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Emmanuel Siéfert ,*,† Ido Levin ,* and Eran Sharon
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

(Received 20 October 2020; revised 21 December 2020; accepted 9 February 2021; published 29 March 2021)

Geometrical frustration in thin sheets is ubiquitous across scales in biology and becomes increasingly
relevant in technology. Previous research identified the origin of the frustration as the violation of Gauss’s
Theorema Egregium. Such “Gauss frustration” exhibits rich phenomenology; it may lead to mechanical
instabilities, anomalous mechanics, and shape-morphing abilities that can be harnessed in engineering
systems. Here we report a new type of geometrical frustration, one that is as general as Gauss frustration. We
showthat itsorigin is theviolationofMainardi-Codazzi-Petersoncompatibilityequationsand that it appears in
Euclidean sheets. Combining experiments, simulations, and theory, we study the specific case of a Euclidean
ribbonwith radial and geodesic curvatures. Experiments, conducted using differentmaterials and techniques,
reveal shape transitions, symmetry breaking, and spontaneous stress focusing. These observations are
quantitatively rationalized using analytic solutions and geometrical arguments. We expect this frustration to
play a significant role in natural and engineering systems, specifically in slender 3D printed sheets.
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I. INTRODUCTION

Inspired by natural systems [1–5], shape-morphing
materials have been extensively developed in recent dec-
ades. They are believed to be at the core of applications in
soft robotics [6], minimally invasive surgery [7], and
architecture [8], because specific functions based on the
structure deformation, such as gripping, lifting, sensing, or
mobility, may be incorporated within the material itself as a
response to stimuli [9]. These techniques include chemical
or temperature swelling [10–12], pneumatic actuation
[6,13,14], liquid crystal elastomers [15,16], or dielectric
elastomers [17]. They are all based on basic geometrical
principles that link the local distortion fields and the global
shape. Arguably the best-known and most-used shape-
morphing strategy is to impose a gradient of strain through
the thickness of a flat slender structure to produce sponta-
neous curvature and subsequent unidirectional bending,
such as in the case of bilayer structures [18,19]. When this
spontaneous curvature is unidirectional and uniform, no
geometric frustration emerges since the structure may
isometrically bend into a tubular shape. This mechanism
is at play in most soft grippers [20–22]. Recently, complex

shape transformations could be achieved by generating
geometrically frustrated sheets [10]. It was shown that
when the spontaneous curvature of a sheet and its in-plane
reference geometry (its reference metric) violate Gauss’s
Theorema Egregium, the sheet does not have any stress-
free configuration and its equilibrium shape is determined
by a competition between bending and stretching [23,24].
Here, we show that a small variation of the classical

bilayers—when the unidirectional reference curvature
slightly varies spatially in amplitude and/or orientation, as
shown in Fig. 1—leads to a previously unstudied class of
geometrically frustrated sheets. The Gauss equation is indeed
satisfied (i.e., themetric is flat and the curvature is everywhere
unidirectional) but not the other compatibility condition, the
Mainardi-Codazzi-Peterson (MCP) equations.
In this article, we fabricate ribbons whose reference

geometry violates the MCP constraints, leading to frus-
tration and prestress in the structure. We show that such
simple structures exhibit a rich morphology and present
novel scaling laws for the shape transitions. Such frustra-
tions are expected to appear in many modern manufacturing
processes. Extrusion [25], volatilization [26], or direct laser
writing [27] induce a directional shrinkage upon curing: a
gradient of residual stresses appears in thin multilayers
structures, causing the spontaneous directional bending of
sufficiently thin structures. We also anticipate that this
frustration is present and plays a role in biological systems.

A. Incompatible elasticity

Frustration in slender structures stems from some geo-
metric incompatibilities. On one hand, strain gradients and
asymmetry through the thickness induce a reference

*These authors contributed equally to this work.
†Corresponding author.

emmanuel.siefert@mail.huji.ac.il

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 011062 (2021)

2160-3308=21=11(1)=011062(11) 011062-1 Published by the American Physical Society

https://orcid.org/0000-0001-7420-8742
https://orcid.org/0000-0003-1864-3832
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.011062&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1103/PhysRevX.11.011062
https://doi.org/10.1103/PhysRevX.11.011062
https://doi.org/10.1103/PhysRevX.11.011062
https://doi.org/10.1103/PhysRevX.11.011062
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


curvature tensor b̄. On the other hand, mean in-plane
deformations—that might be inhomogeneous or aniso-
tropic—result in an intrinsic reference metric field ā.
Generally, the elastic energy of isotropic neo-Hookean
thin plates and shells may be decomposed into stretching
ES and bending EB contents and reads [28]

E ¼ Yt
8ð1 − ν2Þ

Z
S

�
ES þ

t2

3
EB

�
dS; ð1Þ

where Y is the Young modulus, ν the Poisson ratio, t the
thickness, and S the surface area.
In the case of geometrically incompatible structures, the

bending and stretching contents may be seen as deviations
of the actual geometry adopted by the structure (a, b) from
the reference geometry (ā; b̄). Considering an isotropic
Hookean constitutive law, it was shown that the stretching
and bending contents may be expressed as [23,24]

