
 

Nonlocal Effective Electromagnetic Wave Characteristics of Composite Media:
Beyond the Quasistatic Regime

Salvatore Torquato *

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA;
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA;
Princeton Institute for the Science and Technology of Materials, Princeton University,

Princeton, New Jersey 08544, USA; and Program in Applied and Computational Mathematics,
Princeton University, Princeton, New Jersey 08544, USA

Jaeuk Kim
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 3 July 2020; revised 29 November 2020; accepted 21 January 2021; published 2 April 2021)

We derive exact nonlocal homogenized constitutive relations for the effective electromagnetic wave
properties of disordered two-phase composites and metamaterials from first principles. This exact
formalism enables us to extend the long-wavelength limitations of conventional homogenization estimates
of the effective dynamic dielectric constant tensor εeðkI ;ωÞ for arbitrary microstructures so that it can
capture spatial dispersion well beyond the quasistatic regime (where ω and kI are the frequency and wave
vector of the incident radiation). We accomplish this task by deriving nonlocal strong-contrast expansions
that exactly account for complete microstructural information (infinite set of n-point correlation functions)
and hence multiple scattering to all orders for the range of wave numbers for which our extended
homogenization theory applies, i.e., 0 ≤ jkI jl≲ 1 (where l is a characteristic heterogeneity length scale).
Because of the fast-convergence properties of such expansions, their lower-order truncations yield accurate
closed-form approximate formulas for εeðkI;ωÞ that apply for a wide class of microstructures. These
nonlocal formulas are resummed representations of the strong-contrast expansions that still accurately
capture multiple scattering to all orders via the microstructural information embodied in the spectral
density, which is easy to compute for any composite. The accuracy of these microstructure-dependent
approximations is validated by comparison to full-waveform simulation computations for both 2D and 3D
ordered and disordered models of composite media. Thus, our closed-form formulas enable one to predict
accurately and efficiently the effective wave characteristics well beyond the quasistatic regime for a wide
class of composite microstructures without having to perform full-blown simulations. We find that
disordered hyperuniform media are generally less lossy than their nonhyperuniform counterparts. We also
show that certain disordered hyperuniform particulate composites exhibit novel wave characteristics,
including the capacity to act as low-pass filters that transmit waves “isotropically” up to a selected wave
number and refractive indices that abruptly change over a narrow range of wave numbers. Our results
demonstrate that one can design the effective wave characteristics of a disordered composite by engineering
the microstructure to possess tailored spatial correlations at prescribed length scales. Thus, our findings can
accelerate the discovery of novel electromagnetic composites.
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I. INTRODUCTION

The theoretical problem of estimating the effective
properties of multiphase composite media is an outstanding

one and dates back to work by some of the luminaries of
science, including Maxwell [1], Lord Rayleigh [2], and
Einstein [3]. The preponderance of previous theoretical
studies have focused on the determination of static effective
properties (e.g., dielectric constant, elastic moduli, and
fluid permeability) using a variety of methods, including
approximation schemes [1,4–6], bounding techniques
[7–12], and exact series-expansion procedures [13–16].
The latter set of investigations teaches us that an exact
determination of an effective property, given the phase
properties of the composite, generally requires an infinite
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set of correlation functions that characterizes the composite
microstructure.
Our focus in this paper is the determination of the effective

dynamic dielectric constant tensor εeðkI;ωÞ of a two-phase
dielectric composite, which depends on the frequency ω or
wave vector kI of the incident radiation [17,18]. From this
effective property, one can determine the corresponding
effective wave speed ce and attenuation coefficient γe.
The preponderance of previous homogenization theories
of εeðkI;ωÞ apply only in the quasistatic or long-wavelength
regime [19–23], i.e., applicablewhen jkIjl ≪ 1,wherel is a
characteristic heterogeneity length scale. This spectral range
is the realm of nonresonant dielectric behavior. Virtually all
earlier formulas εeðkI;ωÞ apply to very special micro-
structures, namely, dielectric scatterers that are well-defined
inclusions, e.g., nonoverlapping spheres in a matrix (see
Fig. 1). Examples of such popular closed-form approxima-
tion formulas devised for spherical scatterers in a matrix
include the Maxwell-Garnett [24,25] and quasicrystalline
[18,26,27] estimates, among others [17].
In the present investigation, we derive nonlocal homog-

enized constitutive relations from Maxwell’s equations to
obtain exact expressions for the effective dynamic dielectric
constant tensor εeðkI;ωÞ of a macroscopically anisotropic
two-phase medium of arbitrary microstructure that is valid
well beyond the quasistatic regime, i.e., from the infinite-
wavelength limit down to intermediate wavelengths
(0 ≤ jkIjl≲ 1). This task is accomplished by extending
the strong-contrast expansion formalism, which has been
used in the past exclusively for the static limit [11] and
quasistatic regime [31], and establishing that the resulting
homogenized constitutive relations are nonlocal in space
(Sec. III); i.e., the average polarization field at position x
depends on the average electric field at other positions
around x. (Such nonlocal relations are well known in the
context of crystal optics in order to account for “spatial
dispersion,” i.e., the dependence of dielectric properties on
a wave vector [32].) The terms of the strong-contrast

expansion are explicitly given in terms of integrals over
products of Green’s functions and the n-point correlation
functions of the random two-phase medium (defined in
Sec. II A) to infinite order. This representation exactly treats
multiple scattering to all orders for the range of wave
numbers for which our extended homogenization theory
applies, i.e., 0 ≤ jkIjl≲ 1.
It is noteworthy that the strong-contrast formalism is a

significant departure from standard multiple-scattering
theory [17,20,33,34], as highlighted in Sec. III. Moreover,
as we show there, our strong-contrast formalism has a variety
of “tuning knobs” that enable one to obtain distinctly
different expansions and approximations designed for
different classes of microstructures.
Because of the fast-convergence properties of strong-

contrast expansions elaborated in Sec. III B, their lower-
order truncations yield accurate closed-form approximate
formulas for the effective dielectric constant that apply for a
wide class of microstructures over the aforementioned broad
range of incident wavelengths, volume fractions, and con-
trast ratios (Sec. IV). Thus, we are able to accurately account
for multiple scattering in the resonant realm (e.g., Bragg
diffraction for periodic media), in contrast to the Maxwell-
Garnett and quasicrystalline approximations, which are
known to break down in this spectral range. These nonlocal
strong-contrast formulas can be regarded as approximate
resummations of the expansions that still accurately capture
multiple-scattering effects to all orders via the nonlocal
attenuation function FðQÞ (Sec. VI). The key quantity
FðQÞ is a functional of the spectral density χ̃VðQÞ
(Sec. II B), which is straightforward to determine for general
microstructures either theoretically, computationally, or via
scattering experiments. We employ precise full-waveform
simulation methods (Sec. VII) to show that these micro-
structure-dependent approximations are accurate for both
two-dimensional (2D) and three-dimensional (3D) ordered
and disordered models of particulate composite media
(Sec. VIII). This validation means that they can be used to

FIG. 1. Left panel: The preponderance of previous theoretical treatments of the effective dynamic dielectric constant are local in nature
and restricted to dispersions of well-defined dielectric scatterers (inclusions) in a matrix, as illustrated in the leftmost panel. In contrast to
the nonlocal strong-contrast formalism presented here, earlier studies cannot treat the more general two-phase microstructures shown in
the middle panel (spinodal decomposition pattern [28]) and rightmost panel (Debye random medium [29,30]), both of which have
“phase-inversion” symmetry [11]. Our formalism can, in principle, treat two-phase media of arbitrary microstructures.
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predict accurately the effective wave characteristics well
beyond the quasistatic regime for a wide class of composite
microstructures (Sec. IX) without having to perform full-
blown simulations. This broad microstructure class includes
particulate media consisting of identical or polydisperse
particles of general shape (ellipsoids, cubes, cylinders,
polyhedra) that may or not overlap, and cellular networks
aswell asmediawithoutwell-defined inclusions (see Sec. III
B for details). Thus, our nonlocal formulas can be employed
to accelerate the discovery of novel electromagnetic com-
posites by appropriate tailoring of the spectral densities
[35,36] and then generating the microstructures that achieve
them [36].
Although our strong-contrast formulas for the effective

dynamic dielectric constant apply to periodic two-phase
media, the primary applications that we have in mind are
correlated disordered microstructures because they can
provide advantages over periodic ones with high crystallo-
graphic symmetries [37,38] which include perfect isotropy
and robustness against defects [39,40]. We are interested in
both “garden-variety” models of disordered two-phase
media [11] as well as exotic hyperuniform forms [41–43].
Hyperuniform two-phase systems are characterized by an
anomalous suppression of volume-fraction fluctuations in
the infinite-wavelength limit [41–43], i.e., the spectral
density χ̃VðQÞ obeys the condition

lim
jQj→0

χ̃VðQÞ ¼ 0: ð1Þ

Such two-phase media encompass all periodic systems,
many quasiperiodic media, and exotic disordered ones; see
Ref. [43] and references therein. Disordered hyperuniform
systems lie between liquids and crystals; they are like
liquids in that they are statistically isotropic without any
Bragg peaks, and yet behave like crystals in the manner in
which they suppress the large-scale density fluctuations
[41–43]. Hyperuniform systems have attracted great atten-
tion over the last decade because of their deep connections
to a wide range of topics that arise in physics [28,37,
43–53], materials science [36,54–57], mathematics
[58–60], and biology [43,61] as well as for their emerging
technological importance in the case of the disordered
varieties [40,43,52,54,62–66].
We apply our strong-contrast formulas to predict the real

and imaginary parts of the effective dielectric constant for
model microstructures with typical disorder (nonhyperuni-
form) as well as those with exotic hyperuniform disorder
(Sec. V). We are particularly interested in exploring the
dielectric properties of a special class of hyperuniform
composites called disordered stealthy hyperuniform media,
which are defined to be those that possess zero-scattering
intensity for a set of wave vectors around the origin
[36,44,67–69]. Such materials have recently been shown
to be endowed with novel optical, acoustic, mechanical,
and transport properties [31,55,56,63,70–73]. Among other

findings, we show that disordered hyperuniform media are
generally less lossy than their nonhyperuniform counter-
parts. We also demonstrate that disordered stealthy hyper-
uniform particulate composites exhibit singular wave
characteristics, including the capacity to act as low-pass
filters that transmit waves “isotropically” up to a selected
wave number. They also can be engineered to exhibit
refractive indices that abruptly change over a narrow range
of wave numbers by tuning the spectral density. Our results
demonstrate that one can design the effective wave char-
acteristics of a disordered composite, hyperuniform or not,
by engineering the microstructure to possess tailored spatial
correlations at prescribed length scales.

II. BACKGROUND

A. n-point correlation functions

A two-phase random medium is a domain of space
V ⊆ Rd that is partitioned into two disjoint regions that
make up V: a phase 1 region V1 of volume fraction ϕ1 and a
phase 2 region V2 of volume fraction ϕ2 [11]. The phase
indicator function I ðiÞðxÞ of phase i for a given realization
is defined as

I ðiÞðxÞ ¼
�
1; x ∈ Vi;

0; x ∉ Vi:
ð2Þ

The n-point correlation function SðiÞn for phase i is defined
by [11,74]

SðiÞn ðx1;…;xnÞ ¼
�Yn

j¼1

I ðiÞðxjÞ
�
; ð3Þ

where angular brackets denote an ensemble average over

realizations. The function SðiÞn ðx1;…;xnÞ has a probabi-
listic interpretation: It gives the probability of finding the
ends of the vectors x1;…;xn all in phase i. For statistically

homogeneous media, SðiÞn ðx1;…;xnÞ is translationally
invariant and, in particular, the one-point function is

position independent, i.e., SðiÞ1 ðx1Þ ¼ ϕi.

B. Two-point statistics

For statistically homogeneous media, the two-point
correlation function for phase 2 is simply related to that

for phase 1 via the expression Sð2Þ2 ðrÞ ¼ Sð1Þ2 ðrÞ − 2ϕ1 þ 1,
and hence, the autocovariance function is given by

χVðrÞ≡ Sð1Þ2 ðrÞ − ϕ1
2 ¼ Sð2Þ2 ðrÞ − ϕ2

2; ð4Þ

which we see is the same for phase 1 and phase 2. Thus,
χVðr ¼ 0Þ ¼ ϕ1ϕ2 and, assuming the medium possesses no
long-range order, limjrj→∞ χVðrÞ ¼ 0. For statistically
homogeneous and isotropic media, χVðrÞ depends only
on the magnitude of its argument r ¼ jrj, and hence is a
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radial function. In such cases, its slope at the origin is
directly related to the specific surface s (interface area per
unit volume); i.e., asymptotically, we have [11]

χVðrÞ ¼ ϕ1ϕ2 − βðdÞsjrj þOðjrj2Þ; ð5Þ

where

βðdÞ ¼ Γðd=2Þ
2

ffiffiffi
π

p
Γ(ðdþ 1Þ=2) ; ð6Þ

and ΓðxÞ is the gamma function.
The nonnegative spectral density χ̃VðQÞ, which is propor-

tional to scattering intensity [75], is the Fourier transform of
χVðrÞ, i.e.,

χ̃VðQÞ ¼
Z
Rd

χVðrÞe−iQ·rdr ≥ 0; for all Q; ð7Þ

where Q represents the momentum-transfer wave vector.
For statistically homogeneous media, the spectral density
must obey the following sum rule [76]:

1

ð2πÞd
Z
Rd

χ̃VðQÞdQ ¼ χVðr ¼ 0Þ ¼ ϕ1ϕ2: ð8Þ

For isotropic media, the spectral density depends only on
Q ¼ jQj and, as a consequence of Eq. (5), its large-k
behavior is controlled by the following power-law form:

χ̃VðQÞ ∼ γðdÞs
Qdþ1

; Q → ∞; ð9Þ

where

γðdÞ ¼ 2dπðd−1Þ=2Γ(ðdþ 1Þ=2)βðdÞ ð10Þ
is a d-dimensional constant and βðdÞ is given by Eq. (6).

