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All clocks, in some form or another, use the evolution of nature toward higher entropy states to quantify
the passage of time. Because of the statistical nature of the second law and corresponding entropy flows,
fluctuations fundamentally limit the performance of any clock. This suggests a deep relation between the
increase in entropy and the quality of clock ticks. Indeed, minimal models for autonomous clocks in the
quantum realm revealed that a linear relation can be derived, where for a limited regime every bit of entropy
linearly increases the accuracy of quantum clocks. But can such a linear relation persist as we move toward
a more classical system? We answer this in the affirmative by presenting the first experimental investigation
of this thermodynamic relation in a nanoscale clock. We stochastically drive a nanometer-thick membrane
and read out its displacement with a radio-frequency cavity, allowing us to identify the ticks of a clock.
We show theoretically that the maximum possible accuracy for this classical clock is proportional to the
entropy created per tick, similar to the known limit for a weakly coupled quantum clock but with a different
proportionality constant. We measure both the accuracy and the entropy. Once nonthermal noise is
accounted for, we find that there is a linear relation between accuracy and entropy and that the clock
operates within an order of magnitude of the theoretical bound.
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I. INTRODUCTION

By modern standards, the accuracy with which we can
keep time is truly astonishing; nowadays the best atomic
clocks keep time to an accuracy of approximately one
second in every 10® years [1]. This is more accurate than
any physical constant we have ever measured (for example,
the magnetic moment of an electron ¢ is known to 12 digits
[2]), and better than computer arithmetic which has an
accuracy of 16 digits for 64-bit calculations [3]. Atomic
clocks run by the rules of quantum mechanics, targeting a
specific hyperfine transition in an atom’s energy spectrum;
yet despite the great progress in keeping time, surprisingly
little is known about the relation between quantum clocks
and thermodynamics. Famously invariant under time
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reversal, the equations of quantum mechanics provide little
explanation for the passage of time, whereas the theory of
thermodynamics, although elucidating little more on the
same front, does at least leave some entropic signatures
[4-9]. One of the milestones at the intersection of the two
fields is to derive a quantitative relation between the
second law of thermodynamics and the flow of time.
Investigations in this direction are also a vital component
in our understanding of quantum thermodynamics, a field
focused on the investigation, analysis, and design of
machines on the quantum scale, to which clocks are no
exception [10,11].

Alongside philosophical and conceptual curiosities,
clocks constitute an intrinsic component in the operation
of numerous systems, from the clocks used to time the gates
on a desktop CPU to the clocks necessary for determining
your GPS coordinates. In the quantum regime, as opposed
to the classical case, the thermodynamic cost associated
with the precise control of a system is comparable to the
energy scale of the system itself [12—-14].

For example, the cycles of a quantum Otto engine need
to be controlled by a microscopic autonomous clock
[15,16], a device that produces a stream of ticks without
any timing input or external control. The energetic cost of

Published by the American Physical Society


https://orcid.org/0000-0003-2749-7283
https://orcid.org/0000-0001-9589-127X
https://orcid.org/0000-0003-1950-2097
https://orcid.org/0000-0003-1985-4623
https://orcid.org/0000-0003-2588-6322
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.021029&domain=pdf&date_stamp=2021-05-06
https://doi.org/10.1103/PhysRevX.11.021029
https://doi.org/10.1103/PhysRevX.11.021029
https://doi.org/10.1103/PhysRevX.11.021029
https://doi.org/10.1103/PhysRevX.11.021029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A.N. PEARSON et al.

PHYS. REV. X 11, 021029 (2021)

running this clock is comparable to the energetic output of
the engine and thus can no longer be neglected. These
clocks have been studied rigorously from the perspective of
open quantum systems, where it has been shown that their
performance with respect to the resources they consume is
subject to particular relations, as well as trade-offs [4].

One of the challenges in deriving such relations from
microscopic thermodynamic principles is that reasonably
large systems are required for irreversible dynamics to
emerge [17,18]. In developing relations and trade-off
models, we are forced to make assumptions about the
underlying parameters and system dynamics [10,19].

At the other end of the scale, in the classical domain,
it is difficult to keep track of thermodynamic costs because
the systems become large and complex. Systems for which
thermodynamic costs could be accurately estimated
allowed for experimental breakthroughs in the study of
stochastic and quantum thermodynamics. For example,
a Brownian Carnot engine [20] and a single-atom heat
engine [21] were demonstrated using electric field noise as
a hot reservoir.

In this article, we experimentally explore the thermody-
namic costs of timekeeping by directly measuring both
the accuracy and the entropy generation associated with a

Clockwork

(a) Resource

simple nanoelectromechanical clock. In our implementa-
tion, the clock is a thermal engine that operates between a
hot reservoir realized by means of a noisy electric field
coupled to a mechanical element and a cold reservoir
realized by a room-temperature measurement circuit. The
clock is driven by the heat flow through the engine and
the work required to observe the mechanical vibrations.
The thermodynamics of clocks can thus be experimentally
investigated, in the same way as conventional heat engines,
by comparing the heat flow through the clock with the
resulting accuracy. We compare our results to quantum and
classical clock models, and analyze the relation of our
findings to thermodynamic uncertainty relations (TURs)
[6,22-25], arising in classical stochastic thermodynamics.
In the latter, we find our results to be both conceptually and
quantitatively different.

A clock, like any thermodynamic machine, operates by
consuming a resource and creating waste in the form of
entropy [Fig. 1(a)]. Its useful output is a train of ticks which
can be counted by a register. Previously, two avenues of
research in that direction have led to similar conclusions: on
the one hand, using TURs, the authors of Ref. [26] show an
entropic cost to measuring time based on a finite Markov
model, on the other hand, a simple two-qubit quantum

Register

Membrane

—

FIG. 1.

Circuit dissipation

(a) For timekeeping, the clockwork consumes resources, part of which are lost as waste. The hands of the clock register the

clock’s ticks. (b) Simple mechanical clock. Here, a mass is suspended from a spring and the heat from the environment excites the mass’
motion at frequency f. These vibrations are probed by a signal of power P.,,. This system (the clockwork) generates a periodic signal,
which is registered to identify the clock’s ticks. (c) A schematic of our electromechanical system acting as a clock. A nanometer-thick
membrane is driven by a white-noise signal of power Pyy. The membrane’s vibrations are probed by a rf cavity driven with a signal of
power P,,. The cavity output signal, and thus the clock tick’s, are registered by an oscilloscope.
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engine coupled to a ladder was used to derive a similar
entropic cost in autonomous quantum clocks [4]. Both of
these show that in their respective regimes of validity there
is a fundamental price to timekeeping: the more regular and
frequent the ticks, the greater the rate at which the clock
must create entropy.

This work experimentally and theoretically studies a new
kind of classical clock which realizes this thermodynamic
process. The clock is based on a simple optomechanical
model [Fig. 1(b)], in which the Brownian motion of a
mechanical resonator is monitored using an electronic
cavity interferometer. Each mechanical oscillation identi-
fied by the interferometer corresponds to one tick. The
clock is driven by the work performed to illuminate the
cavity and by the heat transferred from the hot resonator to
the cold measurement electronics. While the accuracy can
be improved by increasing either the mechanical amplitude
or the electrical illumination power, in both cases this leads
to greater heat dissipation and therefore increased entropy,
as explained in Sec. I and Appendix B.

The experimental realization of the model is shown in
Fig. 1(c). The mechanical resonator is a high-quality silicon
nitride membrane vibrating in its fundamental flexural
mode. To excite quasi-Brownian motion, the membrane
is driven by a white-noise electrical signal, which acts as an
effective thermal bath that raises the mechanical mode
temperature [27]. To monitor the membrane’s displace-
ment, it is capacitively coupled to a radio-frequency (rf)
cavity operated in an optomechanical readout circuit
[28-33]. The voltage output of this circuit is proportional
to the instantaneous displacement. This output is recorded
using an oscilloscope which acts as the clock register. Each
completed oscillation, identified by an upward zero cross-
ing of the voltage record, represents one tick of the clock.

We used our setup to test the relation between the
resources used to power the clock and its accuracy. The
accuracy was determined by an algorithm which marked
the instance at which a tick (a particular behavioral
signature of the membrane’s motion) occurred. We then
looked at the accuracy of the optomechanical system for a
range of white-noise driving power and compared it to the
prediction of a classical clock model. In order to make this
comparison, we associated the system’s resources to the
clock’s total entropy production. Our results confirm clear
proportionality between the driving power (the resource)
and the periodicity of the cavity output signal (the accu-
racy), which is the trademark response predicted by both a
quantum and a classical clock model. This finding suggests
that fundamental relations for the thermodynamics of
timekeeping can be observed in a broad class of operating
regimes, making them universal. In this way, our results
support the idea that entropy dissipation is not just a
prerequisite for measuring time’s passage, but that the
entropy dissipated by any clock is quantitatively related to
the fundamental limit on that clock’s performance.

