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Soft modes are intimately linked to structural instabilities and are key for the understanding of phase
transitions. The soft modes in ferroelectrics, for example, map directly the polar order parameter of a crystal
lattice. Driving these modes into the nonlinear, frequency-changing regime with intense terahertz (THz)
light fields is an efficient way to alter the lattice and, with it, the physical properties. However, recent
studies show that the THz electric-field amplitudes triggering a nonlinear soft-mode response are
surprisingly low, which raises the question on the microscopic picture behind the origin of this nonlinear
response. Here, we use linear and two-dimensional terahertz (2D THz) spectroscopy to unravel the origin
of the soft-mode nonlinearities in a strain-engineered epitaxial ferroelectric SrTiO; thin film. We find that
the linear dielectric function of this mode is quantitatively incompatible with pure ionic or pure electronic
motions. Instead, 2D THz spectroscopy reveals a pronounced coupling of electronic and ionic-
displacement dipoles. Hence, the soft mode is a hybrid mode of lattice (ionic) motions and electronic
interband transitions. We confirm this conclusion with model calculations based on a simplified
pseudopotential concept of the electronic band structure. It reveals that the entire THz nonlinearity is
caused by the off-resonant nonlinear response of the electronic interband transitions of the lattice-electronic
hybrid mode. With this work, we provide fundamental insights into the microscopic processes that govern
the softness that any material assumes near a ferroic phase transition. This knowledge will allow us to gain

an efficient all-optical control over the associated large nonlinear effects.

DOI: 10.1103/PhysRevX.11.021023

I. INTRODUCTION

Soft modes are excitations that are intrinsically linked to
a phase instability and mediate the phase transition, where
they approach zero frequency [1,2]. Polar soft modes in
ferroelectrics, for instance, carry an electric dipole moment
and are therefore susceptible to external light fields. Thus,
there has been extensive effort towards driving soft modes
into the strongly nonlinear regime (a regime where the
higher-order terms in the expansion of polarization or
current density in the material dominate its response) with
intense THz light fields, either to photoinduce ferroelec-
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tricity [3-5] or to alter lattice structures all-optically [6,7].
While most of these studies exploit the soft-mode non-
linearities, direct experimental insight into the very origin
of soft-mode nonlinear response is rather limited. Some of
the rare attempts towards this goal reveal that the nonlinear
response of THz soft modes in ferroelectrics [8] or
molecular crystals [9] occurs at surprisingly low THz
electric-field amplitudes of approximately 50 kV/cm.
Upon resonant excitation with a THz light field, this
low-field nonlinear response manifests itself as a pro-
nounced blueshift of the vibrational resonance and
photon-echo signals at negative coherence times [9]. In
the literature, two different microscopic pictures are used to
explain the observations associated with the soft-mode
nonlinearities. These pictures are diametrically opposed to
each other—while in the first picture, the ionic motions
govern the nonlinear response, in the second picture, it is
the electronic motions. Both pictures, however, treat the
respective motions in a classical manner and hence suffer
from discrepancies, such that the fundamental origin of the
THz-induced soft-mode nonlinearities in ferroelectric per-
ovskites has remained a topic of intense debate for decades.

Published by the American Physical Society
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Before we tackle this issue, we briefly recall the two

pictures and their discrepancies.

The ionic picture is based on the purely phononic origin
of the soft-mode nonlinearity and relies unconditionally on
the Born-Oppenheimer approximation. Therein, the low-
frequency motion of charged particles in a crystal or a
molecule is entirely performed by ions on the potential
energy surface of the electronic ground state. In such an
approach, any THz nonlinearity is connected to the
anharmonicity of the potential energy surface [10]. Such
anharmonicity is the basis of classical molecular-dynamics
simulations, which can describe the dynamics of non-
linearly coupled phonon modes and has been measured by
using femtosecond x-ray diffraction methods [11]. When
the coupling to the electromagnetic field is included,
however, the purely phononic approach to the soft-mode
dynamics gives unphysical values to certain parameters.
These include non-natural Born effective charges [12] on
the ions [8,13] and large zero-point motions [8]. Further,
the purely phononic approach fails to reproduce the
observed nonlinear signals in 2D THz experiments, such
as the presence of photon-echo signals at negative coher-
ence times [9].

The electronic picture, in contrast, involves both ions and
electrons and is based on Cochran’s core-shell model [1]. In
this model, the electronic equations of motion are intro-
duced in a classical manner, similar to the pure lattice
motion of the ions in the crystal. Close to the phase
transition, the soft-mode frequency gradually approaches
zero, leading to an instability of the entire crystal.
Concomitantly with this softening, the electronic contri-
bution to the oscillator strength of the soft mode grows to
values much larger than the contribution from its pure ionic
motion. Such a redistribution of electronic oscillator
strength into the vibrational system of the crystal is
mediated by the coupling between the electronic- and
ionic-displacement dipoles via the Lorentz field (cf. the
Clausius-Mossotti relation [14,15]). The electronic redis-
tribution has been demonstrated via femtosecond x-ray
diffraction experiments performed both in paraelectric and/
or ferroelectric phases of various ferroelectric [16-18] and
molecular crystals [19]. With classical equations for the
electronic motion, this picture can reproduce soft-mode
nonlinearities associated with slow collective motions, i.e.,
with frequencies far below the THz range, such as during
thermal phase transitions [20,21]. However, as this picture
neglects the intrinsic nonlinearity of the electronic oscil-
lators and further ignores the kinetic energy of the electrons
[22], it fails to account for the correct electronic non-
linearities associated with THz soft modes.

