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The Hubbard model represents the fundamental model for interacting quantum systems and electronic
correlations. Using the two-dimensional half-filled Hubbard model at weak coupling as a testing ground,
we perform a comparative study of a comprehensive set of state-of-the-art quantum many-body methods.
Upon cooling into its insulating antiferromagnetic ground state, the model hosts a rich sequence of
distinct physical regimes with crossovers between a high-temperature incoherent regime, an inter-
mediate-temperature metallic regime, and a low-temperature insulating regime with a pseudogap created
by antiferromagnetic fluctuations. We assess the ability of each method to properly address these
physical regimes and crossovers through the computation of several observables probing both
quasiparticle properties and magnetic correlations, with two numerically exact methods (diagrammatic
and determinantal quantumMonte Carlo methods) serving as a benchmark. By combining computational
results and analytical insights, we elucidate the nature and role of spin fluctuations in each of these
regimes. Based on this analysis, we explain how quasiparticles can coexist with increasingly long-
range antiferromagnetic correlations and why dynamical mean-field theory is found to provide a
remarkably accurate approximation of local quantities in the metallic regime. We also critically
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discuss whether imaginary-time methods are able to capture the non-Fermi-liquid singularities of this
fully nested system.

DOI: 10.1103/PhysRevX.11.011058 Subject Areas: Computational Physics
Condensed Matter Physics
Strongly Correlated Materials

I. INTRODUCTION

A. Purpose of this article

For interacting quantum systems, the Hubbard model
[1–4] has a status similar to the Ising model for classical
phase transitions and magnetism. It is the simplest possible
model that can be considered, and it nonetheless captures
essential aspects of the physical phenomena of interest. In
relation to materials with strong electronic correlations, the
Hubbard model in its simplest form (especially with a
single band) is, at best, an approximation to reality.
However, experimental progress in the field of cold atomic
gases in optical lattices now yields rather accurate physical
realizations of this simple model in the laboratory [5–7].
In contrast to the Ising model, however, our current

understanding of the Hubbard model is still lacunary. A
thorough understanding can be reached in the limiting
cases of one dimension [8] and infinite dimensions (infinite
lattice connectivity) [9–11], thanks to efficient analytical
and computational methods available in these limits. In
contrast, the two-dimensional case relevant to both cuprate
superconductors [12–15] and cold atomic gases [5–7] still
holds many open questions, both in relation to its phase
diagram as a function of interaction, particle density, and
temperature, and regarding the nature of excited states as
well as response functions and transport properties. There
is a broad consensus in the community that progress on
these outstanding issues is essential, even if addressed
through the deceptively simple-looking Hubbard model.
In recent years, a number of computational methods have

been developed to this end. In this context, it is of crucial
importance to interrogate these methods regarding their
respective ability to address regimes of physical interest.
Furthermore, increasing emphasis is being placed on
establishing definite results with controlled computational
methods, which can then serve as benchmarks [16–18] for
approximate, often more flexible and computationally
efficient methods.
Here, we focus on a regime of the Hubbard model that is

simple at first sight but, as we shall see, deceptively so:
small interaction values (often referred to as “weak cou-
pling”) and half-filling on the square lattice with nearest-
neighbor hopping. The main purpose of this article is to
assess the ability of state-of-the-art computational methods
to address the finite-temperature physics of the model in
this regime. We provide an extensive comparison between
basically all methods currently available for this purpose,

with two distinct Monte Carlo methods serving as reference
benchmarks. Despite the apparent simplicity of this regime,
we show that all methods face rather severe limitations,
especially regarding the lowest temperature that can cur-
rently be reached. Our study also interrogates the model
through a set of different physical observables, spanning
thermodynamic properties and single-particle correlation
functions (the Green function and associated self-energy)
as well as two-particle correlations (the spin correlation
function and correlation length). Because of this wide
spectrum of both methods and observables, we borrow
terminology from the astrophysics community indesignating
our work as a “multimethod, multimessenger study” [19].
Despite the deceptive simplicity of the two-dimensional

