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We study thermoelectric currents of neutral, fermionic atoms flowing through a mesoscopic channel
connecting a hot and a cold reservoir across the superfluid transition. The thermoelectric response results
from a competition between density-driven diffusion from the cold to the hot reservoir and the channel
favoring transport of energetic particles from hot to cold. We control the relative strength of both
contributions to the thermoelectric response using an external optical potential in a nearly noninteracting
and a strongly interacting system. Without interactions, the magnitude of the particle current can be tuned
over a broad range but is restricted to flow from hot to cold in our parameter regime. Strikingly, strong
interparticle interactions additionally reverse the direction of the current. We quantitatively model ab initio
the noninteracting observations and qualitatively explain the interaction-assisted reversal by the reduction
of entropy transport due to pairing correlations. Our work paves the way to studying the coupling of spin
and heat in strongly correlated matter using spin-dependent optical techniques with cold atoms.
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I. INTRODUCTION

Transport of charge, heat, and spin are often coupled in
nature. Their interplay enriches the dynamical response of
materials leading to coupled transport phenomena such as
thermoelectricity [1] and, along conceptually similar lines,
spintronics [2] and spin caloritronics [3]. Thermoelectricity
includes two major observations where an applied temper-
ature gradient can induce a charge current (Seebeck effect)
or an external voltage can give rise to a heat current (Peltier
effect). Besides their widespread practical applications,
both are essential to probe fundamental physics. In par-
ticular, studies of these effects in strongly correlated
materials have allowed researchers to identify relevant
charge carriers [4–6] and degrees of freedom [7], which
have been proposed to characterize exotic states such as
Majorana modes or anyons [8].
Microscopically, thermoelectric currents in conventional

materials originate from an electron-hole asymmetry cre-
ated by an energy-dependent density of states and carrier
velocity. In the case of a temperature gradient, for instance,

this asymmetry can favor the transport of high-energy
particles from the hot side over the transport of low-energy
particles from the cold side. This imbalance results in a net
carrier flow whose magnitude increases with asymmetry.
In solid-state systems, several techniques have been

explored to engineer the thermoelectric response. First,
the energy dependence of the density of states can be
enhanced by reducing the number of free dimensions [9,10]
and using electrostatic gate potentials in low-dimensional
structures such as quantum wires [11], point contacts [12],
and dots [13]. Furthermore, the thermoelectric response can
be strongly modified by electron interactions as observed in
quantum dots [13] and two-dimensional electron gases
[14]. However, the interpretation of the thermoelectric
response in solids is complicated by interactions of the
carriers with impurities, defects, and phonons.
Because of the absence of these factors, ultracold atoms

are well suited to simulate the relevant physics of real
materials. In addition, Feshbach resonances allow one to
study the same system across a large range of interaction
strengths under comparable conditions. These merits have
facilitated experiments on transport phenomena in strongly
interacting Fermi gases, including viscous flow [15], spin
diffusion [16,17], sound propagation [18,19], and heat
transport in the form of second sound [20].
As these experiments focused on bulk material proper-

ties, they lacked the tunability of mesoscopic systems;
however, recent work in optically shaping bulk gases made
it possible to create mesoscopic cold atom “devices”
comparable to their solid-state counterparts [21–29].
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In particular, thermoelectric phenomena were explored in
these mesoscopic structures, focusing on either weak [30]
or strong [31] interactions. Here, we exploit the ability to
compare both interaction regimes in the same structure and,
by extending the accessible range of gate potentials,
observe a striking reversal of the thermoelectric current
directly induced by interactions. This reversal is a novel
effect in cold atoms and, to our knowledge, also in strongly
correlated solid materials. With the gate, we can finely tune
the particle-hole asymmetry at the origin of the thermo-
electric current and thereby engineer both its magnitude
and direction. We can therefore smoothly turn our system
from a heat engine into a heat pump, the latter being an
important ingredient for an efficient cooling scheme pro-
posed for cold atoms [32].
For weak interactions, the thermoelectric response can

be predicted by an ab initio Landauer model thanks to the
absence of defects and precise characterization of our
system. With strong interactions, we focus on temperatures
around the superfluid transition where a large critical region
is predicted [33] and Fermi liquid behavior breaks down
[34]. Although the strongly correlated regime is often
challenging to understand, we interpret our observation
on a fairly fundamental level based on entropy transport.
Other works have studied theoretically thermoelectric
effects with cold atoms for bosonic [35–39] and fermionic
[40–42] systems.
The structure of the paper is as follows. After introducing

the setup in Sec. II, we explain its thermoelectric response
with an intuitive picture (Sec. III) and discuss the dynamics
in the noninteracting and strongly interacting regimes
(Sec. IV). Based on a phenomenological model presented
in Sec. V, we extract transport properties and discuss their
behaviors in Secs. VI and VII. Finally, we conclude in
Sec. VIII. Technical details can be found in the Appendixes.

II. SETUP

Our transport setup consists of a mesoscopic channel
smoothly connected to reservoirs of degenerate fermions
(6Li), as sketched in Fig. 1(a) and described in previous
works [22,43]. The channel is created by a repulsive TEM01-
like laser beam that confines the atoms along the z direction
to its dark nodal plane, reaching a trapping frequency
νcz ¼ 4.5ð8Þ kHz at the center. Its Gaussian envelope in
the longitudinal direction (y) ensures the smooth connection
of the channel and reservoirs. In the xdirection, the atoms are
restricted by the dipole trap, providing a weak confinement
with frequency νtx ¼ 232ð1Þ Hz.
The reservoirs, denoted by left (L) and right (R), contain

equal atom numbers, with N ¼ NL þ NR ¼ 121ð2Þ × 103

atoms in each of the two lowest hyperfine states. To prepare
a temperature difference, we heat one side by parametri-
cally modulating the intensity of an attractive beam inside
one reservoir while blocking the channel. Subsequent
equilibration of each reservoir leads to a temperature

difference ΔT ¼ TL − TR ¼ 147ð11Þ nK and an average
value T̄ ¼ ðTL þ TRÞ=2 ¼ 208ð6Þ nK. After reconnecting
the reservoirs, they exchange particles and heat through
transverse modes of the channel. Their energy is controlled
by one of the two gate beams,where one is repulsive (Vg > 0)
and the other attractive (Vg < 0) [Fig. 1(a)]. By tuning the
gate, the number of available modes below the chemical
potential μ̄ ¼ ðμL þ μRÞ=2 ¼ 151ð16Þ nK reaches up to 40
with 4 occupied states in the tightly confined z direction
making the channel quasi–two dimensional [44]. Note that
nonzero temperature leads to a partial occupation of modes at
energies above the chemical potential, which also contribute
to transport.
Using a broad Feshbach resonance of 6Li, we set the

interparticle interactions in the entire system, including the
channel and the reservoirs, either close to zero (noninter-
acting) or on resonance (unitarity). Subsequently, we
enable transport for a variable time t and measure the
differences in atom numbers ΔNðtÞ and temperature ΔTðtÞ
from an absorption image. The initial conditions stated
above correspond to the noninteracting case and are given
for the unitary case in Appendix A, together with additional
experimental details.