In this paper, our observation of nonlinear THz signals—
in particular, the photon echo—shows that both the above-
mentioned pictures are quantitatively unphysical. This is
mainly because the nonlinearity associated with the elec-
tronic motions has been neglected, which, however, is the

dominant one at THz frequencies. Instead, we show that the
soft mode is a hybrid mode of ionic motions and electronic
interband transitions. We present an expanded hybrid
picture where pure lattice motion of ions is described by
perfect harmonic oscillators and the entire THz nonlinearity
of the soft mode is dominated by the electronic oscillators.
In our hybrid picture, the correct electronic nonlinearity is
determined by the nonlinear modification of the electron’s
velocity, which is connected to the interband transition
dipoles. The coupling between the electronic- and the
ionic-displacement dipoles depends sensitively on the
effective magnitude of these interband transition dipoles.
Hence, our picture not only highlights the hybrid character
of the soft mode but also leads us to unambiguously
identify the origin of THz soft-mode nonlinearity, namely,
the off-resonant nonlinear response of the electronic inter-
band transitions. Our experimental finding that the elec-
tronic degrees of freedom in the soft-mode quasiparticle of
ferroelectrics are responsible for its nonlinear response to
resonant driving fields is valid for all condensed matter
systems with elementary excitations around 1 THz and
lower, e.g., liquid water. The role of electronic degrees of
freedom for low-frequency modes in condensed matter has
been underestimated so far, and our work can stimulate
future research in this direction.

II. PRECISE FORMULATION OF THE OPEN
QUESTIONS AND OUR EXPERIMENTAL
STRATEGY

A. Mechanisms contributing to the nonlinear
response of phonons in crystals

We begin by commemorating the basic mechanisms
determining the light-matter interaction of phonons in
crystals. The electronic ground state of an (insulating)
crystal determines the anharmonic potential surface on
which the nuclear motions are performed. In the quantum-
mechanical description, the Hamiltonian can be formulated
by creation (a") and annihilation (a) operators of all normal
modes of the crystal [23]. For the time being, we consider
just one anharmonic mode, i.e., the soft mode whose
anharmonic potential [shown in Fig. 1(a)], and its coupling
to light, is described by

H(t) = hogga'a + g (a'aa’a —a'a)

B ()P (72) 1)

where 7 is the reduced Planck constant and @ is the soft-
mode frequency. Here, # quantum mechanically describes
the lowest order of anharmonic forces beyond the harmonic
oscillator, which is that of the Morse potential [24]. Note
that E,.(#) is the local field that originates from the
coupling between the electronic- and ionic-displacement
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(a) Sketch of the anharmonic soft-mode potential of a paraelectric (red) or ferroelectric (blue) perovskite. In its paraelectric

phase, the ladder of vibrational energy eigenstates shows an increasing energy spacing for excited states. In contrast, in its ferroelectric
phase, the spacing decreases. (b) Impact of local-field effects on the hybrid character of a soft mode. Both electronic interband dipoles,
which are located on the Ti—O bonds (here, SrTiO;3), and nuclear-displacement dipoles are strongly localized in real space at spatially
disjunct positions. The local field experienced by individual dipoles is dominated by the electric field of all other dipoles [14], which
leads (in contrast to the green and orange THz pulses) to protracted driving fields on all localized dipoles, thereby allowing rephasing
photon-echo signals even for a reversed pulse sequence. (¢) Dominating electronic nonlinear response at THz frequencies: Large
excursions of a valence-band electron in k space, exploring regions of very different interband-transition dipoles (red curve).

dipoles via the Lorentz field, and P, is the macroscopic
electric polarization of phonons.

In the paraelectric phase [red potential in Fig. 1(a)], the
ladder of vibrational energy eigenstates shows an increas-
ing energy spacing for excited states that corresponds to a
positive # > 0 in Eq. (1). In contrast, for the ferroelectric
phase [blue potential in Fig. 1(a)], the spacing decreases,
i.e., 1 < 0. According to the seminal work of Lax and
Burstein [25], P, 1S, in general, a nonlinear function of
the phonon coordinate(s) that can be expanded in the latter:

() men()

If several modes are considered, A, B, C, and D are
tensors of the first, second, third, and fourth rank, respec-
tively [26].

Lax and Burstein were the first to point to the fact that
there is ““... an appreciable deformation of the charge
distribution about the atoms during lattice vibration ... the
deformation of the charge distribution is suggested to be a

possible alternative explanation to that of anharmonic
forces ....” Thus, there are two different sources for the
nonlinear phonon response, i.e., the anharmonic potential
[Fig. 1(a)] and the nonlinear deformation of electronic
charge. The concept of nonlinear redistribution of elec-
tronic charge density is rather universal [27,28].

