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Two widely used but distinct approaches to the dynamics of open quantum systems are the
Nakajima-Zwanzig and time-convolutionless quantum master equation, respectively. Although both
describe identical quantum evolutions with strong memory effects, the first uses a time-nonlocal memory
kernel K, whereas the second achieves the same using a time-local generator G. Here we show that the

two are connected by a simple yet general fixed-point relation: G ¼ K̂½G�. This allows one to extract
nontrivial relations between the two completely different ways of computing the time evolution and
combine their strengths. We first discuss the stationary generator, which enables a Markov approximation
that is both nonperturbative and completely positive for a large class of evolutions. We show that this
generator is not equal to the low-frequency limit of the memory kernel, but additionally “samples” it
at nonzero characteristic frequencies. This clarifies the subtle roles of frequency dependence and semigroup
factorization in existing Markov approximation strategies. Second, we prove that the fixed-point equation
sums up the time-domain gradient or Moyal expansion for the time-nonlocal quantum master
equation, providing nonperturbative insight into the generation of memory effects. Finally, we show that
the fixed-point relation enables a direct iterative numerical computation of both the stationary and
the transient generator from a given memory kernel. For the transient generator this produces non-
semigroup approximations which are constrained to be both initially and asymptotically accurate at each
iteration step.

DOI: 10.1103/PhysRevX.11.021041 Subject Areas: Quantum Information,
Statistical Physics

I. INTRODUCTION

It is well known that the dynamics ρðt0Þ → ρðtÞ of the
state of an open quantum system initially uncorrelated with
its environment can be described equivalently by two exact
but fundamentally different quantum master equations
(QMEs). On the one hand, the Nakajima-Zwanzig [1,2]
time-nonlocal QME,

d
dt

ρðtÞ ¼ −i
Z

t

t0

dsKðt; sÞρðsÞ; ð1Þ

features a memory kernel Kðt; sÞ with separate depen-
dence on all intermediate times s ∈ ½t0; t�. Here memory is
simply understood as retardation. On the other hand, the
time-convolutionless time-local QME of Tokuyama and
Mori [3,4],

d
dt

ρðtÞ ¼ −iGðt; t0ÞρðtÞ; ð2Þ

has a generator Gðt; t0Þ, which incorporates the memory
integral into its dependence on the current time t and the
initial time t0. Both equations are widely used in the areas
of quantum transport, chemical kinetics, quantum optics,
and quantum-information theory. In the absence of cou-
pling to the environment and external driving, there is a
simple relation between the two, Kðt − sÞ ¼ Lδ̄ðt − sÞ is
time local [5] while Gðt − t0Þ ¼ L is time independent,
such that both reproduce the Liouville–von Neumann
equation ðd=dtÞρðtÞ ¼ −i½H; ρðtÞ�≕ − iLρðtÞ for a closed
system. In some well-understood cases, for example, in the
limit of weak coupling [6], high temperature [7,8], and
limits of singular coupling [9–11], this simple relation
continues to hold, since the Liouvillian L is merely
extended by a constant term accounting for dissipative
effects, Kðt − sÞ ¼ Gδ̄ðt − sÞ with G ¼ Lþ iD. In these
cases the time-local QME takes the celebrated Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) [12,13] form.
We are interested instead in the generic relation between G
and K beyond these simple cases, where strong coupling,
low temperature, driving and nonequilibrium nontrivially
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compete and both dissipation and memory effects are
strong. Not only are these phenomena important for
understanding the disturbance of quantum devices in
applications, it is also of intrinsic interest to study them
in the highly controlled engineered structures available
nowadays [14–16].
An immediate question is why one would bother to

convert between two equivalent QMEs, if instead one could
just solve the equation one has in hand for ρðtÞ. Careful
consideration of this question supports a complementary
view [17–19]. Typically K is easier to compute and
advanced methods have been developed to obtain it
analytically [20,21] and numerically [22,23] with success-
ful applications to nontrivial models [24–27] covering
transient and stationary dynamics, as well as counting
statistics [28–30] of observables. The direct computation of
G using the time-convolutionless formalism [6,31–35] is
typically more challenging.
However, when solving the time-nonlocal equation (1),

taking the frequency dependence of the memory kernel into
account (retardation) may in fact lead one to first construct
a corresponding time-local equation (2) [28,36–38], which
is subsequently solved. Moreover, the generator G by itself
is of particular interest: it allows one to infer important
properties of the propagator,

ρðtÞ ¼ Πðt; t0Þρðt0Þ; ð3Þ

which are very difficult to see otherwise. For example, the
complete positivity (CP) of the propagator Πðt; t0Þ, funda-
mental to its physical legitimacy, may in many situations
beyond the GKSL case be inferred [39–41] explicitly from
a time-dependent canonical form [42] of G. This is
important for constructing both well-defined phenomeno-
logical QMEs [17,18] and microscopic models that obey
prescribed QMEs [43]. Related to this is that G often has a
clear operational meaning in terms of quantum jumps,
which makes it advantageous for stochastic simulations.
For the same reason, it is often employed to construct noise
models in quantum-information theory, an issue of ever-
increasing importance. Despite continued efforts, the above
is much more complicated to achieve when using K, via
either its microscopic coupling expansion [44] or a legiti-
mate-pair decomposition [45,46] encompassing broad
classes of models (semi-Markov [47,48], collision models
[49], and beyond [50,51]). A further key property that can
be inferred directly from G is its so-called divisibility using
its canonical jump rates [39,41,52] and jump operators
[53,54]. Again, this seems prohibitively difficult when
using K [55]. Divisibility is not only of key importance
for the precise characterization of quantum non-
Markovianity, see Sec. VI, a concept much broader [56]
than memory understood as retardation. It also features in
quantum coding [57,58] and tomography [59], key dis-
tribution [60], teleportation [61], and work extraction by

erasure [62]; see Sec. VI. Finally, the time-local nature of
Eq. (2) featuring G is crucial to access geometric [63–65]
and possible topological [66,67] phases in open-system
evolution with applications to pumping, full-counting
statistics [68], fluctuation relations [69], entropy produc-
tion [70,71], and quantum thermodynamics [72–74]. Thus,
although in principle Eqs. (1) and (2) are obviously
equivalent, there are many reasons for explicitly under-
standing their general relation, motivating recent work [75].
The relation between G and K has already been inves-

tigated for time-translational systems in the stationary limit
t0 → −∞. References [28,37,38] discussed this using a
memory expansion, i.e., a gradient or Moyal expansion
[76–79] in the time domain applied to the density operator.
Such expansions are well developed [80,81] for Wigner and
Green functions [78,79] and time-dependent density-func-
tional theory [82,83]. The mentioned works indicated that
the naive physical intuition that the long-time limit of
QME (2) is equivalent to the low-frequency approximation
to QME (1) is wrong: The stationary generator Gð∞Þ ¼
limt→∞ GðtÞ does not coincide with the zero-frequency limit
K̂ð0Þ ¼ limω→0 K̂ðωÞ of the Laplace-transformed memory
kernel:

K̂ðωÞ ¼ lim
t0→−∞

Z
t

t0

dtKðt − t0Þeiωðt−t0Þ: ð4Þ

As a result, “natural” Markovian semigroup approxima-
tions set up within the approach based on Eqs. (1) and (2),
using the exact K̂ð0Þ and Gð∞Þ, respectively, turn out to be
distinct. This difference has proven to be important in
perturbative studies beyond weak coupling [28,37,38], and
is even crucial for measurement backaction [84,85]. From
these studies the difference between K̂ð0Þ and Gð∞Þ
appears to be very complicated. This also ties in with
the broader [56] discussion of non-Markovianity, where the
interesting connection between divisibility, statistical dis-
crimination [54,86,87], and information flow [41,52–
54,88–90] continues to develop [19,91].
A further important step was provided by the proof in

Ref. [35] that K̂ð0Þ and Gð∞Þ, despite their difference, both
have the exact stationary state as a right zero eigenvector.
However, this work was restricted to master equations for
probabilities and also left unanswered the relation between
the full eigenspectra of Gð∞Þ and K̂ðωÞ, which is one of the
results established in the present paper. Such relations are
of interest since these eigenspectra enter advanced calcu-
lations [24,26,27] and provide insight into the time evo-
lution [92], just as the eigenspectra of Hamiltonians do for
the evolution of closed systems. Similar exact relations
among the eigenvectors of the memory kernel K proved to
be very useful for simplifying the complicated calculations
for strongly coupled, strongly interacting quantum dots far
out of equilibrium [7,93,94].
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Thus, it is a pressing question of both fundamental
and practical interest how the time-local generator is related
to the time-nonlocal memory kernel for a general finite-
dimensional open quantum system. The central result of
this paper, presented in Sec. II, is that this relation takes the
surprisingly simple form of a functional fixed-point equa-
tion Gðt; t0Þ ¼ K̂½G�ðt; t0Þ. Importantly, it applies to tran-
sient dynamics and allows for arbitrary driving.
In Sec. III we first explore the implications for time-

translational systems in the long-time limit, where the
stationary generator becomes the fixed point of a simpler
function of superoperators, Gð∞Þ ¼ K̂(Gð∞Þ). This leads
to the key insight that Gð∞Þ “samples” the memory kernel
K̂ðωÞ at a finite number of frequencies. This completely
defines Gð∞Þ and significantly simplifies the connection
between the mentioned distinct Markovian approximations.
The sampled frequencies are shown to be exact time-
evolution poles, well known from the Laplace resolvent
technique [20,21,24] for solving the time-nonlocal equa-
tion (1), an entirely different procedure. The transformation
connecting eigenvectors of Gð∞Þ and K̂ðωÞ is found to
be related to so-called initial-slip correction procedures
[95–99]. We show that both the stationary and the transient
fixed-point equation are self-consistent expressions for
the solution of the memory expansion discussed in
Refs. [28,37,38] by explicitly constructing and summing
this series.
In Sec. IV we show that the fixed-point equation can

be turned into two separate iterative numerical approaches
for obtaining the transient and the stationary generator,
respectively, from a given memory kernel. This provides a
new starting point for hybrid approaches in which the
results of advanced time-nonlocal calculations [21–24]
can be plugged into the time-local formalisms directly,
bypassing the solution Πðt; t0Þ that ties Eqs. (1) and (2)
together. Reference [23] numerically addressed the
converse problem of extracting K from an evolution
generated by G, which analytically seems to be more
complicated.
Finally, in Sec. V we explicitly illustrate the derived

relation between K and G on two nonperturbative exam-
ples. For the exactly solvable dissipative Jaynes-Cummings
model [6,17,100,101] we show how it deals with nontrivial
singularities of Gðt; t0Þ in time. The fermionic resonant
level model [94,102] with its richer time-dependent alge-
braic structure further showcases the nontrivial connection
between a time-local and -nonlocal description.
We summarize in Sec. VI and outline how our result

may enable progress in various directions. Throughout the
paper, we set ℏ ¼ kB ¼ 1.