II. THEORY: THE THERMODYNAMIC COST
OF TIMEKEEPING

Be it quantum or classical, we define the accuracy of a
clock as in Ref. [4]:

Liick )2
N= [tk ) 1
<Attick M)

where t,; is the mean interval between successive ticks and
Aty 18 the standard deviation of this interval. Equivalently,
N~!is the Allan variance [34] when the observation period
is equal to #. This is a more severe measure of accuracy
than the Allan variance of a much larger number of ticks. If
Markovian stationarity is assumed, i.e., if successive tick
intervals are uncorrelated, N is also the number of ticks
before the expected accumulated timekeeping error is equal
to one tick interval.

Our objective is to test the measured value of N, derived
by analyzing a series of ticks generated by the experiment,
against the prediction of models in which the accuracy of
the clock appears as a function of the resources used to
drive it. This line of inquiry is inspired by Ref. [4], in which
the rate of entropy production and accuracy of an autono-
mous quantum clock are found to be linearly related
(assuming weak coupling), i.e.,

AS tick
N =
27 kg

(2)

where kp is Boltzmann’s constant and AS;; is the entropy
generated per tick. This entropy arises due to power being
dissipated by the clock, from which we understand that
greater power dissipation corresponds to greater accuracy.

In similar spirit we have analyzed a classical model of
the optomechanical experiment of Fig. 1(c).

In this optomechanical clock, the electrical cavity con-
taining the membrane is excited with a cavity illumination
tone with power P_,,. Part of this tone is reflected from the
cavity, and its phase is modulated by the thermal vibration
of the membrane. By identifying each modulation cycle, a
series of ticks can be derived, repeating at a interval set by
the mechanical period. However, there is a thermodynamic
price. For accurate timekeeping, the modulated signal
should be made as large as possible. This increases the
dissipation in the detection circuit, and therefore creates
greater entropy than a small signal. By calculating the
minimal uncertainty with which ticks can be identified in
the presence of thermal noise, Appendix B shows that the
greatest possible accuracy for this classical clock is

27 T.
Ne =2 2¢ ASiu. 3
C kB TN tick ( )

where Ty is the noise temperature of the measurement
electronics and 7. is the temperature of the environment,
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assumed to be colder than the mechanical effective
temperature.

Increasing the thermodynamic resources supplied to the
clock, i.e., P, and Pyy, increases both the accuracy and
the entropy creation rate. Intriguingly, this classical experi-
ment, despite representing a completely different physical
system from the quantum clock of Ref. [4], obeys a similar
relationship between accuracy and entropy. Whereas N in
Eq. (1) is the accuracy which can be extracted from a
sequence of ticks experimentally realized by the clock, N
in Eq. (3) is a statistical prediction based on the thermo-
dynamic properties of the setup.

In order to compare the values of N obtained from the
experiment with the prediction of the model, we must
identify the source of entropy AS;. in our system. We
acknowledge there are various types of entropy emerging
from the setup. Here, we focus on the entropy in the cavity
output signal, as it is directly observable in our temporal
traces. Additional entropy contributions are of course
produced in the instruments used to control the systems
(from the tone that drives the readout cavity to the oscillo-
scope that measures the cavity output signal). We do not
focus on this type of entropy, as it depends on the specific
implementation and it is not present in autonomous devices.
Finally, there is the source of entropy production that comes
from the white-noise driving. This is the fundamental
entropy dissipated per natural temporal event (tick) in our
experiment. Here it is important to note that not all of the
power injected in the system will be converted into a useful
drive signal, just as not all the energy from a hot bath can be
converted into work in a heat engine; some will be dissipated
in the environment at the expense of entropy production
elsewhere. This does not impact our results as long as the
power of the white-noise signal used to drive the clock is
high enough to make the ticks identifiable above the thermal
background. Thus, we estimate the relevant entropy AS;
from the spectral density of the cavity output signal by
computing the area of the spectral density peak located at the
membrane’s resonance frequency.

III. EXPERIMENTAL SETUP

The vibrating membrane is measured using the setup
shown in Fig. 2(a). The membrane, which consists of
50 nm thick SiN metallized with Al is suspended over two
Cr/Au electrodes patterned on a silicon chip, forming a
capacitor. A dc voltage V4. = 15 V is applied to electrode
1, with electrode 2 grounded. Electrode 1 is connected to a
rf cavity, which is realized with an inductor and capacitors
[Fig. 2(a)]. As the membrane vibrates, the capacitance C.
between the membrane and the electrodes changes. Driving
the rf cavity with a resonant tone, we can probe the
membrane’s motion by monitoring the cavity’s output
signal [33]. The cavity is driven by injecting a rf signal
via port 1 via a directional coupler. A signal to excite the
membrane’s motion is incorporated in the circuit via port 3.

Nanomechanical resonator Readout "cavity" circuit
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FIG. 2. (a) Experimental setup. A metalized silicon nitride

membrane is suspended over two metal electrodes, forming a
capacitor C.. One of the electrodes is connected to a rf tank circuit
which acts as a readout cavity. Electrode 2 is grounded. The tank
circuit is formed from a 223 nH inductor L, and two 10 pF
capacitors Cp and C),. Parasitic capacitances contribute to Cy; and
parasitic losses in the circuit are parametrized by an effective
resistance R. The cavity can be probed by injecting a rf signal at
port 1 via a directional coupler. The output signal is measured at
port 2 using a vector network analyzer or a spectrum analyzer. The
membrane’s motion can be excited by injecting a signal at port 3.
Bias resistors allow a dc voltage V. to be applied to electrode 1.
Red (blue) arrows indicate resources (waste) for our system.
(b) |S5;| as a function of probe frequency f p- (€) One of the
mechanical sidebands observed in the spectrum of the cavity
output signal when an excitation tone at frequency f is injected at
port 3 and swept in frequency while the cavity is driven at its
resonant frequency via port 1. The sideband power grows when fr
coincides with the resonance frequency of the membrane f.
(d) Demodulated readout signal V (), as a function of time, for
P, = 14 dBm. Pywy = 0.25 W and Pywy = 0.063 W for the red
and blue traces, respectively. The inset shows the demodulation
circuit. (LO, local oscillator; BPF, bandpass filter).

The experiment is carried out at room temperature at
approximately 5 x 107% mbar.

To determine the cavity’s resonant frequency, we mea-
sure the scattering parameter |S,, |, which is proportional to
the reflection from the cavity, as we sweep the frequency of
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a probe tone fp. The cavity resonance is evident as a
minimum in |S,;| [Fig. 2(b)]. To identify the mechanical
resonance, we perform two-tone spectroscopy. While
driving the cavity at its resonance frequency (i.e., with
fp = 210.3 MHz) through port 1, we applied another tone
of frequency f through port 3 in order to excite the
membrane. The power spectrum of the reflected signal is
shown in Fig. 2(c) as a function of fr. The mechanical
response is evident as a strong increase in the sideband
power at fp =+ fr when fr matches the mechanical
frequency f, ~ 74.5 kHz [33].

In order to use the membrane as a thermal clock, we drive
the membrane’s motion (of the fundamental mode) stochas-
tically by applying a white-noise signal of power Py and
bandwidth 500 kHz through port 3. This white-noise signal
is the clock’s heating resource. To register the ticks, we must
illuminate the cavity, and to do this the resource is a resonant
drive tone injected through port 1 with power P.,,. We
measure the displacement of the membrane in real time by
demodulating the cavity output signal V(7). The demodu-
lated signal is measured with an oscilloscope. We show V(1)
after demodulation and amplification for two different
values of Pwy in Fig. 2(d). From these time traces, the
ticks of the clock can be identified, and an accuracy can be
computed for different values of Pyy.

Studying clock performance in the absolute sense is not
strictly possible in our system, since this would require us
to synchronize multiple clocks (e.g., via the alternating
ticks game [5,35]). We have thus chosen a reference clock
that is orders of magnitude faster than the system under
investigation in order to resolve the temporal dynamics. In
our case, the membrane’s frequency is in the kilohertz
regime while our reference clock, the clock of the oscillo-
scope, operates at a frequency several orders of magnitude
higher. Our system constitutes a quasi-autonomous clock,

(@) 250
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FIG. 3.

since just with a driving tone, it is able to convert the power
of the white noise driving the membrane’s motion into the
observable ticks of a clock.

IV. RESULTS

Ticks are generated from time records of the demodulated
voltage signal as shown in Fig. 2. Each tick corresponds to
an upward zero crossing of this signal. In principle, these
zero crossings could be identified in nearly real time using a
threshold detector with an appropriate input filter. In
practice, we acquired the entire voltage record and identified
ticks in postprocessing, in order to be able to study the
effects of different filter and threshold settings.

