; t; xÞ ¼
hsLjT 0;1ðtÞ…CT x;xþ1ðtÞ…jsRi
hsLjT 0;1ðtÞ…T L−2;L−1ðtÞjsRi

: ð47Þ

Here, we have inserted C between the transfer
matrices T x−1;xðtÞ and T x;xþ1ðtÞ in the numerator, and
we have omitted the argument of C, which is, in this case,
arbitrary. The denominator is ZðsR − sL; tÞ. We are inter-
ested in average properties of the transfer matrix,
and although both the numerator and denominator
are nonzero and positive after averaging, this is not the
case in all individual realizations. Consequently, it is not
possible to average the right-hand side of Eq. (47) directly.
Therefore, we define our average correlator C̄ðsL; sR; t; xÞ
as the ratio of the average numerator to the average
denominator,

C̄ðsL; sR; t; xÞ ¼
hsLjT̄ xðtÞCT̄ L−1−xðtÞjsRi

hsLjT̄ L−1ðtÞjsRi
: ð48Þ

Consider imposing a particular pairing domain using the
boundary conditions sL ¼ sR ¼ s, as in Zð0; tÞ. At late
times, if the forward and backward many-body orbits are
diagonally paired, we expect C̄ðs; s; t; xÞ to be equal to
unity if s ¼ 0 and equal to zero if s ≠ 0. At early times,
based on the results of Fig. 13, we anticipate domain-wall
contributions. The corresponding multidomain orbit pair-
ing configurations suppress Cð0; 0; t; xÞ and enhance
Cðs; s; t; xÞ for s ≠ 0. In Fig. 17(a), we show C̄ðs; s; t; xÞ
calculated for various x and for s ¼ 0 and 1 in a system of
L ¼ 8 sites, and we find exactly the behavior expected.
To study the correlations in the pairing across a domain

wall, we impose sL ¼ 0 and sR ¼ s ≠ 0 as in Zðs; tÞ. In this
case, as we increase x and thereby sweep across the domain
wall, we expect our correlator C̄ð0; s; t; xÞ to decrease
toward zero, and in Fig. 17(b), we confirm that this is
indeed the case. The results of Fig. 17 demonstrate, quite
directly, the existence of domains in the orbit pairing.

F. Bath interpretation of Zð0;tÞ
It turns out that the boundary conditions used to define

Zð0; tÞ also arise for a system coupled at its ends to
Markovian baths. This fact highlights a connection between
thermalization and, through the transfer matrices, the
spectral statistics.
First, consider evolution under only the Floquet operator

W. The SFF can be written KðtÞ ¼ Tr½WðtÞ ⊗ W�ðtÞ�,
where W ⊗ W� is the doubled Floquet operator; here, the
trace is over the q2L-dimensional doubled Fock space. To
couple the system to a bath, we act on each of the sites
x ¼ 0 and (L − 1) with independent q × q Haar-random

FIG. 17. Correlations C̄ðsL; sR; t; xÞ between the space-time-
local pairings of orbits in a system of L ¼ 8 sites, with (a) a
particular domain and (b) a domain wall imposed by the
boundary conditions. In panel (a) the dashed lines correspond
to sL ¼ sR ¼ 0, and the solid lines correspond to sL ¼ sR ¼ 1.
The site x is shown on the legend. In panel (b), sL ¼ 0 and
sR ¼ 1, and the correlations are shown as a function of position x.
The different sets of points correspond to different times t, shown
on the legend, and the lines are linear fits to the data.

LOCAL PAIRING OF FEYNMAN HISTORIES IN MANY-BODY … PHYS. REV. X 11, 021051 (2021)

021051-15



unitary matrices at each time step. Writing the composite
index for the end sites 0 and (L − 1) using Greek letters α,
β, and the composite index for the (L − 2) central sites
using Roman letters a, b, the components of the doubled
Floquet operator W ⊗ W� are Waα;bβW�

a�α�;b�β� . Averaging
over the bath couplings, we find that the only nonzero
matrix elements have α ¼ α� and β ¼ β�. This average
therefore forces local diagonal pairings of the orbits of each
of the sites x ¼ 0 and (L − 1). For a more detailed
discussion, see Appendix B.
Defining the Kraus operators Qαβ via their components

Qαβ
ab ¼ ð1=qÞWaα;bβ, the quantum channel describing the

evolution of the central (L − 2) sites is represented by the
operator

Q ¼
X
αβ

Qαβ ⊗ ðQαβÞ�: ð49Þ

Here, Q acts on the q2ðL−2Þ-dimensional doubled space of
the central (L − 2) sites. From this

Zð0; tÞ ¼ TrQt; ð50Þ

a sum over orbits with local diagonal pairing at the ends of
the system. The matrixQ has leading eigenvalue unity, and
the corresponding eigenvector describes a density matrix
proportional to the identity. In generic circuit realizations,
the other eigenvalues of Q lie within the unit circle, so at
late times, Zð0; tÞ approaches unity.
We show this behavior for individual circuit realizations

in Fig. 18 and also find that for nonzero s, Zðs; tÞ decays to
zero with increasing time. In the language of Sec. III D, this
implies an approach toward a global orbit pairing in
individual circuit realizations. From the perspective we
have just described, on the other hand, the statement that
Zð0; tÞ approaches unity at late times is a statement about
thermalization.

IV. EIGENSTATE CORRELATORS

Our attention has so far been limited to spectral proper-
ties. However, the picture of local orbit pairing, and, in
particular, the possibility of domain walls in the pairing of
many-body orbits, has implications for local correlations
between eigenstates. We now show that there are correla-
tions between the diagonal matrix elements of local
operators or, equivalently, the reduced density matrices
of eigenstates. These correlations, relative to the predictions
of the ETH, grow without bound in the thermodynamic
limit. We note that apparently related correlations have
been observed in a recent numerical study [67].
We first introduce probes for these correlations.

Restricting ourselves to a single site x, let τj;x ðj ¼ 0…
ðq2 − 1ÞÞ be a set of orthonormal q × qHermitian operators
acting only on this site, which, for brevity, we refer to
as observables. Then, Tr½τi;xτj;x� ¼ δij, and we choose
τ0;x ¼ 1=

ffiffiffi
q

p
so τj≠0;x are traceless. The reduced density

matrix of the eigenstate jni on site x is

ρxðnÞ ¼
1

q
1þ

Xq2−1
j¼1

hnjτj;xjniτj;x: ð51Þ

A correlator between diagonal matrix elements of the
observables can then be defined as

Trx½ρxðnÞρxðmÞ� ¼ 1

q
þ
Xq2−1
j¼1

hnjτj;xjnihmjτj;xjmi; ð52Þ

where Trx denotes a trace over the site x. In a similar way,
for the off-diagonal matrix elements, consider summing
jhnjτj;xjmij2 over τj;x. The result is

Tr0x½ρ0xðnÞρ0xðmÞ� ¼ 1

q
δnm þ

Xq2−1
j¼1

jhnjτj;xjmij2: ð53Þ

Here, ρ0xðnÞ ¼ Trxjnihnj is the reduced density matrix of the
eigenstate jni over the (L − 1)-site complement of the site x,
and Tr0x is a trace over that region.
In the time domain, the correlations between diagonal

matrix elements are characterized by the RFF

RxðtÞ ¼
X
nm

Trx½ρxðnÞρxðmÞ�eiðθn−θmÞt

¼ Trx½Tr0xWðtÞ½Tr0xWðtÞ�†�; ð54Þ

where, in the summand, we have the correlator defined in
Eq. (52). The spectral structure in the off-diagonal matrix
elements is instead encoded in

R0
xðtÞ ¼

X
nm

Tr0x½ρ0xðnÞρ0xðmÞ�eiðθn−θmÞt

¼ Tr0x½TrxWðtÞ½TrxWðtÞ�†�; ð55Þ

FIG. 18. Approach toward a global orbit pairing in individual
circuit realizations for (a) L ¼ 4 and (b) L ¼ 8 sites. The dashed
and solid lines show Zð0; tÞ and Zð1; tÞ, respectively, for two
randomly selected realizations (one in gray, the other in black).
The shaded areas are centered on Z̄ðs; tÞ and have vertical width
equal to twice the ensemble standard deviation.
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where now the object introduced in Eq. (53) appears.
Note that R0

xðtÞ is the autocorrelation function of the
operator τj;x, averaged over choices of τj;x, and is therefore
accessible, in principle, to experimental measurements. In
Fig. 19, we show diagrams of the correlators RxðtÞ and
R0
xðtÞ in circuit notation, as well as the relevant orbit

illustrations (as in Fig. 2). In light of the picture of local
orbit pairing developed through Sec. III, we see that RxðtÞ
and R0

xðtÞ, and therefore the diagonal and off-diagonal
matrix elements, behave very differently.
In RxðtÞ, the evolution operator appears as the product of