C. Packings

We call a packing in Rd a collection of nonoverlapping
particles [77]. In the case of a packing of identical spheres
of radius a at number density ρ, the spectral density χ̃VðQÞ
is directly related to the structure factor SðQÞ of the sphere
centers [11,35]

χ̃VðQÞ ¼ ϕ2α̃2ðQ; aÞSðQÞ; ð11Þ
where

α̃2ðQ;aÞ ¼ 1

v1ðaÞ
�
2πa
Q

�
d
J2d=2ðQaÞ; ð12Þ

JνðxÞ is the Bessel function of the first kind of order ν,
ϕ2 ¼ ρv1ðaÞ is the packing fraction (fraction of space
covered by the spheres), and

v1ðaÞ ¼
πd=2ad

Γð1þ d=2Þ ð13Þ

is the d-dimensional volume of a sphere of radius a.

D. Hyperuniformity and volume-fraction fluctuations

Originally introduced in the context of point configura-
tions [41], the hyperuniformity concept was generalized to
treat two-phase media [42]. Here the phase volume fraction
fluctuates within a spherical window of radius R, which can
be characterized by the local volume-fraction variance
σ2VðRÞ. This variance is directly related to integrals involv-
ing either the autocovariance function χVðrÞ [78] or the
spectral density χ̃VðQÞ [42].
For typical disordered two-phase media, the variance

σ2VðRÞ for large R goes to zero like R−d [11,78,79].
However, for hyperuniform disordered media, σ2VðRÞ goes
to zero asymptotically more rapidly than the inverse of the
window volume, i.e., faster than R−d, which is equivalent to
the condition (1) on the spectral density. Stealthy hyper-
uniform two-phase media are a subclass of hyperuniform
systems in which χ̃VðQÞ is zero for a range of wave vectors
around the origin, i.e.,

χ̃VðQÞ ¼ 0 for 0 ≤ jQj ≤ QU; ð14Þ

where QU is some positive number.
As in the case of hyperuniform point configurations

[41–43,80], there are three different scaling regimes
(classes) that describe the associated large-R behaviors
of the volume-fraction variance when the spectral density
goes to zero as a power law χ̃VðQÞ ∼ jQjα as jQj → 0:

σ2VðRÞ ∼

8>><>>:
R−ðdþ1Þ; α > 1 ðClass IÞ;
R−ðdþ1Þ lnR; α ¼ 1 ðClass IIÞ;
R−ðdþαÞ; 0 < α < 1 ðClass IIIÞ;

ð15Þ

where the exponent α is a positive constant. Thus, the
characteristics length of the representative elementary
volume for a hyperuniform medium will depend on the
hyperuniformity class (scaling). Class I is the strongest
form of hyperuniformity, which includes all perfect peri-
odic packings as well as some disordered packings, such as
disordered stealthy packings described in Sec. V D.

E. Popular effective-medium approximations

Here we explicitly state the specific functional forms of
an extended Maxwell-Garnett approximation and quasi-
crystalline approximation for the effective dynamic dielec-
tric constant εeðk1Þ of isotropic media composed of
identical spheres of dielectric constant ε2 embedded in a
matrix phase of dielectric constant ε1. In Sec. VIII, we
compare the predictions of these formulas to those of our
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nonlocal approximations. The small-wave-number expan-
sions of these popular approximations are provided in the
Supplemental Material [81]. There we also provide the
corresponding asymptotic behaviors of our strong-contrast
approximations.

1. Maxwell-Garnett approximation

Maxwell-Garnett approximations (MGAs) [24,25] are
derived by substituting the dielectric polarizability of a
single dielectric sphere into the Clausius-Mossotti equation
[25], which consequently ignores the spatial correlations
between the particles. In three dimensions, we utilize the
following extended MGA that makes use of the exact
electric dipole polarizability αeðk1Þ of a single dielectric
sphere of radius a [82]:

εeðk1Þ − ε1
εeðk1Þ þ 2ε1

¼ ϕ2αeðk1Þ=a3; ð16Þ

where

αeðk1Þ ¼
3i
2k13

mψ1ðmk1aÞψ 0
1ðk1aÞ − ψ1ðk1aÞψ 0

1ðmk1aÞ
mψ1ðmk1aÞξ01ðk1aÞ − ξ1ðk1aÞψ 0

1ðmk1aÞ
;

m≡ ffiffiffiffiffiffiffiffiffiffiffi
ε2=ε1

p
, ψ1ðxÞ≡ xj1ðxÞ, ξ1ðxÞ≡ xhð1Þ1 ðxÞ, the prime

symbol ð0Þ denotes the derivative of a function, hð1Þ1 ðxÞ is
the spherical Hankel function of the first kind of order 1,
and j1ðxÞ is the spherical Bessel function of the first kind of
order 1.
The 2D analog of Eq. (16) can be obtained by using the

dynamic dielectric polarizability αe of a dielectric cylinder
of radius a given in Ref. [83]:

εeðk1Þ − ε1
εeðk1Þ þ ε1

¼ ϕ2

2π
αeðk1Þ=a2; ð17Þ

where

αeðk1Þ ¼
4ðε2 − ε1Þ
ik12mε1

J1ðmk1aÞ½J01ðmk1aÞHð1Þ
1 ðk1aÞ

−mJ1ðmk1aÞHð1Þ
1

0ðk1aÞ�−1;

where Hð1Þ
ν ðxÞ is the Hankel function of the first kind of

order ν. Here, only transverse-electric (TE) polarization is
considered; i.e., the electric field is perpendicular to the axis
of the cylinder.
As with all MGA theories, formulas (16) and (17)

neglect spatial correlations between the particles and
hence are only valid for low inclusion packing fractions.
In the static limit, Eqs. (16) and (17) reduce to the Hashin-
Shtrikman estimates εHS; see relation (72).

2. Quasicrystalline approximations

The quasicrystalline approximation (QCA) for the
quasistatic effective dynamic dielectric constant εeðk1Þ
employs the “effective” Green’s function of spherical
scatterers up to the level of the pair correlation function
g2ðrÞ [18,26,27]. However, the QCA accounts only for the
structure factor in the infinite-wavelength limit [27] [i.e.,
Sð0Þ ¼ 1þ ρ

R ðg2ðrÞ − 1Þdr], and consequently, spatial
correlations at finite wavelengths are ignored. The QCA
for d ¼ 3 can be explicitly written as follows [18]:

ϕ2
2β21

�
εeðk1Þ − ε1
εeðk1Þ þ 2ε1

	
−1

¼ ϕ2 − i

�
2

3
ϕ2Sð0Þðk1aÞ3

×

�
1þ i

2

3ð1 − β21ϕ2Þ
ðk1aÞ3Sð0Þ

	
−1


β21; ð18Þ

where β21 is defined in Eq. (33). Interestingly, the QCA
predicts that the hyperuniform composites [Sð0Þ ¼ 0] will
be transparent for all wave numbers, which cannot be true
for stealthy hyperuniform media [cf. Eq. (14)], since the
transparency interval must be finite; see Sec. VIII. Note that
Eq. (18) is the complex conjugate of the one given in
Ref. [18] so that it is consistent with the sign convention for
the imaginary part Im½εe� used here.

III. EXACT STRONG-CONTRAST
EXPANSIONS AND NONLOCALITY

The original strong-contrast expansions for the effective
dynamic dielectric constant obtained by Rechtsman and
Torquato [31] were derived from homogenized constitutive
relations that are local in space and hence are strictly valid
only in the quasistatic regime. In the present work, we follow
the general strong-contrast formalism of Torquato [11] that
was devised for the purely static problem [11] and show
that it naturally leads to exact homogenized constitutive
relations for the averaged fields that are nonlocal in space.
The crucial consequences of this development are exact
expressions for the effective dynamic dielectric constant
tensor εeðkIÞ for a macroscopically anisotropic medium of
arbitrary microstructure into which a plane wave of wave
vector kI is incident. These expressions for εeðkIÞ are valid
from the infinite-wavelength limit down to wavelengths
(λ ¼ 2π=jkIj) on the order of the heterogeneity length
scale l. We then briefly explain how our theory departs
substantially from standard multiple-scattering theory
[17,20,33,34]. We explicitly show they necessarily require
complete microstructural information, as embodied in the
infinite set of n-point correlation functions (Sec. II A) of the
composite. We also describe the fast-convergence properties
of strong-contrast expansions and their consequences for
extracting accurate approximations for εeðkIÞ.
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A. Strong-contrast expansions

Consider a macroscopically large ellipsoidal two-phase
statistically homogeneous but anisotropic composite speci-
men in Rd embedded inside an infinitely large reference
phase I with a dielectric constant tensor εI. The micro-
structure is perfectly general, and it is assumed that a
characteristic heterogeneity length scale l is much smaller
than the specimen size, i.e., l ≪ L. The shape of this
specimen is purposely chosen to be nonspherical since any
rigorously correct expression for the effective property
must ultimately be independent of the shape of the
composite specimen in the infinite-volume limit. It is
assumed that the applied or incident electric field E0ðxÞ
is a plane wave of an angular frequency ω and wave vector
kI in the reference phase, i.e.,

E0ðxÞ ¼ Ẽ0 exp (iðkI · x − ωtÞ): ð19Þ

Our interest is the exact expression for the effective
dynamic dielectric constant tensor εeðkI;ωÞ. Without loss
of generality, we assume a linear dispersion relation in the
reference phase, i.e., kI ≡ jkIj ¼ ffiffiffiffi

εI
p

ω=c, where c is the
speed of light in vacuum, and thus, we henceforth do not
explicitly indicate the dependence of functions on ω.
The composite is assumed to be nonmagnetic, implying
that the phase magnetic permeabilities are identical, i.e.,
μ1 ¼ μ2 ¼ μ0, where μ0 is the magnetic permeability of the
vacuum. For simplicity, we assume real-valued, frequency-
independent isotropic phase dielectric constants ε1 and ε2.
Nonetheless, the composite can be generally lossy (i.e., εe
is complex valued) due to scattering from the inhomoge-
neities in the local dielectric constant. It is noteworthy that
our results can be straightforwardly extended to phase
dielectric constants that are complex valued (dissipative
media), but this is not done in the present work.
Here we present a compact derivation of strong-contrast

expansions. It follows the general formalism of Torquato
[11] closely but departs from it at certain key steps when
establishing the nonlocality of the homogenized constitu-
tive relation. (A detailed derivation is given in the
Supplemental Material [81].) For simplicity, we take the
reference phase I to be phase q (equal to 1 or 2). Under
the aforementioned assumptions, the local electric field
EðxÞ solves the time-harmonic Maxwell equation [31]:

∇ × ∇ ×EðxÞ − kq2EðxÞ ¼
�
ω

c

�
2

PðxÞ; ð20Þ

where PðxÞ is the polarization field given by

PðxÞ≡ ½εðxÞ − εq�EðxÞ; ð21Þ

and

εðxÞ ¼ ðεp − εqÞI ðpÞðxÞ þ εq ð22Þ

is the local dielectric constant, and I ðpÞðxÞ is the indicator
function for phase p [cf. Eq. (2)]. The vector PðxÞ is the
induced flux field relative to reference phase q due to the
presence of phase p, and hence is zero in the reference
phase q and nonzero in the “polarized” phase p (p ≠ q).
Using the Green’s function formalism, the local electric

field can be expressed in terms of the following integral
equation [11,31]:

EðxÞ ¼ E0ðxÞ þ
Z

GðqÞðx − x0Þ · Pðx0Þdx0; ð23Þ

where the second-rank-tensor Green’s function GðqÞðrÞ
associated with the reference phase q is given by [84]

GðqÞðrÞ ¼ −DðqÞδðrÞ þHðqÞðrÞ; ð24Þ

DðqÞ is a constant second-rank tensor that arises when one
excludes an infinitesimal region around the position of the
singularity x0 ¼ x in the Green’s function, and HðqÞðrÞ
represents the contribution outside of the “exclusion”
region:

HðqÞ
ij ðrÞ¼ i

π

2εq

�
kq
2πr

�
d=2

f½kqrHð1Þ
d=2−1ðkqrÞ−Hð1Þ

d=2ðkqrÞ�δij

þkqrH
ð1Þ
d=2þ1ðkqrÞr̂ir̂jg; ð25Þ

where r̂≡ r=jrj is a unit vector directed to r, andHð1Þ
ν ðxÞ is

the Hankel function of the first kind of order ν. The Fourier
transform of Eq. (24) is particularly simple and concise:

G̃ðqÞ
ij

ðkÞ ¼ 1

εq

kq2δij − kikj
k2 − kq2

: ð26Þ

Note that Eq. (26) is independent of the shape of the
exclusion region, which stands in contrast to the shape-
dependent Fourier transform of HðqÞ

ij
ðrÞ; see Supplemental

Material [81] for details.
The use of Eqs. (21) and (23) leads to an integral

equation for the generalized cavity intensity field FðxÞ:

FðxÞ ¼ E0ðxÞ þ
Z
ϵ
HðqÞðx − x0Þ · Pðx0Þdx0; ð27Þ

where the integral subscript ϵ indicates that the integral is to
be carried out by omitting the exclusion region and then
allowing it to uniformly shrink to zero. Here, FðxÞ is
related directly to EðxÞ via

FðxÞ ¼ fI þ DðqÞ½εðxÞ − εq�g ·EðxÞ: ð28Þ

Using the definitions (21) and (28), we obtain a linear
constitutive relation between PðxÞ and FðxÞ:
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PðxÞ ¼ LðqÞðxÞ · FðxÞ; ð29Þ

where

LðqÞðxÞ ¼ ½εðxÞ − εq� · fI þ DðqÞ½εðxÞ − εq�g−1: ð30Þ

It is noteworthy that one is free to choose any convenient
exclusion-region shape, provided that its boundary is
sufficiently smooth. The choice of the exclusion-region
shape is crucially important because it determines the type
of modified electric field that results as well as the
corresponding expansion parameter in the series expansion
for the effective dynamic dielectric constant tensor. For
example, when a spheroidal-shaped exclusion region at a
position x in Rd is chosen to be aligned with the
polarization vector PðxÞ at that position, we have

