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Recently, moiré superlattices have been found on the surface of topological insulators due to the
rotational misalignment of topmost layers. In this work, we study the effects of moiré superlattices on the
topological surface states using a continuum model of Dirac electrons moving in a periodic potential.
Unlike twisted bilayer graphene, moiré surface states cannot host isolated bands due to their topological
nature. Instead, we find (high-order) van Hove singularities (VHS) in the moiré band structure that give rise
to divergent density of states (DOS) and enhance interaction effects. Because of spin-momentum locking
in moiré surface states, possible interaction channels are limited. In the presence of phonon mediated
attraction, superconductivity is strongly enhanced by the power-law divergent DOS at high-order VHS.
The transition temperature Tc exhibits a power-law dependence on the retarded electron-phonon
interaction strength λ�. This enhancement is found to be robust under various perturbations from the
high-order VHS.
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I. INTRODUCTION

In recent years, moiré superlattices have been studied
extensively in various 2D van der Waals heterostructures
exemplified by graphene and transition metal dichalcoge-
nide (TMD) multilayers [1–3]. These moiré systems exhibit
a variety of remarkable electronic properties due to strong
correlation effects in flat minibands. Besides graphene and
TMD, another large family of moiré superlattices can be
found in topological insulators [4–14]. When Bi2Se3 and
Bi2Te3 bulk crystals are grown by the molecular-beam
epitaxy, it is common to find a small rotational misalign-
ment of topmost quintuple layers, leading to a moiré
superlattice on the surface [5,6]. Interestingly, a scanning
tunneling microscope (STM) measurement [6] has directly
observed such moiré superlattice in Bi2Te3 and found
multiple sharp peaks in the local density of states.
Moreover, moiré superlattices can also be found in the
van der Waals heterostructure of topological insulators
and large-gap insulators [7–9,13]. Despite the ubiquity of
moiré superlattices in topological insulators (TIs), their

effects on topological surface states have not been studied
theoretically.
In this paper, we study moiré surface states of TIs. The

topological nature of TI surface states prevents them from
gap opening as long as time-reversal symmetry is pre-
served; hence, the moiré surface states do not form isolated
minibands, unlike other moiré systems such as graphene
and TMD. Instead, we find prominent van Hove singular-
ities (VHS) in moiré surface states which give rise to
divergent density of states (DOS). Under appropriate
conditions, some of these VHS exhibit power-law divergent
DOS, which are known as high-order VHS [15].
We further study interaction effects near (high-order)

VHS enhanced by the divergent DOS [16–19]. In moiré
surface states, possible interaction channels at VHS are
limited due to spin-momentum locking. Under attractive
interactions, superconductivity is favored. We find a new
analytic formula for the electron-phonon superconducting
critical temperature Tc [see Eq. (10)], which exhibits a
power-law dependence of the retarded electron-phonon
interaction λ� and is thus parametrically enhanced with
respect to the exponentially small Tc in ordinary metals and
at ordinary VHS [20,21]. Importantly, the absence of moiré
band gaps and the large electron velocity away from VHS
facilitate the reduction of Coulomb repulsion through
retardation effects. We also show that the enhancement
of superconductivity is robust and persists even when the
system is perturbed away from high-order VHS.
This work is organized as follows. We first introduce and

study a model of moiré surface states as Dirac fermion in a

*Present address: Shenzhen JL Computational Science and
Applied Research Institute, Shenzhen, 518109 China.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 021024 (2021)

2160-3308=21=11(2)=021024(10) 021024-1 Published by the American Physical Society

https://orcid.org/0000-0001-7227-915X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.021024&domain=pdf&date_stamp=2021-04-29
https://doi.org/10.1103/PhysRevX.11.021024
https://doi.org/10.1103/PhysRevX.11.021024
https://doi.org/10.1103/PhysRevX.11.021024
https://doi.org/10.1103/PhysRevX.11.021024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


periodic scalar potential in Sec. II. Within the model,
we identify high-order VHS at the crosses of circular
Fermi surfaces. Then, we solve the gap equation for the
superconducting critical temperature Tc in the presence of
power-law divergent density of states, taking account of both
electron-phonon interaction and Coulomb repulsion within
the Anderson-Morel approximation [22] (Sec. III). Finally,
we discuss several experimental platforms to search for
moiré surface states and enhanced superconductivity.