II. FUNCTIONAL FIXED-POINT EQUATION

By definition the generator Gðt; t0Þ and the memory
kernel Kðt; sÞ are related by the fact that they produce the

same dynamics Πðt; t0Þ [Eq. (3)]. To derive a direct relation
we start from the time-local QME for the propagator,

d
dt

Πðt; t0Þ ¼ −iGðt; t0ÞΠðt; t0Þ; ð5Þ

with initial condition given by identity, Πðt0; t0Þ ¼ I . The
generator can be obtained from the above equation assum-
ing the inverse propagator exists [103–106],

−iGðt; t0Þ ¼
�
d
dt

Πðt; t0Þ
�
Πðt; t0Þ−1; ð6Þ

postponing discussion of singular time points to Sec. VA.
The equivalent time-nonlocal QME,

d
dt

Πðt; t0Þ ¼ −i
Z

t

t0

dsKðt; sÞΠðs; t0Þ; ð7Þ

when inserted into Eq. (6), gives

Gðt; t0Þ ¼
Z

t

t0

dsKðt; sÞΠðs; t0ÞΠðt; t0Þ−1: ð8Þ

The key step to connect these two approaches originating
in statistical physics [1–4] is to recognize the expression
for the divisor Πðt; sjt0Þ ≔ Πðt; t0ÞΠðs; t0Þ−1. This quantity
is well known from the quantum-information approach
to open-system dynamics, which focuses on complete
positivity and divisibility properties [12,13,39,41,52]. The
divisor describes the propagation ρðtÞ ¼ Πðt; sjt0Þρðsjt0Þ
starting from a state at an intermediate time s ∈ ½t0; t�
produced by the same evolution, ρðsjt0Þ ¼ Πðs; t0Þρðt0Þ.
This results in the parametric dependence on t0. The
divisor obeys the same time-local QME, dΠðt; sjt0Þ=dt ¼
−iGðt; t0ÞΠðt; sjt0Þ, with initial condition Πðs; sjt0Þ ¼ I
for all s ∈ ½t0; t�. The inverse of its formal solution,

Πðs; tjt0Þ ¼ ½Πðt; sjt0Þ�−1 ¼ T →e
i
R

t

s
dτGðτ;t0Þ; ð9Þ

for t0 ≤ s ≤ t, involves anti–time ordering denoted by T →.
Inserted into Eq. (8), we find the main result of the paper:

Gðt; t0Þ ¼ K̂½G�ðt; t0Þ: ð10Þ

The time-local generator is a fixed point of a functional
which maps a superoperator function of time Xðt; t0Þ to
another such function:

K̂½X�ðt; t0Þ ≔
Z

t

t0

dsKðt; sÞT →e
i
R

t

s
dτXðτ;t0Þ: ð11Þ

This functional is closely related to the ordinary Laplace
transform (4) of the memory kernel Kðt − sÞ, to which it
reduces for constant c-number functions of time X ¼ ωI
in the limit t − t0 → ∞ for time-translational systems.
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We already note that the functional K̂½X� may have fixed
points other than X ¼ G. The nonuniqueness and stability
of fixed points are further discussed in Sec. V for two
specific models.
In Fig. 1 we graphically outline this derivation. This

highlights that time-local propagation with G needs to be
consistent with time-locally evolving backward with G and
time-nonlocally propagating forward with the memory
kernel. We stress that Eq. (10) is a transformation between
two complementary descriptions of the same dynamics. It
thus also applies to approximate dynamics Π0 generated
equivalently by some K0 and G0, and thus has broad
applicability. In the present paper we aim to highlight the
intrinsic functioning of the fixed-point relation and therefore
focus on its implications for exactly solvable dynamics.
Equation (10) is explicitly consistent with trace preser-

vation, a fundamental property of the dynamics. Because of
the ordering in Eq. (11), where the kernel K stands to the
left of the exponential, the trace-preservation property of
the kernel, TrKðt; sÞ • ¼ 0, implies the corresponding
property of the generator, TrGðt; t0Þ • ¼ 0, where • denotes
some operator argument. In fact, for any superoperator
function Xðt; t0Þ, one has

TrK̂½X�ðt; t0Þ ¼ 0: ð12Þ
Moreover, the connection between the Hermicity-
preservation property of the kernel and the generator can
also be easily checked: Since −iKðtÞA ¼ ½−iKðtÞA†�† ¼
H½−iKðtÞ�HA for any operator A, where HA ≔ A† is an
antilinear superoperator, we have

Hf−iK̂½X�ðt; t0ÞgH ¼ −iK̂½−HXH�ðt; t0Þ: ð13Þ

III. STATIONARY FIXED-POINT EQUATION

We now focus on the implications for time-translational
systems in the stationary limit and consider the case
where the generator converges to a constant superoperator
Gð∞Þ ¼ limt0→−∞ Gðt − t0Þ. Then the idea is that at large
t − t0 we can replace [107] the time-ordered exponential in
Eq. (11) by an exponential function:

K̂½G�ðt − t0Þ ¼
Z

t

t0

dsKðt − sÞT →e
i
R

t

s
dτGðτ−t0Þ ð14aÞ

≈
Z

t

−∞
dsKðt − sÞeiðt−sÞGð∞Þ: ð14bÞ

Here we use that typically either the generator has already
become stationary, Gðτ − t0Þ ≈ Gð∞Þ (τ ≥ s ≫ t0), or the
memory kernel has already decayed (t ≫ s), thus sup-
pressing the expression. Hence we obtain the stationary
fixed-point equation:

Gð∞Þ ¼ K̂(Gð∞Þ): ð15Þ
It features instead of Eq. (11) the much simpler extension of
the Laplace transform (4) with frequency ω replaced by the
time-constant superoperator X:

K̂ðXÞ ¼
Z

∞

0

dsKðsÞeisX: ð16Þ

(a)

(b)

(d)(c)

FIG. 1. Graphical representation of the derivation of the functional fixed-point equation (10). (a) Equivalent expressions for
dΠðt; t0Þ=dt as given by the two QMEs. (b) Insertion of canceling backward and forward propagation to initial time t0. (c) Evolution
T ← expfR t

t0
dτ½−iGðτ; t0Þ�g ¼ limN→∞½I − iGðt1ÞΔt1�…½I − iGðtNÞΔtN � expressed as product of infinitesimal steps for the sake of

illustration. (d) Backward propagation to memory time s expressed in terms of G using the divisor. The self-consistency expressed by the
functional fixed-point equation (10) arises from backward propagation that is needed to enforce the time-local structure of QME (2) onto
the QME (1). For time-translational systems in the stationary limit the generator becomes Gðτ; t0Þ → Gð∞Þ and literally takes on the role
of the complex frequency at which K̂ðωÞ is sampled in Eq. (15).
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A. Exact sampling relation between spectral
decompositions

The stationary fixed-point equation (15) immediately
makes clear that in general the stationary generator Gð∞Þ
is not the low-frequency limit of the memory kernel,
K̂ð0Þ ¼ limω→i0þ K̂ðωÞ. We now make precise which parts
of the frequency dependence of the memory kernel K̂ðωÞ
matter in the stationary limit. To this end, assume that
one can diagonalize the stationary generator, Gð∞Þ ¼P

i gijgiÞðḡij, and denote the distinct left and right
eigenvectors to the same eigenvalue gi by ðḡij and jgiÞ,
respectively, which satisfy the Hilbert-Schmidt [108] bio-
rthogonality relation ðḡijgi0 Þ ¼ δii0 . Insertion into Eq. (15)
gives Gð∞Þ ¼ P

i K̂ðgiÞjgiÞðḡij with the ordinary Laplace
transform (4) evaluated at ω ¼ gi. Focusing on nondegen-
erate eigenvalues, we therefore have

K̂ðgiÞjgiÞ ¼ Gð∞ÞjgiÞ ¼ gijgiÞ: ð17Þ

Diagonalizing the kernel after Laplace transforming,
K̂ðωÞ ¼ P

j kjðωÞjkjðωÞÞðk̄jðωÞj, implies that at desig-
nated frequencies ω ¼ gi one of its eigenvalues, labeled
j ¼ fi, must coincide with an eigenvalue gi of the sta-
tionary generator Gð∞Þ:

kfiðgiÞ ¼ gi: ð18Þ

The right eigenvectors can then be normalized to coincide:

jkfiðgiÞÞ ¼ jgiÞ: ð19Þ

Importantly, the eigenvectors of the kernel jkjðωÞÞ can also
contain poles, which have an important impact on the
evolution, as illustrated explicitly in Sec. V B. However
since Gð∞Þ was assumed to be finite, it cannot sample any
of these eigenvector poles of the kernel.
We note that the left eigenvectors ðḡij and ðk̄fiðgiÞj in

general differ with one important exception, labeled by
i ¼ 0: From the trace-preservation property of the dynam-
ics [see Eq. (12)] it follows that both Gð∞Þ and K̂ðωÞ
at every frequency ω have the left zero eigenvector
ð1j ¼ Tr •, the trace functional. The corresponding zero
eigenvalue is denoted by g0 ¼ k0ðωÞ ¼ 0 for all ω labeling
f0 ¼ 0. Thus, a nontrivial consequence of Eq. (17) is that
the associated right zero eigenvectors of Gð∞Þ and K̂ð0Þ,
respectively, coincide with the stationary state:

jg0Þ ¼ jk0ð0ÞÞ ¼ jρð∞ÞÞ: ð20Þ

This generalizes the result of Ref. [35], which proved this
statement for probability vectors evolving with a time-local
master equation (i.e., for probabilities only).
We summarize the key result of this section: For Hilbert-

space dimension d the stationary time-local generator,

with its finite set of eigenvalues g0;…; gd2−1, can be
written as

Gð∞Þ ¼
X
i

kfiðgiÞjkfiðgiÞÞðḡij: ð21aÞ

It samples one term of the Laplace-transformed memory
kernel at each of the frequencies ω ¼ g0;…; gd2−1:

K̂ðgiÞ ¼ kfiðgiÞjkfiðgiÞÞðk̄fiðgiÞj
þ
X
j≠fi

kjðgiÞjkjðgiÞÞðk̄jðgiÞj: ð21bÞ

From each sampled frequency only a single right eigen-
vector jkfiðgiÞÞ for one specific eigenvalue satisfying
kfiðgiÞ ¼ gi is needed to construct Gð∞Þ. Importantly, its
left eigenvectors ðḡij are determined by the right ones
through the biorthogonality constraint.
Anticipating later discussion, we note that some intuitive

ideas turn out to be incorrect. First, the sampling formula
shows that in general nonzero frequencies of K̂ðωÞ may
matter at stationarity. It thus makes precise that “memory,”
often understood as retardation or frequency dependence
of the kernel [28,37,38,84,85], is in general not the
same as memory defined by a Markovian semigroup
[12,13,39,41,52], in which Gð∞Þ naturally appears, as
we discuss later. Second, the sampled frequencies gi need
not be the eigenvalues with the smallest decay rates
[−ImkjðωpÞ], as illustrated in Sec. V.
The sampling formula (21) implies that the analytical

calculation of the typically more complicated quantity
Gð∞Þ can in principle be reduced to the calculation of
K̂ðωÞ at just d2 specific frequencies. We show in Sec. IVA
how Gð∞Þ can be iteratively computed from K̂ðωÞ, thus
determining which frequencies are actually sampled. It is
therefore not necessary to compute the transient gene-
rator GðtÞ in order to compute Gð∞Þ. This is a significant
advance since K̂ can be approximated accurately for
complicated many-body dynamics using well-developed
techniques [20,21,24,26,27]. As mentioned, our relations
remain valid when dealing with such approximate kernels:
they are simply a way to change from a time-nonlocal to a
time-local representation.