Tr0xWðtÞ and its Hermitian conjugate. Away from site x,
RxðtÞ has the same trace structure as KðtÞ. This trace
structure is associated with a freedom in the local orbit
pairing or, more formally, with the transfer matrices T x;xþ1

discussed in Sec. III. Therefore, just as K̄ðtÞ grows
exponentially with L, so does R̄xðtÞ. Exact calculations
are straightforward for the model of Ref. [27] in the large-q
limit, yielding R̄xðtÞ ¼ ðq=tÞK̄ðtÞ, to be compared with
R̄xðtÞ ¼ q within RMT. Therefore, at times t < tTh, for
which K̄ðtÞ > t, the average RFF R̄xðtÞ exceeds its RMT
value. The freedom in the local orbit pairing gives rise to
correlations between the diagonal matrix elements, and this
effect is stronger in larger systems.
In Appendix H, we show how the correlator RxðtÞ can be

evaluated using an extension of the transfer matrix method
of Sec. III. Here, we present numerical results, obtained in
the quasienergy domain using exact diagonalization and
Lanczos methods (see Appendix A for details), which
demonstrate divergent departures from ETH.

First, note that the completeness of eigenstates impliesP
n ρxðnÞ ¼ qL−11, so the correlator of diagonal matrix

elements satisfies the sum rule
P

mTr½ρxðnÞρxðmÞ� ¼ qL−1.
The RMT result for the average correlator is

Tr½ρxðnÞρxðmÞ� ¼ 1

q
þ q − q−1

q2L − 1
ðqLδnm − 1Þ: ð56Þ

On the right-hand side of this equation, the first term arises
from the nonfluctuating component ð1=qÞ1 of the density
matrices, while the second term characterizes fluctuations
in the matrix elements of operators τj;x with j ≠ 0. The
n ¼ m terms in Eq. (56) are the eigenstate purities. We
show the fluctuations of the eigenstate purities, in units of
the ETH result, in Fig. 20. Here, deviations from the ETH
are small and do not grow with system size. The situation is
quite different for n ≠ m.
It is useful to parametrize the correlator as follows:

Trx½ρxðnÞρxðmÞ� ¼ 1

q
þ q − q−1

q2L − 1
ðqLδnm þ rx;nmÞ: ð57Þ

Comparing with Eq. (56), we see that the ETH prediction
is r̄x;nm ¼ −1. More generally, the sum rule satisfied
by the correlator ensures that the average of rx;nm over n
or m is −1. It is reasonable to expect that the ensemble
average is determined only by the quasienergy difference,
so r̄x;nm ¼ r̄xðω ¼ jθn − θmjÞ. We also define the average
of r̄xðωÞ over x, r̄ðωÞ, and for open boundary conditions,
we exclude the two sites at each of the two ends of the chain
from this average. Note that r̄ðωÞ is a correlation function
for the diagonal matrix elements of local observables,

FIG. 19. Circuit diagrams of RxðtÞ (left) and R0
xðtÞ (right).

Away from x, RxðtÞ has the same trace structure as KðtÞ. On the
upper right of the figure, the illustration shows the forward (outer)
and backward (inner) single-site orbits, relevant to only site x in
R0
xðtÞ and the other (L − 1) sites in RxðtÞ. On the lower right, the

illustration shows the concatenation of forward and backward
paths relevant to only site x in RxðtÞ and to the other (L − 1) sites
in R0

xðtÞ.

FIG. 20. Fluctuations of the one-site eigenstate purities,

Trρ2 − 1=q, in units of the RMT average, Trρ2RMT − 1=q. In
panel (a), the solid lines show the probability distribution P of

ðTrρ2 − 1=qÞ=ðTrρ2RMT − 1=qÞ for systems of various sizes L
(legend), and with open boundary conditions. The dashed line is
the distribution within RMT, calculated from Haar-random 28 ×
28 unitary matrices. In panel (b), we show the mean as a function
of L for periodic (lower points) and open (upper points) boundary
conditions. For open boundary conditions, we exclude data from
two sites at each of the two ends of the chain.
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averaged over position and summed over an orthonormal
set of observables at each site.
In Fig. 21, we show r̄ðωÞ for both open and periodic

boundary conditions. The deviations from the ETH are
striking, and they are most prominent at the smallest
quasienergy separations, where the ETH is usually thought
to be applicable. The observed low-frequency peak has its
origin in the late-time decay of the leading eigenvalues of
the transfer matrix, λðω; tÞ, toward unity [see Figs. 10 and
15(a)]. From this we conclude that at large L, the height of
the peak grows exponentially with L, while its width is
given by the inverse of the Thouless time, which decreases
with increasing L. With open boundary conditions and for
only L ¼ 14 sites, we find a relative enhancement of the
correlator r̄ðωÞ by over 2 orders of magnitude. This result
constitutes a substantial correction to the ETH for chaotic
one-dimensional Floquet systems.
The picture of local orbit pairing does not suggest a

significant modification to the ETH for the off-diagonal
matrix elements of local observables, at least at the level of
R0
xðtÞ. To see this, note that R0

xðtÞ is constructed from the
product of TrxWðtÞ and its Hermitian conjugate. Based on
the trace structure, there is only a freedom in the local orbit
pairing at the site x. This fact is demonstrated by a large-q
calculation in the model of Ref. [27], where we find
R̄x

0ðtÞ ¼ qL−1ð1þ ðt − 1Þe−2εtÞ for 1 ≤ x ≤ ðL − 2Þ, to

be compared with the RMT result R̄x
0ðtÞ ¼ qL−1. The

deviations of R̄x
0ðtÞ from RMT do not grow with L.

Objects analogous to RxðtÞ and R0
xðtÞ can also be defined

for operators with arbitrary spatial support. From Eqs. (54)
and (55), as well as Fig. 19, we see that RxðtÞ and R0

xðtÞ are
complementary. Considering operators with support on l
sites (where l ¼ 1 in the above), there is a freedom in the
local orbit pairing over ðL − lÞ sites in the analogue of
RxðtÞ and over l sites in the analogue of R0

xðtÞ. The
substitution l ↔ ðL − lÞ converts between the analogues
of RxðtÞ and R0

xðtÞ. Whereas the spectral structure in the
diagonal matrix elements grows with ðL − lÞ, the spectral
structure in the off-diagonal matrix elements grows with l.

V. SPECTRAL FLUCTUATIONS

We now turn to an investigation of the sample-to-sample
fluctuations of spectral correlations within the ensemble of
Haar-RFCs. In Fig. 3, we have already shown that a local
average dramatically suppresses statistical fluctuations of
the SFF, a global quantity. Here, we set out to understand
this and the distribution of spectra more generally.
Information on the distribution of spectra is buried in the

moments of KðtÞ. The nth moment, KnðtÞ, is an average
over the product of n copies of the forward orbits TrWðtÞ
and n copies of the backward TrW�ðtÞ. Focusing on only
the second moment, in Sec. VA, we make some first steps
towards adapting our theory of local orbit pairing to these
higher-order objects and demonstrate non-Gaussian statis-
tics of the SFF. In Sec. V B, we discuss the connection with
the entanglement membrane.