II. DIRAC FERMION IN A PERIODIC
SCALAR POTENTIAL

In this section, we introduce and study a model of moiré
topological insulator surface states as Dirac fermion in a
periodic scalar potential. A previous density functional
theory study in Bi2Se3=MoS2 [7] revealed folded Dirac
cones within the bulk gap due to the moiré superlattice.
Thus, we start with the massless Dirac fermion in two
dimensions (2D),

H0ðkÞ ¼ vFðkxσy − kyσxÞ; ð1Þ

where vF is the Fermi velocity, k ¼ ðkx; kyÞ is the two-
dimensional momentum, and σ ¼ ðσx; σyÞ are the Pauli
matrices. Now we allow the continuous translation

symmetry to be broken into discrete symmetries by the
moiré superlattice, while we leave the time-reversal sym-
metry intact. Then the lowest-order perturbation can be
described by a spin-independent periodic scalar potential
UðrÞ:

H ¼ H0ð−i∂rÞ þ UðrÞσ0 ð2Þ

where σ0 is the identity matrix, UðrÞ ¼ Uðrþ L1;2Þ, and
the L1;2 are two primitive vectors of the moiré superlattice.
A schematic diagram of this setup is shown in Fig. 1(a).
This model can apply to bulk TI crystals with top layers
twisted or the surface state in the interface between a
topological insulator and a large-gap insulator.
The density of states of the system described by Eq. (2)

generally looks like the right-hand panel in Fig. 1(b), where
positive and negative sides are qualitatively similar.
Near zero energy, DOS grows linearly. As energy increases,
VHS peaks emerge. At higher energy, new Dirac points are
formed (known as satellite Dirac points [23]), so that the
entire spectrum remains gapless. Among these VHS peaks,
there are a few prominent ones that are, in fact, high-order
VHS peaks, given appropriate parameters.
In comparison to ordinary VHS that are caused by saddle

points in the energy dispersion, such high-order VHS peaks

(a)

(c)

(b)

FIG. 1. (a) Dirac fermion in a C3 periodic potential with superlattice constant L. (b) Left: spectrum at potential Uc ¼ 1.36vF=L. The
corresponding mini BZ is shown in the center. The entire spectrum remains gapless due to the symmetry anomaly. Between the main
Dirac point Γ and satellite Dirac points M (highlighted in red), we find a high-order van Hove singularity (VHS) at the K point. Right:
corresponding density of state (DOS). The high-order VHS peak stands out, with several ordinary VHS accompanied. (c) Fermi surface
at potential U ¼ 1.0vF=L, 1.36vF=L, and 1.7vF=L from left to right. The Fermi surfaces passing through VHS are all perfect circles,
which are plotted in thick black curves. WhenU ¼ 1.36vF=L, all three Fermi surfaces cross at the K point, making it a high-order VHS.
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are caused by high-order critical points kc in momentum
space, where the electron velocity and the Hessian matrix
determinant both vanish, ∇EðkcÞ ¼ 0, detDðkcÞ ¼ 0
ðDij ¼ ∂i∂jEÞ. Around these high-order VHS, the energy
dispersion is characterized by high-order polynomials of
momenta, and the DOS shows power-law divergence [24]:

NðξÞ ¼
�
Cþξν ξ > 0

C−ð−ξÞν ξ < 0:
ð3Þ

Here −1 < ν < 0 is the power-law exponent and C� > 0
are coefficients of the electron (hole) side. EðkÞ denotes the
energy dispersion and ξ ¼ E − EðkcÞ.
To be concrete, we first consider a periodic potential as

follows:

UðrÞ ¼ 2U
X3
j¼1

cosðGj · rÞ; ð4Þ

where Gj ¼ ð4π= ffiffiffi
3

p ÞL−1½− sinð2πj=3Þ; cosð2πj=3Þ� are
three reciprocal vectors, and U is the potential strength.
Then there are two energy scales vF=L and U in Eq. (2),
and the low-energy physics is determined by a single
dimensionless control parameter UL=vF.
As shown in the band structure [Fig. 1(b)], the first set of

satellite Dirac points on the positive side are found at M
points, and there are generically six saddle points per moiré
Brillouin zone (MBZ) between the main Dirac point Γ and
satellite Dirac points M. Remarkably, the Fermi surfaces
passing through these saddle points are all perfect circles in
a wide range of UL=vF [Fig. 1(c)].
When U ¼ 1.36vF=L, three ordinary saddle points and

one local extremum merge into a high-order saddle point
at the K point where all three Fermi surfaces intersect
[Fig. 1(c)], and the dispersion around the K point becomes
flattened [Fig. 1(b)]. In the experiment, the potential
strengthU and the Fermi velocity vF are mostly determined
by the material, but we can tune this parameter UL=vF by
tuning the twisted angle θ and the resulting superlattice
constant L ¼ a=θ. Thus, we can also define a magic angle
θc ¼ 0.74Ua=vF when our system hits high-order VHS,
where a is the atomic lattice constant.
Among high-symmetry points Γ, M, and K, the time-

reversal invariant points Γ,M will always be at least doubly
degenerate, while only K point can become spin singlet.
We can thus expand the singlet dispersion Ek around the K
point,