In the ionic picture, all nonlinear terms beyond the linear
term with tensor B in the expansion [i.e., Eq. (2)] are
neglected. With such an approximation, still compatible
with the Born-Oppenheimer approximation, the soft mode
of a paraelectric phase will show a nonlinear blueshift upon
excitation, whereas that of a ferroelectric phase must show
a redshift as dictated by its ladder of vibrational energy
eigenstates [the blue potential curve in Fig. 1(a)]. Note that
the terms in Eq. (2), which are nonlinear in the phonon
coordinates (e.g., C and D), are incompatible with the
Born-Oppenheimer approximation. This is because the
nonlinear deformation of the electronic charge is an addi-
tional degree of freedom that is not contained in the wave
function describing the nuclear motions only.

B. Coupling of ionic (nuclear) motions to electronic
interband currents via local-field effects

The alternative derivation of the Clausius-Mossotti
relation [14] provides a very simple physical picture of
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dipole-dipole coupling in condensed matter via local-field
effects. This approximative approach is essentially based
on two assumptions: (i) All contributing dipoles can be
approximated by point dipoles (i.e., by using & functions),
and (ii) the lattice vectors of the crystal are in a good
approximation to those of a cubic crystal. The local field in
our Eq. (1) is determined by the macroscopic electric field
in the crystal and by all (time-dependent) localized dipoles
d,(¢) with their respective volume density Ny:

Eloc(t) = Emac<t) + %%Zdek(r) (3)
k

There is a strong impact of local-field effects on the soft
mode in perovskites. As sketched in Fig. 1(b), the electronic
interband dipoles are located on the Ti—O bonds (here, of
SrTiO3), whereas the ionic-displacement dipoles are located
on the nuclei. Both dipoles are strongly localized in real
space, residing at spatially disjunct positions. Thus,
Hannay’s approximation [14] is fully applicable. The linear
response of the material already contains valuable informa-
tion on the relevance of dipole-dipole coupling between the
electronic and the ionic degrees of freedom. For a measured
frequency-dependent dielectric function e(w), one can
compare the scenarios, including [i.e., Eq. (4)] and neglect-
ing [i.e., Eq. (5)] local-field effects:

€w)—-1_1 ale
3W—€0;NI¢ 1(@), (4)
e(w)—1 = elZNkak(w). (s)
0%

It turns out that the combination of a huge dielectric function
at the soft-mode frequency and a considerable off-resonant
electronic high-frequency ¢, leads to a predominant elec-
tronic contribution to the oscillator strength of the soft-mode
quasiparticle. This leads to dramatic consequences for the
nonlinear soft-mode response because the local driving field
acting on dipoles [Eq. (3)] has a temporal structure that is
distinctly different from the THz pulses, as illustrated by the
green and orange transients in Fig. 1(b).

Neglecting any local-field effects [i.e., the second term in
Eq. (3)], the applied THz pulses themselves are the driving
fields acting on all dipoles in the system, thereby selecting
only the most resonant contributions to the nonlinear
response—a typical situation considered in 2D spectros-
copy on molecular systems in the liquid phase [29]. In such
a situation, rephasing photon-echo signals can exclusively
occur for those interaction sequences of THz pulses A
and B with a first interaction with the electric field of the
respective leading pulse followed by two interactions with
the electric field of the respective trailing pulse [e.g., the
ABB photon echo in the uppermost pulse sequence in
Fig. 1(b)]. Note that in collinear 2D THz spectroscopy, the

rephasing ABB photon echo can be uniquely demarcated
by experimental means from other nonlinear signals,
such as the nonrephasing signals with an ABB interaction
sequence or the rephasing BAA photon echo, i.e., the
second trace in Fig. 1(b). Here, the ABB photon echo
vanishes because pulse A (green) cannot interact with the
sample as a leading pulse anymore.

For the opposite situation, the local field experienced by
individual dipoles is dominated by the electric field of all
other dipoles; i.e., the second term dominates over the first
term in Eq. (3). In this case, we have protracted driving
fields on all localized dipoles as shown in the two
lowermost traces of Fig. 1(b). Such driving fields will
allow for the occurrence of both rephasing photon-echo
signals, ABB and BAA, even in the respective reversed
pulse sequence.

C. Large electronic nonlinearity at THz frequencies

If the oscillator strength of soft modes in perovskites is
dominated by its electronic interband contribution, it is
expected that its nonlinear response dominates, too. Here,
the excursion of valence-band electrons in k space plays a
significant role, as sketched in Fig. 1(c). As shown recently
[18], the microscopic polarization density is not a uniquely
defined physical quantity, whereas the microscopic current
density is (in principle) a measurable physical quantity.
Thus, it is convenient to consider the time integrals of
electronic (j,), Eq. (6), and ionic (j;,,s) current densities,
Eq. (7), as the dipole densities in Eq. (3):

t
Neldel(t) = / jel(r’ S)dS, (6)
t
Nionsdions(t) = / jions(r’ S)ds7 (7)

where N, and N, are the densities of electronic and ionic
oscillators, respectively.