Hubbard model in this parameter regime, the physics is
quite rich and nontrivial. As is well established, the ground
state is an antiferromagnetic insulator that can be qualita-
tively understood using Slater’s classic description [20].
However, finite-temperature properties display a rich
sequence of interesting crossovers between physically
distinct regimes as the system is cooled down towards
its antiferromagnetic insulating ground state. Two key
features make these finite-temperature properties and cross-
overs nontrivial: (i) the fact that, despite perfect nesting,
fluctuations destroy antiferromagnetic long-range order at
any nonzero temperature—while the correlation length is
exponentially large (Mermin-Wagner theorem [21,22])—
and (ii) the van Hove singularity present at the “antinodal”
points of the Fermi surface, which further suppresses the
coherence of single-particle excitations near these points.
Furthermore, the perfect nesting of the Fermi surface in
combination with two-dimensionality leads to a departure
from Fermi-liquid behavior in the metallic regime.
Another important goal of this article is therefore to

discuss and characterize these different physical regimes
and crossovers in detail, with a particular focus on
assessing the ability of the different methods to capture
their physics properly. By combining computational results
and analytical insights, we elucidate, in particular, the role
and nature of spin fluctuations in the different regimes. As
we shall see, this analysis reveals some unexpected features
of the metallic regime, which are likely to have broader
implications for materials with electronic correlations.
Furthermore, we discuss whether the imaginary-time com-
putational methods considered in this article are able to
probe the subtle non-Fermi-liquid singularities of the
metallic state caused by the perfect nesting of the Fermi
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surface. This rich physics thus makes this regime of the
Hubbard model a perfect opportunity for systematic bench-
marks, as well as a useful testing ground for future work on
more complex regimes of parameters as well as real
materials.

B. Overview of the methods assessed

We categorize the algorithms considered in this article
into the following groups:

(i) Benchmark methods. We consider two very different
Monte Carlo methods. The first one is the determi-
nantal quantum Monte Carlo method (DQMC,
Ref. [23]), and the other is the diagrammatic
Monte Carlo method (later referred to as DiagMC)
[24] [in its recent connected determinant implemen-
tation (CDet) for connected one-particle reducible
quantities [25] and ΣDDMC for one-particle irreduc-
ible quantities [26,27], respectively]. The reason for
their application is twofold: (1) The methods are
controlled; hence, in the regime where they can be
applied and converged, they are numerically exact.
Therefore, they serve as a benchmark for the other
approximate methods considered in this article.
(2) The regimes where the methods actually break
down will be assessed, providing crucial information
for their application to more challenging regimes. For
both benchmark methods, we show error bars in the
figures (which may, however, be smaller than the
respective symbol sizes). All data points in this paper
obtained by these methods are numerically exact.

(ii) Mean-field methods. In Sec. III, we discuss dynami-
cal mean-field theory (DMFT, Ref. [28]) as a
reference point, beyond which spatial fluctuations
must be included to properly address the two-
dimensional model. In that section, we also briefly
discuss simple, static, mean-field theory (MFT). As
we shall see, DMFT provides a good starting point
for our study and, remarkably, yields an accurate
approximation of local observables through most of
the metallic regime.

(iii) Cluster extensions of DMFT. The dynamical cluster
approximation (DCA) and cellular DMFT (CDMFT)
provide one possible route to systematically include
spatial correlations within the DMFT framework,
beyond the single-site approximation [29–32]. Note
that cluster-based methods (like CDMFT, DCA, and
also cluster-TRILEX, discussed below) are controlled
methods, with the control parameter being the size of
the cluster. However, in some regimes shown in this
paper (low temperatures), these algorithms cannot be
converged as a function of cluster size (for reasons
explained in the Appendixes D 5 and D 6).

(iv) Vertex-based extensions of DMFT. Another route
for including spatial correlations beyond single-
site DMFT relies on higher-order Green functions

(vertex functions). In the main text, we present
results from the dynamical vertex approximation
(DΓA, ladder version), the triply irreducible local
expansion (TRILEX) in various flavors, the dual
fermion (DF, ladder version), and the dual boson
(DB, single-shot) approach [33].

(v) Other approaches. In this category, we show results
from the two-particle self-consistent approach (TPSC,
TPSC+, Refs. [34–36]), the functional renormaliza-
tion group (fRG [37]; here, considered up to one loop
with Katanin substitution), and the parquet approxi-
mation (PA [38,39]).

This list covers the vast majority of currently available
computational methods able to address finite-temperature
properties. One notable exception is the minimally
entangled, typical thermal state method (METTS) and
related approaches, which combine tensor network repre-
sentations and stochastic sampling [40–43]. A systematic
exploration of this method as applied to the Hubbard model
is currently being actively pursued by several groups, and
comparisons with the present methods will have to be
performed in future work [44].
The basic principles of each of these methods, useful

references for further reading, and results from slightly
differing implementations of the respective methods and
algorithms are summarized in Appendix D. Throughout the
paper, we consider the interaction value of U ¼ 2t. Let us
stress from the outset that, despite this rather moderate
interaction value, each of these methods encounters lim-
itations in their regime of applicability. These limitations
stem from either (i) the approximation performed or
(ii) algorithmic obstacles.
We find that the lowest reachable temperature for the