EpþK − EK ¼ αp2 þ βðp3
x − 3pxp2

yÞ þ γp4 þ � � � ; ð5Þ

where p2 ¼ p2
x þ p2

y with px (py) parallel (perpendicular)
to the ΓK line. We then compute the Taylor coefficients α,
β, and γ as functions ofUL=vF as shown in Fig. 2(a). When
U ¼ 1.36vF=L, we find α vanishes, while β remains finite,

indicating a high-order saddle point described by a third-
order polynomial EpþK − EK ¼ βðp3

x − 3pxp2
yÞ.

The density of states of a C3 saddle point diverges with
power-law exponent ν ¼ −1=3 according to the scaling
property of the dispersion [15,24]. As shown in Fig. 2(b),
the numerical power-law fitting of DOS gives ν ¼ −0.39,
which agrees well with ν ¼ −1=3.
When U ¼ 0.15vF=L, at energy much higher than the

first set of satellite Dirac points, Γ point becomes a high-
order Dirac point, where six circular Fermi surfaces
intersect together as shown in Fig. 3(a). The high-order
Dirac point also exhibits power-law divergent DOS just like
high-order VHS.
Next we consider a periodic potential withD4 symmetry,

UðrÞ ¼ 2U½cosð2πx=LÞ þ cosð2πy=LÞ�; ð6Þ

(a) (b)

FIG. 2. (a) Dimensionless derivatives ∂nE=∂pn
xðvFLn−1n!Þ−1

of the moiré surface state dispersion with respect to momentum at
the K point, where α, β, and γ correspond to n ¼ 2, 3, and 4 [see
Eq. (5) of main text]. The potential is given in Eq. (4). When
UL=vF ¼ 1.36, α vanishes, making the K point a high-order
saddle point. (b) DOS around the high-order VHS. The log-log
plot in the inset shows that the divergence of the DOS is indeed
power law. The fitting is given by NðϵÞ ¼ cjϵ − ϵ0jν, where
c ¼ 0.76, ϵ0 ¼ 2.59, and ν ¼ −0.39. ν ¼ −0.39 agrees well with
theoretical result ν ¼ −1=3 (see main text).

(a) (b)

FIG. 3. (a) Fermi surface with a high-order Dirac point at the Γ
point in C6 potential Eq. (4). (b) Fermi surface with a high-order
VHS of class A2 on the high-symmetry line ΓM in D4 potential
Eq. (6). The Fermi surfaces passing through high-order VHS are
plotted in thick black curves, among which those in (a) are perfect
circles. The corresponding MBZ is plotted in dashed lines.
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which corresponds to a square moiré superlattice. When
U ¼ 4.71vF=L, there are four high-order saddle points on
four ΓM lines, respectively [Fig. 3(b)], where the local
dispersion becomes EqþV−EV ¼aq3k−bq2⊥þ��� (ab > 0).

Here V denotes the momentum of high-order saddle point,
and qk (q⊥) is parallel (perpendicular) to the ΓM line.
Such a kind of saddle point can split into at most two
critical points, one ordinary saddle point and one ordinary
extremum, and we call it a A2 saddle point [24], where the
energy contour is beaklike [Fig. 3(b)]. Details of high-order
VHS A2 and high-order Dirac points can be found in the
Appendix A. The numerical DOS properties of high-order
VHS agree well with theoretical predictions in Ref. [15].
In the D4 potential given in Eq. (6), Uðxþ L=2;

yþ L=2Þ ¼ −Uðx; yÞ; hence the system has an additional
particle-hole symmetry Ek → −Ek, which does not exist for
the C6 potential given in Eq. (4). This is consistent with the
experiment result in bulk Bi2Te3 crystal, where particle-
hole symmetry is broken [6]. In addition, high-symmetry
points in the MBZ under the D4 potential are all time-
reversal invariant, thus they cannot possess nondegenerate
high-order VHS.
Although a high-order saddle point requires tuning one

parameter, e.g., twist angle, the power-law diverging
behavior of the DOS remains present in a wide energy
range even when the band structure is not exactly at high-
order VHS [Fig. 5(a)]. Taking our system of moiré surface
states in C6 potential as an example, the high-order VHS
splits into three ordinary VHSs and a local maximum or
minimum under perturbation. Nevertheless, at temperature
higher than the energy difference between the VHS and the
local maximum or minimum, thermal broadened DOS is
indistinguishable from the case of high-order VHS. As we
show in the following section, this energy difference is
usually tiny in real materials [Fig. 5(b)].
In a more realistic model, we may include other

