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In principle, there is no obstacle to gapping fermions preserving any global symmetry that does not
suffer a ’t Hooft anomaly. In practice, preserving a symmetry that is realized on fermions in a chiral manner
necessitates some dynamics beyond simple quadratic mass terms. We show how this can be achieved using
familiar results about the strong coupling dynamics of supersymmetric gauge theories and, in particular,
the phenomenon of confinement without chiral symmetry breaking. We present simple models that gap
fermions while preserving a symmetry group under which they transform in chiral representations.
For example, we show how to gap a collection of 4D fermions that carry the quantum numbers of one
generation of the standard model, but without breaking electroweak symmetry. We further show how to gap
fermions in groups of 16 while preserving certain discrete symmetries that exhibit a mod 16 anomaly.
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I. INTRODUCTION

What symmetries are lost when fermions gain a mass?
Naively, one might think that chiral symmetries are broken,
while vectorlike symmetries survive. This is certainly the
case if one simply writes down a quadratic mass term for
fermions. Moreover, it is often the case if the fermions get
their mass through some strong coupling effect—say, a
four-fermion term in d ¼ 1þ 1 dimensions, or a confining
gauge theory in d ¼ 3þ 1—where the chiral symmetry is
typically broken spontaneously. Typically, but not always.
The purpose of this paper is to describe a number of

simple models that give fermions a mass while preserving
chiral symmetries. These will include both continuous
symmetries and more subtle discrete symmetries. The
phenomenon of gapping fermions while preserving a chiral
symmetry sometimes goes by the name of symmetric mass
generation.
The real obstacle to giving fermions a mass while

preserving a global symmetry G is the ’t Hooft anomaly
associated to G [1]. If the anomaly is nonvanishing, the
fermions cannot be trivially gapped without breaking G.
(Sometimes they can be “nontrivially gapped,” meaning
they leave behind a topological quantum field theory that

saturates the anomaly.) However, if the anomaly vanishes
then there is, in principle, no obstacle to gapping the
fermions while preserving G, even if they sit in a chiral
representation. The question is, how dowe do it in practice?
It will be useful to have two simple examples in mind as

we proceed, both of them in d ¼ 3þ 1 dimensions.
(i) Consider 15 Weyl fermions carrying the quantum

numbers of a single generation of the standard model
under the symmetry G ¼ SUð3Þ × SUð2Þ × Uð1Þ.
(We review these quantum numbers in Sec. II C.)
Famously, the anomalies vanish. Can these fermions
be gapped without breaking G?

(ii) Consider 16 Weyl fermions that enjoy a G ¼
Spin-Z4 symmetry, meaning that the generator U
obeys U2 ¼ ð−1ÞF. Such a symmetry has a mod 16
anomaly and this vanishes if U acts on all 16
fermions in the same way, say by multiplying them
by þi. The Spin-Z4 symmetry prohibits a quadratic
mass term but, with vanishing anomaly, there is
nothing that prohibits the entire cohort of 16 to be
gapped en masse. How can we achieve this?

For continuous symmetries, there is a long literature
of proposals designed to gap chiral fermions within the
context of lattice gauge theory, starting with the insightful
work of Eichten and Preskill [2] and others [3–10].
(A closely related discussion in the context of quantum
Hall edge states can be found in Refs. [11,12].) A common
theme among these papers is that fermions can be gapped
while preserving chiral symmetries through the use of
higher-dimension operators.
These higher-dimension operators are irrelevant. In a

continuum field theory, if one starts with free fermions and
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adds only irrelevant interaction terms, then obviously they
will not gap the system. However, with an underlying
lattice one can turn on irrelevant operators with a large
coefficient so that the system is strongly coupled in the UV.
In such a situation, these irrelevant operators can dominate
the physics, giving the fermions a mass comparable to the
UV cutoff.
For someone steeped in the Wilsonian perspective on

continuum quantum field theory, relying on dynamics at the
UV cutoff to drive the low-energy physics of interest might
induce a level of anxiety. Any such nervousness is likely to
be compounded by the observation that, on closer inspec-
tion, the Eichten-Preskill mechanism seems not to work,
with no hint of the gapped chiral phase appearing as one
explores some (admittedly finite-dimensional) parameter
space [13,14].
In contrast, our interest in this paper lies firmly in the

continuum. We do not allow ourselves to rely on strongly
coupled UV physics. Instead, we wish to stay relevant. The
purpose of the paper is to present a method to gap fermions,
preserving a chiral symmetry, by introducing new degrees
of freedom, turning on relevant operators and flowing to a
gapped phase in the infrared.
In d ¼ 3þ 1 dimensions, the only relevant interactions

involve non-Abelian gauge dynamics. As we will see, in
many cases the gapped chiral phase can be achieved
through a phenomenon that has long been understood:
confinement without chiral symmetry breaking, sometimes
referred to as s-confinement. This is a phenomenon that
is best understood in supersymmetric theories where the
first examples were given by Seiberg [15,16]. [Tachikawa
and Yonekura [17] previously advocated the use of super-
symmetric gauge dynamics to explore symmetric mass
generation. Their interest was in gapping 16 fermions in
d ¼ 2þ 1 dimensions while preserving time reversal,
albeit viewed from the perspective of the bulk d ¼
ð3þ 1Þ-dimensional symmetry protected topological
phase.] Usually in s-confining theories one has massless
fermions in both the UV and IR, but with the ’t Hooft
anomalies for unbroken symmetries realized in startlingly
different fashions. As we explain, a small tweak of this idea
allows us to gap fermions preserving chiral symmetries,
including the example highlighted above of fermions in the
standard model [18].

A. Plan of the paper

We start in Sec. II by presenting the basic idea, relating
symmetric mass generation in d ¼ 3þ 1 dimensions to s-
confinement. We then proceed to give a number of examples.
In particular, in Sec. II C, we explain how to gap the
fermions in a single generation of the standard model while
preserving the chiral SUð3Þ × SUð2Þ × Uð1Þ symmetry.
In Secs. III and IV, we turn to discrete symmetries. In

Sec. III we describe how s-confinement also provides a
mechanism to gap fermions in groups of 16, preserving a

Spin-Z4 symmetry as described above. In Sec. IV, we
describe a novel supersymmetric theory in d ¼ 2þ 1
dimensions that is trivially gapped while preserving time
reversal. We check that the corresponding mod 16 index is
indeed vanishing, as it should be.

