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A system with charge conservation and lattice translation symmetry has a well-defined filling ν, which is
a real number representing the average charge per unit cell. We show that if ν is fractional (i.e., not an
integer), this imposes very strong constraints on the low-energy theory of the system and give a framework
to understand such constraints in great generality, vastly generalizing the Luttinger and Lieb-Schultz-Mattis
theorems. The most powerful constraint comes about if ν is continuously tunable (i.e., the system is charge
compressible), in which case, we show that the low-energy theory must have a very large emergent
symmetry group—larger than any compact Lie group. An example is the Fermi surface of a Fermi liquid,
where the charge at every point on the Fermi surface is conserved. We expect that in many, if not all, cases,
even exotic non-Fermi liquids will have the same emergent symmetry group as a Fermi liquid, even though
they could have very different dynamics. We call a system with this property an ersatz Fermi liquid. We
show that ersatz Fermi liquids share a number of properties in common with Fermi liquids, including
Luttinger’s theorem (which is thus extended to a large class of non-Fermi liquids) and periodic “quantum
oscillations” in the response to an applied magnetic field. We also establish versions of Luttinger’s theorem
for the composite Fermi liquid in quantum Hall systems and for spinon Fermi surfaces in Mott insulators.
Our work makes a connection between filling constraints and the theory of symmetry-protected topological
phases, in particular through the concept of “’t Hooft anomalies.”
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I. INTRODUCTION

In condensed matter physics, systems with prescribed
microscopic degrees of freedom (usually electrons) can
exhibit varied and exotic emergent behavior at low ener-
gies. In general, it is extremely difficult, either analytically
or numerically, to predict the nature of the emergent low-
energy behavior [as described by an “IR (infrared) theory”]
from the properties of the microscopic degrees of freedom.
For this reason, it is invaluable to have general results that
constrain the nature of the IR theory, given the microscopic
properties of the system.
One such result is the Lieb-Schultz-Mattis theorem [1],

which states (in the formulation of interest to us here [2])
that in a system in one spatial dimension with a conserved
U(1) charge and discrete translation symmetry, if the
average charge per unit cell (which we call the “filling”)
is not an integer, then either the IR theory is gapless or else

it spontaneously breaks one of the symmetries. This result
was later generalized to higher dimensions by Oshikawa [3]
and Hastings [4]; in higher dimensions, there is also the
possibility that a system at fractional filling can be gapped
but with nontrivial topological order [5].
A related result is Luttinger’s theorem [6], which states

that if the IR theory is a Fermi liquid, then the volume
enclosed by the Fermi surface (modulo the volume of the
Brillouin zone) is determined entirely by the fractional part
of the filling, and in particular is independent of the
interaction strength. Originally proven perturbatively by
Luttinger, the result was later established through a non-
perturbative argument (but still assuming that the IR theory
is describable by Fermi-liquid theory) by Oshikawa [7]. A
generalized version of Luttinger’s theorem even holds in a
class of phases known as fractionalized Fermi liquids [8,9],
which are distinct from conventional Fermi liquids. In such
phases, a gapless Fermi liquid coexists with nontrivial
topological order. The generalization to Luttinger’s theo-
rem can then exactly be determined from the interplay of
the symmetry with the topological order [9–11].
These results and others [12–14] raise the question:

What is the most general statement that one can make about
the relation between the microscopic filling and properties
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of the IR theory? In the present work, we answer this
question, showing that the microscopic filling is always
completely determined by a few properties of the IR theory,
namely, (a) its emergent symmetries, (b) the relation
between the microscopic translation and U(1) symmetries
and the emergent symmetries of the IR theory, and (c) a
property of the IR theory called its “’t Hooft anomaly.”
Some connections between filling and ’t Hooft anomalies
have previously been explored in Refs. [15–20].
Our work has important implications for the study of

“non-Fermi liquids,” which are systems that are metallic
down to zero temperature but for which the IR physics
cannot be described by Fermi-liquid theory. Motivated by
the results on filling constraints just mentioned, we
introduce the concept of an ersatz Fermi liquid (EFL) as
a general framework to understand non-Fermi liquids. An
EFL is a system which has the same kinematic properties in
the deep infrared as a Fermi liquid, though it might have
very different dynamical properties. By “kinematic” prop-
erties, we mean properties that relate to the structure of the
Hilbert space that describes the ground state and the low-
energy excitations, as opposed to “dynamical” properties
which relate to the Hamiltonian that acts in this Hilbert
space. More precisely, the kinematic properties comprise
properties (a)–(c) described in the previous paragraph and
in more detail in the next section. Further, it turns out that
the kinematic properties we discuss have a strong topo-
logical flavor, so in a suitably vague sense, we can say that
an EFL is a system that is “topologically equivalent” to a
Fermi liquid. (However, since the dynamical properties of
an EFL can be sharply different from that of a Fermi liquid,
it will generally not be the case that an EFL can be
continuously deformed into a Fermi liquid.)
We show that many (though by no means all) well-

known aspects of Fermi-liquid phenomenology are, in fact,
purely kinematic in nature, and therefore, apply equally
well to any EFL. In particular, we show that any EFL has a
Fermi surface that hosts long-lived excitations (though
these excitations may not be Landau quasiparticles). In fact,
our approach leads to a very general perspective on what it
means for a system to have a Fermi surface. Furthermore,
we find that this Fermi surface must obey Luttinger’s
theorem (or a generalization thereof, analogous to the
“fractionalized Fermi liquids” mentioned above), and that,
if the Fermi-surface geometry is such that a Fermi liquid
with that geometry would exhibit quantum oscillations in
the dependence of physical properties on magnetic field,
then any EFL with the same Fermi-surface geometry is also
expected to display quantum oscillations with the same
periodicity.
Since none of the kinematic properties that define an

EFL require that the system be weakly coupled or have a
description in terms of quasiparticles, we expect a wide
variety of exotic non-Fermi-liquid phenomena to be real-
izable within the class of EFLs. In fact, we argue based on

the general theory of filling constraints that any IR theory
which describes a compressible metal, i.e., the filling can be
continuously tuned, [21] must have a very nontrivial
emergent symmetry group, larger than any compact Lie
group. Such a property is indeed satisfied by EFLs (due to
the infinitely many conserved quantities associated with the
Fermi surface); whether it could be satisfied in a different
way that leads to fundamentally different kinematic proper-
ties is an important open problem.
At the very least, however, it is clear that a number of

non-Fermi-liquid metals can be fruitfully discussed from
the perspective developed in this paper. The simplest are
non-Fermi-liquid metals that arise when a Fermi surface is
coupled to a critical boson that represents a fluctuating
order parameter. Within the standard framework for such
quantum critical points, they are seen to be EFLs. A closely
related system is a Fermi surface coupled to a gapless U(1)
gauge field, which arises in the theory of composite Fermi-
liquid metals in the quantum Hall regime, and in some
insulating quantum spin liquids with Fermi surfaces of
emergent electrically neutral quasiparticles. In these states,
we find that, unlike a strict EFL, the kinematic properties of
the IR theories can differ from those of a Fermi liquid
(indeed, unlike a Fermi liquid, these are not states in which
the microscopic density can be continuously tuned) though
still closely related. The main point still stands though, that
the kinematic properties of these IR theories provide a
powerful framework to thinking about their universal
behavior. In particular, we show that in such systems a
version of Luttinger’s theorem is still satisfied.
As a final application of our results, we examine the

possibility for systems to exhibit disconnected Fermi arcs
instead of a closed Fermi surface. We find that, assuming
the translational symmetry is unbroken, such a scenario is
inconsistent with the IR theory being an EFL, except when
the system exists on the boundary of a gapless bulk (such as
a Weyl semimetal). This provides strong evidence for the
impossibility of Fermi arcs. In fact, we obtain a stronger
constraint: In an EFL, the Fermi surface must enclose a
volume in the Brillouin zone; this volume is the generali-
zation to EFLs of the “electron sea” in a weakly interacting
system.
Before proceeding, let us make a final technical remark.

We note that previous work [22–24] generalized the original
perturbative proof of Luttinger’s theorem to situationswhere
there are a number of fermion and boson fields with U(1)
symmetries (either global or gauge). This proof relies on the
existence of a Luttinger-Ward functional of the exact
Green’s functions of the fermions or bosons from which
the self-energies can be extracted by functional derivatives.
Theseworks lead to the expectation that Luttinger’s theorem
will be satisfied by some classes of non-Fermi liquids.
However, as the quasiparticle is destroyed in the IR in such
problems, perturbation theory (even to all orders) should be
used with caution. In a nonperturbative context, despite the
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formal existence [25] of a Luttinger-Ward functional, the
conventional proof of Luttinger’s theorem fails. This is
dramatically illustrated by the fractionalized Fermi-liquid
phases. It is thus desirable to have a more general non-
perturbative argument for Luttinger’s theorem in this con-
text, which we provide in this paper.

II. KINEMATIC PROPERTIES
OF THE IR THEORY

Among all the features of the IR theory describing the
low-energy properties of a system, there are certain ones
that we refer to as kinematic, and these are the subject of
this section.
Before describing the first kinematic property, let us note

that the microscopic system has a group of symmetries
GUV. We are specifically interested in systems where this
includes a global U(1) corresponding to charge conserva-
tion and translation symmetries (possibly on a lattice).
The first kinematic property of the IR theory is the set of

emergent symmetries. We thus introduce the group GIR of
emergent symmetries [26] of the IR theory. GIR is, in
general, not the same as the microscopic symmetry group
GUV. Nevertheless, each element g ∈ GUV of the micro-
scopic symmetry group gets mapped into an element
φðgÞ ∈ GIR of the emergent symmetry group, such that
φðg1Þφðg2Þ ¼ φðg1g2Þ for all g1; g2 ∈ G. There could, of
course, be elements of the emergent symmetry group GIR
that do not correspond to any microscopic symmetry. Also,
a microscopic symmetry g ∈ GUV could act trivially in the
IR theory, in which case φðgÞ ¼ 1 (the identity element in
GIR); an example of the latter case would be for systems
with a charge gap, in which case the microscopic U(1)
symmetry acts trivially in the IR. All these statements can
be expressed in a compact mathematical way by saying that
φ defines a group homomorphism from GUV to GIR that
need not be injective or surjective.
Note that for many of the arguments in this paper, we

specifically want GIR to represent the internal symmetries
of the system (that is, the symmetries which do not move
space-time points around). In general, the IR theory also
has “trivial” emergent space-time symmetries such as
continuous translation symmetry, which we do not include
in GIR. It is important to note that the microscopic trans-
lation symmetry in general does not map into these trivial
translation symmetries, but rather into the internal sym-
metry GIR. One way to think about this is that since there is
a spatial rescaling transformation associated with passing to
the IR theory, a microscopic translation symmetry, in fact,
has trivial translation action in the IR limit. An alternative
perspective is that we imagine that a microscopic trans-
lation symmetry acts like a product of an internal symmetry
and a trivial translation symmetry, and we worry about only
the internal part in defining the map φ.
The other property of the IR theory that is pertinent is the

extent to which the full emergent symmetry group GIR can

be naturally realized in some realization (not necessarily the
original microscopic lattice model) of the IR theory. This
property is formalized by the concept of the ’t Hooft
anomaly. Such an anomaly in dþ 1 space-time dimensions
is an obstruction to UV regularizing the theory on a lattice
in d spatial dimensions with the full emergent symmetry
group GIR realized as an “on-site” microscopic symmetry
[28,29]. A powerful alternative but formal characterization
of a ’t Hooft anomaly [30,31] is that the conservation law
corresponding to the GIR symmetry is broken upon
coupling to a background gauge field for the symmetry
GIR. We consider the ’t Hooft anomaly of the emergent
symmetry GIR to also be a kinematic property of the IR
theory.
’t Hooft anomalies are also closely related to the theory

of symmetry-protected topological (SPT) phases [32–34].
These are gapped phases of matter in a system with an
unbroken global symmetry G with the following property:
The ground state cannot be continuously deformed into a
trivial product-state ground state while preserving the
symmetry without closing the gap if the symmetry G is
preserved, but it can be if the symmetry G is lifted.
Examples of SPT phases include the celebrated topological
insulators [35] and the Haldane phase of the spin-1
antiferromagnetic chain in d ¼ 1 [36–38].
The connection between ’t Hooft anomalies and SPT

phases is that a G SPT phase in dþ 1 spatial dimensions
must have a nontrivial boundary theory, and the boundary
theory carries a ’t Hooft anomaly. We can say that the ’t
Hooft anomaly of the boundary theory is “canceled” by
inflow from the bulk, in the sense that the conservation laws
of the bulkþ boundary system are preserved in the
presence of background gauge fields. Thus, the classifica-
tion of ’t Hooft anomalies in d spatial dimensions is
precisely equivalent to the classification of SPT phases
in dþ 1 spatial dimensions.[39] Such a classification has
been explored at great depth, from a variety of perspectives,
ranging from physical considerations to very formal ones
[28,29,33,40–64]. The aspects of SPT phases that we need
to use in this paper, however, are simple enough, at least if
we want to understand filling in systems of low spatial
dimension d ≤ 2 that a reader unfamiliar with this literature
should still be able to follow our paper.

A. Example: Luttinger liquid in one spatial dimension

Let us illustrate the above general considerations in the
case of a system of spinless electrons in a lattice in one
spatial dimension. Thus, the microscopic symmetry group
GUV is comprised of a U(1) symmetry generated by the
total electron number Q̂, and a Z symmetry generated by
the lattice translation operator T.
Let us now assume that the IR theory of the electrons is a

Luttinger liquid. Thus, the low-energy physics takes place
at the two Fermi points at momenta kL and kR. Excitations
with momentum close to kL are left movers, and those with
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momentum close to kR are right movers. At low energies,
the numbers N̂L and N̂R of left and right movers are
separately conserved. Therefore, they generate the emer-
gent symmetry group GIR ¼ Uð1ÞL × Uð1ÞR.
Next, we need to specify how the microscopic symmetry

acts on the IR theory, which we can do by expressing the
generators of the microscopic symmetry in terms of the
generators of the emergent symmetry. Indeed, we have

Q̂ ∼ N̂L þ N̂R; ð1Þ

T ∼ expð−i½kLN̂L þ kRN̂R�Þ; ð2Þ

where the tilde “∼” refers to an equivalent action on the IR
theory.
The emergent symmetry group GIR in a Luttinger liquid

has the well-known axial anomaly. This is an example of
the ’t Hooft anomaly mentioned in the previous subsection.
The signature is that, if we turn on an electric field E for the
U(1) symmetry generated by N̂L þ N̂R [which is equivalent
to a microscopic electric field, by Eq. (1)], then left- and
right-moving charges are no longer separately conserved;
instead, if we let jLμ, μ ¼ 0, 1 be the current density for the
left-moving charge, and similar for jRμ, we have

∂μjLμ ¼ −
E
2π

;

∂μjRμ ¼
E
2π

: ð3Þ

One can easily understand this equation in the case of a
noninteracting Fermi gas. In that case, in the absence of
electric field, the electrons occupy single-particle states
labeled by momentum k. But applying an electric field
pointing to the right causes an overall flow of electrons in
momentum space according to _k ¼ E. This causes a charge
excess to accumulate at kR and a corresponding charge
deficit at kL.
As we mention above, there is always a bulk-boundary

correspondence that relates a ’t Hooft anomaly for a
symmetry G in d spatial dimensions to a SPT phase in
dþ 1 spatial dimensions whose boundary theory carries
the ’t Hooft anomaly. In this case, we have d ¼ 1 and
G ¼ Uð1Þ × Uð1Þ. The corresponding SPT phase in d ¼ 2
is realized by a “quantum spin Hall” state corresponding to
putting spin-up electrons in a quantum Hall state with
quantized Hall conductance σxy ¼ 1 and spin-down elec-
trons in a quantum Hall state with σxy ¼ −1. Here the
Uð1Þ × Uð1Þ symmetries correspond to the separate con-
servation of spin-up and spin-down electrons. If we now
consider a system with boundary and apply an electric field
parallel to the boundary, due to the Hall conductance this
will generate a current of spin-up electrons incident onto
the boundary, and a current of spin-down electrons with
opposite sign. This precisely accounts for the charge

nonconservation in the boundary theory due to the
’t Hooft anomaly.
Finally, let us remark that a useful way to think about

SPT phases (and hence, ’t Hooft anomalies) is in terms of
topological terms describing the response of the SPT phase
to background gauge fields. For example, consider the
quantum spin Hall state described above. We can theoreti-
cally couple to background gauge fields of the two U(1)
symmetries, which in the one-dimensional Luttinger liquid
are interpreted as the conservation of left and right movers;
hence, we denote the gauge fields by AL and AR. The
response of the quantum spin Hall state is then described by
a Chern-Simons action on ð2þ 1ÞD space-time:

S½A� ¼ 1

4π

Z
ðAR ∧ dAR − AL ∧ dALÞ: ð4Þ

III. FILLING CONSTRAINTS

Now we turn to the question of how to understand
constraints on the IR theory resulting from the microscopic
filling, i.e., the average charge per unit cell, which is a real
number ν. Only the fractional part of ν (i.e., νmod 1) should
be expected to be detectible in the IR theory, because an
atomic insulator (whose IR theory is completely trivial) can
have any integer filling. The fundamental observation we
make is that the microscopic filling is completely fixed by
the kinematic properties of the IR theory, i.e., the emergent
symmetry group and the ’t Hooft anomaly, along with the
mapping from the microscopic symmetry group into the
emergent symmetry group.
This is a rare example of a precise relation between a

microscopic quantity (the filling) and properties of the IR
theory. Such relations are extremely useful, given that it is
usually very difficult to determine the IR theory from the
microscopicHamiltonian, either analytically or numerically.
The reason why such a UV-IR correspondence is

possible in this case is because the UV and IR are linked
through the homomorphism φ that implements the micro-
scopic symmetry inside the emergent IR symmetry.
Naively, we can imagine arguing as follows. The lattice
filling is defined in systems that have at least a microscopic
U(1) symmetry (charge conservation), and a lattice trans-
lation symmetry Zd (where d is the space dimension). So
we set the microscopic symmetry GUV ¼ Uð1Þ × Zd. This
GUV is embedded into the symmetries of the IR theory, so
we can talk about the ’t Hooft anomaly of the IR theory
thought of as a GUV-symmetric theory (which can be
computed from the GIR ’t Hooft anomaly in light of the
homomorphism φ∶GUV → GIR). Then we invoke “UV-IR
anomaly matching” to relate the filling ν to this GUV ’t
Hooft anomaly.
Unfortunately, this argument is not quite right. In fact,

fractional filling cannot correspond to a nontrivial ’t Hooft
anomaly for GUV in the usual sense, because there are no
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candidate SPT phases with GUV ¼ Uð1Þ × Zd symmetry
which could constitute the “bulk,” for which a system with
fractional filling could be the boundary, as we explain in the
Appendix A. Indeed, a system with fractional filling seems
perfectly well defined on its own without any need for a
higher-dimensional bulk.
Instead, we give the correct version of the argument

below in various spatial dimensions. The careful reader
might notice that they still appear reminiscent of “anomaly
matching,” albeit for a ’t Hooft anomaly that is trivial with
respect to the microscopic symmetries. How exactly one
could make such a notion precise, we leave as an open
question. Nevertheless, the arguments are self-contained
and hold without any need for such an interpretation.