ingredients in this system, such as warping effect of surface
states and higher-order harmonics of the scalar potential,
which are beyond our model Eqs. (1) and (2). In momen-
tum space, these effects will result in local perturbations to
the energy dispersion near the high-order VHS. Consider
the C3 saddle point E ¼ EK þ αp2 þ βðp3

x − 3pxp2
yÞ þ

γp4 þ � � � at K point as an example, then the perturbations
can be described by Taylor series ΔE ¼ ΔEK þ Δαp2 þ
Δβðp3

x − 3pxp2
yÞ þ Δγp4 þ � � � in momentum space. The

high-order VHS of the resulting dispersion E0 ≡ Eþ ΔE is
then determined by α0 ≡ αþ Δα ¼ 0, and hence the critical
value of tuning parameter UL=vF will be perturbed from
that in Fig. 2(a).
Such topological argument also applies to other types of

high-order VHS [24] in general superlattices. The topology
of Brillouin zone (i.e., torus) guarantees the existence of
VHS in general lattices [24,25]. In a moiré superlattice,
moreover, the band structure and hence VHS can be

manipulated and tuned continuously via mechanical, elec-
trical, and other means, such as tuning the twist angle or
the gating voltage. Hence, we expect the Hessian matrix
determinant of VHS can be tuned to zero with appropriate
parameters. As a result, during the continuous tuning of
moiré superlattices, we expect ordinary VHS could gen-
erally evolve into high-order VHS.

III. SUPERCONDUCTIVITY
NEAR HIGH-ORDER VHS

In this section, we consider the physical consequences of
high-order VHS. When the chemical potential is put at the
energy of high-order VHS, interaction induced instabilities
will be greatly enhanced due to the power-law divergent
DOS [16–19]. Unlike in cuprate superconductors where
VHS induces all kinds of competing instabilities such as
lattice Peierls instability, ferromagnetism and antiferromag-
netism, charge ordering, and nematic instability [26–30],
possible interaction channels at high-order VHS in moiré
surface states of topological insulators are limited espe-
cially when the interaction is weak. This is due to spin-
momentum locking of surface states (i.e., there only exists a
single spin-polarized state at every k point on the Fermi
surface). In this paper, we focus on attractive interactions in
the weak coupling regime that is experimentally relevant.
To be specific, at the high-order VHS in C6 potential, the

divergent density of states occurs near two points K and K0
on the Fermi surface, where electron spins are polarized in
opposite directions. We denote operators of such states as
cK↑ and cK0↓, respectively, and then the only relevant (in the
sense of renormalization group) electron-electron interac-
tion reads Hint ¼ gc†K↑cK↑c

†
K0↓cK0↓. Therefore, in this low-

energy theory, the possible instability due to the attractive
interaction g < 0 is superconductivity. Note that the charge
density wave instability that usually coexists with super-
conductivity is absent due to the opposite spins atK andK0,
while the spin density wave instability hc†K↑cK0↓i is
unfavorable under attractive interaction. The absence of
moiré band gaps and the large Fermi velocity away from
VHS also facilitate the reduction of Coulomb repulsion
through retardation effects, and thus favor electron-phonon
superconductivity.
To find an analytic formula for the superconducting

critical temperature Tc, we employ the Anderson-Morel
approximation to solve the gap equation. We assume the
dimensionless interaction takes a simple form with piece-
wise constant attractive phonon interaction λ > 0 and
repulsive interaction μ > 0:

gðξ; ξ0Þ ¼ −λΘðξ; ξ0Þ þ μ; ð7Þ

Θðξ; ξ0Þ ¼
�
1 jξj; jξ0j < ϵD

0 otherwise;
ð8Þ
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where ξ ¼ E − EF is the electron energy measured from
the chemical potential EF. Note that g < 0means attraction
and g > 0 repulsion. When we set the chemical potential
EF to be exactly at the high-order VHS, the normalized
DOS can be described by the piecewise function,

nðξÞ ¼
� jΛj−νjξjν jξj < Λ
1 Λ < jξj < W;