III. INTUITIVE LANDAUER PICTURE

In the absence of interactions, the response can be
understood in a Landauer picture [Fig. 1(b)]. The total
thermoelectric current is a result of two competing effects
that favor particle currents in opposite directions. (i) Since
the atom numbers are equal in each reservoir, the chemical
potential difference only depends on the difference in
temperatures. Increasing temperature lowers the chemical
potential as a result of the particle-hole asymmetry of the
reservoir density of states around the Fermi energy. This
reservoir asymmetry prefers particle currents from the cold
to the hot side. (ii) In order to be transferred from one
reservoir to the other, a particle of energy E will transit via
one of the transverse modes available in the channel,
counted by the transport function ΦðEÞ. The higher the
energy, the more modes available, leading to a faster
transfer of energetic particles. This channel asymmetry
favors currents from the hot to the cold reservoir since the
hot reservoir has an excess of energetic particles compared
to the cold side.
The channel asymmetry is controlled by the gate

potential inside the channel as intuitively illustrated in
Fig. 1(b): For the repulsive case, Vg > 0, the channel
predominantly allows transport of the most energetic
particles present in the hot reservoir. Hence, the net current
flows from hot to cold. As the gate potential is made
increasingly attractive, particles from the cold reservoir
start to contribute and reduce the net current until it
vanishes. The precise gate potential where the cancellation
happens depends on the initial reservoir conditions and on
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the transport function ΦðEÞ. At sufficiently attractive gate
potentials, Vg < 0, almost all particle energies contribute,
and their direction from cold to hot is purely defined by the
chemical potential gradient. We expect the intuitive picture
to also be valid for weak interactions, as it applies to
Landau quasiparticles.

IV. SYSTEM DYNAMICS

Figure 2(a) presents the experimental evolution of the atom
number and temperature difference of a noninteracting Fermi
gas subject to an initial temperature gradient for different gate

strengths. Because of the combined effect of the asymmetries
of the reservoirs and the channel, particles flow from thehot to
the cold side and build up a negative difference in atom
numbers, ΔN ¼ NL − NR. Simultaneously, a heat flow
drives the temperatures towards equilibrium, thus weakening
the thermoelectric current. The particle number difference
that builds up induces diffusion that flows against the
thermoelectric current, and it vanishes at the turning point.
Subsequently, diffusion brings the system to equilibrium.
This evolution occurs for all gate potentials, except the most
attractive one, Vg ¼ −1.06 μK, where the thermoelectric
current vanishes. The observed influence of the gate agrees
with the intuitive Landauer picture. For more attractive pote-
ntials, more transverse modes, counted by the functionΦðEÞ,
open up and permit a faster relaxation. Moreover, the
initial response reduces as quantified by the initial particle
current INð0Þ in the inset (Appendix B 2). The current is
normalized with the initial bias ΔT0 to remove variations in
the preparation, and it is plotted versus local chemical
potential μloc at the channel center (Appendix D).
The measurements at strong interactions are presented in

Fig. 2(b). As for the noninteracting case, the initial temper-
ature bias is converted into a particle number difference,
and it eventually relaxes back to equilibrium. In contrast,
the initial and relaxation dynamics with interactions are
about 3 times faster, and the normalized initial currents are
enhanced. This result is a consequence of the gate tuning
not only the available number of modes but also the density
inside the channel. Thus, from repulsive to attractive gate
potentials, the gas becomes denser and is expected to
eventually cross the superfluid transition in the channel at
μloc ¼ 0.428 μK (dashed line in inset); see Appendix B 4
and Ref. [47]. The combined effect of interactions
and attractive gate potential is visible in the blue curve
in Fig. 2(b), showing the fast dynamics.
Strikingly, near the critical point, the net initial current

reverses its direction from hot to cold (channel dominated)
to cold to hot (reservoir dominated), while this effect is
absent for an ideal gas in the same parameter regime. In
principle, the reversal may also be achieved without
interactions as predicted from the Landauer picture and
is expected to occur for more attractive gate potentials.
However, stronger attractive gates would induce atom
losses, which prevent the observation of current reversal.
Contrary to the present work, the current was flowing

only in one direction in previous experiments: from hot to
cold for a noninteracting, two-dimensional gas in the
absence of a gate [30], or from cold to hot in the strongly
interacting, quasi-one-dimensional case [31].
As the assumption of a Fermi liquid underlying the

Landauer picture breaks down at unitarity, we employ a
phenomenological model that captures the transport prop-
erties irrespective of the interaction strength. Based on the
model, we reason in Sec. VI why the reversal occurs with
interactions.

(a)

(b)

FIG. 1. Concept and experimental setup. (a) Schematic view of
a quasi-two-dimensional channel connected to a hot (red) and a
cold (blue) reservoir of fermionic atoms. Their unequal temper-
atures TL and TR induce a net particle current that changes the
initially equal atom numbers NL and NR over time. The
thermoelectric response is tuned by a gate potential Vg inside
the channel that is either attractive (red) or repulsive (green).
(b) Roles of the reservoirs and channel in thermoelectric transport.
The reservoirs inject particles into the channel according to their
occupations described by the Fermi-Dirac distributions fLðEÞ
and fRðEÞ. As the hot (cold) side contains more particles at
high (low) energies compared to the other side (dotted regions),
two counterpropagating currents at different energies emerge
(horizontal arrows). At equal atom numbers, the chemical
potential μL in the hot reservoir is lower than μR on the cold
side, introducing an asymmetry between them. A particle at
energyE crosses the channel in one of theΦðEÞ transverse modes.
The energy dependence of their number (shaded regions) in-
troduces an asymmetry in the channel. The gate potential
energetically shifts the modes up (Vg > 0) or down (Vg < 0),
allowing us to tune the response. The picture is valid for weak
interactions, as it also applies to Landau quasiparticles.
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V. PHENOMENOLOGICAL MODEL

To extract transport properties from the time evolutions,
we apply a phenomenological model in linear response. It
relates currents of particles IN and entropy IS to the
differences in chemical potential Δμ and temperature ΔT
[48,49],

�
IN
IS

�
¼ G

�
1 αc

αc Lþ α2c

�� Δμ
ΔT

�
: ð1Þ

As a consequence of the Onsager reciprocal relations, the
channel properties are described by only three coefficients:
the particle conductance G, the heat conductance GT , and
the Seebeck coefficient or thermopower αc. The thermo-
power quantifies the coupling between particle and entropy
currents, and the Lorenz number L ¼ GT=T̄Gmeasures the
relative strength of particle and heat conductances.
Thermopower is essential to understand how the com-

peting asymmetries of the reservoirs and the channel appear
in the model. At the initial time, the reservoir asymmetry

(a) (b)

FIG. 2. Tuning the thermoelectric response. Temporal evolution of the differences in atom number ΔN ¼ NL − NR and temperature
ΔT ¼ TL − TR between the reservoirs of (a) a noninteracting and (b) a strongly interacting Fermi gas at different gate potentials Vg.
Each data point represents a mean over about five repetitions, and error bars show one standard deviation. Lines indicate fits with a
phenomenological model involving the transport parameters conductance G, thermopower αc, and Lorenz number L (Sec. V). For all
estimations, conductance is fixed by a separate measurement (solid lines), except for the dashed line, as it failed to converge otherwise.
Insets: Initial particle current INð0Þ normalized to the prepared temperature difference ΔT0 versus local chemical potential μloc at the
channel center. In the strongly interacting regime, the vertical dashed line shows the superfluid transition inside the channel while the
reservoirs remain uncondensed (Appendix B 4).
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translates a difference in temperature ΔT0 to a difference in
chemical potential Δμ ¼ −αrΔT0 described by the dilata-
tion coefficient αr ¼ −ð∂μ=∂TÞN . Together with Eq. (1),
the initial response is

INð0Þ ¼ GαΔT0; ð2Þ

where the effective thermopower α ¼ αc − αr determines
the outcome of the competition between the asymmetries of
the channel and the reservoirs, captured by αc and αr,
respectively.
At strong interactions and lowest temperatures, this

phenomenological model is expected to fail due to non-
linearities caused by superfluid effects in the reservoirs
[50]. However, at our elevated temperatures, it captures the
behavior well, as observed in Ref. [31].
The transfer of particles and entropy between the reser-

voirs via the associated currents INðtÞ ¼ −∂tΔNðtÞ=2 and
ISðtÞ ¼ −∂tΔSðtÞ=2 modifies the chemical potential and
temperature describing each reservoir and, in turn, the
currents. Together with the equation of state in each
reservoir, the dynamics are captured by a system of coupled
differential equations. Their solution governs how the system
evolves from the initial conditions ΔN0 and ΔT0 towards
equilibrium [48] (Appendix B 2),