A. Non-Gaussian statistics

To ground the discussion, we first consider the case
where W is a single random matrix drawn from the Haar
distribution. In the limit of a large matrix dimension, the
object TrWðtÞ is then normally distributed, with mean zero,
in the complex plane [54]. In calculating the second

moment of the spectral form factor, K2ðtÞ ¼ jTrWðtÞj4,
Wick’s theorem gives a sum over the two possible pairings
of copies of TrWðtÞ and its conjugate,

ð58Þ

where we have denoted the two copy pairings “þ” and “−.”
Each of the “þ” and “−” copy pairings contributes K̄2ðtÞ,
so K2ðtÞ ¼ 2K̄2ðtÞ. Here, the copy pairing is necessarily
global since our evolution operator is just one Haar-random
matrix.
The global pairing of copies in Eq. (58) is to be

contrasted with the situation in a circuit model. We have

FIG. 21. Average correlator r̄ðωÞ of single-site diagonal matrix
elements in Haar-RFCs with (a) periodic and (b) open boundary
conditions. The system size L is shown on the legend, and the
smallest value of ω corresponds to an average over pairs of levels
drawn from a quasienergy interval of width ω ≃ ð2.5 × 10−3Þπ. In
the inset, we show the behavior of r̄ðωÞ as a function of L for the
four smallest values of ω in the main panels. The standard error in
the correlator is of order unity.
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already seen that the local freedom in the pairing of orbits
gives rise to deviations of the average SFF from the RMT
prediction. In K2ðtÞ there is an additional local freedom in
the pairings of copies of these orbits. We show in Fig. 22
that this gives rise to non-Gaussian statistics of the spectral
form factor at early times. Specifically, we show that

K2=ð2K̄2Þ is significantly larger than unity even in small
systems, and grows with L at fixed t.
As a point of comparison, we now sketch the calculation

ofK2 for the model of Ref. [27] in the large-q limit; see also
Ref. [68]. In K2ðtÞ ¼ jTrWðtÞj4, each one-site Haar-ran-
dom gate appears t times in each of the two copies of
TrWðtÞ, and similarly, its conjugate appears t times in each
of the two copies of TrW�ðtÞ. By Haar averaging a one-site
gate at large q, we find a sum over pairings of orbits
analogous to Eq. (12) and, additionally, a sum over the two
pairings of copies of these orbits, as in Eq. (58). Then,

K2ðtÞ involves a sum over all local orbit pairings, as in
Eq. (18), as well as a sum over all local copy pairings.
Whereas a domain wall in the orbit pairing has statistical
weight e−εt, it can be shown that a domain wall in the copy
pairing here has statistical weight e−2εt. With open boun-
dary conditions, at late times,

K2ðtÞ ¼ 2K̄2ðtÞ þ 2ðL − 1Þt4e−2εt þ…: ð59Þ

The first term on the right-hand side of Eq. (59) involves
contributions from domain walls in the orbit pairing, as in
Eq. (19), whereas the second term arises from a domain
wall in the pairing of copies of orbits. The factor (L − 1) is
the translational entropy of this domain wall, and the factor
t4 arises from sums over the orbit pairing at each of the two
ends of the two copies of the chain. With periodic boundary

conditions, the leading term in K2ðtÞ − 2K̄2ðtÞ at late times
comes from configurations with two domain walls in the
copy pairing. Figure 22 shows exactly this type of behavior.
A useful analogy with Sec. III is now evident. There, we

learned a great deal about K̄ðtÞ via calculations in which

boundary conditions were imposed to force diagonal
pairings of the local orbits. In this approach, the emergence
of RMT level statistics on small energy scales in the Haar-
RFC can be understood as arising from a global pairing of
orbits at late times. Looking at Eq. (58), we see that in order
to recover RMT statistics of the spectral form factor beyond
only the first moment, we also require a global pairing of
copies of orbits.
Proceeding in a similar way to Sec. III D, here we

investigate how, in the calculation of the second moment of
the spectral form factor, a local freedom in the pairing of
copies of orbits gives way to a global pairing. To do this, we
again impose local diagonal pairings at opposite ends of the
system but now to force a domain wall in the pairing of
copies of orbits. This setup is illustrated in Fig. 23. In
principle, we could also impose a relative twist on the orbit
pairing, as in Zðs ≠ 0; tÞ [see Eq. (39) and Fig. 12], but we
choose to restrict ourselves to equal-time pairing, as
in Zð0; tÞ.
In the notation of Eq. (58), Fig. 23 illustrates a “þ”

pairing on one end of the chain, and a “−” pairing on the
other. The resulting object, which we denote Z2ðþ;−; tÞ,
is a multiple sum over two copies of the forward orbits
and two copies of the backward orbits, with a domain
wall in the pairing of copies running along the time
direction. Here Z2ðþ;−; tÞ is to be contrasted with
Z2ðþ;þ; tÞ ¼ Z2ð0; tÞ, in which we impose equal-time
pairings of the same copies of orbits at both ends of
the system.
We show the averaged quantities Z̄2ðþ;−; tÞ and

Z̄2ðþ;þ; tÞ in Fig. 24. We see that Z̄2ðþ;−; tÞ grows with
L at fixed t and, therefore, so do the deviations from RMT.
At late times, t≳ 10 for L ≤ 8, Z̄2ðþ;−; tÞ goes to zero. In
other words, the contributions from those sets of many-
body orbits with domain walls in the copy pairing vanish.
As expected, Z̄2ðþ;þ; tÞ approaches unity in this regime.
The appearance of domain walls in the copy pairing implies
non-Gaussian statistics of the SFF at times t≲ 10 for these
system sizes, as revealed via direct calculation in Fig. 22.
As in Sec. III, the deviations from RMTare more prominent

FIG. 23. Diagram of Z2ðþ;−; tÞ, where we force a domain wall
into the pairings of copies of orbits. The different circuit layers
here correspond to forward (light) and backward (dark) orbits.

FIG. 22. Statistical fluctuations of KðtÞ. Here, we show

K2=ð2K̄2Þ, equal to 1 within RMT, for (a) periodic boundary
conditions and (b) open boundary conditions. The system size L
is shown on the legend.
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with open than with periodic boundary conditions because
domain walls can appear singly only in the first case.
We now return to the effect of the single-gate average

observed in Fig. 3. To understand why an average of the
spectral form factor over onlyonegate of the circuit is enough
to suppress statistical fluctuations, consider performing this
average and subsequently calculating the variance of the
spectral form factor over the ensembleof the remaininggates.
The tendency toward global copy pairing observed in Fig. 24
implies that the second moment can be approximated by a
sumover the two global pairings (þ and−) at late times, as in
Eq. (58). However, in performing the one-gate average
beforehand, we have locally selected for just one of these
pairings.Consequently, the secondmoment is approximately
halved, so the variance is suppressed to near zero.

B. Entanglement membrane

The domain walls in the copy pairing that we have
discussed throughout this section are related to the entan-
glement membrane [38]. To see this, we recall the growth of
entanglement under a unitary circuit, with or without time
periodicity.
Dividing space into subregions A and B, the purity of

subregion A is defined as e−S2 ¼ Trρ2AðtÞ, where ρAðtÞ is
the reduced density matrix in subsystem A and S2 is the
second Renyi entropy. Writing the initial density matrix as
ρ, we have

e−S2 ¼ TrA½TrB½WðtÞρW†ðtÞ�TrB½WðtÞρW†ðtÞ��: ð60Þ

Here, a boundary condition at time 0 is set by ρ. The
boundary condition at time t is determined by the
trace structure in Eq. (60), as illustrated in Fig. 25.
The boundary condition at time t imposes a domain wall,

the entanglement membrane, in the pairing of the indices
of the evolution operator. A similar domain wall in the
pairing of copies appears in Z2ðþ;−; tÞ. In that case, as
shown in Fig. 23, it is imposed by boundary conditions at
the left and right ends of the chain, while the boundary
conditions in time are periodic.

VI. DIAGONAL APPROXIMATION

As discussed in Sec. III A, in Haar-RFCs, the behavior of
the SFF beyond RMT comes from the contributions of off-
diagonal pairings of many-body orbits. However, devia-
tions from RMT can also arise within the diagonal
approximation through a different mechanism, which
involves the subleading eigenvalues of the diagonal propa-
gator P. These contribute in two ways: by having nonzero
average values and through their fluctuations. In this
section, we discuss both types of contribution.
First, we consider a general class of RFCs in which the

gates can be tuned from Haar random to the identity. Away
from Haar randomness, the subleading eigenvalues of the
diagonal propagator have nonzero averages. We parame-
trize the two-site gates U of the circuit via their spectral
decompositions, U ¼ Ve−iφV†. Here, φ is a diagonal
matrix, and we take the unitary matrix V to be Haar
random. If we choose φ to be distributed as the eigenphases
of a Haar-random unitary, then U is Haar random. On the
other hand, if φ is proportional to the identity, so is U. By
tuning the distribution of φ, we can interpolate between
these two extremes.
In a brickwork model, the diagonal propagator is of the

form Eq. (15). The gate acting on sites 0 and 1 in the first
half-step appears in Pa0…aL−1;b0…bL−1 as Uc0c1;b0b1U

�
c�
0
c�
1
;b0b1

,
where the indices c; c� are to be summed over. The average
overU now involves an average over V and an independent
average over the φ distribution. The result is

FIG. 24. Domain walls in the pairing of copies of orbits,
relevant to the second moment of the SFF. The solid lines show
the object Z̄2ðþ;−; tÞ, where the pairing of histories is different
on the two ends of the system, and the dashed lines show
Z̄2ðþ;þ; tÞ, where the pairing is the same.