ð9Þ

where −1 < ν < 0 is the power-law exponent of the DOS.
Four energy scales are involved in this problem: the
superconducting critical temperature Tc, the high-order
VHS peak cutoff Λ, the Debye frequency ϵD, and the
bandwidth W, which satisfy Tc ≪ Λ < ϵD < W.
Before we get into formal calculations, we first consider

various limits with attractive interaction λ and simple
expression of DOS. The critical temperature Tc is deter-
mined by the condition λχ ¼ 1 with the pair susceptibility
χ ¼ R ϵDT nðξÞξ−1dξ. When DOS is constant nðξÞ ¼ 1, pair
susceptibility is logarithmically divergent in temperature
χ ∼ logðϵD=TÞ, which leads to the BCS formula Tc∼
ϵD expð−1=λÞ. When DOS has an ordinary VHS with
cutoff Λ, nðξÞ ¼ logðΛ=jξjÞ, we have χ ∼ log2ðΛ=TÞ
and, hence, the Labbé-Bok formula Tc ∼ Λ expð−1= ffiffiffi

λ
p Þ

[20,21]. When DOS has a high-order VHS with cutoff Λ
and power-law exponent ν, χ ∼ ðT=ΛÞν and, hence, we
have the power-law formula Tc ∼ Λð1=λÞ1=ν, where
−1 < ν < 0.
With interaction Eq. (7) and DOS Eq. (9), we find an

exact analytic formula of the critical temperature Tc which
generalizes the well-known BCS formula,

Tc ¼
Λ

IðνÞ1=ν
�

1

λ − μ�
− log

�
ϵD
Λ

�
þ 1

jνj
�
−1=jνj

; ð10Þ

where μ� ¼ μ=½1þ μ ln ðW=ϵDÞ� is the screened repulsion,
IðνÞ ¼ 2ð21−ν − 1ÞΓðνÞζðνÞ, ΓðνÞ and ζðνÞ are the Γ
function and the Riemann ζ function, respectively, and
we put ν ¼ −jνj to remind the reader −1 < ν < 0. We
direct readers to Appendix B for detailed derivation.
In the limit ν → 0−, the power-law dependence of

the effective interaction strength λ� ¼ λ − μ� disappears
because the 1=ν term in the bracket dominates, then
Eq. (10) reduces to the BCS formula of exponential
dependence, limν→0 Tc ¼ 1.13ϵD exp ð−1=λ�Þ (see
Appendix B). Reproducing the correct numerical prefactor
indicates that our new formula is exact.
The new formula Eq. (10) is surprisingly an analytic

function of the retarded attractive interaction strength
λ� ¼ λ − μ�with power-lawdependence. The analytic nature
of the formula suggests a dramatic enhancement of super-
conductivity compared to ordinary metals and at ordinary
VHS when λ� is small. We compare our new formula with
previous studies on various DOS in Appendix C.

We plot the transition temperature Tc as a function of
effective interaction λ� in Fig. 4(a) with parameters
relevant to topological insulators. We find that the
transition temperature Tc is enhanced enormously by
the high-order VHS compared to the original Anderson-
Morel result due to the power-law nature of the expres-
sion. This enhancement is robust as long as Λ and ϵD are
at the same order.
Numerical evidence also shows that the high-order VHS

has a robust enhancement effect on superconductivity even
when the chemical potential is not exactly at the VHS
energy EF ≠ 0 [Fig. 4(b)]. We find that Tc starts to drop
when EF is comparable to Tc and stays more than half of
the original Tc even when EF is 5 times of Tc. This plot can
be compared to future experimental data of Tc when
varying the filling EF.
Now we come back to the moiré surface states in C6

potential to discuss the effect of perturbing the band
structure away from high-order VHS. In fact, the DOS
has a sharp high-order-VHS-like peak in a wide range of U
[Fig. 5(a)], which suggests a significant enhancement of
superconductivity even when the band structure is not
exactly at high-order VHS. We solve the gap equation
numerically with the chemical potential held exactly at the
VHS. As shown in Fig. 5(b), Tc is enhanced in a wide range
of U, and the window of U within which Tc is enhanced
can be especially wide when λ� is large. This also means the
energy difference between the VHS and the local maximum
or minimum is at the order of subkelvin even when the
potential is perturbed tens of meV away from the high-
order VHS.

(a) (b)