B. Exact time-evolution poles

We now compare the sampling relation (21) with the
formal exact solution for time-translational systems
obtained by the resolvent method: Laplace transforming
the time-nonlocal QME (1) to obtain the “Green’s function”
or resolvent Π̂ðωÞ ¼ i=½ω − K̂ðωÞ�, and transforming back
by integration along a clockwise oriented contour C closed
in the lower half of the complex plane, we get:
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Πðt − t0Þ ¼
Z
C

dω
2π

Π̂ðωÞe−iωðt−t0Þ

¼ −i
X
p

Res½Π̂ðωpÞe−iωpðt−t0Þ�

þ
Z
bc

dω
2π

Π̂ðωÞe−iωðt−t0Þ: ð22Þ

Here Res½fðωpÞ� is the residue at pole ωp and “bc”
indicates integration over possible branch cut contributions
of Π̂ðωÞ; see Refs. [20,21,24,109] for details and applica-
tions. The eigenvalue poles of Π̂ðωÞ solve the equation
ωp ¼ kjðωpÞ for some eigenvalue of K̂. By our result (18)
the eigenvalues of Gð∞Þ are guaranteed to be included
among these eigenvalue poles of Π̂ðωÞ. Thus, our stationary
fixed-point equation (15) reveals how the time-local
approach keeps track of these characteristic frequencies
of the evolution, which are explicit in the time-nonlocal
approach.
In other words, for time-translational systems the rela-

tion Gð∞Þ ¼ K̂(Gð∞Þ) establishes that the time-local
generator Gð∞Þ is a superoperator-valued characteristic
“frequency” of the evolution. To be sure, there are further
contributions from nonsampled poles and branch cuts,
which can be infinitely many and may also involve the
eigenvectors [21]. These are encoded in the transient fixed-
point equation (10) through the anti-time-ordered integra-
tion (11). Thus, the eigenvalues of Gð∞Þ generally do not
exhaust all the eigenvalue poles of Π̂ðωÞ. Which of the
eigenvalues of K̂ðωÞ satisfying ωp ¼ kjðωpÞ are eigenval-
ues of Gð∞Þ is not a priori clear, as discussed above.
Our result (21a) now reveals that the first contribution to

the exact dynamics (22) actually contains a Markovian
semigroup exponential:

Πðt − t0Þ ¼ e−iðt−t0ÞGð∞ÞS þ � � � ; ð23Þ

where center dots denote the abovementioned nonsampled
contributions. If Gð∞Þ exists, one might expect that the
evolution for long times will eventually follow this semi-
group dynamics. However, this exponential term is already
modified by the time-constant superoperator,

S ¼
X
i

1

1 − ∂kfi∂ω ðgiÞ
jgiÞðk̄fiðgiÞj; ð24Þ

obtained from the residues [110] in Eq. (22) using Eq. (19).
The superoperator S is of practical importance as it relates
to the so-called slippage of the initial condition, a well-
known procedure for improving Markovian approxima-
tions [95–99]; see discussion in Sec. VI.

C. Nonperturbative semigroup approximations

We can now address the puzzling issue regarding the
more basic approximation strategy that we mentioned in the
Introduction: The equivalent QMEs (1) and (2) “naturally”
lead to semigroup approximations which differ, even when
constructed from the exact G and K.
Stationary generator Gð∞Þ.—Assuming that the gen-

erator converges to a stationary value Gð∞Þ we can
try to approximate the time-local QME (2) for large t
by replacing the generator by its constant stationary
value, ðd=dtÞρðtÞ ≈ −iGð∞ÞρðtÞ. This idea underlies
Refs. [37,38] and motivated the direct calculation of
Gð∞Þ by a series expansion in the coupling in Ref. [35].
The resulting approximate dynamics,

Πðt; t0Þ ≈ e−iðt−t0ÞGð∞Þ ð25aÞ

¼
X
i

e−igiðt−t0ÞjgiÞðḡij; ð25bÞ

has an interesting feature: There are many evolutions for
which the asymptotic generator Gð∞Þ has a GKSL form
[12,13] with non-negative jump rates, which guarantees that
the approximation is completely positive in addition to trace
preserving.Nonperturbative approximations preserving both
these properties are notoriously difficult to construct, espe-
cially starting from microscopic models [44,111–113]. Here
the class of evolutions goes beyond semigroups by including
all CP-divisible evolutions, but also allowing for certain non-
CP-divisible ones [114].
Our sampling result (21) allows this to be compared with a

corresponding approximation in the Laplace resolvent
approach to the time-nonlocal QME: if one keeps the first
termofEq. (22) and selects only the fixed-point polesω ¼ gi,
then one obtains the semigroup approximation together with
the initial-slip correction S as in Eq. (23). Because of the
automatic inclusion of S, this approximation is neither a
semigroup nor a CP map around the initial time t0 [94]. This
may give faster convergence but also fail dramatically; see
discussion in Sec. VI. In contrast, the semigroup approxima-
tion (25) does not suffer from such problems.
Low-frequency memory kernel K̂ð0Þ.—Starting instead

from the time-nonlocal QME (1), one may argue that for
slowly varying dynamics only the low-frequency part of the
memory kernel matters. Replacing ρðsÞ → ρðtÞ in the
integrand and taking t0 → −∞, one then obtains _ρðtÞ ≈
−iK̂ð0ÞρðtÞ with the approximate solution:

Πðt; t0Þ ≈ e−iðt−t0ÞK̂ð0Þ ð26aÞ

¼
X
j

e−ikjð0Þðt−t0Þjkjð0ÞÞðk̄jð0Þj: ð26bÞ

In the resolvent approach this approximation is equivalent
to neglecting all frequency dependence of the memory
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kernel, Π̂ðωÞ ≈ i=½ω − K̂ð0Þ�, leaving only d2 eigenvalue
poles ωj ¼ kjð0Þ. In contrast to the case of Gð∞Þ we know
of no general conditions that guarantee that K̂ð0Þ generates
a completely positive evolution for some broad class of
nontrivial models. Even when it is known that Gð∞Þ has
non-negative GKSL coefficients—ensuring Eq. (25) is
completely positive—one still has to explicitly check that
the same holds for K̂ð0Þ. Although both approximations
(25) and (26) nonperturbatively account for oscillation
frequencies and decay rates in a different way, it follows
from the sampling result (19) that both converge to the
exact stationary state. In Sec. V we illustrate their differ-
ence. Note, however, that Gð∞Þ ¼ K̂ð0Þ is possible also for
a nonsemigroup evolution [Eq. (53)].

D. Summing the memory expansion

Whereas the argument leading to Eq. (26) may be
justified in the weak coupling limit, it has been noted
that when computing K̂ to higher order in the system-
environment coupling this becomes inconsistent [36–38,
116]. In terms of Eq. (8) this means that one must not only
expand the kernelKðt − sÞ in the memory time s relative to
the current time t, but simultaneously expand Πðs; t0Þ ¼
Πðt; t0Þ − ðt − sÞ∂Πðt; t0Þ=∂tþ � � � under the memory
integral. This way Ref. [37] obtained a stationary time-
local QME with an approximate generator:

Gð∞Þ ≈ K̂ð0Þ þ ∂K̂
∂ω ð0ÞK̂ð0Þ: ð27Þ

When computing K̂ð0Þ to second order in, e.g., a tunnel
coupling, the first-order contributions to the second term
are comparable [37] and may lead to cancellations that are
necessary to respect complete positivity [84,85].
One may roughly understand Eq. (27) as follows: to

obtain Gð∞Þ one linearizes the frequency dependence of
the memory kernel K̂ðωÞ ≈ K̂ð0Þ þ ½∂K̂=∂ωð0Þ�ω and
evaluates it at the characteristic frequency ω ¼ Gð∞Þ ≈
K̂ð0Þ of the system, which in first approximation is the low-
frequency kernel itself. This tentative picture is made
rigorous by our fixed-point equation (15), where the
frequency is likewise replaced by a superoperator, but in
a self-consistent way. In Ref. [38] the approximation (27)
was generalized to higher orders by applying partial
integrations of the time-nonlocal QME (2), which can be
shown to be equivalent to further continuing the memory
expansion of Ref. [37]. In the Appendix C we show how
this gradient expansion can be expressed in Moyal brackets
[76,77] with respect to time similar to that used in Green’s
function techniques [78,79]. It has also recently been used
to combine QMEs with time-dependent density-functional
theory [82,83].
Thus, starting from the time-nonlocal QME one is led to

a time-local QME by a memory expansion (26). Another

key result of this paper is that this series can in fact be
summed up to all orders as we show in Appendix B.
One finds that the constant generator that accounts for all
memory terms of the stationary time-nonlocal QME is
the stationary time-local generator obeying Gð∞Þ ¼
K̂(Gð∞Þ), our stationary fixed-point equation (15). This
means that our sampling formula (21) is the nonperturba-
tive result of this memory expansion: The infinite sum of
memory terms—featuring all derivatives of K̂ðωÞ at zero
frequency—can be condensed into a finite sum of con-
tributions of K̂ðωÞ at just d2 finite frequencies ω ¼ gi.
Importantly, the memory expansion can even be summed

up for the full transient dynamics, thereby recovering
Gðt; t0Þ ¼ K̂½G�ðt; t0Þ, the functional fixed-point equa-
tion (10) (Appendix B). By making use of the divisor
we can give a closed formula for terms of arbitrary order
[Eqs. (B5) and (B8)]. Altogether, this shows that Eqs. (10)
and (15) are very useful for generating gradient expansions
in time when given a memory kernel K. We next explore a
different approach where one solves for the transient
Gðt − t0Þ, giving approximate evolutions which are not
semigroups as Eq. (25) and (26). Also there both Gð∞Þ and
K̂ð0Þ play an interesting role.

IV. ITERATIVE CONSTRUCTION OF
GENERATOR FROM MEMORY KERNEL

Our final key result is that the fixed-point equation may
be turned into a computational tool to obtain G from a given
memory kernel K computed using a method of choice. We
focus on time-translational systems—setting t0 ¼ 0—and
the ideal situation where K has been computed exactly.