ΔNðtÞ ¼ feþðtÞ þ Ae−ðtÞgΔN0 þ Be−ðtÞΔT0; ð3Þ

ΔTðtÞ ¼ feþðtÞ − Ae−ðtÞgΔT0 þ Ce−ðtÞΔN0; ð4Þ

with e�ðtÞ ¼ ðe−t=τþ � e−t=τ−Þ=2 and the exponential time-
scales τ�. Both timescales and the coefficients A, B, and C
depend on the transport properties conductance G, thermo-
power αc, and Lorenz number L, and on the thermodynam-
ical properties of the reservoirs through compressibility, heat
capacity, and dilatation coefficient αr. The values of the
reservoir properties are taken from the measurement
(Appendix B 1 c).
We directly extract the transport coefficients from the

transients by fitting ΔNðtÞ and ΔTðtÞ simultaneously,
normalized by their statistical uncertainty. To improve
accuracy, we reduce the number of free parameters by
fixing the conductance to a separately measured value
(Appendix B 3). The fits are shown as lines in Fig. 2. For
the dashed curve, conductance was left as a free parameter
as it failed to converge otherwise. We discuss the deter-
mined transport coefficients in the subsequent chapters.
A conceptually different approach to extract transport

coefficients is used in our previous work [31]. Instead of
utilizing the entire evolutions in ΔNðtÞ and ΔTðtÞ, the
method focuses on the turning points in ΔNðtÞ where the
particle current vanishes. There, for example, the thermo-
power αc ¼ −Δμ=ΔT is the ratio between the differences
in chemical potential and temperature [Eq. (1)]. Similarly,
the heat conductance GT ¼ T̄IS=ΔT follows by extracting

the instantaneous entropy current IS via a numerical
derivative of ΔSðtÞ. Therefore, since we measure entire
evolutions, it is more natural to fit them directly.

VI. THERMOPOWER

We first discuss conductance and then present and analyze
the results for thermopower. Figures 3(a) and 3(b) display the
measured conductances versus local chemical potential μloc
in the noninteracting (dark blue) and strongly interacting
(orange) regimes. Conductance is increased by interactions,
as previously observed [43], and is a factor of 13(1) larger
at the most attractive gate strength [Fig. 3(b)]. In the
noninteracting regime, the solid line represents an ab initio
prediction that reproduces the measurement well. The model
is based on Landauer’s theory, which follows the idea that
both reservoirs inject particles according to their occupations,
and the channel transmits them in one of the available modes
[51] [Fig. 1(b) and Appendix E]. The light-blue open circle
indicates the fitted conductance corresponding to the dashed

(a)

(c)

(b)

FIG. 3. Controlling thermopower with a gate potential. (a,b)
Conductance G versus local chemical potential μloc in the
(a) noninteracting and (b) strongly interacting regimes. Separately
measured values are indicated as dark points (Appendix B 3),
and the light-blue open circle shows the fitted conductance
corresponding to the dashed curve in Fig. 2(a). (c) Fitted thermo-
power αc without (blue points) and with strong (orange points)
interparticle interactions and the corresponding dilatation coef-
ficients αr of the reservoirs (horizontal lines). Shaded regions
indicate one standard deviation to each side. Solid black lines show
an ab initio prediction based on Landauer theory in the absence of
interactions (Appendix E). The vertical dashed line locates the
superfluid transition inside the channel, while the reservoirs
remain uncondensed (Appendix B 4). No measurement was taken
at μloc ∼ 0.4 μK in the noninteracting case.
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curve in Fig. 2(a) and is consistently higher than the model
and the separate measurement (dark blue point).
The behavior of the thermopower is summarized in

Fig. 3(c). In the noninteracting regime, the thermopower αc
of the channel (blue points) reduces with increasing local
chemical potential towards the dilatation coefficient αr
(horizontal blue line). As expected, the reduction originates
from a suppression of the channel asymmetry with more
attractive gate strengths, as illustrated in Landauer’s pic-
ture. Moreover, the dilatation coefficient is a property of the
reservoirs and thus unaffected by the gate that locally acts
on the channel. The Landauer prediction is indicated as a
solid black curve and reproduces well the extracted thermo-
power in the noninteracting case, except for the most
attractive gate strength (μloc ¼ 1.1 μK). Theoretically, the
reversal of the thermoelectric current is anticipated
(αc < αr), while experimentally it is absent (αc ≳ αr),
which might originate from the detailed shape of the
confining potential not captured in the theory, such as
anharmonicities. Overall, the tunability of the thermopower
in the noninteracting regime demonstrates almost full
control of the thermoelectric response. In contrast, at
unitarity, the thermopower αc becomes smaller than the
dilatation coefficient αr for sufficiently attractive gate
potentials, and additionally, αr and αc are reduced com-
pared to the noninteracting case.
The interaction-assisted reduction and reversal can be

qualitatively understood from an interpretation based on
entropy. On the one hand, the role of the reservoirs is
captured by the dilatation coefficient, which can be
expressed as the entropy content to add a particle iso-
thermally, αr ¼ ð∂S=∂NÞT . On the other hand, rewriting
Eq. (1) as

IS ¼ αcIN þGT
ΔT
T̄

ð5Þ

allows for reinterpreting the thermopower of the channel as
the average entropy that is reversibly transported by one
particle, while the second term captures the irreversible
entropy exchange between the reservoirs. At unitarity,
pairing correlations reduce the entropy in the spin sector
and account for the decrease of αc and αr compared to the
noninteracting case, as visible in Fig. 3(c) and in Ref. [47].
Because the attractive gate increases the density and
therefore the interaction effects at the center, we expect
further reduction of the thermopower αc.
This argument suggests a way to estimate where the

current reverses in the presence of interactions. Since the
interparticle collision rate is enhanced at unitarity, we
assume the gas to be locally in equilibrium at the
center (Appendix C). This allows us to think of
the thermopower αc as the dilatation coefficient inside
the channel at temperature T̄ and chemical potential μloc
leading to a reversal expected at μloc ∼ −0.1 μK. The value

is relatively close to the observed location despite the
simplicity of the estimation and the neglect of the trans-
verse mode structure.

VII. LORENZ NUMBER

The Lorenz number L ¼ GT=T̄G compares the ability of
systems to conduct heat and particles and indicates whether
Fermi liquid behavior is present. In this case, transport
is described by Landau quasiparticles that carry both
charge and energy, leading to a constant Lorenz number,
LWF ¼ π2=3 · k2B, which is known as the Wiedemann-
Franz law.
Figure 4 displays the fitted Lorenz number versus local

chemical potential in the noninteracting (blue dots) and
strongly interacting (orange dots) cases. Without inter-
actions, the extracted values are consistently higher than
LWF and also higher than the Landauer theory (solid line).
The theory considers our mesoscopic geometry at finite
temperature and approaches LWF with increasing degen-
eracy. Deviations from the Wiedemann-Franz law are
found in other systems with either increased [52] or
decreased [53–55] numbers. Here, we partly attribute the
inconsistency to small systematic shifts in the measured
temperature difference, which mostly affect the Lorenz
number (Appendix B 3).
Despite the challenging absolute estimation, the Lorenz

number is reduced by one order of magnitude when
increasing the interactions to unitarity. As the fitted heat
conductance is relatively insensitive to the interaction
strength, this decrease can be mostly attributed to the
enhancement of the conductance seen in Figs. 3(a) and
3(b). Also, the smaller uncertainties on the Lorenz number

FIG. 4. Lorenz number L versus local chemical potential μloc at
the channel center. Fitted values in the noninteracting and
strongly interacting regimes are shown as blue and orange points,
respectively. The theoretical prediction based on Landauer theory
is indicated by a solid black curve (Appendix E), and the
Wiedemann-Franz value LWF ¼ π2=3 · k2B valid for degenerate
Fermi liquids is shown by a blue horizontal line. In the strongly
interacting case, the vertical dashed line locates the superfluid
transition inside the channel, while the reservoirs remain uncon-
densed (Appendix B 4).
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stem from the enhanced conductances and give us
confidence in thinking that the Wiedemann-Franz
law is violated here, as experimentally observed in a one-
dimensional geometry [31] and theoretically supported in
Refs. [41,42].

