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The Green function completely encapsulates a system’s linear response to external sources, and plays a
central role in optics, electromagnetism, and acoustics. In electromagnetism, a broad range of phenomena
are connected to the Green function, including the local density of optical states, superradiance, and the
cooperative Lamb shift. Therefore, knowing the Green function is important for progress in fields as diverse
as cavity quantum electrodynamics, plasmonics, metamaterials, and photovoltaics. However, experimen-
tally characterizing the full complex Green function is challenging, as it requires amplitude and phase
sensitive measurements with deep-subwavelength spatial resolution. Here, we report a method to
characterize the full complex Green function with a resolution of λ=100 by measuring the mutual
impedance between two dipoles at microwave frequencies. We apply it to a resonant planar cavity, with
both parallel and nonparallel sides, and also explore the effects of modal resonances in a dielectric cube on
dipole-dipole interactions. The ability to characterize the Green function with high spatial resolution
provides a unique way to investigate cooperative effects in complex photonic systems.
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I. INTRODUCTION

The dyadic Green function is a central element in the
theory describing many areas of physics as it encapsulates
the linear response of a complex environment to an
arbitrary distribution of sources. In classical electrodynam-

ics, the Green function G
↔
ðrA; rD;ωÞ corresponds to the

electric field at a position rA emitted from a point source
dipole at position rD [1]. In general, it is a frequency-
dependent complex tensor function of both the source and
observer positions. The Green function encompasses all the
information to calculate the system’s response, and as such
its tensor elements account for a broad range of physical
phenomena For instance, the imaginary part of the diagonal
elements allows computation of the (partial) local density
of optical states (LDOS) and the associated Purcell factor
[2,3], which determine the efficiency of a classical antenna
[4] and the lifetime of a quantum emitter in a complex

environment [5]. The imaginary part of the off-diagonal
elements of the Green function determines the cross density
of optical states (CDOS) to characterize the spatial coher-
ence in complex systems [6,7]. Different aspects of the
resonant dipole-dipole interaction (RDDI), an example of
the collective effects possible between several elementary
dipoles, are also determined by the Green function: the
cooperative decay rate (CDR) [8–10] is determined by the
imaginary parts of the tensor elements, the cooperative
Lamb shift (CLS) [10,11] is determined by the real parts of
the tensor elements, and the Förster resonance energy
transfer (FRET) is determined by the square moduli of
the tensor elements [12–14]. The Green function is thus a
powerful paradigm in many areas of wave physics, includ-
ing cavity quantum electrodynamics (cavity QED) [15–22],
plasmonics and metamaterials [23–27], wave front shaping
and time-reversal focusing [28,29], or acoustics [30–32]. In
addition to this, the Green function is central in solving
inverse problems in which the distribution of sources needs
to be determined from the knowledge of the field [33].
Although the Green function is a central concept, it is

only fully known analytically for relatively simple geom-
etries, such as free space [1], infinite isotropic and
anisotropic media [34], multilayer stacks [35], photonic
crystals [36], and in the presence of infinite, ideally
conducting plates [37]. Experimental measurements of
the Green function could provide in-depth information
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about a wider range of systems and configurations, yet a
major challenge is that the Green function needs to be
known in both amplitude and phase at a high spatial
resolution, well below the wavelength. These highly
demanding requirements have significantly limited exper-
imental attempts to measure the Green function. In optics,
experiments are challenging due to the weak signals
involved and the low spatial resolution [38–40], while in
electron energy loss spectroscopy, highly specialized
equipment and inversion approaches are needed [41–43].
In contrast, experiments performed in the microwave
regime benefit from direct measurements of the
complex electric field, small detection bandwidths, and
spatial resolutions well below the wavelength [44–47].
However, no complete amplitude and phase characteriza-
tion of the Green function has been reported so far.
Here, we report a method to experimentally determine