II. GAPPING CHIRAL FERMIONS IN d = 3 + 1

In this section, we present a number of models that gap
fermions in d ¼ 3þ 1 while preserving continuous sym-
metries that are realized in a chiral manner. The basic idea is
very straightforward and, as explained in the Introduction,
follows from the phenomenon of confinement without
chiral symmetry breaking, sometimes called s-confinement.
Rules of the game.—First, let us spell out more clearly

what we wish to achieve. We start with a collection of free,
massless fermions, transforming in some anomaly free
representation of a global symmetry groupG. Our goal is to
gap the fermions, preserving G.
Adding a quadratic mass term to the Lagrangian typi-

cally breaks G, while four-fermion terms are irrelevant.
This means that to achieve our goal we must add new
degrees of freedom and allow them to interact with our
original fermions while preserving G. These new degrees
of freedom can include scalars, fermions, and gauge
bosons. But with each come a number of caveats.
First, the scalars. These can transform in any representa-

tion of G since they can be trivially gapped and decoupled
from the system without breaking G. However, if the scalars
do transform under G, then we must take care to ensure that
they do not condense, spontaneously breaking G.
In contrast, if the fermions transform under G, then it

must be in a vectorlike representation. (Obviously it
would be cheating if we simply added fermions in the
conjugate representation of G, gap the whole system, and
declare victory.) Insisting that any additional fermions
transform in a vectorlike representation ensures that they
can be trivially decoupled by giving them a quadratic
mass term, preserving G.
Finally, if we wish to drive some strong coupling

dynamics in the infrared (and we do) then we must also
add gauge bosons. [In principle, it may be possible to induce
symmetric mass generation in lower dimensions without
gauge interactions. In the Appendix, we show that this is
not possible in supersymmetric Wess-Zumino models with
four supercharges (i.e., the dimensional reductions of 4D
N ¼ 1).] Crucially, we are not allowed to gauge the global
symmetry G that we care about: this is to remain a global
symmetry of the interacting theory [21]. However, if the
enlarged system of scalars and fermions enjoys a second
symmetry H, then we may consider gauging it. We require
both that G commutes with H and, moreover, that G and H
have no mixed ’t Hooft anomaly.
Our final requirement is that there exists a regime

of parameter space where the gauge bosons decouple.
This can be achieved by including scalars that can fully
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Higgs the gauge group H. This means that one can take a
limit where we are left only with the original massless
fermions of interest, with all other degrees of freedom
heavy.
The upshot of these rules is that our original chiral theory

interacts with an auxiliary vectorlike theory such that it is
straightforward to decouple the vectorlike matter, leaving
behind the original massless fermions. However, instead we
will tune parameters so that we bring down the heavy,
vectorlike degrees of freedom until they interact with the
light fermions, gapping the entire system, all while leaving
G untouched. That is the goal. As we now explain, the
properties of theories exhibiting s-confinement provide
exactly what we need.
From s-confinement to symmetric mass generation.—In

any confining theory, the fundamental quarks are bound
together in the infrared to form mesons, baryons, and other
composites. We are interested in confining theories that
enjoy a global symmetry G. In confining theories—and in
contrast to our preceding discussion—it is often the case
that G has a ’t‘Hooft anomaly. If G is to survive the
renormalization group (RG) flow to the infrared unscathed,
then the spectrum of confined particles must include
massless states that replicate the ’t Hooft anomaly. If this
is not possible, then G must be spontaneously broken.
Long ago, ’t Hooft argued that, in QCD with massless

quarks, there is no spectrum of massless composite states
that can replicate the anomaly for the chiral symmetry [1].
In other words, in QCD confinement implies chiral
symmetry breaking.
However, there are other theories, closely related to

QCD, where the ’t Hooft anomalies can be matched by a
massless composites in the infrared. In this situation, it is
possible that the theory exhibits confinement without
breaking the chiral symmetry G. Although it is possible
to find putative examples of this phenomenon without
invoking supersymmetry, the addition of supersymmetry
provides the extra control required to be confident of the
low-energy physics. In the supersymmetric context, con-
finement without chiral symmetry breaking is referred to as
s-confinement, with “s” for “smooth.”
In s-confining theories, the action of G is realized

differently on the fundamental fermions Q in the UV
and the composite states in the IR which, for now, we refer
to collectively as M. We then couple both UV and IR
theories to a new sector, consisting of free fields M̃ that
transform in the representation of G that is conjugate to M.
This is achieved by turning on a superpotential term that,
schematically, takes the form

W ∼ M̃M: ð2:1Þ

Couplings of this type have been previously considered in,
for example, Refs. [22–24] and are sometimes referred to as
“flipping” the operator M.

From the perspective of the IR, we have not achieved
anything surprising. The composite fermions M can be
viewed as fields in the IR and the superpotential above
is a mass term that gaps the system. However, from the
perspective of the original gauge theory, we have quarks Q
and singlets M̃ that typically transform in a chiral repre-
sentation of G but, by construction, one with vanishing
’t Hooft anomaly. We can identify the coupling in the UV
that replicates the infrared superpotential (2.1), and thus we
have succeeded in gapping the fermions while preserving a
global, chiral symmetry.
The coupling between the fundamental fermions Q and

singlets M̃ will turn out to be irrelevant or marginally
irrelevant in the ultraviolet. However, this is different
from the situation described in the Introduction where
irrelevant operators are introduced on the lattice to gap
chiral fermions. We do not need to turn on these irrelevant
operators with a large coefficient, because they are exam-
ples of dangerously irrelevant operators: after the RG flow
initiated by the gauge interactions they become relevant.
Indeed, from the infrared perspective, they are simply
mass terms.

A. Nonsupersymmetric warm-up

We illustrate the general idea with a simple nonsuper-
symmetric example. Consider the global symmetry,

G ¼ Uð1Þ;

with a collection of 16 Weyl fermions with chiral charges
under G given by 3½5�; ð−1Þ½10�, and −5, where the super-
scripts are multiplicities. This is an anomaly-free
representation.
In addition to the G ¼ Uð1Þ symmetry, the 16 fermions

enjoy an H ¼ SUð5Þ symmetry, under which those fer-
mions with charge 3 transform in the 5̄ and those with
charge −1 transform in the 10. Importantly, H and G
commute and have no mixed ’t Hooft anomaly.
We now gauge H. (Following the “rules of the game”

above, we should also introduce Higgs fields that can
remove the gauge bosons, but when these scalars are heavy
they do not affect the story.) We now have a familiar
situation: an SUð5Þ gauge theory, coupled to a fermion ψ in
5̄, a fermion χ in the 10, and a singlet fermion that we call ζ̃.
The infrared dynamics of this chiral, non-Abelian gauge

theory is not known for sure, but there is a good candidate,
first proposed in Ref. [25]: the gauge theory is thought
to confine, with the ψ and χ fermions combining into the
massless, gauge invariant composite,

ζ ∼ ψψχ:

This has G ¼ Uð1Þ charge þ5. We assume that this indeed
is the correct dynamics.
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We now add a four-fermion interaction in the UV,

L ∼ ζ̃ψψχ:

This is a dangerously irrelevant operator. It is irrelevant in
the UV but, assuming the strong coupling dynamics
described above, descends to a simple mass term ζ̃ζ in
the IR, where it gaps the theory.
Hence, we have succeeded in gapping the fermions

preserving the chiral G ¼ Uð1Þ symmetry. The quantum
numbers of the fermions under this U(1) are rather artificial
looking and, of course, were constructed by working back-
ward from the known dynamics of the SU(5) gauge theory.
In the rest of this section, we describe models which
implement symmetric mass generation for simpler and more
interesting chiral representations of global symmetries.