VIII. DISCUSSION

Mesoscopic transport properties are influenced by the
geometry of the structure [56]; thus, it is instructive to
compare our findings at unitarity with a one-dimensional
channel measured in similar conditions [31]. There, the
narrow geometry blocked irreversible heat currents,
leading to a nonequilibrium steady state with a finite
temperature difference. Relaxation was restored by widen-
ing the channel, thanks to an enhanced heat exchange.
This finding agrees with our results for a wide quasi-two-
dimensional channel, where we observe relaxation to
equilibrium and a heat conductance that is similar to
the noninteracting case. In both works, the Lorenz number
is reduced with interactions by an order of magnitude.
However, the reasons are different: In Ref. [31], it stems
from a reduced heat conductance, while here it is almost
purely an effect of enhanced particle conductance. Thermo-
power is reduced by interactions in our wide, quasi-
two-dimensional geometry as qualitatively explained by
pairing correlations that restrict average entropy transfer
per particle. In contrast, in the quasi-one-dimensional
channel, it shows the surprising behavior of following
the noninteracting prediction, which so far has eluded
any explanation [41].
In summary, we control the magnitude and direction of

thermoelectric currents through a mesoscopic structure in
the presence of weak and strong interparticle interactions.
In our parameter regime at weak interactions, particles
are flowing consistently in one direction, while at unitar-
ity, we observe a striking interaction-assisted reversal. We
explain the reversal by a competition of reservoir and
channel parameters, which are affected by pairing corre-
lations that are expected in the large critical region around
the superfluid transition [33]. Indeed, the reversal occurs
before the normal-to-superfluid transition, and its precise
location depends on the geometry of the system and the
reservoir conditions via thermopower and the dilatation
coefficient. Unitary Fermi gases are not the only system
where thermopower can be affected by interactions: In a
two-dimensional Bose gas, the Seebeck coefficient
changes its sign close to the superfluid transition [57],
and in two-dimensional electron gases, interactions are
predicted to reduce the thermopower and potentially
reverse its sign [58].
The option to induce thermoelectric currents in either

direction is appealing when considering our dynamics as an
open thermodynamic cycle. In our system, an atomic flow
from hot to cold acts against the chemical potential bias and
converts heat into work as a thermoelectric engine. Inversely,

the system acts as a thermoelectric cooler when the flow
transfers heat from cold to hot. The initial direction of the
current therefore determines which mode of operation takes
place before the other: a thermoelectric engine in the
channel-dominated regime or a cooler in the reservoir-
dominated regime. In both modes, the conversion efficiency
of the cycles is characterized by the figure of merit ZT ¼
α2c=L [49]. Contrary to a noninteracting system, interactions
strongly reduce the Lorenz number while thermopower
remains at a similar order of magnitude. Overall, we estimate
that interactions improve the figure of merit by a factor of
7(3), showing the relevance of strongly correlated quantum
materials for thermoelectric applications.
Our system readily allows us to probe the thermoelectric

response of more complicated structures. Drawing from the
technique to imprint local effective Zeeman shifts [59], it
opens new perspectives on coupling spin and heat transport
[3]. By adding strong correlations, intriguing thermoelec-
tric effects could be observed [60,61].

ACKNOWLEDGMENTS

We thank Thierry Giamarchi, Leonid Glazman, René
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APPENDIX A: EXPERIMENTAL DETAILS

A cloud of fermionic lithium atoms is prepared in a
balanced mixture of the two lowest hyperfine states in a
hybrid trap. In the transverse directions (x, z), the trap is
formed by a far-detuned laser beam at a wavelength of
1064 nm and longitudinally (y) by a quadratic magnetic
field. We evaporatively cool the elongated cloud by
reducing the transverse confinement either on a broad
Feshbach resonance at 832 G when preparing a unitary
gas or at 431 G when preparing a noninteracting gas.
Subsequently, the magnetic field is kept on resonance or
ramped to 568 G, where the scattering length reaches 173a0
as expressed with Bohr’s radius a0. The small and nonzero
scattering length ensures that the reservoirs are thermalized
in the nearly noninteracting regime. Moreover, the transport
properties at these weak interactions are expected to be
equal to the noninteracting case, as previously found in
Ref. [25]. Finally, the optical trap is recompressed,
leading to the confinement frequencies during transport
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νtx ¼ 232ð1Þ Hz and νtz ¼ 212ð1Þ Hz in the transverse
direction and longitudinally νty of 26.6(2) Hz in the
noninteracting case and 32.2(2) Hz at unitarity.
The transport channel is imprinted by a repulsive laser

beam at 532 nm, which is shaped by a 0-π phase plate into a
TEM01 mode and focused onto the center of the cloud. This
compresses the cloud in the vertical z direction, resulting in
a harmonic confinement of νcz ¼ 4.5ð8Þ kHz. Its 1=e2

waists are, in the longitudinal direction, wcy ¼ 30.2 μm
and, transversally, wcz ¼ 9.5 μm.
We prepare the initial conditions of the two reservoirs in

two steps. First, the cloud is centered on the transport
channel using a magnetic gradient to make the atom
numbers on both sides equal; then, we split the reservoirs
with an elliptical repulsive laser beam. Second, a temper-
ature difference is created by heating one side with a red-
detuned beam at 767 nm focused into one reservoir and
modulating its intensity parametrically. The experimentally
optimized modulation frequency is 547 Hz, which is on the
order of the transverse confinement frequencies νtx and νtz.
The beam position is controlled with a piezo-mirror and can
be directed into either reservoir. After letting the reservoirs
thermalize for 10 ms, we reach the initial conditions
reported in Table I.
The attractive gate potential is created with the same

beam used for heating and requires a careful alignment onto
the channel center. Its waists are wgx ¼ 34.3ð2Þ μm and
wgy ¼ 33.5ð2Þ μm. The repulsive one is formed by an
elliptical beam at 532 nm that is focused onto our channel
with waist wgx ¼ 53.66ð3Þ μm in the transversal direction,
and along the transport wgy ¼ 8.58ð3Þ μm. Besides acting
as a gate, the same beam enables and blocks transport at
large powers in a controlled way. After the time t, the
reservoirs are again separated, and an absorption picture is
taken after a short time of flight of 1 ms. This reduces the
central densities and allows us to image with intensities
well below saturation. From the absorption image, we
extract the thermodynamical properties as described in
Appendix B 1 c.