the full complex Green function at spatial resolutions as
low as λ=100, by measuring the mutual impedance between
two dipoles at microwave frequencies. To demonstrate the
effectiveness of our approach, we fully characterize the
Green function inside a resonant planar cavity of parallel or
nonparallel mirrors. This information quantifies the influ-
ence of the cavity on various aspects of resonant dipole-
dipole interaction (CDR, CLS, and FRET), and is in
excellent agreement with classical electrodynamics simu-
lations. We also explore how the energy transfer between
two dipoles is mediated by a resonant dielectric subwave-
length cube in different configurations.
Our novel methodology allows the full experimental

characterization of the Green function in both amplitude
and phase at ultrahigh spatial resolution. This provides a
powerful way to solve problems for which no analytic
solution exists and where numerical simulations demand
excessive computational resources. Although the mea-
surements are performed at microwave frequencies, the
results of the Green function characterization can be
scaled to provide relevant information in the visible
regime, where no such measurements are feasible. This
allows the optimization of the design of photonic struc-
tures to enhance resonant dipole-dipole interactions and
cooperative effects. Even though at microwave frequen-
cies metals have very low loss compared to the visible
regime, it is possible to mimic losses, finite conductivities,
and surface plasmons at microwave frequencies by using
structured surfaces and volumes [47–49]. This further
broadens the applicability of our approach to the vis-
ible range.
By providing a unified quantitative description of RDDI

inside a cavity, our results are highly relevant for cavity
QED [15–22] and cavity-enhanced light-matter interactions
[37,50–53]. The experimental characterization of the Green
function is also crucial for solving problems related to open
cavities or for configurations for which no analytic solution
exists and for which numerical approaches are very

extensive or even impractical. Altogether, the general
methodology described here can be broadly applied to
characterize the electromagnetic response of a wide range
of systems at ultrahigh spatial resolution and to improve
our understanding of the rich physics of dipole-dipole
interactions.

II. THEORY

We start by briefly reviewing how the Green function
relates to the different aspects of dipole radiation and
resonant dipole-dipole interaction. The electric field
EDðrAÞ generated from a point source dipole at position
rD and evaluated at a position rA defines the Green function

G
↔
ðrA; rDÞ as [1]

EDðrAÞ ¼
ω2jμDj
c2ε0

G
↔
ðrA; rDÞnD; ð1Þ

where jμDjnD is the donor’s dipole moment. The (partial)
local density of optical states determining the emission
from a single dipole is then given by [2,3] (partial means
that it is projected on the dipole axis which we assume to be
fixed)

ρLDOS ¼ 2
ω

πc2
nD · ImfG

↔
ðrD; rDÞg · nD: ð2Þ

With this definition, the spontaneous decay rate is given
by γ ¼ ðπω=ℏε0ÞjμDj2ρLDOS [1]. The LDOS concept can
be extended to two emitters located at rD and rA to
characterize the spatial coherence by the cross density of
optical states [6,7]:

ρCDOS ¼ 2
ω

πc2
nA · ImfG

↔
ðrA; rDÞg · nD: ð3Þ

By comparing Eqs. (2) and (3), it is apparent that the
LDOS is the limit of the CDOS when rA approaches rD.
Both the CDOS and the LDOS depend on the imaginary
part of the Green function, which is shown in Fig. 1(a) for
two dipoles in vacuum [1]. For short dipole-dipole dis-
tances in the near field such that R≡ jrA − rDj < λ, the
CDOS and the imaginary part of the Green function are
nearly constant and remain finite when R → 0. Oscillations
of the Green function occur for larger distances kR > 3 in
the far-field region, where the electric field propagates
radiatively.
The Green function also determines the cooperative

effects in the resonant dipole-dipole interaction. For two
dipoles of moments jμAjnA and jμDjnD, the cooperative
decay rate describing superradiance is given by [8–10]
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γCDR ¼ 2
ω2jμAjjμDj
ℏε0c2

nA · ImfG
↔
ðrA; rDÞg · nD: ð4Þ

Thus, we find the same dependence on the imaginary
part of the Green function for CDR and for CDOS, as both
quantities are related by γCDR ¼ ðπω=ℏε0ÞjμAjjμDjρCDOS.
Therefore, the CDR and the CDOS have the same relation-
ship to the Green function.
The cooperative Lamb shift, a frequency shift of a

collection of emitters, is obtained from [10,11]