At each setting of P.,, and Py, a record of raw data
with a duration of 1 s was stored. In order to suppress noise,
each record was then digitally filtered using a bandpass
filter of 75 kHz bandwidth centered at f,. This bandwidth,
which is nearly equal to f, is sharp enough to remove
much of the electronic noise, and thus avoids triggering
false upward zero crossings, but has a fast enough ring-
down to ensure that successive ticks are nearly indepen-
dent. In a real-time clock, it could be implemented using an
analog filter. To extract N for each record, the upward zero
crossings were identified in order to generate a sequence of
tick intervals, and the resulting standard deviation At
was substituted into Eq. (1).

The results of this analysis are shown in Fig. 3(a) as a
function of P,, and Pwy. For small values of Py, we see
that N increases approximately linearly with Pyy. This can
be understood intuitively: a stronger drive makes the
mechanical oscillations easier to distinguish from the noise.
As Pyy increases further, the linear relationship breaks
down and the accuracy shows signs of saturating. This is to
be expected due to noise in the circuit leaking from the

(b) 250

H
+

—— B,,=14dBm
R, =12 dBm

—— R,,=10dBm

—— P,= 8dBm

—-—- N=N,

-- N=Ng10

(a) Accuracy N versus white-noise power Pyy for P,, in the range 8—14 dBm. (b) Accuracy N versus the accuracy predicted

from the classical model N for P_,, in the range 8—14 dBm. The black dotted line is a guide to the eye showing the slope corresponding
to N = N. The gray dotted line is chosen to approximate the slope of the displayed curves.
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heating tone and the membrane’s motion entering the
nonlinear regime, effects which do not allow a continued
increase of N.

As P,, increases, the linear increase of N as a function
of Pwy shows a larger gradient. This is because an
increased P.,, enhances readout. Above P, = 14 dBm,
however, demodulated V (¢) shows significant fluctuations,
leading to the saturation of N at smaller values of Pywy
(see Appendix D). The time traces corresponding to
P, <8 dBm are too noisy for ticks to be identified
(see Appendix E). The oscilloscope’s sampling rate was
40 MSa/s, giving a resolution of 25 ns to the acquired time
traces. Given the frequency of the membrane, this reso-
lution sets an upper limit to the measurable accuracy of
N < 290000; however, as seen from Fig. 3(a), experimen-
tal values of N are less than a hundredth of this limit.

To test the predictions of the classical clock model, we
now compare the measured N with the predicted accuracy
N according to Eq. (3). The relevant entropy arises from
the electrical power dissipated in the amplifier circuit by the
optomechanical sidebands that contain the displacement
information. As shown in Appendix B, the ratio AS;y /Ty
can be calculated from the same demodulated voltage
record used to identify ticks. To do this, each record is
first numerically transformed to generate a power spectrum.
The entropy AS; is then calculated from the integrated
power within a 10 kHz window centered on the signal
frequency f; the noise temperature 7 is calculated from
the average spectral density well away from this frequency
[see Eq. (B43)]. The physical temperature of the measure-
ment circuit is taken as 7. = 300 K.

We have compared the values obtained for N~ with the
accuracy N computed as in Eq. (1) [Fig. 3(b)]. Our results
confirm that increasing accuracy requires increasing A Sy,
and show the linear relation predicted by Eq. (3). However,
the constant of proportionality, for all heating and illumi-
nation powers shown here, is approximately 10 times
smaller than predicted. Since Eq. (3) represents an upper
bound on the clock’s efficiency, this discrepancy is not
inconsistent with the theory. It probably indicates that
identifying the zero crossings, which does not use all the
information in the voltage record, is not an optimal
procedure for identifying ticks. An improved tick identi-
fication algorithm might allow us to get closer to the bound
set by the classical model of our setup.

V. DISCUSSION

Our experiment is simple enough to account for the
thermodynamic resources used, like in Ref. [36], and at the
same time our system is too complex to be modeled by a
simple open quantum systems approach.

The results in Fig. 3 showcase an important relation
between the accuracy and the entropy production that
should be present in the most fundamental clocks [4], both
in a quantum and a classical model. The accuracy is only a

lower bound on the entropy creation, making it entirely
possible for the system to dissipate more entropy at higher
drive powers without providing more accurate ticks. The
fact that we nonetheless see such a consistent linear relation
between the accuracy and the entropy production for a
considerable range of cavity and white-noise drives indi-
cates that our clock’s performance is close to optimal and
that we are correctly identifying the relevant entropy
contributions.

Our clock provides a steady stream of ticks that are
identified from cumulative events; it would defeat the
purpose of a clock if only a finished sequence of events
can be used retroactively for the identification of ticks. That
would rather correspond to the concept of a stopwatch,
where upon interrogation one obtains a good estimate of
how much time has elapsed between initialization and
interrogation, but does not provide a continuous temporal
reference frame. Although the system is not fully autono-
mous, because a cavity drive is necessary for readout,
it presents a perfect test bed for generating a stable time-
ordered signal by exploiting thermal nonequilibrium. In
fact, any system that acts as a register is expected to
consume work, as it would inevitably require to perform
measurements of irreversible events [37].

Any thermally irreversible process could be used as a
clock [7], e.g., simply by observing the progress of equili-
bration as a proxy for time. We propose that an operational
definition for a good clock is a system that reduces the linear
slope of the accuracy-dissipation relation and keeps it linear
for accuracy as high as possible. This is consistent with
another recent finding Ref. [9], which shows that clockwork
complexity can be used to decrease that linear slope and to
increase the saturation point, beyond which extra dissipation
will not correspond to a better clock quality.

The observed relationship between drive power and
accuracy (Fig. 3) is in qualitative agreement with the
relation stemming from the oversimplified model in
Ref. [4], and with the prediction of our classical model.
Our results also corroborate the notion that the quality of
the arrow of time is indeed limited by the entropy dissipated
by a clock. As described in Ref. [4], the linear relation
between accuracy and entropy production tends to break
down at some point. We have observed this effect in our
experiment, most likely due to the membrane’s motion
entering the nonlinear regime at high drive powers or due to
other nonlinearities playing a more significant role in the
circuit. Below that threshold, our observed relationship
between drive power and accuracy points toward a uni-
versal relation, in both quantum and classical regimes,
between entropy production and clock accuracy.

We also note an interesting relation to the phenomenon
of stochastic resonance [38], where noise can push a signal
beyond a detection threshold and in this way increase the
signal quality. Superficially our experiment is a similar
scenario, since we inject noise to create a periodic signal.
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However, instead of using noise to make a preexisting
signal detectable, this experiment uses noise to create the
signal by heating the mechanical mode. Nevertheless, it
will be interesting to see if these techniques can be
fruitfully adapted to our setup.

We now consider the connection between these results
and the thermodynamic uncertainty relations. These rela-
tions are a large class of inequalities that apply to out-of-
equilibrium systems and relate the fluctuations of a driven
observable F, such as the rate of a chemical reaction, to the
entropy created [6,22-25]. They have the form

b=l (@)
<4(5). )

where p(F) is known as the precision and g(S) is a monotonic
function of the entropy creation rate S. [We follow previous
literature by calling N as in Eq. (1) the accuracy [4] and p as in
Eq. (4) the precision [25], even though these do not
correspond to the usual definitions of accuracy and precision
in metrology.] A relation such as Eq. (5) describes a trade-off
between precision and dissipation. To achieve high precision
by overwhelming the observable’s thermal fluctuations, the
system must be strongly driven and this creates entropy.
An example of an experimental verification of TURs can
be found in Ref. [39].

One should add that while the upper bound on precision

g(S) increases with increased dissipated entropy, that by no
means implies a generically increased precision in more
strongly driven systems. Indeed, for canonical thermody-
namic choices in observables F, the precision of our system
actually decreases with an increased drive. One way to view
the relation of clock accuracy with increased entropy
dissipation through the lens of TURs would be to identify
the output of our tick identification algorithm in relation
to a reference clock with the observable in a TUR; i.e.,
(Fick) = tyck- While this is not really a standard observable
as its very definition is dynamically updated, one can easily
see that in this case, the accuracy of the clock is equal to the
precision defined in the TUR.

So from that point of view, the noncanonical observable
can be taken as the measured interval between successive
ticks. If such an identification is possible, the combination
of Egs. (1) and (3) leads to the following relation:

P(Fix) =N < 2”2ttick%k£’ (6)
N KB
which clearly has the form of Eq. (5).

Indeed, previous work [6,22-25] has shown that with an
appropriately chosen observable, the precision satisfies a
TUR inequality, which in the case of this work is given by
the above. However, we emphasize that calculating the

accuracy of this experimental clock is not simply a matter
of applying known TURs.