DiagMC algorithm is TDiagMC
min ≈ 0.06t. In this case, reach-

ing lower temperatures is hindered by the difficulty in
summing the perturbative series. Interestingly, we find
that the limitation of the DQMC algorithm is similar,
TDQMC
min ≈ 0.06t. In that case, the limitations originate from

the exponentially growing correlation length, which would
require the simulation of prohibitively large systems at
lower T. DMFT, in contrast, can be converged to very low
temperatures and also at T ¼ 0. Self-consistent methods
(e.g., TRILEX) suffer from convergence problems at low T,
whereas calculations involving a “single-shot” correction
beyond DMFTwithout self-consistency such as DΓA, DB,
or DF can be performed as long as the correlation length
can be accurately resolved (DΓA and DB) or, for DF, as
long as the starting point—paramagnetically restricted
DMFT—remains reasonably accurate. The finite momen-
tum grid limits the application of fRG and PA and, to a
lesser degree, TPSC and TPSC+. An intrinsic limitation of
TPSC occurs in the renormalized classical regime (see
Appendix D 11), leading to a rather severe overestimation
of the onset temperature of the pseudogap. TPSC+ has been
proposed as a solution: In the present paper, the first
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application of TPSC+ is actually presented, but its appli-
cability has yet to be explored more widely. Obvious
limitations of quantum cluster theories are the cluster sizes
that they can reach, which have to be compared to the
correlation length—a very demanding criterion in the
present case, as will be shown later.

C. Definition of the model, the role of the van Hove
singularity, and nesting

We consider the single-band Hubbard model defined by
the following Hamiltonian:

H ¼ −t
X
hiji;σ

c†iσcjσ þU
X
i

ni↑ni↓; ð1Þ

where t is the (nearest-neighbor) hopping amplitude, hiji
denotes summation over nearest-neighbor lattice sites, σ ∈
f↑;↓g is the electron’s spin, U is the strength of the (purely
local) Coulomb interaction, and niσ ¼ c†iσciσ is the spin-
resolved number operator. Throughout the paper, all energies
are given in units of t ¼ 1. Furthermore, we set ℏ ¼ 1 and
kB ¼ 1. We consider the case ofU ¼ 2 (usually regarded as
weak coupling) at half-filling n ¼ hn↑ þ n↓i ¼ 1, corre-
sponding to a chemical potential of μ ¼ U=2 ¼ 1 and the
simple square lattice, resulting in the following dispersion
relation for the electrons (lattice constant a ¼ 1):

εk ¼ −2½cosðkxÞ þ cosðkyÞ�: ð2Þ

The particular form of the dispersion and the case of half-
filling leads to a very peculiar diamond-shaped Fermi
surface, already resulting in an interesting behavior without
interactions present: (i) It exhibits a (“perfect”) nesting by
the momentum vector Q ¼ ðπ; πÞ, which connects every
Fermi-surface point to another respective one (see Fig. 1),
leading to an enhanced susceptibility at q ¼ Q; and (ii) the
momenta around the (stationary) antinodal Fermi-surface
point kAN ¼ ðπ; 0Þ imply a logarithmic divergence in the
density of states ρ0ðεÞ at the Fermi level (van Hove
singularity, Fig. 1), leading to a larger scattering phase
space than at the nodal point kN ¼ ðπ=2; π=2Þ.
Furthermore, because we consider only nearest-neighbor
hopping, the diamond-shaped Fermi surface displays per-
fect nesting by the whole family of wave vectors of the
form ðqx;�qxÞ, with consequences for the nature of the
metallic regime.

D. Organization of this article

This article is organized as follows: In Sec. II, we
describe the different physical regimes encountered in this
model as a function of temperature, using results from our
two benchmarks methods (DiagMC and DQMC). In
Sec. III, we discuss dynamical mean-field theory, which
serves as a starting point for several approximate methods

considered in this article. In Sec. IV, we discuss the
calculation of single-particle properties using all the differ-
ent methods introduced above. In Sec. V, we discuss the T
dependence of the double occupancy and its physical
significance. In Sec. VI, we discuss two-particle response
functions and the T dependence of the magnetic correlation
length. In Sec. VII, we discuss the implications of our
computational results for the physics of spin fluctuations in
this model. Finally, a discussion and conclusions are
provided in Sec. VIII. A number of Appendixes present
more technical points as well as details of the different
methods. In the Supplemental Material [45] we provide all
the numerical data used in the figures of the main text.