B. SUðNÞ with an antisymmetric

Consider the global symmetry group,

G ¼ SUðNÞ:
A chiral, anomaly-free representation can be constructed
from a Weyl fermion χ̃ transforming in the antisymmetric

representation and N − 4 Weyl fermions ψ , each trans-

forming in the antifundamental representation □̄. The
’t Hooft anomaly is well known to vanish, since the
anomaly coefficients are

Note that for N ¼ 5, this is closely related to the SU(5)
gauge theory described in Sec II A. However, the context is
different: here we require that SUðNÞ is a global symmetry,
not a gauge symmetry.

1. Case of N even

We start by discussing the case of N even and N ≥ 6.
[The case of SU(4) with an antisymmetric is equivalent
to SO(6) with a 6 and so is a vectorlike theory in disguise.]
We write

N ¼ 2r:

Our goal is to gap the fermions χ̃ and ψ , while preservingG.
First, note that, in addition to the G ¼ SUðNÞ global

symmetry, there is a furtherH ¼ SUðN − 4Þ ¼ SUð2r − 4Þ
symmetry which rotates the antifundamental fermions.
To gap the theory, we gauge an Spðr − 2Þ ⊂ H subgroup.
We then add further scalars and fermions to endow the
theory with N ¼ 1 supersymmetry. The field and sym-
metry content of the theory are given in Table I.
Here, Uð1ÞR is an R symmetry that arises from the

introduction of the new, auxiliary scalar fields [26]. We
discuss this further below.

Our original fermions ψ and χ̃ inhabit the chiral
superfields Q and M̃, respectively. They are now accom-
panied by scalar superpartners, with the same transforma-
tion properties under both Spðr − 2Þ and SUðNÞ.
Furthermore, we have added a gaugino in the adjoint
of Spðr − 2Þ. Importantly, this gaugino is a singlet under
G ¼ SUðNÞ and so, by the rules described previously,
constitutes a legal addition to our theory.
Finally, we add an interaction between our original

fermions and the newly introduced scalars, in the guise
of a superpotential,

WUV ¼ M̃ijQiQj; ð2:2Þ

where i; j ¼ 1;…; N are indices for the global symmetry
G. In this expression QiQj is contracted using the
invariant symplectic form of Spðr − 2Þ to yield a gauge
invariant meson. This superpotential identifies the sym-
metries rotating Q and M̃ as appearing in Table I. As
anticipated, this superpotential is marginally irrelevant
in the UV. This will no longer be the case as we flow to
the IR.
As we explained previously, we wish the theory to have

a regime in which the gauge group is fully Higgsed, so the
gauge bosons and other extraneous fields become heavy,
leaving us with only the massless fermions of interest.
This can be achieved in theory above, but only at the
expense of breaking supersymmetry. One first turns
off the Yukawa terms arising from Eq. (2.2), decoupling
the scalar quarks from their supersymmetric partners, s
o that the scalars are no longer obliged to transform
under G. We then give expectation values to r − 2 of the
scalars, ensuring that the gauge group is broken. The
remaining scalars and the gaugino are then decoupled
through mass terms, preserving the symmetry G. A similar
process will work for all subsequent examples that we
will meet [27].
So far we have shown only that it is possible to return to

the original free, massless fermions while preserving G.
But our real goal is to understand how to gap these fermions
preserving G. This follows automatically from the dynam-
ics at the supersymmetric point, as studied by Intriligator
and Pouliot [28]. [The special case of Spð1Þ ¼ SUð2Þ was
previously considered by Seiberg [15,16].] The Spðr − 2Þ
gauge theory is an example of an s-confining theory,
flowing in the infrared, at the origin of the moduli space,

TABLE I. Quantum numbers of fields when N is even.

Field Spðr − 2Þ SUðNÞ Uð1ÞR
Q 2ðr − 2Þ □̄ 2=N
M̃ 1 2 − 4=N

The bold font denotes the representation under a non-
Abelian group
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to a collection of massless mesons described by the
composite field,

Mij ¼ QiQj:

This meson field transforms in the conjugate antisymmetric

representation . The fact that the ’t Hooft anomalies for

SUðNÞ and Uð1ÞR match between the UV and IR provides
compelling evidence for this result.
The singlet M̃ remains unaffected by the gauge dynam-

ics, but the ultraviolet superpotential (2.2) descends to a
more mundane mass term,

WIR ¼ M̃ijMij: ð2:3Þ

This is now a relevant operator, gapping the system while
preserving the symmetry G. Indeed, as advertised above,
from the perspective of the infrared, the manner in which
the fermions get a mass is neither chiral nor mysterious.
The magic happened in the strong-coupling dynamics, and
the fact that this theory exhibits confinement without chiral
symmetry breaking.
Before we proceed, it is worth passing comment on the R

symmetry. The charges of the superfields are such that both
Spðr − 2Þ2 × Uð1ÞR and SUðNÞ2 × Uð1ÞR anomalies can-
cel. [The former, of course, is a requirement for the Uð1ÞR
symmetry to be a symmetry at all.] Since the theory is
invariant under Uð1ÞR, one might wonder whether we have
succeeded in demonstrating symmetric mass generation for
SUð5Þ × Uð1ÞR, rather than just SU(5). There is a sense in
which this is the case, but not for our original fermions ψ
and χ. Indeed, the R and R3 ’t Hooft anomalies are
nonvanishing when restricted to ψ and χ, so they cannot
be gapped preserving Uð1ÞR without some help. In the
present context, that help comes from the gaugino λ, which
has R charge þ1, and ensures that the full theory specified
above has vanishing anomaly for both R and R3.