APPENDIX B: DATA ANALYSIS

1. Thermodynamics

Throughout this Appendix, the equations of state of a
noninteracting and unitary Fermi gas are used in the
homogeneous and trapped cases. This section summarizes
the relevant thermodynamical relations.

a. Homogeneous unitary Fermi gas

The universality hypothesis states that the homogeneous
unitary Fermi gas is described by the interatomic distance
and the thermal wavelength only [62]. This restricts the
equation of state to the form [63]

nλ3T ¼ fnðqÞ; ðB1Þ

with the particle density n, the thermal wavelength
λT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=mkBT

p
, and the dimensionless function fn

depending on the reduced chemical potential q ¼ βμ. The
scaling function fn was measured around the superfluid
transition [47] and theoretically extended in the degenerate
and thermal limits with a phonon model and a third order
virial expansion, respectively [63,64]. Using the equation
of state, the normalized temperature is given as

T
TF

¼
�

4

3
ffiffiffi
π

p
fnðqÞ

�
2=3

; ðB2Þ

with the Fermi energy EF ¼ kBTF ¼ ℏ2=ð2mÞð6π2nÞ2=3
[63]. This result links the normalized temperature T=TF
and the chemical potential μ=EF ¼ T=TF · q to each other.
Below the critical temperature Tc ¼ 0.167 TF, the gas
becomes superfluid as observed in Ref. [47].

b. Harmonically trapped Fermi gas

In a harmonic trap, the equilibrium properties are captured
by the geometric mean ν̄ ¼ ðνxνyνzÞ1=3 of the confinement
frequencies, the Fermi energy EF ¼ hν̄ð6NÞ1=3, and the
reduced chemical potential q0 ¼ βμ0 at the trap center. For
our work, the total atom number N in each hyperfine state,
the compressibility κ ¼ ð∂N=∂μÞT, the dilatation coefficient
αr ¼ −ð∂μ=∂TÞN , the specific heat CN ¼ Tð∂S=∂TÞN at
fixed atom number, and the internal energy U are relevant.
Following Ref. [66], they are given in the noninteracting
case by

N ¼
�
kBT
hν̄

�
3

F2ðq0Þ; ðB3Þ

κ

N
¼ 1

kBT
F1ðq0Þ
F2ðq0Þ

; ðB4Þ

αr
kB

¼ 3
F2ðq0Þ
F1ðq0Þ

− q0; ðB5Þ

TABLE I. Reservoir conditions for measuring thermoelectricity
in the noninteracting and strongly interacting regimes. The values
are averaged over the realizations at different gate potentials, and
their uncertainties indicate one standard deviation.

Quantity Noninteracting Unitary

N (103) 121(2) 107(4)

TL (nK) 281(8) 220(5)
TR (nK) 134(7) 129(3)

μL (kB nK) −43ð27Þ 65(13)
μR (kB nK) 344(12) 238(8)

T̄ (nK) 208(6) 174(2)
μ̄ (kB nK) 151(16) 152(9)

ΔT (nK) 147(11) 90(7)
Δμ (kB nK) −387ð29Þ −172ð13Þ
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CN

NkB
¼ 12

F3ðq0Þ
F2ðq0Þ

− 9
F2ðq0Þ
F1ðq0Þ

; ðB6Þ

U
NEF

¼ 3

61=3
F3ðq0Þ

F2ðq0Þ4=3
; ðB7Þ

T
TF

¼ (6F2ðq0Þ)−1=3; ðB8Þ

with Fj symbolizing the complete Fermi-Dirac integral of
order j [see Eq. (25.12.14) in Ref. [65] ]. At unitarity, the
relations are stated in Ref. [67], and they read as

N ¼ 4ffiffiffi
π

p
�
kBT
hν̄

�
3

N2ðq0Þ; ðB9Þ

κ

N
¼ 1

2kBT
N0ðq0Þ
N2ðq0Þ

; ðB10Þ

αr
kB

¼ 6
N2ðq0Þ
N0ðq0Þ

− q0; ðB11Þ

CN

NkB
¼ 8

N4ðq0Þ
N2ðq0Þ

− 18
N2ðq0Þ
N0ðq0Þ

; ðB12Þ

U
NEF

¼
�
π

9

�
1=6 N4ðq0Þ

N2ðq0Þ4=3
; ðB13Þ

T
TF

¼
�
24ffiffiffi
π

p N2ðq0Þ
�

−1=3
; ðB14Þ

with the integral NjðqÞ ¼
R
∞
0 rjfnðq − r2Þdr involving the

scaling function fn defined in Appendix B 1 a.
To describe the properties of a single reservoir, we need

to divide the extensive quantities for the full trap by two.
This division applies to the extensive variables atom
number N, compressibility κ, specific heat CN , and the
internal energy U.

c. Extracting thermodynamical properties

The basis to extract thermodynamical properties of each
reservoir r from the absorption images is the virial theorem
[68]. It holds for noninteracting and unitary [69] Fermi
gases and relates the internal energy per particle Ur=Nr ¼
3mω2

tyhy2i to the second moment hy2i ¼ R
y2nrðyÞdy=Nr

in the transport direction. The one-dimensional density nrðyÞ
can be directly deduced from the absorption images by
summing over the transverse direction. Together with the
total atom number Nr, we obtain the Fermi energy EF;r and,
subsequently with Eq. (B7) or (B13), the reduced chemical
potential βμ0 at the trap center. Then, the temperature Tr and
all other thermodynamical properties of the reservoirs can be
derived from the formulas in Appendix B 1 b.

2. Parameter extraction

First, we explain the linear phenomenological model
[48] and, second, its application to extract the transport
parameters from the measured evolutions (Fig. 2).

a. Phenomenological model

The evolutions in the differences in atom number and
temperature are phenomenologically modeled by the
response matrices of the channel and the reservoirs. The
channel reacts to the applied biases with currents of
particles and entropy [Eq. (1)] described by�

IN
IS

�
¼ G

�
1 αc

αc Lþ α2c

�� Δμ
ΔT

�
; ðB15Þ

with the transport coefficients conductance G, thermo-
power αc, and Lorenz number L. The reservoir thermody-
namics are described in linear response by�ΔN

ΔS

�
¼ κ

�
1 αr

αr lþ α2r

�� Δμ
ΔT

�
: ðB16Þ

The involved thermodynamical quantities of each reservoir
are the compressibility κ, the dilatation coefficient αr, and the
reservoir analogue of the Lorenz number l ¼ CN=T̄κ, which
depends on the heat capacity CN. Within linear response,
they are constant throughout the evolution and are evaluated
at the equilibrium chemical potential μ̄ and temperature T̄
(Appendix B 1 b). The two sets of equations are related via
INðtÞ ¼ −∂tΔNðtÞ=2 and ISðtÞ ¼ −∂tΔSðtÞ=2, which
show that changes in the reservoirs originate from currents
leaving and entering them. Altogether, they form a system of
two coupled linear differential equations, with the solution
given by

ΔNðtÞ ¼ feþðtÞ þ Ae−ðtÞgΔN0 þ Be−ðtÞΔT0; ðB17Þ

ΔTðtÞ ¼ feþðtÞ − Ae−ðtÞgΔT0 þ Ce−ðtÞΔN0; ðB18Þ

with e�ðtÞ ¼ ðe−t=τþ � e−t=τ−Þ=2 and the timescales τ� ¼
τ0=λ� and τ0 ¼ κ=2G. The eigenvalues of the evolution
matrix describing the system of differential equations are

λ� ¼ 1

2

�
1þLþ α2

l

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
1þLþ α2

l

�
2

−
L
l

s
: ðB19Þ

The coefficients A, B, and C depend on the transport and
reservoir properties

A ¼ 1 − ðLþ α2Þ=l
λþ − λ−

; ðB20Þ

B ¼ 2κα

λþ − λ−
; ðB21Þ
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C ¼ 2α

κlðλþ − λ−Þ
; ðB22Þ

with the effective thermopower α ¼ αc − αr. Note that
these equations correct the typographical errors present
in Ref. [48].

b. Data fitting

We extract the transport parameters by simultaneously
fitting the measured evolutions to the phenomenological
model using the standard least-squares method. It mini-
mizes the following sum of the squared residuals:

χ2 ¼
X
i

��
ΔÑðtiÞ − ΔÑi

σN

�
2

þ
�
ΔT̃ðtiÞ − ΔT̃i

σT

�
2
�
:

ðB23Þ
The simultaneous fitting requires normalizing the residuals
with the respective uncertainties σN and σT , which we
determine as an average over the standard deviations at the
individual times. The measured differences ΔÑi and ΔT̃i at
time ti include small offsets due to imperfections in the
calibrations. We account for these by shifting the model
evolutions ΔNðtÞ and ΔTðtÞ by constants and obtain
ΔÑðtÞ ¼ ΔNðtÞ þ ΔNoff and ΔT̃ðtÞ ¼ ΔTðtÞ þ ΔToff ,
respectively.
In the model, the reservoir properties κ, αr, and l are set

to the values directly extracted from the absorption images
(Appendix B 1 c). Moreover, the conductance G is fixed by
a separate measurement (Appendix B 3), which reduces the
number of free parameters and improves the fit.
We determine ΔN0 and ΔT0 from the corresponding

measured initial values. The offset ΔNoff either follows
from an average over points where the evolution is relaxed,
or it is taken to be the same as the initial value. In contrast,
the offset ΔToff cannot be easily determined for evolutions
that do not completely relax within our measurement. Thus,
we fit it consistently for all dynamics and checked, with
evolutions where the temperature completely relaxes, that
the results do not depend on whether the offset ΔToff is
fixed or not. In summary, the parameters α, L, andΔToff are
free in the model. Exceptionally, for the noninteracting
curve at Vg ¼ 0.37 μK, the conductance is also free, as
otherwise the fit fails to converge (Fig. 2).
To analyze the parameter estimation, we exemplify the

sum of the squared residuals χ2 versus thermopower α and
Lorenz number L for the gate potential Vg ¼ 0.13 μK
[Figs. 5(a) and 5(b)]. For both interaction strengths, there
exists a single, isolated global minimum that is found by the
Levenberg-Marquardt algorithm (gray point). Its uncertainty
only includes the standard deviations σN and σT and assumes
the fixed parameters to be precisely known. However, their
uncertainties will lead to a change in the optimal values for
α and L. Figures 5(c) and 5(d) show a plot of these optimal

values when one fixed parameter is varied within its
uncertainty. These variations are mostly symmetrical and
thus leave the values unaffected but increase the overall error
bar in thermopower and Lorenz number.
It is known that estimating parameters of exponential

models is challenging, as small changes in the data can
strongly influence the parameters [70]. Thus, in addition to
the least-squares method, we used a technique based on rank
order that is robust against outliers and shown to improve the
estimation for exponential models [71,72]. Applying this
method led to comparable results; hence, we conclude that,
for our model and data, the least-squares method performs
well. As the estimation with the rank order fit is numerically
demanding due to many local, closely spaced minima [71],
we report the values with the least-squares method, which
gives a single, well-defined minimum.
Based on the fitted results, the initial response INð0Þ=

ΔT0 ¼ Gα is shown in the insets of Fig. 2, the thermo-
power of the channel αc ¼ αþ αr in Fig. 3, and the Lorenz
number L in Fig. 4.

3. Conductance measurement

To measure conductances, we prepare the reservoirs at
different particle numbers and equal temperatures and
study their exponential decay towards equilibrium. We
fit the characteristic time τ0 and, together with the
compressibility κ of each reservoir (see details in
Appendix B 1), conductance follows from the relation
τ0 ¼ κ=2G analogous to a discharging capacitor [25].
The conductances are measured at the same average
chemical potential μ̄ and temperature T̄ as the thermoelec-
tric responses to allow comparison between them. The
conductances are shown in Figs. 3(a) and 3(b).
The conductances are extracted under the assumption

that both reservoirs are at equal temperatures. However, we
suspect that in our measured temperature differences, an
offset is present, as visible in Fig. 2 when the system is
relaxed. During preparation, we heat both reservoirs up to
seemingly the same temperature T̄, while the measurement
offset leads to a physical temperature difference. In turn, it
induces a thermoelectric current with the value

IN ¼ G
ΔN
κ

�
1þ κα

ΔT
ΔN

�
; ðB24Þ

which follows from Eqs. (B15) and (B16) and the
thermopower α ¼ αc − αr. The second summand in the
brackets quantifies the relative deviations, which are
estimated at around 10% for the noninteracting case at a
gate potential Vg of 0.13 μK. We use the compressibility
κ ¼ 22 s=h, the thermopower α ¼ 0.7kB, the particle num-
ber difference ΔN ¼ 48 × 103, and the residual temper-
ature bias ΔT ∼ −15 nK.
A systematically increased conductance mostly reduces

the fitted Lorenz number and only slightly decreases the
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thermopower, as is visible in Figs. 5(c) and 5(d). The
Lorenz number is reduced to around 4.2 k2B for a gate
potential of Vg ¼ 0.13 μK and similarly for the other
noninteracting conditions. Thus, the systematic shifts in
the conductance can partly explain the deviations from the
Wiedemann-Franz value LWF ¼ π2=3 · k2B in the noninter-
acting measurements.

4. Superfluid transition at unitarity

Superfluidity inside the reservoirs or the channel can
strongly influence the transport properties, and thus, it is
important to characterize the gas in these locations in the
strongly interacting regime.

The transition is captured by the thermodynamics of the
gas and characterized by the degeneracy T=TF as presented
in Fig. 6 versus the local chemical potential. At the channel
center (black points), the gas is in a hydrodynamic regime
thanks to the strong interparticle interactions (Appendix C);
thus, it is represented by the local equilibrium described
by the average temperature T̄ ¼ 172 nK and the local
chemical potential μloc (Appendix D). Therefore, with
increasing chemical potential, the degeneracy increases
as stated by the thermodynamics of a homogeneous unitary
Fermi gas (Appendix B 1 a) and eventually crosses the
critical value Tc=TF ¼ 0.167ð13Þ at μloc ¼ 0.428 μK (gray
dotted lines) [47].

(a)

(c) (d)

(b)

FIG. 5. Transport parameter estimation. (a,b) Sum of squared residuals χ2 versus effective thermopower α and Lorenz number L in the
(a) noninteracting and (b) strongly interacting regimes at Vg ¼ 0.13 μK. Contour lines highlight the behavior at logarithmically spaced
level values indicated by vertical black lines in the color bar. The offset ΔToff in the temperature difference is fixed to the fitted value.
The optimal fit parameters and uncertainties are indicated by the point and the error bar, respectively. (c,d) Variations of the optimal
thermopower and Lorenz number when one fixed fit parameter is changed within its uncertainty (colored lines). Left panel:
modifications in conductance (orange) and compressibility (blue). Right panel: modifications in initial values ΔN0 (solid green), ΔT0

(solid violet), and the offsets ΔNoff (dashed green) and ΔToff (dashed violet). Changes in the thermodynamic analogue of the Lorenz
number l are too small to be visible.
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The hot (red points) and cold (blue points) reservoirs are
not affected by the gate potential, and hence, their degen-
eracy remains constant. They are defined by a half-harmonic
potential where the densest point at the center specifies the
transition at a critical value Tc=TF ¼ 0.223 (horizontal,
violet dotted line). Note that the value depends on the geo-
metry via the Fermi temperature TF. In summary, the
reservoirs are both above the critical temperature, while
the channel center transitions from a noncondensed to a
superfluid state depending on the chemical potential. Thus,
in our system, the gas may become superfluid inside the
channel.

APPENDIX C: BOLTZMANN APPROACH
AT UNITARITY

Inside the channel, interatomic collisions may alter the
transport regime from ballistic to hydrodynamic depend-
ing on how frequently they scatter while crossing the
constriction. To assess the regime at unitarity, we follow
the Boltzmann approach outlined in Ref. [73] and
compare the resulting mean free path with the length
of the channel. First, we focus on the center, where the
gas is homogeneous, and then extend the argument for the
full channel.