II. QUALITATIVE DESCRIPTION: PHYSICAL
REGIMES AND CROSSOVERS

Before presenting detailed results from a variety of
many-body approaches in Secs. III–VI, in this section
we sketch the overall physical picture that emerges from
this study in Fig. 2 (see also Refs. [47–49]). The left panel
indicates, in a schematic manner, the key crossover scales
that delimit different physical regions as a function of
temperature T, for a given value of U. Our quantitative
study focuses on U ¼ 2, but the qualitative statements
made here are expected to apply throughout the weak- to
intermediate-coupling regime (see, e.g., Ref. [50] for a

(a) (b)

(c)

FIG. 1. (a) Momentum distribution of the (noninteracting)
dispersion relation of the simple square lattice, Eq. (2), for
t ¼ 1 throughout the first Brillouin zone. The Fermi surface of the
half-filled system (μ ¼ 0) is diamond shaped (bold black); the
black arrows indicate the nesting vectors, mutually connecting
Fermi-surface points. (b) Corresponding (particle-hole symmet-
ric) density of states (DOS) as a function of energy ρ0ðεÞ. Here,
ε ¼ 0 corresponds to half-filling. (c) Value of the dispersion
relation along a high-symmetry path exhibiting a plateau around
ðπ; 0Þ, leading to a vanishing Fermi velocity vF.
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study of the evolution to higher couplings). As the system is
cooled down from high temperature, we observe several
regimes with qualitatively different physical properties (a
quantitative criterion for the onset of these scales will be
given at the end of the section).
At high temperature, thermal fluctuations prevent the

formation of long-lived quasiparticles: This regime can be
thought of as an “incoherent soup” of fermions above their
degeneracy temperature and is depicted as the red shaded
area ① in Fig. 2. Cooling the system progressively extin-
guishes these thermal fluctuations, leading to increased
coherence in the single-particle spectrum and the appearance
of long-lived quasiparticles. Here and below, we use the term
“quasiparticle” in a general and somewhat loose sense of a
dispersing single-particle excitation with a “long enough”
lifetime. For the specific model at hand, because of perfect
nesting, thequasiparticles donot obeyLandau’s Fermi-liquid
theory, however: This case is discussed in more detail in
Sec. VII C 3. At the node, this quasiparticle coherence scale
TN
QP corresponds to the temperature at which the thermal de

Broglie wavelength v�F=ðπTÞ along the nodal direction
becomes larger than the lattice spacing, with v�F being the
effective Fermi velocity renormalized by interactions. The
metallic regime is depicted as region ③ (light blue) in Fig. 2.
The crossover scale associated with the passage from

region ① to region ③ is not the same all along the Fermi
surface, however. Because of the van Hove singularity
stemming from the antinodal points of the Fermi surface
such as ðπ; 0Þ (see Sec. I C), the coherence temperature TN

QP
at the nodal point kN ¼ ðπ=2; π=2Þ is higher than the
coherence temperature at the antinodal point TAN

QP < TN
QP.

This differentiation defines an extended crossover region ②
in which the system is coherent near the nodes but still

incoherent near the antinodes (orange shaded area in
Fig. 2). Although further lowering the temperature in the
metallic regime ③ initially results in freezing out thermal
fluctuations and hence in an increase of the quasiparticle
lifetime, this does not persist down to the lowest temper-
ature. Indeed, antiferromagnetic correlations develop as T
is lowered, with an exponentially growing correlation
length, eventually diverging at T ¼ 0 when the ground
state with antiferromagnetic long-range order is reached.
In this low-T regime, long-wavelength antiferromagnetic

fluctuations (Slater paramagnons) lead to an enhancement
of the quasiparticle scattering rate upon cooling and to the
formation of a pseudogap in the single-particle spectrum,
which evolves into a sharp gap in the Slater-like insulator at
T ¼ 0 [20]. Once again, the crossover temperature T�
corresponding to the suppression of coherence and the
opening of the pseudogap is not uniform along the Fermi
surface: It is larger at the antinodes where the destruction of
coherence occurs first upon cooling and smaller at the
nodes: TN� < TAN� . Hence, in the dark-blue shaded area ④

where TN� < T < TAN� , one has a partially (pseudo)gapped
Fermi surface. Eventually, all states of the Fermi surface are
suppressed by antiferromagnetic fluctuations for T < TN� ,
resulting in a fully open pseudogap everywhere on the
Fermi surface (purple shaded area ⑤). Let us stress again
that long-range antiferromagnetic order and a true gap only
set in at T ¼ TNéel ¼ 0 as a consequence of the Mermin-
Wagner theorem [21,22].
Since all the temperature scales described above corre-

spond to crossovers, an appropriate criterion must be
defined to identify and quantify them. These scales mostly
refer to the presence or absence of characteristic spectral
features in the single-particle properties, and hence, an

FIG. 2. Left panel: schematic phase diagram of the two-dimensional Hubbard model on a simple square lattice in the weak-coupling
regime around U ¼ 2t. Here, TN