DðqÞ ¼ A�

εq
I; ð31Þ

where I is the second-rank identity tensor, and A� ∈ ½0; 1� is
the depolarization factor for a spheroid [11] with the
aforementioned alignment. In the special cases of a sphere,
disklike limit, and needlelike limit, A� ¼ 1=d; 1; 0, respec-
tively. Thus, for these three cases, Eq. (30) yields the
following shape-dependent tensor:

LðqÞðx;A�Þ

¼ I ðpÞðxÞI

8>><>>:
dεqβpq; A� ¼ 1=d ðsphericalÞ;
εqð1 − εq=εpÞ; A� ¼ 1 ðdisklikeÞ;
εqðεp=εq − 1Þ; A� ¼ 0 ðneedlelikeÞ;

ð32Þ

where βpq is the dielectric polarizability defined by

βpq ≡ εp − εq
εp þ ðd − 1Þεq

: ð33Þ

Moreover, in these three cases, the generalized cavity
intensity field Fðx;A�Þ reduces to

Fðx;A�Þ →

8>><>>:
EðxÞ þ PðxÞ

dεq
; A� ¼ 1=d ðsphericalÞ;

DðxÞ
εq

; A� ¼ 1 ðdisklikeÞ;
EðxÞ; A� ¼ 0 ðneedlelikeÞ;

ð34Þ

respectively, where DðxÞ is the displacement field.
Importantly, among these three cases, the original and
modified strong-contrast expansions arise only when the
exclusion region is taken to be a sphere, as we elaborate
below.
We now show that our formalism yields an exact relation

between the polarization field PðxÞ and the applied field

E0ðxÞ that is nonlocal in space. It is more convenient at this
stage to utilize a compact linear operator notation, which
enables us to express the integral equation (27) as

F ¼ E0 þHP; ð35Þ

where we temporarily drop the superscript q. A combina-
tion of this equation with Eq. (29) yields the following
integral equation for the polarization field:

P ¼ LE0 þ LHP: ð36Þ

The desired nonlocal relation is obtained from Eq. (36) by
successive substitutions:

P ¼ SE0; ð37Þ

where

S ¼ ½I − LH�−1L ð38Þ

is a generalized scattering operator that has superior
mathematical properties compared to the scattering oper-
ator T that arises in standard multiple-scattering theory
[17,20,33], as we elaborate below in Remark viii. More
explicitly, the nonlocal relation (37) can be expressed as

Pð1Þ ¼
Z
ϵ
d2Sð1; 2Þ · E0ð2Þ; ð39Þ

where boldface numbers 1, 2 are shorthand notations for
position vectors r1, r2. Ensemble averaging Eq. (39) and
invoking statistical homogeneity yields the convolution
relation

hPið1Þ ¼
Z
ϵ
d2hSið1 − 2Þ ·E0ð2Þ; ð40Þ

where the operator hSi depends on relative positions, i.e.,
hSið1; 2Þ ¼ hSið1 − 2Þ, and angular brackets denote an
ensemble average. Formally, the nonlocal relation (40) is
the same as the one given in Torquato [11] for the static
problem, but nonlocality was not explicitly invoked there.
Taking the Fourier transform of Eq. (40) yields a compact
Fourier representation of this nonlocal relation, namely,

fhPiðkÞ ¼ fhSiðkÞ · Ẽ0ðkÞ; ð41Þ

where fhfiðkÞ≡ R hfiðxÞ expð−ik · xÞdx. From Eq. (19),
Ẽ0ðkÞ ¼ Ẽ0δðk − kqÞ, implying that the wave vector k in
Eq. (41) must be identical to kq.
As in the static case [11,15] and quasistatic regime [31],

the ensemble-averaged operator hSiðrÞ, which is given
explicitly in the Supplemental Material [81] in terms of the
n-point correlation functions and products of the tensor
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HðrÞ, depends on the shape of the macroscopic ellipsoidal
composite specimen (see Fig. 2). This shape-dependence
arises because H decays like r−d for large r, and hence,
hSiðrÞ involves conditionally convergent integrals [11]. To
avoid such conditional convergence issues, we follow
previous strong-contrast formulations by seeking to elimi-
nate the applied field E0 in Eq. (40) in favor of the average
cavity field hFiðrÞ in order to get a corresponding nonlocal
homogenized constitutive relation between hPiðrÞ and
hFiðrÞ or vice versa. Thus, solving for E0 in Eq. (40)
and substituting into the ensemble average of Eq. (35)
yields

hFi ¼ ½hSi−1 þH�hPi: ð42Þ
Inverting this expression leads to the following nonlocal
constitutive relation:

hPið1Þ ¼
Z

d2LðqÞ
e ð1 − 2Þ · hFið2Þ; ð43Þ

where LðqÞ
e ðrÞ is a kernel that is derived immediately below

and explicitly given by

LðqÞ
e ðrÞ≡

Z
dr0½εeðr0Þ − εqIδðr0Þ� · fIδðr − r0Þ

þ DðqÞ · ½εeðr − r0Þ − εqIδðr − r0Þ�g−1: ð44Þ
We are not aware of any previous work that derives such an
exact nonlocal homogenized constitutive relation (43) from
first principles.
Note that the supportls of the kernelL

ðqÞ
e ðrÞ relative to the

incident wavelength λ determines the degree of spatial
dispersion. When λ is finite, the relation between hPiðxÞ
and hFiðxÞ in Eq. (43) is nonlocal in space. In the regime
ls ≪ λ, the nonlocal relation (43) can bewell approximated

by the local relation hPiðxÞ ≈ ½R LðqÞ
e ðx0Þdx0� · hFiðxÞ.

Indeed, in the static limit, LðqÞ
e ðrÞ tends to a Dirac delta

function δðrÞ, expression (43) becomes the position-
independent local relation

hPi ¼ LðqÞ
e · hFi ð45Þ

derived earlier [11].
The nonlocal constitutive relation in direct space,

Eq. (43), can be reduced to a linear product form in
Fourier space by taking the Fourier transform of Eq. (43):

fhPiðkqÞ ¼ LðqÞ
e ðkqÞ · fhFiðkqÞ: ð46Þ

The wave-vector-dependent effective tensor LðqÞ
e ðkqÞ is

postulated (see discussion in the Supplemental Material
[81]) to be given by

LðqÞ
e ðkqÞ≡ ½εeðkqÞ − εqI� · fI þ DðqÞ · ½εeðkqÞ − εqI�g−1:

ð47Þ

This linear fractional form for LðqÞ
e ðkÞ is consistent with

the one derived for the static limit [11] and for the
quasistatic regime [31]. Taking the inverse Fourier trans-
form of Eq. (47) yields its corresponding direct-space
representation (44). Taking the Fourier transform of
Eq. (42) yields

fhFiðkqÞ ¼ ½fhSiðkqÞ−1 þ H̃ðkqÞ� · fhPiðkqÞ: ð48Þ

Comparing Eq. (46) to Eq. (48), and specifically
choosing a spherical exclusion region, as discussed in
Eq. (32), yields the desired exact strong-contrast

FIG. 2. (a) Schematic of a large d-dimensional ellipsoidal,
macroscopically anisotropic two-phase composite medium em-
bedded in an infinite reference phase of dielectric constant tensor
εI (gray regions) under an applied electric field E0ðxÞ ¼
Ẽ0 exp (iðkI · x − ωtÞ) of a frequency ω and a wave vector kI
at infinity. The wavelength λ associated with the applied field can
span from the quasistatic regime (2πl=λ ≪ 1) down to the
intermediate-wavelength regime (2πl=λ≲ 1), where l is a
characteristic heterogeneity length scale. (b) After homogeniza-
tion, the same ellipsoid can be regarded as a homogeneous
specimen with an effective dielectric constant εeðkI ;ωÞ, which
depends on ω and kI . As noted in the main text, we omit the ω
dependence of εe because (without loss of generally) we assume a
linear dispersion relation between jkI j and ω.
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expansions for general macroscopically anisotropic two-
phase media:

ϕp
2β2pq½εeðkqÞ þ ðd − 1ÞεqI� · ½εeðkqÞ − εqI�−1

¼ ϕpβpqI −
X∞
n¼2

AðpÞ
n ðkqÞβpqn; ð49Þ

where AðpÞ
n ðkqÞ is a wave-vector-dependent second-rank

tensor that is a functional involving the set of correlation

functions SðpÞ1 ; SðpÞ2 ;…; SðpÞn (defined in Sec. II A) and
products of the second-rank-tensor field HðqÞðrÞ, which
is explicitly given as [see also Eq. (25)]

HðqÞ
ijðrÞ ¼

8<:
i
4

h
kq2H

ð1Þ
0 ðkqrÞ − kq

r H
ð1Þ
1 ðkqrÞ

i
δij þ ikq2

4
Hð1Þ

2 ðkqrÞr̂ir̂j; d ¼ 2;

expðikqrÞ
εq4πr3

f½−1þ ikqrþ ðkqrÞ2�δij þ ½3 − 3ikqr − ðkqrÞ2�r̂ir̂jg; d ¼ 3;
ð50Þ

where kq ≡ jkqj. Specifically, for n ¼ 2 and n ≥ 3, these n-point tensors associated with the polarized phase p are,
respectively, given by

AðpÞ
2 ðkqÞ ¼ dεq

Z
ϵ
drHðqÞðrÞe−ikq·rχVðrÞ; ð51Þ

AðpÞ
n ðkqÞ ¼ dεq

�
−dεq
ϕp

�
n−2 Z

ϵ
dr1 � � � drn−1HðqÞðr1 − r2Þe−ikq·ðr1−r2Þ ·HðqÞðr2 − r3Þe−ikq·ðr2−r3Þ · � � �

×HðqÞðrn−1 − rnÞe−ikq·ðrn−1−rnÞΔðpÞ
n ðr1;…; rnÞ; ð52Þ

where
R
ϵ dr≡ limϵ→0þ

R
jrj>ϵ dr, and ΔðpÞ

n is a position-dependent determinant involving correlation functions of the
polarized phase p up to the n-point level:

ΔðpÞ
n ðr1;…; rnÞ ¼

�����������

SðpÞ2 ðr1; r2Þ SðpÞ1 ðr1Þ � � � 0

SðpÞ3 ðr1; r2; r3Þ SðpÞ2 ðr2; r3Þ � � � 0

..

. ..
. . .

. ..
.

SðpÞn ðr1;…; rnÞ SðpÞn−1ðr2;…; rnÞ � � � SðpÞ2 ðrn−1; rnÞ

�����������
: ð53Þ

For macroscopically isotropic media, the effective
dielectric tensor is isotropic, i.e., εeðkqÞ ¼ εeðkqÞI. The
corresponding strong-contrast expansion for εeðkqÞ is
obtained by taking the trace of both sides of Eq. (49):

ϕp
2β2pq½εeðkqÞ þ ðd − 1Þεq�½εeðkqÞ − εq�−1

¼ ϕpβpq −
X∞
n¼2

AðpÞ
n ðkqÞβpqn; ð54Þ

where εeðkqÞ ¼ Tr½εeðkqÞ�=d, AðpÞ
n ðkqÞ ¼ Tr½AðpÞ

n ðkqÞ�=d
for n ≥ 2 and Tr½� denotes the trace operation. Furthermore,
for statistically isotropic media, the effective dielectric
constant becomes independent of the direction of the wave
vector, i.e., εeðkqÞ ¼ εeðkqÞ.
Remarks:
(i) Importantly, the strong-contrast expansion (49) is a

series representation of a linear fractional trans-
formation of the variable εeðkqÞ (left-hand side
of the equation), rather than the effective dielectric

constant tensor itself. The series expansion in
powers of the polarizability βpq of this particular
rational function of εeðkqÞ has important conse-
quences for the predictive power of approxima-
tions derived from the expansion, as detailed in
Sec. III B.

(ii) The fact that the exact expansion (49) extracted from
our nonlocal relation (46) is explicitly given in terms
of integrals over products of the relevant Green’s
functions and the n-point correlation functions to
infinite order implies that multiple scattering to all
orders is exactly treated for the range of wave
numbers for which our extended homogenization
theory applies, i.e., 0 ≤ jkqjl≲ 1.

(iii) Note that Eq. (49) represents two different series
expansions: one for q ¼ 1 and p ¼ 2 and the other
for q ¼ 2 and p ¼ 1.

(iv) The exact expansions represented by Eq. (49) are
independent of the reference phase q and hence
independent of the wave vector kq.
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(v) For d ¼ 2, the strong-contrast expansion applies for
TE polarization only. This implies that the electric
field and wave vector are parallel to the plane or
transverse to an axis of symmetry in a 3D system
whose cross sections are identical.

(vi) Formally, the original strong-contrast expansions
that apply in the quasistatic regime [31] can be
obtained from the nonlocal strong-contrast expan-
sions (49) by simply replacing the exponential
functions that appear in the expressions for the
second-rank tensors AðpÞ

n ðkqÞ, defined by Eq. (52),
by unity.

(vii) For statistically isotropic media, the effective phase
speed ceðkqÞ and attenuation coefficient γeðkqÞ are
determined by the scalar effective dielectric constant
εeðkqÞ:

ceðkqÞ=c ¼ neðkqÞ−1 ¼ Re
h
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εeðkqÞ

q i
; ð55Þ

γeðkqÞ=c ¼ κeðkqÞ−1 ¼ Im
h
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εeðkqÞ

q i
; ð56Þ

where neðkqÞ and κeðkqÞ are the effective refractive
and extinction indices, respectively. The quantity
expð−2πγe=ceÞ is the factor by which the incident-
wave amplitude is attenuated for a period 2π=ω.