ES ¼ νTr2½ā−1ða − āÞ� þ ð1 − νÞTr½ā−1ða − āÞ�2; ð2Þ

EB ¼ νTr2½ā−1ðb − b̄Þ� þ ð1 − νÞTr½ā−1ðb − b̄Þ�2: ð3Þ

In general, the two reference fields (ā; b̄) are geomet-
rically incompatible: no surfaces can simultaneously satisfy
the reference metric and curvature fields [24]. The elastic
energy may thus not vanish, but should be minimized,
inducing a competition between the bending and stretching
contents. Depending on the relative relevant dimensions of
the structure, minimizing the elastic energy is obtained
through very different means: when the structure is very
thin, the stretching stiffness, which scales linearly with the
thickness, is orders of magnitude larger than the bending
stiffness, which scales with the cube of the thickness. The
structure thus selects a shape that is an embedding of the
reference metric (a ¼ ā), canceling the highly unfavorable
stretching term at bending cost [29,30]. In this article, this
limit is referred to as the stretching-dominated regime.
On the other hand, when the structure is sufficiently thick,
the frustrated sheet morphs into a shape obeying the
reference curvature (b ¼ b̄) at stretching cost. We call this
limit the bending-dominated regime. Note that the tran-
sition between both regimes does not only involve the
thickness but also the other dimensions of the structure, the
reference curvatures and the reference Gaussian curvature,
transition that we wish to rationalize. As we are interested
in the minimization of the energy (1) and not in its actual
value, we consider and estimate in the following, for the
sake of simplicity, the dimensionless energy density
denoted as U ¼ 8ð1 − ν2Þ=ðYtSÞE.

B. Gauss-Mainardi-Codazzi-Peterson equations

The compatibility equations between the metric and
curvature tensors (which completely define a surface up
to a rigid-body transformation) are the Gauss-Mainardi-
Peterson-Codazzi equations [28]. Gauss’s equation, known
as Theorema Egregium, states that the Gaussian curvature,
i.e., the product of both principal curvatures, is an intrinsic
property of the surface. This means that the Gaussian
curvature only depends on distances that are measured on
the surface (that is, on the metric a alone). This can be
formulated mathematically as

K½a� ¼ detb
det a

: ð4Þ

The two MCP equations state that the spatial covariant
derivative (the curved space derivative) of the curvature
tensor b is fully symmetric. This is so, since a−1b ¼ −∇n̂
(where ∇ is the covariant derivative with respect to a and n̂
is the normal to the surface). Hence, ∇αbβγ ¼ ∇βbαγ ,
which can be formulated as [31]

(a)

(b)b)

(c) (d)

FIG. 1. Configurations of MCP-frustrated ribbons. (a) Curved
ribbon with constant radial reference curvature κ. (b) Curved
ribbon with constant azimuthal reference curvature κ. (c) Straight
ribbon with linearly varying transverse reference curvature along
the longitudinal direction (ranging from 0 to π=w). (d) Illustration
of MCP frustration via the nonconservation of the normal for the
example (c). The normal evolution along the ribbon’s boundary in
coordinate space results in no rotation along the long direction,
since there is no reference curvature in this direction. At one end
of the ribbon, it rotates by π along the width, whereas it does not
rotate at the other end. Therefore, after integrating the normal
evolution over this closed path, we obtain a nonzero rotation of
the normal, contradicting the MCP equations, thus leading to an
incompatible reference geometry.
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∂2L − ∂1M ¼ LΓ1
12 þMðΓ2

12 − Γ1
11Þ − NΓ2

11;

∂2M − ∂1N ¼ LΓ1
22 þMðΓ2

22 − Γ1
12Þ − NΓ2

12; ð5Þ

where b ¼
� L M
M N

�
and Γi

jk are the Christoffel symbols

associated with a. These compatibility conditions appear as
constraints when one shapes an actual surface, whose
geometry is forced to be compatible. The Gauss equation
prohibits, for example, one from smoothly wrapping a
round candy with a flat foil. Such constraints are also
known in origami [32], where the MCP equations prohibit
the angle of a straight fold from evolving [as a localized
counterpart of Fig. 1(c)]. Furthermore, curved-fold origami
was studied in a series of theoretical works [33–35], and
also dealt with these geometrical constraints. They appear
as a spatially localized version of the example shown in
Fig. 1(a).
When considering incompatible elastic sheets, one pro-

grams a reference geometry and is not limited by these
constraints. The sheet’s elastic response accommodates the
incompatibility. This results with shape transitions which
are the hallmark of frustrated thin sheets.