QP and TAN
QP denote the onset of coherence at the nodal k ¼ ðπ=2; π=2Þ (triangle) and antinodal

k ¼ ðπ; 0Þ (dot) Brillouin zone points, respectively. The onset of the (pseudo)gap at the antinode and node is denoted by TAN� and TN� ,
respectively. Right panels: qualitative sketches of the imaginary parts of the self-energy on the Matsubara axis (extracted from DΓA
calculations) for temperatures corresponding to the colors given in the phase diagram.
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obvious observable would be the momentum- and energy-
resolved spectral function Aðk;ωÞ ¼ −ð1=πÞImGðk;ωþ
i0þÞ and the corresponding self-energy as a function of real
frequencyω (see also Appendix B and Ref. [51]). However,
as all the methods considered in the following are formu-
lated on the Matsubara (imaginary) frequency axis, a much
more practical criterion can be obtained via the imaginary
frequency dependence of the (imaginary part of the)
momentum-resolved self-energy ImΣðk; iωnÞ, which is

consistent with previous work [47,48,52]. Representative
results for this quantity in the five different regimes
discussed above are displayed in the right panel of
Fig. 2. At high temperature, the thermal fluctuations lead
to a divergent behavior of ImΣðk; iωnÞ at low frequencies.
Thus, TQP can be defined as the temperature where this
divergent behavior is eased, i.e., when the slope between
the first and second Matsubara frequencies changes sign
and becomes negative [47,48,52]. In the metallic regime

TABLE I. Temperature scales discriminating the regions ①–⑤ of Fig. 2 calculated using various many-body
techniques.

Method TN
QP TAN

QP TAN� TN� TNéel

DiagMC 0.42 0.35 0.065 0.0625 0
DQMC 0.42 0.35 0.065 0.0625 0

MFT ∞ ∞ 0.2 0.2 0.2
DMFT 0.45 0.45 0.08 0.08 0.08
DCA, Nc ¼ 128 (PM enforced) 0.42 0.35 � � � � � � � � �
CDMFT, Nc ¼ 64 (PM enforced) 0.45 0.42 � � � � � � see Sec. VI
CDMFT þ CFE, Nc ¼ 64 (PM enforced) 0.42 0.35 � � � � � � see Sec. VI

DΓA (ladder) 0.42 0.35 0.065 0.059 0 [51,53,54]
DF (ladder) 0.44 0.37 0.062 0.06 0 (� � �)
DB (single-shot) 0.42 0.35 <0.07 <0.07 0 (� � �)
TRILEX 0.44 0.35 <0.055 <0.055 0 (� � �)
TRILEX, Λ2 0.44 0.35 <0.055 <0.055 0 (� � �)
TRILEX, Nc ¼ 2 0.44 0.35 <0.055 <0.055 0 (� � �)
TRILEX, Nc ¼ 4 0.44 0.35 <0.055 <0.055 0 (� � �)
TPSC 0.42 0.29 0.13 0.1 0
TPSC+ 0.44 0.37 0.07 <0.07 0

fRG (one-loop Katanin) 0.42 0.35 0.08 � � � [55–59] >0 [55,60–62]
PA 0.44 0.37 <0.05 <0.05 0 [60–62]

FIG. 3. Imaginary part of the self-energy for the antinode (upper row) and node (lower row) as a function of Matsubara frequencies for
the two numerically exact techniques, DiagMC (left panels) and DQMC (right panels). Note that the error bars may be of the order of the
marker size.
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(region ③), the behavior of ImΣðk; iωnÞ over the lowest
Matsubara frequencies can be approximated by a Taylor
series ImΣðk; iωnÞ ¼ −γk=Zk þ ωnð1 − 1=ZkÞ þ � � �. In a
standard Fermi liquid, Zk and γk are the quasiparticle
spectral weight (Zk < 1) and inverse quasiparticle lifetime,
respectively (see Appendix B for details and a critical
discussion). Likewise, the onset of insulating or pseudo-
gapped behavior at TN;AN� is signaled by an additional
change of slope, which becomes positive again at lower
temperatures. The actual quantitative criterion for
extracting the data of Tables I using the quasiparticle
weight Zk is also discussed in Appendix B.
To illustrate the onset of these different regimes at the one-

particle level, we display in Fig. 3 results for the imaginary
part of the self-energy on theMatsubara axis calculated with
the two numerically exact methods used in this paper,
namely, DiagMC (left panels; see Appendix D 1) and
DQMC (right panels; for technical details, including
finite-size scaling and Trotter extrapolation, see
Appendix D 2, and for preceding works, see also
Refs. [47,63,64]).Both exactmethods shown inFig. 3 exhibit
TQP and T�, with a momentum differentiation between the
antinode (upper panels) and node (lower panels), with TN

QP ≈
0.42 and TAN

QP ≈ 0.35 for the onset of the quasiparticle
coherence and TAN� ≈ 0.065 and TN� ≈ 0.0625 for the onset
of the insulating behavior (more intermediate temperatures
have been calculated for the extraction; see Fig. 19 and
Appendix B). DiagMC and DQMC are in agreement within
error bars and (for the one-particle quantities) are able to be
converged until T ≈ 0.063. With the aim of giving an
overview and for further reference, we summarize, in
Table I, the results of each of the different methods inves-
tigated below for the crossover temperatures delimiting the
five distinct regimes discussed above.