A. One spatial dimension

In one spatial dimension, we imagine putting the system
on a circle and then very slowly threading 2π flux of the
microscopic U(1) symmetry through the circle [3,7,65]. By
a standard argument, this transforms the ground state into a
low-lying excited state with a different momentum; if we
label states by their eigenvalues of the translation operator
T , i.e., T jψi ¼ e−ipjψi, then the momentum gets shifted
by e−ip → e−iðpþ2πνÞ.
Meanwhile, since the microscopic U(1) symmetry gen-

erated by Q̂ corresponds to a U(1) symmetry of the IR
theory, whose generator we call Q̂IR, we can also imagine
performing the 2π flux insertion in the IR theory. Now
consider the IR symmetry τ ¼ φðTÞ ∈ GIR corresponding
to microscopic translation T . In the IR theory, the ground
state can get transformed into a low-lying excited state with
a different eigenvalue of τ; that is, the eigenvalue of τ gets
shifted according to expð−iθÞ → exp ð−i½θ þ α�Þ for some
α (defined mod 2π). One can argue that α depends only on
the ’t Hooft anomaly ofGIR and on the choice of τ and Q̂IR;
see, for instance, the example below. We write α ¼
αðQ̂IRjτÞ (the dependence on the ’t Hooft anomaly is kept
implicit).
Now, the key point is that the processes described in the

two paragraphs above are in fact the same process, just
described in two different ways. Therefore, we must equate

ν ¼ αðQ̂IRjτÞ
2π

ðmod 1Þ: ð5Þ

1. Example: Luttinger liquid in one spatial dimension

We can apply the general framework described above to
the particular example of a Luttinger liquid in one spatial
dimension, as discussed in Sec. II A. In this case, Q̂IR and τ
are defined by the right-hand sides of Eqs. (1) and (2).
Threading the flux of Q̂IR generates an electric field of

Q̂IR by Faraday’s law, and then, from the anomaly equation

Eq. (3), we see that the 2π flux threading creates −1 charge
of Uð1ÞL and þ1 charge of Uð1ÞR. Therefore, in light of
Eq. (2), the momentum transforms according to

e−ip → e−ipe−iðkR−kLÞ: ð6Þ
Then, from Eq. (5) we find that

ν ¼ 1

2π
ðkR − kLÞ ðmod 1Þ; ð7Þ

which is nothing other than Luttinger’s theorem for a
Luttinger liquid in one spatial dimension.

B. Two spatial dimensions

Here the idea is to consider a “2π flux” of the micro-
scopic U(1) symmetry; that is, a very weak background
magnetic field spread out over some very large region, such
that the total flux is 2π. We can then consider how such a 2π
flux transforms under translation symmetry. We claim that,
in the presence of fractional filling ν, such 2π fluxes exhibit
translational symmetry fractionalization; that is, acting
on a 2π flux, the lattice x and y translations Tx and Ty

obey (in the limit as the 2π flux becomes infinitely spread
out spatially) the magnetic algebra

T xT yT−1
x T−1

y ¼ e2πiν: ð8Þ

Heuristically, this is clear because a 2π flux sees a back-
ground charge density as an effective magnetic field. We
give some more careful arguments in Appendix B. This
result is also closely connected to the translational sym-
metry fractionalization of a monopole in an insulator in
three spatial dimensions in the presence of polarization, as
discussed in Ref. [20].
Meanwhile, in the IR theory, we can consider 2π flux

configurations of the IR symmetry generated by Q̂IR that
corresponds to the microscopic U(1) symmetry. The
homomorphism φ maps T x and Ty into some elements
τx; τy ∈ GIR. In the presence of a ’t Hooft anomaly, such 2π
fluxes indeed can carry a projective representation, i.e.,

VðτxÞVðτyÞVðτxÞ−1VðτyÞ−1 ¼ eiα; ð9Þ

where VðgÞ denotes the action of a group element g ∈ GIR

on the 2π flux, and α ¼ αðQ̂IRjτx; τyÞ (defined mod 2π)
depends on Q̂IR, τx, and τy, and on the ’t Hooft anomaly of
GIR. Therefore, we must identify

ν ¼ αðQ̂IRjτx; τyÞ
2π

ðmod 1Þ: ð10Þ

The natural example to consider to illustrate this constraint
is a Fermi liquid. However, by contrast to the one-
dimensional case, the ’t Hooft anomaly of a Fermi liquid
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in two spatial dimensions has not previously been dis-
cussed. This is the subject of Sec. V.

C. General space dimension

The formulation of filling constraints discussed above
can be generalized to arbitrary space dimension d. The idea
is to generalize the functions αðQ̂IRjτÞ (in d ¼ 1) and
αðQ̂IRjτx; τyÞ (in d ¼ 2) to a function αðQ̂IRjτ1;…; τdÞ that
determines the filling in general spatial dimension d.
A convenient way to express this function is in terms of
the “topological action” that describes the SPT phase in
dþ 1 spatial dimensions which cancels the GIR ’t Hooft
anomaly in d spatial dimensions by inflow on the boundary.
We give the details in Appendix C.

IV. CONSEQUENCES OF THE FILLING
CONSTRAINTS FOR COMPRESSIBLE STATES

The systematic theory of filling constraints described in
the previous section has a very important corollary.Wewant
to consider IR theories which can exist at generic filling; that
is, they are not pinned to a particular filling but instead the
filling can be continuously tuned. In other words, the IR
theory represents a “compressible” state. What we show is
that in this case, for spatial dimensions ≥2, the emergent
symmetry GIR cannot be a compact Lie group. In one
dimension, recall that the Luttinger-liquid example dis-
cussed in Sec. II A achieves generic filling with only a
compact Lie group emergent symmetry GIR ¼ Uð1Þ×
Uð1Þ. Note that compact Lie groups include finite groups
as special cases, since we do not require the Lie group to be
connected; also, in this paper when we refer to Lie groups,
we always assume they are finite dimensional.
We wish to emphasize here that as we stated previously,

in this paper when we refer to the emergent symmetry
group GIR, we are referring specifically to the internal
symmetries of the IR theory. While translation symmetry is
never a compact group, we do not know of any examples of
theories that can sensibly arise in condensed matter
systems, for which the internal symmetry is a noncompact
Lie group, and this may, in fact, be impossible. Therefore,
our results suggest that the emergent symmetry for IR
theories that exist at generic filling must be an infinite-
dimensional group [66]. Indeed, this is the case for Fermi
liquids, as we describe in the next section.
Our main result is the following:
Theorem 1: Suppose the emergent symmetry group of

the IR theory is some compact Lie groupGIR. Then, for any
spatial dimension d ≥ 2, the filling ν is constrained to be an
integer multiple of 1=NGIR

, for some finite integer NGIR
that

depends only on the group GIR and the dimension.
The proof is straightforward based on the framework

of filling constraints discussed in the previous section.
We give the details and reveal what determines NGIR

in

Appendix F, and we also give a more formal point of view
in Appendix G.
Let us mention a simple way to understand this result for

d ¼ 2. As we mention in the Introduction, the ’t Hooft
anomaly of a theory in d spatial dimensions implies that the
theory can be realized as the boundary of a SPT phase
protected by the same symmetry GIR in (dþ 1)-space
dimensions. Now suppose that the SPT phase is such that n
copies of it are trivial, with n a finite positive integer. For
SPT phases protected by a compact Lie group GIR in space
dimension dþ 1 ¼ 3, this is known to be always true. For
the d-dimensional boundary theory of interest, this means
that for n copies, there is no ’t Hooft anomaly. If now we
consider n copies of the microscopic lattice system, we see
that it has a total filling nν. Since at this filling the IR theory
has no anomaly, it follows that νn ¼ p with p an integer,
which is essentially the claim of Theorem 1. In d ¼ 3, this
simple argument does not work because there are SPT
phases in dþ 1 ¼ 4 space dimensions such that there is
no finite n for which n copies become trivial. (This is also
why the argument does not work for d ¼ 1.) However,
Theorem 1 still holds for any d ≥ 2 as we show in
Appendixes F and G.

V. THE KINEMATIC PROPERTIES
OF FERMI LIQUIDS

In this section, we return to a familiar IR theory: a Fermi
liquid in two spatial dimensions (we briefly discuss higher
dimensions as well) and analyze its kinematic properties in
the language introduced previously. We see how Fermi
liquids, by virtue of having an emergent symmetry group
that is “larger” than a compact Lie group, are able to evade the
theorem of the previous section and exist at generic filling.

A. Emergent symmetry group

The first step is to identify the emergent symmetry group
GIR. We invoke the following well-known property of
Fermi liquids: Nonforward scattering terms are irrelevant in
the renormalization group sense at low energies, so the
quasiparticle number at each point on the Fermi surface is
separately conserved at low energies. Thus, Fermi liquids
have a very large emergent symmetry group [67]. Roughly,
we can say that GIR ¼ “Uð1Þ∞.” However, let us be a bit
more precise about how one approaches the “∞.”
We parametrize the Fermi surface by a continuous

parameter θ (we do not require that θ literally represents
a geometrical angle), which is periodic; i.e., it lives on a
circle. Imagine that we place an IR cutoff on the system
(that is, place it in finite volume), which since the Fermi
surface exists in momentum space, corresponds to a short-
distance cutoff on θ; i.e., θ now takes discrete values. To
each such θ value, we associate a U(1) emergent symmetry
generated by an integer-valued operator N̂θ. Hence, a
general symmetry operator takes the form
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exp

�
−i
X
θ

fθN̂θ

�
; ð11Þ

where we identify fθ ∼ fθ þ 2π.
Now we send the IR cutoff (the spatial volume) to

infinity, which corresponds to sending the spacing between
discrete θ values to zero. What we want is to consider
symmetry operators that do not depend too sensitively on
the precise way in which the short-distance cutoff in θ gets
sent to zero. In order to achieve this, we require that, in this
continuum limit, the fθ parameters become smooth func-
tions fðθÞ. Therefore, in the limit, the emergent symmetries
are in one-to-one correspondence with smooth functions
from the circle into U(1). The group of all such functions
is called the loop group [68] of U(1), and we denote it by
LU(1). Hence, we conclude that GIR ¼ LUð1Þ.
We emphasize that the group structure of LU(1) differs

somewhat from naive conceptions of what Uð1Þ∞ would
mean; in particular, LU(1) has only one U(1) subgroup,
whose elements correspond to taking fðθÞ to be a constant
function. Physically, this is because only the total charge on
the Fermi surface is quantized to be an integer; there is no
well-defined concept of the (quantized) charge at a single
point on the Fermi surface, only of the linear charge density
with respect to θ. Accordingly, we can represent the loop
group LU(1) formally by introducing a density operator
n̂ðθÞ such that the number of quasiparticles between θ and
θ þ dθ is measured by n̂ðθÞdθ. Technically, n̂ðθÞ is not
really an operator in itself, but an operator-valued distri-
bution which should be integrated against a test function.
The elements of the emergent symmetry group can be
expressed as

exp

�
−i

Z
fðθÞn̂ðθÞ

�
; ð12Þ

where fðθÞ is any smooth function of θ. Note that, because
we identify fðθÞ ∼ fðθÞ þ 2π, we are allowed to consider
functions f with nontrivial winding number around the
circle, such that ð1=2πÞ R ∂θfðθÞdθ is any integer.

B. The homomorphism GUV → GIR

Now it should be clear how to embed the microscopic
symmetries into the emergent symmetry group GIR ¼
LUð1Þ. Indeed, if Q̂ is the generator of the microscopic
U(1) symmetry, we have

Q̂ ∼ q
Z

n̂ðθÞdθ; ð13Þ

where the integer q is the charge of a Landau quasiparticle.
Of course, for a Fermi liquid of electrons, q ¼ 1, but in
principle, one can imagine Fermi-liquid-like states where
the quasiparticles carry a different charge. (For example,

the quasiparticles could be bound states of an odd number
of electrons.)
Meanwhile, if kxðθÞ and kyðθÞ represent the components

of the lattice momentum of the point on the Fermi surface
parametrized by θ, then we have

Tα ∼ exp

�
−i

Z
kαðθÞn̂ðθÞdθ

�
; ð14Þ

where α ¼ x, y, and Tx, T y are the lattice translation
operators.

C. The ’t Hooft anomaly

Now we are in a position to discuss the ’t Hooft anomaly
for the emergent LU(1) symmetry. As usual, the ’t Hooft
anomaly can be understood by coupling to a background
gauge field for the symmetry. But first, we must ask, what is
a gauge field for an LU(1) symmetry? Since, roughly
speaking, an LU(1) symmetry means there is a U(1)
symmetry for each point on the circle, we can naively
say that a gauge field for an LU(1) symmetry should be a
space-time vector field AμðθÞ for each point θ on the circle,
with gauge transformations parametrized by a scalar field
λðθÞ, and gauge transformation

AμðθÞ → AμðθÞ þ ∂μλðθÞ ð15Þ

(where the derivative is respect to space-time, not θ).
Moreover, we require that AμðθÞ and λðθÞ be smooth
functions of θ.
However, there is in fact an additional ingredient that is

required that is unique to loop groups. To see this, we can
appeal to the quasiparticle picture of the Fermi liquid. The
spatial components AiðθÞ describe the Aharanov-Bohm
phase (which can be interpreted as a Berry phase) picked up
when a localized quasiparticle, localized near position θ on
the Fermi surface, is transported in space. But we can also
keep a quasiparticle fixed in real space and transport it
along the Fermi surface in momentum space. Therefore, the
gauge field needs an additional component Aθ to describe
the Berry phase associated with such a process. We
emphasize though, that even going beyond Fermi liquids,
Aθ represents an intrinsic part of what it means to couple to
a gauge field for an LU(1) symmetry, regardless of any
quasiparticle picture. We return to this point in Sec. VI.
The Aθ component of the gauge field transforms under

gauge transformations as Aθ → Aθ þ ∂θλ. Therefore, if we
now combine the vector field Aμ with Aθ, we obtain a vector
field A on the (Dþ 1)-dimensional manifold M × S1,
where M is the space-time manifold, D ¼ dimM is the
space-time dimension, and S1 is the circle on which the θ
variable lives. Moreover, A transforms under gauge trans-
formations precisely as would a U(1) gauge field on
M × S1. Hence, we arrive at our conclusion: An LU(1)
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gauge field on M is equivalent to a U(1) gauge field on
M × S1. From this point on, we denote this combined
vector field as Aμ, taking the convention that indices such as
μ vary both over space-time directions and the θ direction.
Now we can discuss ’t Hooft anomalies. One way to

characterize a ’t Hooft anomaly in two spatial dimensions is
in terms of the topological term describing the response of
the corresponding SPT phase in three spatial dimensions to
background gauge fields. [As usual, the relation is that on a
ð3þ 1ÞD space-time Mþ whose boundary is a ð2þ 1ÞD
manifoldM, the SPT phase onMþ gives rise to the ’t Hooft
anomaly on the space-time M by anomaly inflow.] But
from the above discussion, a topological term for LU(1)
gauge fields on a ð3þ 1ÞD space-time Mþ is equivalent
to a topological term for U(1) gauge fields on the
ð3þ 1þ 1ÞD manifold Mþ × S1. Hence, we conclude that
the appropriate topological term is the 5D Chern-Simons
action

S½A� ¼ m
24π2

Z
Mþ×S1

A ∧ dA ∧ dA; ð16Þ

where the level m is quantized to be an integer [69]. Below,
we show that such a topological term, withm ¼ �1, indeed
reproduces many known properties of spinless Fermi
liquids. (Note that the sign of m is defined only relative
to a choice of orientation for the Fermi surface, because
redefining θ → −θ sends m → −m.)
From the topological term Eq. (16), we can determine the

anomaly equation on the boundary by computing the
current j ¼ ðδS=δAÞ and then considering the current
incident onto the boundary. We find that, on the boundary,
the continuity equation is violated according to

∂μjμ ¼
m
8π2

ϵλστκð∂λAσÞð∂τAκÞ: ð17Þ

Here the current j depends both on space-time coordinates
and on θ. Its space-time components describe the space-
time current of the charge at position θ on the Fermi
surface, i.e., of the symmetry generated by n̂ðθÞ. However,
recalling that indices are supposed to vary over the θ
direction as well as space-time directions, we have to
introduce the component jθ ¼ ðδS=δAθÞ, which describes
flow of charge along the Fermi surface. An example of a
case where jθ ≠ 0 is a Fermi liquid in a magnetic field
described in the next subsection.
Finally, let us mention that there is an alternative picture

to understand the inflow of the ’t Hooft anomaly that is
sometimes helpful. Instead of considering a system with
LU(1) symmetry in a ð3þ 1ÞD space-time Mþ with
boundary, we can consider a system with LT2

Uð1Þ sym-
metry in a ð2þ 1ÞD space-timeM without boundary. Here,
LT2

Uð1Þ is the group of smooth maps from the Brillouin
zone (thought of as a torus T2) into U(1). In other words,

we imagine that the charge is conserved not just at each
point on the Fermi surface, but also at every k point in the
whole Brillouin zone. This is the case, for example, in a
noninteracting Fermi gas. In an interacting Fermi liquid, the
physical Hamiltonian presumably has a nonzero scattering
rate for quasiparticles in the interior of the Fermi surface,
but we can, theoretically, imagine an extension of the
quasiparticle Hamiltonian from the vicinity of the Fermi
surface to its interior in a manner that preserves conserva-
tion of quasiparticle number at every k point. This is a
familiar construction in Fermi-liquid theory. (The point is
that the physics on the Fermi surface will ultimately not
depend on the precise form of the Hamiltonian in the
interior.)
Then by similar arguments to before, a gauge field for

the LT2

Uð1Þ symmetry is equivalent to a U(1) gauge field
on M × T 2. Since this is also a five-dimensional manifold,
we can write a similar Chern-Simons term to Eq. (16).
Specifically, we write

S½A� ¼ m
24π2

Z
M×D

A ∧ dA ∧ dA; ð18Þ

where D ⊆ T 2 is the volume “occupied by electrons,” that
is, the volume enclosed by the Fermi surface [70]. This
gives rise to the same anomaly Eq. (17) on the boundary
∂ðM ×DÞ ¼ M × ∂D, where ∂D is the Fermi surface.
Note that in this interpretation, the components A0; Ax; Ay

of Aμ are the usual ones, while the components Akx ; Aky are
k-space gauge fields. Then the five-dimensional manifold
has the interpretation of being “phase space” (that is, the
space where points are labeled by position and momentum)
plus time, and Aμ can be considered a gauge field in phase
space. A term similar to Eq. (18) has previously appeared
in Ref. [40].