C. Mainardi-Codazzi-Peterson frustration

Thus far, manmade structures have been engineered
to be frustrated according to the Gauss equation. Pioneer
shape-morphing materials were programmed with a non-
Euclidean reference metric [KðāÞ ≠ 0] but vanishing cur-
vature (b̄ ¼ 0) [10,11,13,15,17]. Structures with Euclidean
metric [KðāÞ ¼ 0] but constant positive (det b̄ > 0) [36] or
negative (det b̄ < 0) [4,37] reference curvature were also at
the core of recent studies. These systems exhibit rich shape
transformations and a sharp transition between bending-
dominated and stretching-dominated regimes.
Frustrated ribbons (long and narrow thin sheets) are an

important subclass of frustrated sheets, that are abundant
both in biological [4] and molecular [37] systems.
Therefore, a reduced model of Eq. (1) was derived
[38,39] in which the two reference fields are expanded
about the midline of the ribbon. Because of the reduced
dimensionality, analytical models could be derived for
Gauss-frustrated ribbons and thermal fluctuations, that
dominate frustrated ribbons at the nanometric scale, were
treated. However, even in this scope, only frustration
resulting from the Gauss equation was studied.
In the case of plates, for which the reference curvature b̄

is zero, the MCP equations [Eq. (5)] are trivial.
Incompatibility may indeed only appear in shells with
spatial variation of the curvature. In Fig. 1, three simple
examples of MCP-frustrated ribbons are shown. The first
two correspond to a curved ribbon of geodesic curvature
κg ≡ 1=R, width w, and thickness t with a unidirectional
reference curvature κ imposed perpendicularly to [Fig. 1(a)]
or along [Fig. 1(b)] the ribbon direction. The third example

corresponds to a straight ribbon (κg ¼ 0) with a unidirec-
tional reference curvature κ that is oriented along the width
and varies in the longitudinal direction. Each ribbon has a
Euclidean reference metric and a locally unidirectional
reference curvature, such that the Gauss equation K½ā� ¼
det b̄= det ā ¼ 0 is satisfied. However, in all these exam-
ples, the MCP equations are not satisfied. In order to get a
geometrical intuition of the MCP violation, one may
consider the evolution of the normal on a closed loop in
the coordinate space: its rotation corresponds to the value of
b̄ and its parallel transport is given by ā. On an actual
surface (thus satisfying the Gauss-Mainardi-Codazzi-
Peterson equations), the normal goes back to its original
orientation. On the other hand, in a MCP-incompatible
geometry, the normal does not recover its orientation on a
closed loop. Here, one should not imagine an actual surface
(that will trivially obey the MCP equation), but perform this
process in coordinate space using ā and b̄. Taking for
example the case shown in Fig. 1(c), its metric is identically
flat (leading to a trivial parallel transport) and its reference

curvature reads b̄ ¼
�
0 0

0 πu=ðwLÞ
�
. Following the evo-

lution of the normal along the boundary [Fig. 1(d)], we
observe that the normal does not return to its initial
orientation, since it only rotates by π at one end of the
ribbon, thus violating the MCP equations [Fig. 1(d)]. The
same considerations may be applied to the two other
examples and also lead to the nonpreservation of the
orientation of the normal in the coordinate space, indicating
MCP frustration.
In this article, we investigate this geometrical frustration,

understand the shape selection in the bending- and stretch-
ing-dominated regimes, and characterize the transition
between them. Our study appears as a first step to
characterize and understand the shapes obtained and
potentially harness directional curvature to engineer target
3D structures from flat printing [27,40].

II. GEOMETRY AND MECHANICS
OF RIBBONS WITH GEODESIC AND
RADIAL REFERENCE CURVATURE

We focus on the specific case presented in Fig. 1(a),
where a curved ribbon of geodesic curvature κg ≡ 1=R,
width w, and thickness t, with R > w ≫ t, has a unidirec-
tional reference curvature κ imposed perpendicular to its
midline. The ribbon is parametrized in polar coordinates by
R − w=2 ≤ Rþ u ≤ Rþ w=2 and −θ0=2 ≤ θ ≤ θ0=2. It
appears as a slight modification of the classical bilayer
structure, since the geodesic curvature κg does not vanish.
The reference metric and curvature tensor of the ribbon
read

ā ¼
�
1 0

0 ðRþ uÞ2
�
; b̄ ¼

�
κ 0

0 0

�
: ð6Þ
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Such a reference geometry clearly obeys the Gauss equa-
tion, since the metric is flat and the reference curvature is
unidirectional. Considering now the MCP equations (5),
the first equation is trivial, but the second one reads
0 ¼ −ðRþ uÞ2κ, which is inconsistent whenever the radial
reference curvature κ is nonzero. The reference metric and
curvature tensors are thus incompatible, resulting in geo-
metrical frustration.
We use two different experimental methods to realize

and quantitatively study such ribbons: latex bilayers [4] (or
hybrid latex and polypropylene sheets) and heat-actuated
3D-printed shape-memory polymers [41,42]. In latex
bilayers, one sheet is radially cut in fine stripes and radially
stretched. A passive sheet (of latex or polypropylene) is
glued on the stretched membrane. A curved ribbon is then
cut from the membrane (see Sec. IV). 3D-printed polymers
[polylactic acid (PLA) filaments] uniaxially shrink along
printed filaments, once the printed sheet is heated above
glass temperature (see Sec. IV and Refs. [40–42]). In our
ribbons, the first layer is thick and filled with an isotropic
filling and is thus mostly passive, whereas the other layer is
made of thin radial lines which contract when heated,
inducing the radial reference curvature (see Movie 1 in
Supplemental Material [43]). Finite-elements simulations
are also performed using an in-house code that minimizes
Eq. (1) given the reference geometry in Eq. (6) to find the
shape of the ribbon (see Sec. IV for more details).
In both experiments and simulations, the ribbons exhibit