III. DYNAMICAL MEAN-FIELD REFERENCE
POINT AND THE ROLE OF FLUCTUATIONS

Several methods considered in the following use
dynamical mean-field theory (DMFT) as a starting point.
Within DMFT, local fluctuations are taken into account

(i.e., quantum and thermal fluctuations between the four
possible local states on each site), but spatial fluctuations
are not. In the two-dimensional model considered here,
these fluctuations are strong, and DMFT should be viewed
as a zeroth-order approximation, which needs to be
extended in order to take these fluctuations into account.
DMFT is exact in the formal limit of infinite dimensions or
infinite lattice connectivity, in which spatial fluctuations
become negligible [9,10].

A. Self-energies and quasiparticle coherence

Because nonlocal fluctuations are neglected, the self-
energy is approximated within DMFT by a function that
is local in real space, i.e., independent of momentum. In
Fig. 4, we display the DMFT self-energy for several temper-
atures and compare it to the benchmark (DiagMC) result for
both the antinodal and nodal points (left and central panels,
respectively). It is seen that the DMFT approximation is
accurate at very high temperatures, where, indeed, correla-
tions arevery local (as shownbelow, themagnetic correlation
length is only a couple of lattice spacings down to T ≃ 0.2).
Deviations between the DMFT self-energy and the DiagMC
benchmark are already apparent at T ≃ 0.33: At this temper-
ature, these deviations are small at the nodal point but already
significant at the antinodal point due to the proximity of the
van Hove singularity and the resulting momentum depend-
ence of the self-energy.
However, it is interesting to note that the local compo-

nent of the self-energy (i.e., on site or, equivalently,
momentum integrated) is in good agreement with DMFT
down to a much lower temperature. As shown in Fig. 5, the
local self-energy obtained from DiagMC is still on top of
the DMFT result for temperatures as low as T ¼ 0.1, close
to the DMFT ordering temperature. This result may come
as a surprise in view of the fact that the antiferromagnetic
correlation length (Sec. VI) is sizable at this temperature, of
the order of five lattice spacings. In Sec. VII, we provide an
explanation to this observation and further discuss its
physical significance.
From the results in Fig. 4 (and more temperature points,

not shown), one observes that, within DMFT, the onset of

FIG. 4. Left and central panels: imaginary part of the self-energy as a function of frequency at the antinode (left panel) and node
(central panel) in DiagMC (circles, solid lines) and the DMFT impurity self-energy (squares, dashed lines) for various temperatures.
Right panel: spin-resolved real part of the DMFT self-energy as a function of Matsubara frequency for several temperatures (the Hartree
term of Un=2 ¼ 1 has been subtracted). Note that TDMFT

Néel ≈ 0.08, and for T < TDMFT
Néel ∶Σ↑ ≠ Σ↓.
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quasiparticle coherence associated with the crossover from
the high-T incoherent regime into the lower-T metallic
regime (regime ① to regime ② in Fig. 2) occurs at
TDMFT
QP ≃ 0.45. This result is in reasonable agreement with

the QP coherence scale at the node from our benchmark
calculations TN

QP ≃ 0.42 but somewhat higher than the
antinodal value TAN

QP ≃ 0.35, again due to the lack of
momentum dependence of the self-energy, which is essen-
tial to account for nodal-antinodal differentiation. We have
calculated the quasiparticle coherence temperature within
DMFT as a function of coupling U, and we display the
result in Fig. 6 (red line in upper panel). As expected, this
scale decreases as the coupling is increased.