JCLS ¼ −ω2jμAjjμDj
ℏε0c2

nA · RefG
↔
ðrA; rDÞg · nD: ð5Þ

Thus, the CLS depends on the real part of the Green
function. In contrast to the imaginary part, the real part of

G
↔
ðrA; rDÞ diverges as the dipole-dipole distance R → 0

[Fig. 1(b)]. Owing to its 1=R3 distance dependence, the real

part of G
↔
ðrA; rDÞ quickly dominates over its imaginary

counterpart in the near-field region where kR < 1, where
k ¼ 2π=λ is the free-space wave number [1].
The final phenomenon related to dipole-dipole interac-

tion is the Förster resonance energy transfer describing the
power transferred from a donor to an acceptor [1,44]:

γFRET ¼ ω5jμDj2
2c4ε20

ImfαAgjnA · G
↔
ðrA; rDÞnDj

2
; ð6Þ

where αA is the acceptor dipole’s polarizability.
Equation (6) shows that FRET depends on the square
modulus of the Green function, thus involving both the real
and imaginary parts. Figure 1(c) illustrates the expected
distance behavior for two dipoles in vacuum, with the
FRET power scaling as 1=R6 (evanescent coupling) in the
near-field region and 1=R2 (radiative coupling) in the far-
field region [1].
We now describe how to determine the Green function

by measuring the mutual impedance between the two
dipoles in the microwave regime. A two-port network
model describes the resonant dipole-dipole interaction at
microwave frequencies [Fig. 1(c)] [54]. Port 1 represents
the donor dipole, with voltage V1 and current I1 driven by a
source voltage Vg. Port 2 corresponds to the acceptor dipole
with voltage V2 and current I2. This port has no driving
source, but is coupled to the voltage and current from port 1
through the Z matrix [54]:

�
V1

V2

�
¼

�
Z11 Z12

Z21 Z22

��
I1
I2

�
: ð7Þ

In the absence of current I2, the mutual impedance Z21 is
defined by the ratio of the induced voltage V2 by the source
current I1 [54]:

Z21 ¼
V2

I1

����
I2¼0

: ð8Þ

The voltage V2 depends on the donor’s electric field
EDðrAÞ generated in the acceptor circuit. Using the dipole
approximation, which is justified since the dipole lengths
are much shorter than the wavelength, we may consider
EDðrAÞ to be uniform over the acceptor antenna length lA.
Therefore, we can write V2¼nA ·EDðrAÞlA [54]. Following
Eq. (1), which serves to define the Green function, the
voltage V2, the electric field EDðrAÞ, and the Green

FIG. 1. Complex-valued Green function in vacuum describing
the RDDI versus the dipole-dipole separation R. (a) Imaginary
part of the Green function, which is related to the cooperative
decay rate (CDR) and cross density of states (CDOS). It
converges to the LDOS as R → 0. The inset describes the
dipoles’ mutual orientations considered here. (b) Real part of
the Green function, which determines the cooperative Lamb shift
(CLS). In contrast to the imaginary part, the real part of the Green
function diverges as R → 0. (c) Square modulus of the Green
function, which is linked to the energy transfer FRET. G0

DA is the
projection of the Green tensor on the dipole direction in
homogeneous space which is related to the mutual impedance
Z0
21 between the two dipoles. The inset, showing the two-port

network model of dipole-dipole interaction, illustrates how the
mutual impedance may be measured.
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function G
↔
ðrA; rDÞ are all directly proportional to

each other.
For antenna lengths that are short compared to the wave-

length, the source current is given by I1¼−iωμD=lD, where
lD is the donor’s dipole length [54,55]. The definition Eq. (8)
of the mutual impedance Z21 can thus be rewritten as

Z21 ¼ i
ωlAlD
c2ε0

nA · G
↔
ðrA; rDÞ · nD: ð9Þ

Thus, Z21 is directly proportional to the projected Green

function G
↔
ðrA; rDÞ. Measuring the full, complex Z21 using

a microwave network analyzer then provides a direct way
to characterize the Green function in an arbitrary environ-
ment. The real part of Z21 is related to the imaginary part of