Equation (6) is useful only if there is a mechanism to
identify ticks and therefore correctly measure the observ-
able. Naively applying Eq. (4) to the wrong observable,
even if that observable is derived from the same voltage
record as that used to generate ticks, leads to a precision
that can be very different from the accuracy as defined by
Eq. (1). In fact, with the wrong observable, running the
clock at a higher entropy generation rate can actually lead
to a worse precision.

To see this surprising fact, suppose we take the observ-
able F as the energy flux contained in the demodulated
output of the clock, averaged over a fixed interval. When
the clock is weakly driven, this output consists of broad-
band voltage noise which carries energy at a nearly constant
rate and therefore leads to a large precision defined by
Eq. (4). When the clock is strongly driven, the output is
dominated by the mechanical signal, which has a long
correlation time and therefore induces long-lived fluctua-
tions in the flux.

Let us now demonstrate this result quantitively. We select
as an observable the power entering the measurement
circuit, averaged over an interval chosen as 10 cycles of
the mechanical oscillation. This is a natural choice to
make, because the observable is conventionally taken as a
current [39]. In this case it is the energy current into the
measurement circuit. Up to a proportionality constant,
which cancels from Eq. (4), this energy is

1 14102k
F(1) / V2()dr, (7)
t

10t

where V(7) is the demodulated voltage record, as plotted,
e.g., in Fig. 2(d).

Figure 4 shows the energy precision calculated from
Egs. (4) and (7) from the same demodulated voltage record
as in Figs. 3(a) and 10(a). As can be seen, the precision
p(F) of this observable differs drastically from the accu-
racy N, and even has the opposite dependence on both
Pwn and P,,. The reason is that the slowly fluctuating
mechanical signal delivers a strongly varying amount of
power [i.e., low precision, defined by Eq. (4)] but never-
theless encodes a regular time step [and therefore high
accuracy, defined by Eq. (1)].

To compare this data with the classical clock model,
Appendix C presents an analytic derivation for the thermo-
dynamic precision of our experiment in terms of this F.
We obtain

b(F) — (1 +ﬁ) (8)

where « is a constant proportional to the intensity of the
measurement noise. This equation is used as a fitting
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4 + Py, =8dBm ||
+ P, =10dBm
P, =12 dBm
+ Py =14 dBm
L
=

0

1

0 Py (W) 0.25
FIG. 4. Precision p(F) of the demodulated signal as a function
of mechanical drive power Py for different settings of the cavity
illumination power P, . Crosses show precision calculated from
the voltage record data using Eqs. (4) and (7). The experimental
data are consistent with the limiting cases of the theory. Curves
show predictions from Eq. (C31). The free parameter « is set by
fitting to the data with P_,, = 8 dBm, then held fixed to generate
the other curves. We separate the data into two figures for cavity
drive powers P, of 814 dBm (for powers 16-20 dBm, see
Appendix C).

function in Fig. 4, with « as the fit parameter. We fit the data
for P.,, = 8 dBm to extract the value @ = 8.6 x 1075 W2,
This value of a was then used to predict p(F) curves in
Fig. 4 for all the other datasets, with no free parameters.

This analysis shows that the clock output encodes a
temporal signal in a way that is not apparent in the chosen
observable, despite the fact that energy flux given by Eq. (6)
is at first sight a reasonable choice as the basis of a clock.
This shows that although TURs are useful bounds in a wide
range of systems, they must be applied with care even in a
fairly elementary clock realization such as this one.

VI. CONCLUSION AND OUTLOOK

In this work, we demonstrated a thermomechanical clock
which allowed us to reveal a universal relation in the
thermodynamics of timekeeping. We first showed that the
heating resource introduced to drive the clockwork of our
optomechanical setup enhances the accuracy of the clock
signal. Modeling our system classically, we then found that
the linear relationship between clock accuracy and entropy
production, derived in an idealized quantum setting, is
found to hold in the classical regime. The universality of
this relation provides a clear link between the entropy
dissipated by the clock and the quality of the arrow of time.
We also uncover an interesting relation to thermodynamic

uncertainty relations studied in the field of stochastic
thermodynamics. In some sense, our method of identifying
ticks can be interpreted as a means to finding observables
that maximally increase precision with increased entropy
dissipation rates. We showed that in our system, contrary to
the identified clock ticks, conventional thermodynamic
currents do not experience an increased precision with
increased driving. As all clocks are fundamentally thermo-
dynamic in nature [8,9], we believe that a further study of
the relation between TURs and clocks will be fruitful.

Another exciting avenue for future investigation that one
can imagine would be interpreting the system as a heat
engine, instead of a clock. Since the oscillations of the
membrane can induce a current, they are able to produce
work, thus mimicking a heat engine that converts unstruc-
tured noise into regular beats. For a system of this scale,
work fluctuations become crucial, in contrast to a classical
macroscopic engine, for which the power delivered in each
stroke is approximately the same. This opens up the
opportunity of studying work fluctuation relations as well
as deriving rates for heat to work conversion. Finally, it
would be interesting to see if the noise (heat) driving the
membrane could be harnessed from the environment, rather
than being input from a characterized source; in this way
one would be able to say that the system is truly performing
as a useful engine.
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APPENDIX A: ELECTROMECHANICAL SYSTEM

The silicon nitride membrane is 50 nm thick and has an
area of 1.5 x 1.5 mm?. 90% of the area of the membrane is
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metalized with 20 nm of Al. We suspend this membrane
over two Cr/Au electrodes patterned on a silicon chip. The
capacitor formed between the electrodes and the metalized
membrane, which depends on the membrane’s displace-
ment, leads to coupling between the cavity and the
mechanical motion. The rf circuit is modeled and charac-
terized in Ref. [33]. The entire setup forms a three-terminal
circuit with input ports 1 and 3 and output port 2. We used a
vector network analyzer to measure the scattering param-
eter [Fig. 1(b)], a spectrum analyzer to measure power
spectra [Fig. 1(c)], and an oscilloscope to measure the
displacement as a function of time [Fig. 1(d)].

APPENDIX B: ENTROPY-ACCURACY
RELATION FOR A THERMOMECHANICAL
CLOCK

Here, we derive the entropy-accuracy relation, Eq. (3),
which is tested in the main text. We do this by consid-
ering two classical clock models. The first is a very
simple clock that uses the filtered Johnson noise of a hot
resistor. The second is the optomechanical clock—an
elaboration of the Johnson-noise clock which is realized
in our experimental setup. As shown below, both designs
obey the same relation, which in turn resembles pre-
viously derived relations for classical [26] and quantum
[4] clocks.

In both models, the clock must derive ticks from a
periodic but noisy voltage record. We ask the question, how
precisely can any clock identify a tick instant from a
segment of this record? From the perspective of the clock,
this is clearly a problem of phase estimation. From the
nth segment of the record, an error d¢, in estimating the
phase leads to an error 6¢, = t;6¢, /27 in identifying
the corresponding tick instant #,. Thus, from Eq. (1), the
clock accuracy in any classical model is related to the phase
error by

since the tick uncertainty At is by definition the root-mean-
square value of 6¢,. Furthermore, we require that successive
ticks be statistically independent, which means that every
tick must be derived from a nonoverlapping segment of the
record. In what follows, we construct models for 6¢,, for
two physical scenarios and thus estimate the accuracy of
those clock models.

1. Measuring time from filtered Johnson noise

Figure 5 shows a design for a thermodynamical clock
based on Johnson noise. The clock contains two heat baths
at temperatures 7, and T.. Inside the hot bath, at temper-
ature T, is a resistor R, which is connected via a matched
transmission line to an ideal voltage amplifier located in the
cold bath at temperature 7'.. To ensure an impedance match
and thus prevent reflections from the end of the trans-
mission line, an equal resistor R, is connected to the
amplifier input. A reflective bandpass filter is placed in the
transmission line, centered at frequency f, and with quality
factor Qy, so that it passes frequencies in a bandwidth of
fo/Q; near the center frequency. The combined Johnson
noise of the two resistors leads to an incoherent voltage
oscillation at the cold amplifier input, whose peak ampli-
tude Vg satisfies

(V3) = 2kg(T), + TC)ROE

, (B2)

Qs
where (-) denotes an average over many oscillations.
Each oscillation cycle corresponds to one tick of the clock.
Demarcating each cycle accurately requires a large oscil-
lation amplitude, meaning that a larger power is dissipated
in the cold resistor; this is the thermodynamic price that we
aim to quantify.