FIG. 4. (a) Transition temperature Tc at different effective
interaction λ� with ϵD ¼ 80 K and ν ¼ −1=3 (the chemical
potential is at the high-order VHS). The Anderson-Morel
plot refers to the original Anderson-Morel formula Tc ¼
1.13ϵD expð−1=λ�Þ [22], and the high-order VHS plot refers to
Eq. (10). The solid blue line corresponds to Λ ¼ ϵD and the
dashed line corresponds to Λ ¼ ϵD=2; in either case, Tc with a
high-order VHS is much higher than the one without, especially
when the effective interaction λ� is small. (b) Transition temper-
ature Tc when the chemical potential EF is not exactly at the high-
order VHS energy with Λ ¼ ϵD=2. The red axis on the left and
the blue axis on the right correspond to the red and blue curve,
respectively, both of which are Tc in kelvin. Tc starts to drop
when EF is comparable to Tc.
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Finally, we discuss several possible systems to realize
our model of Dirac fermion in a periodic potential and the
phonon induced superconductivity within. A prototypical
system is the moiré topological insulator surface states,
where the effective potential can be comparable to the
kinetic energy at scale vF=L. In real TIs, the Dirac velocity
vF can be a few eV Å [31–33], and the moiré supercell
constant L can be several or even tens of nanometers
depending on the lattice mismatch [5–9], then the energy
scale vF=L is at order of tens of meV, which is comparable
to the effective potential at moiré scale [34–36].
Furthermore, Bi2Se3 is believed to have strong electron-
phonon interaction [37,38]. Great effort has been put into
extracting the electron-phonon coupling strength λ of
Bi2Se3 both theoretically and experimentally, and most
studies fall into the range from λ ¼ 0.2 to 0.5 (Fig. 4)
[39–42]. Bi2Se3 also has a relatively large dielectric constant
ϵ > 50 [37,38], and the bandwidth of topological surface
bands reaches at least 800 meV [43], so the renormalized
Coulomb repulsion μ� is negligible, i.e., λ� ≈ λ. With the
numbers given, we anticipate that superconductivity can
occur on moiré surface states of topological insulators with
transition temperature up to Tc ∼ 10 K.

IV. CONCLUSION

In this work, we study the moiré topological insulator
surface states using a continuum model of Dirac electrons
moving in periodic potentials at moiré scale. Within the
continuum model, we identify various types of high-order
VHS. We further compute the superconducting transition
temperature Tc when the chemical potential is close to
the high-order VHS. When exactly at the high-order
VHS, we give an analytic formula of Tc, showing a power
law instead of exponential dependence of the retarded

electron-phonon interaction strength. This result suggests a
significantly enhanced superconductivity at high-order
VHS, especially when the electron-phonon interaction is
weak. In the end, we discuss several real materials that can
demonstrate the enhancement of superconductivity due to
high-order VHS. The topological nature of superconduct-
ing moiré surface states leads to Majorana zero mode in the
vortex core [44], which will be studied in a future work.
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APPENDIX A: HIGH-ORDER DIRAC POINT AND
HIGH-ORDER VHS OF TYPE A2

In this Appendix, we describe the high-order Dirac point
and high-order VHS of class A2 introduced in the main text
in more detail. Under C6 potential, the high-order Dirac
point is identified at the Γ point at energy much higher than
the first set of satellite Dirac points. Three secondary Dirac
cones in this system are lifted by the C6 potential, and the
middle one is in general flattened [Fig. 7(a)]. When
U ¼ 0.15vF=L, the Γ point becomes a high-order Dirac
point, which also exhibits power-law divergent DOS with
ν ¼ −1=3 [Fig. 6(a)].
Under D4 potential, the high-order VHS of class A2 is

identified on the high-symmetry line ΓM in the primary
Dirac cone at U ¼ 4.71vF=L [Fig. 7(b)]. In this case,
the divergence is in perfect agree with the theoretical

(a) (b)

FIG. 6. (a) DOS of the relevant bands around the high-order
Dirac point. The fitting is given by NðϵÞ ¼ cjϵ − ϵ0jν þ n, where
c ¼ 0.047, ϵ0 ¼ 7.25, ν ¼ −0.33, and n ¼ 0.89. (b) DOS of the
relevant band around the high-order VHS of class A2. The fitting
is given by NðϵÞ ¼ C�jϵ − ϵ0jν [see Eq. (3) for definition] with
C− ¼ 0.35, Cþ ¼ 1.82C−, ϵ0 ¼ 0.152, and ν ¼ −0.20. Both ν
and Cþ=C− agree well with the theoretical prediction.

(a) (b)

FIG. 5. (a) DOS of moiré surface states under the C6 potential
in Eq. (4) with various U, which has a sharp high-order VHS-like
peak in a wide range of U. Only DOS close to the peak is plotted
for presentation. (b) Transition temperature Tc at different U (the
chemical potential is held exactly at the VHS) with ϵD ¼ 80 K
and vF=L ¼ 435 K. The red axis on the left and the blue axis on
the right correspond to the red and blue curve, respectively, both
of which are Tc in kelvin. Tc shows a wide peak around the
potential that corresponds to high-order VHS.
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prediction ν ¼ −1=6 and the asymmetry ratio between the
high-energy and low-energy side is close to

ffiffiffi
3

p
, as

predicted in Ref. [15] [Fig. 6(b)].