2. Case of N odd

It is simple enough to generalize the above discussion to
N odd. We again start with global symmetry G ¼ SUðNÞ,
with a single Weyl fermion χ̃ in the antisymmetric
representation and N − 4 Weyl fermions ψ in the
antifundamental □̄. This includes the case of SU(5),
coupled with a 10 and 5̄, familiar from grand unification.
Since N is odd, we now write

N ¼ 2r − 1:

This time, we start by adding extra fermions. First, we add a
pair of fermions in conjugate representations of G: ρ in the
antifundamental □̄ and ρ̃ in the fundamental □. Taking ψ
and ρ together, we have N − 3 fermions in the □̄ of G, and
an H ¼ SUðN − 3Þ ¼ SUð2r − 4Þ symmetry that rotates

them. We are now in a similar situation to before and could
try to gauge an Spðr − 2Þ ⊂ H subgroup.
Here we hit a snag: since N is odd, we would be gauging

Spðr − 2Þ with an odd number of fundamentals, and this
suffers from the Witten anomaly. To avoid this, we add yet
more fermions ξ, 2ðr − 2Þ of them, singlets under G but
transforming in the fundamental of Spðr − 2Þ. This cancels
the Witten anomaly. After supersymmetrizing the whole
affair, the resulting field and symmetry content is given
Table II.
Here the Q multiplets now contain both the original ψ

fermions and the auxiliary fermion ρ. The G-singlet ξ
fermions are contained in S, while the G-fundamental ρ̃
fermion is contained in P̃. Finally, M̃ contains our original
fermion χ̃ as before. We then add the superpotential,

WUV ¼ M̃ijQiQj þ P̃iQiS; ð2:4Þ

with i; j ¼ 1;…; N the flavor indices for G ¼ SUðNÞ.
Once again, the gauge group flows to the infrared and
confines, resulting in gapless meson states without break-
ing the G ¼ SUðNÞ symmetry. These meson states are

Mij ¼ QiQj and Pi ¼ QiS:

The Mij transform in the conjugate antisymmetric repre-

sentation of G ¼ SUðNÞ, while Pi transform in the

antifundamental □̄. By now the story should be familiar:
the UV superpotential descends to the infrared to

WIR ¼ M̃ijMij þ P̃iPj;

where it ensures that all states are gapped, preserving G.
The same remarks that we made about Uð1ÞR in the case

of N even apply here too, both to Uð1ÞR and the global
symmetry Uð1ÞA. Both are free from ’t Hooft anomalies,
but only because of the contribution from the auxiliary
fermions that we added along the way.

3. Breaking supersymmetry

The examples above rely on known results about super-
symmetric gauge theories. We invoke supersymmetry only
as a crutch to give us the requisite control over the strong
coupling dynamics. It is natural to ask, can we achieve
something similar without supersymmetry?

TABLE II. Quantum numbers of fields when N is odd.

Field Spðr − 2Þ SUðNÞ Uð1ÞR Uð1ÞA
Q 2ðr − 2Þ □̄ 2=ðN þ 1Þ 1
S 2ðr − 2Þ 1 2=ðN þ 1Þ −N
P̃ 1 □ 2ðN − 1Þ=ðN þ 1Þ N − 1

M̃ 1 2ðN − 1Þ=ðN þ 1Þ −2
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In general, our understanding of strongly coupled, non-
supersymmetric gauge theories is not sufficiently advanced
to give a definitive answer to this question. However, as we
now explain, the symmetric gapped phase does survive soft
breaking of supersymmetry.
To begin the discussion, consider a supersymmetric

theory that exhibits s-confinement. The low-energy degrees
consist of massless composite fermions—whether mesons
or baryons—that saturate the ’t Hooft anomaly and their
scalar superpartners. Although the scalars transform under
G, they do not condense at the origin of their moduli space,
and so G is unbroken. However, this phase may be fragile.
The concern is that any supersymmetry breaking deforma-
tion, no matter how small, may induce tachyonic masses
for the scalar mesons, rendering the origin of the moduli
space unstable. After supersymmetry breaking, the ground
state of the system would then break G. A number of
studies of softly broken supersymmetry in this context
include Refs. [29–31].
However, despite first appearances, this does not

immediately nullify the symmetric mass generation mecha-
nism that we advocated above. The theory still confines and
the ultraviolet Yukawa couplings (2.2) still descend to
infrared mass terms of the form Eq. (2.3). Now there are
two competing mass scales in the game. The first is the
soft supersymmetry breaking scale μ. We must take this to
be μ ≪ Λ, where Λ is the strong-coupling scale of the
supersymmetric gauge theory. This hierarchy ensures that
we can still use Seiberg duality as a good starting point
for the infrared physics. The second mass scale is m, the
dynamically generated gap in the theory. This is of order
m ∼ Λ; the two differ only by a dimensionless Yukawa
coupling.
In the absence of supersymmetry breaking, all fields

have a gap m. Suppose that when we softly break super-
symmetry by a UV scale μ, the massless scalars pick up
a tachyonic contribution −μ̃2 to their mass. Their full mass
is then

m2
scalar ∼m2 − μ̃2; ð2:5Þ

and this remains positive for suitably small μ̃. Thus we see
that symmetric mass generation persists for small super-
symmetry breaking.
Of course, this had to be the case. The purpose of

symmetric mass generation is to gap the system while
preserving a symmetry G which, in the current setting, is
continuous. But such a phase is necessarily robust. An
arbitrarily small perturbation cannot spontaneously break
G when the system is gapped since this would result in
gapless Goldstone modes, in contradiction with the
smooth variation of the spectrum. The symmetry break-
ing occurs only if we perturb the system by an amount
comparable to the gap. This is expectation is reflected
in Eq. (2.5).

C. Standard model

The standard model presents a particularly interesting
example of a nonanomalous chiral symmetry, with group

G ¼ SUð3Þ × SUð2Þ × Uð1ÞY
Z6

:

The anomaly-free matter content consists of 15 right-
handed Weyl fermions, sitting in representations of G
given by

lcL∶ ð1; 2Þ−3; qcL∶ ð3̄; 2Þþ1; eR∶ ð1; 1Þþ6;

uR∶ ð3; 1Þ−4; dR∶ð3; 1Þþ2:

We have rescaled the hypercharges to be integers. Note that
we have not yet introduced the right-handed neutrino: it
will make an appearance shortly.
In the previous examples, we viewed G as a global

symmetry [32]. Obviously, in the context of the standard
model G is a gauge symmetry and has an accompanying
dynamical scale, ΛSM. Here, ΛSM could be viewed as either
the weak scale where the Higgs mechanism takes place or
the strong scale of confinement. The analog of symmetric
mass generation is now finding a mechanism that gives the
fermions a mass m that is independent of the scale ΛSM. In
particular, we should be able to give the fermions a mass
m ≫ ΛSM, where G is weakly coupled, without sponta-
neously breaking G.
To achieve this, we again introduce new degrees of

freedom. As in the previous example, the first step is to
introduce yet further fermions that sit in vectorlike repre-
sentations of G. We write the original fermions in black
(omitting their names), with three additional pairs of
fermions,