D. Filling constraint and Luttinger’s theorem

We consider a theory in two spatial dimensions whose ’t
Hooft anomaly is canceled by inflow from Eq. (16).
According to the discussion of Sec. III B, we first need
to determine how the emergent symmetry LU(1) gets
represented projectively in such a theory in the presence
of a 2π flux [of the microscopic charge U(1) symmetry].
This is something that can be derived from the ’t Hooft
anomaly that is characterized in the previous subsection.
We show in Appendix D that this leads to a projective
representation on a 2π flux described by the commutation
relations

½n̂ðθÞ; n̂ðθ0Þ� ¼ −i
mq
2π

δ0ðθ − θ0Þ; ð19Þ

where n̂ðθÞ are the operators introduced in Sec. VA, and δ0
is the derivative of the Dirac delta function.
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Note that Eq. (19) is precisely the so-called Kac-Moody
algebra satisfied by the local density operator of a chiral
fermion in one spatial dimension (such as appears, for
example, at the boundary of a integer quantum Hall state in
two spatial dimensions). Indeed, this relationship is not a
coincidence; one can see roughly how it comes about in the
case of a Fermi liquid at the level of the semiclassical
theory of electron transport. Suppose, for simplicity, that
we switch off the interactions so that the Fermi liquid
becomes a noninteracting Fermi gas. In the presence of a
spatially dependent magnetic field BðxÞ, the semiclassical
equations of motion take the form [71]

dk
dt

¼ −qBðxÞ × vðkÞ; ð20Þ

dx
dt

¼ vðkÞ −ΩðkÞ × dk
dt

; ð21Þ

where ΩðkÞ is the Berry curvature of the Bloch states,
vðkÞ ¼ ½∂EðkÞ=∂k�, EðkÞ is the dispersion relation, and
we omit terms beyond linear order in the magnetic field
strength. In particular, Eq. (20) implies that electrons
develop a circulation in momentum space along contours
of constant energy, in particular, along the Fermi surface. In
two spatial dimensions, the Fermi surface is one dimen-
sional, and the circulation along the Fermi surface is
unidirectional (set by the sign of the magnetic field), which
indeed resembles a chiral fermion.
This intuitive argument, however, does not fix the

coefficient of the right-hand side of Eq. (19). In
Appendix E, we give a more careful derivation of
Eq. (19) from the semiclassical theory of electron transport,
confirming that m ¼ �1 for a spinless Fermi liquid.
Related expressions have previously been derived in
Refs. [72,73].
From Eq. (19), we can compute the projective repre-

sentation of the translation symmetry in light of the
embedding Eq. (14). We find

TxT yT−1
x T−1

y ¼ exp

�
i
mq
2π

Z
kxðθÞ

dkyðθÞ
dθ

dθ

�
ð22Þ

¼ exp

�
imq

VF

2π

�
; ð23Þ

where VF is the volume in momentum space enclosed by
the Fermi surface. (Here we choose a particular convention
to define the orientation of the Fermi surface). Hence, from
Eq. (10), we conclude that

ν ¼ mq
VF

ð2πÞ2 ðmod 1Þ; ð24Þ

which (if we set m ¼ q ¼ 1) is precisely Luttinger’s
theorem for a spinless Fermi liquid in two spatial
dimensions.

We wish to emphasize, however, that, in general,
Luttinger’s theorem Eq. (24) follows directly from
Eq. (19), which in turn follows directly from the ’t
Hooft anomaly. It is not necessary to assume anything
about the dynamical properties of the Fermi liquid, e.g., the
existence of quasiparticles. Thus, Luttinger’s theorem also
holds (with a possible integer multiplicative factor mq) for
any IR theory that has the same emergent symmetry as a
Fermi liquid.
It is interesting to reconsider Eq. (19) and its relation

with the 5D Chern-Simons term from the viewpoint that the
five-dimensional manifold can be thought of as four-
dimensional phase space together with the time direction
(see the last two paragraphs of Sec. V C). In the presence of
a static 2π-strength magnetic flux in the x, y components of
Aμ (with the corresponding components Ax and Ay inde-
pendent of kx,ky,t), the 5D Chern-Simons term Eq. (18)
reduces to a 3D Chern-Simons term for the remaining
components AI ¼ ðA0; Akx ; AkyÞ, assuming that they are
independent of x and y:

S3D ¼ m
4π

Z
d3xϵIJKAI∂JAK; ð25Þ

where kx and ky are integrated over the volumeD, i.e., over
the interior of the Fermi surface.
Now the claim is that on the Fermi surface, there is a

chiral mode carrying the Kac-Moody algebra

½n̂ðθÞ; n̂ðθ0Þ� ¼ −i
m
2π

δ0ðθ − θ0Þ: ð26Þ

In particular, since a 2π flux of the microscopic U(1) cor-
responds to a 2πq flux of A by Eq. (13), we recover
Eq. (19).
In the phase-space interpretation, Eq. (25) describes an

integer quantum Hall effect in momentum space in the
interior of the Fermi surface. In other words, we think of the
rigid interior of the Fermi surface as hosting an integer
quantum Hall state in momentum space when we apply a
2π flux in real space. The Fermi surface is the boundary in
momentum space of the interior, and hence hosts a chiral
edge state.

E. Extension to higher dimensions

The description of the anomaly extends straightfor-
wardly to higher-dimensional Fermi liquids. Indeed, if
M is the ðdþ 1ÞD space-time manifold, and F is a
(d − 1)-dimensional manifold parametrizing the Fermi
surface, which is a codimension-one surface in the
d-dimensional Brillouin zone, then the emergent symmetry
group is LFUð1Þ, i.e., the group of smooth maps from F to
U(1). Including the components of the Berry connection on
the Fermi surface promotes the LFUð1Þ gauge field to a
U(1) gauge field on the ð2dÞ-dimensional manifoldM × F.
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Then we can write down a topological term on a
ðdþ 2ÞD space-time Mþ describing the SPT phase whose
inflow generates the anomaly of the Fermi liquid given by
the (2dþ 1)-dimensional Chern-Simons action:

S½A� ¼ m
ðdþ 1Þ!ð2πÞd

Z
Mþ×F

A ∧ ðdA ∧ � � � ∧ dAÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
d times

: ð27Þ

VI. ERSATZ FERMI LIQUIDS AND THEIR
PHENOMENOLOGY

As we show in Sec. IV, any IR theory that can exist at
generic filling must have a very large symmetry group,
larger than any compact Lie group. In the simplest cases,
this emergent symmetry group will be the same as that of a
Fermi liquid, i.e., GIR ¼ LUð1Þ. We refer to an IR theory
with this emergent symmetry as an EFL. We note that EFLs
represent a class of theories; there could be many different
EFLs with different dynamical properties. Here we exam-
ine the properties that all EFLs have in common. In
particular, as a Fermi liquid is an example of an EFL, this
section provides a fresh perspective on many aspects of
Fermi-liquid phenomenology, showing that they arise
directly from the emergent symmetry and its ’t Hooft
anomaly without any need to invoke the detailed dynamical
properties of a Fermi liquid.
Going beyond Fermi liquids, an important example of

states, which we expect are EFLs, are associated with
quantum critical points in metals which are not tied to a
particular electron density. As a concrete example, consider
a putative quantum critical point associated with the onset
of Ising nematic order [74] in a metal in d ¼ 2. There is no
particular electron density at which this transition will
happen in any given system. Indeed, as microscopic
parameters are changed continuously, we expect that the
electron density at the transition will also change contin-
uously without a change of universality class. The universal
critical properties of this transition are described by a
theory of electrons near the Fermi surface coupled to the
fluctuating order parameter modes. [A model with similar
structure also describes insulating quantum spin liquid
phases with a spinon Fermi surface coupled to a dynamical
U(1) gauge field.] In these models, the resulting IR fixed
point is not a Fermi liquid [75–86]. Nevertheless, from our
point of view, these metallic quantum critical points are
expected to be EFLs. (We discuss neutral Fermi surfaces in
insulators separately in Sec. VIII C.)
We may understand why such critical points should be

EFLs as follows. In previous papers [78,81–83], the
ultimate IR fixed point was accessed through a “patch
construction,” which begins by dividing the Fermi surface
into small patches. It was then argued that the important
coupling of the fermions within a single patch is to boson
fluctuations with momentum tangential to the local Fermi
surface. This enables treating the full system by focusing on

a pair of antipodal patches and ignoring their coupling to
other such pairs of patches. The patch width is taken to zero
at the end. In this scheme, the number of fermions within
each patch is conserved. The assumption that this patch
description captures the IR fixed point then implies that the
linear charge density n̂ðθÞ at each point of the Fermi surface
is conserved at the fixed point. (There is, potentially, a
dangerous interpatch BCS coupling in the pairing channel
that could destroy these conservation laws. For the Fermi
surface coupled to a gauge field, a weak pairing interaction
is irrelevant at the IR fixed point [87], while in the Ising
nematic quantum critical point, it is relevant. In the latter
case, the non-Fermi-liquid metallic fixed point is pre-
empted by the superconducting instability. Our discussion
then applies at a scale above this instability.)
We also expect that more complex quantum critical

points associated with the death of a Fermi surface can be
subsumed under the umbrella of EFLs. Such critical points
have been argued [88] to possess a critical Fermi surface
even in the absence of Landau quasiparticles. As we see
below, the EFL description, if it indeed applies to such
quantum critical points, enables us to infer many of their
general properties.

A. General properties of EFLs

Let us return to a general EFL. Then, translation
symmetry must embed into GIR somehow: That is, we have

Tα ∼ exp

�
−i

Z
kαðθÞn̂ðθÞdθ

�
ð28Þ

for some U(1)-valued functions kαðθÞ. The values of kαðθÞ
can be interpreted as momenta in the Brillouin zone, so this
defines a codimension-one surface in the Brillouin zone.
We can take this to be the definition of a Fermi surface in a
general EFL. Of course, this “Fermi surface” may or may
not have any signature in, say, angle-resolved photoemis-
sion spectroscopy (ARPES) measurements, and if it does,
the signature might be different in character from that of a
Fermi liquid.
Nevertheless, the fact that n̂ðθÞ is a conserved operator

for every θ tells us that, at any point θ on the Fermi surface,
there are infinitely long-lived excitations which are for-
bidden from scattering away from that point. To see this,
first observe that since n̂ðθÞ is conserved, excitations can be
labeled by their corresponding eigenvalue nðθÞ. An exci-
tation at point θ on the Fermi surface is characterized by

nðθ0Þ ¼ Nδðθ0 − θÞ ð29Þ

for some N. One can show that N is quantized to an integer,
because by the definition of LU(1), the operator

N̂ ¼
Z

n̂ðθÞdθ ð30Þ
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must have integer eigenvalues, since expð−2πiN̂Þ is the
identity operator. Henceforth, we refer to such excitations
as Fermi-surface quanta. From Eqs. (28) and (29), we see
that a single Fermi-surface quantum carries momentum
kðθÞ. Fermi-surface quanta are the generalization of
Landau quasiparticles to a general ersatz Fermi liquid.
Their dynamics, however, could be very different from
Landau quasiparticles. Moreover, apart from the fact that
their number is quantized, the Fermi-surface quanta need
not have particularly “quasiparticlelike” properties.
Nevertheless, the Berry’s phase of a spatially localized
Fermi-surface quantum as it is moved in space or over the
Fermi surface is still a well-defined quantity, which
supplies the general interpretation of the gauge field Aμ

(including the Aθ component) discussed in Sec. V C.
Next, we can consider how the microscopic U(1)

symmetry embeds into LU(1). The quantization of charge,
i.e., the requirement that eið2πÞQ̂ ¼ 1 (where Q̂ is the micro-
scopic charge operator), constrains the embedding to be of
the form

Q̂ ∼ qN̂ ð31Þ

for some integer q. We can interpret q as the charge of a
single Fermi-surface quantum.
Finally, we can consider the ’t Hooft anomaly of the

LU(1) symmetry. There is not much freedom, since as we
see in Sec. V the ’t Hooft anomalies are just classified by
the levelm of the 5D Chern-Simons term Eq. (16), which is
quantized to be an integer. In summary, once we fix the
shape of the Fermi surface, the kinematic properties of an
ersatz Fermi liquid (in the sense of Sec. II) are captured by
the integers q and m. [Note that there is a freedom that
sends q → −q and m → −m simultaneously by redefining
the generators of LU(1); moreover, as we mentioned earlier,
choosing the reverse orientation of the Fermi surface sends
m → −m while leaving q fixed.]
Next we observe that the arguments of Sec. V D can be

applied in any EFL. Therefore, we immediately conclude
that the Fermi surface in any EFL satisfies Luttinger’s
theorem in the form of Eq. (24).
In the remainder of this section, we consider various

aspects of Fermi-liquid phenomenology and argue that they
hold equally well in any EFL.

B. Response to electric fields

A property of Fermi liquids is that if a uniform electric
field is applied, the system responds in essentially the same
way as it would in a noninteracting Fermi gas, which is to
say that the momenta of quasiparticles get shifted (assum-
ing the electric field is in the x direction) according to
kx → kx þ axEt, where ax is the unit cell size in the x
direction. [89] This causes the density operators n̂ðθÞ to be
no longer conserved in the presence of the electric field.
Specializing for simplicity to a Fermi liquid in two spatial

dimensions, the total charge on a segment ½θ; θ þ dθ� of the
Fermi surface gets shifted according to

n̂ðθÞdθ → n̂ðθÞdθ þ qaxEt
dkyðθÞ

ð2πÞ2=ðLxLyÞ
; ð32Þ

where dkyðθÞ ¼ kyðθ þ dθÞ − kyðθÞ, and Lx and Ly are the
linear dimensions of the system (normalized by ax and ay,
respectively, the unit cell dimensions) in the x and y
directions. We have to divide by the denominator in the
second term in Eq. (32) to take into account the density
of single-particle states in momentum space in a finite-
size system.
We now show that Eq. (32) indeed follows from the

’t Hooft anomaly. In order to do that, we want to
reformulate Eq. (32) in a way that removes the explicit
dependence on Ly. We write Eq. (32) as

d
dt

n̂ðθÞ ¼ ηðθ;LyÞ ≔ qE
axLxLy

ð2πÞ2
dkyðθÞ
dθ

: ð33Þ

Next, we identify the difference

ΔηðθÞ ≔ ηðθ;Ly þ 1Þ − ηðθ;LyÞ ð34Þ

¼ qE
axLx

ð2πÞ2
dkyðθÞ
dθ

ð35Þ

with the density shift rate associated with applying a
uniform electric field in the x direction in the presence
of a “flux of y translation” symmetry around the y
direction.
To compute this shift from the ’t Hooft anomaly, we start

with the anomaly Eq. (17) and consider a configuration
where

Ax ¼ Et; ð36Þ

Ay ¼ −kyðθÞ=Ly; ð37Þ

At ¼ 0; ð38Þ

Aθ is independent of x; y; t: ð39Þ

The motivation for our choice of Ay is that it ensures that
the LU(1) flux around the y direction is given by

exp

�
−i

Z
kyðθÞn̂ðθÞdθ

�
; ð40Þ

which coincides with the expression Eq. (14) for the
translation symmetry operator Ty. Substituting into
Eq. (17) and integrating over x and y gives
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∂tnðθÞ þ ∂θJθ ¼
mq
ð2πÞ2 E

dkyðθÞ
dθ

axLx; ð41Þ

where Jθ ¼ R
jθdxdy, and we can identify

R
jtdxdy with

the expectation value nðθÞ ¼ hn̂ðθÞi. Hence, provided that
∂θJθ ¼ 0, we recover Eq. (35) if we set m ¼ 1.
Our assumption that ∂θJθ ¼ 0, even in the presence of a

background electric field, requires a bit more explanation.
Jθ represents a charge circulation along the Fermi surface.
As we mention in Sec. V D, in a Fermi liquid a magnetic
field induces a chiral flow of quasiparticles along the Fermi
surface, in which case Jθ ∝ BnðθÞ and generally ∂θJθ ≠ 0.
So we need to address why the same thing could not happen
with an electric field. Of course, in a Fermi liquid, one can
easily convince oneself that it does not, but we want an
argument that holds more generally in any EFL.
In a quantized formulation of the IR theory, the current

operator Ĵθ is defined by

Ĵθ ¼
Z

δĤ
δAθ

d2x; ð42Þ

where Ĥ is the Hamiltonian of the IR theory. Then we know
that, in the absence of an electromagnetic field, Ĵθ must
satisfy (as an operator identity) the conservation law

d
dt

n̂ðθ; tÞ þ ∂θĴθðθ; tÞ ¼ 0: ð43Þ

On the other hand, in the absence of an external electro-
magnetic field, by assumption n̂ðθÞ should be conserved for
each θ, since it is the generator of the emergent symmetry.
Therefore, in the absence of electromagnetic field, the
current operator identically satisfies

∂θĴθ ¼ 0: ð44Þ

Now observe that because the electric field E enters into the
Hamiltonian “temporally,” i.e., through the time derivative
of A, it is not possible for Ĵθ defined by Eq. (42) to depend
on E because the Hamiltonian is defined on a single time
slice of space-time. Therefore, Ĵθ continues to satisfy
Eq. (44) even with an applied electric field. On the other
hand, it is possible for Ĵθ to depend on the applied magnetic
field, as the Fermi-liquid example demonstrates.

C. Quantum oscillations

Recall that Fermi liquids display “quantum oscillations”
when a weak magnetic field B is applied; that is, various
physical properties are periodic in 1=B [90]. In the case
where the physical property under consideration is resis-
tivity, for example, this is known as the Shubnikov–de Haas
effect. (What we mean by “weak magnetic field” is that
the magnetic flux per unit cell should be much less than 1.

To observe the oscillations at finite temperature T, it
is also necessary that the cyclotron energy Ec should
satisfy Ec ≳ T, which for T > 0 also places a lower bound
on the magnetic fields for which the oscillations are
observable.)
It is sometimes stated that observing quantum oscilla-

tions is evidence for a quasiparticle description, i.e., of a
Fermi liquid. Here, however, we show that there are very
general reasons to expect any EFL to display the same
periodicity of the quantum oscillations. We do not, how-
ever, make any statement about the amplitude of the
quantum oscillations, and it remains possible that this
amplitude and its dependence on parameters such as
temperature will still allow for Fermi liquids and non-
Fermi liquids to be distinguished.
Our task is complicated by the fact that the quantum

oscillations are nonperturbative in the magnetic field, and
therefore, it is not clear that one expects them to be directly
describable in terms of the deep IR theory. Instead, we find
it necessary to appeal to a UV completion.