B. Crossover scales: DMFT viewpoint

When used as an approximation for the two-dimensional
half-filled Hubbard model of interest here, DMFT yields a
symmetry-breaking phase transition into an insulating
phase with antiferromagnetic (AF) long-range order at
finite temperatures for any value of U. This result is
expected because DMFT does not take into account spatial
fluctuations that destroy finite-T AF ordering in two
dimensions (and, hence, does not satisfy the Mermin-
Wagner theorem [21,22]). The Néel temperature TDMFT

Néel
obtained within DMFT is displayed in Fig. 6 as a function
of U (blue curve in upper panel), as well as the corre-
sponding staggered magnetization m as a function of
temperature (lower panel). As expected, the Néel temper-
ature displays a maximum, which signals the crossover
between the weak-coupling regime, in which the Néel
temperature and magnetization are exponentially small, and
the strong-coupling regime. For very large U, the charge
gap is of order U, and the magnetization saturates. In that
regime, for T ≪ U, spin degrees of freedom are described
by an effective Heisenberg model with superexchange
J ¼ 4t2=U, and the DMFT Néel temperature is

proportional to J. For reference, in Fig. 6, we also display
the result of the standard static mean-field theory (i.e., the
Hartree mean field for the transition into the spin-density
wave phase, denoted by MFT). MFT considerably over-
estimates the Néel temperature as well asm for most values
of U. This overestimation is particularly pronounced at
large U where static MFT does not correctly separate spin
and charge degrees of freedom, so the ordering temperature
incorrectly coincides with the charge gap Um (∼U at large
U) (for a comparison of MFT and DMFT, see Ref. [65]).
The key observation is that, taken together, the DMFT

quasiparticle coherence scale (red line in Fig. 6) and the
DMFT Néel temperature (blue line) can be taken as semi-
quantitative mean-field estimates for the crossover lines
separating the different regimes discussed in Fig. 2 above.
The DMFT quasiparticle coherence scale is an estimate for
the crossover into the metallic regime ③ in Fig. 2 (with
TDMFT
QP ≃ 0.45 comparable within error bars to the nodal

value from our benchmark, while the antinodal one is about
12%smaller). In turn, since in thisweak-coupling regime the
insulating gap is associated with magnetic quasi-long-range
order, the DMFT Néel temperature is an estimate for
the onset of the insulating behavior—regime ⑤ in Fig. 2.

FIG. 5. Imaginary part of the local self-energy calculated by
DiagMC compared to DMFT. Note that the two lowest temper-
atures displayed, at which a discrepancy appears, correspond to
the DMFT ordered phase.

FIG. 6. Upper panel: phase diagram of the half-filled Hubbard
model on a square lattice as a function of U within DMFT. The
dotted dashed line marks U ¼ 2. Lower panel: magnetization at
U ¼ 2 as a function of T calculated in (symmetry-broken) DMFT
(dark-gray curve) and MFT (orange curve).
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Note that TDMFT
Néel ≃ 0.08, compared to TAN� ≃ 0.065, while

TN� ≃ 0.0625 is about 4% smaller.
The magnetic correlation length can be calculated within

both MFT and DMFT. In both cases, this calculation is
achieved by using the appropriate Bethe-Salpeter equations
for the correlation function: with a static vertex equal to the
bare U within MFT (the calculation then reduces to the
random phase approximation, RPA) and with a fully
frequency-dependent but spatially local vertex within
DMFT (see Ref. [28]). It is often overlooked that mean-
field methods (MFT or DMFT) provide us with a deter-
mination of correlation functions, and indeed, it naively
appears as somewhat paradoxical that spatially dependent
correlation functions can be obtained from a mean-field
ansatz that is local at the one-particle level. This paradox is
actually a classic question in statistical mechanics, whose
resolution lies in a careful interpretation of linear-response
theory [66]. The mean-field correlation lengths are dis-
played in Fig. 7 in comparison to the DiagMC benchmark.
It is apparent that the DMFT correlation length is in
excellent agreement with the benchmark down to
T ≃ 0.1. The figure also clearly illustrates the connection
between long-range magnetic correlations and insulating
behavior.

C. Insulating regime

We finally comment on the comparison between the
DMFT self-energies and the true solution in the low-T
insulating regime. Within DMFT, the insulating gap in this
weak-coupling regime corresponds to a Slater mechanism
associated with AF long-range order [20]. It is associated
with spin polarization and a nonzero value of the real part of
the self-energy (omitting the Hartree term) ReΣ↑ð0Þ ¼
−ReΣ↓ð0Þ ≠ 0 such that the quasiparticle equation ωþ
μ − ReΣðωÞ ¼ 0 has solutions only for ω outside the gap.
The low-frequency behavior of the DMFT self-energy is
nonsingular, and in particular, it has (also using particle-

hole symmetry) a spin-independent linear term ImΣðiωnÞ ∝
ð1 − 1=ZÞωn þ � � �, corresponding to ReΣσðωÞ ¼
ReΣσð0Þ þ ð1 − 1=ZÞωþ � � � on the real-frequency axis,
which is similar in structure in the metallic phase and in the
AF-ordered insulating phase. This behavior is clearly
apparent in Fig. 4. In contrast, because a spin polarization
is absent at any nonzero T in the true solution, the self-
energy must be much more singular at low frequencies to
open the insulating gap, as becomes clear from Figs. 3
and 4. The precise nature of this singularity is discussed in
Sec. VII. At T ¼ 0, however, the system does order, and the
general structure of the self-energy is expected to be similar
to the Slater (and DMFT) one discussed above.
Finally, in Fig. 8, we display the value of the spectral