ð1; 2Þ−3 ð3̄; 2Þþ1 ð1; 1Þþ6 ð3; 1Þ−4 ð3; 1Þþ2 ð1; 1Þ0
ð1; 2Þ−3 ð3; 1Þþ2 ð1; 1Þ0
ð1; 2Þþ3 ð3̄; 1Þ−2
Crucially, the additional fermions sit in vectorlike repre-
sentations of G; it is trivial to give masses to each of the
pairs without breaking G. Note that we have added two
fermions that are singlets underG; one of these can play the
role of the right-handed neutrino.
The additional fermions mean that we have three pairs

with the same quantum numbers: these are the fermions
that sit in the first two lines above. The next step is to
introduce an H ¼ SUð2Þ gauge symmetry [not to be
confused with the SU(2) global symmetry in G] under
which these pairs of fermions transform as a doublet.
Importantly, this symmetry does not have a mixed anomaly
with Uð1ÞY , so G remains intact once we gauge H. The
upshot is that we have a collection of fermions transforming
as in Table III.
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At this stage, we introduce yet more fields to construct a
supersymmetric extension of this model. These are scalar
superpartners for each fermion listed above, together with a
gaugino in the adjoint of SUð2Þgauge. The end result is a
collection of chiral multiplets, transforming as in Table IV,
where the additional fields from supersymmetry mean that
the theory enjoys two further symmetries, Uð1ÞA and
Uð1ÞR. One can check that the R symmetry acts on the
fermions in L, Q, E, U, and D as the familiar B − L
symmetry of the standard model.
All the symmetries listed are preserved by the gauge

invariant superpotential,

WUV ¼ ϵabLaLbEþ ϵijkDiDjUk þ ϵabLaDiQb
i

þ ϵabLaNL0b þDiND0
i; ð2:6Þ

where now a, b ¼ 1, 2 are indices for SUð2Þ ⊂ G and i,
j ¼ 1, 2, 3 and indices for SUð3Þ ⊂ G. It is simple to check
that each of these terms is invariant under G.
From here on, the story is familiar. The strong-coupling

dynamics consists of an SU(2) supersymmetric gauge
theory coupled to six doublets: 2 in L, 3 in D and N.
This theory is known to exhibit s-confinement [15,16],
and in the infrared is described by a collection of
15 meson fields,

Ẽ ¼ ϵabLaLb; Ũk ¼ ϵijkDiDj; Q̃i
b ¼ ϵabLaDi;

L̃b ¼ ϵabLaN; D̃i ¼ DiN:

The superpotential (2.6) descends to the infrared where it
becomes a collection of mass terms:

WIR ¼ ẼEþ ŨkUk þ Q̃i
bQ

b
i þ L̃bL0b þ D̃iD0

i:

All fields are gapped, preserving G.

D. Further generalizations

Connoisseurs of supersymmetric gauge theories will
have no trouble generalizing these results to other chiral,
anomaly-free models using the many known s-confining
theories [34–39]. Here we briefly describe a few examples.
At heart, the example of the standard model described

above was constructed by embedding chiral representations
of SUð3Þ × SUð2Þ × Uð1ÞY into

through the more familiar grand unified embedding into
SUð5Þ ⊂ SUð6Þ. Symmetric mass generation was then
realized by viewing G as the global symmetry of an
SU(2) gauge theory with six fundamental chirals and its
(conjugate) singlet mesons. A slightly more complicated
route realizes G through an SpðnÞ gauge theory, with
six fundamentals and a traceless antisymmetric, again
accompanied by its mesons. This theory is known to s
confine and, for n ≥ 2, preserves a G ¼ SUð6Þ × Uð1Þ
symmetry [35,36].
Another interesting, anomaly-free chiral representation

is given by

In addition to G, the fermions have an H ¼ SUð8Þ
symmetry that acts on the antifundamentals. For N ¼ 5,
wemaygauge aG2 ⊂ SOð7Þ ⊂ H symmetry. that acts on 7 of
the 8 antifundamentals After suitable supersymmetrization,
the theory s confines, yields ameson spectrum consisting of a

, a , and a□, which can then be paired with the gauge

singlet fermions to gap the system [37].
Relatedly, for N ¼ 6 we may gauge a Spinð7Þ ⊂ H

symmetry, with the 8 antifundamentals transforming in
the spinor representation. This results in a meson spectrum

consisting of and , which again can be paired with

the gauge singlets [37].

III. SPIN-Z4 SYMMETRY AND THE
MOD 16 ANOMALY

In recent years, there has been impressive progress in
understanding ’t Hooft anomalies associated to discrete
symmetries. These anomalies are associated to cobordism
groups [40,41] and underlie the classification of symmetry

TABLE III. Quantum numbers of the extended standard model.

Fermion SUð2Þgauge SU(3) SU(2) Uð1ÞY
l 2 1 2 −3
l0 1 1 2 þ3
q 1 3̄ 2 þ1
e 1 1 1 þ6
u 1 3 1 −4
d 2 3 1 þ2
d0 1 3̄ 1 −2
ν 2 1 1 0

TABLE IV. Quantum numbers of the extended supersymmetric
standard model.

Field SUð2Þgauge SU(3) SU(2) Uð1ÞY Uð1ÞA Uð1ÞR
L 2 1 2 −3 0 0
L0 1 1 2 þ3 3 2
Q 1 3̄ 2 þ1 −1 4=3
E 1 1 1 þ6 0 2
U 1 3 1 −4 −2 2=3
D 2 3 1 þ2 1 2=3
D0 1 3̄ 1 −2 2 4=3
N 2 1 1 0 −3 0
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protected topological phases. Often, these discrete anoma-
lies are valued in ZN for some N. This means that fermions
can be gapped, preserving the symmetry, only in groups
of N.
For example, in d ¼ 0þ 1 and d ¼ 1þ 1, Majorana

fermions can be gapped in groups of 8 while preserving a
suitable discrete symmetry, as first shown in the pioneering
work of Fidkowski and Kitaev [42] and others [43,44].
[This discrete symmetry is time reversal with T2 ¼ þ1 in
d ¼ 0þ 1, and chiral fermion parity ð−1ÞFL in d ¼ 1þ 1;
for a review of the triality symmetry that underlies these
calculations, see Ref. [45].]
In d ¼ 3þ 1 dimensions, the analogous question is how

to gap fermions preserving a Spin-Z4 symmetry. Such a
symmetry has a generator U which obeys

U2 ¼ ð−1ÞF:

This means that any scalar must transform as �1, while
any Weyl fermion must transform as �i under the Z4.
There is a remarkable mod 16 anomaly associated to

such a Spin-Z4 symmetry. We first perform suitable
conjugations so that all Weyl fermions are right-handed.
Then the anomaly is given by