The amplifier measures the input voltage V(7) as a
function of time ¢ [Fig. 5(b)]. To generate a timing signal,
the clock’s task is to identify ticks from particular instances
of the record, for example, those instants at which the
upward crossings of the 7 axis occur. This is the phase
estimation problem described above. The reason that a

47
N =T6a0y (51
(a) (0) 4 v
Th P Tc
gt =2 |
R Qs R |

FIG. 5.
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Simple electrothermal clock. (a) The setup. The Johnson noise of resistor R, in equilibrium with a hot bath at temperature 7',

is filtered to pass frequency f, with bandwidth f,/ Q. The resulting signal, whose power is Py, is passed to a matched resistor and
amplifier at temperature 7'.. (b) From the noisy voltage record (points) seen by the amplifier, we can generate clock ticks by estimating
the zero crossing of each cycle using a sinusoidal fit (lines). Here Az marks the sampling interval, 7, = 1/f is the average tick interval,

+1, is the fit range, and At is the fit uncertainty.
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perfect estimate is impossible even in principle is that the
record is contaminated by voltage noise, including the
broadband Johnson noise of the cold resistor.

How should the clock best perform a phase estimate,
given a segment from the noisy voltage record? The answer
is to perform a maximum-likelihood estimation. If the noise
is uncorrelated and has a Gaussian distribution, as expected
for broadband Johnson noise, this means a least-squares
fit to the data [40]. No implementation of the clock can
perform better than this.

To this end, we imagine that we have obtained some
experimental data; we discretize the time interval in the
record into pieces around the expected tick locations (the
upward crossings), and fit one curve for each tick of
the clock, such that for n ticks we fit n curves. For a
particular tick we imagine fitting the function

V(tlg,) = Vosin(aft+ ¢,) with

2n Xty — 1, Lt <2n Xty +1, forneZ, (B3)

where V| is the oscillation amplitude, f is the frequency, ¢,
is the phase, and where we have chosen to fit the nth tick
to a function over the interval 2¢, [see Fig. 5(b)]. The
parameters V|, and f can be estimated over several recent
oscillation cycles because they are slowly varying proper-
ties and are therefore not determined by the noise over a
single cycle. The only parameter to fit is thus the phase ¢,,,
which motivates the notation V(#|¢,) as per the prescrip-
tion in Ref. [40]. For a particular dataset D, the optimal
value of the parameter for the nth tick, denoted ¢, is the
one that minimizes the y> function, defined as

) = 3 (V)

i

(B4)

where i labels the data points and ranges over the total
number of data points, and o, is the vertical standard
deviation of each point. The uncertainty is then determined
by Ay? = 1 and the curvature parameter a, and follows the

expression
Ap =\ /{(6h,)2) = \/ a2,

The curvature parameter is calculated from the fitted
function and the experimental points i as

e

i 1

(B5)

(B6)

A final value for Eq. (B5) would be obtained by evaluating
a at the fitted parameter ¢;, which minimizes Eq. (B4)

and choosing Ay? such that it corresponds to the desired
confidence interval. Since we are in the business of
constructing a model for the accuracy (i.e., we are not
analyzing the fit of a particular dataset), we must make a
statement that is reasonable for all datasets {D} that may
emerge from this setup. To do this, we must make a few
additional assumptions. First, we are interested in a
situation where the oscillation frequency is sharply defined,
i.e., Oy > (V§)/o7, which means that within a single cycle
o; is dominated by the broadband noise at the amplifier
input and therefore takes a constant value ¢ for all data
points. Next, we imagine that the n ticks are fitted by
choosing n windows (or regions) of length 2¢,, where
t, = 1/2f,, and the y*> minimization gives us the value of
the crossing ¢;, for each tick. To calculate @ in any such
region, we idealize Eq. (B6) by imagining a continuum of
data points, and thus convert the sum to an integral
normalized by At, the sampling interval. This gives

ELERY
_ 02—§z _Z cos>(2afot + b, )dt (BS)
(o )
_ ﬁ (B10)

where the last step assumes f, has been chosen at the
optimal value of 1/2f, and without loss of generality the
zero of ¢ has been chosen at the center of the fit interval.

Note that choosing to fit the function in windows of
width 2z, = 1/ has resulted in an expression for « that is
independent of the fitted parameter ¢,. Indeed, the integral
in Eq. (B7) is independent of ¢, for all integration regions
of width 27, = 1/ f,, regardless of where they are centered.
Thus, knowledge of the membrane frequency f,, implies
that the standard error in the fitted parameter ¢, is only
related to the physical parameters set for the experiment.
Also note that on converting the sum to an integral, we
would expect the expressions to be approximately equal.
Observe that the right-Riemann sum aAr would overesti-
mate the integral of any monotonically increasing function
in the interval, while underestimating for a monotonically
decreasing function. If the parameter is fitted such that it
falls roughly within the center of the window each time
(i.e., we place the window roughly where we expect the
crossing), the effects of overestimating and underestimating
the symmetric function under the integral will roughly
balance out.
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To obtain the standard deviation A¢g,, we should take
Ay? =1 in Eq. (B5), giving
Ap=a /2, (B11)

With this, the accuracy in the Johnson-noise model is

N; = 472 (B12)
_27Vs (B13)
GZA[fO

The per-point standard deviation depends on the measure-
ment bandwidth of the amplifier and on the system noise. In
the best case, it will be set by the Johnson noise of the cold
resistor [41], giving

6 = \/4kgT .R,B,

where B is the measurement bandwidth (defined using
the single-sided frequency convention), and the factor 4
appears because the bandpass filter presents on open load
except near resonance. In order that successive points are
independent but no data are lost, the sampling interval
should be related to the bandwidth by B = 1/2At. Thus,

(B14)

6> At = 2kpT . Ry. (B15)
Substituting into Eq. (B11) gives for the phase uncertainty
in the interval which we chose to fit

VA4fokgT Ry

5 =
b Vs

(B16)

Over many oscillations, V|, fluctuates, but its root-mean-
square value is Vg, given by Eq. (B2). Substituting this and
Eq. (B15) into Eq. (B13) gives us a model for the accuracy
of the clock:

N, =2 (V2) (B17)
T foksTRy P
27227, +T.
Tt e (B18)
Qf Tc

The clock creates entropy because the power carried by the
electrical oscillation is converted to heat in the cold resistor.
The entropy creation rate can be written as

Th_Tc&

S =k 0

(B19)

since the net power transferred is Py = kz(T), = T.)fo/ Q-
Combining this expression with Eq. (B18) gives the
accuracy in terms of the entropy created:

Th + Tc AStick

N; =277 (B20)

AS;
~2 tick
X 2rt——,

B

for T, > T,. (B21)

where AS;; = S /fo is the entropy generated per tick. This
best case scenario (i.e., smallest o) provides an upper bound
for the best achievable accuracy of an experiment of this
type. Thus, we can expect this model to overestimate the
accuracy compared to that coming from a live experiment.
Similar expressions to Eq. (B21) hold for a classical clock
defined by transitions on a network [26] and for an
autonomous quantum clock [4]; however, in both these
cases the factor 277 is replaced by 1/2.

2. Measuring time from an optomechanical signal

In this section we proceed to build a classical model
that predicts the accuracy, which we call N, for a scheme
that is more fitting to our experimental setup. Figure 6
shows the optomechanical setup, which serves as the
clock of our experiment. The clock works by illuminating
a tank circuit containing a vibrating membrane with a rf
tone of power P, [Fig. 6(a)]. The thermal motion of the
membrane modulates the phase of the reflected signal,
and from this signal the ticks are derived. This is the
principle of the clock realized in our experiment. The
advantage of this clock over the version of Fig. 5 is that
the reflected signal can be increased by increasing P,. as
well as by heating the membrane more strongly. As we
show in this section, this clock obeys a similar entropy-
accuracy relation to Eq. (B21). The voltage incident on
the tank circuit is

Vin(t) =V, cos(2zf 1), (B22)
where V.=+/2RyP,. and f, are, respectively, the ampli-
tude and frequency of the illumination signal, and the
characteristic impedance of the transmission line is
assumed equal to R. The reflected amplitude is therefore
Vb2 —dxaxcVy(t)=TV.cos(2zf t+px(1)), (B23)
where I' is the cavity reflection coefficient, f is the
mechanical coupling strength, and x(7) is the instanta-
neous membrane displacement. The phase reference
plane is assumed to be chosen so that the phase is zero
at the membrane’s equilibrium position. The membrane
vibrates with a mechanical temperature 7,. If its quality
factor is high, the mechanical amplitude x, and phase ¢
are approximately constant over one oscillation cycle,
meaning that the displacement is

x(t) = xgcos(2zfot + ). (B24)
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FIG. 6. The thermomechanical clock. (a) The setup. An optomechanical circuit consists of an LC tank circuit whose capacitance, and
therefore frequency, is modulated by a thermomechanical resonator at temperature 7,. To use the vibrations in a clock, the tank circuit is
illuminated by a carrier tone V;, at frequency f,., giving rise to a reflected signal V, which is passed to a cold matched resistor and
amplifier. The effect of the vibrations is to modulate the phase of V. (b) Sketch of the resulting voltage record at the amplifier input
(points), with fits (lines) from which each tick is extracted. The modulation envelope is indicated by the shaded background. Inset:
power spectrum at the amplifier input, showing uniform noise background, central delta-function peak from the carrier, and two
thermomechanical sidebands. In the experiment, a demodulation circuit was applied after the amplifier [as in Fig. 2(d)] because it makes
ticks practically easier to identify in the record. However, the demodulator cannot improve the clock accuracy because it cannot increase
the timing information present in the signal V(¢); in fact, a detailed calculation would show that the accuracy is unchanged. For

simplicity, the demodulator is therefore omitted from this model.