When driving a valence-band electron with an electric
field at THz frequencies, its k vector makes an excursion in
the Brillouin zone as sketched in Fig. 1(c). The k-dependent
interband-transition dipole (red curve) now plays a crucial
role for the off-resonant electronic interband nonlinearity.
At a frequency of 1 THz, an electric-field amplitude of a
few tens of kV/cm is sufficient to explore regions in k space
with a distinctly smaller interband-transition dipole,
thereby modulating the local-field effects in Eq. (3) dra-
matically. Such a reduction of dipole-dipole coupling leads
to a nonlinear blueshift of the soft-mode resonance in both
paraelectric and ferroelectric phases.

D. Open questions on the nonlinear response
of soft modes

Evidently, the origin of soft-mode nonlinearities driven
by an ultrafast THz light field is still an open issue. In fact,
this open issue manifests as several open questions, which
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we enlist below and briefly explain our experimental
strategy to find the answers:

)

(@)

3

“

What is the portion of electronic degrees of freedom
vs nuclear (ionic) motions in the soft-mode quasi-
particle?

An answer to this important question can be
obtained from a detailed quantitative analysis of
the oscillator strength of the soft mode in the linear
optical regime.

When entering the nonlinear regime, what is the
dominating soft-mode nonlinearity in the Hamilto-
nian, Eq. (1): the anharmonicity of the potential or
the deformation of the charge density distribution?

The nonlinear response of a ferroelectric perov-
skite will give a definite answer to this question:
observation of redshift or blueshift upon soft-mode
excitation. While the redshift implies potential
anharmonicities, the blueshift is a signature of
charge density deformation.

Can we provide experimental evidence for the
relevant local-field contributions to the soft-mode
nonlinearity?

The occurrence of rephasing ABB photon-echo
signals for both THz-pulse sequences (A—B vs B-A)
in our 2D THz experiments will directly prove the
dipole-dipole coupling between ionic soft-mode
motions and electronic interband currents in the
localized Ti—O bonds of SrTiO;, used for our
experiments.

Is the experimentally observed nonlinear response of
such a hybrid mode in quantitative agreement with a
theoretical model with reasonable parameters?

The existing models are insufficient and hence we
will need a new hybrid model. We show that, in our
model, even when neglecting the potential anhar-
monicity [i.e., setting # =0 in Eq. (1)], we can
reproduce all the experimental results (i.e., the linear
and nonlinear responses) in a quantitative way.

ferroelectric phase transition at room temperature and hosts
THz soft modes [30-33]. Here, the thin-film setting
provides the degree of freedom to control the transition
temperature via epitaxial strain. The choice of STO is
further motivated by its high susceptibility [8], which
provides an ideal platform to demonstrate the admixture
of electronic degrees of freedom to the soft-mode quasi-
particle via the dipole-dipole coupling. We grow our
(001)-oriented STO film of d =50 nm thickness on a
(110)-oriented DSO substrate using pulsed laser deposition
[34]. Figure 2(a) shows the x-ray peaks corresponding to
the DSO substrate and the STO film. The substrate-
imposed tensile strain as verified by x-ray reciprocal space
mapping, shown in Fig. 2(b), amounts to 0.99%. As a
result, an in-plane ferroelectricity is induced in our film at
room temperature [35] with a soft-mode frequency in the
THz range. Further details on the sample preparation and

III. EXPERIMENT
A. Sample design

As a model system, we need a ferroelectric perovskite
that hosts soft modes at THz frequencies and is close to the
ferroelectric phase transition at room temperature. We have
chosen a ferroelectric perovskite, in particular, because its
quasicubic unit cell facilitates the theoretical description
of local-field effects, and the well-known anomalously
large values of its Born effective charges [13] are nicely
reproduced by state-of-the-art first-principles calculations
concerning ferroelectric polarizations. This approach fur-
ther ensures that our experimental findings can be repro-
duced for all perovskites listed in Table I of Ref. [13].

Thin films of SrTiO3 (STO) grown on DyScO5; (DSO)
induce an epitaxial strain that makes the STO undergo a
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FIG. 2. (a) X-ray diffraction measurement in the #-26 configu-

ration for the 50-nm-thick STO film grown on the DSO substrate.
(b) Reciprocal space map around the DSO (222) reflection
showing that the STO film is coherently strained, leading to
room-temperature ferroelectricity [35]. (c) THz transients trans-
mitted through the substrate (black) and the 50-nm film (red) at
room temperature. (d) Fourier-transformed spectra corresponding
to the THz transients in panel (c). (¢) STO film transmittance
showing a resonance dip at the soft-mode frequency of 1.17 THz,
which is highlighted as the shaded region in panel (d). (f) Real (¢)
and imaginary (¢”) parts of the dielectric function showing,
respectively, the zero crossing and a peak at the soft-mode
resonance frequency. The dashed lines indicate the fitted dielec-
tric function corresponding to a damped harmonic oscillator with
a Lorentzian profile.
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strain characterization are provided in Secs. I and II of the
Supplemental Material [36].