G
↔
ðrA; rDÞ and thus to the CDR and the CDOS:

γCDR ¼ 2
ωjμAjjμDj
ℏlAlD

RefZ21g: ð10Þ

The imaginary part of Z21 provides the real part of

G
↔
ðrA; rDÞ determining the CLS:

JCLS ¼ −ωjμAjjμDj
ℏlAlD

ImfZ21g; ð11Þ

while the square modulus of Z21 is related to the power
transferred by FRET:

γFRET ¼ ω3jμDj2
2lA2lD2

ImfαAgjZ21j2: ð12Þ

The set of equations (10)–(12) unifies the different
descriptions of RDDI using CDOS, CDR, CLS, or
FRET. By connecting the mutual impedance Z21 to
CDR, CLS, and FRET, it further extends the analogies
between microwave engineering and quantum and semi-
classical electrodynamics [56,57]. By measuring the com-
plex impedance at microwave frequencies, both amplitude
and phase information about the Green function can be
obtained with excellent subwavelength spatial resolution.
As the laws of electromagnetism are scalable with the
frequency (provided the material permittivities are similar),
the characterization of resonant dipole-dipole interaction
near structures in the microwave regime can be readily
extended to also explain the physics occurring in the visible
range. Microwave experiments can be used as guidelines
for near-infrared and visible regime, where no such fully
resolved measurements of the Green function are possible.

III. RESULTS AND DISCUSSION

We apply our methodology to characterize how a planar
cavity modifies dipole-dipole cooperative effects. Planar
resonant cavities are frequently used in cavity QED
[15–21] and cavity-enhanced light-matter interactions
[37,50–53]. Figure 2(a) shows our configuration. Two
dipoles (a donor and an acceptor) are set parallel to each
other and to the mirrors forming the planar cavity, which can
be considered to be infinite in the transverse directions. For
this configuration, there is a cutoff for cavity lengthsL < λ=2
for which no propagating mode exists, and resonances are
expected when L equals multiples of λ=2. For the experi-
ments, the source donor dipole and the acceptor dipole are
connected to a vector network analyzer (VNA) to serve as the
two ports of the model in Fig. 1(c). The VNA records the
amplitude and the phase of the Z matrix elements, allowing
retrieval of the variations of the real and imaginary parts of

the Green function G
↔
ðrA; rDÞ and comparison to reference

values in the absence of the cavity.
Following the approach in Ref. [46], the Purcell factor

defining the LDOS modifications is determined by the ratio
of the real parts of the Z matrix element Z11 in the presence
and absence of the cavity. The experimental results are
presented in Fig. 2(b) (thin colored curves). Note the
excellent agreement with computations derived from the
Green function (thick black lines), which is known in
analytic form for this case and has no adjustable parameters
[37,58,59]. In particular, the cutoff for lengths below λ=2,
the resonances for cavity lengths that are multiples of λ=2,
and the suppression just below these resonances clearly
show in our experimental results.
We next investigate the RDDI inside the cavity by

measuring the real and imaginary parts of the mutual
impedance Z21 demonstrating that we can fully characterize
the Green function projected onto the dipole axes.
Figures 2(c)–2(k) quantify the evolutions of the real and

imaginary parts of G
↔
ðrA; rDÞ determining the different

physical phenomena (CDR, CDOS, CLS, FRET). All
the experimental data in Figs. 2(c)–(k) and Figs. S1 and
S2 in Supplemental Material [60] have been recorded using
the same dipole set and R ¼ 10 mm. By scanning the
frequency range between 2.5 and 5.25 GHz, we tune
the factor kR from 0.5 to 1.1. We stress again that the
theoretical results in Fig. 2 are not a fit to the experimental
data—there is no free parameter. Only the relative phase is
adjusted for two frequencies (3 and 4.8 GHz) to find the
correct balance between CDR and CLS. For other frequen-
cies, the phase is linearized and follows a linear behavior
with the frequency and kR. Considering the complexity of
the processes we are considering, and the finite sizes of the
dipoles and mirrors in our experiments, we find excellent
agreement between the experimental data and the results
derived from theory. All the main theoretical features for
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point dipoles are confirmed experimentally. These features
include the resonances at lengths multiples of λ=2, the
cutoff for the CDR at cavity lengths below λ=2, the
evolution of the curves with L, and the relative evolutions
of the enhancement factors as kR increases.
For a lossless cavity, it is known that only propagative