A. Iteration for stationary generator

The simplest scenario is where one iteratively solves
Eq. (15) to find Gð∞Þ directly from KðtÞ or K̂ðωÞ, i.e.,
without considering the transient evolution ΠðtÞ or the
transient generator GðtÞ. Using the converged result one
may then set up the nonperturbative semigroup (25) to
approximate the full evolution ΠðtÞ.
First, consider the low-frequency kernel as an initial

approximation to the generator, Gð0Þð∞Þ ¼ K̂ð0Þ, as in
Eq. (27). If the exact dynamics is a semigroup, KðtÞ ¼
K̂ð0Þδ̄ðtÞ and GðtÞ ¼ K̂ð0Þ, then this already is the fixed
point since Gð1Þð∞Þ ¼ K̂(K̂ð0Þ) ¼ K̂ð0Þ. This may also
happen for nonsemigroup evolutions [Eq. (54)]. In general,
further approximations are obtained by n-fold iteration,
GðnÞð∞Þ ¼ K̂ð…K̂ðK̂ð0ÞÞÞ. Inspecting the first iteration,

Gð1Þð∞Þ ¼ K̂ðK̂ð0ÞÞ ¼
X
j≠0

K̂ðkjð0ÞÞjkjð0ÞÞðk̄jð0Þj; ð28Þ

we see that the stationary state jk0ð0ÞÞ remains unaffected
(trace preservation), but in general all j ≠ 0 contributions are
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altered by the memory kernel evaluated at finite frequencies,
thus generating a difference between K̂ð0Þ and Gð∞Þ.
The convergence of this procedure with n is certainly not

obvious, but our first applications in Sec. V are encourag-
ing. Indeed, one can consider starting the iteration from any
initial superoperator Gð0Þð∞Þ ¼ X. In this case, property
(12) guarantees that the iteration trajectory GðnÞð∞Þ ¼
K̂ð…K̂ðXÞÞ is confined to the linear space of trace-
preserving superoperators irrespective of X. If iX is
Hermicity preserving, then the trajectory will additionally
be confined to such superoperators by property (13).

B. Functional iteration for transient generator

We next describe the more complicated iteration of the
functional equation (10). Here the aim is to construct the
full transient generator GðtÞ starting from the memory
kernel KðtÞ. As a preparation we decompose the kernel
into its time-local (δ̄-singular) part and a remaining time-
nonlocal part:

KðtÞ ¼ KLδ̄ðtÞ þKNðtÞ: ð29Þ

In addition to the system Liouvillian L, the part KL may
contain an environment-induced contribution (as for fer-
mionic wideband models [7,8,93] as studied in Sec. V B),
but this need not be the case (as in the model studied in
Sec. VA). Inserting Eq. (29) into the functional (11) we
obtain

Gðnþ1ÞðtÞ ¼ KL þ
Z

t

0

dsKNðt − sÞT →e
i
R

t

s
dτGðnÞðτÞ: ð30Þ

Iterating this equation starting from the constant function
Gð0ÞðtÞ ¼ K̂ð0Þ gives approximations GðnÞðtÞ which gen-
erate evolutions with two important properties at every
iteration.
First, each approximation is accurate at long times,

provided GðtÞ has a stationary limit and Eq. (10) converges
to Eq. (15). Our choice of starting point ensures by Eq. (20)
that GðnÞðtÞjρð∞ÞÞ ¼ 0 holds initially for n ¼ 0, implying
that the generated evolution goes to the exact stationary
state for t → ∞. Arguing as in Eq. (14) we find that this
also holds for the next iteration: Gðnþ1Þð∞Þjρð∞ÞÞ ¼
limt→∞½KL þ R

t
0 dsKNðt − sÞ�jρð∞ÞÞ ¼ K̂ð0Þjρð∞ÞÞ ¼ 0.

The same argument also applies for starting point Gð0ÞðtÞ ¼
Gð∞Þ [Eq. (20)] or any starting point X for which
Xjρð∞ÞÞ ¼ 0. However, starting from the memory kernel
formalism, K̂ð0Þ is already available.
Second, each generated approximation is also accurate at

short times. To see this, note that at the initial time the
generator is given by the time-local part of the kernel,

Gð0Þ ¼ KL; ð31Þ

which we split off from the generator,

GðtÞ ¼ KL þ GNðtÞ; GNð0Þ ¼ 0: ð32Þ

The second term incorporates all effects due to the time-
nonlocal part of the kernel KNðtÞ. For the first iteration
we have

Gð1ÞðtÞ ¼ KL þ
Z

t

0

dsKNðt − sÞeiK̂ð0Þðt−sÞ ð33aÞ

≈KL þ tKNð0Þ þ � � � ; ð33bÞ

as dictated by the short-time limit of the time-nonlocal part
of the memory kernel. This implies that in the exponential
of the next iteration we similarly have at short timesR
t
s dτG

ð1ÞðτÞ ≈ ðt − sÞKL, giving the same leading behavior.
Thus, each iteration n ≥ 1 coincides with the exact initial
generator (31) including the linear order, GðnÞðtÞ ¼ KLþ
tKNð0Þ þ � � �. Clearly, no semigroup approximation can
achieve this.
The convergence of this iteration is again not evident

and an analysis of the local stability is complicated due
to the time nonlocality of the superoperator equations.
Remarkably, we numerically find for several models that
this procedure can be made to work, even when the
generator is time singular (Sec. VA) or has time-dependent
algebraic structure (Sec. V B).

V. EXAMPLES

A. Dissipative Jaynes-Cummings model

We first illustrate our findings for the dissipative Jaynes-
Cummings model [6,17,100,101], which is algebraically
simple but can show challenging time singularities in the
generator. This exactly solvable model describes a two-
level atom with transition frequency ε (H ¼ εd†d with
fd; d†g ¼ 1) interacting with a continuous bosonic reser-
voir [HR ¼ R

dωωb†ωbω with ½bω; b†ω0 � ¼ δðω − ω0Þ1] ini-
tially in a vacuum state j0i. The coupling is bilinear,

HT ¼
Z

dω

ffiffiffiffiffiffiffiffiffiffi
ΓðωÞ
2π

r
ðd†bω þ b†ωdÞ; ð34Þ

with real amplitudes set by a spectral density ΓðωÞ. The
occupation numbers of reservoir modes are either 0 or 1 due
to a dynamical constraint: the coupling (34) conserves the
total excitation number d†dþ R

dωb†ωbω. Here we study
the effects of energy-dependent coupling ΓðωÞ without
initial reservoir statistics (T ¼ 0): We assume a Lorentzian
profile of width γ whose maximum value Γ≡ ΓðεÞ lies
precisely at the atomic resonance:

ΓðωÞ ¼ Γ
γ2

ðε − ωÞ2 þ γ2
: ð35Þ
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Although this model has been studied in detail
[17,18,100,101] and featured in textbooks [6], the remark-
able relation between its generator G and memory kernel K
has not been noted, but see Ref. [75]. All results below can
be generalized to any profile ΓðωÞ.
From the solution [6] of the total-system state jψ totðtÞi,

with jψ totð0Þi ¼ jψð0Þi ⊗ j0i, we extract the propagator
TrRfjψ totðtÞihψ totðtÞjg ¼ ΠðtÞjψð0Þihψð0Þj working in the
Schrödinger picture and setting t0 ¼ 0. It has the form of an
amplitude damping channel [117] with spectral decom-
position

ΠðtÞ ¼ j00Þ½ð00j þ ð11j� þ jπðtÞj2½j11Þ − j00Þ�ð11j
þ πðtÞj01Þð01j þ πðtÞ�j10Þð10j ð36Þ

using jνν0Þ ¼ jνihν0j and ðνν0j ¼ hνj • jν0i, where jνi
denotes the atomic state ν ¼ 0, 1. The time-dependent
parameter reads

πðtÞ≡ e−iεte−γt=2
�
cosh

�
γ0t
2

�
þ γ

γ0
sinh

�
γ0t
2

��
; ð37Þ

where γ0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðγ − 2ΓÞp

. Thus, an initially excited state
evolves with probability h1jρðtÞj1i ¼ jπðtÞj2. In the fre-
quency domain we have

Π̂ðωÞ ¼ i
ω
j00Þ½ð00j þ ð11j� þ djπj2ðωÞ½j11Þ − j00Þ�ð11j

þ bπðωÞj01Þð01j þ bπ�ðωÞj10Þð10j: ð38Þ

The Laplace transforms,

djπj2ðωÞ ¼ 1

4

ðγ=γ0 − 1Þ2
γ þ γ0 − iω

þ 1

4

ðγ=γ0 þ 1Þ2
γ − γ0 − iω

−
1

2

γ2=γ02 − 1

γ − iω
;

ð39aÞ

π̂ðωÞ ¼ γ=γ0 þ 1

γ − γ0 − 2iðω − εÞ −
γ=γ0 − 1

γ þ γ0 − 2iðω − εÞ ; ð39bÞ

and bπ�ðωÞ ¼ ½π̂ð−ω�Þ�� determine the finite number of
poles of the propagator Π̂ðωÞ listed in Table I.
It is now straightforward [17,18] to determine the

generator GðtÞ ¼ i _ΠðtÞΠ−1ðtÞ and the kernel K̂ðωÞ ¼
ωI − iΠ̂−1ðωÞ whose relation has our interest. The spectral
decomposition for the generator reads

GðtÞ ¼ 2iRe

�
_πðtÞ
πðtÞ

�
½j11Þ − j00Þ�ð11j

þ i
_πðtÞ
πðtÞ j01Þð01j þ i

�
_πðtÞ
πðtÞ

��
j10Þð10j; ð40Þ

whereas for the kernel in the frequency domain it is

K̂ðωÞ ¼
�
ω −

idjπj2ðωÞ
�
½j11Þ − j00Þ�ð11j

þ
�
ω −

i
π̂ðωÞ

�
j01Þð01j þ

�
ω −

ibπ�ðωÞ
�
j10Þð10j:

ð41Þ

The eigenvalues of K̂ satisfying kjðωpÞ ¼ ωp for some j
correspond to the poles of Π̂ðωÞ in Table I.

1. Overdamped dynamics ðγ ≥ 2ΓÞ
Even with all explicit expressions in hand, it is by no

means obvious that this model obeys our sampling result
(21) in the stationary limit t → ∞. We now first verify this
noting that our assumption that Gð∞Þ exists holds only for
broad spectral densities such that γ ≥ 2Γ. In this case the
real quantity γ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðγ − 2ΓÞp
≤ γ represents a suppres-

sion or enhancement of the decay rates −Imωp relative to
the value γ in Table I. In this overdamped regime,
limt→∞ _πðtÞ=πðtÞ ¼ − 1

2
ðγ − γ0Þ − iε converges and the

dynamics is CP divisible [118].
Table I shows that the resulting four eigenvalues of Gð∞Þ

indeed coincide with four of the eight poles of Π̂ðωÞ as
predicted by Eq. (18). Interestingly, Gð∞Þ does not always
sample the “slowest” part of the evolution, i.e., the poles
with the smallest decay rates, even in this simple model.
Whereas this happens for sufficiently large broadening
γ > 9

4
Γ, just before entering the underdamped regime

there is a range 2Γ < γ < 9
4
Γ, where two nonsampled

poles ω4;5 have smaller decay rates than the sampled
pole ω3; see Table I. Thus, Gð∞Þ is completely
determined by the sampling of K̂ðωÞ as dictated by
Eq. (21a). This does not illustrate the full complexity of
the sampling since the right eigenvectors of K̂ðωÞ are
frequency independent and thus trivially provide the
right eigenvectors (19) of Gð∞Þ.
Numerical implementation of the stationary iteration

described in Sec. IVA converges in a few steps to the
exact stationary generator, which explicitly reads

TABLE I. Jaynes-Cummings model. Poles of Π̂ðωÞ and eigen-
values of Gð∞Þ using the abbreviation γ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðγ − 2ΓÞp
.

