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The dynamics of quantum information in strongly interacting systems, known as quantum information
scrambling, has recently become a common thread in our understanding of black holes, transport in exotic
non-Fermi liquids, and many-body analogs of quantum chaos. To date, verified experimental implemen-
tations of scrambling have focused on systems composed of two-level qubits. Higher-dimensional quantum
systems, however, may exhibit different scrambling modalities and are predicted to saturate conjectured
speed limits on the rate of quantum information scrambling. We take the first steps toward accessing such
phenomena, by realizing a quantum processor based on superconducting qutrits (three-level quantum
systems). We demonstrate the implementation of universal two-qutrit scrambling operations and
embed them in a five-qutrit quantum teleportation protocol. Measured teleportation fidelities Favg ¼
0.568� 0.001 confirm the presence of scrambling even in the presence of experimental imperfections and
decoherence. Our teleportation protocol, which connects to recent proposals for studying traversable
wormholes in the laboratory, demonstrates how quantum technology that encodes information in higher-
dimensional systems can exploit a larger and more connected state space to achieve the resource efficient
encoding of complex quantum circuits.
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I. INTRODUCTION

While the majority of current generation quantum pro-
cessors are based on qubits, qutrit-based (and, more gen-
erally, qudit-based [1]) systems have long been known to
exhibit significant advantages in the context of quantum
technology: They have been touted for their small code sizes
in the context of quantum error correction [2], high-fidelity
magic state distillation [3], and more robust quantum
cryptography protocols [4,5]. To date, advantages of indi-
vidual qutrits have been explored experimentally in funda-
mental tests of quantum mechanics [6] and in certain
quantum information protocols [7–10], while entanglement
between qutrits has been demonstrated in probabilistic
photonic systems [11,12]. A qutrit platform capable of
implementing deterministic high-fidelity gates would be a
powerful tool for both quantum simulation and information
processing. In this work, we develop a prototypical multi-
qutrit processor based on superconducting transmon circuits
(Fig. 1) and—as a proof-of-principle demonstration—use it

to (i) perform amaximally scrambling two-qutrit unitary and
(ii) verify its scrambling behavior using a five-qutrit quan-
tum teleportation algorithm.
Quantum scrambling, the subject of much recent interest,

is the quantum analog of chaotic dynamics in classical
systems: Scrambling describes many-body dynamics
which, though ultimately unitary, scatter initially localized
quantum information across all of the system’s available
degrees of freedom [13–15]. Just as chaotic dynamics enable
thermalization in closed classical systems, scrambling
dynamics enable thermalization of isolated many-body
quantum systems by creating highly entangled states. In
general, it is difficult to determine whether arbitrary many-
bodyHamiltonians lead to scrambling dynamics; this area is
one where future quantum processors could offer exper-
imental guidance. Our realization of verifiable scrambling
behavior in a multiqutrit system is a step toward this goal.
In particular, a quantum processor can, in principle,

directly measure the scrambling-induced spread of initially
localized information via the decay of so-called out-of-
time-ordered correlation functions (OTOCs) [13,16–23].
This capability was recently demonstrated in a qubit-based
system, using a seven-qubit teleportation algorithm analo-
gous to the five-qutrit protocol we implement in this work
[24–26]. A key property of the teleportation-based protocol
is that it enables verification of scrambling behavior even in
the face of decoherence and experimental imperfection.
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The superconducting qutrit processor we develop here
features long coherence times; multiplexed readout of
individual qutrits; fast, high-fidelity single-qutrit opera-
tions; and two types of two-qutrit gates for generating
entanglement. Using this gate set on our processor, we
construct a maximally scrambling qutrit unitary and char-
acterize it using quantum process tomography. Finally, to
demonstrate the ability of our platform to perform genuine
multiqutrit algorithms, we perform a five-qutrit teleporta-
tion protocol which serves as an additional verification of
genuine two-qutrit scrambling behavior. This protocol is
inspired by the Hayden-Preskill variant of the black-hole
information paradox [14,24]. While we choose quantum
scrambling as a demonstration of our processor, our
work opens the door more broadly to the experimental
study of quantum information processing utilizing qutrit-
based logic.

II. QUTRIT PROCESSOR

Nearly all current quantum processors are based on
collections of the simplest possible quantum system:
qubits, consisting of two states per site. In contrast,
qudits—featuring d > 2 states—can store an exponentially
greater amount of information compared to qubits and can,
therefore, in certain cases, implement quantum algorithms
using smaller systems and fewer multisite entangling gates
[27,28]. In cavity QED experiments, continuous variable
quantum information is encoded [29,30], protected [31],
and entangled [32] in linear cavity modes, by coupling
them to an artificial nonlinear atom. Encoding discrete
quantum information in an intrinsically nonlinear system
has the advantage that energy transitions have distinct

frequencies that can be driven individually and with
faster gates.
For qutrit systems specifically, many quantum informa-

tion protocols have been proposed that would yield a
significant advantage over qubits [2–5,33]. Qutrits have
been successfully realized in various physical degrees of
freedom including the polarization state of multiple pho-
tons [34], spin S ¼ 1 states of solid-state defect centers
[35], hyperfine states in trapped atoms and ions [36,37],
and the lowest-energy states of an anharmonic oscillator in
superconducting circuits [38]. However, no platform to date
has demonstrated a deterministic, universal two-qutrit gate.
Our superconducting qutrit processor features eight

transmons [39,40] connected in a nearest-neighbor ring
geometry [Fig. 1(a)] of which we use five (denoted
Q1;…; Q5) to realize quantum circuits. Each transmon
encodes a single qutrit and is coupled to both a dedicated
microwave control line [for performing gates, Fig. 1(b)]
and its own readout resonator [for state measurement,
Fig. 1(c)]. Transmons are quantum nonlinear oscillators
that can be operated as qubits, using only their two lowest-
lying energy states j0i and j1i. While their higher-energy
states (j2i, j3i, etc.), in principle, enable transmons to be
operated as higher-dimensional qutrits or qudits [38], the
experimental implementation of multiqutrit algorithms is
challenging due to a lack of two-qutrit entangling gates and
increased noise associated with the higher transmon states.

A. High-fidelity single-qutrit operations

In order to implement high-fidelity single-qutrit oper-
ations in transmons, one must overcome multiple
sources of noise and coherent errors that are naturally
introduced upon including the j2i state of transmon in the
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FIG. 1. Superconducting qutrit processor. (a) Optical micrograph of the five-transmon processor used in this experiment. Transmon
circuits (light blue) couple to an integrated Purcell-filter and readout bus (red) via individual linear resonators (gold), enabling
multiplexed state measurement. Exchange coupling between nearest-neighbor transmons is mediated by resonators (purple), while
microwave drive lines (green) enable coherent driving of individual qubits. (b) Coherent Rabi dynamics of a single qutrit induced by
simultaneous microwave driving at frequencies ω01 and ω12. Achievable Rabi frequencies are in the range of tens of megahertz, 3 orders
of magnitude faster than decoherence timescales. (c) Example single-shot readout records of an individual qutrit, generally achievable
with fidelities above 0.95. This qutrit is largely limited by decay during readout.
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computational subspace. The primary such sources include
the following.

(i) Relaxation due to spontaneous emission.—Energy
relaxation or T1 processes in transmon qubits cause
unwanted, incoherent transitions from the j1i state to
the j0i state and arise from lossy interfaces or
electromagnetic channels. For transmon qutrits,
the addition of the j2i state introduces another decay
channel, from j2i → j1i [41]. Because of bosonic
enhancement, in which the spontaneous emission
rate scales linearly with the photon number, the time
constant associated with j2i → j1i decay is roughly
half that of the j1i → j0i transition.
To address this difference, we use a high-quality

fabrication process and careful microwave engineer-
ing to minimize the effects of energy relaxation. The
fabrication recipe, detailed in Appendix A, is opti-
mized to remove lossy oxide layers at the substrate-
metal and metal-metal interfaces through three
separate buffered-oxide etches and an ion-mill step.
In addition, finite-element simulations are used to
identify and mitigate each loss channel associated
with microwave radiation. Specific mitigation strat-
egies include an integrated, broadband Purcell filter
suppressing leakage into the readout bus [Fig. 1(a)];
readout and bus resonator geometries designed to
shift the frequencies of lossy higher modes away
from those of qutrits and resonators of band; and
extensive wire bonding connecting the ground
planes on either sides of the readout bus, coupling
resonators, readout resonators, and control lines. As
a result of these techniques, the average T1 times on
the chip are 56.0� 10 μs for the j1i → j0i transition
and 34.8� 4 μs for the j2i → j1i transition.