radiative modes contribute to the CDR and the imaginary
part of the Green function [37]. This leads to a complete
cutoff for the CDR and CDOS when the cavity length is
below λ=2 and no propagative mode exists, in close
analogy to the LDOS [Fig. 2(b)]. In contrast, the real part
of the Green function depends on both propagating and
evanescent cavity modes [37,61,62]. The evanescent modes

have no cutoff and so the CLS remains finite for very short
cavities. As the FRET depends on the square modulus of
the Green function and combines contributions from both

the real and imaginary part of G
↔
ðrA; rDÞ, it features dips or

peaks depending on the distance between dipoles which
determines the relative strengths of the real and the

imaginary parts of G
↔
ðrA; rDÞ (Fig. 1) [44].

Altogether, the experimental data in Fig. 2 and
Figs. S1–S3 [60] demonstrate that the complex-valued
Green function can be fully characterized inside a resonant
planar cavity, yielding information on its real and imagi-
nary parts, as well as its square modulus. For low kR

FIG. 2. Complex-valued Green function in a planar cavity compared to that in vacuum. (a) Configuration under study: the source
donor dipole is located at 10 mm from the nearest mirror and is parallel to the mirror plane. The acceptor dipole is parallel to the donor
dipole at R ¼ 10 mm distance. The frequency varies between 2.5 and 5.25 GHz. (b) Measured LDOS enhancement versus cavity length
L at 5 GHz. The thin colored curves are measurements of the impedance Z11, whereas the thick black curve is the analytical prediction.
(c)–(e) CDR or CDOS enhancement over vacuum versus cavity length for different kR values (indicated on top). The colored thin curves
indicate measurements, whereas the thick black curves are the analytic results. (f)–(h) CLS enhancement, i.e., enhancement of the real
part, over vacuum. (i)–(k) FRET enhancement, i.e., enhancement of the square modulus, over vacuum. These measurements provide a
complete characterization of the complex Green function in a planar cavity.
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values, the signal-to-noise ratio drops as the dipole size
becomes much smaller than the wavelength. This primarily
affects measurements of ReðZ21Þ, which is a resistance and
is more sensitive to noise than ImðZ21Þ, which corresponds
to an inductance or capacitance. Though longer dipoles
could partly solve this issue, this has limited scope as
dipoles are ideally infinitely small. Additional effects due
to the finite size of the mirrors or their lack of perfect
planarity or parallelism (for very large mirrors of dimen-
sions exceeding 1 m) could also affect our measurements,
imposing a trade-off in the system configuration.
Specific projections of the Green dyadic can be chosen

by adjusting the orientations of the two dipoles. In a single
experimental run, this methodology allows exploration of
the influence of a resonant planar cavity on cooperative
effects such as CDR, CDOS, CLS, and FRET. We find that
the CDR and CDOS follow a trend very close to the LDOS
evolution inside the cavity. On the other hand, the CLS and
FRET exhibit sharp resonances at cavity lengths which are
integer multiples of λ=2. Consistent with predictions based
on the analytic expression for the Green function, the cavity
enhancement is more pronounced for dipole-dipole sepa-
rations exceeding 0.1λ (corresponding to kR > 0.7) and
increase with R. For small dipole-dipole distances below
0.05λ (corresponding to kR < 0.3), we find that the RDDI
is marginally affected by the cavity, leading to minor

variations of the CDR, CLS, or FRET. This detailed
information of RDDI inside a resonant cavity is important
to help the design of future experiments aiming at maxi-
mizing the cooperative decay rate or the cooperative Lamb
shift [18–21].
Having validated our experimental approach for a