1. Scattering time

Within Boltzmann theory, the scattering rate γ follows
from the collision integral and reads [73]

γN ¼ m
π2ℏ3

Z
dE1dE2dE3dE4δðE1 þ E2 − E3 − E4Þ

× ð1 − f1Þð1 − f2Þf3f4 HðE; EmÞ; ðC1Þ

where N denotes the number of particles in each hyperfine
state. The integral describes two particles with energies E3

and E4 that exchange energy during the collision and leave
with energies E1 and E2. As the collision is elastic, the total
particle energy E ¼ E1 þ E2 ¼ E3 þ E4 is conserved, as
visible from the delta function. The product of the Fermi-
Dirac distributions fi¼1=ð1þeϵiÞ with ϵi ¼ ðEi − μÞ=kBT
ensures that the initial states are occupied and the final ones
unoccupied, as dictated by Pauli’s principle. The factorH is
the integrated density of states weighted by the collision
cross section σðkÞ. In our situation, the gas is locally
homogeneous at the center, which leads to

HðE; EmÞ ¼
2πmV
ð2πℏÞ3

Z
Pþ

P−

dPσðkÞ; ðC2Þ

with the volume V and the integral over total momentum P
whose bounds are P� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE − EmÞ
p � ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mEm
p

, with
the minimal energy Em ¼ minðE1; E2; E3; E4Þ. At unitarity,
the collision cross section is σðkÞ ¼ 4π=k2, expressed
with the relative wave vector k given by 4ðℏkÞ2 ¼ P2þþ
P2
− − P2.
We rewrite the integral by realizing that it is symmetric

under the exchange of all four energies. Hence, we can
choose E1 to be the lowest energy Em and include the other
cases by a factor four. To ensure that E1 is the smallest and
that the total energy is conserved, we transform the
variables Ei to the non-negative xi and normalize with
the Fermi energy EF ¼ ℏ2=ð2mÞð6π2nÞ2=3, with the
particle density n ¼ N=V,

E1=EF ¼ x1; ðC3Þ

E2=EF ¼ x1 þ x2 þ x3; ðC4Þ

E3=EF ¼ x1 þ x2; ðC5Þ

E4=EF ¼ x1 þ x3: ðC6Þ

The resulting scattering rate γ ¼ γ0IðT=TFÞ consists of a
prefactor γ0 and a dimensionless integral IðT=TFÞ. For the
prefactor, we choose the classical collision rate in a
homogeneous gas at temperature TF,

γ0 ¼ n ·
ffiffiffi
2

p
v̄ · σðkFÞ ¼

8
ffiffiffi
2

p

3π3=2
EF

ℏ
; ðC7Þ

with the average relative velocity
ffiffiffi
2

p
v̄ between two

particles expressed through their individual mean speed
v̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EF=πm
p

. The dimensionless integral reads

FIG. 6. Prepared degeneracy T=TF inside the hot and cold rese-
rvoirs and the channel center versus local chemical potential μloc.
The gray dotted lines locate the normal-to-superfluid transition
inside the locally homogeneous channel at Tc=TF ¼ 0.167 and
μloc ¼ 0.428 μK, respectively. The violet horizontal line indicates
the critical degeneracy in the reservoirs. Error bars represent the
standard deviation over five repetitions prepared under the same
conditions.
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I

�
T
TF

�
¼ 9

ffiffiffi
π

p
4

Z
∞

0

dx1dx2dx3fðx1 þ x2Þfðx1 þ x3Þ

× ½1 − fðx1Þ�½1 − fðx1 þ x2 þ x3Þ�
× Fð2x1 þ x2 þ x3; x1Þ; ðC8Þ

with fðxÞ ¼ 1=ð1þ eξÞ and ξ ¼ ðTF=TÞðx − μ=EFÞ,
where the normalized temperature T=TF and chemical
potential μ=EF are related as in Appendix B 1 a. The
function Fðx; xmÞ depends on the normalized total energy
x ¼ E=EF and minimal energy xm ¼ x1 as

Fðx; xmÞ ¼
1ffiffiffi
x

p log

�
2þ x=xm þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x=xm

p
2þ x=xm − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x=xm

p �
: ðC9Þ

This form is unsuited for numerical evaluationas it contains
a divergence at x ¼ 0, which we lift with the substitution
w¼x1, y¼ðx2þx3Þ=2x1, and z¼ðx3−x2Þ=2x1, leading
to the final result

I

�
T
TF

�
¼ 9

2

ffiffiffi
π

2

r Z
∞

0

dy log

�
1þ y=2þ ffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

1þ y=2 −
ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
�

×
Z

∞

0

dw½1 − fðwÞ�½1 − fðwð1þ 2yÞÞ�
ffiffiffiffiffiffiffiffiffiffiffi
w3

1þ y

s

×
Z

y

−y
dzf(wð1þ y − zÞÞfðwð1þ yþ zÞ):

ðC10Þ

Instead of scattering rates, we use their inverse, the average
time between interparticle collisions τ ¼ τ0=IðT=TFÞ.

2. Mean free path

Based on the average scattering time calculated in the
previous section, we estimate the mean free path
lmfp ¼ τvF, which quantifies the distance a particle travels

between collisions with velocity vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF=m

p
. For the

estimation, we need the local degeneracy T̄=TF and the
Fermi energy EF at the center. They both follow from the
temperature T̄ and chemical potential μ̄ via the local
chemical potential μloc, as detailed in Appendix D, and
the thermodynamics of a homogeneous unitary Fermi gas
given in Appendix B 1 a.

3. Transport regime

To discuss the transport regime, we first focus on
the scattering time and mean free path at the channel
center (Fig. 7). The classical scattering time τ0 versus local
chemical potential (dashed line) monotonically decreases,
which indicates more frequent collisions. Although the
cross section σðkFÞ ∼ 1=EF reduces as particles collide at
higher relative velocities, the simultaneous increase in

density n ∼ E3=2
F and mean particle speed v̄ ∼ E1=2

F

dominates [compare with Eq. (C7)]. In the quantum case
(solid line), the time τ behaves the same at small chemical
potentials. In contrast, at larger values, the gas is more
degenerate, and Pauli’s principle limits collisions as it
requires the final states to be empty. Eventually, this effect
dominates and leads to a longer time between collisions.
The local minimum in scattering time appears less pro-
nounced in the mean free path as the Fermi velocity
monotonically increases [Fig. 7(b)].
The predictions based on Boltzmann’s approach are

valid in the normal Fermi liquid phase located above the
critical and superfluid regimes. In the critical region,
pairing correlations are relevant, and they modify the
scattering rate. In a harmonic trap, they were found to
almost compensate Pauli blocking, giving rates that follow
the classical prediction [74]. Hence, in the homogeneous
case, we expect that Pauli blocking in the critical region is
also reduced by correlations, giving effectively lower
scattering times and mean free paths. Above the superfluid
transition (vertical dashed line), the mean free path is
bounded by Boltzmann’s theory and is at most 9 μm,
shorter than the channel length of 2wcy ¼ 60 μm.
Next, we extend the argument to the entire channel

whose variations are captured by the effective potential

(a)

(b)

FIG. 7. Boltzmann approach for a homogeneous unitary Fermi
gas at the channel center. (a) Interparticle scattering time in
classical (dashed curve) and quantum (solid line) regimes and
(b) mean free path versus local chemical potential. The horizontal
line indicates the channel length 2wcy in terms of the waist wcy of
the laser beam which creates the channel. The superfluid
transition (vertical dashed line) is estimated in Appendix B 4.
The predictions are valid in the normal regime above the critical
region. In the critical region, we expect the real values to be lower
(see text), and in the superfluid regime, the theory fails.
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(Appendix D). If the gas is locally nonsuperfluid through-
out the constriction, the mean free path is bounded by
Boltzmann’s theory, which predicts hydrodynamic trans-
port. This is the case above the transition indicated in
Figs. 2, 3, 4, and 7 (Appendix B 4). Furthermore, as a result
of frequent interparticle collisions, we also expect the
reservoirs to be in the hydrodynamic regime.
The Onsager framework adopted in Sec. V is valid in the

unitary regime but differs in two aspects from a standard
hydrodynamic description. (i) The presented Onsager
picture relates the flow to global differences in intensive
quantities between the reservoirs, while in hydrodynamic
models, local gradients are relevant. (ii) The intensive
quantities are typically pressure and temperature in the
hydrodynamic formulation, while our treatment is based on
chemical potential and temperature. The latter combination
naturally leads to a symmetric matrix of transport coef-
ficients thanks to Onsager’s reciprocal relation [Eq. (1)].
However, setting aside the symmetry, the choice of

pressure and temperature leads to an equivalent description
by transforming the intensive quantities via the thermody-
namics of the gas. Namely, with the help of the Gibbs-
Duhem relation, the difference in pressure,