APPENDIX B: SOLUTION TO THE BCS GAP
EQUATION AT HIGH-ORDER VHS

In this Appendix, we solve the BCS gap equation at
high-order VHS within the Anderson-Morel approximation
[46,47],

Δk ¼ −
X
k0
Vk;k0

Δk0

2Ek0
tanh

Ek0

2T
; ðB1Þ

where Δk is the superconducting gap, and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

k

q
is the quasiparticle energy. Because of the complexity of
the gap equation, now we proceed within the Anderson-
Morel approximation [22], in which both the interaction
strength and the gap are assumed to be piecewise constant.
We consider four energy scales: the superconducting
gap Δ ∼ Tc, the high-order VHS peak cutoff Λ, the
Debye frequency ϵD, and the bandwidth W, with
Tc ≪ Λ < ϵD < W. Now we assume that the dimension-
less interaction takes a simple form: piecewise constant
attractive phonon interaction λ and a repulsive Coloumb
interaction μ,

gðξ; ξ0Þ ¼ −λΘðξ; ξ0Þ þ μ; ðB2Þ

Θðξ; ξ0Þ ¼
�
1 jξj; jξ0j < ϵD

0 otherwise;
ðB3Þ

which is normalized with the constant DOS N0 away from
the van Hove singularity, Vξ;ξ0 ¼ gðξ; ξ0Þ=N0. The normal-
ized density of state nðξÞ ¼ NðξÞ=N0, however, is modified
from the original Anderson-Morel model to account for the
high-order VHS. For now, we set the chemical potential EF
to be exactly at the high-order van Hove singularity,

nðξÞ ¼
�
Cjξjν jξj < Λ
1 Λ < jξj < W;

ðB4Þ

where −1 < ν < 0 is the power-law exponent of the DOS.
The continuity condition enforced that C ¼ jΛj−ν. Within
the Anderson-Morel approximation, the gap also takes a
simple form:

ΔðξÞ ¼
�Δ1 jξj < ωD

Δ2 ωD < jξj < W:
ðB5Þ

Plugging in Nðξ0Þ and Vðξ; ξ0Þ, the gap equation becomes

�Δ1

Δ2

�
¼
 
ðλ − μÞfIðνÞðTΛÞν þ logðϵDΛ Þ þ 1

νg −μ log ðW=ϵDÞ
−μfIðνÞðTΛÞν þ logðϵDΛ Þ þ 1

νg −μ log ðW=ϵDÞ

!�Δ1

Δ2

�
; ðB6Þ

where IðνÞ ¼ 2ð21−ν − 1ÞΓðνÞζðνÞ, and ΓðνÞ and ζðνÞ are the γ function and the Riemann ζ function, respectively. Here we
use an important integral,

Z
ϵD

0

dξnðξÞ tanh ðβξ=2Þ
ξ

¼
�
T
Λ

�
ν
�
IðνÞ −

Z
∞

βΛ
dxxν−1

�
þ
Z

βϵD

βΛ

dx
x
; IðνÞ≡

Z
∞

0

dxxν−1 tanh

�
x
2

�
; ðB7Þ

(a) (b)

FIG. 7. (a) Spectrum and DOS of Dirac fermion in a C6 potential with U ¼ 0.15vF=L. The high-order Dirac point has been identified
at the Γ point at energy much higher than the first set of satellite Dirac points (highlighted in red). (b) Spectrum and DOS of Dirac
fermion in aD4 potential with U ¼ 4.71vF=L. The high-order VHS of class A2 has been identified on the high-symmetry line ΓM in the
primary Dirac cone (highlighted in red).
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where we used Tc ≪ Λ. Solving the consistency equation
gives the critical temperature:

Tc ¼
Λ

IðνÞ1=ν
�

1

λ − μ�
− log

�
ϵD
Λ

�
þ 1

jνj
�
−1=jνj

: ðB8Þ

APPENDIX C: COMPARISON OF THE Tc
FORMULA WITH PREVIOUS WORKS

In this Appendix, we compare our result with previous
works with various DOS [Fig. 8(a)]. In the original work
of Anderson and Morel, the transition temperature Tc is
derived at constant density of states nðξÞ ¼ 1 [Fig. 8(a)],
Tc ¼ 1.13ϵD exp½−ð1=λ − μ�Þ� [22]. To show how our
result reduces to this Anderson-Morel formula in the
limit jνj → 0, we first use the asymptotic form of the Γ
function and the Riemann ζ function at jνj → 0 to find
IðνÞ ∼ −ð1=νÞ þ γ þ logð2=πÞ, where γ is Euler’s con-
stant. Then we plug in to find Tc,