ν4 ¼ nþ − n− mod 16; ð3:1Þ

where n� count the number of fermions that transform as
�i. The fact that 16 Weyl fermions are special was first
noted in Ref. [46]; the concrete statement about the Spin-Z4

symmetry and its relationship to the cobordism group
ΩSpin−Z4

5 ¼ Z16 was stated in Refs. [47,48].
The Spin-Z4 symmetry prohibits quadratic mass terms

for fermions. The question is, can we find a nonperturbative
mechanism that lifts Weyl fermions in groups of 16? This
would be the four-dimensional analog of the Fidkowski-
Kitaev mechanism for lifting Majorana fermions in low
dimensions in groups of 8.
In fact, as we now show, several of the examples from the

previous section have this property. In these cases, the Spin-
Z4 symmetry is embedded in a continuous group, so does
not provide new information beyond the perturbative
anomalies. (The interplay between perturbative and non-
perturbative anomalies was studied in Refs. [49,50].)
However, in many cases one can break these continuous
symmetries—say, by adding irrelevant four-fermion terms
to the action—leaving behind only the Spin-Z4 of interest.
Indeed, the standard model itself has a Spin-Z4 symmetry,
which acts as a combination of hypercharge and B − L
[48]. (Further discussions of the Spin-Z4 symmetry in
the context of the standard model can be found in
Refs. [51–54].) If one augments the standard model with
all possible higher-dimension operators (see, for example,
Ref. [55] for a list of dimension six operators), then B − L
is broken, but the Spin-Z4 symmetry remains.

Viewed this way, the nonsupersymmetric SU(5) chiral
gauge theory described in Sec. II A provides a particularly
simple example where there is a Spin-Z4 ⊂ Uð1Þ sym-
metry. In that case, it trivially multiplies all fermions by i.
The UV theory has 16 fermions, and so ν4 ¼ 0 as it must
since, as we have seen, the theory is gapped while
preserving Spin-Z4.
Supersymmetry and the Spin-Z4 R symmetry.—Because

the Spin-Z4 symmetry acts differently on bosons and
fermions, when embedded in a supersymmetric theory it
must be a Spin-Z4 R symmetry.
Usually we normalize the R symmetry so that the

gaugino has charge R½λ� ¼ þ1, while chiral multiplets
typically have fractional charge. For our purposes, it is
better to multiply by the common denominator so that all
charges are integer. We can then embed a Spin-Z4

symmetry inside Uð1ÞR if the gaugino has odd charge,
while all chiral multiplets have even charge. Recall that
the fermions in the chiral multiplet have R½fermion� ¼
R½scalar� − 1, so this ensures that all bosons have even
chargewhile fermions have odd charge. Performing aUð1ÞR
rotation by eiπR=2 will then act as a Spin-Z4 symmetry.
In what follows, we take the gaugino to transform as

Spin-Z4∶ λ → iλ:

The transformation of the fermions in a chiral multiplet Q
depends on whether the scalar is even or odd. If we denote
the fermion in Q as ψ , then we have

Spin-Z4∶ Q → �Q ⇒ ψ →∓ iψ :

This ensures that the gaugino Yukawa couplings are
invariant. To preserve Spin-Z4, the superpotential must
be odd. (This can be viewed as canceling the minus sign
that comes from the d2θ measure over superspace.)
Examples: SUðNÞ with an antisymmetric.—A glance at

the Table IV of Uð1ÞR charges in Sec. II will reveal that
none of them have a Spin-Z4 subgroup. However, it is not
difficult to find such subgroups embedded within both
Uð1ÞR and the global symmetries.
Let us return to our simplest example from Sec. II B with

global symmetry G ¼ SUðNÞ, a Weyl fermion in , and
N − 4 Weyl fermions in □̄. As we saw, the analysis is
slightly different for N odd and N even. We will find that
the embedding of the Spin-Z4 R symmetry is different in
these two cases.
The story is simplest forN odd. Here it is straightforward

to embed

Spin − Z4 ⊂ Uð1ÞR × Uð1ÞA:

To achieve this, we simply need to rotate in Uð1ÞR by π=2,
and in Uð1ÞA by −π=ðN þ 1Þ. The resulting transformation
of the various chiral multiplets is given by
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Q S P̃ M̃

Spin-Z4 þ1 −1 þ1 −1

We do not need to count the index mod 16 since a
straightforward calculation shows that there are equal
numbers of fermions transforming as �i, so we have,
simply,

ν4 ¼ 0:

Things are more interesting when N is even. This time we
wish to find an embedding of

Spin − Z4 ⊂ SUðNÞ × Uð1ÞR:

To do this, we can augment a Uð1ÞR rotation of π=2 by the
following SUðNÞ transformation:

diagðω;…;ω|fflfflfflffl{zfflfflfflffl}
N=2

;ωNþ1;…;ωNþ1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N=2

Þ with ω2N ¼ 1:

This transformation has unit determinant, and hence sits
inside SUðNÞ, only when

N ¼ 2r with r odd:

In this case, the N chiral multiplets Q split into two sets,
each of N=2, which we denote as Q and Q0. Similarly, the
mesons split into three sets, M̃ and M̃00 each of dimension
1
8
NðN − 2Þ and M̃0 of dimension 1

4
N2. The theory is

invariant under a Spin-Z4 symmetry with

Q Q0 M̃ M̃00 M̃0

Spin-Z4 þ1 −1 −1 −1 þ1

If one tries to implement these transformations in the theory
with N ¼ 2r when r is even, it turns out that they are
embedded in an anomalous U(1) symmetry, and so are not
symmetries of the theory. (The study of anomalous discrete
symmetries, following from their embedding in continuous
groups, was initiated in Ref. [56].)
We can now calculate the mod 16 anomaly. Clearly theQ

and Q0 cancel in their contribution. The remaining fields
yield

ν4 ¼
1

2
ðN − 4ÞðN − 3Þ þ 1

8
NðN − 2Þ þ 1

8
NðN − 2Þ− 1

4
N2

¼ 1

2
ðN2 − 8N þ 12Þ;

where, in the first line, the terms arise from the gaugino
[using dim (SpðnÞ) ¼ nð2nþ 1Þ] and M̃, M̃00, and M̃0,
respectively. It is simple to check that

ν4 ¼ 0 mod 16 whenever N ¼ 2r with rodd:

We learn that the mod 16 anomaly vanishes, as indeed it
must for any trivially gapped theory.