(ii) Dephasing due to the charge sensitivity of higher
transmon levels.—The transmon was originally
developed to reduce the dependence of energy levels
on offset charge noise. While typical values of
transmon parameters (i.e., the Josephson energy
EJ and the charging energy EC) result in low
charge-noise sensitivity in the qubit subspace, the
charge dispersion increases rapidly with increasing
energy levels [39,42]. For qutrits specifically, the
charge dispersion of the j2i state is at least an order
of magnitude greater than that of the j1i state,
resulting in a charge-limited dephasing time 10
times lower than that of the qubit subspace.
To mitigate charge noise in the j2i state, we tune

the transmon parameters even further than typical
into the “transmon regime”: Specifically, we choose
a ratio of Josephson and charging energies EJ=EC ≈
73 (typically, this ratio is near 50 for transmon qubits
[43–45]). This choice reduces the charge dispersion
of the j2i and j1i states to 12 kHz and 250 Hz,
respectively. As a result, we realize dephasing times,

averaged over the five qutrits, of T�
2 ¼ ð39� 21Þ μs

[ð14� 5Þ μs] for the j0i → j1i [j1i → j2i] transi-
tions, which can be further extended with a Hahn
echo to T2;echo ¼ ð61.2� 11Þ μs [ð28� 5Þ μs].

(iii) Increased cross talk due to frequency crowding.—If
pulses, intended to apply unitary operations on a
single qutrit, are not well localized in space to the
desired qutrit, they can induce unintended unitary
operations on nearby qutrits. This “cross talk” is
increasingly troublesome when including the j2i
state, as the frequency spectrum of state transitions
becomes more crowded due to the inclusion of the
j1i → j2i transition frequencies.

On our processor, we find significant cross talk between
the microwave drive lines for most transmons. When
driving Rabi oscillations on a given qutrit, this cross talk
has two unwanted effects.
(1) All other qutrits are off-resonantly driven. Depend-

ing on the relative frequencies between the qutrits,
this effect can manifest either as an unwanted shift in
state populations or as an ac Stark shift.

(2) Microwave fields leaking onto neighboring qutrit(s)
will result in an unwanted cross-resonance interac-
tion, making the desired Rabi frequency dependent
on the state of the neighboring qutrit(s) [46].

For a given drive frequency, our cross talk can be
characterized in terms of a five-by-five complex-valued
matrix CðωÞ, which relates the field amplitudes o⃗ðωÞ seen
by each of the five qutrits to the input field amplitudes ⃗iðωÞ
on each drive line: o⃗ðωÞ ¼ CðωÞ⃗iðωÞ. While this cross-talk
matrix strongly depends on frequency, it does not exhibit
any nonlinearity at the powers used in the experiment.
Therefore, we compensate for the cross talk by inverting
the matrix CðωÞ at each frequency to yield linear combi-
nations of drive lines which result in nonzero fields only at
a single qutrit.
To measure the cross-talk matrix CðωÞ of our system, we

drive two control lines simultaneously and, for each pair of
driven control lines, determine the relative amplitudes and
phases of driving that cancel the resulting field at each
qutrit on the chip. Depending on the relative frequencies
between the drive field and the qutrit transition, we use
either an ac Stark shift or a Rabi oscillation as the
diagnostic of an unwanted microwave field. This meas-
urement is repeated for each of ten drive frequencies of
interest (i.e., the j0i ↔ j1i and j1i ↔ j2i transition
frequencies of all five qutrits), each pair of lines, and each
qutrit.
While this method proves effective for our system, it can

become prohibitively measurement intensive for future
processors with hundreds of qudits. Looking forward, in
order to scale to such systems, it will be crucial to pinpoint
and mitigate the source of this cross talk at the hard-
ware level.
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With the above three issues—relaxation, dephasing, and
cross talk—taken care of, we now turn to our realization of
high-fidelity single-qutrit gates. In qutrits, these require the
combination of a microwave pulse (to perform the rotation
in the relevant subspace) and a virtual phase gate. This
phase gate is necessary because a microwave field that
addresses, e.g., the j0i → j1i transition also generates a
relative phase eiðϕGþϕDÞj2i on the idling state, where ϕG is
the geometric (Berry) phase associated with the rotation in
the fj0i; j1ig subspace and ϕD is the dynamical phase due
to the ac Stark shift of the idling j2i state. These phases
represent logical Z errors in the computational subspace,
which we measure and correct.
Single-qutrit gates in our system are performed within

30 ns (see Appendix C for the universal set of gates used in
our experiment). We characterize them by performing
qubit-based randomized benchmarking in two different
qubit subspaces [47]. These yield fidelities on par with
state-of-the-art qubit processors: f01 ¼ 0.9997� 0.0001
and f12 ¼ 0.9994� 0.0001 for gates within the
fj0i; j1ig and fj1i; j2ig subspace, respectively. While this
benchmarking method demonstrates that single-qutrit
coherence is no longer a major bottleneck for high-fidelity
operations, it should be noted that this method is not
sensitive to certain sources of errors, including phase errors
in the idle state and multiqutrit errors. In the future,
a full characterization of qutrit operations will require
the development of genuine qutrit randomized benchmark-
ing protocols.
Multiplexed, individual qutrit readout is performed

dispersively via a linear readout resonator coupled to each
transmon. As shown in Fig. 1(c), with a suitable choice of
the readout frequency and amplitude, all three states of the
transmon can be resolved in a single shot. Averaged over all
qutrits, our readout fidelity is Favg ¼ 0.96� 0.02. In
ensemble measurements (e.g., when performing tomogra-
phy), we can correct for this readout imperfection by
storing a “confusion matrix” Mij of the conditional
probabilities to measure a state jii given an actual state
jji. Applying its inverse to the measurement results allows
one to infer the actual state populations.

B. Two-qutrit entanglement

Having outlined our implementation of high-fidelity
single-qutrit operations, we next demonstrate two methods
for generating controllable two-qutrit entangling gates in
our system: the first based on the cross-resonance inter-
action [46,48] and the second based on the longitudinal, or
cross-Kerr, interaction. Both of these operate on neighbor-
ing qutrits, giving our full eight-qutrit processor an effec-
tive ring geometry; restricting to five qutrits, this ring
reduces to a linear geometry. The two types of interaction
give rise to two distinct forms of entangling gates:
The cross-resonance interaction leads (up to a phase) to
a conditional subspace rotation, while the cross-Kerr

interaction leads to a controlled-SUM gate—the qudit
analog of the controlled-NOT gate. We now describe both
of these gates in detail.
Cross-resonance gate.—The cross-resonance interaction

has been used extensively in superconducting qubit
systems to generate high-fidelity controlled-NOT gates
[49–51]. The origin of the interaction is a weak transverse
coupling between two qubits that are highly off resonant
such that the coupling is almost negligible. When one of the
two systems (the control) is driven at the frequency of the
other (the target), the combination of the coupling and
the drive induces Rabi oscillations on the target qubit, with
a Rabi frequency that depends on the state of the control
qubit. This constraint results in two Rabi frequencies, ω0

and ω1, for the two control qubit states, j0i and j1i, both of
which also depend on the drive power. This interaction is
naturally described by the Hamiltonian

Hqubit
cr =ℏ ¼ ω0j0ih0j ⊗ σx þ ω1j1ih1j ⊗ σx: ð1Þ

Higher-order deviations from this Hamiltonian can largely
be mitigated with dynamical decoupling, local rotations, or
pulse shaping. This Hamiltonian is locally equivalent to a
σz ⊗ σx interaction and periodically entangles and disen-
tangles qubits at a rate Δω ¼ jω0 − ω1j. When the two
oscillations are completely out of phase (tΔω ¼ π), the
resulting unitary

UCNOT ¼ j0ih0j ⊗ I þ j1ih1j ⊗ σx ð2Þ

is locally equivalent to a controlled-NOT gate.
On our chip, the cross-resonance interaction arises from

the static capacitive coupling between neighboring trans-
mons. To extend the cross-resonance gate to qutrit systems,
we must consider how this interaction behaves in the full
two-qutrit Hilbert space. We show that we can realize a
similar gate to that of qubit systems, where we swap the j0i
and j1i populations of the target qutrit conditional on the
control qutrit being in the j1i state.
The dynamics of the two-qutrit cross-resonance inter-

action are shown in Figs. 2(a) and 2(b). Compared to
qubits, we have two additional considerations: the effect of
the cross-resonance drive on the j2i state of the target qutrit
and the Rabi oscillations induced on the target qutrit by the
j2i state of the control qutrit. The first effect results in an
overall phase being applied to the j2i state of the target via
the ac Stark shift [Fig. 2(b)], since the effective Rabi drive
is off resonant with the j1i → j2i transitions of the target
qutrit (in contrast to the j0i → j1i transition, with which it
is resonant). The second effect extends the qubit cross-
resonance Hamiltonian to qutrits according to

Hqutrit
cr =ℏ ¼ ω0j0ih0j ⊗ π01x þ ω1j1ih1j ⊗ π01x

þ ω2j2ih2j ⊗ π01x ; ð3Þ
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where we add the (drive-dependent) frequency ω2, which
induces Rabi oscillations in the target qutrit when the
control qutrit is in the j2i state.
In the above Hamiltonian, π01x is the 3 × 3 Gell-Mann

matrix that couples the j0i and j1i states and does nothing to
the j2i state. We emphasize that this model for the inter-
actions, while physically motivated and consistent with our
experimental observations, is only approximate. Much like
for the two-qubit cross-resonance gate [52,53], further study
is needed to develop a precise model of the dynamics.