FIG. 25. Boundary conditions defining the entanglement
membrane that appears in the calculation of the purity e−S2ðtÞ
of subregion A. Subregion A is on the left, where copies of
the evolution operator are contracted as in the “−” pairing of
Eq. (58). The subregion B on the right corresponds to the “þ”
pairing.
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Uc0c1;b0b1U
�
c�
0
c�
1
;b0b1

¼ νδc0b0δc1b1δc�0b0δc�1b1 þ
1

q2
ð1 − νÞδc0c�0δc1c�1 ; ð61Þ

where

ν ¼ jTrUj2 − 1

q4 − 1
: ð62Þ

Clearly, for ν ¼ 0, we recover the Haar-random result
Eq. (16). On the other hand, for U proportional to the
identity, we have ν ¼ 1. The average propagator, with
matrix elements P̄a0…aL−1;b0…bL−1 , is given by multiplying
expressions of the form Eq. (61) and summing over indices
c; c�. The result is a matrix-product operator (MPO), and
with periodic boundary conditions, this takes the form

P̄a0…aL−1;b0…bL−1 ¼ Tr½Ma0b0…MaL−1bL−1 �; ð63Þ
where Mab is a 2 × 2 matrix with components

Mab ¼
 

νδab
1
q

ffiffiffi
ν

p ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p

1
q

ffiffiffi
ν

p ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
1
q ð1 − νÞ

!
: ð64Þ

The eigenvectors of the MPO in Eq. (63) are product states,
which we label σx ¼ 0…ðq − 1Þ for x ¼ 0…ðL − 1Þ.
Writing these eigenvectors as vσ0 ⊗ …vσL−1 , the q-
component vectors vσ must satisfy

Xq−1
b¼0

Mij
abv

σ
b ¼ μijσ vσa: ð65Þ

This is achieved by taking v0 to have constant entries and
vσ≠0 to make up the rest of an orthogonal set (the sum of
entries of any vσ≠0 is therefore zero). The resulting 2 × 2

matrices μσ, with components μijσ , are outer products

μσ ¼
� ffiffiffi

ν
p
ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
δσ0

�� ffiffiffi
ν

p ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
δσ0

�
; ð66Þ

and the eigenvalues of P̄ are Tr½μσ0…μσL−1 �. The leading
eigenvalue is unity as required by unitarity of W, and the
next-to-leading eigenvalues are ν2 with multiplicity
Lðq − 1Þ. Within the diagonal approximation, the average
SFF K̄ðtÞ ¼ tTrP̄t is then

K̄ðtÞ ¼ t
X

σ0…σL−1

Tr½μσ0…μσL−1 �t

¼ t½1þ Lðq − 1Þν2t þ…�; ð67Þ

where, in the second line, we have expanded around the
late-time result. For 0 < ν < 1, K̄ðtÞ=t decreases

monotonically with t. Writing ν2t ¼ e−2 lnð1=νÞt, we see that
the Thouless time is tTh ¼ lnL=(2 lnð1=νÞ) within the
diagonal approximation.
As indicated below Eq. (8), a full exploration of the

diagonal approximation requires a discussion not only of P̄
but also of Pt. We now discuss this aspect in the context of
Haar-RFCs. In this case, as we have shown following
Eq. (17), the average P̄ has a single eigenvalue of unity,
with all subleading eigenvalues being zero. Individual
realizations, however, typically have nonzero subleading
eigenvalues that contribute to Pt. We probe the conse-
quences of this by evaluating the SFF using the approxi-
mation K̄ðtÞ ≈ tTrPt. In Fig. 26, we compare TrPt to
K̄ðtÞ=t for Haar-RFCs, and our results demonstrate that
corrections to RMTarising from the subleading eigenvalues
of P cannot account for the behavior of Haar-RFCs.
In the general case, the SFF has contributions both from

subleading eigenvalues of the diagonal propagator and
from domain walls. Determining which effect is dominant
requires a comparison of the associated timescales. For
Haar-RFCs, with ν ¼ 0, we have seen in Sec. III that the
domain-wall tensions ε are finite. Since ν sets the proximity
of the gates to the identity, it is natural to expect these
tensions to decrease with increasing ν. On the other hand,
the subleading eigenvalues of the diagonal propagator
vanish for ν ¼ 0. The behavior we have studied in Haar-
RFCs, in which domain walls control the SFF, must
therefore extend to at least a finite range of ν, so it is
not restricted to the Haar case.
A contrasting instance is provided by quantum circuits

that are built from two-site gates but without any spatial
structure imposed. It has recently been argued thatmodels of
this type have a “ramp” (or Thouless) time that is logarithmic
in system size [53]. In the absence of spatial structure, a
domain-wall interpretation cannot be appropriate, and it
would be interesting to investigatewhether this behavior can
be attributed to subleading eigenvalues of P.

VII. DISCUSSION

The spectral statistics of many-body quantum systems in
the ergodic phase coincide with the predictions of RMT

FIG. 26. Comparison of the deviations of TrPt (solid lines) and
K̄ðtÞ=t (dashed lines) from unity in Haar-RFCs with open
boundary conditions. The system size L is shown on the legend.

LOCAL PAIRING OF FEYNMAN HISTORIES IN MANY-BODY … PHYS. REV. X 11, 021051 (2021)

021051-21



below a certain (quasi)energy scale, the inverse of our
Thouless time tTh. On timescales much greater than tTh,
but much shorter than the Heisenberg time tH, this result
can be understood through the diagonal approximation to
the SFF. In this work, we have determined the regime
of validity of the diagonal approximation, and the form of
the corrections to it, in systems having local interactions
and no conserved densities. One of our main results is to
reveal a generic mechanism setting the Thouless time in
this context.
Our approach has been to develop a theory of local orbit

pairing, centered on the properties of a transfer matrix that
acts on pairs of local orbits and generates the SFF. In large
systems, the average SFF is controlled by the leading
eigenvalues of the average transfer matrix; we have
calculated these eigenvalues and shown that there is a
connection between the corresponding eigenvectors
and the diagonal approximation to sums over pairs of
many-body orbits. At fixed time and in the limit of large
systems, the dominant contributions to the SFF come from
orbits that are locally paired as in the diagonal approxi-
mation but with distinct diagonal pairings in neighboring
spatial domains. This domain structure is associated with
the exponential growth of the SFF with system size at fixed
time and the corresponding divergence of the Thouless
time. Conversely, in a system of fixed large size, there is a
wide window of time tTh ≪ t ≪ tH in which the pairing for
the whole system forms a single domain, so the diagonal
approximation is accurate.
We believe the structures we have uncovered are

universal, in the sense that our results should apply quite
generally to lattice Floquet models with local interactions,
with the form of the deviations of the SFF from RMT
governed by the cost of domain walls in the orbit pairing.
On timescales much greater than the Floquet period, we
expect that systems in the same symmetry class that share a
domain-wall cost, but are different in microscopic detail,
have similar spectral statistics. This kind of universality is
familiar from studies of single-particle disordered conduc-
tors. In that case, the form of the departure of the spectral
statistics from RMT on timescales t < tTh is set by the
diffusion constant, a coarse-grained quantity [69].
The picture of local orbit pairing has also revealed strong

correlations between the diagonal matrix elements of local
observables. We have shown that, relative to the predictions
of the ETH, these correlations grow exponentially with
increasing system size. Our results represent a prominent
correction to the ETH for Floquet models with local
interactions. In the same way, we have argued that devia-
tions from the ETH arise in the off-diagonal matrix
elements of nonlocal operators and that these features
grow exponentially with the support of the operator as
opposed to the system size. This result has implications for
operator spreading, and furthermore, it has been noted that
the SFF can be related to the autocorrelation functions of