1. Two spatial dimensions

Let us first consider the case of a system in two spatial
dimensions which microscopically has continuous trans-
lation symmetry, with a microscopic charge density ρ. In
such a case, in the presence of a magnetic field the x and y
translation generators Px and Py fail to commute, but we
can define a “magnetic unit cell” of volume bx × by, such
that the flux per magnetic unit cell is 2π and the discrete
translations Tx ¼ expð−ibxPxÞ and T y ¼ expð−ibyPyÞ do
commute. Then we can define the magnetic filling
νM ¼ ðbxbyÞρ ¼ 2πρ=B, which is the charge per magnetic
unit cell. Next, we can apply all the usual results on filling
with respect to this discrete translation symmetry; in
particular, if νM is not an integer, then the Lieb-Schultz-
Mattis-Oshikawa-Hastings theorem [1–4] forbids the sys-
tem from having a trivial (i.e., not topologically ordered)
gapped ground state, whereas such a state is permitted for
integer νM. Moreover, if we assume that the ground state at
a given νM is itself an EFL with a single Fermi surface, then
Luttinger’s theorem for EFLs implies that at integer νM the
Fermi volume must fill all of the Brillouin zone corre-
sponding to the magnetic unit cell; i.e., the Fermi surface
becomes degenerate, presumably leading to an instability.
Most generally, the point is that since νM mod 1 always
reflects properties of the IR theory according to our general
framework of filling constraints, the nature of the IR theory
must vary with νM mod 1.
These considerations motivate our assumption that, in

general, observable properties of the ground state vary
periodically with νM, with period 1. (The periodicity refers
to the behavior for νM ≫ 1, and where νM varies over an
interval ΔνM ≪ νM. On longer scales, there will be some
envelope function governing the amplitude of the oscil-
lations.) This behavior is well known in the Fermi-liquid
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case, where integer νM (noninteger νM) corresponds to fully
filled (partially filled) Landau levels, respectively. Our
periodicity assumption immediately implies that, if we
keep ρ fixed and vary B, then the periodicity with respect to
1=B is

Δð1=BÞ ¼ 1=ð2πρÞ: ð45Þ

Next we can consider a system in two spatial dimensions
that microscopically has only discrete translation sym-
metry. Here we recall that, even for Fermi liquids, there is a
condition on the Fermi surface in order to observe quantum
oscillations. For a Fermi surface as depicted in Fig. 1, no
quantum oscillations will be observed; physically, one can
think of this as coming from the fact that the semiclassical
orbits of this Fermi surface in a magnetic field are not
closed in position space. The general condition for a Fermi
liquid to display quantum oscillations is that each con-
nected component of the Fermi surface should have trivial
winding number on the Brillouin torus.
Let us therefore examine what we can say about a

general EFL that satisfies this condition. To avoid some
subtleties in the argument, we assume that q ¼ 1. The key
point is that when the Fermi surface does not have non-
trivial winding number, then there is a consistent way to
define the Fermi momentum kðθÞ without any mod 2π
ambiguity. Then we can define the filling that is relevant for
quantum oscillations as

νo ¼
m

ð2πÞ2 VF; VF ¼
Z

kxðθÞ
dkyðθÞ
dθ

dθ; ð46Þ

where VF is the volume enclosed by the Fermi surface, and
this formula holds without any mod 1 equivalence. Note
that νo is not necessarily the same as the microscopic filling
ν, although by Luttinger’s theorem it must differ from it by
an integer. Moreover, we can define emergent symmetry
generators

P̂α ¼ a−1α

Z
kαðθÞn̂ðθÞ ð47Þ

with ax, ay the dimensions of the unit cell, such that
expð−iaαPαÞ ∼ Tα.
This leads us to believe (although we do not give a

rigorous proof) that, even though the actual microscopic
theory may have had only a discrete translation symmetry,
there exists a UV completion of the IR theory with
continuous translation symmetry whose action on the IR
theory is generated by P̂α. Assuming that this is the case,
invoking the continuous translations version of Luttinger’s
theorem shows that the density of U(1) charge in this
UV completion must be ρ ¼ νo=ðaxayÞ. Then with ρ so
defined, we again find that the periodicity of quantum
oscillations is given by Eq. (45).

2. Two spatial dimensions: Multiple Fermi surfaces

As a warm-up to going to three spatial dimensions, we
extend the results of the previous section to the case where
we have several disconnected components of the Fermi
surface, instead of just one. For simplicity, we consider the
case of two components, although the arguments can easily
be generalized. In that case, the emergent symmetry is
LFUð1Þ, i.e., the group of smooth maps from F into U(1),
where F ¼ S1⊔S1, i.e., the disjoint union of two circles. We
can represent this by writing the generators of the emergent
symmetry as n̂ðλÞðθÞ, where θ ∈ S1 and λ ∈ f1; 2g labels
the two components of the Fermi surface. Similarly, we
write the momentum of the Fermi surface as kðλÞðθÞ. We
assume that each component satisfies the condition of no
winding described earlier, which allows us to define the
momentum operator

P̂α ¼
X
λ

a−1α

Z
kðλÞα ðθÞn̂ðλÞðθÞdθ: ð48Þ

The crucial point is the fact that there are two connected
components of the Fermi surface allows us to define two

different U(1) emergent symmetries, generated by Q̂ð1Þ and
Q̂ð2Þ, with

Q̂ðλÞ ¼
Z

n̂ðλÞðθÞdθ: ð49Þ

Therefore, in the same spirit as the argument of the previous
section, we postulate that there is a UV completion with
both continuous translation symmetry and Q̂ð1Þ and Q̂ð2Þ

realized microscopically. Defining ρð1Þ and ρð2Þ to be the
corresponding charge densities, by similar arguments as
earlier we have a generalized Luttinger’s theorem

FIG. 1. A Fermi liquid with a Fermi surface that wraps
nontrivially around the Brillouin torus does not exhibit quantum
oscillations.
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ρðλÞ ¼ m
ð2πÞ2axay

VðλÞ
F ; VðλÞ

F ¼
Z

kðλÞx ðθÞkðλÞy ðθÞdθ:

ð50Þ

Now, in the presence of magnetic field, if we define

magnetic fillings νðλÞM ¼ 2πρðλÞ=B, we expect that any

observable property should be periodic in each of νð1ÞM

and νð2ÞM with period 1. In other words, any observable
property O can be expressed as

O ¼ fðνð1ÞM ; νð2ÞM Þ; ð51Þ

where fðν1; ν2Þ is some function such that fðν1 þ 1; ν2Þ ¼
fðν1; ν2 þ 1Þ ¼ fðν1; ν2Þ. This implies that if we vary B
while keeping ρðλÞ fixed, and assuming that the ratio
ρð1Þ=ρð2Þ is an irrational number, then O varies quasiper-
iodically in 1=B with base frequencies 2πρð1Þ and 2πρð2Þ.

3. Three spatial dimensions

Now we can consider a 3D system. By dimensional
reduction, we can consider a 3D system as a 2D system, but
the Fermi surface of the 2D system will consist of infinitely
many components corresponding to taking slices through
the 3D Fermi surface with fixed kz. By generalizing the
previous discussion to N components, and then taking the
limit as N → ∞, we find that any observable property
should be expressible as

O ¼ F ½ν⊥�; ð52Þ

where F is some functional of ν⊥, and ν⊥ is a function into
R=Z (i.e., the real line with ν ∼ νþ 1 identified) defined by

ν⊥ðkzÞ ¼ 2πρ⊥ðkzÞ
1

B
mod 1; ð53Þ

ρ⊥ðkzÞ ¼
mV⊥ðkzÞ
ð2πÞ2axay

; ð54Þ

where V⊥ðkzÞ is the two-dimensional area enclosed by the
intersection of the Fermi surface with a plane of fixed kz.
We show in Appendix H that this implies, so long as the

functional F is sufficiently regular, that the dependence of
O on B at small B is dominated by the extremal Fermi-
surface cross sections, and we obtain that O varies
periodically or quasiperiodically with 1=B, with base
frequencies 2πρ⊥ðk�zÞ, k�z ∈ Σ, where Σ is the set of
solutions to ðd=dkzÞV⊥ðkzÞ ¼ 0. This is the same result
as for a Fermi liquid.

D. Anomalous Hall effect

The anomalous Hall effect refers to a Hall conductance
that exists in a time-reversal broken system in zero external

magnetic field. In general, there can be many different
effects that contribute to this effect. For a clean free-
electron system with a Fermi surface, there is an interesting
contribution that arises due to the net Berry curvatureΦB of
the filled Fermi sea. In d ¼ 2, we have

σxy ¼
ΦB

2π
: ð55Þ

This contribution can alternately be reexpressed as a Fermi-
surface property in terms of the Berry gauge connection:

ΦB ¼
Z

dθAθ: ð56Þ

Note that the integrand (as opposed to the integral) on the
right-hand side—while involving only the Fermi surface—
is not by itself invariant under k-space gauge transforma-
tions. Going beyond noninteracting systems, for an inter-
acting Fermi liquid, it has been argued [91] that there will
be additional Fermi-surface contributions to the anomalous
Hall conductance that, by contrast to the Berry phase
contribution above, involve an integral over gauge-invari-
ant quantities defined in local patches of the Fermi surface.
Next we show that the ‘t Hooft anomaly of an EFL

directly implies the Berry phase contribution to the anoma-
lous Hall effect. To that end, we start from Eq. (18) and
consider a configuration where the gauge field A has a flux
ΦB through the interior of the Fermi surface in the ðkx; kyÞ
plane, and take the corresponding gauge field components
ðAkx ; AkyÞ to be independent of ðt; x; yÞ. Similar to the
discussion surrounding Eq. (25), we now find that the 5D
Chern-Simons term reduces (assuming that A0; Ax; Ay are
independent of kx and ky) to

SAH ¼ mΦB

8π2

Z
dtdxdyϵIJKAI∂JAK ð57Þ

for the I; J; K ¼ ð0; x; yÞ. This then directly corresponds to
a contribution to the Hall response σxy ¼ ðΦB=2πÞ. We can
write this directly in terms of the boundary theory at the
Fermi surface as ΦB ¼ R

dθAθ. In the free-fermion case,
this is exactly the Berry phase contribution to the anoma-
lous Hall effect discussed above. In a general EFL, we
should regard this as an unavoidable contribution due to the
’t Hooft anomaly of the IR theory. Like in the interacting
Fermi liquid, the full measured anomalous Hall effect may
include other contributions that are “local” on the Fermi
surface. Note that Eq. (57) has the structure of a 3D Chern-
Simons term but with a coefficient that is not quantized to
be an integer in multiples of 1=4π. This is allowed here
because the boundary gauge fields are coupled to the
gapless modes associated with the Fermi surface. The full
boundary action that includes both the Fermi-surface
modes and the unquantized Chern-Simons action of

ELSE, THORNGREN, and SENTHIL PHYS. REV. X 11, 021005 (2021)

021005-14



Eq. (57) will be properly gauge invariant (including under
large gauge transformations).

E. Chiral magnetic effect

The chiral magnetic effect refers to a phenomenon in a
three-dimensional Fermi liquid where if the Chern number
of the Berry curvature on the two-dimensional Fermi surface
is nonzero (which, in a noninteracting Fermi gas, would
occur when the Fermi surface encloses a Weyl point), then
the total charge becomes nonconserved in the presence of
both an electric field and magnetic field, with E ·B ≠ 0
[92]. Recall that the Berry gauge field on the Fermi surface is
still defined in a general EFL. Here we show that when this
Berry gauge field has a nontrivial Chern number in a 3D
EFL, then the system exhibits the chiral magnetic effect.
We start from the anomaly equation that is the analog for

an EFL in three spatial dimensions of Eq. (17) (which was
stated for an EFL in two spatial dimensions); for conven-
ience, we write it in an index-free form as

dð�jÞ ¼ m
48π3

F ∧ F ∧ F; ð58Þ

where d is the exterior derivative on forms, “�” is the
Hodge star operator, and J is the current expressed as a
1-form, and F is the 2-form gauge curvature (which we can
write locally as F ¼ dA, although A may not be globally
defined). Note that all these forms live on a six-dimensional
space M × F , where M is the four-dimensional space-time
manifold, and F is the two-dimensional manifold that
parametrizes the Fermi surface.
Now suppose that we define the total charge current jEM,

which is a 1-form on M, by integrating j over the Fermi
surface F . Suppose furthermore that we write F¼
π�FðFEMÞþπ�MðFBerryÞ, where FEM are 2-forms on M and
F , respectively, and π�F and π�M are the pullback operators
associated with the projections πF∶F ×M → F and
πM∶F ×M, respectively. In index notation, this would just
be saying that F is the sum of two terms, each of which
depends only on, and has only components in, M and F ,
respectively. Then by integrating Eq. (58), we find that

dð�jEMÞ ¼
C
8π2

FEM ∧ FEM; ð59Þ

where

C ¼ 1

2π

Z
F
FBerry ð60Þ

is the Chern number of the Berry curvature. We can also
write Eq. (59) as

∂αjαEM ¼ C
8π2

E ·B; ð61Þ

indicating that the charge is not conserved when the right-
hand side is nonzero.

VII. EXTENSION TO SPINFUL SYSTEMS

Throughout this paper, we assume that the only micro-
scopic internal symmetry is U(1), the charge conservation
symmetry. Physically, one often wants to consider systems
which also have an SU(2) spin-rotation symmetry. In that
case, the full internal symmetry group is U(2), which acts
by matrix multiplication on the vector ðψ†

↑;ψ
†
↓Þ of micro-

scopic spin-up and spin-down electron creation operators.
Here we briefly discuss how the general considerations
above get extended in that case. (One is still allowed to use
the results of previous sections by simply ignoring the spin-
rotation symmetry, but taking into account that the addi-
tional symmetry will lead to stronger constraints.) For
simplicity, we focus on the case of d ¼ 2 spatial
dimensions.
First, we observe that U(2) has a subgroup Uð1Þ↑ ×

Uð1Þ↓ ≤ Uð2Þ corresponding to the diagonal unitary matri-

ces. We write the generators of Uð1Þ↑ and Uð1Þ↓ as Q̂↑ and

Q̂↓; they measure the total number of up-spin and down-
spin electrons, respectively. The total charge is the sum
Q̂ ¼ Q̂↓ þ Q̂↑. They both have corresponding fillings ν↑
and ν↓ in the ground state; however, U(2) invariance of the
ground state immediately implies that ν↑ ¼ ν↓ ≔ ν. The
total charge density is then ρ ¼ 2ν. Now, if we consider a
spinful version of a Fermi liquid, the quasiparticle charge at
each Fermi-surface point will be conserved, as will the total
quasiparticle spin. Note in particular that the quasiparticle
spin at each Fermi-surface point is not separately conserved
due to the presence of Landau interactions in the spin
channel. Thus, for a spinful Fermi liquid, the emergent
symmetry group GIR is a quotient of LUð1Þ × Uð2Þ, where
the quotient corresponds to identifying two U(1) sub-
groups: the U(1) subgroup of U(2) corresponding to unitary
matrices eiθI2, where I2 is the ð2 × 2Þ identify matrix, and
the U(1) subgroup of LU(1) generated by N̂ ¼ R

n̂ðθÞdθ,
where n̂ðθÞ are the generators of LU(1) as in the previous
sections. Therefore, we define a spinful EFL to be a system
which has the same emergent symmetry group GIR. We
assume that the translation symmetry continues to embed
into LU(1) according to Eq. (14), which defines the Fermi
surface of the EFL. Moreover, the mapping of the micro-
scopic U(2) into GIR is induced from a homomorphism
φ∶Uð2Þ → Uð2ÞIR, where the target Uð2ÞIR is the corre-
sponding subgroup of GIR. One can show (for example, by
considering the induced homomorphism on the Lie alge-
bras), that such maps are characterized by an odd [93]
integer q, which again we interpret as the charge of a Fermi-
surface quantum (which in a Fermi liquid would be a
Landau quasiparticle). Then, we have in particular that the
microscopic charge Q̂ corresponds in the IR theory to

Q̂ ∼ qðN̂↑ þ N̂↓Þ; ð62Þ
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where N̂↑ and N̂↓ are the generators of the Uð1Þ↑;IR ×
Uð2Þ↓;IR ≤ Uð2ÞIR symmetry corresponding to the diagonal
matrices in Uð2ÞIR.
Now we can discuss the form that Luttinger’s theorem

must take in a spinful EFL. We imagine inserting a 2π flux
of Uð1Þ↑;IR or Uð1Þ↓;IR; this leads to a projective repre-
sentation of LU(1) described by Eq. (26) with some integer
anomaly coefficient m↑ or m↓, respectively. U(2) invari-
ance again implies that m↑ ¼ m↓ ≔ m. Therefore, repeat-
ing the argument for Luttinger’s theorem, and taking into
account Eq. (62), we find

mq
ð2πÞ2 VF ¼ ν ðmod 1Þ; ð63Þ

where VF is the volume enclosed by the Fermi surface.
With respect to the total charge density ρ ¼ 2ν, on the other
hand, we have

2mq
ð2πÞ2 VF ¼ ρ ðmod 2Þ: ð64Þ

The extra factor of 2 takes into account the two possible
spin values, and agrees (settingm ¼ 1) with the usual result
for spinful Fermi liquids. (Thus, if we definemwith respect
to the total charge as we do in Sec. VI, we find m ¼ 2 for a
spinful Fermi liquid or EFL.)
Our discussion goes through with little modification for a

Kondo lattice in which itinerant electrons couple to a local
spin-1=2 moment in each unit cell. In this case, we can
define a Uð1Þ↑ symmetry generated by Q̂tot

↑ ≔ Ŝz þ N=2þ
Q̂↑, where Ŝz is the total spin component of the local
moments, Q̂↑ is defined as before with respect to the
itinerant electrons, and N is the total number of unit cells.
Assuming no spin ordering of the local moments, we have
that hSzi ¼ 0, and hence, the total filling of Q̂tot

↑ is
νtot↑ ¼ 1=2þ ν↑, where ν↑ is the contribution from the
itinerant electrons. If we now apply similar arguments to
before, we find that Luttinger’s theorem for a putative IR
Fermi liquid requires a large Fermi surface that counts the
local moments as part of the Fermi sea, as previously
discussed with the flux threading argument in Ref. [7].
For an alternative point of view, we can think of the

Kondo lattice model as being obtained from an Anderson
lattice model with a correlated half-filled band of electrons
coupled to a separate weakly correlated partially filled
band. Then, by definition, the charge ρ per unit cell
includes all the microscopic electrons, in particular, the
contribution from the correlated band. If the IR theory is a
spinful Fermi liquid (or spinful EFL), then Luttinger’s
theorem in the form Eq. (64) shows that the Fermi surface
must be large, as in the previous paragraph. Since our
discussion (as well as that of Ref. [7]) of Luttinger’s
theorem does not rely on perturbation theory in the

interaction strength, it holds even in the Kondo limit of
the Anderson model.
Note that the arguments of this section assume that all the

relevant symmetries—charge conservation, spin rotation,
and translation symmetry—are preserved and not sponta-
neously broken, and that the IR theory is a spinful Fermi
liquid or at least a spinful EFL with the same emergent
symmetries. If any of these conditions are violated, then the
appropriate statement of Luttinger’s theorem will be
modified, and in such cases, a “small” Fermi surface could
be permitted in the Kondo lattice model. The case of
fractionalized Fermi liquids, which have a small Fermi
surface while preserving all the symmetries, requires
separate discussion but can be easily understood within
the framework of this paper. We illustrate this for a simple
class of such phases in Sec. X.

VIII. FERMI SURFACES COUPLED TO
DYNAMICAL GAUGE FIELDS

In this section, we consider cases where the IR theory
comprises a Fermi surface coupled to a dynamical gauge
field. As we see, these do not constitute EFLs in the strict
sense of Sec. VI, but they are still closely related and it still
turns out to be helpful to think of the behavior of these
systems in terms of their kinematic properties.
We consider three main examples. The first two examples

relate to a system of interacting electrons in two spatial
dimensions with continuous translational symmetry in a
magnetic field B, such that the magnetic filling ν ¼ 2πρ=B
(where ρ is the electron density) is equal to ν ¼ 1=2. Such a
system of electrons is believed to form a “composite Fermi
liquid”with a Fermi surface of “composite fermions”which
are distinct from the microscopic electrons. There are two
competing proposals for the IR theory of the system, which
we consider separately: the one proposed by Halperin, Lee,
and Read (HLR) [77] and the one proposed by Son [94]. In
the HLR and Son theories, the system is not quite a
conventional Fermi liquid, even when expressed in terms
of the composite fermions, because in the IR theory the
composite fermions still couple to a dynamical gauge field.
The final example relates to a Mott insulator in two

spatial dimensions with discrete translation symmetry and
no magnetic field. In certain circumstances, it is believed
that the IR theory of such a system can have a “spinon
Fermi surface” consisting of emergent fermions coupled to
a dynamical gauge field.