The qutrit cross-resonance interaction Eq. (3) involves
three distinct Rabi frequencies, corresponding to the three
states of the control qutrit [Fig. 2(a)]. At low drive power,
these frequencies scale linearly with the drive amplitude,
while at higher powers the dependence becomes nonlinear.
We utilize this nonlinearity to choose a drive power such
that two of the Rabi frequencies are equal: ω0 ¼ ω2. Next,
similar to the qubit implementation, we choose the gate
time tg according to tgjω0 − ω1j ¼ π. Up to state-dependent
phases, this choice gives rise to a conditional-π gate (also
known as a generalized controlled-X gate [54]):

UCπ ¼ ðj0ih0j þ j2ih2jÞ ⊗ I

þ j1ih1j ⊗ ðj0ih1j þ j1ih0j þ j2ih2jÞ: ð4Þ

Our experiment features a frequency difference ω0 − ω1 ¼
4 MHz and a corresponding gate time tg ¼ 125 ns. During
this gate, simultaneously with the cross-resonance drive
applied to the control qutrit, we apply a concurrent drive to
the target qutrit which ensures that it ends up in a
computational basis state at tg. This target drive, with
Rabi frequencies in the tens of megahertz, has the addi-
tional benefit of suppressing dephasing in the target qutrit’s
fj0i; j1ig subspace during the gate [55].
In order to benchmark the performance of the condi-

tional-π gate, we use two applications of the gate to create a
maximally entangled two-qutrit EPR pair:

jEPRi ¼ j00i þ j11i þ j22iffiffiffi
3

p : ð5Þ

We measure the success of EPR preparation using qutrit
state tomography [38], enabled by our high-fidelity local
qutrit pulses and qutrit readout. From this measurement, we
reconstruct the density matrix of our final state [Fig. 2(c)]
and compute an EPR fidelity of FEPR ¼ 0.98� 0.002,
which we observe to be mostly limited by decoherence.
Finally, while the conditional-π gate is fast and capable

of generating high-fidelity entangled states, it acts only in a
two-qubit subspace of the full two-qutrit Hilbert space.
Consequently, despite the conditional-π gate being univer-
sal for qutrit computation when combined with arbitrary
single-qutrit gates [54], implementing general two-qutrit
unitaries requires a high number of such gates.
This requirement can be undesirable given the finite error

associated with each gate. To address this issue, in what
follows, we introduce a second qutrit entangling gate, the
controlled-SUM gate, which we will implement via the
cross-Kerr interaction instead of the cross-resonance inter-
action. Ultimately, we use both gates to perform the full
five-qutrit teleportation protocol, applying the conditional-
π gate to EPR preparation and measurement and the more
powerful controlled-SUM gate to a complex two-qutrit
scrambling operation.

(a)

(c)

(b) Control Target
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2

Control Target
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Control in 0
Control in 1
Control in 2

0

0Control

Target

tg=125 ns

FIG. 2. Two-qutrit EPR pair generation via the cross-resonance
interaction. (a) Nearest-neighbor qutrits coupled by an exchange
interaction can be entangled via the cross-resonance effect, where
one qutrit (the control) is microwave driven at the j0i ↔ j1i
transition frequency of the other (the target). Resulting Rabi
oscillations of the target qutrit exhibit a Rabi frequency depen-
dent on the state of the control qutrit. Here, we drive the control
with a field whose amplitude is chosen to make the Rabi
frequencies corresponding to control states j0i and j2i identical,
resulting in a unitary operation which, after 125 ns, interchanges
states j0i and j1i of the target qutrit when the control qutrit is the
j1i state. (b) When the target qutrit is in the j2i state, the cross-
resonance interaction is off resonant and does not affect the
population. (c) Top: sequence used to prepare an EPR pair with
two applications of the cross-resonance gate. π01x represents a
rotation of π about the x axis in the fj0i; j1ig subspace of the
qutrit. The number in the circle for the two-qutrit gate represents
the condition (state of the control qutrit) for which a gate is
applied on the target. Bottom: the density matrix (reconstructed
via state tomography) of the resulting EPR pair, with a state
fidelity of FEPR ¼ 0.98� 0.002.
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Cross-Kerr gate.—As neighboring qutrits in our proc-
essor are capacitively coupled to one another, they are
subject to an “always-on” cross-Kerr entangling interac-
tion, which we harness to perform controlled-phase and
controlled-SUM gates (the two are locally equivalent). The
always-on cross-Kerr interaction, analogous to the disper-
sive interaction between a qubit and cavity, is modeled by
the dispersive cross-Kerr Hamiltonian

HcK=ℏ ¼ α11j11ih11j þ α12j12ih12j
þ α21j21ih21j þ α22j22ih22j; ð6Þ

where we work in a rotating frame that cancels the
Hamiltonian’s action on the j0ji; ji0i states. The cross-
Kerr coefficients αij represent the rate at which phases
accumulate on the jiji state during idling. Their values are
sensitive to both the magnitude of the capacitive coupling
between transmons as well as the transmon spectra. While,
in principle, one could design a processor with prespecified
values of αij, this possibility is impractical given current
technology, because the transmon spectra depend on the
critical current of their Josephson junction, which cannot be
precisely set in fabrication [56]. To maintain robustness
against such variability, we therefore design the cross-Kerr
gate to work regardless of the particular values of the
coefficients. For reference, these values for our particular
processor are shown in Table I.
We now demonstrate how to combine a generic cross-

Kerr Hamiltonian with single-qutrit rotations to form a
controlled-SUM gate. The foundation of our construction is
the local equivalence between the controlled-SUM gate:

UCSUM ¼
Xd
n¼1

jnihnj ⊗ Xn ð7Þ

and the controlled-phase gate UCϕ:

UCϕ ¼
Xd
n¼1

jnihnj ⊗ Zn; ð8Þ

which we soon show is achievable via the cross-Kerr
interaction. Here,

X ¼
Xd
j¼1

jjþ 1ihjj; Z ¼
Xd
j¼1

ei2πj=djjihjj ð9Þ

are the generators of the set of qudit Pauli operators. The
two gates are related via conjugation by a single-qutrit
Hadamard H gate:

ðI ⊗ H†ÞUCϕðI ⊗ HÞ ¼ UCSUM; ð10Þ

which, as for qubits, interchanges the Pauli X and Z
operators. This realization also easily generalizes to slight
modifications of the controlled-SUM gate: One can realize
instead a controlled-MINUS gate by inverting the Hadamard,
and one can interchange the control and the target qudits by
switching which qudit is Hadamard conjugated.
Specifying to qutrits, the controlled-phase gate UCϕ

imparts a phase 2π=3 to the j11i, j22i states and the
opposite phase −2π=3 to the j12i, j21i states.
We develop two methods for implementing this gate via

the cross-Kerr interaction. The first, described in what
follows, is conceptually simpler and uses only four single-
qutrit pulses but is prone to local dephasing and to errors
arising from a nonzero cross-Kerr interaction with qutrits
outside the target-control pair. The second method
addresses these errors via dynamical decoupling in the
specific context of the five-qutrit teleportation protocol and
is described in conjunction with the protocol in Sec. I.
The essential concept behind these constructions is to

intersperse time evolution under the native cross-Kerr
Hamiltonian with single-qutrit pulses exchanging the j1i
and j2i states. The simplest construction uses four seg-
ments of cross-Kerr evolution.
Denoting a swap pulse on qutrit q as π12q , the total pulse

sequence is given by the decomposition

UCϕ ¼ e−iTAHcK · π120 · e−iTBHcK

· π121 · e−iTCHcK · π120 · e−iTDHcK · π121 ; ð11Þ

where TA, TB, TC, and TD denote the time durations of
each segment of cross-Kerr evolution. To determine these
times from the interaction coefficients, note that each
evolution segment serves to add a phase ϕij ¼ αijT to
the jiji state (here, i; j ∈ f1; 2g), while the swap pulses
interchange the indices 1 ↔ 2 on the acted-upon qutrit. Our
choice of swap gates guarantees that each state spends
exactly one segment under each interaction coefficient and
returns to itself at the end of the gate. The unitary, thus,
amounts to a phase applied to each state equal to a linear
combination of the four evolution times, with the trans-
formation matrix determined by the interaction coefficients.
For generic interaction coefficients, this linear transforma-
tion from interaction times to applied phases is full rank,
which guarantees that the method can, in principle, gen-
erate any combination of two-qutrit phases.

TABLE I. Measured cross-Kerr interaction strengths between
nearest-neighbor pairs of transmons, in units of kilohertz.

Q1=Q2 Q2=Q3 Q3=Q4 Q4=Q5

α11 −279 −138 −276 −262
α12 160 158 −631 −495
α21 −528 −335 243 −528
α22 −743 −342 −748 −708

M. S. BLOK et al. PHYS. REV. X 11, 021010 (2021)

021010-6



With our particular interaction coefficients, this con-
trolled-phase gate implementation takes a total time of
approximately 1.5 μs for each of the qutrit pairs ðQ1; Q2Þ
and ðQ3; Q4Þ. We characterize the performance of the full
controlled-SUM gate via quantum process tomography on
the full two-qutrit subspace [Fig. 3(b)] and achieve a
fidelity of 0.889, primarily limited by decoherence occur-
ring throughout the cross-Kerr time evolution.
Combined with the single-qutrit control demonstrated in

the previous section, either the conditional-π gate or the
conditional-SUM gate enable universal quantum computa-
tion on our qutrit processor [54]. Having both gates on hand
provides additional flexibility in gate compilation, as the
different entangling gates may be more adept in different
scenarios.