B. Linear and 2D THz spectroscopy

Linear THz spectroscopy is performed by using a single
THz pulse generated by optical rectification of 120-fs
pulses from a Ti:Sapphire amplified laser system at
800 nm in a 0.5-mm-thick (110)-oriented ZnTe crystal.
The THz electric field transmitted through the sample is
detected as a function of the so-called real (or sampling)
time ¢ by free-space electro-optic sampling [37]. A small
fraction of the 800-nm pulse is used as the sampling beam.
The electro-optic sampling is carried out in a 0.5-mm-thick
(110)-oriented ZnTe crystal that is optically bonded on a
2-mm-thick (100)-oriented ZnTe crystal.

The 2D THz spectroscopy [38-46] is performed by
generating two phase-locked THz pulses, A and B, sep-
arated by the delay time z. The second THz pulse is
generated by optical rectification of the 120-fs pulses at
800 nm in a 0.5-mm-thick (110)-oriented GaP crystal. A
schematic of our 2D THz experimental setup is shown in
Sec. III of the Supplemental Material [36]. The nonlinear
THz field Ey(f,7) is obtained by using the relation
ENL(I’ T) = EAB(Z’ T) — EA(I, T) — EB(l), where EAB(L T)
is the transmitted field when both pulses A and B have
interacted with the sample, while E, (Eg) is the transmitted
THz field measured with only pulse A (B). The two pulses
interact with the sample in a collinear geometry. As a result,
all nonlinear signals are simultaneously present within the
2D frequency map. In our experiments, we have used a total
incident THz electric-field strength of 49 kV/cm, where
the individual pulse strengths obey the relation Eg ~ 2E,
[9]. Contour plots of the individual transmitted THz pulses
(A and B) are shown in Sec. III of the Supplemental
Material [36]. All experiments are performed in an inert N,
atmosphere at room temperature.

IV. RESULTS AND DISCUSSION

A. Electronic and ionic contributions
to the soft mode in STO

To estimate the contribution of the electronic and the
ionic motions to the soft-mode oscillator strength, we first
evaluate the soft-mode dielectric function ey (). The THz
transients transmitted through a bare DSO (reference) and
the STO|DSO (sample) are shown in Fig. 2(c). The trans-
mittance 7'(w) is obtained by taking the ratio of the Fourier-
transformed THz spectra of the sample [red curve in
Fig. 2(d)] to that of the reference [black curve in Fig. 2(d)].
The transmittance spectrum, in Fig. 2(e), shows the soft-
mode resonance [8,31-33] at 1.17 THz, with a spectral
broadening of approximately 0.50 THz. Using the thin-film
approximation (d < Ay, [47,48]), the dielectric function
€sofi(@) = € (w) + i€”(w) is obtained from the complex
transmittance 7'(w) using the relation [8]

cn+ 1) (T(w) — 1

€soft(w) =1+ ( Jrza))T(aE)a? )’ (8)
where ¢ is the vacuum velocity of light and n is the
refractive index of the substrate. Figure 2(f) shows the zero
crossing of the real part and the peak of the imaginary part
of 45 (®) at the soft-mode frequency. We fit the measured
dielectric function to that of a damped harmonic oscillator
having a Lorentzian profile [red and black dashed lines in
Fig. 2(f)], with a frequency . and a damping rate yy.
This leads to

2

: ions S, (9)
— WY sofy — W

[0

€soft(w) = € T B
Wioft

where w?

2 =Z%N/(eyM,y) is the ionic plasma fre-
quency, Z is the Born effective charge, N is the density
of soft-mode oscillators, and €, is the vacuum permittivity.
The reduced mass M,y is given by M4 = [1/(Mg+
M) +1/(3My)]~!, where Mg,, My, and My are the
atomic masses of strontium, titanium, and oxygen,
respectively. The background dielectric constant ¢, = 5
stands for the linear electronic polarizability of the STO
crystal [49].

When neglecting for the nonce any electronic local-field
effects, w;,n, 1S the only parameter determining the soft-
mode oscillator strength. Now, if we assume that the soft
mode is essentially a relative motion between the positive
(Sr*>* and Ti*") and negative (O>~) ions [see Fig. 3(a)] with
the reduced mass M4, as in Ref. [20], the large value of
€soft (@) = 4000 leads to a high value of Z. ~ 13¢, (with
eo as the elementary charge). However, this value is
unphysical to be considered as a real charge on the ions.
The high value of Z.; can be explained immediately by
introducing the local-field corrections according to the
Clausius-Mossotti relation [14,15]:

esoft(a)) -1

Nelaelec (a)) + Nionsaions(a)) =3 esoft(w) +2 ’