operator strings [53]. It would be interesting to understand
the connection between these two approaches.
Our results should be compared with calculations within

the diagonal approximation, in which the contributing
many-body orbits are globally paired. In that approxima-
tion, Haar-RFCs behave like Haar-random matrices, and
the non-RMT behavior we have observed in Haar-RFCs
cannot be understood. However, there is a separate mecha-
nism, in addition to the one involving pairing domains, that
leads to non-RMT behavior even from global pairing. To
illustrate this mechanism, we have introduced a generalized
class of RFCs with gates that can be tuned between Haar
randomness and the identity. Away from the Haar case,
these circuits generate, within the diagonal approximation,
a Thouless time growing logarithmically with system size
L. The mechanism behind this, observed in Ref. [25], is
distinct from the domain-wall contributions we have
investigated here, and the effects are subdominant for
ensembles in the vicinity of Haar randomness.
In interacting self-dual models, however, the diagonal

approximation to the average SFF is exact because the
transfer matrix that generates it has leading eigenvalues
equal to unity [30,42,46]. Within our framework, this
implies an infinite domain-wall tension and therefore a
vanishing contribution to the SFF from pairs of many-body
orbits involving domain walls. Additionally, the subleading
eigenvalues of the diagonal propagator in the Ising basis
vanish at the self-dual point [25]. The vanishing of both the
domain-wall tension and the subleading eigenvalues of
the diagonal propagator conspire to give a SFF equal to the
RMT result. Perturbing away from the self-dual point
causes the leading eigenvalues of the transfer matrix to
deviate from unity [42], giving rise to behavior similar to
that observed here in Haar-RFCs, for example, the expo-
nential growth of the SFF with system size at fixed time.
It is natural to ask what other types of correction to the

diagonal approximation can arise in this setting. Important
candidates are provided by the class of interference
effects studied by Sieber and Richter [15]. In systems with
time-reversal symmetry, these are crucial to recover
the exact RMT behavior, while they cancel in systems
without time-reversal symmetry. In time-reversal symmet-
ric Floquet quantum circuits, these interference effects were
studied in Ref. [25], where the authors recover both the
leading and dominant subleading terms in the expansion
K̄ðtÞ ¼ 2t − 2t2=tH þ � � �, which is expected from RMT for
t ≫ tTh. The physical mechanism responsible for Sieber-
Richter corrections is distinct from the pairing domains that
have been our focus. In large systems, these effects appear
in different time regimes, t ≫ tTh and t < tTh, respectively.
Moving beyond the average SFF, we have initiated a

similar investigation into the higher moments (see also
Refs. [68,46]). Our discussion highlights another source of
deviations from RMT, associated with a freedom in the
local pairing of the multiple copies of orbits that appear.
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The presence of domain walls in the pairing of copies of
orbits enhances these higher moments and, consequently,
gives rise to non-Gaussian statistics of the SFF. We have
discussed the connection between these domain walls and
the entanglement membrane [36–38]. Although our trans-
fer matrix approach was restricted here to the first moment
of the SFF, it is clear that one can construct analogous
transfer matrices to generate the higher moments in generic
Floquet models. Such an investigation would connect with
recent work on rare region effects. Weak links, for example,
have been shown to play an important role in entanglement
growth [70]. For the average transfer matrix generating the
first moment of the SFF, the possibility of weak links would
be captured by the decrease of the effective domain-wall
tension at late times.
Although our work has focused on systems without any

locally conserved densities, their introduction is known to
lead to prominent deviations of the SFF from RMT even
within the diagonal approximation [56,58,65]. With a
conserved scalar charge, for example, these deviations
persist up to a Thouless time that scales diffusively,
tTh ∼ L2. This time is far greater than the Thouless time
that we have shown to arise from pairing domains, and it
would be interesting to understand the interplay between
these effects. There is, of course, an outstanding question of
how to apply our ideas to Hamiltonian systems. In that
case, the local conservation of energy surely plays a role.
Our approach to studying the average transfer matrix

involves imposing local orbit pairings on the doubled time
evolution of the system. Fixing different pairings at the two
ends—our twisted boundary conditions—we force domains
walls into the many-body orbit pairing.We have also shown
that the untwisted case, where the same pairing is imposed at
each end, can be thought of as introducing local couplings to
a bath. Applying these same boundary conditions to amany-
body localized phase, we are faced with its destabilization
[71], and this behavior must be reflected in the transfer
matrices. A central question in that context, which we
address elsewhere [72], concerns the behavior of the transfer
matrix eigenvalues on crossing a phase boundary between
an ergodic and a many-body localized phase.
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APPENDIX A: NUMERICAL METHODS

Here, we outline the numerical methods used through-
out the paper. For all numerics, we use a local Hilbert
space dimension q ¼ 2, and for all averages over the

unitary Haar distribution, we use a Monte Carlo method.
We sample this distribution as follows [73]. We first
generate complex matrices A with independent, unit-
normally distributed entries. Performing the QR decom-
position A ¼ QR, we then define the diagonal matrix D
with entries Dii ¼ Rii=jRiij. The unitary matrices U ¼
QD are then Haar random.
In Fig. 3(b) we average the SFF over 104 realizations of

one gate, and in Fig. 3(c), over 106 realizations of the
Floquet operator. Our calculations of the average SFF K̄ðtÞ
in Fig. 5 use exact diagonalization with 106 realizations for
L ≤ 8 and with 105 for L ≥ 9. These calculations were then
used for the analysis in Figs. 10 and 11 in conjunction with
the methods in Appendix F. Our approach for the calcu-
lations in Figs. 13 and 14 is detailed in Appendix B, and the
analysis leading to Fig. 15 is detailed in Appendix F.
In Figs. 20 and 21, we carry out calculations in the

quasienergy domain using exact diagonalization in system
sizes 8 ≤ L ≤ 12 and using a Lanczos method for L ¼ 14.
The Lanczos method is particularly efficient since the
action of the Floquet operator W on many-body states is
specified by its definition in terms of local unitary gates.
Standard algorithms require Hermitian operators, so instead
of working withW, we first determine a set of eigenvectors
jni of 1

2
ðW þW†Þ, with eigenvalues cos θn. There are no

symmetries or degeneracies, so this approach unambigu-
ously determines the eigenstates of W. The sign of θn is
then determined by acting on the eigenvectors with
ð1=2iÞðW −W†Þ. In all system sizes, we sample eigenstates
of W whose quasienergies reside in bins of fixed width
20ð2πÞ=ð214Þ centered on θ ¼ 2πk=50 for k ¼ 0…49. For
each eigenvector jni, we only store its eigenphase θn
and the diagonal matrix elements of a complete set of
local Hermitian operators τx;j [with x ¼ 0…ðL − 1Þ and
j ¼ 0…ðq2 − 1Þ], hnjτx;jjni. Square bins for the sampling
of quasienergies imply triangular bins for the sampling of
quasienergy differences ω ¼ jθn − θmj. Having fixed the
bin widths, the number of circuit realizations we use varies
with L in such a way that we have over 107 contributions to
each Tr½ρxðnÞρxðmÞ� data point in Fig. 21. This number is
based on using 103 realizations of the Floquet operator
for L ¼ 14.