III. QUTRIT SCRAMBLING

We now turn to proof-of-principle experiments demon-
strating the capabilities of our qutrit processor, specifically
by demonstrating and verifying quantum scrambling. We
demonstrate the implementation of a two-qutrit scrambling
unitary and verify that it scrambles using a five-qutrit
quantum teleportation algorithm. Quantum scrambling,
loosely defined as the delocalization of initially local

operators induced by many-body time dynamics, is an
area of active current research; it is likely that quantum
simulations performed on future processors will deepen
our understanding of this phenomenon and many-body
quantum dynamics more generally. To date, experimental
realizations of scrambling have been performed with
qubits; however, many interesting scrambling-related phe-
nomena occur in higher-dimensional systems [57–59].
Using quantum scrambling to demonstrate the capabilities
of our processor, thus, also represents a step toward
such simulations of these higher-dimensional composite
systems.
Specifically, we implement a simple Clifford scrambling

unitary Us, which permutes the nine two-qutrit computa-
tional basis states [25]:

Usjm; ni ¼ j2mþ n;mþ ni: ð12Þ

As described in Ref. [25], the scrambling behavior of this
unitary can be seen in the effect it has on the single-qutrit
Pauli operators X and Z:

UðZ ⊗ IÞU† ¼ Z ⊗ Z2; ð13Þ

UðI ⊗ ZÞU† ¼ Z2 ⊗ Z2; ð14Þ

Theory Experiment

Single qutrit Two qutrit Single qutrit Two qutrit
(a) Local gate

(b) Entangling gate

(c) Scrambler

FIG. 3. Quantum process tomography of the two-qutrit scrambling unitary. Results of process tomography both experimental and
ideal. Plotted is part of the Pauli transfer matrix (where the vertical axis includes only the single-qutrit operators and PG represents the
single-qutrit Pauli group excluding I) which shows the unitary’s action on single-qutrit Pauli operators when the unitary is a local gate
(a), nonscrambling entangling gate (b), and the scrambling unitary (c). This result directly verifies the key characteristic of scrambling
by Us, that it maps all nonidentity single-qutrit Pauli operators to two-qutrit operators.
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UðX ⊗ IÞU† ¼ X2 ⊗ X; ð15Þ

UðX ⊗ IÞU† ¼ X ⊗ X: ð16Þ

Each single-qutrit Pauli operator is transformed into a two-
qutrit operator, as required by scrambling. Additionally, the
transformations above show that Us is also a Clifford
scrambler, i.e., a scrambling unitary which is a member of
the Clifford group: This result is evidenced by the fact that
the action of Us on Pauli operators is closed.
For a bit of context, we note that scrambling is not

possible in a two-qubit system: There is no unitary
operation that completely delocalizes all single-qubit oper-
ators. A system of two qutrits is the smallest bipartite
system in which maximal scrambling is possible.
In the next two sections, we verify the maximally

scrambling nature of our implementation in two ways:
(i) explicitly through quantum process tomography and
(ii) through a five-qutrit teleportation protocol inspired by
quantum gravitational physics.

A. Verifying scrambling through
quantum process tomography

On our processor, the scrambling unitary Us is con-
structed by applying two controlled-SUM gates in sequence,
switching the control and target qubit between the two
[Fig. 3(c)]. In order to fully characterize our implementa-
tion of the scrambling unitary Us, we perform full quantum
process tomography. For a two-qutrit unitary, this pro-
cedure is highly measurement intensive, which entails
reconstructing, via two-qutrit state tomography, a 9 × 9

output density matrix for a complete set of 81 input states.
This reconstruction requires millions of measurements—
each involving state preparation, application of Us, and
state measurement (in a different basis)—with the precise
number of repetitions determined by the desired statistical
uncertainty. For experimental platforms with a duty cycle in
the hertz range (e.g., trapped ions), this procedure would be
prohibitively long; in contrast, superconducting circuits can
reach repetition rates up to approximately 100 kHz, such
that the full process matrix can be measured in approx-
imately 1 h. This procedure gives the superconducting
platform the unique ability to not only quantify the process
fidelity of the implemented scrambling unitary but also to
measure precisely how it scrambles.
We implement the scrambling unitary using two sequen-

tial controlled-SUM gates based on the cross-Kerr gate
described in the previous section. In Fig. 3(c), we depict the
results of quantum process tomography on our implemen-
tation. Through this tomography, we find that the fidelity
of the scrambling operation on our hardware is 0.875,
with two dominant error mechanisms: (i) dephasing and
(ii) amplitude damping during the cross-Kerr evolution.

Quantum process tomography also allows us to directly
visualize the entire action of the unitary via its effect on
local operators; i.e., we can directly visualize (Fig. 3) the
relations (13)–(16). In particular, in Fig. 3(c), we can verify
explicitly that Us transforms all single-qutrit operators into
fully two-qutrit operators—the definition of a maximally
scrambling unitary. We can also verify that it does so as a
Clifford unitary; i.e., all Pauli operators are transformed
into different Pauli operators. For comparison, we also
illustrate the quantum process maps, both theoretical and
experimental, of a single-qutrit unitary that does not
delocalize any information [Fig. 3(a)], as well as a
controlled-SUM gate, which is entangling but not fully
scrambling [Fig. 3(b)]. In the former we verify that no
single-qutrit operators are delocalized, while in the latter
we observe that all single-qutrit operators are delocalized
except for Z† ⊗ I and I ⊗ X†, which commute with the
controlled-SUM gate.

B. Verifying scrambling through
quantum teleportation

While process tomography provides an elegant and
exhaustive way to “image” scrambling performed by our
two-qutrit unitary, such an approach is infeasible for
verifying scrambling in larger systems, as the number of
required measurements scales exponentially with system
size. As an example of a protocol which can circumvent
this difficulty and, thus, could be used on larger quantum
processors, we turn to a teleportation protocol that quan-
tifies the scrambling behavior of a unitary by using
scrambling to enable the teleportation of quantum states
[24–26]. Compared to tomography, a downside of the
teleportation protocol is that it is limited as an essentially
“one-parameter” diagnostic of scrambling: It quantifies the
average amount that operators on a given qutrit are trans-
formed to have support on an additional qutrit. It does so
via an average of OTOCs associated with the unitary over
local operators; in this context, maximal scrambling by Us
is captured by the fact that the average OTOC decays to its
minimum allowed value (1=9 for a two-qutrit system) [25].
Crucially, the protocol is constructed in such a way that
faithful teleportation of a quantum state jψi requires
quantum information scrambling to occur, as well as the
absence of experimental errors. The teleportation fidelity
can then, in turn, be used to upper bound the OTOC, even
in the face of such errors.
As shown in Fig. 4, the verification protocol requires

both the scrambling unitary Us and its time reversal U�
s to

be performed in parallel on separate pairs of qutrits. The
qutrit pairs undergoing these two time evolutions are
initially highly correlated: Two qutrits out of the four
(one from each pair) begin as a maximally entangled EPR
pair. After applying Us;U�

s , the probability of measuring
this same pair in the EPR state decreases to 1=9—the same
value as in a maximally mixed state—due to scrambling
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with the additional qutrits. However, simply observing this
decrease is not enough to robustly demonstrate scrambling,
since the same decrease could also result from deterioration
of the EPR pair under experimental decoherence.
Here, teleportation comes to our aid: We place one of the

remaining two qutrits (Q1, the “input”) in an arbitrary pure
single-qutrit state jψi and the other (Q4) in an EPR pair
with a fifth qutrit (Q5, the “output”). In the absence of
experimental error, maximally scrambling dynamics guar-
antee that whenever Q2 and Q3 happen to be measured in
their initial EPR state, the state jψi of Q1 is teleported to
Q5. Unlike measuring a low EPR probability, high-fidelity
teleportation can arise only from quantum information
scrambling, not as a result of decoherence, making the
teleportation fidelity a robust diagnostic of information

scrambling [24,25]. Furthermore, while experimental error
leads to a decay of the teleportation fidelity from unity, any
measured fidelity above the classical limit (0.5 for qutrits)
places a nontrivial upper bound on the averaged OTOCs,
and, thus, the scrambling behavior, of Us [25].
This association between scrambling and teleportation

originates in black-hole physics, and the teleportation
protocol explored here is, in fact, inherited directly from
this context. Its most straightforward interpretation is based
on the Hayden-Preskill variant of the black-hole informa-
tion paradox [24,60], as outlined in Fig. 4. Here, one
pictures an observer Alice who drops a “diary” consisting
of the quantum state jψi into a black hole. Meanwhile, an
outside observer Bob wonders whether this information is
recoverable, as opposed to being irreversibly destroyed by
the black hole. In seminal works [24,60], it is shown that if
(i) the black hole’s dynamics are approximated as a fully
scrambling quantum unitary Us and (ii) Bob possesses a
large resource of entanglement with the black hole (e.g., a
collection of its early Hawking radiation), then the state jψi
can, in fact, be recovered via quantum operations on any
few degrees of freedom emitted from the black hole (e.g.,
one additional Hawking photon).
In the gravitational picture, the shared entanglement