Poles Π̂ðωÞ Eigenvalues Gð∞Þ
ω0 ¼ 0 g0 ¼ 0

ω1 ¼ þε − i 1
2
ðγ − γ0Þ g1 ¼ þε − i 1

2
ðγ − γ0Þ

ω2 ¼ −ε − i 1
2
ðγ − γ0Þ g2 ¼ −ε − i 1

2
ðγ − γ0Þ

ω3 ¼ −iðγ − γ0Þ g3 ¼ −iðγ − γ0Þ
ω4 ¼ þε − i 1

2
ðγ þ γ0Þ ← Possibly closer to real axis

ω5 ¼ −ε − i 1
2
ðγ þ γ0Þ ← than ω3!

ω6 ¼ −iγ
ω7 ¼ −iðγ þ γ0Þ
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−iGð∞Þ ¼ −
2Γ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2Γ=γ

p ½j11Þ− j00Þ�ð11j

−
�
þiεþ Γ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2Γ=γ

p �
j01Þð01j

−
�
−iεþ Γ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2Γ=γ

p �
j10Þð10j: ð42Þ

Importantly, we numerically observe this convergence
starting from random initial superoperators X. Although
other fixed points of Eq. (16) can be constructed [119], we
always find that Gð∞Þ is the only stable one. Because of
this remarkable fact, the iterative solution allows one to
infer which of the poles are sampled by Gð∞Þ. As
mentioned earlier, this can be used to assist the identi-
fication of the sampled poles in analytical calculations,
which aim to exploit Eq. (21).
Given the kernel K̂ðωÞ, one can thus find Gð∞Þ by

iteration directly at stationarity, avoiding the transient
time dependence of GðtÞ. We plot the resulting semi-
group approximation (25) in Fig. 2(b) and the different
semigroup (26), generated by the exact low-frequency
kernel,

−iK̂ð0Þ ¼ −
Γ

1þ Γ=ð2γÞ ½j11Þ − j00Þ�ð11j

−
�
þiεþ γΓ

2ðγ þ iεÞ
�
j01Þð01j

−
�
−iεþ γΓ

2ðγ − iεÞ
�
j10Þð10j; ð43Þ

in Fig. 2(a). The K̂ð0Þ semigroup crosses the exact solution
already at intermediate times to approach it from above,
whereas the Gð∞Þ semigroup approaches it from below.
Indeed, in the overdamped regime the occupation decay
rate of Eq. (42) is always larger than that of Eq. (43). As
expected, both semigroups have problems with the initial
nonlinear time dependence on the scale γ−1 set by the
reservoir bandwidth (35). Only in the wideband limit γ →
∞ the exact evolution is a semigroup, which in this case is
generated by Gð∞Þ ¼ K̂ð0Þ.
We have also implemented the functional iteration

GðnÞðtÞ for the transient generator explained in Sec. IV B,
using Eq. (30) with KL ¼ −i½H; •� and H ¼ εd†d. In
Figs. 2(a) and 2(b) we additionally show the evolutions
generated by the approximate GðnÞðtÞ starting from the
initial function Gð0ÞðtÞ ¼ K̂ð0Þ and Gð∞Þ, respectively.
Like the semigroups, each approximation approaches the
exact stationary state at large times. However, contrary to
the semigroups, each iteration is also very accurate at short
times; see Eq. (33b). These two constraints enforce rapid
convergence at intermediate times throughout the over-
damped parameter regime: in Figs. 2(a) and 2(b) we did not

plot the n ¼ 2 and n ¼ 3 approximations, respectively,
since they are hard to distinguish from the exact solution.
Thus, Fig. 2(a) shows that Eq. (33a), based solely on one
iteration of the time-nonlocal memory kernel, already
provides a remarkably accurate representation of the
time-local generator.

2. Underdamped dynamics ðγ < 2ΓÞ
For narrow spectral density, γ < 2Γ, the evolution

becomes underdamped and nondivisible. The function

πðtÞ ¼ e−iεte−γt=2
�
cos

�
Ωt
2

�
þ γ

Ω
sin

�
Ωt
2

��
ð44Þ

now oscillates with frequency Ω≡ −iγ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð2Γ − γÞp

with roots located at tn ¼ 2π
Ω ½n − ð1=πÞ arctanðΩ=γÞ�.

This qualitative change of πðtÞ has two consequences.
First, the time-local generator GðtÞ by itself exhibits

singularities as function of time for every t ¼ tn [Eq. (40)].
These dynamics with singular generators have recently
received renewed attention [104–106], even though they

(a)

(b)

FIG. 2. Jaynes-Cummings model, overdamped regime Γ=γ ¼
0.495 (γ0=γ ¼ 0.1). Decay of the probability h1jρðtÞj1i for the
excited state when it is initially occupied, ρð0Þ ¼ j1ih1j. (a) Sol-
utions obtained from the Markovian approximation _ρðtÞ ≈
−iK̂ð0ÞρðtÞ (red line) together with the first iteration Gð1Þ (cyan
line) of the transient fixed-point equation starting from
Gð0Þ ¼ K̂ð0Þ. The exact solution is shown in black. (b) Solutions
obtained from the Markovian approximation _ρðtÞ ≈ −iGð∞ÞρðtÞ
(blue line) together with two iterations of the transient fixed-point
equation (30), Gð1Þ (cyan line) and Gð2Þ (green line), when started
from Gð0Þ ¼ Gð∞Þ and exact solution (black line).
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were noted long ago [6]. Importantly these singularities are
not spurious, noting that the product GðtÞΠðtÞ remains
finite even at t ¼ tn. In fact, they are physically meaningful:
by identifying the divergent matrix elements of GðtÞ one
can already infer at which times the solution of the Jaynes-
Cummings model will be an entanglement breaking map
[120–123], ΠðtnÞ ¼ j00Þð1j ¼ j0ih0jTr •.
A second consequence is that the stationary limit of

GðtÞ by itself does not exist, even though the stationary
propagator does converge, limt→∞ ΠðtÞ ¼ j00Þð1j, and
the low-frequency memory kernel K̂ð0Þ is well defined.
Irrespective of how generic both these complications are,
they present perhaps the most crucial challenge to any time-
local approach. It is well known, for example, that
perturbative calculations of GðtÞ cannot venture beyond
the first singularity on the time axis [6,124]. In this sense
the model presents a worst-case test for both variants of the
fixed-point iteration.
The stationary iteration (Sec. IVA) is simply expected to

fail since it relies on the convergence of GðtÞ for t → ∞.
Nevertheless, it is interesting to explore what happens.
Indeed, the stationary iteration for GðnÞð∞Þ does not
converge anymore with n. However, G is always block
diagonal and we observe that the iterations for the generator
on the occupation subspace j00Þ; j11Þ converge to

lim
n→∞

GðnÞ
o ð∞Þ ¼ −iγ½j11Þ − j00Þ�ð11j; ð45Þ

whereas the generator GðnÞ
c on the subspace j01Þ; j10Þ of the

coherences oscillates indefinitely with n. In Fig. 3(a) we
plot the time evolution of occupations obtained from the
semigroup approximation constructed from Eq. (45). In
contrast to the semigroup generated by the well-defined
K̂ð0Þ, it gives an accurate envelope for the decay of the
excited state, even in the strongly underdamped limit, γ ≪
Γ where Ω ≈

ffiffiffiffiffiffiffiffi
2Γγ

p
≫ γ.

The converged part of the iteration can in fact be related
to a regularization of limt→∞ GðtÞ. Noting that

_πðtÞ
πðtÞ ¼ −iε −

1

2
γ −

1

2
Ω tan

�
1

2
Ωt − arctan

γ

Ω

�
; ð46Þ

we see that a principal-value time average over one period
amounts to replacing ½ _πðtÞ=πðtÞ� → −iε − 1

2
γ. This gives a

regularized stationary limit for the generator,

Gð∞Þreg ¼ −iγ½j11Þ − j00Þ�ð11j

−
�
−εþ 1

2
iγ

�
j01Þð01j −

�
εþ 1

2
iγ

�
j10Þð10j;

ð47Þ

which coincides with the numerically converged block (45)
of the iteration. The value of the coherence block exposes a

key complication of the exact evolution of this model. In
Fig. 3(b), we show that the semigroup constructed from
Gð∞Þreg describes the decay and oscillation of the coher-
ences accurately in the center of every even time interval.
However, it is also accurate up to the sign in every odd
interval. The intermediate π-phase jumps occurring in the
exact solution are caused by the divergences of the
generator at times tn. The stationary fixed-point iteration
may thus still be useful beyond the limitations we assumed
in the present paper.
Finally, we consider how the transient fixed-point

iteration (Sec. IV B) deals with the time singularities in
this model. In Fig. 4 we show how the occupations, starting
from the semigroup approximation generated by K̂ð0Þ,
converge to the exact solution. The first two iterations only
improve the solution before the first singularity and even
become unphysical at larger times. However, the following
iterations also converge beyond the first singularity. The
fifth iteration (not shown) is indistinguishable from the
exact solution in the shown time interval. More iterations
are required to converge the solution in a larger time
interval also including the second singularity. The success
of our iteration strategy starting from the memory kernel K
highlights its difference to perturbation theory, which

(a)

(b)

FIG. 3. Jaynes-Cummings model, underdamped regime Γ=γ ¼
13 (Ω=γ ¼ 5) and ε ¼ 20. (a) Decay of the excited state
occupation h1jρðtÞj1i and (b) decay of the real part of the
coherence h0jρðtÞj1i. The initial state is ρð0Þ ¼ 0.1½j00Þ þ
j01Þ þ j10Þ� þ 0.9j11Þ. Shown are the solution for the Markovian
approximations _ρðtÞ ≈ −iGð∞ÞρðtÞ (blue line) with generator
obtained by iteration of the stationary fixed point equation (15),
and _ρðtÞ ≈ −iK̂ð0ÞρðtÞ (gray line). The exact solution is shown
in black.
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always fails in capturing dynamics beyond a singularity [6].
Thus even time-singular generators can be locally stable
fixed points of the functional K̂. Finally, we note that the
fixed-point iteration for the coherences is more challenging,
but we do not exclude that this is only a numerical
challenge.