APPENDIX B: MONTE CARLO PAIRING

In Sec. III, we imposed local pairings between forward
and backward histories, and through this, we calculated
Zðs; tÞ, defined in Eq. (39). A similar approach was used in
the calculation of Zðþ;þ; tÞ and Zðþ;−; tÞ in Sec. V. In
this Appendix, we describe the numerical method used to
impose these local pairings of histories.
The local diagonal pairing s is represented in the

product space of forward and backward histories by the
state jsi, defined in Eq. (37). Each of the forward and
backward histories is a vector in a space of dimension q2t,
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so the product space has dimension q4t. Since we are
interested in late-time behavior, it is not feasible to
perform calculations in this space directly. One alterna-
tive, which we do not follow here, is to study the doubled
Floquet operator W ⊗ W�, which acts on a space of
dimension q2L. Our Monte Carlo approach instead only
requires us to work with operators acting on a space of
dimension qL. We calculate properties of the forward and
backward histories independently at first, and impose
pairing through averaging.
Focusing on a fixed Floquet operator W for a chain with

open boundary conditions, we discuss this construction for
Zðs; tÞ. At the time step r, where r runs from 0 to (t − 1),
we act on each of the left-hand and right-hand sites with

independent q × q Haar-random matrices, uðrÞL and uðrÞR ,
respectively. These matrices are also independent for
different steps r. The forward evolution operator for step
r is then

WðrÞ
f ¼ ðuðrÞL ⊗ 1 ⊗ … ⊗ 1 ⊗ uðrÞR ÞW; ðB1Þ

where we act with the identity on each of the central sites,
which gives the sum over forward orbits,

TrWfðtÞ ¼ Tr½Wðt−1Þ
f …Wð0Þ

f �: ðB2Þ

For the backward evolution, at step r, we instead act with

uðrþsLÞ
L on the left-hand site and uðrþsRÞ

R on the right-hand
site, where sL and sR are integers 0…ðt − 1Þ and addition is
defined modulo t. The backward evolution operator for step
r is the conjugate of

WðrÞ
b ¼ ðuðrþsLÞ

L ⊗ 1 ⊗ … ⊗ 1 ⊗ uðrþsRÞ
R ÞW; ðB3Þ

and the sum over backward orbits is

TrW�
bðtÞ ¼ ½Tr½Wðt−1Þ

b …Wð0Þ
b ���: ðB4Þ

The double sum over forward and backward orbits is now
TrWfðtÞTrW�

bðtÞ. If we average this double sum over the

matrices uðrÞL , for example, using

ðuðrÞL Þabðuðr
0Þ

L Þa�b� ¼
1

q
δrr

0
δaa�δbb� ; ðB5Þ

we impose the local diagonal orbit pairing sL at the left

end of the system. Similarly, an average over uðrÞR imposes
the pairing sR at the right end. This procedure gives

ZðsR − sL; tÞ. The configurations of single-site gates uðrÞL;R

used to impose local diagonal pairings are illustrated in
Fig. 27 for Zð0; 2Þ and Zð1; 2Þ.
We use a very similar method to calculate Z2ðþ;þ; tÞ

and Z2ðþ;−; tÞ in Sec. V. These objects each involve two

copies of the sum over forward many-body orbits and two
copies of the sum over backward many-body orbits. The
different single-site Haar-random unitary matrices are then
used to fix local pairings of the multiple copies of the orbits,
and their arrangements are illustrated in Fig. 28.
In the calculations of Zðs; tÞ in Fig. 18, where we

consider individual realizations of the Floquet operator,
we use 104 realizations of the single-site unitary matrices

FIG. 27. Configuration of single-site Haar-random matrices

uðrÞL;R, drawn as open circles, used to impose the local diagonal
pairings at the ends of the system, which define Zðs; tÞ [see
Eq. (38)], here for t ¼ 2. Gray and black circles represent
independent matrices, and furthermore, the matrices at the left-
hand sites and the right-hand sites are independent. Other
conventions are as in Fig. 6. Averaging over the single-site
matrices in the left-hand diagram fixes sL ¼ 0 and sR ¼ 0, so we
find Zð0; 2Þ. In the right-hand diagram, this average fixes sL ¼ 0
and sR ¼ 1, so we find Zð1; 2Þ.

FIG. 28. As in Fig. 27, but here to calculate Z2ðþ;þ; tÞ (left-
hand diagram) and Z2ðþ;−; tÞ (right-hand diagram). Here, t ¼ 1.
The two copies of the forward evolution operator are shown with
light gray, and the two copies of the backward evolution operator
are shown in dark gray. Averaging over the single-site matrices
fixes a “þ” pairing between the copies of the many-body orbits
on the left-hand site in both of the diagrams, and also on the right-
hand site in the left-hand diagram. In the right-hand diagram, the
average imposes a “−” pairing on the right-hand site.
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uðrÞL;R. On the other hand, in the calculations of Z̄ðs; tÞ in
Figs. 13 and 14, and of Z̄2ðþ;þ; tÞ and Z̄2ðþ;−; tÞ in
Fig. 23, we perform a simultaneous Monte Carlo average
over the ensemble of Floquet operators and over the

ensemble of matrices uðrÞL;R. In that case, we use 106

independent realizations.

APPENDIX C: LARGE-q TRANSFER MATRIX

In this Appendix, we discuss the large-q limit of the
average transfer matrix T̄ ðtÞ, defined in Eq. (29) in terms of
Weingarten functions Wgðστ−1Þ and unnormalized permu-
tation states jσ; τi.
The Weingarten functions are maximized for σ¼τ,

taking the value Wgð1Þ¼q−2t in the large-q limit [62,63].
Furthermore, the states jσ; τi which maximize hσ; τjSjσ; τi
are those in which σ ¼ τ are permutations mapping r →
rþ s modulo t. Normalizing these states, we find jsi
defined in Eq. (28). This motivates the large-q approxi-
mation to the average transfer matrix

T̄ ðtÞ ¼
Xt−1
s¼0

jsihsj: ðC1Þ

The different states jsi correspond to the different local
diagonal orbit pairings, so in the large-q limit, the notion of
local orbit pairing has a very sharply defined meaning.
However, note that the states jsi are not orthogonal.
Approximating T̄ ðtÞ by Eq. (C1) at general values of q,
it is straightforward to calculate the SFF, and this approach
reveals a number of interesting features.
Note that Eq. (C1) is the transfer matrix for a clock

model: hsjs0i depends only on js − s0j. We first diagonalize
T̄ ðtÞ by writing it in terms of the orthogonal (but not
normalized) states jωi ¼ ð1= ffiffi

t
p ÞPt−1

s¼0 e
−iωsjsi, where

ω ¼ 2πn=t for integer n ¼ 0…ðt − 1Þ. The result is

T̄ ðtÞ ¼
X2πðt−1Þ=t

ω¼0

jωihωj: ðC2Þ

Within this approximation, the norms of the states jωi are
the eigenvalues of T̄ ðtÞ,

hωjωi ¼ 1

t

X
s;s0

eiωðs−s0Þhsjs0i: ðC3Þ

We will see below that the inner products hsjs0i for s ≠ s0
decay at least as quickly as q−t, so hωjωi approaches unity
at late times. Also, since hsjs0i > 0, the largest eigenvalue
of T̄ ðtÞ is in the ω ¼ 0 sector, as at small q (see, for
example, Fig. 15).
From the eigenvalues hωjωi, we can calculate the

average SFF with periodic boundary conditions

K̄ðtÞ ¼
X2πðt−1Þ=t

ω¼0

hωjωiL: ðC4Þ

With open boundary conditions, on the other hand,

K̄ðtÞ ¼ thω ¼ 0jω ¼ 0iL: ðC5Þ

Because the eigenvalues hωjωi approach unity at late times,
we recover the RMT result K̄ðtÞ ¼ t.
The eigenvalues hωjωi are given by the inner products

hsjs0i through Eq. (C3), and these are

hsjs0i ¼ 1

q2t
X
arbr
a�r b�r

Yt−1
r¼0

δara�rþs
δbrb�rþs

δara�rþs0
δbrb�rþs0

: ðC6Þ

Evaluating the sums on the right-hand side, we see that
hsjs0i is determined by the number of cycles in the
permutation mapping r → rþ js − s0j mod t. Denoting
this cycle number Nt;js−s0j,

h0jsi ¼ q2ðNt;s−tÞ: ðC7Þ

There is clear s dependence in this expression, and there-
fore in the domain-wall tension and Z̄ðs; tÞ [defined in
Eq. (39)], as observed for q ¼ 2 in Fig. 14(a). This case is
to be contrasted with the s-independent domain-wall
tension found in the large-q limit in the model of Ref. [27].
There is an interesting difference between the SFF

at odd and even times. For an even value of t, the largest
inner product h0jsi for s ≠ 0 is h0jt=2i ¼ q−t. On the
other hand, for t an odd multiple of 3, the largest are
h0jt=3i ¼ h0j2t=3i ¼ q−4t=3. The deviations of hωjωi from
unity can be significantly larger for t even than for t odd.
From Eqs. (C4) and (C5), we see that this implies larger
deviations of the SFF from RMT at even times. We have
observed the same behavior at small q in Fig. 5.