(10)

where the total polarizability is defined as the sum of
electronic, N dtepee(®), and ionic, Njgns@ions (@), contribu-
tions. Within such a concept, the polarizability due to
purely ionic motions shown in Fig. 3(c) is small and
corresponds to realistic charges on the ions. Thus, the large
value of Zg from the linear response [8,13] results from the
hybrid electronic-ionic character of the soft mode. The
dipole-dipole coupling via local fields controls the admix-
ture of electronic degrees of freedom to the soft modes
and strongly renormalizes the soft-mode frequency from
20 THz down to 1 THz. Concomitantly, electronic inter-
band currents gradually resume the dominance in the
contribution to the macroscopic dielectric function.
Based on Cochran’s equations [1], we have calculated
the portions of electronic vs ionic currents to the soft mode
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FIG. 3. (a) Unit cell of the perovskite structure and the soft-

mode oscillation in SrTiOs;. (b) Real and imaginary parts of the
soft-mode dielectric function modeled with a damped harmonic
oscillator having a Lorentzian profile. (c) Real and imaginary
parts of the purely ionic susceptibility excluding any local-field
effects. (d) Integral of the real part of the conductivities
corresponding to the electronic and ionic oscillators. With the
double arrows at 47 THz, we read the values of the oscillator
strengths (black-dashed lines) well above both the soft-mode
resonance and the resonance from the purely ionic susceptibility.

via the integral of the real part of the conductivity, as
detailed in Sec. IV of the Supplemental Material [36].
A comparison in Fig. 3(d) clearly shows that, in the present
situation, the electronic part is at least 5 times larger
than the ionic part. This clearly points to a predominant
contribution of electronic degrees of freedom in the soft
mode, thereby answering the first open question.

To scrutinize the hybrid character of the soft mode and
the predominant electronic contribution further, we discuss
the observation of nonlinear signals from our 2D THz
experiments in the following.

B. Overview of 2D nonlinear signals

The 2D THz spectroscopy with two phase-locked THz
pulses, separated by the delay time 7, is used to study the
nonlinear response of the soft mode. The total electric field
transmitted through the STO film when both THz pulses
are present is shown in Fig. 4(a). Figure 4(b) shows the
emitted nonlinear field Eyy (z,7). By performing a 2D
Fourier transform of Ey; (#,7), we obtain the nonlinear
signals in the frequency domain as a function of the
detection frequency v, and the excitation frequency v,.
The 2D spectrum in Fig. 4(c) is comprised of four types of
nonlinear signals. These signals are also known as the y)-
nonlinear signals [29,39] since they result from three-field
interactions, with at least one field from each THz pulse.
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FIG. 4. (a) Contour plot of THz pulses A and B when
simultaneously transmitted through the sample at room temper-
ature. The THz electric field is plotted as a function of both the
real time ¢ and the delay time 7z between the pulses. (b) Emitted
nonlinear THz field Ey; (2, 7). The green and red dashed lines
indicate the position of the driving fields A and B, respectively,
while the black dashed line indicates zero delay time. (c) Contour
plot of experimental Ey; (v;,v,) spectrum, obtained by the 2D
Fourier transformation of the Ey (¢, 7) signal field. (d) Contour
plot of the theoretical Ey; (v, v,) spectrum. The colored ellipses
indicate the position of the nonlinear signals. The green and red
arrows are the frequency vectors associated with THz pulses A
and B, respectively. Note that vy = 1.17 THz is the soft-mode
frequency. The grey dashed lines in panels (c) and (d) are the
v, = 0 and v, = 0 lines.

All of these occur at the detection frequency v, =
vy = 1.17 THz, corresponding to the soft-mode resonance.
Within the 2D frequency map, all nonlinear signals can be
expressed as a linear combination of frequency vectors [see
green (v, ) and red (vg) arrows in Fig. 4(d)] of the incident
THz pulses [29,39], which ultimately defines the signal.
The green and red arrows have one-to-one correspondence
to the wave vectors k, and kg in the wave-vector space
used in noncollinear 2D spectroscopy [29].

The most intense nonlinear signals in the 2D map are the
so-called pump-probe signals, which are further classified
as two types: (i) Ap,-B,, (Epp) located at (v,v,) = (1p.0)
and (i) B,-A,, (Epp)) located at (v,,v,) = (1, —1p) [see
Figs. 4(c) and 4(d)]. They are called pump-probe signals
because the interaction sequence of the THz fields is such
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that they carry the information from the phase evolution of
the probe fields only, while the phase evolution of the
respective pump fields cancels out. For example, the signal
at (v, 0) is expressed as vag = vp — Vs + U, While the
signal at (v, —1) is expressed as vgp = vg — Ug + Vp. The
so-called photon-echo signals appear less pronounced in
the map and are also classified as two types: (i) the ABB
photon-echo signal (E5E8) located at (v, v,) = (1, vp) and
(i) the BAA photon-echo signal (Ep*) located at
(v, v;) = (vg, —2v4). These signals are called photon-echo
signals because they contain frequency vector combina-
tions that preserve the phase evolution from both fields,
as in conventional photon-echo experiments [50,51]. The
signal at (v, vg) can be expressed as vapp = 2Up — Ua,
while the signal at (vy, —2y,) can be expressed as
UBAA = 2Vp — UB.