between the black hole and its early radiation functions
similarly to a geometric wormhole between the two
systems. Indeed, in a close variant of this protocol,
teleportation has a precise interpretation as Alice’s state
traversing a two-sided wormhole, in the specific case where
the unitary corresponds to time evolution under many-body
dynamics with a holographic gravity dual [61–63]. Quite
surprisingly, recent work reveals that the same protocol also
features a more generic, nongravitational mechanism for
teleportation, which displays remarkably similar features to
gravitational teleportation but is based only on the spread-
ing of operators [24,64]. This second form of teleportation
encapsulates the physics observed here.
Experimentally, the teleportation protocol requires three

essential ingredients: initial preparation of EPR pairs,
implementation of Us and U�

s , and measurement in the
EPR basis. We discuss our implementation of the first two
of these ingredients in previous sections. As our architec-
ture only natively allows for computational-basis measure-
ments, we realize the EPR measurement on Q2 and Q3 by
performing the EPR creation sequence in reverse, which
transforms jEPRi to the computational basis state j00i. We
then measure all five qutrits in the computational basis and
use the measurement outcomes showing Q2 and Q3 in j00i
as a herald for successful teleportation. We verify success
by tomographically reconstructing the quantum state of Q5

after EPR measurement (by inserting state tomography
pulses onQ5 before the final measurement), represented by
the density matrix ρout.
All three of the steps described above work particularly

well on pairs of qutrits in “isolation,” i.e., when the pair’s

Early radiation 

Wormhole

Black hole

Early radiation 

Black hole
Hawking
photon

Hawking
photon

ScramblingQutrits
(a)

(b)

FIG. 4. Quantum teleportation circuit. Five-qutrit teleportation
protocol used to test for scrambling by the two-qutrit unitary Us
and its interpretation in the context of black-hole physics. (a) We
begin with the first qutrit in a quantum state jψi and prepare the
remaining qutrits into two EPR pairs. The first qutrit Q1 is
“scrambled”with half of the first EPR pair by the unitaryU, while
the conjugate U� is applied to Q3 and Q4. An EPR measurement
on a pair of qutrits (Q2 andQ3) exiting each ofU andU� serves to
teleport the initial quantum state to Q5 if and only if U is
scrambling. (b) In the context of the Hayden-Preskill thought
experiment, Q1 corresponds to Alice’s diary, which subsequently
falls into a black hole (Q2) that is maximally entangled with its
past Hawking radiation (Q3), held by an outside observer Bob. In
the gravitational picture, this shared entanglement functions
similarly to a geometric wormhole between the black hole and
its early radiation. The black-hole dynamics are modeled as a
scrambling unitaryU, followed by emission of a Hawking photon
(Q2). Finally, Bob applies U� and measures in the EPR basis to
recover Alice’s diary.
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neighboring qutrits are left in their ground states. However,
this setting is necessarily not the setting of any five-qutrit
quantum circuit, including the teleportation protocol. Here,
we have to contend with the “always-on” nature of the
cross-Kerr interaction, which leads to unwanted entangling
dynamics between all neighboring qutrit pairs, even
as we attempt to perform our quantum gates. To combat
these unwanted interactions, we develop a novel set of
dynamical decoupling sequences optimized for qutrits (see
Appendix D for details).
We perform teleportation of 12 different single-qutrit

quantum states jψi, corresponding to all possible eigen-
states of single-qutrit Pauli operators, i.e., three eigenstates
each for X, Z, XZ, and XZ2 (the remaining Pauli operators
are either inverses of these or the identity). We calculate the
teleportation fidelity from the reconstructed density matrix
of the output qubit as Fψ ¼ hψ jρoutjψi. Our chosen set of
states is known as a “state 2-design,” which guarantees that
the average teleportation fidelity Favg ¼ ð1=12ÞPψ Fψ

measured for these 12 sampled states is, in fact, equal to
the average teleportation fidelity over all possible states
[25,65]. Furthermore, this average teleportation fidelity, in

fact, allows us to upper bound the average OTOCs
associated with the implemented unitary by ð4F − 1Þ−2,
without making any assumptions about the nature of the
noise affecting our quantum processor [25].
The results of teleportation for two different choices of

unitary dynamics are shown in Fig. 5. First, as a control, we
perform the protocol with the identity operation in place of
Us. To ensure that the two have similar magnitudes and
modes of experimental error, we implement the identity
with precisely the same number and type of gates as the
maximally scrambling unitary; the two differ only in the
magnitude of certain software-defined phase gates. Since
the identity operator does not scramble quantum informa-
tion, we observe trivial teleportation fidelities Fψ ≈ 1=3 for
all input states [Fig. 5(b)]. Indeed, using quantum state
tomography, we verify that the final state of qubitQ5 is near
maximally mixed regardless of input state.
Finally, we perform the teleportation protocol with the

maximally scrambling unitary Us, which in theory should
allow for perfect teleportation of any input quantum state. In
contrast to the identity operation, we observe that all but one
of the input states are teleportedwith fidelityFψ > 1=2, with

EPR pair

Qutrit 5

Qutrit 3

Qutrit 1
EPR pair

Qutrit 2

EPR measurement

Qutrit 4

Scrambling

Scrambling

(a)

(b) (c)

FIG. 5. Results of the five-qutrit teleportation protocol. (a) An expanded view of the five-qutrit teleportation protocol in Fig. 4,
showing the native operations used to realize each portion of the protocol. (b) Measured teleportation fidelities for 12 teleported states,
which combine to give an unbiased estimate of the teleportation fidelity averaged over all single-qutrit pure states. An average fidelity
above 1=2—the classical limit for teleportation of qutrits—verifies nonzero quantum information scrambling by the maximally
scrambling unitary, despite the presence of experimental error. When the scrambling unitary is replaced with an identity operation with
the same complexity as the scrambler, the average teleportation state fidelity reduces to 1=3, the same as a random guess when one does
not have access to the input state. (c) Representation of each of the 12 reconstructed density matrices after teleportation, expressed in the
basis of Gell-Mann matrices (λ0 − λ8) with dotted lines showing the ideal result.
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an average fidelity of Favg ¼ 0.568� 0.001. This result
allows us to experimentally upper bound the averaged
OTOC by 0.618� 0.004. This bound marks a significant
decay from its nonscrambling value of unity and verifies that
our platform is capable of coherently simulating multiqutrit
scrambling dynamics.

IV. CONCLUSION

In summary, we have demonstrated a five-qutrit quantum
processor built from superconducting transmon circuits.
Our qutrit toolbox features high fidelity single- and two-
qutrit gates, as well as characterization methods such as
state and process tomography that provide useful informa-
tion for benchmarking and debugging large-scale compu-
tations. Using the verification of qutrit information
scrambling as a proof-of-principle task, we have demon-
strated two distinct entangling gates as well as a simple
dynamical-decoupling protocol that allows the gates to be
run simultaneously on adjacent qutrits. Interestingly, this
experiment can be also interpreted as an implementation of
quantum error correction. In this language, the teleportation
protocol is equivalent to a three-qutrit quantum error-
correcting code, which protects information from the
erasure of any one of the three qutrits [66]. Exploring
other forms of error correction in qudit-based processors is
a natural extension of our work.
A number of intriguing future directions are suggested

by this work. First, our platform opens the door to
exploring the potential advantages of ternary quantum
logic, including a more efficient decomposition of the
Toffoli gate [27] as well as magic state distillation protocols
that outperform conventional qubit-based strategies in
terms of both error threshold and yield [3]. Second, the
dynamical decoupling techniques introduced here naturally
apply to other spin-1 systems including solid-state defect
centers and multilevel atomic, molecular, and trapped ion
systems [67,68]. Third, one can imagine further enlarging
the qudit dimension by further leveraging the intrinsic
anharmonicity of transmons [30,32], enabling the study of
many-body phases and entanglement dynamics in higher-
spin quantum systems [69]. Finally, building upon recent
excitement surrounding quantum supremacy protocols
using pseudorandom quantum circuit sampling [70], it
would be natural to investigate analogous qudit-based
protocols, where supremacy might be achieved using a
substantially smaller number of elements.
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APPENDIX A: PROCESSOR AND
FABRICATION DETAILS