a rich morphology typical of frustrated ribbons depending
on the four geometrical parameters (geodesic radius R,
width w, thickness t, and radial reference curvature κ).
Three qualitatively different shapes are experimentally and
numerically observed and plotted in a phase diagram
[Fig. 2(a)]: smooth toroidal shapes [in blue, Fig. 2(b),
top], toroidal shapes with localized defects [in orange,
Fig. 2(b), center], and polygonal shapes made of piecewise-
tubular regions connected by corners [in green, Fig. 2(b),
bottom]. The toroidal shapes exhibit an increase in their
geodesic curvature, resulting in the coiling of the ribbon
[Fig. 2(b), top]; in the following, we term this effect as
overcurvature. When closed into a ring, this effect drives
these ribbons to buckle out of plane [Fig. 3(b)].

A. Bending-dominated regime

We first investigate the blue region in Fig. 2(a). The out-
of-plane buckling of closed rings [Fig. 3(b)] experimentally
observed is reminiscent of curved-fold origami [33],
growing curved rods [44], or inflated rings [45]. When
the rings are cut, ribbons remain in plane but exhibit a
pronounced overcurvature [Fig. 3(c)]. Qualitatively, the
radial bending of the ribbon, as shown in Fig. 3(a), clearly
induces negative and positive Gaussian curvatures on the
inner and outer parts of the toroidal shape adopted by the
ribbon, respectively.

This configuration, although not satisfying either the
reference metric or the curvature, is surprisingly observed
experimentally in a regime of sufficiently small κw and
sufficiently large Rtκ2. In the case of previously studied
Gauss-frustrated sheets, the bending-dominated regime
indeed corresponds to shapes obeying b ¼ b̄, which is
clearly not the case here: the radial component of the
curvature tensor does obey its reference counterpart, but not
the azimuthal one.
We now wish to characterize the overcurvature observed

experimentally and estimate the elastic energy scaling
associated with these toroidal configurations.
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FIG. 2. Morphologies of radially curved ribbons. (a) Phase
diagram of the three different types of observed shapes: toroidal
(blue), intermediate (orange), and faceted (green). Full markers
correspond to different experimental techniques: latex bilayers
(circles), latex or polypropylene bilayers (diamonds), and 3D-
printed PLA (triangles). Open markers correspond to finite-
element (FE) simulation (see Sec. IV for more details on the
experimental techniques and the simulation). (b) Examples of the
observed morphologies: toroidal (top), intermediate (center), and
faceted (bottom) for latex bilayers (left), 3D-printed PLA
(center), and FE simulations (right). Movie 1 in Supplemental
Material shows the deformation of 3D-printed ribbons when
immersed in hot water [43].
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1. Overcurvature characterization

Assuming that both the center line and radial lines of the
ribbon remain unstretched (to prevent significant stretching
[38]), we postulate the following parametrization for the
torus:

xðu; θÞ ¼

0
B@

½R=λþ κ−1 sin κu� cosðλθÞ
½R=λþ κ−1 sin κu� sinðλθÞ

κ−1 cos κu

1
CA; ð7Þ

where λ, which measures the overcurvature in the ribbon
(λ ¼ 1 implies no over curving), is the only free parameter.
The metric tensor of such configuration reads

a ¼
 
1 0

0 ðRþ λκ−1 sin κuÞ2
!
; ð8Þ

and its principle curvatures are given by

κ1 ¼ κ; κ2 ¼ λκ sin κujRκ þ λ sin κuj−1: ð9Þ

Note that λ → 0 corresponds to the cylindrical config-
uration satisfying b ¼ b̄. The azimuthal strain in the small
strain limit (R ≫ w) reads εðuÞ ¼ ðλκ−1 sin½κu� − uÞ=R.

Minimizing the stretching energy US ¼
ð1=wÞ R w=2−w=2 ε

2ðuÞduwith respect to λ, we get the following
expression for the overcurvature:

λ ¼ 4 sinðκw=2Þ − 2κw cosðκw=2Þ
κw − sinðκwÞ : ð10Þ

More intuitively, considering the radial bending of the
structure without overcurvature, azimuthal stretching and
compression appear, respectively, at the inner and outer
parts of the ribbon [Fig. 3(a)]. Such a strain (and thus stress)
distribution creates a torque in the structure, resulting in
overcurvature. The hoop strain profile along the width
[shown in Fig. 3(d)] evolves with the overcurvature λ. The
ribbon naturally selects one given overcurvature λopt, for
which the profile is optimal and the stretching energy is
minimized [black line in Fig. 3(d)]. The overcurvature
monotonically increases with κw and reaches its maximal
value 2 when the structure self closes and forms a complete
torus. It then abruptly drops for larger values of the total
radial rotation angle κw and the structure even undercurves
when κw approaches 3π. This theoretical curve remains
valid as long as the geodesic radius R is substantially larger
than the width w, such that compressive and tensile strains
(in the outer and inner part, respectively, of the ribbon) may

(a)

1

0.5
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1.5

0 2 3

Hoop 
tension

Hoop 
compression

(b)

(c)
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3D-printed PLA
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-0.5 0 0.5
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(e)