Our theoretical approach to model the soft-mode non-
linear response is based on the simplified pseudopotential
concept of electronic band structure, elaborated in Secs. V
and VI of the Supplemental Material [36]. The light-matter
interactions are treated within the dipole approximation by
the use of velocity gauge. Because of the coupling between
the electronic- and ionic-displacement dipoles, the inter-
action with incident THz fields results in a nonlinear
electronic motion. Such nonlinear motion of electrons
further modifies the polarization of the material, eventually

leading to the emission of a nonlinear electromagnetic
field [see Eq. (16) and Fig. S5(a) of the Supplemental
Material [36]]. The 2D Fourier transform of this nonlinear
field shows a striking agreement [Fig. 4(d)] with our
experiments. We now individually scrutinize all the 2D
nonlinear signals in Fig. 4(c) to illustrate their role within
our hybrid picture.

C. Pump-probe signals

The separation of the different nonlinear signals in
Fig. 4(c) allows us to examine their contributions to
soft-mode nonlinearities in a background-free manner.
We do this by applying a 2D-Gaussian spectral filter to
the nonlinear signals in Fig. 4(c). The filtered signals
corresponding to A,-B, and Bp,-A, are shown in
Figs. 5(a) and 5(b), respectively. We perform a Fourier-
back-transform of these signals from the frequency (v;, v,)
to the time (¢, 7) domain. The experimental spectra of
ES3(1,7) and ESN(t,7) signals in Figs. 5(c) and 5(d) and
the corresponding theoretical spectra in Figs. 5(e) and 5(f),
respectively, provide not only a qualitative but a rather
quantitative agreement.

The blueshift of the soft-mode frequency is one of the
most striking manifestations of soft-mode nonlinearities.
To examine this further, we perform 1D Fourier transforms
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FIG. 5.
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and 3 ps, indicated by the black, red, and green horizontal
solid lines in panel (c). The blue and red shaded regions
correspond to induced absorption (AT < 0) and bleaching
(AT > 0), respectively.

of Ep*(¢, ) along 7 in Fig. 5(d) at two different delay times:
one at times when the two pulses are well separated (say, at
7 = —2.5 ps) and the other when they are simultaneously
present in the sample (say, at 7 = —0.4 ps). These THz
transients and the corresponding spectra are shown in
Figs. 6(a) and 6(b), respectively. At 7= —-0.4 ps, the
sample experiences a higher THz field than at
7= —2.5 ps, leading to the blueshift of the soft mode
from its original frequency at 1.17 THz. This observation
shows precisely the domination of electronic charge density
deformation in our Hamiltonian, Eq. (1)—the answer to the
second open question. As Fig. 6(b) shows, the shift reaches
a value as large as 0.3 THz, or 26% of the soft-mode
frequency. Here, the coupling between the electronic- and
ionic-displacement dipoles via the Lorentz field gives rise
to local-field effects that strongly modify the character of
the nonlinear response. It is quite remarkable that even a
THz electric-field strength as low as 49 kV /cm, as used in
our work, is sufficient to drive the system far out of the
perturbative regime of light-matter interaction [9,29,39].
To characterize the spectral evolution of the soft-mode
frequency over the entire delay range, we evaluate the

spectrally resolved A,-B,, signal, S52(v,, 7). This signal,
shown in Fig. 6(c), is obtained by performing a 1D
Fourier transform of E52(z,7) along 7 and using the rela-
tion S53(v,,7) = 2Re[ESP (v, 7)Ef(v,)]/|Es(v,)]?, where
E§(v;) is the complex conjugate of Egp(v,). Slices of
So3(v,,7) at several values of 7 are shown in Fig. 6(d).
These spectra clearly display a transmission decrease
[AT < 0, blue shaded region in Fig. 6(d)] in the range
of the original 1.17-THz soft-mode frequency and a
concomitant transmission increase [AT > 0, red shaded
region in Fig. 6(d)] at higher frequencies. Since the material
is so close to the ferroelectric phase transition, the soft
mode is extremely susceptible to small perturbations that
can easily induce nonlinear motions. As a consequence,
once the pump pulse leaves the sample, the soft-mode
excitation changes its frequency during its decay [9,39],
resulting in the observed behavior. Note that this is in
striking contrast to the purely phononic nonlinearities
[29,39], where one strictly expects a bleaching (AT > 0)
at the original soft-mode frequency and an induced
absorption (AT < 0) at the frequency of the excited soft
mode. The spectrally resolved A,-B, signal along the
entire delay range in Fig. 6(c) further exhibits the long-lived
(A7 > 3 ps) character of the soft-mode response, with
respect to the duration of the THz pump pulse. The
complementary pump-probe signal Spi(v,,7) with the
inverted pulse sequence shows the same behavior (see
Fig. S7 in the Supplemental Material [36]), in agreement
with the interrelation of the pump-probe experiments for
7' nonlinearities [39].

D. Photon-echo signals

The 2D-filtered ABB and BAA photon-echo signals are
shown in Figs. 7(a) and 7(b), respectively. As before, we
perform a Fourier-back-transformation of these signals to
get the corresponding nonlinear signals in the time (¢, 7)
domain. The interaction sequence of the pulses dictates that
the photon-echo signals have defined phase fronts. The A-B-
B pulse interaction sequence gives phase fronts
perpendicular to the green dashed line in Fig. 7, while the
B-A-A pulse sequence gives phase fronts that are almost
parallel to the green dashed line in Fig. 7. The contour plots
of E5BB(1,7) and EB(¢,7) in Figs. 7(c) and 7(d) and the
corresponding theoretical 2D plots in Figs. 7(e) and 7(f),
respectively, display a beautiful agreement. Our observation
of photon-echo signals with a significant strength at negative
coherence times 7, is striking, and yet it coheres with the
expected soft-mode nonlinearities driven by electronic
motions; i.e., the softness of the system near the phase
transition allows for a nontrivial field overlap.