configuration for which the complete analytic form of
the Green function is known, we now turn to a case for
which no such analytic solution exists. We realize this
configuration by tilting one mirror forming the cavity by an
angle θ [Fig. 3(a)]. All the other parameters are kept
identical to that in Fig. 2. Owing to the open configuration
and the large size of the mirrors, which exceed 5λ,
numerical simulations of this tilted cavity require several
hours of computation time even on high-performance
computers (it took us about 10 h on an Intel Core i7-
6700 processor running at 3.4 GHz with 40 GB of ram). In
contrast, the measurement of the complete Z matrix takes
only a few seconds, and a broad range of cavity lengths and
emission frequencies can be scanned within a few minutes.
Figures 3(b)–3(d) compare the experimental results with
numerical simulations for the real and imaginary parts of
the Green function with respect to the vacuum reference.
The data for two tilt angles of 5° and 10° are compared to
the parallel cavity case. As seen in both the experimental
and simulation data, increasing the mirror angle broadens

FIG. 3. Effect of a nonplanar cavity on the Green function, corresponding to a case for which no analytic solution exists. (a) One
mirror forming the cavity is tilted by an angle θ; the rest of the configuration is similar to Fig. 2. The distance between the dipoles is
kR ¼ 0.9. (b) CDR-CDOS, (c) CLS, and (d) FRET enhancement factors versus the cavity length for different tilt angles θ. The left-hand
column shows the experimental results, whereas the right-hand column presents the numerical simulation results using the finite domain
time difference method (CST Studio suite 2019).
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the cavity resonance, reducing its quality factor. Both the
real and imaginary parts of the Green function are affected,

but the real part of G
↔

(leading to the CLS and to a large
extent to FRET) appears to be comparatively more affected
by the lack of parallelism than the imaginary part (corre-
sponding to the CDR and CDOS). We relate this to the fact

that the real part of G
↔

diverges while R tends toward 0,

while the imaginary part of G
↔

is asymptotically constant
when R → 0 [Figs. 1(a) and 1(b)]. The good agreement
between the experimental data and the numerical simu-
lation results further confirm the validity of our approach.
To further demonstrate the capabilities of our technique

and strengthen the link with studies in the optical regime,
we investigate the role of a dielectric subwavelength
scatterer in mediating the resonant dipole-dipole interaction
and enhancing the energy transfer (Fig. 4). Such a capacity

has attracted much interest in the visible regime, but owing
to the high difficulty of experiments at optical frequencies,
the works performed so far mainly focused on theoretical
and numerical studies [63–73]. Experimental attempts to
address this problem in optics have led to inconsistent
results showing FRET enhancement in some cases [74,75]
but not in others [76,77]. By performing our experiments at
radio frequencies, where the 105 larger wavelength enables
positioning of the dipole source and receiver with deep
subwavelength precision and excellent control on the
mutual orientation, we take full advantage of the scalability
of our approach.
Figure 4(a) illustrates our experiment: two parallel

dipoles are placed on opposite faces of a dielectric cube
of 16 mm side length (corresponding to λ=5). The cube
material is chosen to mimic the properties of silicon in the
optical near-infrared regime with a dielectric permittivity
of 16þ i0.25 (Eccostock HIK, K ¼ 16). The scattering