FIG. 3. Overcurvature and buckling of bending-dominated ribbons. (a) In this regime, ribbons adopt a toroidal shape, inducing hoop
tension and compression in the inner and outer part, respectively. (b) When closed, the ribbon outline buckles out of plane, with an
amplitude depending on the total radial rotation angle κw; experiments (left and center) and simulation (right) of buckled tori. (c) Open
ribbons remain planar and overcurve by a factor λ ¼ θ=θ0. (d) Left: azimuthal strain profile across the width of the ribbon for various
overcurvature factors λ (with κw ¼ π, R=w ¼ 10). Coiling induces a reduction of the strains in the ribbon, until an optimal configuration
(black line) is reached. Right: corresponding stretching energy as a function of λ. (e) Overcurvature factor λ as a function of the total
radial rotation angle κw. Latex bilayers (circles), 3D-printed PLA (triangles), and numerical simulations (open squares) fall on the
analytic curve given by Eq. (10).
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be considered symmetric. This analytical prediction is in
good agreement with the overcurvature, measured in the
experiments and simulations [Fig. 3(d)] in the bending-
dominated regime, as long as the total radial rotation angle
κw is smaller than 2π. Indeed, above this critical value,
overlap and self-contact appear and friction plays an
important role, making the experiments more sensitive.
Based on the strain and curvature expressions found in

the previous paragraph, one may now estimate the scaling
of the energy, depending on the value of the total rotation
angle κw [see the inset in Fig. 3(a) for the geometric
interpretation of this angle].

2. Energy scaling for κw < 1

When the angle κw is small, the typical azimuthal
curvature [Eq. (9)] simplifies to R−1κw (we assume
here λ ¼ 1 for the sake of simplicity, and one may
show that different values of the overcurvature do
not affect the energy scaling). As shown before, the inner
and outer boundaries of the ribbon are under hoop tension
and compression, respectively, with a typical strain
ϵS ≈ κ2w3R−1. The energy density of the ribbon scales as

U ∼ w6κ4R−2 þ t2R−2ðκwÞ2: ð11Þ

One might expect, as in Gauss-frustrated sheets, that the
structure would obey the reference curvature to cancel the
bending content in the bending-dominated regime.
Following the uniaxial reference curvature b̄, however,
requires the straightening of the ribbon in order to bend into
a cylindrical shape: the subsequent stretching energy scales
as US ∼ w2R−2. This energy appears to be asymptotically
larger than both energetic terms in Eq. (11) explaining why
such a configuration is not favored and thus not exper-
imentally observed. Comparing both terms in Eq. (11), the
stretching term is larger than the bending one as long as
κw > t=w. This is always the case in interesting structures,
since t ≪ w; an angle κw ≪ 1 rad would result in a mostly
flat and barely frustrated ribbon.

3. Energy scaling for κw ∼ 1

When the angle κw is large, the typical strain in a toroidal
configuration simply reads ϵS ≈ wR−1, as in the case of a
straight tubular configuration. The typical azimuthal cur-
vature coincides with the geodesic curvature λ=R. The
energy thus reads

U ∼ w2R−2 þ t2R−2: ð12Þ

In this case again, the bending term is negligible compared
to the stretching one (since w ≫ t), and the energy scalings
of the toroidal and tubular configurations are equivalent;
the value of the overcurvature λ does not change the scaling
of the energy, only the prefactor.

B. Stretching-dominated regime

In the wide stretching-dominated limit [green region in
Fig. 2(a)], the selected shape has to be found among
embeddings of the reference metric, which is in our case
Euclidean. That is, we seek to find a developable surface
(i.e., a surface with zero Gaussian curvature) that minimizes
the bending energy. In this regime, we experimentally
observe the formation of straight tubular shapes connected
by unbent corners [Figs. 4(a) and 4(b)]. Considering a
ribbon rolled into a cylinder of radius κ−1 along the mean
radial direction of the ribbon [Fig. 4(a)], the curvature
mismatch and hence the bending energy density increase
with the angle θ [Figs. 4(c) and 4(d)]. Switching to
Cartesian coordinates ðx; yÞ, where the direction ey is
chosen to be the direction of curvature, the actual and
reference curvature tensors indeed respectively read

b̄ ¼
�

κ sin2θ κ cos θ sin θ

κ cos θ sin θ κ cos2θ

�
; b ¼

�
0 0

0 κ

�
;

ð13Þ

where θ is the angle made between ey and er. The local
dimensionless bending energy density reads

uB ¼ t2½ð1 − νÞκ2 sin2 θ þ 4νκ2 sin4 θ�: ð14Þ

This expression is a growing function of θ. For small
angles, this energy is lower than the energy density required
to flatten the structure, for which uB ¼ t2κ2. The rolling of
the ribbon onto a tube is thus energetically favored. The
smaller the extent of the tubular portion (in terms of
geodesic angle θ), the smaller the bending energy density.
Hence, a thin ribbon tends to adopt a piecewise-tubular
shape to approximate the reference radial curvature, exhib-
iting polygonal shapes reminiscent of geometrically con-
fined bilayer shells [46] [Figs. 4(b) and 4(d)]. The
minimum possible geodesic curvature angle θc for unidi-
rectional bending that can be connected without stretching
can be obtained through a simple geometric construction
[Fig. 4(e)]: the region delimited by the intersection of the
outer boundary and the tangent to the inner boundary can
indeed freely bend independently from the other regions.
Its angle extension reads