(viii) The strong-contrast formalism is a significant depar-
ture from perturbative expansions obtained from
standard multiple-scattering theory [17,20,33,34].
The operator S defined in Eq. (38) is a generalization
of the standard scattering operatorT ¼ ½I − VG�−1V
[17,20,33], where V ≡ ½εðrÞ − εq�I is the scattering
potential. Thus, the perturbation series resulting from
T is a weak-contrast expansion with the inherent
limitations that it converges only for small contrast
ratios (see also Sec. III B). By contrast, due to the
different possible choices for the exclusion regions
and reference phases, there is an infinite variety of
series expansions that result from the strong-contrast
formalism with generally fast-convergence proper-
ties. The particular strong-contrast expansion can be
designed for different classes of microstructures
(see Appendixes A and D). The corresponding
strong-contrast “self-energy” Σ is a linear fractional
transform of Le [see Eq. (48)], namely, Σ ¼
Le

−1½I − DLe
−1�−1, which is a generalization of the

self-energy in standard multiple-scattering theory
[17,20,33,34]. Thus, it is highly nontrivial to relate
diagrammatic expansions of the strong-contrast for-
malism to those of multiple-scattering theory. An
elaboration of how strong-contrast expansion gen-
eralizes those from multiple-scattering theory is
presented in the Supplemental Material [81].

B. Convergence properties and accuracy
of truncated series

The form of the strong-contrast expansion parameter βpq
in Eq. (49) is a direct consequence of the choice of a
spherical region excluded from the volume integrals in
Eq. (49) due to singularities in the Green’s functions [31].
It is bounded by

−
1

d − 1
≤ βpq ≡ εp − εq

εp þ ðd − 1Þεq
≤ 1; ð57Þ

which implies that the strong-contrast expansion (49)
can converge rapidly, even for infinite contrast ratio
εp=εq → ∞. Other choices for the shape of the exclusion
region will lead to different expansion parameters that will
generally be bounded but can lead to expansions with
significantly different convergence properties [11]. In
Appendix A, we present the corresponding expansions
for disklike and needlelike exclusion regions, which
are exceptional cases that lead to slowly converging
weak-contrast expansions with expansion parameter
ðεp − εqÞ=εq, and thus are unbounded when εp=εq → ∞.
Importantly, in the purely static case, the expansion (49)

becomes identical to one derived by Sen and Torquato [15]
and its truncation after second-order terms (i.e., setting

AðpÞ
n ¼ 0 for all n ≥ 3) yields the generalized Hashin-

Shtrikman bounds [85] derived by Willis [86] that are
optimal since they are realized by certain statistically
anisotropic composites in which there is a disconnected,
dispersed phase in a connected matrix phase [87]. In the
case of an isotropic effective dielectric constant εe, the
optimal Hashin-Shtrikman upper and lower bounds for any
phase-contrast ratio ε2=ε1 are exactly realized by the
multiscale “coated-spheres” model, which is depicted in
Fig. 3 in two dimensions. Affine transformations of the
coated spheres in the d orthogonal directions lead to
oriented coated ellipsoids that are optimal for the macro-
scopically anisotropic case. The lower bound corresponds
to the case when the high-dielectric-constant phase is the
dispersed, disconnected phase, and the upper bound
corresponds to the instance in which the high-dielectric-
constant phase is the connected matrix. Thus, Torquato
[11,88] observed that the strong-contrast expansions (49) in
the static limit can be regarded as ones that perturb around
such optimal composites, implying that the first few terms
of the expansion can yield accurate approximations of the
effective property for a class of particulate composites as
well as more general microstructures, depending on
whether the high-dielectric phase percolates or not. For
example, even when ε2=ε1 ≫ 1, the dispersed phase 2 can
consist of identical or polydisperse particles of general
shape (ellipsoids, cubes, cylinders, polyhedra) with pre-
scribed orientations that may or not overlap, provided
that the particles are prevented from forming large
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clusters compared to the specimen size. Moreover, when
ε2=ε1 ≪ 1, the matrix phase can be a cellular network [56].
Finally, for moderate values of the contrast ratio ε2=ε1,
even more general microstructures (e.g., those without
well-defined inclusions) can be accurately treated.
Importantly, we show that for the dynamic problem under
consideration, the first few terms of the expansion (49)
yield accurate approximations of εeðkqÞ for a similar wide
class of two-phase media (see Sec. VIII). Analogous
approximations were derived and applied for the quasistatic
regime [31,36].
We now show how lower-order truncations of the series

(49) can well approximate higher-order functionals (i.e.,
higher-order diagrams) of the exact series to all orders in
terms of lower-order diagrams. Such truncations of strong-
contrast expansions are tantamount to approximate but
resummations of the strong expansions, which enables
multiple scattering and spatial dispersion effects to be
accurately captured to all orders. Solving the left-hand
side of Eq. (49) for εe yields the rational function in βpq:

εeðkqÞ
εq

¼ I þ dϕp
2βpq

�
ϕpð1 − ϕpβpqÞI

−
X∞
n¼2

AðpÞ
n ðkqÞβpqn−1

	
−1
: ð58Þ

Expanding Eq. (58) in powers of the scalar polarizability
βpq yields the series

εeðkqÞ
εq

¼
X∞
n¼0

BðpÞ
n ðkqÞβpqn; ð59Þ

where the first several functionals BðpÞ
n ðkqÞ are explicitly

given in terms of AðpÞ
0 ;AðpÞ

1 ;…;AðpÞ
n as

BðpÞ
0 ðkqÞ ¼ I;

BðpÞ
1 ðkqÞ ¼ dϕpI;

BðpÞ
2 ðkqÞ ¼ d½AðpÞ

2 ðkqÞ þ ϕ2
pI�;

BðpÞ
3 ðkqÞ ¼

d
ϕp

½AðpÞ
2 ðkqÞ2 þ ϕpA

ðpÞ
3 ðkqÞ

þ 2ϕ2
pA

ðpÞ
2 ðkqÞ þ ϕ4

pI�;

BðpÞ
4 ðkqÞ ¼

d
ϕ2
p
½AðpÞ

2 ðkqÞ3 þ 2ϕpA
ðpÞ
2 ðkqÞ · AðpÞ

3 ðkqÞ

þ 3ϕ2
pA

ðpÞ
2 ðkqÞ2 þ ϕ2

pA
ðpÞ
4 ðkqÞ

þ 2ϕ3
pA

ðpÞ
3 ðkqÞ þ 3ϕ4

pA
ðpÞ
2 ðkqÞ þ ϕ6

pI�;
where Tn stands for n successive inner products of a
second-rank tensor T.
Let us now compare the exact expansion (59) to the one

that results when expanding the truncation of the exact
expression (49) for ½εe þ ðd − 1Þεq� ⋅ ½εe − εq�−1 at the
two-point level:

εeðkqÞ
εq

≈ I þ dϕpβpq½ð1 − ϕpβpqÞI − AðpÞ
2 ðkqÞβpq=ϕp�−1

ð60Þ

¼
X∞
n¼0

CðpÞ
n ðkqÞβpqn; ð61Þ

where the nth-order functional CðpÞ
n ðkqÞ for any n is given

in terms of the volume fraction ϕp and AðpÞ
2 ðkqÞ, which has

the following diagrammatic representation:

ð62Þ

Here the solid and wavy lines joining two nodes represent
the spatial correlation via χVðrÞ and a wave-vector-
dependent Green’s function HðqÞðrÞe−ikq·r between the

FIG. 3. Schematic of the optimal multiscale coated-spheres
model that realizes the isotropic Hashin-Shtrikman bounds on εe
[85]. Each composite sphere is composed of a spherical inclusion
of one phase (dispersed phase) that is surrounded by a concentric
spherical shell of the other phase such that the fraction of
space occupied by the dispersed phase is equal to its overall
phase volume fraction. The composite spheres fill all space,
implying that their sizes range down to the infinitesimally small.
When phase 2 is the disconnected inclusion (dispersed) phase,
this two-phase medium minimizes and maximizes the effective
static dielectric constant εe for prescribed volume fraction
and contrast ratio, when ε2=ε1 > 1 and ε2=ε1 < 1, respectively.
It has recently been proved that these highly degenerate
optimal Hashin-Shtrikman multiscale distributions of spheres
are hyperuniform [57,89].
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nodes, respectively. The black node indicates a volume
integral and carries a factor of dεq. The first several

functionals CðpÞ
n ðkqÞ are explicitly given as

CðpÞ
0 ðkqÞ ¼ I;

CðpÞ
1 ðkqÞ ¼ dϕpI;

CðpÞ
2 ðkqÞ ¼ d½AðpÞ

2 ðkqÞ þ ϕp
2I�;

CðpÞ
3 ðkqÞ ¼

d
ϕp

½AðpÞ
2 ðkqÞ þ ϕp

2I�2;

CðpÞ
4 ðkqÞ ¼

d
ϕp

2
½AðpÞ

2 ðkqÞ þ ϕp
2I�3:

Thus, comparing Eq. (59) to Eq. (61), we see that trunca-
tion of the expansion (49) for ½εe þ ðd − 1Þεq� ⋅ ðεe − εqÞ−1
at the two-point level actually translates into approxima-
tions of the higher-order functionals to all orders in terms of
the first-order diagram ϕp and the second-order diagram
(62). This two-point truncation can be thought of as an
approximate but accurate resummed representation of the
exact expansion (59). Note that the approximate expansion
(61) is exact through second order in βpq. Clearly, trunca-
tion of Eq. (49) at the three-point level (see Appendix C)
will yield even better approximations of the higher-order
functionals.

IV. STRONG-CONTRAST
APPROXIMATION FORMULAS

Here we describe lower-order truncations of the strong-
contrast expansions that are expected to yield accurate
closed-form formulas for εeðkqÞ that apply over a broad
range of wavelengths (kql≲ 1), volume fractions, and
contrast ratios for a wide class of microstructures.

A. Macroscopically anisotropic media

For the ensuing treatment, it is convenient to rewrite the
expansions (49), valid for macroscopically anisotropic
media in Rd, in the following manner:

ϕp
2β2pq

εeðkqÞ þ ðd − 1ÞεqI
εeðkqÞ − εqI

¼ ϕpβpqI −
XM
n¼2

AðpÞ
n ðkqÞβpqn þRMðkqÞ; ð63Þ

where the Mth-order remainder term is defined as

RMðkqÞ≡
X∞

n¼Mþ1

AðpÞ
n ðkqÞβpqn: ð64Þ

Truncating the exact nonlocal expansion (63) at the
two- and three-point levels, i.e., setting R2ðkqÞ ¼ 0 and
R3ðkqÞ ¼ 0, respectively, yields

ϕp
2β2pq

εeðkqÞ þ ðd − 1ÞεqI
εeðkqÞ − εqI

¼ ϕpβpqI − AðpÞ
2 ðkqÞβpq2;

ð65Þ

ϕp
2β2pq

εeðkqÞ þ ðd − 1ÞεqI
εeðkqÞ − εqI

¼ ϕpβpqI − ½AðpÞ
2 ðkqÞβpq2

þ AðpÞ
3 ðkqÞβpq3�: ð66Þ

Compared to the quasistatic approximation [31], these
nonlocal approximations substantially extend the range
of applicable wave number, namely, 0 ≤ jkqjl≲ 1.

B. Macroscopically isotropic media

All of the applications considered in this paper focus
on the case of macroscopically isotropic media; i.e., they
are described by the scalar effective dielectric constant
εeðkqÞ ¼ Tr½εeðkqÞ�=d but depend on the direction of the
wave vector kq.

1. Strong-contrast approximation at the two-point level

Solving Eq. (54) for the effective dielectric constant
εeðkqÞ yields the strong-contrast approximation for mac-
roscopically isotropic media:

εeðkqÞ
εq

¼ 1þ dβpqϕp
2

ϕpð1 − βpqϕpÞ − βpqA
ðpÞ
2 ðkqÞ

¼ 1þ dβpqϕp
2

ϕpð1 − βpqϕpÞ þ ðd−1Þπβpq
2d=2Γðd=2ÞFðkqÞ

; ð67Þ

where βpq is defined in Eq. (33),A
ðpÞ
2 ðkqÞ≡Tr½AðpÞ

2 ðkqÞ�=d,
and FðQÞ is what we call the nonlocal attenuation function
of a composite for reasons we describe below. The direct-
and Fourier-space representations of FðQÞ are given as

FðQÞ≡ −
2d=2Γðd=2Þ

π
Q2

Z
ϵ

i
4

�
Q
2πr

�
d=2−1

×Hð1Þ
d=2−1ðQrÞe−iQ·rχVðrÞdr ð68Þ

¼ −
Γðd=2Þ
2d=2πdþ1

Q2

Z
χ̃VðQÞ

jqþQj2 −Q2
dq: ð69Þ

The exponential expð−iQ · rÞ in Eq. (68) arises from the
phase difference associated with the incident waves at
positions separated by r. In the quasistatic regime, this
phase factor is negligible, and Eq. (68) reduces to the local
attenuation function F ðQÞ (derived in Ref. [31] and sum-
marized in the Supplemental Material [81]) because it is
barely different from unity over the correlation length
associated with the autocovariance function χVðrÞ. The
strong-contrast approximation (67) was postulated in
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Ref. [73] on physical grounds. By contrast, the present work
derives it as a consequence of our exact nonlocal formalism
(Sec. III).
For statistically isotropic media, the effective dielectric

constant as well as the attenuation function are indepen-
dent of the direction of the incident wave vector kq,
and thus, they can be considered as functions of the
wave number, i.e., εeðkqÞ ¼ εeðkqÞ and FðkqÞ ¼ FðkqÞ.
Then, the real and imaginary parts of Eq. (68) can be
simplified as

Im½FðQÞ� ¼
8<:− Q2

π2

R π=2
0 χ̃Vð2Q cosϕÞdϕ; d ¼ 2;

− Q
2ð2πÞ3=2

R
2Q
0 qχ̃VðqÞdq; d ¼ 3;

ð70Þ

Re½FðQÞ� ¼−
2Q2

π
p:v:

Z
∞

0

dq
1

qðQ2−q2Þ Im½FðqÞ�; ð71Þ

where Eq. (71) is valid for d ¼ 2, 3, and p:v. stands for
the Cauchy principle value. Following conventional
usage, we say that a composite attenuates waves at a
given wave number if the imaginary part of the effective
dielectric constant is positive. Recall that attenuation in
the present study occurs only because of multiple-
scattering effects (not absorption). While it is the
imaginary part of FðQÞ that determines directly the
degree of attenuation or, equivalently, Im½εe�, we see
from Eq. (71) that the real part of FðQÞ is directly
related to its imaginary part. It is for this reason that we
refer to the complex function FðQÞ as the (nonlocal)
attenuation function.