IV. TIME REVERSAL IN d = 2 + 1
AND THE MOD 16 ANOMALY

In d ¼ 2þ 1 dimensions, there is no meaning to left- and
right-handed fermions. Nonetheless, a more subtle notion
of chirality exists depending on how fermions transform
under time reversal. For a Majorana fermion χ, there are
two options which differ by a sign:

T∶ χ → �γ0χ: ð4:1Þ

This obeys

T2 ¼ ð−1ÞF:

Theories with such a time reversal exhibit a mod 16
anomaly given by [57–60]

ν3 ¼ ñþ − ñ− mod 16;

where ñ� counts the number of Majorana fermions that
transform with a � sign under time reversal (4.1).
A nonvanishing ν3 can be viewed as an obstruction to
placing the theory on an unoriented manifold with Pinþ
structure [41].
If the theory also has a U(1) symmetry, then it is more

convenient to work with Dirac fermions. In a basis in which
all γ matrices are real, these can be written as ψ ¼ χ1 þ iχ2,
with χ1 and χ2 Majorana fermions. If we choose T to act
identically on each Majorana, say as χi → þγ0χi, then,
because time reversal is antiunitary, it acts on the Dirac
fermion as T∶ψ → γ0ψ†. This reflects the fact that the
symmetry group is T⋊Uð1Þ.
A better way, as explained in Ref. [61], is to consider CT.

This forms the direct product CT × Uð1Þ, and acts on Dirac
fermions in one of two ways:

CT∶ ψ → �γ0ψ : ð4:2Þ

In what follows, we will refer to CT simply as “time
reversal.” The mod 16 anomaly is now given by

ν3 ¼ 2ðnþ − n−Þ mod 16; ð4:3Þ

where n� count the number of Dirac fermions that trans-
form with a � sign under time reversal (4.2).
A quadratic mass term for fermions—whether Majorana

ψ1ψ2 or Dirac ψ̄1ψ2—breaks time-reversal symmetry if
both fermions transform with the same sign under CT.
In d ¼ 2þ 1 dimensions, the analog of symmetric mass
generation is a mechanism which gaps 16 Majorara
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fermions, or 8 Dirac fermions, all transforming in the same
way under CT, while preserving time reversal [62].

A. s-confining theory in d = 2 + 1

In this section, we see what becomes of the 4D super-
symmetric SU(2) s-confining theory when compactified on
a circle. After a deformation, we will argue that the theory
is trivially gapped, while preserving time reversal. As a
check, we compute the index ν3 and find that it does indeed
vanish, mod 16 [63].
The starting point is the 4D s-confining theory:

d ¼ 3þ 1; N ¼ 1;

SUð2Þ with 6 fundamental chirals:

As we described in Sec. II, this theory is known to confine
and flows, at the origin of moduli space to a theory of
massless mesons and baryons, transforming in the 15 of the
SU(6) flavor symmetry [15,16].
We now compactify on S1. As explained in

Refs. [65,66], this generates a monopole superpotential,

WKK ¼ ηY; ð4:4Þ

with Y the monopole operator and η a fixed parameter,
related to the 4D strong-coupling scale and the radius of
the circle.
The next step is to turn on equal and opposite, real

masses for the fifth and sixth quarks. This breaks the flavor
symmetry SUð6Þ → SUð4Þ × Uð1Þ × Uð1Þ, under which
the quarks decompose as

6 → 4−1;0 þ 12;1 þ 12;−1:

The singlets become heavy and decouple from the low-
energy dynamics. The addition of real masses has a further,
more subtle effect, shown in Ref. [66]: it kills the non-
perturbative superpotential (4.4). The upshot is that we are
left with an SU(2) gauge theory coupled to 4 fundamental
chiral multiplets.
To understand the low-energy dynamics of this theory,

we can follow the fate of the 4D low-energy meson
fields when compactified on S1. Upon deforming by the
real masses, the meson fields Mij with i; j ¼ 1;…; 6
decompose as

15 → 6−2;0 þ 41;1 þ 4−1;−1 þ 14;0;

where the two fields in the 4 become heavy and decouple.
We are left with a free theory, consisting of a 6 under the
SU(4) flavor symmetry and a singlet. The 6 arises as
composite mesons, Mij ¼ QiQj with i; j ¼ 1;…; 4; the
singlet is dual to the monopole operator M56 ¼ Y.

Finally, to gap these fields we play the same game that
we saw in Sec. II; we return to the UV 3D gauge theory and
add extra gauge singlets which we denote asΦ andΦ0. The
end result is that we have an SU(2) gauge theory with field
content and symmetries given as in Table V.
The quantum numbers of the monopole operator Y are in

accord with quantization of the zero modes in the back-
ground of the monopole [65]. We write Y below the line
because, as a disorder operator, it should not be included in
the accounting of the anomaly. That would be double
counting. We also add a superpotential, consistent with all
symmetries:

WUV ¼ ΦijQiQj þΦ0Y: ð4:5Þ

Note that the superpotential includes the monopole oper-
ator. Importantly, and in contrast to the superpotential (4.4),
Φ0 is dynamical. Its role is to remove the monopole
operator from the chiral ring.
From the discussion above, the theory flows to a

collection of free meson fields, coupled to the singlets Φ
and Φ0 through the superpotential

WIR ¼ ΦijMij þΦ0M56:

We see that the theory is gapped, with no topological sector,
and time reversal in tact.
Mod 16 anomaly.—Since this theory is gapped while

preserving time-reversal invariance, general considerations
mean that its mod 16 anomaly must vanish. Indeed, as we
now show, this is the case and can be viewed as symmetric
mass generation for the 16 Majorana fermions that sit in Q.
First, we make a choice for transformation of the gaugino

under time reversal, say

CT∶ λ → þγ0λ:

Each chiral multiplet is either odd or even under CT.
Expanding a generic chiral multiplet gives

Φ ¼ ϕþ θψ þ � � � :

The superspace coordinate θ has the same transformation
as the gaugino. This means that the transformation of the
fermion ψ is given by

TABLE V. Quantum numbers of the 3D field theory.

Field SUð2Þgauge SU(4) Uð1ÞA Uð1ÞR
Q 2 4 −1 1=2
Φ 1 6 2 1
Φ0 1 1 −4 2
Y 1 1 þ4 0
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CT∶ψ → �γ0ψ ;

where the þ sign arises if the associated scalar ϕ is odd
under CT, and the minus sign arises if the scalar ϕ is even.
The superpotential must be odd if it is to preserve time

reversal (because it must cancel the minus sign coming
from the superspace measure d2θ). Indeed, this makes
sense: we know that a mass W ∼Φ2 breaks time reversal,
while a Yukawa self-coupling W ∼Φ3 preserves time
reversal but only if the scalar ϕ is odd.
A glance at the superpotential (4.5) shows that it does not

matter whetherQ are even or odd. This is becauseQ → −Q
is part of the SU(2) gauge symmetry.
Meanwhile, Φ must be odd. That leaves Φ0, whose

behavior under time reversal is dictated by Y. This, in turn,
can be determined from the fermionic zero modes of the
monopole operator. It picks up two complex zero modes
from the gaugino λ, and four zero modes from theQ. These
latter can be lifted by an obstruction bundle, and the
instanton has the potential to contribute to a hλλi correlation
function. Since λ is odd, Y too must be odd.
We can reach this same conclusion from the dual picture.