A. HLR theory of composite Fermi liquid

We begin by discussing the microscopic symmetries of
electrons in 2d in a uniform magnetic field. It is well known
that in the presence of such a magnetic field, the translation
operators P̂x and P̂y do not commute. Rather, they satisfy

½P̂x; P̂y� ¼ iBQ̂; ð65Þ
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½P̂x; Q̂� ¼ 0; ð66Þ

½P̂y; Q̂� ¼ 0; ð67Þ

where Q̂ is the operator for the total electric charge
[generator of the global U(1) symmetry]. This symmetry
algebra has to be matched by any putative IR theory. In an
infinite system, we think of these operators Q̂,P̂x,P̂y as the
generators of the symmetry action on local observables;
hence, there is an ambiguity in their definition in that one is
free to shift any of them by a constant without changing the
action on local observables. Thus, one is free to fix them to
have zero eigenvalue in the ground state.
Let us now consider the HLR theory of the composite

Fermi-liquid ground state at ν ¼ 1
2
. Our starting point

is the Lagrangian for the HLR theory, which can be
written as [77,95]

L ¼ L½χ; a� − 2

4π
b ∧ dbþ 1

2π
ðA − aÞ ∧ db; ð68Þ

where a and b are dynamical U(1) gauge fields, and A is the
background gauge field for the microscopic U(1) sym-
metry. Here, χ is a fermion field carrying unit gauge charge
of a, and L½χ; a� is the Lagrangian describing a Fermi
surface of these fermions coupled to the gauge field a. This
is the corrected version (see, e.g., Ref. [95]) of the
Lagrangian initially written by HLR [77], which suffered
from an improperly quantized Chern-Simons term.
Varying with respect to the temporal components a0 and

b0 gives the constraints

n̂χ − B̂b=ð2πÞ ¼ 0; ð69Þ

−2B̂b þ ðB − B̂aÞ ¼ 0; ð70Þ

where n̂χ is the density of the χ fermions, and B̂a and B̂b are
the magnetic fields of the a and b gauge fields, respectively.
Meanwhile, varying with respect to A0 allows us to identify
the microscopic charge density ρ̂ as

ρ̂ ¼ B̂b=ð2πÞ: ð71Þ

We define the excess charge according to

N̂ ¼
Z

ðn̂χ − nχÞd2x; ð72Þ

where nχ is the charge density in the ground state. We also
define the effective magnetic flux that the χ fermions
experience (they couple only directly to a) according to

Φ̂ ¼
Z

B̂ad2x: ð73Þ

Using 2nχ ¼ B and the constraints above, it follows that

2N̂ ¼ −
Φ̂
2π

: ð74Þ

Now we need to consider what form the IR symmetry
takes. Let us first consider what happens if we treat the
gauge fields a and b at the mean-field level. In that case, the
χ fermions do not experience a magnetic field in the ground
state and therefore form a Fermi liquid for which the charge
at each point of the Fermi surface is conserved. Thus, the
emergent symmetry group is still something resembling
LU(1) with generators n̂ðθÞ. It is not exactly LU(1),
however, because if we consider low-energy excitations
that carry a net charge N̂ ¼ R

n̂ðθÞdθ ≠ 0, where n̂ðθÞ are
the generators of the emergent symmetry group, then from
Eq. (74) we see that the χ fermions feel a net magnetic flux.
From the discussion of Sec. V D, we expect the magnetic
flux to induce a projective representation of LU(1). [96]
Hence, the emergent symmetry group is L̃Uð1Þ, where
L̃Uð1Þ is obtained from LU(1) by replacing the commu-
tation relation ½n̂ðθÞ; n̂ðθ0Þ� ¼ 0 obeyed by the generators
n̂ðθÞ of LU(1) with

½n̂ðθÞ; n̂ðθ0Þ� ¼ 2i
1

2π
δ0ðθ − θ0Þ

Z
n̂ðθÞdθ; ð75Þ

and with those elements Uf ∈ LUð1Þ corresponding to
functions f∶S1 → Uð1Þ with nontrivial winding number
Wf ¼ ð1=2πÞ R ∂θfðθÞ excluded. [Because otherwise
Eq. (75) would imply that UfN̂U−1

f ¼ ð1þ 2WfÞN̂, which
is mathematically inconsistent unless Wf ¼ 0.] From
Eqs. (69) and (71), it is clear that the microscopic charge
Q̂ embeds into the IR symmetry group according to Q̂ ∼ N̂.
Meanwhile, the continuous translation symmetry, with
generators P̂x and P̂y should embed according to

P̂α ∼
Z

kαðθÞn̂ðθÞdθ; ð76Þ

which defines the Fermi surface kðθÞ.
We do not attempt to extend the general discussion of

topological terms as in Sec. V C to this more nontrivial
symmetry group L̃Uð1Þ. However, we can at least argue for
a version of Luttinger’s theorem for the composite Fermi
liquid. Unlike in the case of no magnetic field, it turns out
to be unnecessary to invoke the ’t Hooft anomaly of the IR
theory; the result actually follows directly from the struc-
ture of the emergent symmetry group.
From the action of translations on the low-energy theory,

we find that

½P̂x; P̂y� ∼
2VF

2π
N̂; ð77Þ
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where

VF ¼
Z

kxðθÞ
dkyðθÞ
dθ

dθ ð78Þ

is the volume enclosed by the Fermi surface. We emphasize
that here N̂ is not just a number but an operator which acts
nontrivially on the states of the IR theory.
On the other hand, microscopically we know that we

must have the magnetic translation algebra of Eq. (65) with
which we must impose compatibility of Eq. (77). This gives

VF ¼ πB; ð79Þ

which is Luttinger’s theorem for the composite Fermi
liquid.
Now we should discuss to what extent we expect these

considerations to survive once we include gauge fluctua-
tions. The only property of the IR theory that we need to
derive Luttinger’s theorem is that the emergent symmetry
group is L̃Uð1Þ. The question is whether this emergent
symmetry survives the inclusion of gauge fluctuations. Let
us argue that, at any rate, the emergent symmetry group
cannot be a compact Lie group, which suggests that the full
L̃Uð1Þ symmetry is preserved. We cannot apply the results
of Sec. IV to show this because if we define the magnetic
unit cell such that the discrete translations with respect to
this unit cell commute, then the filling with respect to this
unit cell is supposed to be ν ¼ 1=2 for the composite Fermi
liquid, a rational number.
However, we can instead argue as follows. Suppose that

the emergent symmetry group GIR is a compact Lie group.
Then let p̂x; p̂y; q̂ be the elements of the Lie algebra of GIR

corresponding to the microscopic translation symmetries
P̂x and P̂y and the microscopic charge conservation
symmetry Q̂. Then since the microscopic symmetries obey
the algebra of Eqs. (65)–(67), it follows that the same
algebra must be satisfied by p̂x; p̂y; q̂. Equations (65)–(67)
constitute the Heisenberg algebra and cannot be imple-
mented inside of a compact Lie group unless q̂ is identically
zero. To see this, suppose that GIR is a compact Lie group.
Then it admits a finite-dimensional faithful unitary repre-
sentation. Since p̂x; p̂y, and q̂ generate a subgroup of GIR,
this induces a finite-dimensional representation of the
Heisenberg algebra Eqs. (65)–(67). Now we invoke the
famous fact that the Heisenberg algebra does not admit any
finite-dimensional representations in which q̂ acts non-
trivially. [97].
Therefore, we conclude that, if GIR is a compact Lie

group, then the charge conservation symmetry acts trivially
on the IR theory; in other words, the system has a charge
gap and is an electrical insulator. This would be incon-
sistent with the physics expected of a composite Fermi
liquid. Thus, we expect that the emergent symmetry group

remains L̃Uð1Þ in the presence of gauge fluctuations. Of
course, in principle, it could go to some totally different
group that is larger than any compact Lie group, but this
does not seem very plausible, and moreover, as we discuss
in Sec. VI, the charge is still conserved at every point in the
Fermi surface in the conventional description of the fixed
point for a Fermi surface coupled to dynamical gauge field.
Thus, assuming that the emergent symmetry group remains
L̃Uð1Þ, we find that the composite Fermi liquid indeed
obeys Luttinger’s theorem. Note that, though it is suggested
based on numerics in Ref. [98] that Luttinger’s theorem
could be violated in the composite Fermi liquid, more
extensive numerics show this to be a finite-size effect [99].

B. Son theory of composite Fermi liquid

We start from the Lagrangian [94,95]

L ¼ iχ̄=Daχ −
2

4π
b ∧ dbþ 1

2π
a ∧ db −

1

2π
A ∧ dbþ � � � ;

ð80Þ

where a and b are dynamical U(1) gauge fields, and the first
term represents the Lagrangian for a massless relativistic
Dirac fermion field χ coupled to the gauge field a. [100]
The “� � �” represents higher-order terms. This is the
corrected version [95] of the Lagrangian originally written
by Son [94].
Proceeding similarly to Ref. [95], from this Lagrangian

one obtains the constraints

N̂ −
1

4π
Φ̂a þ

1

2π
Φ̂b ¼ 0; ð81Þ

−2Φ̂b þ Φ̂a ¼ 0; ð82Þ

Q̂ ¼ −
1

2π
Φ̂b; ð83Þ

where N̂ is the charge of the χ fermions, Φ̂a and Φ̂b are the
total magnetic fluxes of the a and b fields, respectively, Q̂ is
the total microscopic charge, and all of N̂; Q̂; Φ̂a; Φ̂b
represent the excess values compared to the ground state.
From these equations, we find that N̂ ¼ 0 and Φ̂a ¼ 2Φ̂b.
At the mean-field level, the χ fermions form a Fermi

liquid, so the charge at each point on the Fermi surface is
conserved. However, we have to impose the constraint that
N̂ ¼ R

n̂ðθÞdθ ¼ 0. Assuming for the moment that the
fermions feel no magnetic flux, this would imply that the
emergent symmetry group is ΩUð1Þ ≔ LUð1Þ=Uð1Þ.
Now if we take into account that the fermions feel an

effective magnetic flux given by Φ̂a ¼ 2Φ̂b, we must have
the commutation relation
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½n̂ðθÞ; n̂ðθ0Þ� ¼ −2i
1

2π
δ0ðθ − θ0Þ Φ̂b

2π
: ð84Þ

Since the n̂ðθÞ’s are conserved, it must also be the case that
the magnetic flux Φ̂b is conserved and (since it is quantized
in units of 2π) generates a Uð1Þflux symmetry. We can also
observe that, for a general function f∶S1 → Uð1Þ, Eq. (84)
implies that the corresponding group element Uf satisfies
UfN̂U−1

f ¼ N̂ þ 2WfΦ̂b, where Wf ¼ ð1=2πÞ R ∂θfðθÞdθ
is the integer winding number. Since we are imposing that
N̂ is identically zero (and Φ̂b is not), we must exclude Uf

withWf ≠ 0 from the symmetry group, as in the HLR case.
Hence, the full emergent symmetry groupGIR is a central

extension of Ω0Uð1Þ by Uð1Þflux where Ω0Uð1Þ ¼ L0Uð1Þ,
and L0Uð1Þ=Uð1Þ is the subgroup of LU(1) corresponding
to functions f∶S1 → Uð1Þ with trivial winding number. We
note that this is a different group compared to the HLR
case, which reflects a physical difference between the Son
and HLR theories.
Equation (83) tells us how the microscopic U(1) sym-

metry embeds into GIR, and as before, the continuous
translation should embed according to Eq. (76), which
defines the Fermi surface. By similar arguments to the HLR
case, one again finds Luttinger’s theorem Eq. (79) for the
composite Fermi liquid. Since again, the only property of
the IR theory that we use is the nature of the emergent
symmetry group, we expect that this result continues to
hold in the presence of gauge fluctuations.
Note that our argument for Luttinger’s theorem in the

Son theory is very different from the one given by Son [94],
who noted that the density of composite fermions is given
by ρCF ¼ B=ð4πÞ and then invoked Luttinger’s theorem for
a Fermi liquid to relate this to the volume of the Fermi
surface. Of course, the composite Fermi liquid is not a
Fermi liquid beyond mean-field theory, but the arguments
of this paper show that Luttinger’s theorem is, in fact, far
more general. However, from this point of view, it remains
unclear whether one ought to expect Luttinger’s theorem to
hold with respect to ρCF, since the composite fermions do
not carry charge under any global U(1) symmetry. The
argument we give above does not suffer from these
difficulties.

C. Spinon Fermi surface

Finally, let us consider a system in two spatial dimen-
sions where the IR theory consists of a spinful Fermi
surface coupled to a dynamical U(1) gauge field. This
should apply, for example, to Mott insulators exhibiting a
“spinon Fermi surface.”
If we treat the dynamical gauge field at the mean-field

level, then the fermions form a spinful Fermi liquid
described by the considerations of Sec. VII. Thus, the
Fermi surface density n̂ðθÞ is conserved. In particular, if we
use the observation of that section that a spinful Fermi

surface has anomaly coefficient m ¼ 2 with respect to the
total charge U(1), we conclude that the n̂ðθÞ’s must satisfy

½n̂ðθÞ; n̂ðθ0Þ� ¼ −2i
1

2π
δ0ðθ − θ0Þ Φ̂b

2π
; ð85Þ

where Φ̂b is the operator that measures the magnetic flux of
the dynamical gauge field. Moreover, we have to impose
that the total gauge charge is zero, so

R
n̂ðθÞdθ ¼ 0. We see

that the emergent symmetry group GIR takes the form
GIR ¼ GIR;charge × SOð3Þ, where the charge part GIR;charge

is identical to the emergent symmetry group of the Son
theory as we describe above [although for an electrical
insulator the microscopic charge, U(1) will act trivially on
the IR theory instead of embedding into the emergent
Uð1Þflux], while the SO(3) part accounts for the spin-
rotation symmetry of the spinons. [101].
Unlike in the quantum Hall systems discussed above, for

a Mott insulator one microscopically has only a discrete
(commuting) translation symmetry. The discrete transla-
tions must embed into GIR in the usual way:

Tα ∼ exp

�
−i

Z
kαðθÞn̂ðθÞ

�
; ð86Þ

which defines the Fermi surface. From Eq. (85), the
requirement that Tx and T y commute give a nontrivial
constraint:

VF

ð2πÞ2 ¼ 0 or
1

2
ðmod 1Þ; ð87Þ

where VF is the volume enclosed by the Fermi surface.
We can obtain more information by considering the ’t

Hooft anomaly of the IR theory and invoking the filling
constraints of Sec. III B. We assume that the system
microscopically has spin-rotation symmetry, so that the
full microscopic internal symmetry group is U(2), and in
particular, there is a Uð1Þ↑ × Uð1Þ↓ subgroup as we discuss
in Sec. VII, and we can define the corresponding fillings ν↑
and ν↓ which satisfy ν↑ ¼ ν↓ ≔ ν and ρ ¼ 2ν, where ρ is
the filling of the total charge. For an insulating state without
symmetry fractionalization (see Sec. X), the microscopic
charge U(1) acts trivially on the IR theory, and hence, from
the general theory of filling constraints, we find that ρ must
be an integer. On the other hand, for a band insulator, ρ
must be an even integer (taking into account the two spin
components). Since a Mott insulator by definition is an
insulator that exists at fillings where band insulators are
impossible, we conclude that ρ for a Mott insulator must be
an odd integer, and hence, ν ¼ 1=2ðmod 1Þ.
From the general discussion of Sec. III B, we now see

that if we apply a fluxΦ↑ of Uð1Þ↑ and fluxΦ↓ of Uð1Þ↓, it
must be the case that translations act projectively on it,
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T xTyT−1
x T−1

y ¼ ð−1ÞðΦ↑þΦ↓Þ=ð2πÞ: ð88Þ

Now we need to see how this comes about in the IR theory.
We return to Eq. (85) but take into account that, at the
mean-field level where we can treat the dynamical gauge
field as a background, the fermions now feel an effective
Uð1Þ↑ flux of Φ̂b þΦ↑ and an effective Uð1Þ↓ flux of

Φ̂b þΦ↓. Hence, Eq. (85) gets generalized to [102]

½n̂ðθÞ; n̂ðθ0Þ� ¼ −i
1

2π
δ0ðθ − θ0Þ 2Φ̂b þΦ↑ þΦ↓

2π
; ð89Þ

which indeed gives Eq. (88) provided that

VF

ð2πÞ2 ¼
1

2
ðmod 1Þ; ð90Þ

which is Luttinger’s theorem for a spinon Fermi surface.
As usual, wemust consider towhat extent we expect these

results to hold beyondmean-field theory. The result Eq. (87)
depends only on the structure ofGIR, sowemust askwhether
GIR remains the same upon including gauge fluctuations.
Since we are assuming the system is a Mott insulator, with
integer filling of themicroscopic U(1) charge, we cannot use
the results of Sec. IV. Still, as wemention in the introduction
to Sec. VI, the charge on each patch of the Fermi surface
remains conserved in the usual approach to Fermi surfaces
coupled to a dynamical gauge field, suggesting that GIR is
indeed robust to gauge fluctuations and that Eq. (87) is
satisfied generally. To get the stronger result Eq. (90), we
also have to assume that the ’t Hooft anomaly of the IR
theory captured by Eq. (89) remains unchanged by gauge
fluctuations. However, the classification of ’t Hooft anoma-
lies is discrete—more concretely, there is no way to
continuously deform Eq. (89) without leading to incon-
sistencies—so it seems unlikely that the ’t Hooft anomaly
would be affected by gauge fluctuations. Moreover, from
Eq. (87) the only possibility other than Eq. (90) would be
VF=ð2πÞ2 ¼ 0ð mod 1Þ, in which case, the Fermi surface is
singular and presumably unstable.

IX. IMPOSSIBILITYOF FERMI ARCSANDOTHER
CONSTRAINTS ON THE FERMI SURFACE

A. Fermi arcs

In the celebrated pseudogap normal phase of the cuprate
high-temperature superconducting materials, ARPES mea-
surements observe “Fermi arcs” rather than a closed Fermi
surface (see, e.g., Ref. [103] for a review). One possible
explanation is that these materials still have a closed Fermi
surface, but for some reason parts of the Fermi surface are
not easily visible to the ARPES probe. On the other hand,
three-dimensional Weyl semimetals exhibit Fermi arcs at
their two-dimensional boundaries [104], but these can exist
only at the boundary of a gapless three-dimensional bulk.