2. Modified strong-contrast approximation
at the two-point level

Here we extend the validity of the strong-contrast
approximation (67) so that it is accurate at larger wave
numbers and hence better captures spatial dispersion. This
is done by an appropriate rescaling of the wave number in
the reference phase, kq, which we show is tantamount to
approximately accounting for higher-order contributions in
the remainder term R2ðkqÞ. Given that the strong-contrast
expansion for isotropic media perturbs around the Hashin-
Shtrikman structures (see Fig. 3) in the static limit, it is
natural to use the scaling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εHS=εq

p
kq, where εHS is the

Hashin-Shtrikman estimate, i.e.,

εHS ≡ εq

�
1þ dϕpβpq

1 − ϕpβpq

	
; ð72Þ

which gives the Hashin-Shtrikman lower bound and
upper bound if εp > εq and εp < εq, respectively. This
scaling yields the following scaled strong-contrast approxi-
mation for statistically isotropic media:

εeðkqÞ
εq

¼ 1þ dβpqϕp
2

ϕpð1−βpqϕpÞþ ðd−1Þπβpq
2d=2Γðd=2ÞF

� ffiffiffiffiffi
εHS
εq

q
kq

 : ð73Þ

We now show that the scaled approximation (73) indeed
provides good estimates of leading-order corrections of
R2ðkqÞ in powers of kq. To do so, we employ the concept of
the averaged (effective) Green’s function hGðqÞðqÞi of an
inhomogeneous medium which in principle accounts for
the all multiple-scattering events

hGðqÞðqÞi ¼
�
ω

c

�
2

f½q2 − keðωÞ2�I − qqg−1; ð74Þ

where keðωÞ≡
ffiffiffiffiffiffiffiffiffiffiffi
εeðωÞ

p
ω=c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εeðωÞ=εq
p

kq is the effec-
tive wave number at a frequency ω, and εeðωÞ is the exact
effective dynamic dielectric constant, assuming a well-
defined homogenization description [17,90]. Since exact
complete microstructural information is, in principle,
accounted for with the effective Green’s function (74),
the exact strong-contrast expansion can be approximately
equated to the one truncated at the two-point level with an
attenuation function given in terms of the effective Green’s
function, i.e.,

ϕp
2β2pq

εeðkqÞ þ ðd − 1Þεq
εeðkqÞ − εq

¼ ϕpβpq − AðpÞ
2 ðkqÞβpq2 þR2ðkqÞ; ð75Þ

≈ϕpβpq − AðpÞ
2 (keðωÞ)βpq2: ð76Þ

When the functional form of AðpÞ
2 ðQÞ or, equivalently,

FðQÞ is available, it is possible to solve Eq. (76) for εeðkqÞ
in a self-consistent manner. Instead, we show that by
assuming keðωÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εHS=εq

p
kq, which results in Eq. (73),

we obtain good estimates of the leading-order corrections
of R2ðkqÞ in powers of kq. Thus, the scaled approximation
(73) provides better estimates of the higher-order three-
point approximation (given in Appendix C) than the
unmodified strong-contrast approximation (60). This can
be easily confirmed in the quasistatic regime from the

small-kq expansions of AðpÞ
2 ðkqÞ and AðpÞ

3 ðkqÞ given in
Ref. [31]. We also confirm the improved predictive
capacity of the scaled strong-contrast approximation to
better capture dispersive characteristics for ordered and
disordered models via comparison to finite-difference time-
domain (FDTD) simulations; see Figs. 8 and 9, and
Sec. VIII in the Supplemental Material [81].

V. MODEL MICROSTRUCTURES

We consider four models of 2D and 3D disordered media
to understand the effect of microstructure on the effective
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dynamic dielectric constant, two of which are nonhyperuni-
form (overlapping spheres and equilibrium hard-sphere
packings) and two of which are hyperuniform (hyperuni-
form polydisperse packings and stealthy hyperuniform
packings of identical spheres). The particles of dielectric
constant ε2 are distributed throughout a matrix of dielectric
constant ε1. We also compute the spectral density for each
model, which is the required microstructural information to
evaluate the nonlocal strong-contrast approximations dis-
cussed in Sec. V B.
Representative images of configurations of the four

aforementioned models of 2D disordered particulate media
are depicted in Fig. 4. Note that the degree of volume-
fraction fluctuations decreases from the leftmost image to
the rightmost one.

A. Overlapping spheres

Overlapping spheres (also called the fully-penetrable-
sphere model) refer to an uncorrelated (Poisson) distribu-
tion of spheres of radius a throughout a matrix [11]. For
such nonhyperuniform models at number density ρ in
d-dimensional Euclidean space Rd, the autocovariance
function is known analytically [11]:

χVðrÞ ¼ exp ( − ρv2ðr;aÞ) − ϕ1
2; ð77Þ

where ϕ1 ¼ exp ( − ρv1ðaÞ) is the volume fraction of the
matrixphase(phase1),v1ðaÞ isgivenbyEq. (13), andv2ðr; aÞ
represents the unionvolume of two spheres whose centers are
separated by a distance r. In two and three dimensions, the
latter quantity is explicitly given, respectively, by

v2ðr; aÞ
v1ðaÞ

¼
(
2Θðx − 1Þ þ 2

π ½π þ xð1 − x2Þ1=2 − cos−1ðxÞ�Θð1 − xÞ; d ¼ 2;

2Θðx − 1Þ þ
�
1þ 3x

2
− x3

2



Θð1 − xÞ; d ¼ 3;

where x≡ r=2a, and ΘðxÞ (equal to 1 for x > 0 and zero
otherwise) is the Heaviside step function. For d ¼ 2 and
d ¼ 3, the particle phase (phase 2) percolates when ϕ2 ≈
0.68 (Ref. [91]) and ϕ2 ≈ 0.29 (Ref. [92]), respectively. The
corresponding spectral densities are easily found numeri-
cally by performing the Fourier transforms indicated in
Eq. (7). In this work, we apply this model for ϕ2’s well
below the percolation thresholds.

B. Equilibrium packings

Another disordered nonhyperuniform model we treat is
distributions of equilibrium (Gibbs) of identical hard
spheres of radius a along the stable fluid branch [11,93].
The structure factors of such packings arewell approximated

by the Percus-Yevick solution [11,93], which is analytically
solvable for odd values of d. For d ¼ 3, the Percus-Yevick
solution gives the following expression for the structure
factor SðQÞ [11]:

SðQÞ ¼
�
1 − ρ

16πa3

q6
f½24a1ϕ2 − 12ða1 þ 2a2Þϕ2q2

þ ð12a2ϕ2 þ 2a1 þ a2ϕ2Þq4� cosðqÞ
þ ½24a1ϕ2q − 2ða1 þ 2a1ϕ2 þ 12a2ϕ2Þq3� sinðqÞ

− 24ϕ2ða1 − a2q2Þg
�

−1
; ð78Þ

where q ¼ 2Qa, a1 ¼ ð1þ 2ϕ2Þ2=ð1 − ϕ2Þ4, and a2¼
−ð1þ0.5ϕ2Þ2=ð1−ϕ2Þ4. Using this solution in conjunction

FIG. 4. Representative images of configurations of the four models of 2D disordered particulate media described in this section. These
include (a) overlapping spheres, (b) equilibrium packings, (c) class I hyperuniform polydisperse packings, and (d) stealthy hyperuniform
packings. For all models, the volume fraction of the dispersed phase (shown in black) is ϕ2 ¼ 0.25. Note that (a) and (b) are not
hyperuniform. While these models consist of distributions of particles, both overlapping and nonoverlapping, the formulas derived in
Sec. IV can be applied to any two-phase microstructure. Indeed, Appendix D describes applications to media with phase-inversion
symmetry.
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with Eq. (11) yields the corresponding spectral density
χ̃VðQÞ. For d ¼ 2, we obtain the spectral density from
Monte Carlo generated disk packings [11].

C. Hyperuniform polydisperse packings

Class I hyperuniform packings of spheres with a poly-
dispersity in size can be constructed from nonhyperuniform
progenitor point patterns via a tessellation-based procedure
[57,89]. Specifically, we employ the centers of 2D and 3D
configurations of identical hard spheres in equilibrium at a
packing fraction 0.45 and particle number N ¼ 1000 as the
progenitor point patterns. One begins with the Voronoi
tessellation [11] of these progenitor point patterns. We then
rescale the particle in the jth Voronoi cell Cj without
changing its center such that the packing fraction inside this
cell is identical to a prescribed value ϕ2 < 1. The same
process is repeated over all cells. The final packing fraction
is ϕ2 ¼

P
N
j¼1 v1ðajÞ=VF ¼ ρv1ðaÞ, where ρ is the number

density of particle centers and a represents the mean sphere
radius. In the small-jQj regime, the spectral densities of the
resulting particulate composites exhibit a power-law scal-
ing χ̃VðQÞ ∼ jQj4, which are of class I.

D. Stealthy hyperuniform packings

Stealthy hyperuniform particle systems, which are also
class I, are defined by the spectral density vanishing around
the origin, i.e., χ̃VðQÞ ¼ 0 for 0 < jQj ≤ QU; see Eq. (14).
We obtain the spectral density from realizations of dis-
ordered stealthy hyperuniform packings for d ¼ 2, 3 that
are numerically generated via the following two-step
procedure. Specifically, we first generate such point con-
figurations consisting ofN particles in a fundamental cellF
under periodic boundary conditions via the collective-
coordinate optimization technique [67–69], which amounts
to finding numerically the ground-state configurations for
the following potential energy:

ΦðrNÞ ¼ 1

VF

X
Q

ṽðQÞSðQÞ þ
X
i<j

uðrijÞ; ð79Þ

where

ṽðQÞ ¼
�
1; QL < jQj ≤ QU;

0; otherwise;
ð80Þ

and a soft-core repulsive term [94]

uðrÞ ¼
� ð1 − r=σÞ2; r < σ;

0; otherwise:
ð81Þ

In contrast to the usual collective-coordinate procedure
[67–69], the interaction (79) used here also includes a soft-
core repulsive energy (81), as done in Ref. [94]. Thus, the
associated ground-state configurations are still disordered,

stealthy, and hyperuniform, and their nearest-neighbor
distances are larger than the length scale σ due to the
soft-core repulsion uðrÞ. Finally, to create packings, we
follow Ref. [70] by circumscribing the points by identical
spheres of radius a < σ=2 under the constraint that they
cannot overlap (see the Supplemental Material [81] for
certain results concerning stealthy “nonhyperuniform”
packings in which QL > 0.) The parameters used to
generate these disordered stealthy packings are summa-
rized in the Supplemental Material [81].

E. Spectral densities for the four models

Here, we plot the spectral density χ̃VðQÞ for the four
models at the selected particle-phase volume fraction of
ϕ2 ¼ 0.25; see Fig. 5. From the long- to intermediate-
wavelength regimes (Qa≲ 4), their spectral densities are
considerably different from one another. Overlapping
spheres depart the most from hyperuniformity, followed
by equilibrium packings. Stealthy packings suppress
volume-fraction fluctuations to a greater degree than hyper-
uniform polydisperse packings over a wider range of wave-
lengths. In the small-wavelength regime (Qa ≫ 4), all four
curves tend to collapse onto a single curve, reflecting the fact
that all four models are composed of spheres of similar sizes.

VI. RESULTS FOR THE NONLOCAL
ATTENUATION FUNCTION

We report some general behaviors of the nonlocal
attenuation function FðQÞ [cf. Eqs. (68) or (69)] for
nonhyperuniform and hyperuniform media for long and
intermediate wavelengths. We also provide plots of both the
real and imaginary parts of FðQÞ for the four models of
disordered two-phase media considered in this work, which
depends on wave number Q.
The function FðQÞ depends on the microstructure via

the spectral density χ̃VðQÞ. Thus, assuming that the latter
quantity has the power-law scaling χ̃VðQÞ ∼Qα as Q → 0,
the asymptotic behavior of FðQÞ in the long-wavelength
limit (Q → 0) follows as

Im½FðQÞ�∼
�
Qd; nonhyperuniform

Qdþα; hyperuniform
asQ→ 0; ð82Þ

Re½FðQÞ� ∼Q2; as Q → 0; ð83Þ

where we use Eqs. (68) and (70). Recall that the exponent α
lies in the open interval ð0;∞Þ for hyperuniform systems
(see Sec. II D). For nonhyperuniform systems studied here,
we take α ¼ 0. The reader is referred to the Supplemental
Material [81] for derivations of Eqs. (82) and (83).
Importantly, in the quasistatic regime, the imaginary parts
of the effective dielectric constant for both strong-contrast
approximations (67) and (73) are determined by the
asymptotic behaviors FðQÞ indicated in Eq. (82), i.e.,
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Im½εeðkqÞ� ∼ Im½FðkqÞ�

∼
�
kqd; nonhyperuniform

kqdþα; hyperuniform
as kq → 0:

ð84Þ

Thus, hyperuniform media are less lossy than their non-
hyperuniform counterparts in the quasistatic regime.
In the case of stealthy hyperuniformmedia [i.e., χ̃VðQÞ ¼

0 for 0 ≤ Q < QU], the imaginary part of FðQÞ defined by
Eq. (70) is identically zero (transparent or lossless) for any
space dimension d for a range of wave numbers; specifi-
cally,

Im½FðQÞ� ¼ 0; for 0 ≤ Q < QU=2: ð85Þ

[The Supplemental Material [81] describes how the local
attenuation function F ðQÞ derived in Ref. [31] generally
differs from its nonlocal counterpart.] The transparency
interval in which Im½εeðkqÞ� ¼ 0 predicted by the two
strong-contrast approximations [Eqs. (67) and (73)] is thus
given by

Im½εeðkqÞ� ¼ 0;

for

� 0 ≤ kq <
QU
2

½from Eq: ð67Þ�;
0 ≤ kq <

QU

2ðεHS=εqÞ1=2 ½from Eq: ð73Þ�; ð86Þ

where εHS is given in Eq. (72). When εp > εq, since
εHS > εq, the scaled approximation accurately predicts a
narrower transparency interval than the unscaled variant, as
verified in Sec. VIII. Interestingly, the transparency interval
obtained from the less accurate formula (67) agrees with the

one obtained from previous simulation results for stealthy
hyperuniform “point” scatterers [63], not the finite-sized
particles considered here.
Figure 6 shows FðQÞ for the four distinct models of

disordered particulate media in R3: overlapping spheres,
equilibrium packings, stealthy hyperuniform packings,
and hyperuniform polydisperse packings. (Its 2D counter-
part is provided in the Supplemental Material [81].) We
clearly see that these attenuation functions exhibit common
large-Q behaviors, regardless of the microstructures. From
the quasistatic to the intermediate-wavelength regimes
(Qa < 1), however, the attenuation characteristics [imagi-
nary parts Im½FðQÞ�] are considerably different from one
model to another. For example, stealthy hyperuniform
media are transparent up to a finite wavelength, and
hyperuniform polydisperse packings exhibit much less
attenuation than nonhyperuniform systems.