B. Finite-temperature resonant level model

We complement the above by an analysis of the
fermionic resonant level model. Although its generator
has no time singularities, its time-dependent algebraic
structure provides a challenge complementary to the
previous model. The Hamiltonian is formally identical to
that of the Jaynes-Cummings model except that the
reservoir operators are fermionic, fbω;b†ω0 g ¼ δðω−ω0Þ1.
Also, we consider the reservoir at temperature T and
chemical potential μ coupled with an energy-independent
spectral density Γ ¼ const. This is the most basic model of
transient electron tunneling from a localized state. Even
though it ignores interaction effects, its propagator is
feature rich. This was noted in recent work [102], but
the nontrivial relations between K and G and their spectra
noted below were overlooked. The diagonal representation
of Π reads [Ref. [102], Eq. (E1)]

ΠðtÞ ¼
X
η¼�

e½iηε−ð1=2ÞΓ�tjd†ηÞðd†ηj ð48aÞ

þ 1

2
½j1Þ þ pðtÞjð−1ÞNÞ�ð1j ð48bÞ

þe−Γt
1

2
jð−1ÞNÞ½ðð−1ÞN j − pðtÞð1j�; ð48cÞ

where dþ ≡ d†, d− ≡ d, jOÞ≡O, and ðOj≡ trðO†•Þ for
an operator O. In contrast to the Jaynes-Cummings model,
its eigenvectors depend on time through the function

pðtÞ ¼
X
η¼�

ηIm

�
e−ðπTþiϵÞt

π sinhðΓt=2ÞΦ
�
e−2πTt; 1;

1

2
þ iϵþ ηΓ=2

2πT

�

þ eηΓt=2

π sinhðΓt=2ÞΨ
�
1

2
þ iϵþ ηΓ=2

2πT

��
ð49Þ

involving Lerch (Φ) and digamma (Ψ) functions with
ϵ ¼ ε − μ. This richer structure is also reflected by
the analytic properties of the propagator (Ref. [102],
Appendix D),

Π̂ðωÞ ¼
X
η¼�

i
ωþ ηεþ i Γ

2

jd†ηÞðd†ηj ð50aÞ

þ i
ω

1

2

�
j1Þ þ k̂

�
ωþ i

Γ
2

�
jð−1ÞNÞ

�
ð1j ð50bÞ

þ i
ωþ iΓ

1

2
jð−1ÞNÞ

�
ðð−1ÞN j − k̂

�
ωþ i

Γ
2

�
ð1j

�
;

ð50cÞ

expressed in the Laplace transform k̂ðωÞ≡ R
∞
0 dteiωtkðtÞ

of kðtÞ≡ 2Tsin½ðε − μÞt�=sinh½πTt�. Its poles, listed in
Table II, include two infinite series for T > 0, which merge
into branch cuts as T → 0.
The generator GðtÞ ¼ i _ΠðtÞΠ−1ðtÞ [Ref. [102],

Eq. (B14)],

GðtÞ ¼
X
η¼�

�
−ηε − i

1

2
Γ
�
jd†ηÞðd†ηj

− iΓ
1

2
jð−1ÞNÞ½ðð−1ÞN j − gðtÞð1j�; ð51Þ

is obtained with gðtÞ ¼ R
t
0 ds e

−ð1=2ÞΓskðsÞ, which is related
to pðtÞ ¼ Γ=ð1 − e−ΓtÞ R t

0 dse
−Γðt−sÞgðsÞ. The evolution

changes its Markovian character from CP divisible
[jgðtÞj ≤ 1] close to resonance to nondivisible sufficiently
far from resonance. The kernel K̂ðωÞ ¼ ωI − iΠ̂−1ðωÞ can
be expressed as [Ref. [102], Eq. (D13)]

FIG. 4. Jaynes-Cummings model, underdamped regime. Decay
of the probability h1jρðtÞj1i obtained from generators of the
transient iteration for Γ=γ ¼ 13 and ε ¼ 20 using the starting
point K̂ð0Þ.

TABLE II. Resonant level model, n ¼ 0; 1; 2;….

Poles Π̂ðωÞ Eigenvalues Gð∞Þ
ω0 ¼ 0 g0 ¼ 0

ω1 ¼ þðε − μÞ − i 1
2
Γ g1 ¼ þðε − μÞ − i 1

2
Γ

ω2 ¼ −ðε − μÞ − i 1
2
Γ g2 ¼ −ðε − μÞ − i 1

2
Γ

ω3 ¼ −Γ g3 ¼ −Γ
ω4þ2n ¼ ω1 − iπTð2nþ 1Þ ← Possibly closer to real axis
ω5þ2n ¼ ω2 − iπTð2nþ 1Þ ← than ω3!
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K̂ðωÞ ¼
X
η¼�

�
−ηε − i

1

2
Γ
�
jd†ηÞðd†ηj

− iΓ
1

2
jð−1ÞNÞ

�
ðð−1ÞN j − k̂

�
ωþ i

1

2
Γ
�
ð1j

�
:

ð52Þ

Unlike the Jaynes-Cummings model, none of these super-
operators commute with themselves at different time or
frequency or parameter values (on which their eigenvectors
depend) nor with each other [since pðtÞ; kðtÞ; gðtÞ all
differ]. We now show that, nevertheless, the sampling
relation (21) explicitly holds.
Table II shows that the four eigenvalues of Gð∞Þ indeed

coincide with four of the poles of Π̂ðωÞ, which coincide
with the four frequency-independent eigenvalues of K̂ðωÞ.
However, the propagator Π̂ðωÞ has infinitely many more
poles fωngn≥4 which arise from the function k̂ðωþ i 1

2
ΓÞ

located in the eigenvectors of K̂ðωÞ. These are not sampled
as explained after Eq. (19). For T ≤ Γ=ð2πÞ some of these
nonsampled poles lie in between the sampled poles ω1, ω2,
and ω3 and form branch cuts as T → 0.
In Table III we illustrate how Gð∞Þ also nontrivially

samples the eigenvectors of K̂ðωÞ as follows. (i) We collect
one right eigenvector from each of the four different
superoperators K̂ð0Þ, K̂ð�ε − i 1

2
ΓÞ, and K̂ð−iΓÞ.

(ii) This gives four right vectors jk̂jiðgiÞÞ ¼ jgiÞ.
(iii) From this set one algebraically constructs a set of
biorthonormal covectors ðg0ij. This way we remarkably
obtain the left and right eigenvectors of Gð∞Þ as given by
Eq. (51) using the analytic property gð∞Þ ¼ k̂ði 1

2
ΓÞ. Note

in particular that one would not obtain the correct left
eigenvectors of Gð∞Þ by naively sampling the left pole
eigenvectors of the kernels. For eigenvalue g3 ¼ −iΓ a
difference arises as indicated by the two arrows in Table III.
We observe that for the resonant level model each

eigenvalue pole is sampled precisely once by Gð∞Þ.
Combined with the mere assumption that Gð∞Þ is diago-
nalizable, the sampling relation (21) thus completely
determines this superoperator, because it exhausts the
number of eigenvalue poles (d2 ¼ 4).

For the resonant level model the numerical stationary
iteration (Sec. IVA) starting from any initial Gð0Þð∞Þ also
converges to the exact stationary generator. This holds for
all parameters of the model. Strikingly, using Gð0Þð∞Þ ¼
K̂ð0Þ as a starting point the iteration terminates right away
at the zeroth iteration, implying an exact relation [125]:

Gð∞Þ ¼ K̂ð0Þ: ð53Þ

One verifies the relation (53) by comparing Eqs. (52) and
(51) again using gð∞Þ ¼ k̂ði 1

2
ΓÞ.

The transient iteration (Sec. IV B) starting from the
constant ansatz Gð0ÞðtÞ ¼ K̂ð0Þ does not terminate immedi-
ately, because the evolution is not a semigroup. However,
for this ansatz the first transient iteration does give the exact

solution, Gð1ÞðtÞ ¼ R
t
0 dsKðt − sÞeiK̂ð0Þðt−sÞ ¼ GðtÞ, again

for all parameters of the model. This reflects an exact
relation [Ref. [102], Eqs. (52a) and (D15)],

GðtÞ ¼
Z

t

0

dsKðt − sÞ; ð54Þ

which for t → ∞ again implies Eq. (53). In Fig. 5 we show
the time dependence of the occupations for the zeroth and
first iteration. Unlike the Jaynes-Cummings model, the level
initially actually fills up more before decaying to the empty
stationary state, an effect caused by time dependence of
eigenvectors of ΠðtÞ [Eq. (48)]. This reentrant behavior is
completely produced in one step by Gð1ÞðtÞ from the Markov
semigroup approximation Gð0Þ ¼ K̂ð0Þ ¼ Gð∞Þ, which can
never capture an initial growth in the “wrong direction”.
In fact, any trace-preserving constant ansatz Gð0ÞðtÞ ¼ X

gives the exact solution after one iteration, Gð1ÞðtÞ ¼ GðtÞ,
as shown in Appendix A. Furthermore, starting from an
arbitrary time-constant superoperator, Gð0Þ ¼ X ≠ 0, the
second transient iteration always reaches the fixed point,
because the first iteration Gð1ÞðtÞ produces a trace-preserv-
ing generator [Eq. (12)]. That two iterations suffice for all
parameters of the model is remarkable since this includes
the extended parameter regime where the level is suffi-
ciently off resonant and the evolution is not CP divisible

TABLE III. Sampling of memory kernel K̂ðωÞ by the stationary generator Gð∞Þ [Eq. (21)]. Left-hand columns: for each different
superoperator K̂ðgiÞ we list one pole eigenvalue with its left and right eigenvector. Right-hand columns: collecting the right eigenvectors
from K̂ðgiÞ and biorthonormalizing, we construct the left eigenvectors ðg0ij. Row i ¼ 1, 2 corresponds to η ¼ �.

(iv) Do not copy these K̂ðgiÞ (i) Copy these (iii) Biorthogonalize Gð∞Þ (ii) Collect here

i ðk̂0jiðgiÞj k̂jiðgiÞ jk̂jiðgiÞÞ ðg0ij gi jgiÞ
0 ð1j 0 1

2
½j1Þ þ k̂ði Γ

2
Þjð−1ÞNÞ� ð1j 0 1

2
½j1Þ þ k̂ði Γ

2
Þjð−1ÞNÞ�

1,2 ↓ ðd†ηj −ηε − i 1
2
Γ jd†ηÞ ↓ ðd†ηj −ηε − i 1

2
Γ jd†ηÞ

3 1
2
½ðð−1ÞN j − k̂ð−i Γ

2
Þð1j� −iΓ jð−1ÞNÞ 1

2
½ðð−1ÞN j − k̂ði Γ

2
Þð1j� −iΓ jð−1ÞNÞ
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[94,102]. For comparison, in the underdamped regime
where the Jaynes-Cummings model is not CP-divisible
many iterations are required (Fig. 3). The termination of the
fixed-point iteration is closely related to truncations of
(renormalized) coupling expansions for KðtÞ and ΠðtÞ for
fermionic models, which occur in the absence of inter-
actions and for energy-independent coupling [7,8,102].
This indicates that the number of iterations is related to
dynamically generated many-body effects.