In this experiment, the electromechanical coupling is
weak, meaning that fx, < 1. This means that we can
substitute Eq. (B24) into Eq. (B23) and expand to lowest
order in fx,, giving

Vout(t) =TV (cos(2zf .t)— fxosin(2zf .t)cos2afot+)).

(B25)

In other words, the reflected signal is modulated at
frequency f, with phase ¢, as sketched in Fig. 6(b).
Each full cycle of the modulation is one period of the
clock. To generate ticks, the clock must identify a
particular point of the modulation cycles, which implies
it must precisely identify ¢. As in Appendix B 1, we want
to know how accurately this can be done in principle.
Again, we imagine we have obtained a set of experi-
mental data and wish to know how accurately the nth tick
can be identified. We proceed by fitting the function,

V(t|g,) = Agcos(2zf.t) + A, sin(2zf.t) cos(2zfot + P, ),
(B26)

in windows of width 1/f, around the expected tick
locations. The parameters Ay, A;, f., and f, can be
extracted over several recent cycles, and are thus known
values. Therefore, just as in Appendix B 1, we are
performing a one-parameter fit.

We imagine that for some dataset we minimize Eq. (B4)
for the function in Eq. (B26), which gives us the optimal
parameter ¢;. We now want to know, what is the error in
this fit given the optomechanical setup we have described?
We follow the recipe give in the previous section and
proceed to calculate the curvature parameter of our model:

(B27)

1 b (OV(t|dh,)\?
a_GZAZ/_tr( op, )dt

A2 I
= 1/sin2(27rfct)sin2(2ﬂfol‘+¢n)dt

o2 At i,

(B28)

A2 tf
= F]At/—z, 1 —cos(4nfot + 2¢,) — cos(4xf 1)

_ cos(4z(f. + fo)t + 2¢,)
2

N cos(4x(f. — fo)t = 2¢,)
2

dt, (B29)

where ¢, = 1/2f, is the fit range. Since the fit window
extends over many cycles of the carrier tone, i.e.,
t,> 1/f., the last three oscillatory terms make a negli-
gible contribution to the integral, leaving

A2 [
a= 40'21At/_,, 1 —cos(4xfot +2¢,)dt  (B30)
A3 cos2¢
_ - " in(dnfot B31
b (1= S siangn)) )
A2
_ 12 _ (B32)
4f 0’ At

Since the tank circuit presents an open electrical impedance
except at its resonance frequency, the Johnson noise again
obeys Eq. (B15), leading to

At

* = 8foksT Ry’

(B33)
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which implies that é¢p, = /8 fokpT.Ry/A; and

7 (A?)

Ne=dnta=——"11__
€ Y foksT Ry

(B34)

To connect this to thermodynamic quantities in the
experiment, we recognize that A, is related to the combined
power Pgp in the two sidebands by

(A7)
Py = L
BT 4R,

(B35)
Entropy is created because the reflection from the tank
circuit containing the hot resonator leads to irreversible
heating in the cold resistor. Equation (B25) and the inset of
Fig. 6(b) show that there are potentially two contributions
to the heat: the reflected carrier, which is a coherent
monochromatic tone at frequency f,., and the two incoher-
ent sidebands centered at f.+ f,. However, the carrier
contains no information about x(¢). In principle (although
this was not implemented in our experiment) a narrow band
filter could be used to direct this portion of the spectrum
back toward the tank circuit without affecting the accuracy
of the clock. Thus the reflected carrier does not contribute
to the fundamental entropy cost of the clock. Instead, the
unavoidable entropy increase is determined by the two
sidebands, which dissipate heat Pgp in the cold resistor. The
entropy creation rate is

. P
§=-38
T

(B36)

c

In contrast to Eq. (B19), there is no decrease of entropy in
the hot element, because illuminating the membrane at the
cavity frequency does not cool it. Thus we can reexpress
Eq. (B34) in terms of the entropy generated per tick,
leading to

2 2
Ne =25 ASuas (B37)
kg
where
P
ASge = fo%? (B38)

Equation (B37) is the fundamental entropy-accuracy rela-
tion for the optomechanical clock.

There is one more adjustment which must be made to
compare Egs. (B37) and (B38) to experiment. The deri-
vation above assumed that the amplifier noise is much less
than the Johnson noise of the cold resistor. Although this is
perfectly possible, it is also common (and is the case in our
experiment) that other noise sources contribute, leading to a
decrease in accuracy that reflects technical imperfections

in the voltage measurement rather than any fundamental
bound. To account for this possibility, Eq. (B37) should be
generalized to

222 T
Ne =2 2¢ ASiu.
C kB TN tick

(B39)
where Ty is the effective temperature, including the
Johnson noise of the cold resistor, determined by the noise
in the record.

To evaluate Eq. (B39) from the experiment, we express
its components in terms of the output signal’s power
spectrum Syy, which is proportional to the modulus
squared of the Fourier transform of the record V(7). In
this language, the effective temperature is given by

N
_ S
N 4kgRy

(B40)

Here & %) is the single-sided average spectral density of the
noise in the Fourier transformed signal, i.e., the average
background level of the power spectrum. In terms of the
power spectrum, the heat Pgp in the cold resistor is given
by integrating the excess spectral density (i.e., the signal)
above the noise background, the integral running over both

sidebands, [ 5% (f)df. Thus the classical model predicts
the accuracy from the experimental data to be

27 A?
Ne=—"—L B41
C fO Sg\y ( )
87'[2 PSBRO
2 B42
fo S%) ( )
82> [ Syy(f)d
_ 8" JSvw(f)df (B43)
So S%)

where the second line follows from Parseval’s theorem. In
practice, our analysis applies Eq. (B43) to the record of the
demodulated voltage as in Fig. 2(d). Since demodulation
does not change the signal-to-noise ratio, Eq. (B43)
remains valid, with the integral now taken over the single
signal peak.

APPENDIX C: ANALYTIC PREDICTION FOR
THE THERMODYNAMIC PRECISIONS

Here, we derive an analytic prediction for the thermo-
dynamic precision in our experimental setup. This
prediction is then used to fit the curves in Figs. 4 and 7.
Recall from Eq. (4) that the “precision” in the sense of a
thermodynamic uncertainty relation (TUR) is a statistical
measure that characterizes the fluctuations of an observable
F and is defined as
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FIG. 7. Precision p(F) of the demodulated signal as a function
of mechanical drive power Pyy for different settings of the cavity
illumination power P,,, in the range 16-20 dBm. Crosses show
precision calculated from the voltage record data using Eqs. (4)
and (7). Curves show predictions from Eq. (C31). The free
parameter « is set by fitting to the data with P_,, = 8 dBm, then
held fixed to generate the other curves.

[(F)?
VarF’

p(F) = (C1)
where (- - -) denotes the expectation value. To confirm that
the precision computed from experimental data in Figs. 4
and 7 has the expected form, we also calculate it analyti-
cally, beginning with the predicted output voltage from
Eq (B25). The voltage record V(7) is generated from the
received voltage V() by the demodulation circuit in
Fig. 2(d). The first effect of this circuit is to multiply the
received voltage by sin2zf.t, thus generating a signal:

Vmixed<t> = Vout(t) sin2zf .t (Cz)

=TV, (cos2xf. tsin2xf.t — px(t)sin’2xf t).
(C3)

The second effect is to bandpass filter (BPF) this signal
around the mechanical frequency f, to generate the
demodulated voltage,

V(t) - BPF{ Vmixed (t)}

= _Fvcﬂx(t)’

(C4)
(C5)

which as expected is proportional to the instantaneous
displacement. This is the voltage that would be recorded if
there were no noise in the measurement circuit. Since noise

is inevitably present, we include it by replacing Eq. (C5)
with

V(1) = =TVopx(1) + £(1),

where &(1) is the measurement noise voltage.
We can now calculate the precision according to Eq. (C1).
The observable according to Eq. (7) is

(Co)

F = [V3(1))], (C7)

where [---] denotes a time average. Substituting from
Eq. (C6) gives:

(F) = {[(-T'Vpx(1) + £(1))*]) (C8)
=2V (0)]) + (B () (C9)
= D2VER (1)) + (&(1) (C10)
=I2V2p2X? + B2 (C11)

Here Eq. (C9) follows because the displacement and the
measurement noise are uncorrelated, Eq. (C10) because
the order of time average and expectation value can be
exchanged, and Eq. (C11) by defining X and Z to be the
root-mean-square amplitudes of displacement and of meas-
urement noise, respectively.