VII. SIMULATION PROCEDURE TO COMPUTE
EFFECTIVE DYNAMIC DIELECTRIC CONSTANT

In Ref. [73], we established preliminary comparisons of
strong-contrast approximation (67) and numerical simula-
tions via the extended version of the fast-Fourier-transform-
based technique [95,96]. Because of convergence issues,
however, in this paper, we employ a more reliable numeri-
cal technique, i.e., the FDTD method [97], using an open-
source software package [98]. We focus here on particulate
media and take the matrix to be the reference medium
(phase 1) and the particles to be the polarized phase
(phase 2).
The general simulation setup is schematically illustrated

in Fig. 7. The simulation procedure for macroscopically
isotropic media is carried out in three steps:
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FIG. 6. The negative values of (a) the real and (b) imaginary
parts of the nonlocal attenuation function FðQÞ as a function of
the dimensionless wave number Qa [defined in Eq. (68)] for the
four models of 3D disordered composite media considered in this
paper. The inset in (b) is the log-log plot of the larger panel. The
volume fraction of the dispersed phase for each model is
ϕ2 ¼ 0.25. The first three models consist of identical spheres
of radius a. For class I hyperuniform polydisperse particulate
media, a is the mean sphere radius.
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FIG. 5. The spectral density χ̃VðQÞ as a function of dimension-
less wave number Qa for the four models of 3D disordered
media: overlapping spheres, equilibrium packings, class I hyper-
uniform polydisperse packings, and stealthy hyperuniform pack-
ings. In all cases, the volume fraction of the dispersed phase is
ϕ2 ¼ 0.25. For hyperuniform polydisperse packings, a is the
mean sphere radius. The other three models consist of identical
spheres of radius a. Corresponding graphs of the spectral
densities for the 2D models are provided in the Supplemental
Material [81].

SALVATORE TORQUATO and JAEUK KIM PHYS. REV. X 11, 021002 (2021)

021002-16



(1) For a given medium, we obtain the steady-state
spatial distributions of electric field Eyðr;ωÞ and
electric displacement field Dyðr;ωÞ at a given
frequency ω (or the corresponding wave number
k1). Specifically, the planar source generates Gaus-
sian pulses of electric fields that propagate along the
x̂ direction with wave number k1 that spans between
min½k1� and max½k1�. Using the aforementioned
MEEP package [98], we compute time evolution of
electric field Eyðr; tÞ and electric displacement field
Dyðr; tÞ for a period of time 6π

ffiffiffiffiffi
ε1

p
=fcmin½k1�g,

where c is the speed of light in vacuum. We then
compute the temporal Fourier transforms of these
fields inside packings. The values of the simulation
parameters (indicated in Fig. 7) for the 2D and 3D
ordered and disordered models studied in this article
are summarized in the Supplemental Material [81].

(2) At each value of k1, we postprocess Eyðr;ωÞ and
Dyðr;ωÞ to estimate the effective dielectric constant
ε�ðk1;ωÞ of a single configuration by solving the
following self-consistent equation:

ε�ðk1Þ ¼ ε�ðk1Þ; ð87Þ

where

ε�ðk1Þ≡ D̃yðke;ωÞ
Ẽyðke;ωÞ

; ε�ðk1Þ≡
�

ke
ω=c

�
2

;

ke is a complex-valued effective wave number, and

D̃yðq;ωÞ≡ 1

jVj
Z
V
Dyðr;ωÞe−iqx̂·rdr;

Ẽyðq;ωÞ≡ 1

jVj
Z
V
Eyðr;ωÞe−iqx̂·rdr;

where V is a rectangular parallelepiped subregion
within the composite (shown in gray in Fig. 6) that is
slightly smaller than the simulation box and is used
to reduce undesired boundary effects. The homog-
enization task is carried out by numerically finding
the minimizer of jε� − ε�j2 with an initial guess
ε�¼εHS via the Broyden-Fletcher-Goldfarb-Shanno
nonlinear optimization algorithm [99], where εHS is
the Hashin-Shtrikman estimate given by Eq. (72).
Details of step 2 are provided in the Supplemental
Material [81].

(3) Steps 1 and 2 are repeated for a sufficient number of
configurations for disordered media. Then, we com-
pute the effective dielectric constant at a given k1 by
ensemble averaging ε�ðk1Þ, i.e., εeðk1Þ ¼ hε�ðk1Þi.

It is important to note that we ensure that the run times
employed in step 1 are sufficiently long such that the
computed effective dielectric constants achieve stable and
accurate steady-state values. We emphasize that the result
ε�ðk1Þ obtained from Eq. (87) in step 2 is nonlocal in space
because it is calculated from the nonlocal constitutive
relation D̃yðke;ωÞ ¼ ε�ðk1ÞẼyðke;ωÞ. For periodic media,
step 3 is unnecessary because all configurations are
identical.

VIII. COMPARISON OF SIMULATIONS
OF εeðk1Þ TO VARIOUS APPROXIMATIONS

FORMULAS

In this section, we compare our simulations of the
effective dynamic dielectric constant εeðk1Þ for various
2D and 3D ordered and disordered model micro-
structures to the predictions of the strong-contrast formulas
as well as to conventional approximations, such as
MGA (17) and QCA (18). Most of these models provide
stringent tests of the predictive power of the approxima-
tions at finite wave numbers because they are characterized
by nontrivial spatial correlations at intermediate length
scales.

A. 2D and 3D periodic media

We first carry out our FDTD simulations for the effective
dynamic dielectric constant εeðk1Þ of 2D and 3D periodic
packings (square and simple-cubic lattice packings), which
necessarily depends on the direction of the incident wave k1.

PML

PML PML

PML

(a)

(b)

FIG. 7. Schematic of the general simulation setup for either
(a) periodic or (b) nonperiodic composites consisting of N
spheres of radius a in a matrix. In both cases, Gaussian pulses
of electric fields propagate from the planar sources (shown in red
lines) to the packings (shown in black circles). The wave number
(spectrum) of the pulses spans between min½k1� and max½k1�.
Periodic boundary conditions are applied along all directions,
except for the propagation direction x̂. The perfectly matched
layers (PML shown in blue) of thickness LPML are placed at both
ends of the simulation box to absorb any reflected and transmitted
waves. To estimate the effective dielectric constant as described
in step 2 below, we consider the subregion V (shown in gray) that
excludes from the composite within the simulation box two
relatively thin slabs of thickness Lboundary along the propagation
direction.
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While these periodic packings are macroscopically isotropic,
due to their cubic symmetry, they are statistically anisotropic
(see Supplemental Material [81] for details). For simplicity,
we consider only the casewhere k1 is aligned with one of the
minimal lattice vectors, i.e., the Γ-X direction in the first
Brillouin zone. Such periodic models enable us to validate
our simulations because εeðk1Þ also can be accurately
extracted from the lowest two photonic bands that are
calculated via MPB, an open-source software package
[100]. The results from the band-structure calculations
and our FDTD simulations show excellent agreement. In
particular, our simulations accurately predict two salient
dielectric characteristics that must be exhibited by periodic
packings: transparency up to a finite wave number associated
with the edge of the first Brillouin zone (i.e., Im½εe� ¼ 0
for 0 ≤ jk1j≲ π), and resonancelike attenuation due to
Bragg diffraction within the photonic band gap [101]
(i.e., a peak in Im½εe� or, equivalently, a sharp transition
in Re½εe� [102]). Thus, our numerical homogenization
scheme is valid down to intermediate wavelengths (see
the Supplemental Material [81] for comparison of the band-
structure and FDTD computations).
Importantly, while our strong-contrast approximations

Eqs. (67) and (73) account for directionality of the incident
waves, the MGA and QCA are independent of the direction
of k1. In Fig. 8, the FDTD simulation results are compared
with the MGAs for d ¼ 2, 3 [Eqs. (17) and (16)], QCA (18)
for d ¼ 3, as well as the unscaled and scaled strong-
contrast approximations (67) and (73) for d ¼ 2, 3. While
all approximations agree with the FDTD simulations in the
quasistatic regime, the MGA and QCA fail to capture
properly two key features: no loss of energy up to a finite
wave number and resonancelike attenuation in the band
gaps. Each strong-contrast approximation captures both of
these salient characteristics. However, it is noteworthy that
the scaled strong-contrast approximation [Eq. (73)] agrees
very well with the FDTD simulations. For contrast ratios
ε2=ε1 < 1, FDTD simulations are also in very good agree-
ment with the predictions of strong-contrast approxima-
tions for a wide range of wave numbers, as detailed in the
Supplemental Material [81].

B. Disordered nonhyperuniform
and hyperuniform media

To test the predictive capacity of approximation formulas
for εeðk1Þ for disordered media as measured against
simulations, we choose to study two distinctly different
models: disordered nonhyperuniform packings (equilib-
rium packings) and disordered stealthy hyperuniform dis-
ordered packings [i.e., χ̃VðQÞ ¼ 0 for 0 ≤ Qa < 1.5] for
both 2D and 3D. Again, we compare our simulation results
to the MGAs [Eqs. (17) and (16)], QCA (18), strong-
contrast approximation (67), and the scaled counterpart
(73). The conventional approximations fail to capture
spatial dispersion effects. Specifically, the MGA neglects

any microstructural information, except for the particle
shape, and thus cannot account for long-range correlations,
such as the lossless property of stealthy hyperuniform
media. By contrast, while the QCA formula yields better
estimates of Im½εe� for nonhyperuniform systems, it cannot
generally capture the correct transparency characteristics
of hyperuniform systems, e.g., it incorrectly predicts
Im½εeðk1Þ� ¼ 0 for all wave numbers, regardless of whether
the medium is stealthy hyperuniform or nonstealthy hyper-
uniform; see Fig. 9(b).
On the other hand, the scaled strong-contrast approxi-

mation provides excellent estimates of εeðk1Þ for
both disordered models, even for large wave numbers
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FIG. 8. Comparison of the predictions of the strong-contrast
formulas Eqs. (67) and (73) to the Maxwell-Garnett [Eqs. (17)
and (16)] and QCA (18) approximations for the effective dynamic
dielectric constant εeðk1Þ as a function of the dimensionless wave
number k1L of periodic packings to our corresponding computer
simulation results. We consider (a) 3D simple cubic lattice and
(b) 2D square lattice of packing fraction ϕ2 ¼ 0.25 and contrast
ratio ε2=ε1 ¼ 4. Here, k1 is the wave number in the reference
(matrix) phase along the Γ-X direction, and L is the side length of
a unit cell.
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(0 ≤ k1a ≤ 1); see Fig. 9. Moreover, the predictions of both
strong-contrast approximations accurately capture the
salient microstructural differences between the nonhyper-
uniform and hyperuniform models because they incorpo-
rate spatial correlations at finite wavelengths via the
spectral density χ̃VðQÞ. For example, they properly predict
that stealthy hyperuniform media are lossless up to a finite
wave number, even if at different cutoff values; see
Eq. (86). Corresponding 2D results are presented in the
Supplemental Material [81] because they are qualitatively
the same as the 3D results.

IX. PREDICTIONS OF STRONG-CONTRAST
APPROXIMATIONS FOR DISORDERED

PARTICULATE MEDIA

Having established the accuracy of the scaled strong-
contrast approximation (73) for ordered and disordered
media in the previous section, we now apply it to the four
different disordered models discussed in Sec. V in order to
study how εeðk1Þ varies with the microstructure. We first
study how εeðk1Þ varies with k1 at a fixed contrast ratio
ε2=ε1 ¼ 10 for the four models; see Fig. 10. According
to Eq. (84), nonhyperuniform and hyperuniform media in
the quasistatic regime have the different scalings, i.e.,
Im½εeðk1Þ� ∼ k1d and Im½εeðk1Þ� ∼ k1dþα, respectively,
where α > 0 for hyperuniform systems. This implies that
hyperuniform media are less lossy than their nonhyperuni-
form counterparts as k1 tends to zero, as seen in the insets of
Fig. 10. Moreover, beyond the quasistatic regime, each
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FIG. 9. Comparison of the predictions of the strong-contrast
formulas Eqs. (67) and (73) to the MGA (16) and QCA (18)
approximations for the effective dynamic dielectric constant
εeðk1Þ as a function of the dimensionless wave number k1a
of 3D disordered sphere packings to our corresponding
computer simulation results. We consider (a) equilibrium pack-
ings and (b) stealthy hyperuniform packings [χ̃VðQÞ ¼ 0 for
0 ≤ Qa < 1.5] of sphere radius a, packing fraction ϕ2 ¼ 0.25,
and phase-contrast ratio ε2=ε1 ¼ 4. Here, k1 is the wave number
in the reference (matrix) phase, and the error bars in the FDTD
simulations represent the standard errors over independent
configurations.