APPENDIX D: BLOCK DIAGONALIZATION
OF T̄ ðtÞ

The q4t × q4t matrix T̄ ðtÞ has a cokernel spanned by the
vectors jσ; τi, of which there are ðt!Þ2. For small t, it is then
feasible to calculate T̄ ðtÞ exactly using Eq. (29). In this
Appendix, we set out the technical details required for this
calculation.
The transfer matrix commutes with the full-step

time-translation operators acting on each of the
forward and backward orbits, S2 ⊗ 1 and 1 ⊗ S2, respec-
tively. Consequently, it can be block diagonalized. On the
permutation states jσ; τi of Eq. (28), these translation
operators act as
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S2 ⊗ 1jσ; τi ¼ jσc; τci;
1 ⊗ S2jσ; τi ¼ jc−1σ; c−1τi: ðD1Þ

Here, c is the cyclic permutation mapping r → ðrþ 1Þ
modulo t. We also have Sjσ; τi ¼ jτ; c−1σci.
Starting from a permutation jσ; τi, the states ðS2rþ ⊗

S2r−Þjσ; τi for rþ; r− ¼ 0…ðt − 1Þ define an equivalence
class of maximum cardinality t2: jσ; τi ∼ jμ; νi if jμ; νi ¼
ðS2rþ ⊗ S2r−Þjσ; τi for some rþ; r−. This equivalence
relation partitions the set of ðt!Þ2 permutation states. We
label each equivalence class by one of the permutations
belonging to it, which we refer to as the root. From here on,
the states within the class with root jσ; τi≡ jσ; τ; 0; 0i will
be written

jσ; τ; rþ; r−i ¼ ðS2rþ ⊗ S2r−Þjσ; τ; 0; 0i: ðD2Þ

This representation is not necessarily unique. For example,
j1; 1; rþr−i ¼ j1; 1; rþ þ a; r− þ ai for integer a with
addition defined modulo t. Nevertheless, a simplification
follows from the fact that if jσ; τ; rþ; r−i ¼ jσ; τ; r0þ; r0−i,
then jσ; τ; rþ þ a; r− þ bi ¼ jσ; τ; r0þ þ a; r0− þ bi. This
relation implies that, if we allow rþ, r− to run from
0…ðt − 1Þ, each state within the class appears the same
number of times. We define this number as the multiplicity
of the class, mðσ; τÞ. For example, mð1; 1Þ ¼ t.
With this structure in place, we can separate the sum in

Eq. (29) into separate sums over roots jσ; τ; 0; 0i and the
states within the corresponding classes. The average trans-
fer matrix Eq. (29) involves the outer products Sjσ; τihσ; τj,
and having chosen the roots, we can write

Sjσ; τ; 0; 0i ¼ jσ0; τ0; aþðσ; τÞ; a−ðσ; τÞi; ðD3Þ

where the primed root jσ0; τ0; 0; 0i is defined relative to
jσ; τ; 0; 0i. The integers aþðσ; τÞ; a−ðσ; τÞ depend on our
initial choice of roots. We are now in a position to write
down T̄ ðtÞ in terms of roots and classes. We find

T̄ ¼
X
στ

Wgðστ−1Þ
mðστÞ

X
rþ;r−

jσ0; τ0; r0þ; r0−ihσ; τ; rþ; r−j; ðD4Þ

where in the summand r0� ≡ r� þ a�ðσ; τÞ and σ0; τ0 are
defined via Eq. (D3). Here, we have used the fact that the
Weingarten function depends only on the conjugacy class
of its argument.
To block diagonalize T̄ , we take the Fourier transform

within each class,

jσ; τ;ωþ;ω−i ¼
1

t

Xt−1
rþ;r−¼0

e−iðωþrþþω−r−Þ ðD5Þ

× jσ; τ; rþr−i: ðD6Þ

Inverting this expression, we find, for the block ðωþ;ω−Þ,

T̄ ðωþ;ω−Þ ¼
X
στ

Wgðστ−1Þ
mðστÞ e−iðωþaþþω−a−Þ

×jσ0; τ0;ωþ;ω−ihσ; τ;ωþ;ω−j: ðD7Þ

To find the eigenvalues of T̄ within each sector, we first
construct an orthonormal basis. Note that different sectors
contain different classes. For example, the states
j1; 1;ωþ;ω−i exist only in sectors with ωþ þ ω− ¼ 0.
The general procedure for constructing the basis is as
follows. First, we determine the class inner products,

hσ; τ;ωþ;ω−jσ0; τ0;ωþ;ω−i; ðD8Þ

which can be computed using Eq. (D6), and hμ; νjσ; τi ¼
hμjσihνjτi, where hμjσi ¼ qNðσμ−1Þ, with Nðσμ−1Þ the
number of cycles in the permutation σμ−1. From these
inner products, we seek orthogonal (but not yet normalized)
basis states

jĩi ¼
X
στ

Ui;σ;τjσ; τ;ωþ;ω−i; ðD9Þ

with hĩjj̃i ¼ 0 for i ≠ j. In each sector ðωþ;ω−Þ, we define
a matrix J of class inner products via its components
Jσ;τ;μ;ν ¼ hσ; τ;ωþ;ω−jμ; ν;ωþ;ω−i. Here, σ, τ is a row
index and μ, ν a column index. Then,

hĩjj̃i ¼
X
στ
μν

U�
i;σ;τJσ;τ;μ;νUj;μ;ν; ðD10Þ

so choosing the rows of U to be eigenvectors of J, we have
hĩjj̃i ¼ Λiδij, where Λi is the ith eigenvalue of J. Since
hĩjĩi ≥ 0, we expect Λi ≥ 0. The orthonormal basis is then
defined by jĩi ¼ ffiffiffiffiffi

Λi
p jii. Because jσ; τ;ωþ;ω−i are not all

linearly independent in general, some of these eigenvalues
will vanish: If Λi ¼ 0, then jĩi does not exist.
In terms of the orthonormal basis states jii, we have

jσ; τ;ωþ;ω−i ¼
X
i

½U��i;σ;τ
ffiffiffiffiffi
Λi

p
jii: ðD11Þ

The transfer matrix block ωþ;ω− is then

T̄ ðωþ;ω−Þ¼
X
στij

Wgðστ−1Þ
mðσ;τÞ

ffiffiffiffiffiffiffiffiffiffi
ΛiΛj

p
×e−iðωþaþþω−a−Þ½U��i;σ0;τ0 ½U�j;σ;τjiihjj: ðD12Þ

The different ωþ;ω− blocks of T̄ can be diagonalized
numerically, giving exact results for the eigenvalues and
eigenvectors. The leading eigenvalues computed through
this method, as well as the overlaps of the corresponding
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eigenvectors with the local diagonal states, are shown in
Fig. 15 for t ≤ 5, and we find excellent agreement with our
other approaches.

APPENDIX E: SUBLEADING
EIGENVALUES OF T̄ ðtÞ

In the main text, we have focused on the leading
eigenvalues and eigenvectors of the average transfer matrix
T̄ ðtÞ for q ¼ 2, which control the domain structure in the
orbit pairing. On the other hand, the subleading eigenvalues
of T̄ ðtÞ control the behavior beyond the Heisenberg time
tH. Here, using the results of Appendix D, we examine
some aspects of their distribution.
As we have shown in Fig. 15, the t leading eigenvalues

tend to unity at late times. Therefore, their contribution to
K̄ðtÞ, with periodic boundary conditions, for example, is
simply t at late times. However, for t > tH ¼ qL, the SFF
plateaus at K̄ðtÞ ¼ qL. For t ≤ qL, the subleading eigen-
values appear to do nothing, whereas for t ¼ qL þ δt, their
contribution to K̄ðtÞ is −δt.
In practice, we have access to all of the eigenvalues of

T̄ ðtÞ for t ≤ 5, so for q ¼ 2, we can verify the role of the
subleading eigenvalues across the Heisenberg time (tH ¼ 4

for L ¼ 2). We indeed find K̄ð4Þ ¼ K̄ð5Þ ¼ 4. On the other
hand, for q ≥ 3, tH ≥ 9, so we cannot probe behavior
beyond the Heisenberg time. The eigenvalue distributions
for times t ¼ 4 and t ¼ 5 are shown in Fig. 29, for local
Hilbert space dimensions q ¼ 2, 3, 4. At these times, there
is a clear gap between the magnitudes of the t leading

eigenvalues and the magnitudes of the subleading ones,
which becomes more pronounced with increasing q.