To calculate the variance, we also need

(F?) = ([V*(1)]*) (C12)
= ([(-TVpx(1) + &(1))*]) (C13)
= DB (1)) + 202 VEBX (¥ (1)] [ (1)])
+(&EP)
(C14)
= TWABH([2(1)]2) + 2T V2PX2E2 484, (CI5)

Here Eq. (C14) follows by expanding the bracket and using
that [x(7)] = O for integration over an integer number of
cycles, and Eq. (C15) uses that x(¢) and £(¢) are uncorre-
lated and that the correlation time of &(#) is much shorter
than the averaging interval.

To evaluate the first term in Eq. (C15), we separate x(¢)
into its two quadratures by writing

x(t) = xy cos 2zfot + x5 sin 2z f . (C16)

Provided the averaging window is shorter than the
mechanical damping time, which is well satisfied in
Fig. 4, then x; and x, can be taken as constant within
each average, leading to
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(a) Accuracy N of the clock versus the white-noise power Pyy for cavity drive powers in the range 16-20 dBm. (b) Accuracy

N of the clock versus N for cavity drive powers in the range 16-20 dBm.The black dotted line is a guide for the eye to show the
expected gradient should the extracted accuracy and the theoretical accuracy predicted from the entropy production be equal. The dark
gray dotted line shows the approximate gradient of the 20 dBm data of N = N /6 and the light gray line shows the approximate gradient

of the 16 and 18 dBm data of N = N/9.
(P (0)]7) = ([(x1 cos® 2zf ot + xy sin2zf1)’])  (C17)

= ([x} cos? 2z f ot + 2x1x; cos 2z f ot sin 27 f ot

+ 2 sin? 2z f, ) (C18)
= (5 +3)/2?) (19)
= b+ 2xdg 1 ) (C20)
= 2 () + (3. (c21)

Equation (C19) follows because [cos? 27z ft] = [sin? 2z fot] =
1 and [cos2xforsin2zfyf] = 0. Equation (C21) follows
because the statistics of x; and x, are equivalent.

To evaluate Eq. (C21), we use the fact that x; is a
response to many random impulses received by the
resonator at different times. It therefore follows a normal
distribution, which implies that

(xf) =3(x3) (C22)
and therefore
(P(N)) = 2(x1)? (C23)
=2X* (C24)
Substituting Eq. (C24) into Eq. (C15) leads to
(F?) =TV A X4 + T2V 22 X2 + E2)2. (C25)

The precision according to Eq. (C1) is therefore

F 2
) = Ty (©26)
FZV% 2X2+E:2 2
_( r“*ﬂv i ) (C27)
EZ 2
_ <1 +r2vgﬂ2X2) . (C28)

Let us now examine the limiting cases of the precision with
this choice of F. In the first case, when the noise is small
compared to the signal, we have

li F 1
rvc}fl)?»ap( )~ 1.

(C29)
while, on the other hand, when the noise dominates the
signal, we find

lim p(F) > oo. (C30)

=TV X

The reason that this model predicts an apparently infinite
precision is that white noise contains independent contri-
butions to F at infinitely many frequencies. By contrast,
Eq. (C29) describes a situation where the clock output is
dominated by the mechanical signal, which exists in a
narrow frequency range but whose amplitude is subject to
long-lived fluctuations. In fact, the limit of Eq. (C30) is
unphysical because the power needed to amplify the entire
spectrum of white noise would be infinite.

To relate Eq. (C28) to experimental parameters, we use
that V2 is proportional to the cavity illumination power
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FIG. 9. The demodulated cavity output signal before (a) and after (b) filtering as a function of time for input powers of 8, 10, and
12 dBm to the cavity with 0.25 W white-noise input from port 3. The traces are vertically offset for clarity.

P_,, and that X? is proportional to the mechanical drive
power Pwy. Then the expected precision is

(i)
PcavPWN '

where « is a constant proportional to the intensity of the
measurement noise. Equation (C31) is the fitting function
used in Fig. 4, with «a as the fit parameter. To plot the curves
in Fig. 4, we fit the data for P, = 8 dBm to extract the
value a = 8.6 x 107> W2, We then use this value of « to
predict p(F) for all the other datasets in the figure, with no
free parameters. There is moderately good agreement with
all datasets, with discrepancies being consistent with an
excess of measurement noise at high illumination power;

(@) :

p(F) = (C31)
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FIG. 10.

importantly, the limits derived in Egs. (C29) and (C30)
are observed in our experimental data. This agreement
confirms that our physical model and numerical analysis
are sound.

APPENDIX D: OVERDRIVING THE MEMBRANE

Above 14 dBm we enter the nonlinear regime of the
membrane’s motion. As can be seen from Fig. 8(a), for
these higher drive powers the relationship between accu-
racy N and white-noise power Py is more erratic. The
general trend of accuracy increasing with Pyy is still there
for the lower values of Py, but then the accuracy saturates
and unstable dynamics dominates the motion of the
membrane. As discussed in the main text, the saturation

0)

T T T T ____+
--+- Ru,=20dBm 7
41— R.,= 18 dBm -
--+- R,=16dBm
—— R,=14dBm :
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> ~+
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o | . .
~—" ;,F
2 .
[
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(a) Noise temperature of the system 7'y increasing as the cavity drive power and white-noise power increase for cavity drive

powers in the range 8—20 dBm. (b) The increase in the power of the sideband with increase in the white-noise power for different cavity
drive powers in the range 8—20 dBm. For both (a) and (b) the higher drive powers have dotted lines and the data shown in the main text

have full lines.
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of accuracy is to be expected. Surprisingly, Fig. 8(b) shows
that the higher power measurements show better agreement
with the theoretical predictions of Eq. (3) [or equally
Eq. (B39)] with a gradient of 1/9 for the 16 and
18 dBm datasets and 1/6 for the 20 dBm dataset.

APPENDIX E: MEASUREMENTS AT LOW
CAVITY ILLUMINATION POWER

Figure 3 shows only measurements down to a drive power
of P.,, = 8 dBm. This is due to the fact that below this drive
power the signal is weak and identifying the oscillations
becomes difficult. Example traces corresponding to a white-
noise power of 0.25 W with 8, 10, and 12 dBm drive powers
are shown in Fig. 9 before [Fig. 9(a)] and after [Fig. 9(b)]
filtering. As can be seen in the signal for a 12 and 10 dBm
drive oscillations can easily be identified; however, they are
much fainter in the 8 dBm signal.

APPENDIX F: SYSTEM NOISE TEMPERATURE

As can be seen from Fig. 10(a), the noise temperature of
the system increases for both an increased cavity drive or an
increased white-noise power, Pyy. Figure 10(b) shows that
the power in the sideband, used in the entropy calculations
[Eq. (B43)], increases approximately linearly with Pyy.

[1] T. Nicholson et al., Systematic Evaluation of an Atomic
Clock at 2 x 1078 Total Uncertainty, Nat. Commun. 6,
6896 (2015).

[2] B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse, New
Measurement of the Electron Magnetic Moment Using a
One-Electron Quantum Cyclotron, Phys. Rev. Lett. 97,
030801 (2006).

[3] V. Rajaraman, IEEE Standard for Floating Point Numbers,
Resonance 21, 11 (2016).

[4] P. Erker, M. T. Mitchison, R. Silva, M.P. Woods, N.
Brunner, and M. Huber, Autonomous Quantum Clocks:
Does Thermodynamics Limit Our Ability to Measure Time?,
Phys. Rev. X 7, 031022 (2017).

[5] P. Erker, The Quantum Hourglass, Master’s thesis, ETH
Zurich, 2014.

[6] A.C. Barato and U. Seifert, Cost and Precision of Brownian
Clocks, Phys. Rev. X 6, 041053 (2016).

[7] G.J. Milburn and T.J. Milburn, A Quantum Optomechan-
ical Mach Clock, arXiv:1708.02369.

[8] G.J. Milburn, The Thermodynamics of Clocks, Contemp.
Phys. 61, 69 (2020).