1.2

1.5

1.8

2.1

R
e[

ε e
 / 

ε 1 
]

Overlapping spheres
Equilibrium packing
Stealthy hyperuniform; Q

U
a = 1.5

Hyperuniform polydisperse packing

0 0.5 1

1

1.5 2 2.5
k a

0

0.2

0.4

Im
[ε e

 / 
ε 1 

]

0.1 110
-7

10
-4

10
-1

d = 3, 
2 2 1

φ = 0.25, ε /ε  = 10

3

7

(a)

1.4

1.6

R
e[

ε e / 
ε 1 

]

Overlapping disks
Equilibrium packing
Stealthy hyperuniform; Q

U
a = 1.3

Hyperuniform polydisperse packing

0 0.5 1

1

1.5 2
k a

0

0.1

0.2

Im
[ε

e / 
ε 1 

]

0.01 0.110
-7

10
-4

10
-1

d = 2, 
2 2 1

φ = 0.25, ε /ε = 10

2

6

(b)

FIG. 10. Predictions of the scaled strong-contrast approxima-
tion (73) for the effective dynamic dielectric constant εeðk1Þ as a
function of the dimensionless wave number k1a of the four
models of disordered media at volume fraction ϕ2 ¼ 0.25 and
contrast ratio ε2=ε1 ¼ 10: (a) three dimensions and (b) two
dimensions. The inset in the lower panel is the log-log plot of
the larger panel.
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model exhibits effective transparency for a range of wave
numbers that depends on the microstructure. For 2D and 3D
models, hyperuniform polydisperse packings tend to be
effectively transparent for a wide range of wave numbers
compared to the nonhyperuniform ones, while the stealthy
hyperuniform systems are perfectly transparent for thewidest
range of wave numbers, as established in Eq. (86) and
Sec. VIII. For eachmodel, the effective transparency spectral
range must be accompanied by normal dispersion [i.e., an
increase in Re½εeðk1Þ� with k1] [32] because our strong-
contrast approximation is consistent with the Kramers-
Kronig relations (see Appendix B). Moreover, we see that
anomalous dispersion [i.e., a decrease in Re½εeðk1Þ�with k1]
occurs at wave numbers larger but near the respective
transition between the effective transparency and appreciable
attenuation, which again is dictated by the Kramers-Kronig
relations. The specific anomalous dispersion behavior is
microstructure dependent.

We now examine how the imaginary part Im½εe� varies
with the contrast ratio ε2=ε1 for the disordered models for a
given large wave number k1 inside the transparency interval
for 2D and 3D stealthy hyperuniform systems. These
results are summarized in Fig. 11. The disparity in the
attenuation characteristics across microstructures widens
significantly as the contrast ratio increases. Clearly, over-
lapping spheres are the lossiest systems. Hyperuniform
polydisperse packings can be nearly as lossless as stealthy
hyperuniform ones.
We also study the effect of packing fraction ϕ2 on the

effective phase speed ceðk1Þ and effective attenuation coef-
ficient γeðk1Þ, as defined by Eqs. (55) and (56), respectively.
For concreteness, we focus on 3D stealthy hyperuniform
packings. We first generate such packings at a packing
fraction ϕ2 ¼ 0.4 andQUa ¼ 1.5, as described in Sec. V D.
Without changing particle positions, we then shrink particle
radii to attain a packing fraction ϕ2 ¼ 0.25, whose stealthy
regime is now QUa ≈ 1.33. The coefficients ceðk1Þ and
γeðk1Þ for these packings with ε2=ε1 ¼ 4 are estimated from
the scaled approximation (73); see Fig. 12. It is seen that the
waves propagate significantly more slowly through the
denser medium due to an increase in multiple-scattering
events. Moreover, the transparency intervals (wave-number
ranges where the effective attenuation coefficients vanish)
are larger for the packingwith the higher stealthy cutoff value
QUa ¼ 1.5a (ϕ2 ¼ 0.4), as predicted by Eq. (86).

X. DISCUSSION

All previous closed-form homogenization estimates of the
effective dynamic dielectric constant apply only at long
wavelengths (quasistatic regime) and for very special mac-
roscopically isotropic disordered composite microstructures,

0 2 4 6 8 10
0

0.04

0.08

0.12

0.16
Im

[ε
e / 

ε 1 
]

Overlapping spheres
Equilibrium packings
Stealthy hyperuniform packings; Q

U
a = 1.5

Hyperuniform polydisperse packings

d = 3, φ = 0.25, (ε /ε )1/2
k

HS

HS

112
a = 0.7

(a)

0 2

2 1

4 6 8 10
ε /ε

2 1
ε /ε

0

0.05

0.1

0.15

Im
[ε

e / 
ε 1 

]

Overlapping disks
Equilibrium packings
Stealthy hyperuniform dispersions; Q

U
a = 1.3

Hyperuniform polydisperse packings

d = 2, φ = 0.25, (ε /ε )1/2
k

112
a = 0.6

(b)

FIG. 11. Predictions of the strong-contrast approximation (73)
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namely, nonoverlapping spheres or spheroids in a matrix. In
this work, we lay the theoretical foundation that enables us to
substantially extend previous work in both its generality and
applicability. First, we derive exact homogenized constitutive
relations for the effective dynamic dielectric constant tensor
εeðkqÞ that arenonlocal in space fromfirst principles.Second,
our strong-contrast representation of εeðkqÞ exactly accounts
for complete microstructural information (infinite set of n-
point correlation functions) for arbitrary microstructures and
hence multiple scattering to all orders for the range of wave
numbers for which our extended homogenization theory
applies, i.e., 0 ≤ jkqjl≲ 1 (where l is a characteristic
heterogeneity length scale). Third, we extract from the exact
expansions accurate nonlocal closed-form approximate for-
mulas forεeðkqÞ, relations (67) and (73),whichare resummed
representations of the exact expansions that incorporate
microstructural information through the spectral density
χ̃VðQÞ, which is easily ascertained for generalmicrostructures
either theoretically, computationally, or via scattering experi-
ments. Depending on whether the high-dielectric phase
percolates or not, the wide class of microstructures that we
can treat includes particulate media consisting of identical or
polydisperse particles of general shape (ellipsoids, cubes,
cylinders, polyhedra) with prescribed orientations thatmay or
not overlap, cellular networks, as well as media without well-
defined inclusions (Sec. III B). Our approximations account
for multiple scattering across a range of wave numbers.
Fourth, we carry out precise full-waveform simulations for
various2Dand3Dmodels of ordered anddisorderedmedia to
validate the accuracy of our nonlocal microstructure-depen-
dent approximations for wave numbers well beyond the
quasistatic regime.
Having established the accuracy of the scaled strong-

contrast approximation (73), we then apply it to four models
of 2D and 3D disordered media (both nonhyperuniform and
hyperuniform) to investigate the effect of microstructure on
the effective wave characteristics. Among other findings, we
show that disordered hyperuniform media are generally less
lossy than their nonhyperuniform counterparts. We also find
that our scaled formula (73) accurately predicts that disor-
dered stealthy hyperuniform media possess a transparency
wave-number interval ½0; 0.5QUðεHS=εqÞ−1=2� [cf. Eq. (86)],
where most nonhyperuniform disordered media are opaque.
Note that, usingmultiple-scattering simulations, Leseur et al.
[63] were the first to show that stealthy hyperuniform
systems should exhibit a transparency interval, but for
“point” scatterers, not the finite-sized scatterers considered
here. Interestingly, their transparency-interval prediction
coincides with the one predicted by our less accurate
strong-contrast formula [cf. Eq. (86)].
The accuracy of our nonlocal closed-form formulas has

important practical implications, since one can now use them
to accurately and efficiently predict the effective wave
characteristics well beyond the quasistatic regime of a wide
class of composite microstructures without having to perform

computationally expensive full-blown simulations. Thus, our
nonlocal formulas can be used to accelerate the discovery of
novel electromagnetic composites by appropriate tailoring of
the spectral densities and then constructing the corresponding
microstructures by using the Fourier-space inverse methods
[36]. For example, from our findings in the present study, it is
clear that stealthy disordered particulate media can be
employed as low-pass filters that transmit waves isotropically
up to a selected wave number. Moreover, using the spectral
densities of the type found by Chen and Torquato [36] for
stealthyhyperuniformpackings (characterizedbyapeakvalue
atQ ¼ QU with intensities that rapidly decay to zero for larger
wave numbers) and formula (73), one can design materials
with refractive indices that abruptly change over a narrow
range of wave numbers. Of course, one could also explore the
design space of effectivewave properties of nonhyperuniform
disordered composite media for potential applications.
Previously, disordered media were often described using

cluster expansions [17,20,33], while ordered media were
often studied through dispersion relations and band-struc-
tures calculations. Accordingly, it has been of primary
importance to bridge the gap between the treatments of
ordered and disordered to better understand the optical
properties of correlated media. Thus, our work represents
an initial step toward a unified theory to describe the
effective optical properties of both ordered and disordered
microstructures over a wide range of incident wavelengths.
There are a variety of directions for future research. First,

our formalism can be straightforwardly extended to hetero-
geneous materials composed of more than two phases or
continuous media. Second, it is also of interest to extend
our formalism to applications and phenomena (e.g., mag-
netic effects) relevant to the smaller wavelengths noted for
metamaterials [103–105].

ACKNOWLEDGMENTS

We thank Z. Ma, M. Klatt, Y. Chen, and L. Dal Negro for
very helpful discussions. The authors gratefully acknowl-
edge the support of Air Force Office of Scientific Research
Program on Mechanics of Multifunctional Materials and
Microsystems under Grant No. FA9550-18-1-0514.

APPENDIX A: DIFFERENT EXPANSIONS
AS A RESULT OF DIFFERENT
EXCLUSION-REGION SHAPES

To get a sense of how the resulting expansions change due
to the choice of the exclusion-region shape, we consider the
aforementioned oriented spheroidal exclusion region in the
two limiting disklike and needlelike cases. Comparing the
expansion parameters in the limit cases given in Eq. (32) to
the strong-contrast expansion with a spherical exclusion
region given in Eq. (54), one can obtain the counterparts of
Eq. (54) with disklike and needlelike exclusion regions.
Specifically, we replace the parameters in Eq. (54)

according to the following mappings:
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βpq → ðεp − εqÞ=ðdεpÞ;
εeðkqÞ þ ðd − 1Þεq

εeðkqÞ − εq
→

dεeðkqÞ
εeðkqÞ − εq

; disklike;

βpq → ðεp − εqÞ=ðdεqÞ;
εeðkqÞ þ ðd − 1Þεq

εeðkqÞ − εq
→

dεq
εeðkqÞ − εq

; needlelike;

resulting in the following expansions, respectively,

ϕp
2

�
εp−εq
dεp

�
2 dεeðkqÞ
εeðkqÞ−εq

¼ϕp

�
εp−εq
dεp

�
−
X∞
n¼2

AðpÞ
n ðkq;A� ¼1Þ

�
εp−εq
dεp

�
n
; ðA1Þ

ϕp
2

�
εp − εq
dεq

�
2 dεq
εeðkqÞ − εq

¼ ϕp

�
εp − εq
dεq

�
−
X∞
n¼2

AðpÞ
n ðkq;A� ¼ 0Þ

�
εp − εq
dεq

�
n
: ðA2Þ

Here the functionals AðpÞ
n ðkq;A�Þ are identical to Eqs. (51)

and (52), except for the exclusion-region shape.
In the Supplemental Material [81], we discuss how to

obtain the analogs of Eqs. (A1) and (A2) that apply to
macroscopically anisotropic media. The corresponding
series expansions involve tensorial expansion parameters
that have rapid convergence properties for stratified and
transversely isotropic media, respectively.

APPENDIX B: KRAMERS-KRONIG RELATIONS

Kramers-Kronig relations connect the real and imaginary
parts of any complex function that is analytic in the upper
half-plane and meets mild conditions [106,107]. Since
causality in a dielectric response function of a homo-
geneous material implies such analyticity properties, the
Kramers-Kronig relations enable one to directly link the
real part of a response function to its imaginary part or vice
versa, even if the real or imaginary parts are only available
in a finite frequency range [106,107]. Thus, when a
heterogeneous material can be treated as a homogeneous
material with a dynamic effective dielectric constant εeðkqÞ,
Kramers-Kronig relations immediately apply to the exact
strong-contrast expansion (63), i.e.,

Re½εeðkqÞ� ¼ εeð∞Þ þ 2

π
p:v:

Z
∞

0

dq
qIm½εeðqÞ�
q2 − kq2

; ðB1Þ

Im½εeðkqÞ� ¼ −
2kq
π

p:v:
Z

∞

0

dq
Re½εeðqÞ� − εeð∞Þ

q2 − kq2
; ðB2Þ

wherewe assume a linear dispersion relation in the reference
phase (i.e., kq ¼ ffiffiffiffiffi

εq
p

ω=c) and limω→∞ εeðωÞ ¼ εq is real
valued. The Kramers-Kronig relations may or may not be
obeyed when the strong-contrast expansion is truncated at

the two-point level, yielding Eq. (67). Here we analytically
show that the effective dielectric constant εeðkqÞ for iso-
tropic media obtained from either the unscaled or scaled
strong-contrast formulas [see Eqs. (67) and (73)] also
satisfies the Kramers-Kronig relations.
We begin by rewriting either strong-contrast approxi-

mation as εeðkqÞ ≈ εq þ ½aþ bFðkqÞ�−1, where a and b are
nonzero real numbers. The general analytic properties of
the nonlocal attenuation function FðQÞ (detailed in the
Supplemental Material [81]) induce εeðkqÞ to have the
following three properties necessary to satisfy the Kramers-
Kronig relations (B1) and (B2): (i) εeðkqÞ is an analytic
function in the upper half-plane of kq, (ii) εðkqÞ − εq
vanishes like 1=jkqj as jkqj goes to infinity, and
(iii) Re½εeðkqÞ� and Im½εðkqÞ� are even and odd functions
of kq, respectively. Property (i) is valid if aþ bFðkqÞ ≠ 0,
which is met for all disordered systems considered here.
The fact that the strong-contrast approximations satisfy
Eqs. (B1) and (B2) makes physical sense since FðQÞ
involves GðqÞðx;x0Þ [cf. Eq. (24)], which is the temporal
Fourier transform of the retarded Green’s function
GðqÞðx; t;x0; t0Þ [106] that accounts for causality. We also
numerically show in the Supplemental Material [81] that
our approximations obey Eqs. (B1) and (B2).