It is an important fundamental question to ask whether a
system with true Fermi arcs (not related to the above
mechanisms) can ever exist.
Specifically, in this section we ask whether it is possible

to extend the framework of EFLs to substitute a closed
Fermi surface with a Fermi arc. We find that there is an
obstruction to doing so. Therefore, in light of the results of
Sec. IV, the only remaining route to Fermi arcs, assuming
that they can exist in systems at generic filling, would be to
find some other way to have an emergent symmetry group
larger than any compact Lie group, different from what
occurs in EFLs.
Let us consider a theory in d spatial dimensions

described by a suitable generalization of the EFL class
discussed in Sec. VI. Specifically, we imagine that the
Fermi surface is a parametrized by a (d − 1)-dimensional
manifold F, but, instead of requiring that F be a closed
manifold as before, we allow it to be a manifold with
boundary. Then we assume that the emergent symmetry
group is LFUð1Þ, the space of smooth maps from F to U(1).
We can discuss ’t Hooft anomalies as before, and again we
find that the ’t Hooft anomaly should be described by
inflow from a Chern-Simons term on a higher-dimensional
manifold, for example, for d ¼ 2:

S½A� ¼ m
24π2

Z
Mþ×F

A ∧ dA ∧ dA; ð91Þ

whereMþ is an extension of the (dþ 1)-dimensional space-
time manifold to a (dþ 2)-dimensional manifold. Now,
however, we immediately encounter a problem if F has a
boundary ∂F, because the Chern-Simons term is not gauge
invariant—that is, the system has a ’t Hooft anomaly—in the
presence of boundaries (unless m ¼ 0). At the boundary of
Mþ, the gauge variation is canceled by the ’t Hooft anomaly
of the EFL, but since the interior of Mþ is supposed to
correspond to a gapped SPT bulk, there is no way to cancel
the anomaly at Mþ × ∂F.
Should we be worried about this anomaly? In general, an

uncanceled ’t Hooft anomaly signals a violation of charge
conservation. We can see this concretely in spatial dimen-
sion d ¼ 2 if we assume a particular model of a Fermi arc
which has Fermi-liquid-like quasiparticles. Then in the
presence of a magnetic field, the quasiparticles have a chiral
flow along the Fermi surface as discussed in Sec. V D, but
when they reach the end of the Fermi arc they have no
choice but to simply disappear. This violates conservation
of microscopic charge (if the microscopic charge q of a
quasiparticle is nonzero) and conservation of momentum
(even when q ¼ 0). Beyond this simple model, the ’t Hooft
anomaly indicates the same issue with lack of charge or
momentum conservation, and therefore, we must impose
that, if F has a boundary, then m ¼ 0. However, by the
discussion of Sec. V D, this would imply the filling
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ν ¼ 0 mod 1, so it cannot correspond to a state that exists
at generic filling.
Of course, this is only a proof of the impossibility of

Fermi arcs if we assume that the system is described by the
EFL framework. We cannot make more general statements,
except to recall from Sec. IV that any system that can exist
at generic filling, yet is not an EFL, needs to find some
other way of having an emergent symmetry group that is
larger than any compact Lie group.
Finally, we should address one physical mechanism that

one might think of to generate Fermi arcs, where the system
couples to a critical boson at some wave vector q. Then, in
the quasiparticle picture described above, one could imag-
ine that a quasiparticle, upon reaching the end of a Fermi
arc at momentum k, jumps to the beginning of another arc
at momentum k − q while emitting a boson of momentum
q. In the language of emergent symmetries, this would
correspond to introducing another operator N̂boson that
generates a U(1) group, and then writing the translation
symmetry as

Tα ¼ exp

�
−i

Z
kαðθÞn̂ðθÞdθ

�
exp ð−iqαN̂bosonÞ: ð92Þ

This would amount to postulating a slightly different
emergent symmetry group, namely, a modification of
LU(1) where one allows the corresponding functions
f∶S1 → Uð1Þ to have at least a finite number of disconti-
nuities. The question is whether there is a meaningful
nontrivial anomaly that one could write for such a group, as
is necessary if it is to describe a system with noninteger
microscopic filling. It seems likely that there is not, for
reasons that we explain at the end of the next subsection.

B. More general constraints

Returning to EFLs, we can also obtain some more
general constraints than just the impossibility of Fermi
arcs. Indeed, the most general statement is that the Fermi
surface must “enclose” a volume in a suitable generalized
sense. This obviously fails for Fermi arcs, but it also rules
out Fermi surfaces which are closed but nevertheless fail to
enclose a volume in the Brillouin zone; e.g., see Fig. 2(c).
Let us imagine generally that we construct the Fermi

surface out of a collection of “patches” which might be
glued together along their boundaries and might not all
have the same values of the anomaly coefficient m. Then
the requirement that the Chern-Simons term be gauge
invariant places a constraint on how patches are allowed
to be glued together. For example, in two spatial dimen-
sions, the rule is that the sum of the anomaly coefficients
for all the segments of Fermi surface (taking into account
the orientation of the segment) intersecting at a given point
must be zero. This is the most general sense in which the
Fermi surface must be “closed.” Thus, the configuration

shown in Fig. 2(f) is allowed, but the one shown in Fig. 2(b)
is not.
In fact, we can make an even stronger statement:

Configurations such as the one shown in Fig. 2(c), even
though the Fermi surface is closed, are also disallowed
(except possibly in the case where the Fermi-surface quanta
are uncharged, i.e., q ¼ 0). In this case, the Chern-Simons
term is gauge invariant, but there is still an issue with the
implementation of translation symmetry. Recall that for
d ¼ 2, the translation symmetry T x and microscopic charge
operator Q̂ can be expressed in terms of the LU(1)
generators n̂ðθÞ as

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Allowed (✓) and disallowed (✗) Fermi-surface con-
figurations in a two-dimensional Brillouin zone. Each Fermi-
surface segment has an associated anomaly coefficient m shown
by the number next to the segment. An arbitrary choice of
orientation of the segment (denoted with arrows) determines the
convention for the sign of m. For allowed configurations, it is
always possible to define an integer function nðkÞ—depicted
here by the different shading colors of different regions—such
that the boundary between two regions carries the anomaly
coefficient determined by the difference of nðkÞ between the two
regions. In a Fermi gas, nðkÞ represents the number of occupied
bands at the point k.
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Tx ∼ exp

�
−i

Z
kxðθÞn̂ðθÞdθ

�
; ð93Þ

Q̂ ∼ q
Z

n̂ðθÞdθ: ð94Þ

In light of the commutation relations Eq. (19), when acting
on a 2π flux we have

TxQ̂T−1
x ∼ Q̂þmqWx; ð95Þ

where

Wx ¼
1

2π

Z
dkxðθÞ
dθ

dθ ð96Þ

is a winding number of the Fermi surface on the Brillouin
torus. However, microscopically the translation operator
should commute with the charge, so we must impose that
mqWx ¼ 0. Another way to see this (which generalizes
more easily to higher dimensions) would be impose
conservation of microscopic charge on the electric field
response discussed in Sec. VI B.
From such considerations, we can obtain the most

general constraint on the Fermi surface. We find that it
must be the case that each point k in the Brillouin zone can
be assigned an integer nðkÞ, such that the boundary
between two regions with different nðkÞ carries a Fermi
surface with anomaly coefficient m given by the difference
Δn. In a Fermi gas, nðkÞ has a natural interpretation:
It describes the number of bands that are occupied at the
point k. What we find is that such an nðkÞ can always be
defined in any consistent EFL. Note that, in general, the
Fermi surface determines only nðkÞ up to addition of a
k-independent integer. Repeating the analysis of Sec. V D
in this more general setting, we can also now formulate the
most general version of Luttinger’s theorem:

q
ð2πÞd

Z
d2knðkÞ ¼ ν ðmod 1Þ; ð97Þ

where the integral is over the whole Brillouin zone.
We remark that a compact mathematical way to state the

above results is if we think of the Fermi surface, together
with associated anomaly coefficients m of the different
patches, as defining a chain (in the homology theory sense)
ω ∈ Cd−1ðTd;ZÞ, where Td represents the Brillouin zone.
Then the requirement that the Chern-Simons term be
gauge invariant implies that this chain is closed, i.e., it
has trivial boundary ∂ω ¼ 0, whereas from the winding
number arguments, we find that this chain must be exact,
ω ¼ ∂κ for some κ.
Finally, we note that in retrospect the result should have

been clear, because however the microscopic translations
act in the IR theory (which is specified by specifying the

Fermi surface), it must be possible to compute a filling ν by
considering the anomaly of the emergent symmetry group.
For Fermi surfaces that do not enclose a volume, there is
evidently no meaningful way to define an associated ν. It is
for this reason that we do not expect there to be any
nontrivial anomalies associated with the modified sym-
metry group described in the last paragraph of Sec. IX A,
again because it would lead to Fermi surfaces that do not
enclose a volume and therefore have no meaningful ν
associated with them.

X. THE ROLE OF FRACTIONALIZATION

The analyses in Secs. III and IV are not sufficient to
describe systems which admit fractionalized excitations,
i.e., localized excitations which cannot be created locally.
To see this, consider a specific and familiar example,
namely, a system of bosons on a lattice in two spatial
dimensions with microscopic filling ν ¼ 1=2. A symmetry-
preserving ground state that is allowed is one where the IR
theory is equivalent to a Z2 gauge theory [105–107]. Let us
first recall the physical properties of this state and how it is
allowed at filling ν ¼ 1=2. The key property is that the
ground state is topologically ordered and admits fraction-
alized excitations, which we can label as 1; e; m; f, where e
is the Z2 gauge charge, m is the Z2 gauge flux, and f is the
composite of e and m. Moreover, these excitations can
exhibit “symmetry fractionalization” of the microscopic
symmetries, which roughly means that they carry fractional
quantum numbers. Specifically, in the ν ¼ 1=2 Mott
insulator, one of the excitation types (say, e) carries
half-quantized charge under the microscopic U(1) sym-
metry. This is allowed because these excitations are
fractionalized and can be created only in pairs. More-
over, them particle also experiences translational symmetry
fractionalization [107–109], which is to say that
TxT yT−1

x T−1
y ¼ −1 when acting on a single m excitation.

Again, this does not contradict the fact that translations
commute microscopically, because the global number of m
particles is always even. Physically, one can think of the
translational symmetry fractionalization as saying that the
ground state has an e particle in each unit cell; the −1 phase
factors then come from the −1 braiding phase for m going
around e. But then since the e particle has 1=2 charge under
the microscopic U(1), these e particles contribute a filling
ν ¼ 1=2. It is also instructive to ask how this state is
compatible with the momentum balance constraints from
flux threading introduced by Oshikawa [7]. The point is
that adiabatic threading of a 2π flux through one cycle of a
torus shifts the ground state from one topological sector to
another which is at a different total crystal momentum [5].
This change of the ground-state momentum is then able to
match what is expected from flux threading.
How should we think about the emergent IR symmetry

of this state? Deep in the IR, at scales below the gap to all
quasiparticle excitations, we can describe it as a purely
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topological theory. Naively, the only emergent symmetry of
the resulting theory might seem to be GIR ¼ Z2 generated
by the “electromagnetic duality” which exchanges a Z2

gauge charge with a gauge flux; however, for the theory
under consideration, neither translations nor the micro-
scopic charge U(1) map into this duality symmetry.
Therefore, following the analysis of Sec. III we immedi-
ately conclude that ν ¼ 0mod 1. How then, are we to make
sense, in the context of our general framework, of the fact
that such a IR theory actually can exist at ν ¼ 1=2?
We have to think about what went wrong in the argument

of Sec. III B. The assumption we make there is that a 2π
flux of the microscopic symmetry generated by the micro-
scopic charge Q̂ will correspond in the IR theory to a 2π
flux of Q̂IR, the generator of the corresponding IR sym-
metry. In any system with a charge gap, we have that Q̂IR is
identically zero, so we conclude that such an object is
completely trivial, leading to a trivial filling. However, in
the Z2 gauge theory example, a 2π flux of the microscopic
symmetry is evidently a nontrivial object since acting on it
we have TxT yT−1

x T−1
y ¼ −1. In fact, as a defect of the IR

theory, it is equivalent to an m particle. In general, an
interpretation of nontrivial symmetry fractionalization is
precisely the statement that certain flux configurations of
the microscopic symmetry look like topologically non-
trivial excitations of the IR theory. Therefore, it is always
necessary to take into account symmetry fractionalization
when computing the filling.
Let us first recall a few cases from previous works where

symmetry fractionalization of the microscopic symmetry
affects the filling. The first case generalizes the deconfined
Z2 gauge theory for bosons at ν ¼ 1=2 (as we discuss
above) to situations where the IR theory is an arbitrary
gapped ð2þ 1ÞD gapped topological phase. The compu-
tation of ν has been discussed in Refs. [10,11]. The basic
idea is that the translational symmetry fractionalization is
described by a class in H2ðZ × Z; AÞ ≅ A, where A is the
group of Abelian anyons. Roughly, we can imagine that
there is a background a particle sitting in each unit cell.
Meanwhile, the symmetry fractionalization of U(1) is
described by an Abelian anyon b, which we can think
of as the anyonic charge carried by a 2π flux. Because of
the background of a particles, if b particles have nontrivial
braiding phase Sab with a particles, then they carry a
projective representation of translation symmetry. Thus, we
find that the filling is given by

ν ¼ 1

2πi
log Sab ðmod 1Þ: ð98Þ

A nice way to interpret this equation is that since a
2π flux has nontrivial braiding Sab with an a particle,
then the a particle must carry fractional charge qa ¼
ð1=2πiÞ log Sabð mod 1Þ under the U(1) symmetry.
Therefore, since we have an a particle in each unit cell,
the average charge per unit cell is ν ¼ qa.

Building on the previous case, we can imagine a scenario
where the IR theory is equivalent to stacking a gapless
theory Cgapless without any topologically nontrivial excita-
tions and a gapped topological theory Cgapped. In that case,
the microscopic filling ν is simply the sum of the con-
tributions from each component:

ν ¼ νgapless þ νgapped; ð99Þ

where νgapless is computed according to Sec. III, and νgapped
is computed according to the previous paragraph. An
example of such a case is the FL* Fermi liquid discussed
in Refs. [8,9].
If we want to construct a more general theory beyond

these examples, we might start to become a bit more
uncertain about what exactly we mean in general by a
“topologically nontrivial excitation.” Instead, we introduce
an alternative formalism that is more readily general-
izable [110–113]. To motivate this formalism, note that
in the Z2 gauge theory example,GIR ¼ Z2 is not in fact the
only emergent symmetry of the IR theory. Indeed, gapped
topological phases in two spatial dimensions, such as Z2

gauge theory, have emergent 1-form symmetries [27]. This
is a general feature of gapped topological phases. In fact,
one can think about the 1-form symmetry operators, which
act on closed strings when d ¼ 2, as becoming the open
string operators that create topologically nontrivial excita-
tions at the end points when the string is broken.
Once one has introduced the emergent higher-form

symmetries, one can phrase symmetry fractionalization
entirely in terms of these symmetries without needing to
talk about excitations at all. In general, a d-dimensional
system can have emergent 0-form, 1-form,..., up to (d − 1)-
form symmetries. These symmetries combine into a struc-
ture called a “d-group” [112,114–116], which we denote
G

IR
. Meanwhile, the microscopic symmetries can also be

thought of as forming a d-group G
UV

, although normally
we consider the case where the microscopic symmetries are
all 0-form, and there are no nontrivial higher-form sym-
metries. Then the correct way to describe the action of the
microscopic symmetries on the IR theory is through an n-
group homomorphism

ρ∶G
UV

→ G
IR
: ð100Þ

One might think if the microscopic symmetries are all
0-form, then we do not need to worry about the higher-form
part of G

IR
, but it turns out that even in this case the

homomorphism ρ contains not just the data of how the

microscopic symmetries map into emergent 0-form sym-
metries, but also the data of the symmetry fractionalization
of the microscopic symmetries, which can be interpreted as
relating to the interplay between the microscopic sym-
metries and the emergent higher-form symmetries.
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It is instructive to consider another case, in addition to
gapped topological phases, where higher-form symmetries
modify the relation between microscopic filling and the
properties of the IR theory, namely, superfluids, which
spontaneously break the charge U(1) symmetry. A super-
fluid in d spatial dimensions has an emergent U(1) (d − 1)-
form symmetry, since the winding number of the order
parameter along any closed curve is conserved in the IR
theory. Moreover, a superfluid is a compressible phase
which can exist at any filling. One can show that the filling
is encoded in the symmetry fractionalization of the trans-
lation symmetry by the (d − 1)-form symmetry. Physically,
this is reflected in the fact that a vortex sees an “effective
magnetic field” given by the charge density [117,118].
Finally, it is necessary for us to address the question of

whether symmetry fractionalization can allow for the spirit
of Theorem 1 to be bypassed; that is, is it possible for a
system whose emergent symmetry is described by a
compact Lie d-group to exist at generic filling? The
superfluid example above shows that we have to restrict
to systems in which the microscopic U(1) and translation
symmetries are not spontaneously broken. In that case, we
conjecture that a compact Lie d-group symmetry is
incompatible with generic filling. To motivate this, first
we expect that in order to have generic filling, at the least,
the system needs to have an emergent continuous (d − 1)-
form symmetry (e.g., a 1-form symmetry in d ¼ 2 or a 2-
form symmetry in d ¼ 3). The usual way to get emergent
continuous higher-form symmetries is to have an emergent
deconfined gauge field. However, in d ¼ 3, for example
(we return to the more subtle d ¼ 2 case below), we know
that a deconfined U(1) gauge theory has two 1-form
symmetries (electric and magnetic) but no 2-form sym-
metry. We can contrast this with gapped topological phases
in d ¼ 3, which typically have both a 1-form symmetry and
2-form symmetry.
We also recall that a deconfined U(1) gauge theory in

d ¼ 2 spatial dimensions is dual to a superfluid, and that
the only way for such a theory to be stable (other than by
coupling to charged gapless fermions, which would explic-
itly break the 1-form symmetry) is if the monopole events
(in the superfluid language, charge-creation events) are
forbidden by one of the microscopic symmetries, in which
case, this symmetry will be spontaneously broken.
Therefore, it appears, at least in these well-known mech-

anisms for obtaining emergent higher-form symmetries, that
there is noway toobtain generic fillingwithout spontaneously
breaking either themicroscopicU(1) or translation symmetry.
Whether there is some less familiar theory in d spatial
dimensions with an emergent (d − 1)-form symmetry that
can achieve this, we leave as an open question.