VI. SUMMARY AND OUTLOOK

We found the general connection between two canoni-
cal approaches to the dynamics of open quantum systems,
the time-local and time-nonlocal quantum master equa-
tion. This relation extends the response function of an
open system—the frequency-domain memory kernel
K̂ðωÞ—to a functional mapping of superoperator func-
tions of time of which the generator is a fixed point:
Gðt; t0Þ ¼ K̂½G�ðt; t0Þ. The fixed-point property expresses
that the generator is a characteristic “frequency” of the
evolution produced by the memory kernel. This is very
similar to how pole frequencies characterize the response
of linear systems in physical sciences and engineering
[126]. In our general quantum setting, we showed how the
fixed-point equation provides a self-consistent solution of
the complicated time-domain gradient expansion.
Interestingly, this also revealed a connection of the
time-convolutionless approach to a Moyal formulation
of quantum theory of open systems.
We obtained several general insights into the role of the

frequency dependence of the memory kernel. We precisely
determined how the stationary generator Gð∞Þ samples the
right eigenvectors and eigenvalues of the memory kernel
K̂ðωÞ at zero and nonzero characteristic frequencies of the
evolution. The sampled frequencies form a finite subset of

the exact poles of the frequency-domain evolution as
obtained by the Laplace resolvent method in the time-
nonlocal approach. Remarkably, knowing only the location
of these poles in the complex plane in principle suffices to
completely construct the stationary generator Gð∞Þ from
the memory kernel, significantly simplifying analytical
calculations. This generator may also be obtained numeri-
cally by iterating the stationary fixed-point equation.
Similarly, the full transient generator may be obtained

from the memory kernel by iterating the functional fixed-
point equation (10). At each iteration the approximate
generator is both initially and asymptotically accurate.
Importantly, this iteration strategy only works if the
generator is a locally stable fixed point of the kernel
functional and we have shown that even time-singular
generators can be locally stable. We also showcased an
evolution with time-dependent eigenvectors whose gener-
ator is exactly found after at most two iterations. Since our
results apply quite generally and can be tailored to both
numerical [22,23] and analytical [20,21,24] applications,
they seem relevant to the challenging problems of strongly
interacting open quantum systems dominated by nonper-
turbative dissipation and memory effects. Altogether, this
provides new starting points for combining well-developed
memory kernel formalisms to access the advantages of a
time-local description. We conclude by outlining several
such applications.
(Non-)Markovianity and microscopic models.—As men-

tioned in the Introduction, the most obvious application lies
in the study of the divisibility properties of the dynamics,
which are directly accessible via the time-local generator G.
From its time-dependent canonical form [42] one can extract
both the jump rates (characterizing CP divisibility) and the
jump operators (characterizing P divisibility) [53,54],
encompassing different degrees of (non-)Markovianity
[70]. However, the impressive progress in understanding
of dynamics and information in general terms contrasts with
the enduring limitation of their application to microscopic
models. Our key result (10) provides a new path from
accurate memory kernels calculated within the well-devel-
oped time-nonlocal formalism to the time-local description
required for these problems.
Geometry, topology, and transport in open systems.—

Similarly, the study of geometric [63,64] and topological
phases [66,67] hinges on a time-local description. Starting
from the time-local QME, already in the leading adiabatic
approximation to the dynamics,

jρðtÞÞ ¼ T ←e
−i
R

t

0
GðtÞjρð0ÞÞ

≈
X
i

jgiðtÞÞðḡiðtÞjρð0ÞÞe
R

t

0
ds½−igiðsÞ−ðḡiðsÞj∂sgiðsÞÞ�;

ð55Þ
one finds that the time-instantaneous eigenvalues and
eigenvectors of GðtÞ—not those of the memory kernel

FIG. 5. Decay of the occupation h1jρðtÞj1i in the resonant level
model for ε − μ ¼ 2πΓ, T ¼ 0.1 × Γ=ð2πÞ obtained from
Gð0ÞðtÞ ¼ K̂ð0Þ and Gð1ÞðtÞ ¼ GðtÞ. The former corresponds to
a Markov semigroup approximation using K̂ð0Þ, which is never
able to describe the initial growth of the occupation away from
the stationary value. When used as initial guess in the transient
iteration the exact solution is recovered by the fixed-point
equation (10) after a single step.
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KðtÞ—determine the dynamic and geometric phase of
the open system, respectively. For stationary driving one
can expand these quantities around their stationary values
with parametric time dependence. Our stationary fixed-
point equation (15) describes how these required quantities
are nontrivially related to eigenvalues and eigenvectors of
the more accessible memory kernel K. As illustrated in
Sec. III D, this procedure automatically includes the full
memory expansion of the kernel [36].
These geometric phases of state evolution subsume [127]

those of observables [128–131] and their full-counting
statistics [68,132] as a special case by incorporating an
ideal counter into the state evolution [133,134]. This
immediately implies that our fundamental relation (10)
for state evolution translates to a nontrivial relation between
the time-nonlocal kernel and time-local generator that
govern the dynamics of the full-counting statistics, i.e.,
the transport equations. The full-counting statistics is
pivotal in quantum thermodynamics [73,74], adiabatic
operations [72], energy backflow [135], nonequilibrium
fluctuation relations [69], and studies of information [136]
and entropy production [137,138].
Perturbation expansions of GðtÞ.—Our fixed-point rela-

tion (10) also allows challenges faced by perturbative cal-
culations of G [17,34,35,139] to be addressed. Given some
expansion of the memory kernel, K¼Kð1Þ þKð2Þ þ���, a
corresponding series for G ¼ Gð1Þ þ Gð2Þ þ � � � is obtained in
terms of the memory kernel alone without introducing any
new formalism. This is done by expanding Eq. (10) and
organizing both sides of the equation order by order. The first
orders of G are then given by

Gð1Þðt; t0Þ ¼
Z

t

t0

dsKð1Þðt; sÞ; ð56aÞ

Gð2Þðt; t0Þ ¼
Z

t

t0

dsKð2Þðt; sÞ

þ i
Z

t

t0

ds
Z

t

s
dτKð1Þðt; sÞGð1Þðτ; t0Þ: ð56bÞ

This reveals a recursive structure of perturbative G expan-
sions. Expanding in powers of the system-environment
coupling one recovers the approach of Ref. [34]. How-
ever, Eq. (56) is flexible and can also be applied to
expansions around a known dissipative solution, which
has no Hamiltonian formulation. An interesting example
is the T ¼ ∞ solution of strongly interacting, wideband limit
transport models [7,8,93], which leads to a powerful
renormalized perturbation theory [8]. This may be a step
up for a renormalization group [20,21,24,26,27] treatment
for time-local generators.
Nonperturbative semigroups and initial slippage.—

Our results can be used to gain detailed insight into
approximation strategies in the nonperturbative regime.
In particular, the superoperator S in Eqs. (22)–(24) is
crucial for the “slippage of the initial condition,” a

well-known procedure aiming to improve Markovian
approximations [95–99]. In contrast to most previous
works, we can derive definite statements about the non-
perturbative quantity S. This has been explored in Ref. [94]
for the most favorable situation where a Markov approxi-
mation using the exact Markovian generator Gð∞Þ is
improved upon using the exact slippage superoperator S.
Even in this case subtle failures can arise, which are totally
unexpected within the time-local formalism used to set up
the slippage correction. Already for the example of the
resonant level a dramatic breakdown occurs around appa-
rently “innocent” isolated physical parameter points, even
though away from these points it gives a considerably
improved nonsemigroup approximation. However, this
behavior can be clearly understood [94] using the con-
nection (21) to the time-nonlocal memory kernel and
applies generally to strongly interacting fermionic transport
models far from equilibrium.
Fixed-point analysis.—Aside from these increasingly

technical applications, perhaps the most intriguing impli-
cation of our main result (10) is the possibility of analyzing
the fixed-point iteration using ideas borrowed from renorm-
alization group transformations in statistical physics [140],
such as linearization around fixed points, scaling, etc. In the
iteration (30) each new approximation GðnÞ incorporates
more of the memory integral over K in a stepwise fashion.
The apparent local stability of the fixed point of this
discrete flow in the functional superoperator space and
its range of attraction must somehow be related to physical
retardation properties of the open system. One could
envisage comparing and perhaps even classifying open-
system dynamics based on the nature of these dis-
crete flows.
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APPENDIX A: ITERATION IN THE RESONANT
LEVEL MODEL

For the resonant level model both the stationary
(Sec. IVA) and transient (Sec. IV B) fixed-point iteration
terminate at the first step when starting from any zero-trace-
preserving superoperator X, i.e., TrX• ¼ 0. This can be
seen by writing the time-nonlocal part of the kernel as
[8,102]

KNðtÞ ¼ −iΓkðtÞe−Γ t=2Gþ
þGþ

− ; ðA1Þ

in terms of fermionic “creation” superoperators [7] satisfy-
ing ðGþ

η Þ2 ¼ 0 and thus Gþ
þGþ

−Gþ
η ¼ 0. Using “second
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quantization” for superoperators [8,102] one expands any
zero-trace-preserving superoperator X in terms of products
of superfields and verifies that in each term Gþ

η stands on
the far left. This implies

KNðt − sÞeiXðt−sÞ ¼ KNðt − sÞ; ðA2Þ

and by Eq. (30) the transient [Eq. (54)] and stationary
[Eq. (53)] iteration find the exact generator in a single step.
Starting from an arbitrary superoperator X, the first iteration
will make it zero trace by Eq. (12), and by the above result
the second iteration will be converged.