The processor we use features five fixed-frequency
(single-junction) transmon qutrits on a chip with an
eight-transmon ring geometry. The readout and coupling
resonators, Purcell filter, transmon capacitors, microwave
drive lines, and ground plane are composed of niobium,
while the transmon junctions are aluminum with an
aluminum oxide barrier [Fig. 1(a)].
The processor is fabricated on intrinsic >8000 Ohm-cm

silicon h100i wafers. Initial cleaning of the silicon wafer
occurs in piranha solution—a mixture of sulfuric acid and
hydrogen peroxide—at 120 °C for 10 min, followed by 5∶1
buffered oxide etch (BOE) for 30 s to remove surface
contaminants and native oxides. A 200-nm-thick film of
niobium is then sputtered onto the wafer, with deposition
pressures optimized to yield a slightly compressive film.
Following this process, junctions and all other structures
are patterned using three rounds of electron-beam lithog-
raphy. We use MicroChem MMA EL-13 copolymer as a
resist, developing it in a 3∶1 mixture of IPA:MIBK
(isopropyl alcohol and methyl isobutyl ketone) at room
temperature for 8 min. We then etch the niobium with
chlorine chemistry in an inductively coupled reactive ion
etcher with about 50 nm overetch into the silicon. After
etching, resist is removed with Microposit 1165 at 80 °C for
60 min. The Josephson junction fabrication process begins
by stripping native Nb and Si oxides with 30 s in BOE.
Resist is then spun: We use 500 nm of MMA EL-13 and
150 nm of AllResist AR-P 6200.9, both baked at 150 °C for
60 and 90 s, respectively. We write “Manhattan-style”
junction patterns [71,72] (proximity-effect corrected with
Beamer by Genisys software) at 100 keV in a Raith EBPG
5150 using a 200 pA beam current and 200 μm aperture.
After writing, the exposed AR-P is first developed in
n-amyl acetate chilled to 0 °C; after this development,
the AR-P development is halted with 10 s immersion in
IPA; finally, MMA is developed in 3∶1 IPA:MIBK for
10 min. We then dry the resulting structure with N2 and
descum it with an 80 W, 200 mbar oxygen plasma etch.
This etching step is split into four separate substeps, with
90° substrate rotations between each substep for improved
junction uniformity. Newly formed oxides at the bottom of
the developed structure are then removed with a 15 s dip in
BOE. The wafer is then loaded into a Plassys MEB550s
evaporator and pumped overnight before the junction
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evaporation steps: First, an Al base electrode is evaporated
and the tunnel barrier then formed by thermal oxidation,
introducing a 95%/5% Ar=O mix into the chamber at
10 mbar for 10 min. A second aluminum electrode is then
evaporated to complete the junction, and a third evapora-
tion is necessary to climb the second 250 nm capacitor step
edge. The junction pattern includes a 6 × 8 μm Al wire on
top of the Nb for electrical contact between the junction and
capacitor. After liftoff for 2 h in acetone at 67 °C, the same
resist stack is spun, and 10 × 15 μm rectangles are opened
over the Al/Nb overlap region. The exposed metals are then
ion milled and Al is subsequently e-beam evaporated to
ensure a low-loss galvanic connection between Nb and Al
[73]. More details on junction fabrication, including the
steps leading to higher uniformity, can be found in
Ref. [56]. After fabrication, the wafer is diced into
1 × 1 cm dies; cleaned in Microposit 1165 for 12 h at
80 °C; sonicated in de-ionized water, acetone, and IPA;
descummed in 100 W oxygen plasma for 1 min; and then
wire bonded into a gold-plated copper cryopackage on a
300 μm air gap.

Each transmon is coupled to (i) a linear readout resonator
to enable multiplexed dispersive measurement, (ii) two
coupling resonators to enable entangling interactions with
nearest neighbors, and (iii) a microwave drive line. Readout
resonators are loaded so that their effective linewidth
κext ≈ 1 MHz. All readout resonators on the chip are
coupled to a common λ=2 resonator, a Purcell filter with
an external Q ≈ 10 [74]. The Purcell filter’s passband
overlaps with all readout resonator frequencies, allowing
fast readout; all qutrit frequencies lie outside the passband,
suppressing qutrit relaxation through this channel. Slot line
modes of all structures are suppressed using wire bonds;
a wire bond also enables the readout bus to overlap a
coupling resonator.

APPENDIX B: EXPERIMENTAL SETUP

The processor is installed in the 10 mK stage of a
BlueFors XLD dilution refrigerator. Room-temperature and
cryogenic electronics for performing control and measure-
ment of the qutrit chip are shown in Fig. 6. A Holzworth
multichannel synthesizer generates three local oscillator
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(LO) tones: a qubit control LO at 4.72 GHz, a readout LO at
6.483 GHz, and a pump at 7.618 GHz for the traveling-
wave parametric amplifier (TWPAs). Qutrit control pulses
are formed by IQ modulating the amplified qubit LO (split
six ways) with IF signals from a Tektronix arbitrary
waveform generator (AWG) (sample rate 2.5 GS/s) with
frequencies between 0.5 and 1.1 GHz. We use both single-
channel, hybrid-enabled single-sideband modulation and
high-pass filtering to eliminate the lower sideband of the
pulse, with additional bandpass filtering at room temper-
ature to eliminate noise from the AWG itself. Readout
signals are generated using two-channel single-sideband
modulation with IF signals from the same Tektronix AWG.
All input signals are further attenuated in the cryostat.
Readout signals are amplified by the TWPA at 10 mK,

high-electron mobility transistor amplifiers at 4 K, and
further amplification at room temperature before being
digitized at 1.25 GSa=s and demodulated in software.

1. Chip characterization

Transmon parameters are given in Table II. The frequen-
cies are extracted using standard spectroscopy methods.
Lifetimes are extracted by fitting decay curves to a single
model with five parameters: two energy-relaxation times
(T1→0

1 and T2→1
1 ) and a dephasing time for each basis state.

We perform randomized benchmarking to measure pulse
errors of single-qubit operations in the different subspaces,
shown in the table.
We further measure the coefficients of the cross-Kerr

(or “ZZ”) interaction by performing a Ramsey measure-
ment with neighboring qutrits in the j1i or j2i states.
The cross-Kerr Hamiltonian between neighboring qutrits is

HKerr=ℏ ¼ α11j11ih11j þ α12j12ih12j
þ α21j21ih21j þ α22j22ih22j: ðB1Þ

Table I in the main text gives the value of these
coefficients. Residual cross-Kerr interaction coefficients
between non-nearest-neighbor transmons are found to be
negligible.
The cross-Kerr interaction is the dispersive limit of an

exchange interaction between nearest-neighbor transmons
mediated by the coupling resonators, governed by the
Hamiltonian

Hint=ℏ ¼ gða†bþ b†aÞ: ðB2Þ

Wemeasure the value of g on a chip with tunable transmons
but otherwise identical to the one used in the experiment.
Spectroscopy of the avoided crossing reveals an interaction
amplitude g of roughly 3 MHz.

2. Coherence of third transmon level

The dominant noise processes affecting transmons tend
to worsen for states higher up the transmon ladder. For our
qutrit-based processor, there are two salient manifestations
of this result.

(i) Because of bosonic enhancement, amplitude damp-
ing (spontaneous emission) decay from state j2i to
j1i proceeds roughly twice as fast as the decay from
j1i to j0i.

(ii) Dephasing due to charge noise, which randomizes
the relative phases between the j0i, j1i, and j2i
states, occurs roughly an order of magnitude faster
for each state up the transmon ladder: in particular,
for the j2i state relative to the j1i state.

As stated in the main text, careful fabrication, microwave
engineering, and parameter selection are required to obtain
high coherence in the transmon qutrit. The fabrication and
microwave engineering are detailed in Appendix A and
serve to mitigate the T1 decay. Here, we describe the

TABLE II. Measured properties of the five qutrits.

Q1 Q2 Q3 Q4 Q5

Qutrit j0i ↔ j1i frequency, ω01=2π (GHz) 5.447 5.634 5.776 5.619 5.431
Qutrit j1i ↔ j2i frequency, ω12=2π (GHz) 5.177 5.368 5.512 5.351 5.160
Readout frequency, ωRO=2π (GHz) 6.384 6.324 6.731 6.673 6.618

Lifetime T j1i→j0i
1 (μs) 70 49 43 55 63

Lifetime T j2i→j1i
1 (μs) 38 29 39 32 36

Ramsey decay time T�
2, j1i=j0i (μs) 73 13 41 48 20

Ramsey decay time T�
2, j2i=j1i (μs) 13 10 16 23 10

Ramsey decay time T�
2, j2i=j0i (μs) 16 6 15 26 11

Echo time T2Echo, j1i=j0i (μs) 71 51 46 64 74
Echo time T2Echo, j2i=j1i (μs) 29 22 22 35 32
Echo time T2Echo, j2i=j0i (μs) 39 26 34 45 39
Readout fidelity, j0i 0.99 0.99 0.97 0.98 0.99
Readout fidelity, j1i 0.97 0.95 0.94 0.95 0.96
Readout fidelity, j2i 0.95 0.94 0.92 0.95 0.96
Per-Clifford error, j1i=j0i subspace 3.6 × 10−4 3.9 × 10−4 5.5 × 10−4 2.7 × 10−4 � � �
Per-Clifford error, j2i=j1i subspace 3.6 × 10−4 6.0 × 10−4 5.0 × 10−4 7.5 × 10−4 � � �
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parameter selection—specifically, the choice of the trans-
mon EJ=EC ratio—which is chosen to minimize the effect
of dephasing.
Transmons are characterized by two parameters: the

Josephson energy EJ and the capacitive energy EC [39].
Increasing the EJ=EC ratio exponentially decreases the
sensitivity of all transmon eigenstates to charge noise, at the
expense of also lowering the transmon’s anharmonicity.
Specifically, the charge dispersion ϵm of the mth level is
given by

ϵm ≈ ð−1ÞmEC
24mþ5

m!

ffiffiffi
2

π

r �
EJ

2EC

�ðm=2Þþð3=4Þ
e−

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
;

ðB3Þ

while the relative anharmonicity αr is given by

αr ≈ −ð8EJ=ECÞ−1=2: ðB4Þ

Typical transmon qubit designs use ratios EJ=EC ≈ 50. We
initially use such a ratio, which results in charge dispersion
of 102 kHz and<10 kHz of j2i and j1i states, respectively.
However, with these parameters, charge-parity fluctuations
[75] dephase the coherence between the j2i and j1i states
within 5 μs, making high-fidelity gates impossible to
implement. To mitigate this dephasing, we switch to a
design with EJ=EC ≈ 73, which results in charge disper-
sions of 12 kHz and 261 Hz for the j2i and j1i states,
respectively. This switch also reduces the anharmonicity
from roughly 300 to roughly 250 MHz.