Recall that, to derive the 3D theory from compactification,
we added equal and opposite, real mass terms for the fifth
and sixth quarks. Such real masses break time reversal.
However, time reversal can be restored if accompanied by
an exchange of the these two quarks: Q5 ↔ Q6. This does
not affect the mesons Mij with i; j ¼ 1;…4, and these
remain even under time reversal. However, the final
massless meson M56 picks up a relative minus sign, and
is odd under time reversal.
Both of the arguments above tell us that M56 ¼ Y is odd

under time reversal. So Φ0 must be even. We learn that the
mod 16 anomaly of our system is

ν3 ¼ 2ð3þ 6 − 1Þ � 16;

where the � sign depends on the choice of time reversal
assigned to Q. The index with either choice of sign must
vanish mod 16. And, indeed, it does.
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APPENDIX: NO SYMMETRIC MASS
GENERATION IN WEISS-ZUMINO MODELS

In this paper, we have studied examples of symmetric
mass generation induced by gauge dynamics. In d ¼ 3þ 1
dimensions, this is the only option available to drive strong-
coupling effects in the infrared. However, in lower dimen-
sions it may be possible to induce symmetric mass
generation without gauge interactions. Indeed, the original
work of Fidkowski and Kitaev [42] can be viewed as
gapping 8 Majorana fermions while preserving a Z2

symmetry that suffers a mod8 anomaly [43,44]: it achieves
this by invoking four-fermion terms, without gauge
interactions.
We could then ask, is it possible to find a supersymmetric

counterpart to this interesting strongly coupled phenome-
non? Here, we show that the answer is no, at least within
the context of theories of four supercharges, i.e., N ¼ 2 in
3D or N ¼ ð2; 2Þ in 2D.
We consider a collection of chiral superfields trans-

forming in some representations of the global symmetry
group G, together with a superpotential consistent with
such a symmetry. We assume that there exists a super-
symmetric vacuum that leaves G unbroken. Furthermore,
we assume that G is chiral, in the sense that it prohibits a
supersymmetric mass term. In this case, no such term will
be generated along the RG flow. The question is whether
strong supersymmetric dynamics can, nonetheless, gap the
model in the IR.
In principle, this is possible. For example, a gap may

emerge if the IR theory has an effective description in terms
of fields that are composite operators of the UV model.
Then the symmetries might be consistent with mass terms
for these fields which would appear as higher-dimensional
superpotentials in the UV. Indeed, we witnessed this kind of
behavior in the gauge theories discussed in the bulk of the
paper. Here we show that this is not possible in the absence
of gauge interactions.
Our argument proceeds by use of the 4D supersymmetric

index [67]. Of course, in 4D any Wess-Zumino model is
infrared free. However, very similar index calculations
also hold for the dimensional reduction to 3D and 2D
where, a priori, one might have expected more interesting
dynamics to occur. We consider N chiral superfields Φi

with R charges Ri and charges Qi
a under the Cartan

subalgebra of G, where i ¼ 1;…; N labels the super-
fields and a ¼ 1;…; rankG labels the Cartan element
Uð1Þ ⊂ G. We assume that none of the fields has a mass
term of the formΦ2 as an index of such a field is trivially 1.
The index is given by a product of elliptic Γ functions, of the
form

I ¼
YN
i¼1

Γe

�
ðqpÞRi=2

Yrank G

a¼1

yQ
i
a

a ; q; p

�
;
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with q, p, and ya fugacities, and with conventions that
largely follow Refs. [68,69]. The elliptic Γ function can be
expressed as

Γeðz; q; pÞ ¼ PE

�
z − qpz−1

ð1 − qÞð1 − pÞ
�
;

where the plethystic exponential is defined by

PE½fðx; y;…Þ� ¼ exp

�X∞
l¼1

1

l
fðxl; yl;…Þ

�
:

If the theory is gapped, it has

I ¼ 1:

This reflects the fact that, in the IR, we have only a single
state which is the supersymmetric vacuum. Clearly we must
have a product of elliptic Γ functions that equals one. One
way in which this can happen is if the Γ functions cancel in
pairs, so that

Γe

�
ðqpÞRi=2

YrankG
a¼1

yQ
i
a

a ;q;p

�
Γe

�
ðqpÞRj=2

YrankG
b¼1

y
Qj

b
b ;q;p

�
¼ 1:

This requires i and j to have the property that Ri þ Rj ¼ 2

and Qi
a þQj

a ¼ 0. In this case, the corresponding fields i
and j can be paired together and lifted through a mass term.
However, the assumption thatG is chiral means that no such
mass terms are possible. This means that we should search
for amore creativeway for theΓ functions to cancel.Wenow
show that no such creative way exists.
To see this, note that if the product of elliptic Γ functions

is equal to one, then setting the fugacities for all the U(1)
symmetries to ya ¼ 1we must have [defining x ¼ ðqpÞ1=2]

PE

�
1

ð1 − qÞð1 − pÞ
XN
i¼1

ðxRi − x2−RiÞ
�
¼ 1;

which implies

XN
i¼1

xRi−1 ¼
XN
i¼1

x1−Ri :

This should hold for arbitrary value of x. It can happen
only if there is a permutation σ of f1;…; Ng such that
Ri ¼ 2 − RσðiÞ. A similar argument in the presence of
fugacities ya for the U(1) symmetries ensures that

Qi
a þQσðiÞ

a ¼ 0, confirming that the only possible solution
is that in which the chiral multiplets cancel in pairs.
Although we have phrased the discussion above in terms

of the 4D index, the argument can be extended to the

supersymmetric indices of N ¼ 2 theories in 3D [70,71]
and N ¼ ð2; 2Þ theories in 2D [72,73].
The story above assumed no gauging of a symmetry,

neither continuous nor discrete. Introducing such gauging
provides a loophole to the argument above, because the
index now involves discrete sums or continuous integrals of
some special functions (for example, in 2D with discrete
gauging; see Refs. [74,75]). Though a product of these
special functions can be equal to one only if there is a mass
term, sums (or integrals) of products can be equal to one
even without mass terms, as is the case for the examples of
symmetric mass generation given in the bulk of the paper.
Nonetheless, the end result is perhaps a little surprising.

The Fidkowski-Kitaev mechanism of symmetric mass
generation in d ¼ 1þ 1 does not rely on gauge inter-
actions. It would appear that this is an example of a strongly
coupled phenomenon that does not have a counterpart in
the supersymmetric world.
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