FIG. 4. Dipole-dipole interaction mediated by a dielectric cube scatterer. (a) Schematic of the experiment: the source dipole is on the
left, the receiving dipole is on the right, and a 16 mm cube of dielectric permittivity 16 is placed between them. The distance between the
dipole and the surface of the cube is 3 mm (λ=26) or 6 mm (λ=13). (b) Numerical simulations of the scattering cross section; the magnetic
dipole (MD), electric dipole (ED), and magnetic quadrupole (MQ) resonances are clearly visible. The insets show the electric field
amplitude at the MD and ED resonance frequencies, respectively, for plane wave illumination incoming from the left. (c) Numerical
simulations of the electric field amplitude in the presence and absence of the dielectric cube at the MD or ED resonance frequencies. The
dipoles are placed 6 mm from the cube. (d)–(f) Measurements of the FRET enhancement for different configurations. In (d) the dipoles
are parallel and on opposite faces of the cube with 3 and 6 mm distances to the cube, respectively. The gray dashed lines show the result
of numerical simulations. In (e) the dipoles are on adjacent faces of the cubes with 6 mm distance. In (f) the dipoles have a perpendicular
orientation to each other. The dipole distance to the cube surface is again 6 mm.
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spectrum in Fig. 4(b) exhibits several resonances corre-
sponding, respectively, to the magnetic dipole (MD),
electric dipole (ED), and magnetic quadrupole (MQ) modes
of the cube [78,79]. The magnetic modes lead to a current
loop inside the cube and, hence, the electric field has a
maximum amplitude near the cube surface. In contrast, for
the electric dipole mode the electric field has a maximum
amplitude near the center of the cube. Therefore, based on
the electric field distributions, we expect a maximum
coupling between the two dipoles at the magnetic MD
and MQ modes, and weak coupling at the ED mode.
Numerical simulations including both dipoles confirm this
intuition [Fig. 4(c)]. At the MD resonant frequency, the
electric field amplitude at the position of the second dipole
is enhanced by a factor of 4, whereas at the ED frequency
the amplitude is roughly the same as in free space.
Figure 4(d) shows our experimental results correspond-

ing to the configuration in Fig. 4(c). Indeed, we find a peak
enhancement of the energy transfer between dipoles at the
MD and MQ resonant frequencies, and a marginal increase
at the ED frequency. The enhancement appears larger
at the MQ frequency as the radiation efficiency increases
with frequency, but the 10-mm-long dipole source can now
no longer be considered to be a point source. We also
observe a clear dependence on the distance between the
dipoles and the cube: for short distances (3 mm versus
6 mm), the coupling is increased, leading to an energy
transfer enhancement of over 100×. All these different
features are consistent with our numerical simulations
[dashed gray lines in Fig. 4(d)]. While optical experiments
have led to contradictory results, showing FRET enhance-
ment [74,75] and inhibition [76,77], our radio frequency
data provide a clear experimental demonstration of the
influence of the various resonance modes in a dielectric
scatterer to mediate the energy transfer between two
dipoles, confirming the trend expected from theoretical
investigations [63–73].
A strength of our approach is that it enables the

measurement of a large variety of configurations. In
Fig. 4(e), we explore the relative position of the two
dipoles on adjacent faces of the cube. When the acceptor
dipole is positioned in the plane corresponding to the main
emission lobe of the donor dipole [plane perpendicular to
the dipole axis, orange curve in Fig. 4(e)], the energy
transfer is maximized. In contrast, when the acceptor dipole
is positioned in the plane parallel with the donor dipole
axis, the FRETenhancement is lower as the donor energy is
directed mainly elsewhere. This helps to better understand
the inconclusive results in the optical regime [74–77],
where the orientation of the emitters is difficult to control.
Another remarkable feature is that the cube enables

energy transfer between perpendicular dipoles [Fig. 4(f)].
For point dipoles in free space, there is theoretically no
energy transfer when the dipoles are set perpendicular to
each other [1]. In our free-space experiments, the residual

mutual impedance is nonzero due to the finite size of the
dipoles, but the recorded 0.6 mΩ impedance is close to the
limit of sensitivity of our apparatus. In the presence of
the dielectric cube, the FRET enhancement jZ21j2=jZ0

21j2
exceeds 1100×. This large enhancement value is mainly
due to the vanishing reference, but it confirms that energy
transfer indeed occurs. In the presence of the cube, the
electric field from the source now features components
along all the three directions of space, and these new field
components open the possibility to transfer energy to the
acceptor dipole. A similar trend was observed in optical
experiments between perpendicular dipoles in the presence
of a nanostructure [80], yet the absence of position control
between the FRET dipoles and the nanostructure compli-
cated the analysis. Lastly, we use the different datasets in
Figs. 4(d)–4(f) to check that the reciprocity condition
Z21 ¼ Z12 is verified in our experiments (Fig. S4 in
Supplemental Material [60]]).