Δp ¼ sΔμþ nΔT; ðC11Þ

at the interface between the reservoirs is directly related to
the corresponding differences in chemical potential Δμ and
temperature ΔT. The coefficients are given by the homo-
geneous densities of entropy s and particles n at the trap
center, evaluated at the average chemical potential μ̄ and
temperature T̄. Then, in the reservoir-dominated regime,
the flow is produced by a difference in pressure, which is
analogous to our interpretation with a difference in chemi-
cal potential. Understanding the channel-dominated
regime, where the particles flow against the differences
Δp andΔμ, requires a hydrodynamic model of the channel,
in particular, of its mode structure. Instead, we estimate the
thermopower αc of the channel by the dilatation coefficient
at the channel center, which offers an interpretation of the
interaction-assisted reversal (Sec. VI).

APPENDIX D: EFFECTIVE POTENTIAL

In two-terminal setups, particles move along one direc-
tion and are confined in the others. As a result of the
confinement, the transverse motion is quantized into differ-
ent modes labeled by quantum numbers. As long as the
confinement varies adiabatically through the channel,
particles remain in the same mode, which is called the
adiabatic approximation. Then, the confinement energy
acts as an additional potential as it is invested in the
transverse direction and is missing for the longitudinal
motion. In the following, we present the effective potential
of our channel, which is useful to calculate the local

chemical potential at the center and to deduce transport
parameters (Appendix E).
Harmonically approximating our transverse confinement

(x, z) at each longitudinal position (y) leads to the potential

Vðx; y; zÞ ¼ 1

2
mω2

xðyÞx2 þ
1

2
mω2

zðyÞz2 þ VgðyÞ: ðD1Þ

The harmonic frequencies ωxðyÞ and ωzðyÞ include a
nearly constant contribution from the dipole trap due to the
long Rayleigh length of 20 mm and a spatially varying one
from the gate potential and the one creating the channel,
respectively. They are given by

ω2
xðyÞ ¼ ω2

tx þ ω2
gxe−2y

2=w2
gy ; ðD2Þ

ω2
zðyÞ ¼ ω2

tz þ ω2
cze−2y

2=w2
cy ; ðD3Þ

with the dipole trap frequencies ωtx=tz ¼ 2π νtx=tz, and the
frequencies at the center created by the gate ω2

gx ¼
−4Vg=mw2

gx and channel beam ωcz. Their waists in the
longitudinal direction are wgy of 8.6 μm for the repulsive
gate beam, 33.5 μm for the attractive gate beam, and
wcy ¼ 30.2 μm for the channel beam. Besides modifying
the trapping frequency, the gate beam creates an additional
potential

VgðyÞ ¼ Vge−2y
2=w2

gy : ðD4Þ

As at each longitudinal position y, the transverse
potential is quadratic and shifted by the energy VgðyÞ,
the eigenenergies are

EnðyÞ ¼ ℏωxðyÞðnx þ 1=2Þ þ ℏωzðyÞðnz þ 1=2Þ þ VgðyÞ;
ðD5Þ

with the quantum number n ¼ ðnx; nzÞ. Figure 8 displays
the eigenenergies in the transport direction for different
gate strengths Vg.

1. Local chemical potential

To characterize the gas at the channel center, we use
the local density approximation with the effective
potential VeffðVgÞ ¼ E0ð0Þ in the ground state, which
results in a local chemical potential μloc ¼ μ̄ − VeffðVgÞ,
with VeffðVgÞ¼ℏ(ωxð0Þþωzð0Þ)=2þVg. Note that ωxð0Þ
implicitly depends on Vg in a square-root fashion. The
local chemical potential is used to display transport coeffi-
cients (Figs. 3 and 4), to locate the superfluid transition
(Appendix B 4), and to discuss its scattering properties
(Appendix C).
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2. Transport function ΦðEÞ
From the reservoirs to the center, the channel narrows

and tends to increase the mode energies, visible in Fig. 8 in
the absence of the gate (Vg ¼ 0). Here, a particle at
energy E (horizontal line) can cross the channel in any
mode indicated in blue. An additional repulsive potential
(Vg > 0) pushes them up and further peaks them at the
center within the size of the beam. In the attractive case
(Vg < 0), the energies are pulled down, and some modes
might be energetically allowed at the center while away
from the center, the mode energies are above the particle
energy (red lines). Only the modes whose energies are
below the particle energy throughout the channel are
relevant for transport. Their number is counted with the
transport functionΦðEÞ directly from the effective potential
and is used in Appendix E to calculate transport parameters.

APPENDIX E: LANDAUER-BÜTTIKER THEORY

In this Appendix, we detail how we model the transport
parameters in the noninteracting situation. In the Landauer
framework, particles come from the reservoirs following
the corresponding Fermi-Dirac distribution, and they cross
the channel with a transmission probability. In linear
response, the transport coefficients are evaluated at the
mean chemical potential μ̄ and temperature T̄ imposed by
the reservoirs. They read as follows [48,75,76]:

G ¼ 1

h

Z þ∞

−∞
ΦðEÞ

�
−
∂fðϵÞ
∂E

�
dE; ðE1Þ

Gαc ¼
1

hT̄

Z þ∞

−∞
ΦðEÞðE − μ̄Þ

�
−
∂fðϵÞ
∂E

�
dE; ðE2Þ

GðLþ α2cÞ ¼
1

hT̄2

Z þ∞

−∞
ΦðEÞðE − μ̄Þ2

�
−
∂fðϵÞ
∂E

�
dE;

ðE3Þ

with the Fermi-Dirac distribution fðϵÞ ¼ 1=ð1þ eϵÞ and
the normalized particle energy ϵ ¼ ðE − μ̄Þ=kBT̄.
In the classical regime, the transmission ΦðEÞ through

the channel reduces to the number of transverse modes
below energy E. We count their number directly from the
effective potential discussed in Appendix D. Then, by
numerically evaluating the Landauer integrals, the transport
coefficients follow and are indicated in Figs. 3 and 4.

1. Benchmarking

To benchmark the method, we compare it with the
measured conductance for a noninteracting gas as shown
in Fig. 3(a) and find good agreement. Note that counting
available modes at the channel center leads to a wrong
prediction that increases roughly quadratically with local
chemical potential, in contrast to the observed linear
behavior.

2. Validity of linear response

In Landauer theory, particle and entropy currents are
expressed with the difference ΔfðEÞ ¼ fLðEÞ − fRðEÞ
between the Fermi-Dirac distributions. To arrive at the
linear response form [Eqs. (E1)–(E3)], the difference is
expanded around the average chemical potential μ̄ and
temperature T̄, and we obtain

ΔfðEÞ ≃ −
∂fðϵÞ
∂E ðΔμþ ϵkBΔTÞ; ðE4Þ

(a) (b) (c)

FIG. 8. Eigenenergies En with transverse mode n versus longitudinal position y (a) with repulsive, (b) without and (c) with attractive
gate potential Vg. Modes available throughout the channel at energy E (horizontal line) are indicated in blue and contribute to transport.
The ones in red are accessible close to the center but blocked away from it and the remaining modes are plotted in gray.
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with the derivative −∂fðϵÞ=∂E ¼ 1=ð2kBT̄½1þ coshðϵÞ�Þ.
The distributions and the exact and linearized diffe-
rences are displayed in Fig. 9 for the conditions of the
noninteracting measurement. Visibly, linearization only
introduces minor deviations, justifying the approximation.
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