3. Cross talk

As discussed in the main text, each transmon features a
dedicated microwave control line through which we drive
single- and two-qutrit gates. However, we find significant
(order unity compared to intended coupling) cross talk
between the microwave drive lines for each qutrit. This
cross talk is nonlocal, not confined to nearest or next-
nearest neighbors. When driving Rabi oscillations on a
given qutrit, it produces two unwanted effects.
(1) All other qutrits are off-resonantly Rabi driven.

Depending on the relative frequencies between the
qutrits, this effect can manifest as either an unwanted
change in a qutrit’s state populations (if the frequen-
cies are relatively close) or a Stark shift (if the
frequency difference is large compared to the Rabi
frequency).

(2) Microwave field leaking onto one or more neighbor-
ing qutrits results in an unwanted cross-resonance

interaction, making the desired Rabi oscillation
frequency vary with the state of the neighboring
qutrit(s). This effect is anticipated in Ref. [46].

We observe no indications of nonlinearity in the cross
talk at the drive powers we use. That is, for a given drive
frequency, the cross talk can be characterized in terms of a
five-by-five complex-valued matrix CðωÞ relating the field
amplitudes o⃗ðωÞ seen by each of the five qutrits to the input
field amplitudes ⃗iðωÞ on each drive line: o⃗ðωÞ ¼ CðωÞ⃗iðωÞ.
We do observe a strong frequency dependence of the cross-
talk matrix.
The linearity of the cross talk enables us to compensate

for it by inverting the matrix CðωÞ at each drive frequency,
yielding combinations of microwave drive lines which
would route the drive field to only a single qutrit. The
main challenge in this scheme is the measurement of CðωÞ.
Our strategy is to focus on two drive lines at a time and
find for each line the relative amplitudes and phases
which exactly cancel the field at the location of all of
the qutrits on our chip—depending on the relative frequen-
cies, we use either a Stark shift or a Rabi oscillation as a
symptom of the unwanted microwave field. This measure-
ment is repeated for each of ten drive frequencies of interest
(i.e., the j0i ↔ j1i and j1i ↔ j2i transition frequencies of
all five qutrits), each pair of lines, and each qutrit on
the chip.
Our cross-talk cancellation method is extremely meas-

urement intensive and is feasible only because of the
relatively few qutrits in this work. On future quantum
processors with tens or hundreds of quantum systems, the
number of measurements required for our cancellation
scheme would be prohibitively expensive. In addition,
the strong frequency dependence of the cross-talk
matrix limits the speed at which one can apply single-
qudit pulses in this manner: For pulses approximately
10 ns in length, we observe cross talk which we cannot
compensate for using our method, likely because of
this frequency dependence combined with Fourier
broadening of the pulses. Going forward, it is thus
important to pinpoint the source of the microwave cross
talk, in order to develop scalable solutions at the hard-
ware level.

APPENDIX C: QUTRIT OPERATIONS
AND GATE SET

1. Single-qutrit operations

A convenient set of generators to describe qutrit rotations
are the Gell-Mann matrices:
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λ1 ≡ s01x ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; λ2 ≡ s01y ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; λ3 ≡ s01z ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λ4 ≡ s02x ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA; λ5 ≡ s02y ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; λ6 ≡ s12x ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

λ7 ≡ s12y ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; λ8 ¼

1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA:

They are the generators of the Lie algebra of the special
unitary group (SU(3)) and can be thought of as the natural
extension of Pauli matrices [generators of the Lie algebra of
the SU(2) group]. For each qutrit (with basis states
j0i; j1i; j2i), we calibrate a set of microwave pulses that
resonantly drive the j0i ↔ j1i transition and a separate set
of pulses to address the j1i ↔ j2i transition, providing
universal control over the qubit subspaces fj0i; j1ig and
fj1i; j2ig. Our microwave control pulses directly perform
rotations that correspond to exponentiating Gell-Mann
matrices s01x , s01y , s01z , s12x , and s12y . The Z rotation (s01z )
is implemented as a virtual Z gate in software by adjusting
the phases of subsequent microwave pulses in that sub-
space [76]. We extend this technique to the 12 subspace
to also obtain the following rotation that is not one of
the Gell-Mann matrices but that is very useful for
single-qutrit control, since it is a virtual rotation with
negligible error:

s12z ¼

0
B@

0 0 0

0 1 0

0 0 −1

1
CA: ðC1Þ

In principle, one could also drive the j0i ↔ j2i transition
to directly implement rotations corresponding to s02x and
s02y . While it would be worthwhile to add these rotations to
the available gate set to compile circuits with lower depth,
these two-photon transitions are more challenging to
address, as they require high power. Luckily, all rotations
generated by the remaining Gell-Mann matrices can be
constructed from our available operations, for example,

e−iðθ=2Þs
02
x=y ¼ e−iðπ=2Þs12x · e−iðθ=2Þs

01
x=y · eiðπ=2Þs12x ; ðC2Þ

where the rightmost operator is the first to act on the state,
so time goes from right to left. Similarly, λ8 can be
constructed from s01z and s12z .
We write a rotation in one of these subspaces as

θkj ¼ e−iðθ=2Þs
k
j , where k ¼ f01; 12g defines the subspace

of the rotation, j ¼ fx; y; zg the rotation axis, and θ the

rotation angle. As an example, the two available x rotations
and their corresponding rotation matrices are

θ01x ¼

0
B@

cos θ=2 −i sin θ=2 0

−i sin θ=2 cos θ=2 0

0 0 1

1
CA;

θ12x ¼

0
B@

1 0 0

0 cos θ=2 −i sin θ=2
0 −i sin θ=2 cos θ=2

1
CA: ðC3Þ

This notation, combined with some useful qutrit and
experiment specific operations, is also adopted in circuit
diagrams displayed in the main text and in this document.
Our gate set consists of all Z rotations along an arbitrary

angle, combined with the Clifford operations in the 01 and
12 subspace:

θkj with θ ¼
�
π;−π;

π

2
;
−π
2

�
;

where k ¼ f01; 12g and j ¼ fx; y; zg: ðC4Þ

Three convenient gates to describe qudit logic, which
can be constructed from our universal gate set, are the X
and Z gates:

Xjii ¼ jiþ 1 mod di; ðC5Þ

Zjii ¼ ωijii; ðC6Þ

where ω ¼ expði2π=dÞ, and the Hadamard gate:

H ¼ 1ffiffiffi
d

p
X
i;j

ωijjiihjj: ðC7Þ

2. Two-qutrit operations: Controlled-SUM gate

In general d-dimensional qudits, two-qudit controlled-
SUM and controlled-phase gates can be defined using the
Pauli X and Z gates. We have
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U01
CSUM ¼

Xd
n¼1

jnihnj ⊗ Xn;

UCϕ ¼
Xd
n¼1

jnihnj ⊗ Zn: ðC8Þ

Here, the superscript 01 indicates that the controlled-SUM is
applied with Q0 as the control qudit and Q1 as the target;
such a label is not necessary for UCϕ, which is symmetric
between the two qudits. The two gates are equivalent up to
a single-qudit Hadamard gate H on the second qudit:

ðI ⊗ H†ÞUCϕðI ⊗ HÞ ¼ U01
CSUM; ðC9Þ

where the qudit Hadamard gate is defined to transform the
Z gate into the X gate under conjugation. Reversing
the order of H and H† yields a controlled-MINUS gate,
and changing which qubit receives the conjugation
interchanges the control and target. The entangling gates
UCϕ, U01

CSUM, U
10
CSUM, U

01
CMIN, and U10

CMIN are, therefore, all
equivalent up to local (single-qudit) operations.
In our system, we directly implement the two-qutrit UCϕ

gate by interspersing periods of evolution under the cross-
Kerr Hamiltonian [Eq. (B1)] with single-qutrit gates.
Intuitively, evolution under the cross-Kerr Hamiltonian
imparts phases to the two-qutrit states j11i, j12i, j21i,
and j22i, with values determined by the coefficients αij. By
interspersing this phase accumulation with single-qutrit
pulses exchanging the various states, we can ensure that
each state accumulates exactly the phase required for the
controlled-phase gate.
We present two methods for implementing the con-

trolled-phase gate in the manner described above. The first
uses fewer single-qutrit pulses and is conceptually simpler
but is not dynamically decoupled from the cross-Kerr
interaction with neighboring qutrits. The second is dynami-
cally decoupled and is the one used in the teleportation
experiment.

a. First method

As depicted in Fig. 7, here we use four periods of cross-
Kerr evolution, separated by pulses swapping the j1i and
j2i states of a single qutrit.
Denoting this swap pulse as π12q , where q is the qutrit

number, and evolution under the cross-Kerr Hamiltonian
for a time T as ZZT , the total pulse sequence is