[9] E. Schwarzhans, M. P. E. Lock, P. Erker, N. Friis, and M.
Huber, Autonomous Temporal Probability Concentration:
Clockworks and the Second Law of Thermodynamics, Phys.
Rev. X 11, 011046 (2021).

[10] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk,
The Role of Quantum Information in Thermodynamics—A
Topical Review, J. Phys. A 49, 143001 (2016).

[11] N.Y. Halpern and D. T. Limmer, Fundamental Limitations
on Photoisomerization from Thermodynamic Resource
Theories, Phys. Rev. A 101, 042116 (2020).

[12] G. Manzano, R. Silva, and J. M. R. Parrondo, Autonomous
Thermal Machine for Amplification and Control of Ener-
getic Coherence, Phys. Rev. E 99, 042135 (2019).

[13] O. Abah, R. Puebla, A. Kiely, G. De Chiara, M. Paternostro,
and S. Campbell, Energetic Cost of Quantum Control
Protocols, New J. Phys. 21, 103048 (2019).

[14] F. Clivaz, R. Silva, G. Haack, J. B. Brask, N. Brunner, and
M. Huber, Unifying Paradigms of Quantum Refrigeration:
A Universal and Attainable Bound on Cooling, Phys. Rev.
Lett. 123, 170605 (2019).

[15] A.S.L. Malabarba, A.J. Short, and P. Kammerlander,
Clock-Driven Quantum Thermal Engines, New J. Phys.
17, 045027 (2015).

[16] M.P. Woods, R. Silva, and J. Oppenheim, Autonomous
Quantum Machines and Finite-Sized Clocks, Ann. Henri
Poincaré 20, 125 (2019).

[17] C. Gogolin and J. Eisert, Equilibration, Thermalisation, and
the Emergence of Statistical Mechanics in Closed Quantum
Systems, Rep. Prog. Phys. 79, 056001 (2016).

[18] J. Eisert, M. Friesdorf, and C. Gogolin, Quantum Many-
Body Systems Out of Equilibrium, Nat. Phys. 11, 124
(2015).

[19] M. T. Mitchison, Quantum Thermal Absorption Machines:
Refrigerators, Engines and Clocks, Contemp. Phys. 60, 164
(2019).

[20] L. A. Martinez, E. Roldén, L. Dinis, D. Petrov, J. M.R.
Parrondo, and R. A. Rica, Brownian Carnot Engine, Nat.
Phys. 12, 67 (2016).

[21] J. RoBnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah,
E. Lutz, F. Schmidt-Kaler, and K. Singer, A Single-Atom
Heat Engine, Science 352, 325 (2016).

[22] J. P. Garrahan, Simple Bounds on Fluctuations and Un-
certainty Relations for First-Passage Times of Counting
Observables, Phys. Rev. E 95, 032134 (2017).

[23] K. Proesmans and C. Van den Broeck, Discrete-Time
Thermodynamic Uncertainty Relation, Europhys. Lett.
119, 20001 (2017).

[24] A.C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli,
Bounds on Current Fluctuations in Periodically Driven
Systems, New J. Phys. 20, 103023 (2018).

[25] G. Falasco, M. Esposito, and J.-C. Delvenne, Unifying
Thermodynamic Uncertainty Relations, New J. Phys. 22,
053046 (2020).

[26] A.C. Barato and U. Seifert, Thermodynamic Uncertainty
Relation for Biomolecular Processes, Phys. Rev. Lett. 114,
158101 (2015).

[27] White noise is a high-entropy signal and, while it is not
straightforward to assign a temperature to it, we do not
require a low-entropy source of work to prepare it (one can
expect that it is reasonably abundant in out-of-equilibrium
environments). The notion of temperature itself often
becomes ill defined in microscopic contexts, as deviations
from thermal equilibrium are more frequent and noticeable,
and selective coupling to certain frequencies can yield
multiple notions of temperature even for an ideal blackbody.

[28] K. W. Lehnert, Introduction to Microwave Cavity Optome-
chanics, in Cavity Optomechanics: Nano- and Microme-

021029-17


https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1007/s12045-016-0292-x
https://doi.org/10.1103/PhysRevX.7.031022
https://doi.org/10.1103/PhysRevX.6.041053
https://arXiv.org/abs/1708.02369
https://doi.org/10.1080/00107514.2020.1837471
https://doi.org/10.1080/00107514.2020.1837471
https://doi.org/10.1103/PhysRevX.11.011046
https://doi.org/10.1103/PhysRevX.11.011046
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1103/PhysRevA.101.042116
https://doi.org/10.1103/PhysRevE.99.042135
https://doi.org/10.1088/1367-2630/ab4c8c
https://doi.org/10.1103/PhysRevLett.123.170605
https://doi.org/10.1103/PhysRevLett.123.170605
https://doi.org/10.1088/1367-2630/17/4/045027
https://doi.org/10.1088/1367-2630/17/4/045027
https://doi.org/10.1007/s00023-018-0736-9
https://doi.org/10.1007/s00023-018-0736-9
https://doi.org/10.1007/s00023-018-0736-9
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1038/nphys3518
https://doi.org/10.1038/nphys3518
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1088/1367-2630/aae512
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101

A.N. PEARSON et al.

PHYS. REV. X 11, 021029 (2021)

chanical Resonators Interacting with Light, edited by M.
Aspelmeyer, T. Kippenberg, and F. Marquardt (Springer,
Berlin, 2014), pp. 233-252.

[29] T. Bagci et al., Optical Detection of Radio Waves through a
Nanomechanical Transducer, Nature (London) 507, 81
(2014).

[30] N. Ares, T. Pei, A. Mavalankar, M. Mergenthaler, J. H.
Warner, G. A. D. Briggs, and E. A. Laird, Resonant Opto-
mechanics with a Vibrating Carbon Nanotube and a Radio-
Frequency Cavity, Phys. Rev. Lett. 117, 170801 (2016).

[31] K.R. Brown, J. Britton, R.J. Epstein, J. Chiaverini, D.
Leibfried, and D. J. Wineland, Passive Cooling of a Micro-
mechanical Oscillator with a Resonant Electric Circuit,
Phys. Rev. Lett. 99, 137205 (2007).

[32] T. Faust, P. Krenna, S. Manus, J. Kotthaus, and E. Weig,
Microwave Cavity-Enhanced Transduction for Plug and
Play Nanomechanics at Room Temperature, Nat. Commun.
3, 728 (2012).

[33] A.N. Pearson, K.E. Khosla, M. Mergenthaler, G. A.D.
Briggs, E. A. Laird, and N. Ares, Radio-Frequency Opto-
mechanical Characterization of a Silicon Nitride Drum, Sci.
Rep. 10, 1654 (2020).

[34] D. Allan, Statistics of Atomic Frequency Standards, Proc.
IEEE 54, 221 (1966).

[35] S. Rankovi¢, Y.-C. Liang, and R. Renner, Quantum Clocks
and Their Synchronisation—The Alternate Ticks Game,
arXiv:1506.01373.

[36] M. Brunelli et al., Experimental Determination of
Irreversible Entropy Production in Out-of-Equilibrium
Mesoscopic Quantum Systems, Phys. Rev. Lett. 121,
160604 (2018).

[37] Y. Guryanova, N. Friis, and M. Huber, Ideal Projective
Measurements Have Infinite Resource Costs, Quantum 4,
222 (2020).

[38] L. Gammaitoni, P. Héanggi, P. Jung, and F. Marchesoni,
Stochastic  Resonance, Rev. Mod. Phys. 70, 223
(1998).

[39] P. Pietzonka, F. Ritort, and U. Seifert, Finite-Time Gener-
alization of the Thermodynamic Uncertainty Relation, Phys.
Rev. E 96, 012101 (2017).

[40] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery, Numerical Recipes: The Art of Scientific Comput-
ing (Cambridge University Press, Cambridge, England,
2007).

[41] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R.J. Schoelkopf, Introduction to Quantum Noise, Meas-
urement, and Amplification, Rev. Mod. Phys. 82, 1155
(2010).

021029-18


https://doi.org/10.1038/nature13029
https://doi.org/10.1038/nature13029
https://doi.org/10.1103/PhysRevLett.117.170801
https://doi.org/10.1103/PhysRevLett.99.137205
https://doi.org/10.1038/ncomms1723
https://doi.org/10.1038/ncomms1723
https://doi.org/10.1038/s41598-020-58554-x
https://doi.org/10.1038/s41598-020-58554-x
https://doi.org/10.1109/PROC.1966.4634
https://doi.org/10.1109/PROC.1966.4634
https://arXiv.org/abs/1506.01373
https://doi.org/10.1103/PhysRevLett.121.160604
https://doi.org/10.1103/PhysRevLett.121.160604
https://doi.org/10.22331/q-2020-01-13-222
https://doi.org/10.22331/q-2020-01-13-222
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155