In our hybrid picture, the local-field effects lead to a
situation where the effective electric field resulting from the
interaction of all the dipoles (i.e., electronic and ionic) is
much larger than the average macroscopic THz electric
field in the crystal. This leads to a significant overlap of the
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FIG. 7. The 2D-filtered photon-echo signals. (a) ABB photon echo [red circle in Fig. 4(c)] and (b) BAA photon echo [blue circle in

Fig. 4(c)]. (c,d) Contour plots of the Fourier-back-transformed E5>"

(t.7) and Ep*A (1, 7), respectively. (e,f) Corresponding theoretical

2D plots. The green and red dashed lines indicate the position of the driving fields A and B, respectively, while the black line indicates
7 = 0 ps. The contour plots are color-coded differently in order to distinctly separate the nonlinear contributions at positive and negative

coherence times 7,.

THz pulses A and B, resulting in the photon-echo signals at
negative coherence times [9,39,51-54]. In addition, it
characterizes the long-lived nature (>3 ps) of the driving
fields, as expected for noninstantaneous contributions that
are dominated by local-field effects. In contrast, for the
purely phononic picture, theoretical 2D simulations show
that both the nonlinear ABB and BAA photon-echo signals
are only present for positive coherence times; see Figs. S9
(b) and S9(c) in Sec. IX of the Supplemental Material [36].
Evidently, the presence of photon-echo signals at negative
coherence times is the very hallmark of the low-field soft-
mode nonlinearity, which is direct experimental evidence
for the relevant local-field contributions to the soft-mode
nonlinearity—the answer to the third open question.
Furthermore, our hybrid model has reproduced all exper-
imental results (i.e., both the linear and nonlinear
responses) in a quantitative way, thereby answering the
fourth open question.

V. CONCLUSION

In conclusion, we have presented a comprehensive
study on the origin of THz nonlinearities of a polar soft

mode in a strain-engineered epitaxial ferroelectric thin
film. We find that the soft mode is a hybrid mode of pure
lattice (ionic) motions and electronic interband transi-
tions. The dielectric function of the soft mode in our
ferroelectric film shows a predominant electronic con-
tribution, which is at least 5 times larger than the purely
ionic contribution. The apparent low threshold for the
soft-mode nonlinear response results from a combination
of two complementary facts: first, the soft mode has a
hybrid nature, and second, being close to the ferroelectric
phase transition, we can easily drive electronic motions
into the nonlinear regime with low THz fields unlike pure
ionic motions. Our expanded hybrid picture quantita-
tively reproduces all the features associated with the
soft-mode nonlinearities, namely, the blueshift of the
soft-mode frequency and the photon-echo signals at
negative coherence times, which are, however, in striking
contrast to purely phononic nonlinearities. In our model,
the local-field effects that originate from the coupling of
electronic and ionic degrees of freedom not only domi-
nate but also strongly modify the soft-mode nonlinear-
ities, while switching them off leads to a vanishing
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nonlinear signal. We identified several important open
questions and provided quantitative answers that shed
light on the microscopic picture behind the THz soft-
mode nonlinearities in ferroelectric perovskites.

At the fundamental level, these findings can be
extrapolated to any polar mode that is intrinsically linked
to the softness of a system near a phase transition. Going
beyond ferroelectrics, analogies can be drawn for unsta-
ble spin excitations (for example, certain antiferromag-
netic magnons [55,56]) and thereby associate their role
during light-driven phase transitions in magnetic materi-
als. From a more utilitarian perspective, 2D THz spec-
troscopy turns out to be a very powerful tool to unravel
the interplay between the transient nonlinear electronic
motions and the macroscopic polarization, an under-
standing of which is beneficial for engineering oxide-
based heterostructures [57] with functional properties. On
the other hand, we can make use of our understanding to
drive polar phonons nonlinearly by optical straining and
potentially steer many-body quantum phenomena, such
as superconductivity. Strain, in particular, has been
proved to be an efficient way to control the soft-mode-
induced superconductivity [58]. Observations such as an
increase of superconducting 7, under tensile strain,
broadening of the superconducting dome, and a shift
of T'. towards lower carrier densities are general for any
superconductor where pairing is mediated by softening of
ferroelectric modes [58—60]. While these observations are
mostly theoretical, our work provides a strong exper-
imental groundwork. Furthermore, our results have
deeper implications for classical molecular-dynamics
simulations that tacitly rely on the purely ionic picture.
The molecular-dynamics simulations have been widely
used for understanding the nonlinear dynamics of
coupled phonon modes across thermal phase transitions.
However, they fail to reproduce the correct electronic
nonlinearities associated with the softening of phonon
modes in a light-induced phase transition at ultrafast
timescales—a regime where our hybrid model shows
great potential.
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