XI. DISCUSSION: RELATION TO “VIOLATIONS
OF LUTTINGER’S THEOREM”

In this work, we argue that Luttinger’s theorem, or a
suitable generalization, in fact should hold in great

generality, both for Fermi liquids and at least a certain
class of non-Fermi liquids. Therefore, we must contend
with past works that have reported a violation of Luttinger’s
theorem in various settings.
In certain cases [119–121], attempts have to been made

to formulate Luttinger’s theorem in a way that could apply
beyond perturbation theory in the interaction strength by
expressing it in terms of the volume enclosed both by
traditional Landau Fermi surfaces on which the electron
Green’s function Gðk;ωÞ has a pole at ω ¼ 0 and by
“Luttinger surfaces” in which ReGðk;ωÞ changes sign via
a zero of Gðk; 0Þ instead of a pole. However, it has been
shown that no such result holds in general [122,123]. In our
work, we define a Fermi surface in a general system by its
emergent symmetries, rather than by any particular prop-
erty of the electron Green’s function. Our version of
Luttinger’s theorem is therefore very different from the
one disproven by Refs. [122,123].
A potential violation of Luttinger’s theorem has been

discussed in the context of holographic models [124–127].
For a system that is holographically dual to a gravitational
theory that includes a black hole, the charge hidden behind
the event horizon does not contribute to the volume
enclosed by the Fermi surface. It is not clear, however,
whether such a scenario can ever actually occur at zero
temperature, since an event horizon would be associated
with a nonzero entropy density, seemingly in tension with
the third law of thermodynamics. If somehow the event
horizon could be stabilized at zero temperature, however,
one could envision it being associated with some exotic
emergent symmetry group that is larger than any compact
Lie group but different from that of a Fermi liquid, in which
case, a violation of Luttinger’s theorem would be compat-
ible with the considerations of this paper.
Next we discuss the numerical study of the t − J model

in Ref. [128]. By an analytic continuation of a high-
temperature series expansion, Ref. [128] computed the
properties of the t − J model down to around temperature
T ∼ 0.2J and found that, for several different definitions of
the Fermi surface at finite temperature, the volume inside
the Fermi surface appears to be plateauing at a value less
than the value predicted by Luttinger’s theorem. However,
our arguments in favor of Luttinger’s theorem apply only at
zero temperature. Since the ground state of the t − J model
is unknown and could well exhibit exotic physics such as
high-temperature superconductivity, the significance of
these finite-temperature observations remains unclear,
especially given the ambiguity of the definition of the
Fermi surface at finite temperature and the fact that the
results of Ref. [128] also contain hints of Fermi arcs (see
Sec. IX A).
Finally, we discuss Ref. [129], which studied an SUðNÞ

generalization of the t − J model in a 1=N expansion
where a Fermi-liquid mean-field solution becomes exact in
the limit as N → ∞. Reference [129] found that the
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fluctuations appear to cause a violation of Luttinger’s
theorem to leading order in 1=N. According to our general
arguments, a violation of Luttinger’s theorem must corre-
spond to a change in the emergent symmetry group (such
that the system is no longer an EFL). However, the mean-
field solution is an EFL, in particular, a Fermi liquid, and it
seems unlikely that fluctuations could give rise to a new
emergent symmetry not already present while remaining
perturbative. Therefore, assuming there is no error in the
calculations of Ref. [129], it seems that we must interpret
their results as signaling a breakdown of perturbation
theory, such that the radius of convergence in 1=N is zero.
In that case, there is no reason to believe that Luttinger’s
theorem is violated at all.

XII. CONCLUSION AND OUTLOOK

In this work, we make significant progress toward an
understanding of strongly correlated metals, going beyond
both Fermi-liquid theory and perturbation theory in the
interaction strength. We highlight the essential role of the
emergent symmetry of the IR theory and its ’t Hooft
anomaly.
Going forward, we believe that our work leads to a new

perspective on studies of non-Fermi liquids: From our point
of view, a crucial question one should ask about any
potential non-Fermi-liquid state is what its emergent
symmetry group is, and if it is supposed to represent a
compressible state, in what way does the emergent sym-
metry group and its ’t Hooft anomaly enable the system to
satisfy the filling constraints developed in this paper for a
continuously tunable filling ν? (In particular, in this case,
the emergent symmetry group must be larger than any
compact Lie group.)
What one might expect to find is that, in fact, every non-

Fermi liquid is simply an EFL as defined in Sec. VI or a
slight variant of it (for example, including fractionalization
as discussed in Sec. X). It is a very important open question
to determine whether there might be a fundamentally
different way to realize compressible metallic states, with
a totally different emergent symmetry group (which must
still be larger than any compact Lie group). If such a
possibility were to be realized, we would still expect that
consideration of the emergent symmetry group and its ’t
Hooft anomaly would still be a powerful way to determine
properties of the system, as we find for EFLs.
In particular, it is quite energizing to imagine how our

results apply to the strange metal phase in cuprates [103],
assuming that it is possible for it to extend all the way down
to a critical point at zero temperature and assuming that it
can exist in a translationally invariant system without
disorder. The filling at which the critical point occurs does
not appear to be near any particular rational filling.
Therefore, it is likely that the filling is generic and can
be continuously tuned depending on the microscopic
parameters, which as we note, leads to very strong

constraints on the IR theory. Although the strange metal
has extremely exotic properties, there does not appear to be
any obvious reason why it could not still be an EFL. (In
particular, we emphasize again that the “Fermi-surface
quantum” excitations of an EFL do not need to have the
nature of quasiparticles, which are certainly expected to be
absent in the strange metal.) Identification of the strange
metal as being in the EFL class, or even a significant
generalization of it, would have further profound implica-
tions, which we explore in a subsequent work [130].
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APPENDIX A: FILLING DOES NOT
CORRESPOND TO THE BOUNDARY

OF A SPT PHASE

Here we explain why, contrary to what one might
initially assume, filling in d spatial dimensions does not
correspond to a boundary of a bulk SPT phase in dþ 1
spatial dimensions, when viewed in terms of the micro-
scopic symmetries. The relevant symmetry group is
GIR ¼ Zd × Uð1Þ. One can show [131–133] that the
SPT classification for such a symmetry group in D spatial
dimensions is given by

CD ×
Yd
r¼1

C
×

�
d

r

�
D−r ; ðA1Þ

where Cm is the classification of U(1) SPT phases in m
spatial dimensions, C×k denotes the product of k copies of

C, and
� d
r

�
is the binomial coefficient. Physically, CD

correspond to “strong” SPT phases, i.e., those protected by
U(1) alone, while the remaining terms correspond to
“weak” SPT phases that can be understood by stacking
layers of lower-dimensional strong SPT phases.
If filling in d spatial dimensions could somehow corre-

spond to a SPT phase in D ¼ dþ 1 spatial dimensions,
then it would have to be a SPT phase that inherently relies
on all d translation symmetries. Therefore, the only term
in Eq. (A1) that could be relevant is the r ¼ d term, C1.
The problem is that there are no one-dimensional SPT
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phases protected by U(1) alone, in either bosonic or
fermionic systems. Therefore, C1 ¼ 0. So we conclude
that there are no SPT phases in dþ 1 spatial dimensions
that could correspond to filling in d dimensions.

APPENDIX B: TRANSLATION SYMMETRY
FRACTIONALIZATION ON A 2π FLUX IN 2D

SYSTEMS AT FRACTIONAL FILLING

In this Appendix, we give a more detailed argument for
why a 2π flux in a 2D system with fractional filling should
transform projectively under the translation symmetry, as
discussed in Sec. III B.
First of all, let us recall that in the presence of a magnetic

field, one should introduce gauge-invariant translation
operators in the following way. For simplicity of notation,
let us assume that the system is defined in continuous space
(although with only a discrete translation symmetry);
similar considerations can be made in a tight-binding
model. We introduce the generator of gauge-invariant
continuous translations according to

P̃ ¼ P −
Z

AðxÞρ̂ðxÞd2x; ðB1Þ

where AðxÞ is the magnetic vector potential, ρ̂ðxÞ is the
local density operator, and P is the generator of translations
when A ¼ 0. These translation operators satisfy the com-
mutation algebra

½P̃α; P̃β� ¼ iεαβ

Z
BðxÞρ̂ðxÞd2x; ðB2Þ

where BðxÞ ¼ εαβ∂αAβðxÞ is the magnetic field. We then
define the discrete translation operators T x and Ty by

Tα ¼ expð−iaðαÞ · P̃Þ; ðB3Þ

where aðαÞ is the lattice translation vector in the α direction.
Now consider any state jψi that obeys the “cluster

property”

hρ̂ðxÞρ̂ðx0Þi − hρ̂ðxÞihρ̂ðx0Þi ≤ Cjx − x0j−η ðB4Þ

for some constantsC and η > 0, and h·i ¼ hψ j · jψi denotes
expectation values with respect to jψi. Then it follows from
Eq. (B2) that, if we fix that

R
BðxÞd2x ¼ 2π but make the

magnetic field more and more spread out, then the variance

h½P̃α; P̃β�2i − h½P̃α; P̃β�i2 ðB5Þ

goes to zero in the limit where the magnetic field is
infinitely spread out. Therefore, when acting on such a
state jψi, and in this limit, we can replace the commutator
by its expectation value:

½P̃α; P̃β� ∼ h½P̃α; P̃β�i ¼ iϵαβ

Z
BðxÞρðxÞd2x ∼

2πν

v
iϵαβ;

ðB6Þ

where v is the volume of one unit cell and ρðxÞ ¼ hρ̂ðxÞi.
To get to the last identification, we use the fact that BðxÞ is
very slowly varying, and that the integral of ρðxÞ over one
unit cell is ν. Finally, from Eq. (B6) and the definition
Eq. (B3), we find that

T xTyT−1
x T−1

y ∼ e2πiν; ðB7Þ

which is Eq. (8).

APPENDIX C: FILLING CONSTRAINTS IN
GENERAL DIMENSION FROM THE

TOPOLOGICAL ACTION OF SPT PHASES

Here we discuss the sense in which the microscopic
filling can be computed from the IR theory in general
spatial dimension d, generalizing the discussion of
Secs. III A and III B. First of all, we know that there is
a one-to-one correspondence between the ’t Hooft anomaly
of the IR theory and a SPT phase in dþ 1 spatial
dimensions. Since the SPT phase is topological, at long
wavelengths a GIR SPT phase in dþ 1 spatial dimensions
is described by a (Euclidean) topological action S½M;A�
that depends on the (dþ 2)-dimensional space-time mani-
fold M and a gauge field A for the GIR symmetry. This
action can be evaluated on any oriented space-time mani-
fold M. (In some cases, there may be some additional
structures required on M, for example, fermionic systems
require a spin structure or spinc structure.) This action is
purely imaginary (i.e., has no real part), does not depend on
a metric on M, and provided that GIR is a compact Lie
group, depends only on the SPT phase and is independent
of the microscopic details of the SPT ground state. In
general, the action is defined only modulo 2πi since this
does not affect the amplitude e−S.
Let τ1;…; τd ∈ GIR be the elements of the IR symmetry

group corresponding to microscopic translations. We can
define a generalization of the function α from the previous
subsections in the following way. We set the space-time
manifold M to be the (dþ 2)-dimensional torus Tdþ2. We
require that over the first d of the dþ 2 directions of the
torus, the gauge field A is flat, with the fluxes through the
associated 1-cycles given by τ1;…; τd. Then, over the final
two directions on the torus, we require that there be a 2π
flux of the U(1) subgroup of GIR (generated by Q̂IR)
corresponding to the microscopic U(1) symmetry. Finally,
we define αðQ̂IRjτ1;…; τdÞ ¼ −iS½M;A�. One can show
that this agrees with the previous definitions of α in the
cases d ¼ 1, 2.
Thus, our hypothesis for the form of the filling

constraint is
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ν ¼ 1

2π
αðQ̂IRjτ1;…; τdÞ ðmod 1Þ: ðC1Þ

We do not devise a physical derivation analogous to the
d ¼ 1 and d ¼ 2 cases; however, we expect that this should
be possible, since α should relate to the anomalous action of
translations on a 2π flux, which in d spatial dimensions is a
(d − 2)-dimensional object.
We can extend this definition to include higher-form

symmetries as follows. As we discuss in Sec. X, in this case
we can include the possibility of symmetry fractionaliza-
tion by considering the map ρ∶GUV → GIR to be a map of
higher groups, where GIR contains all higher-form sym-
metries. We show that there is a GIR gauge field A on Tdþ2

associated with ρ which generalizes the A above, so that
ν ¼ −iS½Tdþ2; A�=2π. First, we equip the dþ 2 torus Tdþ2

with a Zd × Uð1Þ gauge field A0 defined as follows.
For j ¼ 1;…; d, the jth 1-cycle Cj of Tdþ2 has

R
Cj
A0

equal to the generator of the jth Z factor. On the last two
coordinates, which form a T2, we place a 2π flux in the
U(1) factor. We then take A ¼ ρðA0Þ.
Note that, as we mention above, in certain cases the

topological action could depend on other data (such as a
spin structure for fermionic systems). However, we expect
that if the action still depends nontrivially on these addi-
tional data for the particular space-time manifold M and
gauge field A considered here, this corresponds to cases
where the microscopic symmetry GUV ¼ Zd × Uð1Þ still
has a nontrivial ’t Hooft anomaly in d spatial dimensions. In
this case, the system cannot be realized as a lattice system
in d spatial dimensions with translation symmetry and on-
site U(1) symmetry, only as a boundary of a SPT phase in
dþ 1 spatial dimensions. In such systems, the filling of the
d-dimensional system does not need to be well defined.

APPENDIX D: PROJECTIVE REPRESENTATION
OF LOOP GROUP ON MONOPOLE FROM

’T HOOFT ANOMALY

In this Appendix, we show that Eq. (19) follows from the
anomaly Eq. (17).
Let us work on a four-dimensional space parametrized

by coordinates ðt; x; y; θÞ. We start by considering a
configuration where the Ax and Ay components of the
gauge field depend only on x and y, and the At, Aθ

components depend only on z,t. Then, we integrate
Eq. (17) over x and y. We obtain

∂μj̃μ ¼
mϕ

2π
ð∂tAθ − ∂θAtÞ; ðD1Þ

where the index μ now varies only over t and θ, and we
define ϕ ¼ ð1=2πÞ R ð∂xAy − ∂yAxÞdxdy, which is the
number of flux quanta passing through the system, and
j̃μ ¼ R

jμdxdy. Effectively, what we do is compactify our

original system in two spatial dimensions to one in zero
spatial dimensions. This 0D system has a ’t Hooft anomaly
that depends on ϕ, and it is canceled by inflow from a 2D
SPT phase. Recall that such ’t Hooft anomalies correspond
to projective representations of the symmetry group. If we
set ϕ ¼ 1, this corresponds to the projective representation
of the symmetry group acting on a 2π flux.
In our case, where the symmetry group is G ¼ LUð1Þ,

we can express the projective representation through this
central extension of the commutation algebra of the
symmetry generators n̂ðθÞ, i.e.,

½n̂ðθÞ; n̂ðθ0Þ� ¼ cðθ; θ0Þ; ðD2Þ

where cðθ; θ0Þ is a c number (i.e., not an operator) to be
determined.
The projective representation should be independent of

the choice of Hamiltonian, so we are free to choose H ¼R
fðθÞn̂ðθÞdθ for some arbitrary test function fðθÞ, which

amounts to coupling the zero Hamiltonian to the gauge
field At ¼ fðθÞ. Then we find that Heisenberg evolution
n̂ðθ; tÞ ¼ eitHn̂ðθÞe−itH satisfies

d
dt

n̂ðθ; tÞ ¼ i
Z

cðθ0; θÞfðθ0Þdθ0: ðD3Þ

We should compare this with the anomaly Eq. (D1), in
which we choose Aθ to be independent of time, we have
j̃θ ¼ ðδH=δAθÞ ¼ 0, and we identify the time component j̃t

with the expectation value of n̂ðθ; tÞ. We find that, to be
consistent with Eq. (D3), it must be that

i
Z

cðθ0; θÞfðθ0Þdθ0 ¼ −
mϕ

2π

d
dθ

fðθÞ; ðD4Þ

which is true for an arbitrary test function f only if

cðθ; θ0Þ ¼ −i
mϕ

2π
δ0ðθ − θ0Þ: ðD5Þ

Finally, to obtain the extra factor of q on the right-hand side
of Eq. (19), we recall that Eq. (13) implies that ϕ, which we
can interpret as the number of flux quanta of the IR U(1)
symmetry generated by

R
n̂ðθÞdθ, is q times the number of

flux quanta of the microscopic U(1) symmetry.

APPENDIX E: PROJECTIVE REPRESENTATION
OF LOOP GROUP IN A FERMI LIQUID

In this Appendix, we derive Eq. (19) in a Fermi liquid by
working in terms of the semiclassical theory of band
electrons. Strictly speaking, we treat only noninteracting
electrons, but since our arguments are purely geometric and
the result ultimately can be reduced to a contribution
coming solely from the Fermi surface, we expect that
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the same results hold in a Fermi liquid in light of the
quasiparticle picture.
For clarity, in this Appendix we temporarily work in

units where ℏ ≠ 1. Then we can write Eq. (19) as

½n̂ðθÞ; n̂ðθ0Þ� ¼ −i
Φmq
ð2πÞ2ℏ δ

0ðθ − θ0Þ; ðE1Þ

where Φ ¼ R
BðxÞd2x is the total magnetic flux.

Therefore, in the semiclassical theory, what we want to
show is the Poisson bracket

fnðθÞ; nðθ0Þg ¼ −
Φmq
ð2πℏÞ2 δ

0ðθ − θ0Þ: ðE2Þ

Note that for each θ, nðθÞ is a semiclassical observable, i.e.,
a real-valued function on the semiclassical phase space.
What we actually prove is the following equivalent

statement:

fnf; ngg ¼ −
Φqm
ð2πℏÞ2

Z
fðθÞ dgðθÞ

dθ
dθ ðE3Þ

for any smooth functions f and g, where we define

nf ¼
Z

fðθÞnðθÞdθ: ðE4Þ

We can relate nf and ng to the density nðk;xÞ of semi-
classical particles according to

nf ¼
Z

fþðkÞnðk;xÞd2xd2k; ðE5Þ

where fþðkÞ is any smooth extension of f away from the
Fermi surface such that fþ(kFðθÞ) ¼ fðθÞ, where kFðθÞ is
the momentum of the Fermi surface as a function of θ. Note
that by nðk;xÞ we mean that for each k, x, nðk;xÞ is a
function of phase-space variables. If there are N particles in
total, then the phase-space variables are labeled by
ðxð1Þ;…;xðNÞ;kð1Þ;…;kðNÞÞ, and we can write

nðk;xÞðxð1Þ;…;xðNÞ;kð1Þ;…;kðNÞÞ

¼
XN
i¼1

δ2ðk − kðiÞÞδ2ðx − xðiÞÞ: ðE6Þ

Here, kðjÞ denotes the gauge-invariant momentum. That
means that the Poisson brackets of the xðjÞ’s and kðjÞ’s get
modified due to the magnetic field, as we discuss below.
Now we can compute fnf; ngg. We first do it for a single-

particle phase space (kð1Þ;xð1ÞÞ. Then we have

nfðkð1Þ;xð1ÞÞ ¼ fþðkð1ÞÞ; ðE7Þ

and hence,

fnf; ngg ¼ ∂fþðkð1ÞÞ
∂kð1Þα

∂gþðkð1ÞÞ
∂kð1Þβ

fkð1Þα ; kð1Þβ g ðE8Þ

¼ −Bðxð1ÞÞ½∇kð1Þfþðkð1ÞÞ� × ½∇kð1Þgþðkð1ÞÞ�;
ðE9Þ

where we use the fact that the momenta kð1Þ obey the
magnetic algebra [134]

fkð1Þα ; kð1Þβ g ¼ −qBðxð1ÞÞεαβ ðE10Þ

(here we choose the convention that k carries units of
momentum, not inverse length). For general N, we have

fnf; ngg ¼ −q
Z

BðxÞnðx;kÞ½∇kfþðkÞ�

× ½∇kgþðkÞ�d2xd2k; ðE11Þ

where in this equation both the left- and right-hand
sides have an implicit dependence on the phase-space
variables ðkð1Þ;…;kðNÞ;xð1Þ;…;xðNÞÞ on the right-hand
side through nðx;kÞ.
Now let us write nðx;kÞ ¼ n0ðkÞ þ δnðx;kÞ, where

n0ðkÞ has no implicit dependence on the phase-space
variables and represents the equilibrium distribution of
particles in the ground state (keeping in mind the Pauli
exclusion principle). For low-energy configurations, the
contribution of δn to Eq. (E11) is negligible compared
to n0. Hence, we can replace n with n0 in Eq. (E11) and
we find

fnf; ngg ¼ −qΦ
Z

n0ðkÞ½∇kfþðkÞ� × ½∇kgþðkÞ�d2k;

ðE12Þ

¼−qΦ
Z

n0ðkÞ∇k× ½fþðkÞ∇kgþðkÞ�d2k:

ðE13Þ

Now we observe that n0ðkÞ ¼ 1=ð2πℏÞ2 in the occupied
region of the Brillouin zone, and 0 outside. So by Stokes
theorem, we obtain

fnf; ngg ¼ −
qmΦ
ð2πℏÞ2

I
Fermi surface

½fþðkÞ∇kgþðkÞ� · dk

ðE14Þ

¼ −
qmΦ
ð2πℏÞ2

Z
fðθÞ dgðθÞ

dθ
dθ; ðE15Þ
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where m ¼ �1 (relative to an arbitrary choice of orienta-
tion of the Fermi surface, m ¼ þ1 or −1 corresponds to
which side of the Fermi surface the occupied region of the
Brillouin zone is on). This completes the derivation
of Eq. (E3).