IV. CONCLUSION

To conclude, we have shown that the mutual impedance
Z21 of a two-port network is directly proportional to the

Green function G
↔

projected on the dipole’s axis. This
enables a complete characterization of both the real and
imaginary parts of the Green function in an arbitrary
environment, and provides a unique way to investigate
resonant dipole-dipole interactions and cooperative effects
(CDR, CDOS, CLS, and FRET). We demonstrate the
effectiveness of this approach by measuring the complete
Green function inside a planar cavity of parallel and
nonparallel mirrors and with a dielectric cube scatterer.
Providing a deeper link between microwave engineering
and classical and quantum electrodynamics serves not only
to unify the descriptions of cooperative dipole-dipole
interactions, it also gives a practical tool to fully character-
ize complex photonic systems using a single straightfor-
ward approach. Given the ubiquitous nature of the Green
function in electromagnetism, from optics to radio frequen-
cies, we believe that the applications of this work could
concern a very wide field. Beyond electromagnetism, it can
inspire analogies in other areas of wave physics, such as
acoustics, for instance.

ACKNOWLEDGMENTS

This research was conducted within the context of the
International Associated Laboratory “ALPhFA: Associated
Laboratory for Photonics between France and Australia.”
This work has received funding from the European Union’s
Horizon 2020 Research and Innovation programme
under Grant Agreement No. 736937, from the Agence
Nationale de la Recherche (ANR) under Grant Agreement
No. ANR-17-CE09-0026-01, and from Excellence
Initiative of Aix-Marseille University–A*MIDEX, a
French “Investissements d’Avenir” program.

KAIZAD RUSTOMJI et al. PHYS. REV. X 11, 021004 (2021)

021004-8



APPENDIX: EXPERIMENTAL SETUP

We work in the frequency range from 2.5 to 5.25 GHz,
corresponding to wavelengths from 12 to 5.7 cm. The
dipoles are built from a RG-316 coaxial cable. Each dipole
has an 11 mm total length, 1 mm width, 1 mm thickness,
and a 2 mm gap between the branches. The RG-316 coaxial
cable has a 50 Ω impedance and a 6 cm length. A 1.75-cm-
long Pawsey stub balun (λ=4 at 4.25 GHz) connects the arm
of the dipole from the inner conductor to the shield of
the cable. The balun aims to reduce the return current on
the outside of the coaxial cable shield and improve the
precision of the measurements. The dipole resonance
frequency is 7.42 GHz and remains well outside the
frequency range used for our experiments. This ensures
that the dipoles can still be considered as nearly punctual in
our experiments. The two dipoles are separated by a fixed
distance of 10 mm, and are held on a foam spacer of
approximately 1.08 dielectric permittivity.
The dipoles are connected to a vector network analyzer

(VNA, Anritsu model MS2036C) through K-type cables
of 18 GHz bandwidth. The VNA is calibrated over the
complete frequency bandwidth taking into account the
presence of the K-type cables. The VNA records the S and
the Z matrix. Each data point is obtained after passing
through a 500 Hz filter without averaging. The presence of
the 6 cm of RG-316 coaxial cable connecting the dipoles
leads to an additional phase delay which is not accounted
for in the VNA calibration process. In the calculation of the
Zmatrix data, we compensate for this additional phase term
by adjusting the phase at two selected frequencies (3 and
4.8 GHz). The phase for the other frequencies is then
linearly extrapolated from this adjustment.
The cavity is formed by two mirrors of dimensions

60 × 60 cm2. For the parallel configuration (Fig. 2), the
parallelism between the mirrors is checked to be better than
0.5°. All the experiments reported here are performed with
the source donor dipole positioned at 10 mm from the
nearest mirror. This configuration allows us to break the
symmetry to monitor resonances occurring at L ¼ λ and
L ¼ 2λ. We ensured that our conclusions are not signifi-
cantly changed as compared to the configuration where the
donor dipole is located exactly in the cavity center. The
cavity length L is scanned by moving one mirror with a
motorized translation stage.
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