APPENDIX C: STRONG-CONTRAST
APPROXIMATION AT THE

THREE-POINT LEVEL

Here we present the strong-contrast approximation at the
three-point level for a spherical exclusion region. It is
obtained from Eq. (54) by setting AðpÞ

n ¼ 0 for n ≥ 4 and by
solving it in εeðkqÞ:

εeðkqÞ
εq

¼ 1þ dβpqϕp
2

ϕpð1 − βpqϕpÞ þ ðd − 1Þπ=½2d=2Γðd=2Þ�βpqFðkqÞ − βpq
2AðpÞ

3 ðkqÞ
; ðC1Þ
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where the local three-point parameter is given as

AðpÞ
3 ðkqÞ≡ −

ðdεqÞ2
ϕp

Z
ϵ
dx1dx2

1

d
Tr½HðqÞðx1 − x2Þe−ikq·ðx1−x2Þ ·HðqÞðx2 − x3Þe−ikq·ðx2−x3Þ�ΔðpÞ

3 ðx1;x2;x3Þ ðC2Þ

¼−
1

ϕpð2πÞ2d
Z

dq1dq2

1

q12−kq2
1

q22−kq2
fðd−1Þ2kq4þq12q22½dðq̂1 · q̂2Þ2−1�gΔ̃ðpÞ

3 ðq1þkq;q2þkqÞ; ðC3Þ

where, due to the statistical homogeneity,

Δ̃ðpÞ
3 ðq1;q2Þ≡

Z
dr1dr2e−iq1·r1e−iq2·r2 ½SðpÞ2 ðr1ÞSðpÞ2 ðr2Þ − ϕpS

ðpÞ
3 ðr1; r2Þ�:

Note that Eq. (C3) is obtained from Eq. (C2) via Parseval’s theorem. The static limit of Eq. (C2) for statistically isotropic
media is given by [11]

AðpÞ
3 ð0Þ ¼ ðd − 1Þϕpð1 − ϕpÞζp ¼

�
d
Ωd

�
2
ZZ

dr
rd

ds
sd

½dðr̂ · ŝÞ2 − 1�½SðpÞ3 ðr; s; tÞ − SðpÞ2 ðrÞSðpÞ2 ðsÞ=ϕp�; ðC4Þ

where Ωd is the surface area of a unit sphere in Rd, t≡ jr − sj and the parameter ζp lies in the closed interval [0, 1].

APPENDIX D: STRONG-CONTRAST FORMULA
FOR PHASE-INVERSION SYMMETRIC MEDIA

To further illustrate the flexibility and power of the
strong-contrast formalism, we apply it to treat media with
phase-inversion symmetry. A two-phase medium possesses
phase-inversion symmetry if the morphology of phase 1 at
volume fraction ϕ1 is statistically identical to that of phase
2 in the system when the volume fraction of phase 1 is
1 − ϕ1 [11]. In particular, we follow the same procedure
used by Torquato [11] to derive strong-contrast expansions
designed to apply to media with phase-inversion symmetry
in the static limit and which can be regarded as expansions
that perturb around the microstructures corresponding to
the “self-consistent” formula. All we need to do is add the
expansion (54) with p ¼ 2 and q ¼ 1 to that with p ¼ 1
and q ¼ 2:

ϕ2

εeðωÞþðd−1Þε1
εeðωÞ− ε1

þϕ1

εeðωÞþðd−1Þε2
εeðωÞ− ε2

¼ 2−d−
X∞
n¼2

�
Að2Þ
n ðk1Þ
ϕ2

β21
n−2þAð1Þ

n ðk2Þ
ϕ1

β12
n−2

	
; ðD1Þ

where the term (2 − d) on the right-hand side is obtained
from β21

−1 þ β12
−1. Since the exact expansion (54) is

independent of choice of reference phase and because
the phase-inversion symmetry places each phase on the
same footing, we can write the effective dielectric
constant independent of the reference phase, i.e., εeðωÞ ¼
εe(k1ðωÞ;ω) ¼ εe(k2ðωÞ;ω). Truncating Eq. (D1) at the
two-point level and solving it in εeðωÞ yields the following
approximation:

εeðωÞ¼
ε1þ ε2

2
þ 1

2A2ðωÞ
ð−dðε1ϕ2þ ε2ϕ1Þ

þf4A2ðωÞ½d−A2ðωÞ�ε1ε2
þ½ðε1þ ε2ÞA2ðωÞ−dðϕ2ε1þϕ1ε2Þ�2g1=2Þ; ðD2Þ

where A2ðωÞ≡ d − 1þ Að1Þ
2 ðk2Þ=ϕ1 þ Að2Þ

2 ðk1Þ=ϕ2, and
we choose the physically meaningful solution from the
quadratic equation. Note that in the static limit, A2ðωÞ
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FIG. 13. Evaluation of the effective dielectric constant εe as a
function of the dimensionless wave number k1a for 3D equilib-
rium packings and 3D Debye random media of volume fraction
ϕ2 ¼ 0.25 and contrast ratio ε2=ε1 ¼ 4. Here, k1 ≡ ffiffiffiffiffi

ε1
p

ω=c is
the wave number in the matrix (reference) phase 1, and a is
particle radius.
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converges to d − 1, and thus, Eq. (D2) reduces to the well-
known self-consistent formula [11].
Examples of phase-inversion symmetric media include

the d-dimensional random checkerboard [11] and what has
been called Debye random media [29,30,75]. Here we
apply the approximation (D2) to Debye random media,
which are defined by their autocovariance function [29,30]

χVðrÞ ¼ ϕ1ϕ2e−r=r0 ; ðD3Þ

where a positive quantity r0 represents a characteristic
length scale. Here, we take r0 ¼ a=2.
Figure 13 compares the effective dynamic dielectric

constant for 3D Debye random media to that of 3D
equilibrium hard spheres as predicted from the strong-
contrast approximations devised, respectively, for phase-
inversion symmetric media [Eq. (D2)] and dispersions of
particles [Eqs. (67)], which do not have such a symmetry.
We see that Debye random media are more lossy than
equilibrium packings.
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[34] A. Cazé and J. C. Schotland, Diagrammatic and Asymp-
totic Approaches to the Origins of Radiative Transport
Theory: Tutorial, J. Opt. Soc. Am. A 32, 1475 (2015).

SALVATORE TORQUATO and JAEUK KIM PHYS. REV. X 11, 021002 (2021)

021002-24

https://doi.org/10.1080/14786449208620364
https://doi.org/10.1080/14786449208620364
https://doi.org/10.1002/andp.19063240204
https://doi.org/10.1002/andp.19354160705
https://doi.org/10.1002/andp.19354160705
https://doi.org/10.1007/BF02120313
https://doi.org/10.1016/0022-5096(65)90011-6
https://doi.org/10.1063/1.1706246
https://doi.org/10.1063/1.1706246
https://doi.org/10.1063/1.1728579
https://doi.org/10.1007/BF02748596
https://doi.org/10.1007/BF00251534
https://doi.org/10.1007/BF00251534
https://doi.org/10.1063/1.1742339
https://doi.org/10.1063/1.1742339
https://doi.org/10.1007/BF01011628
https://doi.org/10.1103/PhysRevB.39.4504
https://doi.org/10.1103/PhysRevB.39.4504
https://doi.org/10.1103/PhysRevLett.79.681
https://doi.org/10.1103/PhysRevLett.79.681
https://doi.org/10.1090/psapm/016/0178638
https://doi.org/10.1090/psapm/016/0178638
https://doi.org/10.1029/RS016i003p00303
https://doi.org/10.1103/PhysRevA.46.6513
https://doi.org/10.1103/PhysRevA.46.6513
https://doi.org/10.1098/rsta.1904.0024
https://doi.org/10.1016/S0030-4018(00)00825-7
https://doi.org/10.1103/PhysRev.85.621
https://doi.org/10.1364/JOSAA.19.001145
https://doi.org/10.1063/1.4989492
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1103/PhysRevE.102.043310
https://doi.org/10.1103/PhysRevE.102.043310
https://doi.org/10.1063/1.2906135
https://doi.org/10.1364/JOSAA.32.001475


[35] S. Torquato, Disordered Hyperuniform Heterogeneous
Materials, J. Phys. Condens. Matter 28, 414012 (2016).

[36] D. Chen and S. Torquato, Designing Disordered Hyper-
uniform Two-Phase Materials with Novel Physical Prop-
erties, Acta Mater. 142, 152 (2018).

[37] C. López, The True Value of Disorder, Adv. Opt. Mater. 6,
1800439 (2018).

[38] S. Yu, X. Piao, J. Hong, and N. Park, Bloch-like Wave
Dynamics in Disordered Potentials Based on Supersym-
metry, Nat. Mater. 6, 8269 (2015).

[39] M. Florescu, P. J. Steinhardt, and S. Torquato, Optical
Cavities and Waveguides in Hyperuniform Disordered
Photonic Solids, Phys. Rev. B 87, 165116 (2013).

[40] W. Man, M. Florescu, E. P. Williamson, Y. He, S. R.
Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato,
P. M. Chaikin, and P. J. Steinhardt, Isotropic Band Gaps
and Freeform Waveguides Observed in Hyperuniform
Disordered Photonic Solids, Proc. Natl. Acad. Sci.
U.S.A. 110, 15886 (2013).

[41] S. Torquato and F. H. Stillinger, Local Density Fluctua-
tions, Hyperuniform Systems, and Order Metrics, Phys.
Rev. E 68, 041113 (2003).

[42] C. E. Zachary and S. Torquato, Hyperuniformity in Point
Patterns and Two-Phase Heterogeneous Media, J. Stat.
Mech. (2009) P12015.

[43] S. Torquato, Hyperuniform States of Matter, Phys. Rep.
745, 1 (2018).

[44] S. Torquato, G. Zhang, and F. H. Stillinger, Ensemble
Theory for Stealthy Hyperuniform Disordered Ground
States, Phys. Rev. X 5, 021020 (2015).

[45] G. Zhang, F. H. Stillinger, and S. Torquato, The Perfect
Glass Paradigm: Disordered Hyperuniform Glasses Down
to Absolute Zero, Sci. Rep. 6, 36963 (2016).

[46] D. Hexner, P. M. Chaikin, and D. Levine, Enhanced
Hyperuniformity from Random Reorganization, Proc.
Natl. Acad. Sci. U.S.A. 114, 4294 (2017).

[47] J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P.
Yazhgur, Optimizing Hyperuniformity in Self-Assembled
Bidisperse Emulsions, Phys. Rev. Lett. 119, 208001 (2017).

[48] E. C. Oğuz, J. E. S. Socolar, P. J. Steinhardt, and S.
Torquato, Hyperuniformity of Quasicrystals, Phys. Rev. B
95, 054119 (2017).

[49] S. Yu, X. Piao, and N. Park, Disordered Potential Land-
scapes for Anomalous Delocalization and Superdiffusion
of Light, ACS Photonics 5, 1499 (2018).

[50] J. Wang, J. M. Schwarz, and J. D. Paulsen, Hyperuniform-
ity with No Fine Tuning in Sheared Sedimenting Suspen-
sions, Nat. Commun. 9, 1 (2018).

[51] Q.-L. Lei and R. Ni, Hydrodynamics of Random-
Organizing Hyperuniform Fluids, Proc. Natl. Acad. Sci.
U.S.A. 116, 22983 (2019).

[52] S. Gorsky, W. A. Britton, Y. Chen, J. Montaner, A. Lenef,
M. Raukas, and L. Dal Negro, Engineered Hyperuniform-
ity for Directional Light Extraction, APL Photonics 4,
110801 (2019).

[53] M. A. Klatt, J. Kim, and S. Torquato, Cloaking the
Underlying Long-Range Order of Randomly Perturbed
Lattices, Phys. Rev. E 101, 032118 (2020).

[54] T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A.
Lewis, and M. Skorobogatiy, 3D Printed Hollow-Core

Terahertz Optical Waveguides with Hyperuniform Disor-
dered Dielectric Reflectors, Adv. Opt. Mater. 4, 2085
(2016).

[55] Y. Xu, S. Chen, P.-E. Chen, W. Xu, and Y. Jiao, Micro-
structure and Mechanical Properties of Hyperuniform
Heterogeneous Materials, Phys. Rev. E 96, 043301 (2017).

[56] S. Torquato and D. Chen, Multifunctional Hyperuniform
Cellular Networks: Optimality, Anisotropy and Disorder,
Multifunc. Mater. 1, 015001 (2018).

[57] J. Kim and S. Torquato, New Tessellation-Based Pro-
cedure to Design Perfectly Hyperuniform Disordered
Dispersions for Materials Discovery, Acta Mater. 168,
143 (2019).

[58] S. Ghosh and J. L. Lebowitz, Generalized Stealthy Hyper-
uniform Processes: Maximal Rigidity and the Bounded
Holes Conjecture, Commun. Math. Phys. 363, 97 (2018).

[59] J. S. Brauchart, P. J. Grabner, and W. Kusner, Hyperuni-
form Point Sets on the Sphere: Deterministic Aspects,
Constr. Approx. 50, 45 (2019).

[60] S. Torquato, G. Zhang, and M. de Courcy-Ireland, Hidden
Multiscale Order in the Primes, J. Phys. A 52, 135002
(2019).

[61] Y. Jiao, T. Lau, H. Hatzikirou, M. Meyer-Hermann, J. C.
Corbo, and S. Torquato, Avian Photoreceptor Patterns
Represent a Disordered Hyperuniform Solution to a Multi-
scale Packing Problem, Phys. Rev. E 89, 022721 (2014).

[62] M. Florescu, S. Torquato, and P. J. Steinhardt, Designer
Disordered Materials with Large Complete Photonic Band
Gaps, Proc. Natl. Acad. Sci. U.S.A. 106, 20658 (2009).

[63] O. Leseur, R. Pierrat, and R. Carminati, High-Density
Hyperuniform Materials Can Be Transparent, Optica 3,
763 (2016).
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