APPENDIX F: PROOF OF THEOREM 1

In this Appendix, we give a proof of Theorem 1 from
Sec. IV. The result, in fact, follows directly from the
following mathematical property of the function α defined
in Sec. III A for spatial dimension d ¼ 1, in Sec. III B for
d ¼ 2, and in Appendix C for general d.
Lemma 1: Let A be an Abelian subgroup of GIR. The

function αðQjτ1;…; τdÞ defined in Sec. III is linear in
each argument when restricted to A. That is, for
a1;…; ad; a01 ∈ A, and where Q is the infinitesimal gen-
erator of a U(1) subgroup of A, then we have

αðQja1a01; a2;…; adÞ ¼ αðQja1; a2;…; adÞ
þ αðQja01; a2;…; adÞ ðmod 2πÞ; ðF1Þ

and similar for each of the arguments after the “j”.
Proof.—It is easy to verify this given the concrete

definitions of α in the cases d ¼ 1 and d ¼ 2. In general
d, where α is defined as discussed in Appendix C, the result
follows from the hypothesis that the topological action is a
cobordism invariant [53,55,59]. ▪
Lemma 1 is all we need to give the following:
Proof of Theorem 1.—Let τ1;…; τd ∈ GIR be the IR

symmetries corresponding to the microscopic translation
symmetries and let Q̂IR be the infinitesimal generator of the
IR symmetry corresponding to the microscopic U(1)
rotation symmetry. Since the microscopic translations
commute with each other and with charge, τ1;…; τd and
Q̂IR must all commute. Let A be a maximal Abelian
subgroup ofGIR (that is, a subgroup that cannot be enlarged
as a subgroup of GIR while remaining Abelian) that
contains τ1;…; τd and the subgroup generated by Q̂IR.
One can show [136] that A is a compact Abelian Lie
subgroup of GIR. Let CA be the number of connected
components of A, and let A0 ≤ A be the connected
component of the identity element. Then, since ½a�CA ¼
1 for any element ½a� ∈ A=A0, we conclude that aCA ∈ A0

for any a ∈ A.
Now since A is a compact Abelian Lie group, the

connected component A0 must be isomorphic to Uð1Þr
for some r. Hence, we can write elements of A0 as
ðθ1;…; θrÞ for angular variables θ1;…; θr. We now return
to the function αðQ̂IRjτ1;…; τdÞ that computes the filling.
Henceforth, we pick a given Q̂IR and hold it fixed;
therefore, we write simply αðτ1;…; τdÞ. The linearity of
α established by Lemma 1 implies that α is continuous in
each argument, and, moreover, that if a1 ¼ ðθ1;…; θrÞ ∈
A0, then

αða1;…; adÞ ¼
Xr
j¼1

θjmjða2;…; adÞ ðmod 2πÞ ðF2Þ

for some continuous integer function mj∶A×ðd−1Þ → Z,
where we suppress the dependences on Q̂IR, which we hold
fixed. But now continuity implies that mj is zero if any of
its arguments are in A0. We therefore conclude that
αða1;…; adÞ ¼ 0 ðmod 2πÞ if any two of its arguments
are in A0. Therefore,

ðCAÞ2αðτ1;…; τdÞ ¼ αðτCA
1 ; τCA

2 ; τ3;…; τdÞ ¼ 0

ðmod 2πÞ; ðF3Þ

and hence, the filling ν is an integer multiple of 1=ðCAÞ2.
Finally, to see that we can take NGIR

finite for any given
compact Lie group GIR, we note [138] that for any such
GIR, there are only finitely many conjugacy classes of
maximal Abelian Lie subgroups A ≤ GIR. ▪
For an alternative perspective that gives more precise

bounds on NGIR
, see Appendix G.

APPENDIX G: BOUNDS ON FILLING
DENOMINATORS FOR COMPACT GIR

Theorem 1 says that a compact GIR is inconsistent with
an irrational filling fraction. In this Appendix, we discuss
how, given an assumed GIR, in a fixed space dimension d,
one can compute a denominator NGIR

such that GIR is
consistent only with rational filling fractions of the form
m=NGIR

, for m ∈ Z. We show the following:
Theorem 2: In d > 1 space dimensions, for any com-

pact emergent symmetry GIR (which could be a subgroup
of the full group of emergent symmetries) containing the
translation generators τ1;…; τd and the subgroup U(1)
corresponding to microscopic particle-number conserva-
tion, the maximum denominator NGIR

divides the largest
order of elements in the torsion part of the (co)bordism
group Ωdþ2ðGIRÞtors ¼ Ωdþ2ðGIRÞtors, i.e., the group of
(dþ 1)-space-dimensional SPT phases such that for some
n, a stack of n copies of the SPT phase is trivial.
Theorem 3: In d ¼ 2 space dimensions, assuming a

compact emergent symmetry GIR satisfying the conditions
of Theorem 2 and furthermore of the form GIR ¼
H × Uð1Þ, the maximum denominator NGIR

divides
jπ0ðGIRÞj · jπ1ðGIRÞtorsj, where π0ðGIRÞ is the set of con-
nected components ofGIR and π1ðGIRÞtors is the torsion part
of its fundamental group. If there is also a finite 1-form
symmetry K, then NGIR

divides jπ0ðGIRÞj·jπ1ðGIRÞtorsj·jKj.
Theorem 4: In d ¼ 3 space dimensions, assuming a

compact emergent symmetry GIR satisfying the conditions
of Theorem 2 and furthermore of the form GIR¼
H×Uð1Þ, the maximum denominator NGIR

divides
jπ0ðGIRÞj·GCD½jπ1ðGIRÞtorsj;jπ0ðGIRÞj�, where π0ðGIRÞ is
the set of connected components of GIR and π1ðGIRÞtors is
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the torsion part of its fundamental group and GCD denotes
the greatest common divisor. In particular, for connected
GIR, NGIR

¼ 1, so a compact connected emergent sym-
metry is incompatible with any fractional filling. With a
finite 1-form symmetry K, then NGIR

divides jπ0ðGIRÞj·
GCD½jπ1ðGIRÞtorsj;jπ0ðGIRÞj�·GCD½jKj;π0ðGIRÞ�. Further-
more, if there is a finite 2-form symmetry J, then NGIR

divides jπ0ðGIRÞj·GCD½jπ1ðGIRÞtorsj;jπ0ðGIRÞj�·GCD½jKj;
jπ0ðGIRÞj�·jJj.
We note that since Ωdþ2ðGIRÞtors is finite, Theorem 1

follows from Theorem 2.
Proof of Theorem 2.—As we argue in Appendix C, the

filling fraction associated with GIR may be computed from
the emergent GIR ’t Hooft anomaly as well as the data of
how U(1) and translation symmetries are realized in GIR. In
particular, the translation generators τ1;…; τd and the U(1)
generator Q̂ define a GIR gauge field on Tdþ2 ¼ Td × T2,
where the τj define the fluxes through the d coordinate 1-
cycles of Td and Q̂ defines a 2π flux of T2. The emergent ’t
Hooft anomaly is associated with a cobordism invariant of
GIR gauge fields on dþ 2 manifolds [the partition function
of the ½ðdþ 1Þ þ 1�D SPT phase associated with the ’t
Hooft anomaly], and that cobordism invariant evaluated on
this particular background equals e2πiν.
Let us denote the group of cobordism invariants by

Ωdþ2ðGIRÞ. In the notation of Ref. [55], it is Ωdþ2
spin ðBðGIR=

ZF
2 Þ; ξÞ, where ξ is an orientable bundle whose second

Stiefel-Whitney class classifies the extension ofGIR=ZF
2 by

fermion parity ZF
2 . The group Ωdþ2ðGIRÞ sits in a (split)

short exact sequence [59]

where Ωdþ2ðGIRÞ and Ωdþ3ðGIRÞ are the associated bord-
ism groups of manifolds, and Ωdþ2ðGIRÞtors indicates the
torsion subgroup of Ωdþ2ðGIRÞ, elements x for which there
exists an n such that nx ¼ 0.
The kernel of this extension Hom½Ωdþ3ðGIRÞ;Z� is

characterized by generalized Chern-Simons invariants
described by Chern-Weil forms evaluated on a bounding
dþ 3 manifold M with ∂M ¼ Tdþ2. We show that for
d > 1 these invariants do not contribute to the filling
fraction. More precisely, the mapΩdþ2ðGIRÞ → Uð1Þ given
by evaluating the cobordism invariant on such a Tdþ2

background as we describe above sends the kernel to
zero. Therefore, the maximum denominator NGIR

divides
jHom½Ωdþ2ðGIRÞtors;Uð1Þ�j ¼ jΩdþ2ðGIRÞtorsj, which is
finite. This also gives an alternative proof of Theorem 1.
In fact, NGIR

divides the largest order of elements
in Ωdþ2ðGIRÞtors, which we use below. This group is

isomorphic to its cobordism partner Ωdþ2ðGIRÞtors because
the short exact sequence above splits.
Now we show that for d > 1 the generalized Chern-

Simons invariants do not contribute to the filling fraction.
For even d, there are no generalized Chern-Simons invar-
iants and we are done, so let us consider odd d instead. We
use a flat M so that there are no metric contributions to the
Chern-Simons invariant. We also use the fact that the
remaining Chern-Simons invariants are defined for GIR
bundles by taking a trace in a unitary representation
R∶GIR → UðnÞ and is therefore equal to a Chern-Simons
invariant U(n) bundle associated with it by the map R.
Then, we use the fact that τ1;…; τd and the U(1) generator
Q̂ commute in GIR; hence, their images in U(n) also
commute and can be simultaneously diagonalized. This
reduces the calculation to an Abelian Chern-Simons
invariant for the subgroup Uð1Þn of diagonal matrices in
U(n). Taking the trace reduces this to a calculation for a
U(1) bundle.
We can extend our U(1) bundle from Tdþ2 ¼ Td × T2 to

D2 × Td−1 × T2, where D2 is a disk whose boundary is the
first coordinate cycle of Td. The extended gauge field A is
defined so that it has curvature only along D2 [integrating
to TrRðτ1Þ as required by the extension] and along T2

(where it has some Chern number). The Chern-Simons
invariant is proportional toZ

D2×Td−1×T2

ðdAÞdþ3
2 :

However, since the 2-form dA has only nonzero compo-
nents in four directions, D2 and T2, its power in the
integrand above vanishes if dþ 3 > 4, i.e., if d > 1 [141].
This proves the claim. ▪
Proof of Theorem 3.—We can get a handle on the

maximum denominator NGIR
, which is proved above to

divide jΩdþ2ðGIRÞtorsj, using the Atiyah-Hirzebruch spec-
tral sequence for computing the latter. This gives us an
upper bound

NGIR
divides

Ydþ2

j¼0

jHjðBGb
IR;Ω

spin
dþ2−jÞtorsj;

where Gb
IR ¼ GIR=ZF

2 , and Ωspin
k is the usual spin bordism

group, which in the low degrees of physical interest is

Ωspin
0 ¼ Z;

Ωspin
1 ¼ Z2;

Ωspin
2 ¼ Z2;

Ωspin
3 ¼ 0;

Ωspin
4 ¼ Z;

Ωspin
5 ¼ 0:
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This upper bound can be further improved by taking into
account the known differentials of the dual spectral
sequence for cobordism Ωdþ2ðGIRÞ, which has isomorphic
torsion, Ωdþ2ðGIRÞtors ¼ Ωdþ2ðGIRÞtors. See Ref. [142] for
a review.
Another thing we can do is consider the special case

GIR ¼ H × Uð1Þ, where U(1) and H is compact. Because
τ1;…; τd and Q̂ must commute, they are always contained
in such a group. In this case, by taking considering (dþ 2)-
manifolds of the formM × T2 with an arbitrary GIR bundle
on M and a U(1) bundle with Chern number 1 on T2,
our (dþ 2)-dimensional cobordism invariant defines a
d-dimensional cobordism invariant for M. By similar
arguments as above, this gives us the further con-
straint that NGIR

divides the element of highest order
in ΩdðGIRÞtors ¼ ΩdðGIRÞtors.
For d ¼ 2, using the Atiyah-Hirzebruch spectral sequence

for Ω2ðGIRÞ, we find in the case GIR ¼ H × Uð1Þ, NGIR

divides

jΩspin
2 j · jH1ðBGb

IR;Ω
spin
1 Þj · jH3ðBGb

IR;Ω
spin
0 Þtorsj:

One can show that since the fermion parity is a subgroup of
the U(1) factor, that the first two factors do not contribute to
the spin bordism because the spectral sequence has a nonzero
differential there. The third part is jπ0ðGIRÞj · jπ1ðGIRÞtorsj
torsion, so

NGIR
divides jπ0ðGIRÞj · jπ1ðGIRÞtorsj:

We note that we can often get even better bounds if we better
understand the cobordism invariants for GIR. For example, if
GIR ¼ Zr

2 × Uð1Þ, one can show the maximum denominator
is NGIR

¼ 2, even though this group has 2r components.
To include a finite 1-form symmetry K, there is one

more term which contributes to the spectral sequence,
H3ðB2K;ZÞ ¼ K, which is jKj torsion. ▪
Proof of Theorem 4.—For d ¼ 3, GIR ¼ H × Uð1Þ, the

contributions to the Atiyah-Hirzebruch spectral sequence
for Ω3ðGIRÞ are

jH1ðBGb
IR;Ω

spin
2 Þj · jH2ðBGb

IR;Ω
spin
1 Þj · jH4ðBGb

IR;Ω
spin
0 Þtorsj:

As in d ¼ 2, the first factor does not contribute. The second
factor has one piece that can contribute, coming from the
map H2ðBUð1Þ;ZÞ → H2ðBGb

IR;Z2Þ, but it turns out to
give a spin Chern-Simons term for the U(1) factor and we
can disregard it; i.e., it does not contribute to the torsion in
Ω3ðGIRÞ. The third piece can be bounded using the Serre
spectral sequence for the extension

Gb;0
IR → Gb

IR → π0ðGb
IRÞ ¼ π0ðGIRÞ;

from which we find it is jπ0ðGIRÞj · GCD½jπ1ðGIRÞtorsj;
jπ0ðGIRÞj� torsion, so

NGIR
divides jπ0ðGIRÞj · GCD½jπ1ðGIRÞtorsj; jπ0ðGIRÞj�:

Note that when GIR is connected, we reestablish the result
NGIR

¼ 1: connected, compact GIR are incompatible with
fractional filling in d ¼ 3.
When there is also a finite 1-form symmetry K, it

contributes a term to H4ðBGb
IR;Ω

spin
0 Þ via H1(Bπ0ðGb

IRÞ;
H3ðB2K;ZÞ), which is GCD½jπ0ðGb

IRÞj; jKj� torsion.
When there is also a finite 2-form symmetry J, it con-

tributes a term to H4ðBGb
IR;Ω

spin
0 Þ via H4ðB2J;ZÞ ¼ J. ▪

Finally, we note that the bounds so derived hold for every
subgroup GIR of the full emergent symmetry, so long as it
contains the translation generators τ1;…; τd and the U(1)
particle-number symmetry. Thus, one does not need to
know the entire emergent symmetry to obtain a bound.
Further, by varying GIR, one can sometimes find a better
bound for the problem at hand.

APPENDIX H: ASYMPTOTIC ANALYSIS FOR
QUANTUM OSCILLATIONS

In this Appendix, we derive the asymptotic form for
quantum oscillations stated in Sec. VI C 3. Abstracting out
from the specific details, the situation is that we have some
functional F ½f�, where f is a function of a single variable
into R=Z that can be expressed as

fðxÞ ¼ tgðxÞ; ðH1Þ

and we wish to extract the asymptotic dependence of F ½f�
as t → ∞ while keeping the function g fixed.
First, we imagine approximating f by its values on the

discrete points x1;…; xk. Then we can expand F as a
Fourier series

F ½f� ¼
X
n∈Zk

ane2πit(n1gðx1Þþ���þnkgðxkÞ); ðH2Þ

where the sum is over integer vectors n ∈ Zk. We can
rewrite this as

F ½f� ¼ Sð0Þ þ
X
n≠0

Sð1Þ
n þ

X∞
n1≠0;n2≠0

Sð2Þ
n1;n2 þ � � � ; ðH3Þ

where Sð0Þ ¼ a0 and

Sð1Þ
n ¼

Xk
j¼1

aðj∶nÞe2πitmgðxjÞ; ðH4Þ

Sð2Þ
n1;n2 ¼

X
j1≠j2

aðj1∶n1;j2∶n2Þe
2πit(n1gðx1Þþitn2gðx2Þ); ðH5Þ

Sð3Þ
n1;n2;n3 ¼ � � � ; ðH6Þ
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where ðj1∶m1; j2∶m2Þ, for example, is the vector n
obtained by setting nj1 ¼ m1 and nj2 ¼ m2 and nj ¼ 0

for j ∉ fm1; m2g. By taking the limit as k → ∞ and the xj’s
become dense, we find that Sl → Il, where

I ð1Þ
n ¼

Z
dxanðxÞe2πitngðxÞ; ðH7Þ

I ð2Þ
n1;n2 ¼

Z
dx1dx2an1;n2ðx1; x2Þe2πit(n1gðx1Þþn2gðx2Þ); ðH8Þ

I ð3Þ
n1;n2;n3 ¼ � � � : ðH9Þ

Now we invoke the theory of stationary phase integrals
which tells us that, for a function hðxÞ of a q-dimensional
variable x, as t → ∞,

Z
dqxφðxÞe2πithðxÞ ∼

X
x�∈Σ

cx�t
−q=2e2πitfðx�Þ ðH10Þ

for some constants cx� and where the sum is over the set Σ
of solutions to ∇fðxÞ ¼ 0. Hence, we find that

I ð1Þ
n ∼ cð1Þn t−1=2

X
x�∈Σ

e2πitngðx�Þ; ðH11Þ

I ð2Þ
n1;n2 ∼ cð2Þn1;n2t

−1
X

x�;x0�∈Σ

e2πit(n1gðx�Þþn2gðx0�Þ); ðH12Þ

I ð3Þ
n1;n2;n3 ∼ � � � ; ðH13Þ

where Σ is the set of solutions to g0ðxÞ ¼ 0. The oscillatory
part of each of these expressions is consistent with a
quasiperiodic function of t with base frequencies ωðx�Þ ¼
2πgðx�Þ, x� ∈ Σ.
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