APPENDIX B: EXACT SUMMATION OF THE
MEMORY EXPANSION OF THE TIME-

NONLOCAL QME

In Sec. III D of the text we mentioned that the memory
expansions of Refs. [37,38] are contained in our fixed-point
relation (10). Here we give an explicit formula for all terms.
Moreover, we sum the series to a self-consistent form and
recover our key results (10) and (15).
Memory expansion.—We essentially follow the

approach of Ref. [37] noting that we have verified that
Ref. [38] achieves exactly the same thing by manipulating
partial integrations. Both works start from the time-
nonlocal QME (7) and construct the time-local QME
(5). Importantly, no weak coupling approximation is made
in these works, but they do restrict attention to the
stationary limit t0 → −∞ by constructing the approximate
time-local QME ðd=dtÞΠðt − t0Þ ≈ −iGð∞ÞΠðt − t0Þ. This
is the nonperturbative Markovian semigroup approxima-
tion discussed in Sec. III C. Reference [37] considers only
the leading memory correction (27). Here we make none
of the mentioned assumptions and specialize to the case of
Refs. [37,38] only at the end [Eq. (B9)].
Thus, the summation of the memory expansion

amounts to the construction of Gðt; t0Þ from Kðt; sÞ such
that we have ðd=dtÞΠðt; t0Þ ¼ −i

R
t
t0
dsKðt; sÞΠðs; t0Þ ¼

−iGðt; t0ÞΠðt; t0Þ. In the main text this was solved by
exploiting the divisor, Gðt; t0Þ ¼

R
t
t0
dsKðt; sÞΠðs; tjt0Þ. In

our formulation, the approach taken in Refs. [37,38]
amounts to computing the divisor as

Πðs; tjt0Þ ¼ Πðs; t0ÞΠðt; t0Þ−1 ðB1aÞ

¼
X∞
k¼0

1

k!
ð−1Þkðt − sÞkF kðt; t0Þ ðB1bÞ

by inserting the memory expansion Πðs; t0Þ ¼P
kð1=k!Þð−1Þkðt − sÞk∂k

tΠðt; t0Þ of quantities in the past

time s around the present time t > s. For example, Eq. (27)
discussed in Ref. [37] corresponds to the k ¼ 0, 1 terms.
Here the superoperator-valued Taylor coefficients F kðt; t0Þ
are the time-local generators of the kth derivative of the
propagator:

∂k
tΠðt; t0Þ ¼ F kðt; t0ÞΠðt; t0Þ: ðB2Þ

Written as F kðt; t0Þ ≔ ½∂k
tΠðt; t0Þ�Πðt; t0Þ−1, they are

easily shown to obey the recursion relation,

F kðt; t0Þ ¼ ∂tF k−1ðt; t0Þ þ F k−1ðt; t0Þ½−iGðt; t0Þ�; ðB3Þ

with starting condition F 0ðt; t0Þ ¼ I giving, for instance,

F 1ðt; t0Þ ¼ −iGðt; t0Þ;
F 2ðt; t0Þ ¼ −i∂tGðt; t0Þ þ ½−iGðt; t0Þ�2;
F 3ðt; t0Þ ¼ −i∂2

tGðt; t0Þ þ ½−iGðt; t0Þ�½−i∂tGðt; t0Þ�
þ 2½−i∂tGðt; t0Þ�½−iGðt; t0Þ� þ ½−iGðt; t0Þ�3:

ðB4Þ

This suggests inserting the ansatz

F kðt; t0Þ ¼
Xk
n¼1

Xk−n
p1¼0

…
Xk−n
pn¼0

δk−n;p1þ���þpn

× Fn
p1…pn

½−i∂p1
t Gðt; t0Þ�…½−i∂pn

t Gðt; t0Þ�
ðB5Þ

and deriving the recursion relations for the coefficients,

Fn
p1…pn

¼
Xn
j¼1

Fn
p1…ðpj−1Þ…pn

; for pn ≥ 1; ðB6aÞ

Fn
p1…pn−10

¼
Xn−1
j¼1

Fn
p1…ðpj−1Þ…pn−10

þ Fn−1
p1…pn−1

: ðB6bÞ

Together with the starting conditions F1
0 ¼ 1, these

define all the coefficients of the memory expansion.
Construction of the general solution of the recursion
equations (B6) is very cumbersome and hides the elegant
functional fixed-point relation.
Fixed-point equation.—We now show that the result

(B1b) with (B5) equivalently follows from our fixed-point
relation by (10) inserting into Eq. (9) the memory expan-
sion Gðsi; t0Þ ¼

P
pi
ð1=pi!Þð−tiÞpi∂pi

t Gðt; t0Þ and perform-
ing the nested integrations over variables ti ¼ t − si:
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Πðs;tjt0Þ¼T →e
−
R

t

s
dτ½−iG�ðτ;t0Þ ¼

X∞
n¼0

ð−1Þn
Z
t>sn>���>s1>s

dsn…ds1½−iGðs1;t0Þ�…½−iGðsn;t0Þ�¼
X∞
k¼0

ð−1Þk
k!

ðt−sÞkF kðt;t0Þ:

ðB7Þ

We obtain the explicit general form of all coefficients:

Fn
p1…pn

¼ ðnþP
ipiÞ!Q

ipi!
Q

n−1
i¼0 ½

P
i
j¼0 pn−j�

ðB8aÞ

¼
Yn−1
i¼1

�
pn−i þ

P
i−1
j¼1ðpn−j þ 1Þ
pn−i

�
ðB8bÞ

¼
Yn−1
i¼1

F2
pi−1;piþ���þpnþðn−iÞ: ðB8cÞ

The factorization (B8b) into binomials shows that all
coefficients are in fact integers. Using the form (B8c)
one verifies [141] that the coefficients are indeed the
solutions to the recursion relations (B6). With Gðt; t0Þ ¼R
t
t0
dsKðt; sÞΠðs; tjt0Þ this establishes that the laborious

determination of the coefficients and subsequent summation
of the memory expansion (B1b) envisaged in Refs. [37,38]
ultimately leads to our general functional fixed-point equa-
tion (10). Our derivation of this self-consistent equation in
the main text circumvents all above complications by
immediately identifying the divisor in Eq. (8). However,
even if one is interested in generating memory expansions,
our approach (B7) via the divisor is far simpler.
Noting the special coefficient values Fn

0…0 ¼ 1 we see
that F k ¼ ½−iG�kþ (terms involving at least one time
derivative of G). Thus in the stationary limit where
limt0→−∞ ∂k

tGðt; t0Þ ¼ 0 and limt0→−∞ Gðt; t0Þ ¼ Gð∞Þ,

Πðs − tj −∞Þ ¼
X∞
k¼0

ð−1Þk
k!

ðt − sÞk½−iGð∞Þ�k

¼ eiGð∞Þðt−sÞ: ðB9Þ

Inserted into Gð∞Þ ¼ R
∞
0 dsKðt − sÞΠðs − tj −∞Þ, we

thus also directly recover our stationary fixed-point equa-
tion (15) for time-translational systems, Kðt; sÞ ¼ Kðt − sÞ,
by explicit summation of the stationary memory expansion.
This is the specific expansion studied in Refs. [37,38].

APPENDIX C: RELATION OF TIME-LOCAL
GENERATOR AND GRADIENT OR MOYAL
EXPANSION OF TIME-NONLOCAL QME

The memory expansion (B1b) implies that the generator
of the time-local QME ðd=dtÞΠðt; t0Þ ¼ −iGðt; t0ÞΠðt; t0Þ
may be written as a gradient expansion,

Gðt;t0Þ¼
X∞
k¼0

ð−1Þk
k!

�Z
t

t0

dsKðt;sÞðt−sÞk
�
F kðt;t0Þ

¼
X∞
k¼0

1

k!

� ∂k

ð−i∂ωÞk K̂ðω;t;t0Þ
�����

ω¼0

F kðt;t0Þ; ðC1Þ

with frequency derivatives of the Laplace-like integral trans-
form K̂ðω; t; t0Þ ≔

R t−t0
0 dseiωsKðt; t − sÞ of the memory

kernel (“finite-time Laplace transform”). Since F kðt; t0Þ ≔
½∂k

tΠðt; t0Þ�Πðt; t0Þ−1 ¼ fðG;…; ∂k−1
t GÞ has no simple

structure as function of k [Eq. (B5)], it is not clear how
the series can be summed, not even formally. This reflects
that it arises from the nontrivial anti-time-ordered exponen-
tial (B7). If one instead considers its action on Πðt; t0Þ,

d
dt
Πðt;t0Þ¼−i

X∞
k¼0

ð−1Þk
k!

�Z
t

t0

dsKðt;sÞðt−sÞk
�
∂k
tΠðt;t0Þ

¼−i
X∞
k¼0

1

k!

� ∂k

ð−i∂ωÞk K̂ðω;t;t0Þ
�����

ω¼0

∂k
tΠðt;t0Þ;

ðC2Þ

then the series can be formally summed to give a nonlinear
time-frequency-domain differential operator. Its action on
superoperator functions of t must coincide with the linear
action of Gðt; t0Þ on the superoperator evaluated at t:

K̂ðω;t;t0Þeið∂⃖=∂ωÞð∂⃗=∂tÞjω¼0Πðt;t0Þ¼Gðt;t0ÞΠðt;t0Þ: ðC3Þ

Thus, Gðt; t0Þ here plays the role of a (superoperator-valued)
eigenvalue of this time-domain differential operator. This
differential operator is constructed as frequency-domain
differential operator acting to the left on the memory kernel
transform K̂ðω; t; t0Þ. The above follows the well-known
Moyal approach [76,77] to quantum physics of closed
systems, where one enforces locality at the price of intro-
ducing position- and momentum-space differential operators
acting both to the right and to the left. Its extension to the
time-nonlocal evolution of open systems within the density-
operator approach is thus closely related to the time-con-
volutionless approach based on the time-local equation (2).
Clearly, this formal relation between the generator and

the memory kernel is easily written down. However, our
functional fixed-point result (10) goes beyond this by
explicitly expressing the action of the time-domain differ-
ential operator on the left-hand side of Eq. (C3), evaluating
∂k
tΠðt; t0Þ ¼ F kðt; t0ÞΠðt; t0Þ [Eq. (B5)], and summing the
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series to an anti-time-ordered exponential in terms of
Gðt; t0Þ. This is demonstrated by Eq. (B7) read in reverse
order. As the main text shows, this makes the fixed-point
relation a powerful analytical and numerical tool.
For time-translational systems, Kðt; sÞ ¼ Kðt − sÞ, tak-

ing the stationary limit leads to the simplification
limt0→−∞F kðt; t0Þ ¼ ½−iGð∞Þ�k, giving

Gð∞Þ ¼
X∞
k¼0

ð−1Þk
k!

�Z
t

−∞
dsKðt − sÞðt − sÞk

�
½−iGð∞Þ�k

¼
X∞
k¼0

1

k!

� ∂k

∂ωk K̂ðωÞ
�����

ω¼0

Gð∞Þk; ðC4Þ

with frequency derivatives of the Laplace-transformed
memory kernel K̂ðωÞ ¼ R

∞
0 dsKðsÞeisω. In this case, the

gradient expansion can be summed to give an alternative
expression for our stationary fixed-point relation (15):

K̂ðωÞeð∂⃖=∂ωÞGð∞Þjω¼0 ¼ Gð∞Þ: ðC5Þ

This gives a nonlinear differential operator acting to the left on
superoperator functions ofω and is a mere formal expression
of our stationary fixed-point equation (15), K̂(Gð∞Þ)≔R
t
−∞dsKðt−sÞeiGð∞Þðt−sÞ. Equation (C5) extends the shift
property for ordinary Laplace transforms, eð∂=∂ωÞΔf̂ðωÞ ¼
f̂ðωþ ΔÞ, to our result (16) with superoperator-valued
frequency argument Δ ¼ Gð∞Þ. To ensure that the memory
kernel generates a trace-preserving evolution [Eq. (12)], the
frequency derivatives must stand on the right and therefore
need to act to the left to accomplish the shift.
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