θc ¼ 2 arccos
2R − w
2Rþ w

: ð15Þ

This simple rule predicts quantitatively the number of
facets in stretching-dominated samples, both for opened
and closed samples, ribbons or structures [Fig. 4(f)].
Remarkably, this relation depends only on the lateral
geometry of the ribbon (i.e., the aspect ratio R=w) and
not on the thickness t or the reference curvature κ.
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Note that a region of finite arclength [highlighted in
shades in Fig. 4(e)] must radially unbend at the junction
between these tubular portions. The bending energy density
thus typically scales as

UB ∼ t2κ2: ð16Þ
In these polygonal configurations, the stretching energy
density vanishes almost everywhere, and most of the
bending energy is localized at the corners separating two
tubular sections [Fig. 4(d)]. Some stretching occurs at these
corners to regularize the otherwise diverging azimuthal
bending energy. Although being free of external constraints
and having a smooth reference geometry, these ribbons
remarkably exhibit stress focusing [47].

C. Shape transitions

The transition between both regimes may be estimated
by balancing energies in both asymptotic regimes. As the
bending term in Eqs. (11) and (12) is much smaller than the
stretching one, the typical transition between the bending-
and stretching-dominated regimes may be obtained by
equating the bending energy in the stretching-dominated
configuration [Eq. (16)] and the stretching energy of the
toroidal configuration [Eqs. (11) and (12)]. We get the
following characteristic transition widths:

w̃1 ∼ ðtR=κÞ1=3 ð17Þ

for κw < 1, and

w̃ ∼ tRκ ð18Þ

for κw ∼ 1.
Another intuitive way of thinking of this transition is to

consider the compressive azimuthal strain ϵS at the outer
boundary in the torus configuration and estimate when this
strain reaches the buckling threshold of a cylindrical shell
of curvature κ and thickness t, which typically reads
ϵc ∼ tκ.
In order to test these scaling laws, we plot in Fig. 2(a) the

total radial rotation κw as a function of the dimensionless
quantity Rtκ2. As expected by Eq. (17), the transition lies
along a line of slope 3 for a relatively small total radial
rotational angle κw. For large κw, the slope of the transition
becomes 1, as predicted by Eq. (18). These scalings hold
for different experimental realizations and simulations.
Note that for such MCP-frustrated ribbons, the scaling
of the transition between bending- and stretching-domi-
nated regimes is different from Gaussian-based frustration
(typically w̃ ∼

ffiffiffiffiffiffiffi
t=κ

p
). The orange region in Fig. 2(a)

appears to be a mixed intermediate regime: overcurvature
is observed, indicating stretching, and defects are present,

Latex+polypropylene
Latex bilayers
3D-printed PLA
FE simulation

(a) (b)

(e) (f)

1 2 3 4 5 6 7 8
2

3

4

5

6

7

(c) (d)

FIG. 4. Faceted stretching-dominated ribbons. (a) Sketch of the locally tubular configuration observed in experiments. (b) Closed
ribbons (made here of polypropylene or latex bilayers) exhibit polygonal shapes, the number of sides corresponding to the number of
locally tubular portions. When the width is gradually reduced, the number of sides increases. (c) Finite-element simulation of a portion
of a curved stretching-dominated ribbon. The color codes for the bending energy density: it increases with the angle θ [as predicted by
Eq. (14)], except along the inner boundary. (d) Simulation of full structures, with clear bending energy focusing at the junction between
tubular sections. (e) Geometrical rule to predict the typical angle extension θc of the sides and hence the number of sides. (f) Number of
sides n as a function of the slenderness ratio R=w of the curved ribbons. Simulations and experimental data (pictures of some
experiments in inset) are quantitatively predicted by the simple geometric construction [Eq. (15)].
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but do not obey the geometric rule observed in the
stretching-dominated regime. At the inner part of the
ribbon, a boundary layer with Gaussian curvature is
observed [see Fig. 4(c)] and extends over a typical width
w̃, the transition width derived in Eq. (17). This scaling is
once again different from that of boundary layers in Gauss-
frustrated ribbons [48], where w̃ ∝

ffiffi
t

p
.

III. DISCUSSION AND CONCLUSION

In summary, we present a novel class of geometric
frustration based on the spatial variation of the reference
curvature tensor, in which the Gauss equation is satisfied
but not the Mainardi-Codazzi-Peterson equations. We focus
on one specific model case, where ribbons with geodesic
curvature have a constant reference curvature along their
width. This system, although implying a minimal modifi-
cation from the well-studied unidirectional bilayer struc-
tures, exhibits a rich morphology and new scaling laws for
the shape transition.
Such ribbons share a striking resemblance with curve-

fold origami [33]. Its prescribed azimuthal fold induces
frustration in the structure, leading to a competition
between the bending of the sheet and the opening of the
fold. Overcurvature and out-of-plane buckling are similarly
observed in open and closed structures, respectively. We
note, however, that the localization of the radial curvature
on the fold plays a significant role: it enables the structure
to smoothly obey the total radial rotation without inducing
Gaussian curvature. Therefore, the configurations observed
are stretch-free, and no shape transition manifests. More-
over, distributing the curvature by introducing several
consecutive azimuthal mountain folds is prohibited as it
would result in stretching.
In a wider perspective, this work raises several funda-