Tc ∼ Λ
�
nþ γ þ logð2=πÞ
nþ 1

λ−μ� − logðϵDΛ Þ
�

n
ðC1Þ

∼Λ
�
1þ log

�
2

π
eγ

ϵD
Λ

exp

�
−

1

λ − μ�

��
1

n

�
n
; ðC2Þ

where n ¼ 1=jνj. Finally, the definition of Euler’s number e
simplifies the formula,

lim
ν→0−

Tc ¼
2

π
eγϵD exp

�
−

1

λ − μ�

�
; ðC3Þ

where 2eγ=π ¼ 1.13 recovers the correct numerical pre-
factor in the BCS formula, indicating that our new formula
is exact.
Tang and Fu generalized the result of Anderson and

Morel to the enhanced DOS scenario in the context

of topological crystalline insulator interface superconduc-
tivity, where nðξÞ ¼ α within the flatband width Λ
[Fig. 8(a)] [4,48]:

Tc ¼ 1.13Λ
�
ϵD
Λ

�
1=α

exp

�
−

1

αðλ − μ�Þ
�
: ðC4Þ

The VHS plot refers to the work of Labbé and Bok in the
context of cuprate superconductors in the limit Λ ≫ ϵD,
where nðξÞ ¼ n1 logðΛ=ξÞ þ n0 within the VHS peak
cutoff Λ [20,21],

Tc ¼
Λ
2
exp

�
0.819þ 1

n1
−

ffiffiffiffi
F

p �
; ðC5Þ

where F ≡ ½ð1=n1Þ þ 0.819�2 þ ½logðϵD=ΛÞ�2 − 2−
2
n1

½logð2.28ϵD=ΛÞ − ð1=λ − μ�Þ�. Here μ� is renormal-
ized slightly differently from the usual Anderson-Morel
screening. We refer the reader to Ref. [21] for a more
detailed discussion.
Heikkilä and co-workers also considered a scenario with

power-law divergent DOS NðξÞ ¼ ξν=Λν in the context of
the multiple Dirac point [49–51]. Unlike us, they work in
the limit Λ ≫ ϵD. In our language, their formula can be
rewritten as

Tc ¼
½2ðνþ 1Þ�1=ν
2JðνÞ1=ν Λ

�
ϵD
Λ

�
1=jνj−1�1

λ

�
−1=jνj

; ðC6Þ

where JðνÞ ¼ Γð−ν=2ÞΓ(ð3þ νÞ=2)= ffiffiffi
π

p
.

Now we compare the transition temperature Tc among
these various DOS setups. It is important to normalize the
number of states to make a fair comparison. If we normalize
the number of states within the bandwidthW, the difference
among various DOS setups is negligible since W ≫ Λ. If
we instead normalize the number of states within the
bandwidth Λ, we find α ¼ 1=ðνþ 1Þ in the enhanced

(a) (b) (c)

FIG. 8. (a) Schematic plot of the DOS in different scenarios (ν ¼ −1=3 for the high-order VHS scenario). The rescaled DOS in the
BCS scenario is plotted with a red dashed line with ϵD ¼ 10Λ (see text for definition). (b),(c) Transition temperature Tc at different
retarded interaction λ� ¼ λ − μ� with parameters relevant to (b) twisted bilayer graphene (TBLG) and (c) cuprate superconductor. The
red dashed line represents using rescaled DOS in the BCS scenario. Detailed description for each line is in the text. In (b), we pick
ϵD ¼ 230 meV, Λ ¼ 5 meV, ν ¼ −1=3. In (c), we pick ϵD ¼ 50 meV, Λ ¼ 50 meV, ν ¼ −1=4.
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DOS scenario and n1 ¼ −1þ 1=ðνþ 1Þ in the VHS
scenario. We also include a rescaled DOS for the BCS
scenario by normalizing the number of states within Debye
frequency ϵD [Fig. 8(a)]. We plot Tc as a function of the
retarded interaction λ� ¼ λ − μ� in Figs. 8(b) and 8(c), with
parameters relevant for twisted bilayer graphene (TBLG) in
Fig. 8(b), and those for cuprates in Fig. 8(c). In particular,
we pick ν ¼ −1=3 for TBLG and ν ¼ −1=4 for cuprates,
which corresponds to the leading-order high-order VHS for
systems with C3 symmetry and D4 symmetry, respectively.
The TBLG plot is not compatible with the VHS result since
Labbé and Bok assume that the flatband range Λ is much
larger compared to the Debye frequency ϵD, which does not
hold in TBLG.
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