ZZTA
· π120 · ZZTB

· π121 · ZZTC
· π120 · ZZTD

· π121 ; ðC10Þ

where the times TA, TB, TC, and TD depend on the cross-
Kerr interaction parameters αij. For any choice of times,
this operation imparts zero phase to the states j00i, j01i,
j02i, j20i, and j10i and nonzero relative phases ϕ11, ϕ12,
ϕ21, and ϕ22 to the other basis states. These phases are

linear combinations of the delay times TA, TB, TC, and TD.
The transformation from delay times to induced phases is
full rank (except for pathological values of the cross-Kerr
coefficients), meaning that, given enough total delay time,
this method can, in principle, generate an arbitrary two-
qudit phase gate (the states that receive zero phase above
can be made to gain an arbitrary phase using only single-
qutrit phase gates). On our particular chip, the coefficients
αij allow us to implement the controlled phase in this
manner in roughly 1.5 μs for qutrit pairs Q1=Q2 and
Q3=Q4.
The drawbacks of this method become apparent when

one tries to use it in a multiqutrit algorithm. If the two
qutrits undergoing the controlled phase are coupled to other
qutrits via the same cross-Kerr Hamiltonian (as is the case
for our chip), the above method does not work when the
other qutrits are in superpositions of basis states, in which
case entanglement between them and the desired qutrits is
generated. The second method addresses this problem.

b. Second method

As depicted in Fig. 8(a), this method uses six equal time
periods of cross-Kerr evolution. These are interspersed with
single-qutrit pulses swapping the j0i=j1i and j1i=j2i
subspaces, denoted π12q and π01q , respectively. The total
pulse sequence consists of three repetitions of

½ZZT · ðπ120 ⊗ π121 Þ · ZZT · ðπ010 ⊗ π011 Þ�: ðC11Þ

For specificity, we parameterize this pulse sequence with a
single delay time T; an appropriately chosen T realizes the
controlled-phase gate. The delay time T is determined by
the values of the cross-Kerr coefficients αij for each pair
Q1=Q2 and Q3=Q4 and, thus, differs between the pairs;
however, in practice, we find that a delay of 192 ns works
well for both.
This pulse sequence constitutes a dynamically decoupled

implementation of the UCϕ unitary, as its operation is
successful regardless of the states of the neighboring
qutrits. The dynamical decoupling arises because the
single-qutrit pulses shuffle each qutrit’s states j0i, j1i,
and j2i such that an equal amount of time is spent in each

0

0Qutrit 0

Qutrit 1

Ta Tb TdTc

FIG. 7. Four-segment pulse sequence implementing UCϕ. Four
local π pulses that effectively permute the eigenstates are
interspersed with periods of free evolution TA, TB, TC, and
TD. The times depend on the cross-Kerr interaction parameters
and are chosen such that the pulse sequence implements the
desired diagonal unitary operation.
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state, regardless of the initial state of either qutrit. This
shuffling “averages out” the cross-Kerr interaction with
neighboring qutrits, such that no entanglement is generated.
The particular teleportation algorithm we implement

requires applying UCϕ on two pairs of qutrits Q1=Q2

and Q3=Q4. We use this dynamically decoupled pulse
sequence for both pairs and apply the gates simultaneously
to reduce decoherence associated with a longer total gate
time. Naively, the dynamical decoupling effect is weakened
by this simultaneity, since the “neighboring qutrits,” with
respect to each individual pair, are no longer static.
Fortunately, we verify both theoretically and empirically
that we can nevertheless decouple the unwanted interaction
by reversing the order of the Π12 and Π01 gates between the
two pairs [Fig. 8(b)].

APPENDIX D: DYNAMICALLY DECOUPLED
EPR PREPARATION

We prepare the two initial EPR pairs of the teleportation
algorithm using the controlled-π gate as discussed in the
main text. The basic sequence is presented in Fig. 8 and
serves to prepare an EPR pair on either Q2=Q3 or Q4=Q5

individually, while all other qutrits are in the ground state
j0i. Simultaneous EPR pair preparation, as required by the
algorithm, necessitates a more complicated sequence that
incorporates dynamical decoupling. This necessity is dem-
onstrated by Figs. 9(a) and 9(b), which compares the result
of individual EPR preparation to joint EPR preparation
without dynamical decoupling. Joint preparation fidelities
are much lower than those of individual preparation. From
the measured density matrices, this loss seems to be largely
due to a decrease in the off-diagonal elements (i.e., the
coherences).

To understand the source of this decrease in coherence,
we measure the density matrix of the Q2=Q3 EPR pair
while projecting the neighboring qutrit Q4 into each of its
basis states. Each of the three conditional density matrices
we obtain is much purer (i.e., has much higher coherence)
than the unconditional density matrix; however, the phases
of each coherence differ depending on the state of Q4.
These measurements suggest that the source of the
decoherence is indeed unwanted entanglement between
Q3 and Q4 arising from the cross-Kerr interaction.
Qutrit state tomography [38] after each step of the EPR

preparation sequence allows us to pinpoint the portions of
the sequence that contribute most strongly to the unwanted
entanglement. The cross-Kerr interaction affects the j2i
states most strongly, and we find correspondingly that most
of the entanglement occurs after the j2i state of Q3 gets
populated. We take advantage of this result by only
dynamical decoupling the cross-Kerr interaction after this
point. As shown in Fig. 9, the initial preparation of Bell
states ðj00i þ j11iÞ= ffiffiffi

2
p

, which does not involve the state
j2i, is performed without dynamical decoupling to reduce
the error associated with additional single-qutrit gates.
The mechanism underlying our decoupling sequence is

most easily understood by first considering a simpler
problem, of decoupling an unwanted cross-Kerr interaction
between two qutrits during an idling period. This decou-
pling can be accomplished by splitting the idling time into
three equal time periods and applying single-qutrit X gates
to one of the qutrits between each of the periods. This
shuffling of the populations decouples the entangling
interaction into a product of local Z interactions. Using
the same principle, we divide the controlled-π operations in
the relevant portion of simultaneous EPR preparation into

Qutrit 1

Qutrit 2

T TT TT(a)

(b)

Qutrit 1

Qutrit 2

Qutrit 3

Qutrit 4

FIG. 8. Six-segment pulse sequence implementing UCϕ, dynamically decoupled from static neighbors. (a) By alternating six periods
of free evolution with local permutation pulses, a diagonal phase gate can be implemented while also protecting the two qutrits from
dephasing and static interactions with neighbors provided that they are static. (b) To perform two of these gates in parallel and maintain
the decoupling, in this case between qutrit 2 and qutrit 3, the order of local permutations is swapped between pairs: Qutrit 1 and qutrit 2
first are permuted in the j0i=j1i subspace (blue), while the first local operation on qutrit 3 and 4 is in the j1i=j2i subspace (orange). This
effectively decouples qutrit 2 and 3 in addition to performing the desired gates and decoupling qutrit 1 and 4 from their other neighbors
(0 and 5).
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 Individual preparation

 Simultaneous preparation

Simultaneous preparation with dynamical decoupling

0

0

0

0

Slow cross-resonance

Slow cross-resonance

Slow cross-resonance Slow cross-resonance 

Fast cross-resonance 

Qutrit 2

Qutrit 3

Qutrit 4

Qutrit 5

125 ns250 ns 125 ns 125 ns

0

0

0

0

Slow cross-resonance

Slow cross-resonance

Qutrit 2

Qutrit 3

Qutrit 4

Qutrit 5

250 ns

Slow cross-resonance

Slow cross-resonance

250 ns

0

0

0

0

Qutrit 2

Qutrit 3

Qutrit 4

Qutrit 5

0

0Qutrit 2

Qutrit 3

Qutrit 4

Qutrit 5 0

0

(a)

(b)

(c)

FIG. 9. Dynamically decoupling the EPR pair preparation. (a) Density matrices of theQ2=Q3 (left, purple) andQ4=Q5 (right, orange)
EPR pairs, prepared individually (i.e., with all other qutrits in the ground state). State fidelities for this dataset are 0.94� 0.002 and
0.98� 0.002, respectively. (b) Density matrices of the same EPR pairs when prepared simultaneously without any dynamical
decoupling. Fidelities are markedly lower in this case, 0.81� 0.002 and 0.82� 0.002, respectively, for theQ2=Q3 andQ4=Q5 pairs. As
discussed in the text, the loss of fidelity is due to unwanted entanglement arising from the cross-Kerr interaction between the two EPR
pairs. (c) EPR pairs prepared simultaneously using dynamical decoupling, with fidelities 0.88� 0.002 and 0.92� 0.002, respectively.
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three equal periods of 125 ns and apply qutrit X gates onQ4

in between the waiting periods. These local gates on Q4 do
not commute with the controlled-π operation on Q4=Q5.
We therefore tune up a faster cross-resonance pulse that
realizes the full controlled-π gate between Q4 and Q5

within the first of the three 125 ns periods. The decoupling
pulses on Q4 can then be applied without interfering
with the preceding entangling operation. This sequence
enables simultaneous EPR pair preparation with fidelities
0.88� 0.002 and 0.92� 0.002 on Q2=Q3 and Q4=Q5,
respectively.
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