mental questions and new theoretical developments are
needed to incorporate such MCP frustration in the general
theory of frustrated shells. In particular, Gauss frustration
may lead to anomalous mechanics [49,50]. Hence, a natural
extension of this work is to study the energy landscape and
the mechanical properties of MCP-frustrated ribbons.
Being as general as Gauss frustration, we anticipate
MCP frustration to appear in many biological and respon-
sive systems and to play a significant role in future devices
and applications. The spontaneous symmetry breaking and
stress focusing could be harnessed in order to obtain
specific shapes or functions from flat ribbons.

IV. MATERIALS AND METHODS

A. Stretched latex bilayers

A latex sheet is radially cut with a laser cutter (cuts
extending between rmin and rmax) every small angle dθ in
order to form radial strips [Fig. 5(a), top]. The latex sheet is
then radially stretched and fixed on a circular frame. A thin
layer of latex-based glue (Free chack II from Butterfly) is

then spread uniformly on the sheet and a second
unstretched layer is glued on the stretched membrane.
After curing, a ring of midradius R and width w is cut from
the sheet, ensuring that it contains only the radially cut
portion of the stretched sheet. Once released, the stretched
strips induce a typical radial bilayer curvature κ with
magnitude proportional to the imposed radial strain ε0
[Fig. 5(b)]. Rigorously, the imposed radial strain is not
constant along the radial coordinate, but these variations are
small and we neglect them in this work [see Fig. 5(d) and
Supplemental Material [43] ]. The strips are indeed not
rectangular and have a width rmindθ at their base and
rmaxdθ at their outer boundary [Fig. 5(c)]. The constant
force F imposed on the stretched strips induces a gradient
in stresses σ ¼ F=ðtrdθÞ and thus a varying strain ε ¼
ðF=EtrdθÞ in the framework of linear elasticity.
Experimentally, the displacement δ is imposed. It corre-
sponds to the integrated strain over the full length of the
strip: δ ¼ ε0ðrmax − rminÞ ¼

R
rmax
rmin

εdr. Combining the last
two equations, the strain along the strip reads

εðrÞ ¼ ε0
rmax − rmin

r ln rmax=rmin
; ð19Þ

where ε0 ¼ δ=ðrmax − rminÞ is the average imposed strain.
The strain evolution in the stretched strips is plotted in
Fig. 5(d) for various values rmin=rmax. When rmin=rmax → 1,
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FIG. 5. Stretched latex bilayers. (a) A latex sheet is stretched
radially by a predetermined factor. The sheet is then glued to an
unstretched sheet made of latex or polypropylene. The radial cuts
release the hoop stress resulting from the Poisson effect, inducing
a quasiradial stretch. (b) When cut into a curved ribbon and thus
released, a radial reference curvature is imposed to the structure.
This curvature is, however, not exactly constant. Depending on
the size of the radial cuts, and more specifically on the ratio
rmin=rmax (c), the radial strain, and thus the target curvature, vary
as a function of the radial coordinate r (d). This effect is, however,
neglected in our study.
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i.e., when the cuts are small compared to the radius rmin, the
strain is almost constant. From Timoshenko [19], we know
that the reference curvature in bilayers scales linearly with
the strain difference ε. rmin=rmax → 1 means thus constant
radial reference curvature [Fig. 5(b), left], whereas the
curvature significantly varies for smaller values of
rmin=rmax [Fig. 5(b), right].
In this article, we neglect the radial variation of the

reference curvature in stretched latex bilayers described
above, since we mostly consider the case where R ≫ w. In
order to estimate the mean curvature when it is not constant,
we measure the total radial rotation angle and divide it by
the width w.

B. Shape-memory 3D-printed PLA

Ribbons are printed with a fused filament fabrication 3D
printer (Prusa MK3S, nozzle diameter 0.4 mm, PLA
filament diameter 1.75 mm, bed temperature 60°C, nozzle
temperature 200°C, and printing speed 50 mm=s). During
the printing process, the PLA chains straighten in the
nozzle due to the extensional flow. When the layer thick-
ness is small, the material cools down quickly and the
chains are frozen in the entropically unfavorable elongated
configuration, leading to residual stresses. When the
material is heated up above the glass transition temperature,
the material relaxes the stresses, leading to a contraction
along the printing direction. As shown in Refs. [40–42], the
printed layer thickness t0 of each layer is the critical
parameter to induce large residual stresses along the
printing direction. Seeking a large bilayer effect, the first
layer is thus printed with a large thickness t0 ¼ 0.15 mm,
with a Hilbert curve filling, resulting in an isotropic −0.05
strain (Fig. 6). The next layers are made of thin (typically
t0 ¼ 0.05 mm) radial lines. After printing, the samples are
immersed in a bath of hot water (at 80°C) and deform to
relax the flow-induced internal stresses, as shown in Movie
1 in Supplemental Material [43]. While the first layer is
essentially passive, the next layers contract radially (with
typical radial strains ranging from−0.1 to−0.3), inducing a
radial reference curvature κ proportional to the contraction
strain.