APPENDIX F: L SCALING

In this Appendix, we describe the methods used to
determine the leading eigenvalues of the transfer matrix,
as well as the overlaps of the associated eigenvectors with
the boundary states hBLj, jBRi and the local diagonal
states jωi.
In Sec. III C, we have shown that with open boundary

conditions and large L, the behavior of the leading
eigenvalue of T̄ ðtÞ in the ω ¼ 0 sector, λð0; tÞ, controls
the behavior of the average SFF. Taking the logarithm of
Eq. (34), we have

ln K̄ðtÞ ≃ ðL − 1Þ ln λð0; tÞ
þ lnhBLjω; t;Rihω; t;LjBRi; ðF1Þ

where we have neglected contributions from the subleading
eigenvalues. Fixing t and varying L, we have extracted
ln λð0; tÞ and hBLjω; t;Rihω; t;LjBRi from linear fits to
ln K̄ðtÞ versus (L − 1), and the results are shown in Fig. 10.
In practice, for a given t, we fit only to data with sufficiently
large L that t < 1

2
tH ≡ 1

2
qL. By restricting to L such that t is

well below the Heisenberg time, we avoid contributions to
K̄ðtÞ from subleading eigenvalues. In Fig. 30, we show
ln K̄ðtÞ versusL for various t and find excellent linear scaling.
To determine the leading eigenvalues in theω ≠ 0 sectors,

we study the objects Z̄ðω; tÞ defined in Eq. (41). For
sufficiently large L, Eq. (42) gives

FIG. 29. Distributions of eigenvalues of the average transfer
matrix T̄ ðtÞ for times t ¼ 4 and t ¼ 5, and for q ¼ 2, 3, 4, in the
complex plane. The black points show eigenvalues in sectors with
ωþ ¼ −ω−, and the gray points show eigenvalues in all other
sectors. The t leading eigenvalues, some degenerate, are distrib-
uted around unity.

FIG. 30. Logarithm of the average SFF with open boundary
conditions, ln K̄ðtÞ, versus system length L for various times t
(legend). From linear fits at each time, we extract the leading
eigenvalue in the ω ¼ 0 sector, λð0; tÞ, and the overlap of the
corresponding left and right eigenvectors with the boundary
states, hBLj0; t;Rih0; t;LjBRi.
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ln Z̄ðω; tÞ ≃ ðL − 1Þ ln λðω; tÞ
þ lnhωjω; t;Rihω; t;Ljωi: ðF2Þ

In Figs. 31 and 32, we show ln Z̄ðω; tÞ for the sectors
ω ¼ 0 and ω ¼ 2π=t, respectively, as a function
of L and for times 1 ≤ t ≤ 20. The linear relationship
suggested by Eq. (2) holds very well even for systems of
only L ¼ 3 sites (and so only two gates), and from fits, we
can read off λð0; tÞ and hωjω; t;Rihω; t;Ljωi. The results
are shown in Fig. 15. Fits for other values ofω are of similar
quality.
As we discussed through Secs. III D and III E, the local

diagonal pairings jωi are closely related to the leading
eigenvectors of T̄ ðtÞ. Consequently, we expect that the
contributions of subleading eigenvalues to Eq. (F2) are
suppressed. Moreover, while there is an abrupt change in
the behavior of K̄ðtÞ at t ¼ tH, this is not the case for
Z̄ðω; tÞ. For these reasons, in contrast to Fig. 30, we
include all available data in the fits in Figs. 31 and 32. The
quality of these fits is evidence that the subleading
eigenvalues play only a minor role, if any.

APPENDIX G: HEISENBERG INTERACTIONS

To investigate the generality of our results, in this
section, we consider another Floquet model in its ergodic
phase. We again use a local Hilbert space dimension q ¼ 2,
but whereas in the main text nearest-neighbor interactions
were implemented via 4 × 4 Haar-random unitary matrices
U, here we instead write U ¼ ½B ⊗ B0�eiπJΣ½A ⊗ A0�,
where A; A0; B and B0 are independent 2 × 2 Haar-random
unitary matrices acting on the individual sites, Σ is the two-
site swap operator (essentially a Heisenberg coupling), and
J is a fixed interaction strength. The model is therefore a
kicked spin-half Heisenberg chain with random fields
acting at each site, and as in the Haar-random case, the
Floquet operator does not have time-reversal symmetry.
This model is many-body localized for small J < Jc, as we
have discussed elsewhere [72], but here we restrict our-
selves to J ¼ 1=4 deep in the ergodic phase.
In Fig. 33, we calculate Z̄ðs; tÞ and Z̄ðω; tÞ for L ¼ 8

sites and different values of s and ω. As in Fig. 14(a) of the
main text, Z̄ð0; tÞ approaches unity at late times, whereas
Z̄ðs ≠ 0; tÞ decays to zero, which implies the observed
behavior of Z̄ðω; tÞ. From the scaling of Z̄ðω; tÞwith L, we
then extract the leading eigenvalues of the average transfer
matrix T̄ ðtÞ for this model, as well as the overlaps of the
corresponding eigenvectors with the paired states jωi. The

FIG. 31. Scaling of ln Z̄ðω; tÞ with L in sector ω ¼ 0. The
panels correspond to times t ¼ 1…20 in reading order. From
linear fits, we extract the leading eigenvalue λðω; tÞ and the
overlaps of the corresponding eigenvectors with the local
diagonal states, hωjω; t;Rihω; t;Ljωi, in this sector.

FIG. 32. Scaling of ln Z̄ðω; tÞ with L as in Fig. 31, here for
ω ¼ 2π=t.
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results, shown in Fig. 34, are similar to those for the
original model in Fig. 15.

APPENDIX H: TRANSFER MATRIX FOR
OBSERVABLES

In this appendix, we show how to construct the form
factor that gives information on correlations between the
diagonal matrix elements of a local observable τ,
jTr½τWðtÞ�j2, in terms of the transfer matrices T x;xþ1,
which also generate the SFF. The time-domain approach
here is complementary to the calculations in the quasie-
nergy domain discussed in Sec. IV.
For a q × q operator τ acting only on site x, we define τ̃

acting on the q2t-dimensional space of forward orbits at the
site x via its matrix elements

ha0b0a1…jτ̃ja00b00a01…i ¼ τa0
0
a0

Yt−1
r¼1

δara0rδbrb0r : ðH1Þ

For x even, we redefine τ̃ → Sτ̃ST. We can then write an
expression for Tr½τWðtÞ� analogous to Eqs. (23) or (24).
With periodic boundary conditions and x ¼ 0, for example,

Tr½τWðtÞ� ¼ tr½τ̃SŨ⊗t
0;1…SŨ⊗t

L−1;0ðSTÞL�: ðH2Þ

It will be convenient to symmetrize τ̃, making use of the
cyclic property of the trace Tr½τWðtÞ� ¼Tr½WðrÞτWðt− rÞ�.
We therefore introduce

τ̃ðtÞ ¼ 1

t

Xt−1
r¼0

S2rτ̃ðSTÞ2r; ðH3Þ

and it can be straightforwardly verified that the right-
hand side of Eq. (H2) is unchanged by the replacement
of τ̃ by τ̃ðtÞ.
From Eq. (H2) and its conjugate, the form factor

jTr½τWðtÞ�j2 can be constructed as

jTr½τWðtÞ�j2¼ tr½ðτ̃ðtÞ⊗ ½τ̃ðtÞ��ÞT 0;1…T L−1;0ðSTÞL�; ðH4Þ
where we have used the symmetrized operator Eq. (H3).
The appearances of the operator τ in a circuit, and in a
product of transfer matrices, are illustrated in Fig. 35. The
ensemble average of Eq. (H4) is

jTr½τWðtÞ�j2¼ tr½ðτ̃ðtÞ⊗ ½τ̃ðtÞ��ÞT̄ LðSTÞL�
¼
X

ωþω−α

λLðωþ;ω−;α; tÞe−iðL=2Þðωþþω−Þ

× hωþ;ω−;αL; tjðτ̃ðtÞ⊗ ½τ̃ðtÞ��Þjωþ;ω−;αR; ti;
ðH5Þ

where, in the second line, we have used the spectral
decomposition of the average transfer matrix. This result
highlights the exponential growth with system length of
correlations between the diagonal matrix elements of local
observables.
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