C. Numerical methods

In order to test our results and predictions numerically,
we used a finite-element code developed in-house.
We tested samples of θ0 ¼ π (a single turn), w ¼ 25, 50,

w ≤ R ≤ 400, 0.05 ≤ t ≤ 1, and 0.1 ≤ κw ≤ 4π. We also
simulated ribbons with a topology of a closed ring,
especially in the stretching-dominated regime. We input
into our code a triangulated domain in coordinate space
(i.e., u and θ) along with the reference tensors, ā and b̄, and
an initial configuration x⃗ðu; θÞ corresponding to the sample
tested. In order to capture the focusing of the curvature, we
used a find mesh of over 3500 triangles. The triangulation
was made such that triangle areas will be uniform in

the initial configuration. The code minimize the two-
dimensional energy functional in Eq. (1) by estimating
the actual metric and curvature of the triangulated con-
figuration and evolving it via gradient descent. Although
both numerical and experimental results represent only a
local minimum of the energy, their similarity and their
agreement with the theory demonstrate the robustness of
our procedure. Our numerical code does not penalize
intersection, which generally might affect the configuration
of frustrated sheets. Nevertheless, we expect such inter-
action to play limited role in the shape selection.
The initial configuration was chosen to be a flat arc with

width w and geodesic curvature R−1. To test for numerical
convergence we tested other initial configurations: toroidal
configurations and a flat arc with over curvature similar to
λðκwÞ. In the majority of parameter space we found no
significant changes between these initial conditions. The
most delicate part was the numerical estimation of the
number of facets n. This case involves a nucleation
problem; hence, once n0 nodes are spontaneously gener-
ated, this number only increases during the minimization
process. Therefore, to test for this number we used initial
conditions of a flat arc with a periodic perturbation of
n0 ∈ f3;…; 7g. Then we looked for the final configuration

First layer Second layer

Radial cut

Heat

(a)

(b) (c)

FIG. 6. 3D-printed thermoplastic ribbons. (a) Radial lines
(second layer) are printed on top of a layer printed along a
Hilbert curve (first layer). (b) Long polymeric chains straighten in
the nozzle due to the extensional flow. Cooling down, this
elongated configuration results in residual stresses along the
printing direction. When heated above the glass transition
temperature, the printed thermoplastic material shrinks in the
printing direction to release the residual stresses. (c) While the top
layer shrinks radially, the bottom layer is mostly passive due to its
thickness and the isotropic pattern, inducing thus a radial
reference curvature (see Movie 1 in Supplemental Material [43]).
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with the minimal energy and regarded it as the energy
minimizer.
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[45] E. Siéfert, E. Reyssat, J. Bico, and B. Roman, Programming
Curvilinear Paths of Flat Inflatables, Proc. Natl. Acad. Sci.
U.S.A. 116, 16692 (2019).

[46] L. Stein-Montalvo, P. Costa, M. Pezzulla, and D. P. Holmes,
Buckling of Geometrically Confined Shells, Soft Matter 15,
1215 (2019).

[47] T. A. Witten, Stress Focusing in Elastic Sheets, Rev. Mod.
Phys. 79, 643 (2007).

[48] E. Efrati, E. Sharon, and R. Kupferman, Buckling Transition
and Boundary Layer in Non-Euclidean Plates, Phys. Rev. E
80, 016602 (2009).

[49] S. D. Guest, E. Kebadze, and S. Pellegrino, A Zero-Stiffness
Elastic Shell Structure, J. Mech. Mater. Struct. 6, 203
(2011).

[50] I. Levin and E. Sharon, Anomalously Soft Non-Euclidean
Springs, Phys. Rev. Lett. 116, 035502 (2016).

EUCLIDEAN FRUSTRATED RIBBONS PHYS. REV. X 11, 011062 (2021)

011062-11

https://doi.org/10.1016/j.jmps.2013.08.012
https://doi.org/10.1016/j.jmps.2013.08.012
https://doi.org/10.1039/C6SM00246C
https://doi.org/10.1039/C6SM00246C
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevLett.116.258105
https://doi.org/10.1103/PhysRevLett.116.258105
https://doi.org/10.1039/C7MH00269F
https://doi.org/10.1039/C7MH00269F
https://doi.org/10.1145/3173574.3173834
https://doi.org/10.1145/3173574.3173834
https://doi.org/10.1145/3290605.3300267
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.11.011062
https://doi.org/10.1016/j.jmps.2012.09.017
https://doi.org/10.1016/j.jmps.2012.09.017
https://doi.org/10.1073/pnas.1904544116
https://doi.org/10.1073/pnas.1904544116
https://doi.org/10.1039/C8SM02035C
https://doi.org/10.1039/C8SM02035C
https://doi.org/10.1103/RevModPhys.79.643
https://doi.org/10.1103/RevModPhys.79.643
https://doi.org/10.1103/PhysRevE.80.016602
https://doi.org/10.1103/PhysRevE.80.016602
https://doi.org/10.2140/jomms.2011.6.203
https://doi.org/10.2140/jomms.2011.6.203
https://doi.org/10.1103/PhysRevLett.116.035502