function extrapolated to zero frequency, as obtained from
DMFT as well as from the DiagMC benchmark at the node
and antinode. Interestingly, there is rather good agreement
between these different methods for this quantity, despite
the different low-frequency behavior of the self-energy. In
particular, we note that the crossover into the insulating
regime is very sharp when seen from this physical
observable, which is rather well approximated by the
DMFT solution that has long-range order in the insulating
regime and hence displays a singularity at the Néel
temperature. Detailed analysis close to the crossover
temperature would, of course, reveal differences.
Summarizing, we see that DMFT provides a reasonable

approximate description of the key crossovers encountered
as a function of temperature. As a mean-field theory, it of
course mimics the crossover into an insulating phase with a
large AF correlation length as a phase transition into a
phase with long-range AF order. Including fluctuations
beyond DMFT is therefore especially crucial in two
dimensions, in which long-range order exists only at
T ¼ 0. This is the purpose of the cluster and diagrammatic
(vertex-based) extensions of DMFT discussed in the
following sections.

FIG. 7. Magnetic correlation length as a function of (inverse)
temperature for DiagMC, MFT, and DMFT on a logarithmic
scale.

FIG. 8. Spectral function extrapolated to zero frequency at the
antinode and node, obtained from the imaginary part of the Green
function in DiagMC (solid lines; red circles are for the antinode,
and blue triangles are for the node) and DMFT (on the Fermi
surface; dashed line with gray triangles).
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IV. INCLUDING FLUCTUATIONS BEYONDMEAN
FIELD: SINGLE-PARTICLE PROPERTIES

In this section, we show how the inclusion of (non-
Gaussian bosonic) spatial fluctuations influences the one-
particle properties (self-energies) beyond the mean-field
picture. This goal can be achieved by several methods:
cluster extensions (dynamical cluster approximation DCA,
cellular DMFT CDMFT; Sec. IVA) and diagrammatic
extensions of DMFT (Sec. IV B), as well as with other
approaches (Sec. IV C). In this section, the results for the
self-energy are presented and compared to the exact
(benchmark) methods.

A. Cluster extensions of DMFT: DCA and CDMFT

Quantum cluster methods [29] are quite natural exten-
sions of DMFT in which the nonlocal components of the
self-energy are computed by considering a cluster of Nc
sites self-consistently embedded in the lattice. These
methods provide a controlled sequence of approximations
that converge to the exact result when Nc → ∞. Depending
on the regime of parameters, convergence in this asymp-
totic limit may or may not be attained in practice, however.
There are several flavors available within the broad

family of quantum cluster theories, depending on how,
exactly, the interacting cluster is described and how the
embedding is performed. First, we consider the dynamical
cluster approximation (DCA, Refs. [67–69]), where the
Brillouin zone is paved with patches, and the self-energy is
approximated as a piecewise constant function over these
patches whose components are calculated from a cluster of
Nc sites with periodic boundary conditions, hence defining
the discrete momenta associated with each patch. For
methodological details, see Ref. [29] and Appendix D 5.
Figure 9 (left) shows the self-energy on the Matsubara

axis of a DCA calculation with Nc ¼ 128 momentum

patches for several temperatures and the benchmark
DiagMC data as reference. For these calculations, sym-
metry breaking to an AF long-range-ordered phase was not
allowed. We see that the improvement over single-site
DMFT by these calculations is that the momentum
dependence of the quasiparticle coherence scale along
the Fermi surface and nodal-antinodal differentiation is
quantitatively reproduced (regimes ①–③).
However, the (nonmagnetic) DCAwith Nc ¼ 128 is not

able to open the pseudogap at low temperatures (shown in
Fig. 9 until T ¼ 0.067, i.e., β ¼ 1=T ¼ 16). The reason for
this failure is easily understood by noting that the corre-
lation length, previously displayed in Fig. 7, is ξ ≈ 15
lattice sites at the lowest T available (β ¼ 14) and even
larger at lower T. A periodic cluster of finite-size Nc cannot
resolve a correlation length larger than ξmax

DCA ∼
ffiffiffiffiffiffi
Nc

p
=2

which is ≃5.7 lattice spacings for Nc ¼ 128. From this
argument, one would expect that a cluster of order 1000 sites
would be required to capture the opening of the insulating
pseudogap with DCA in the case at hand. As discussed in
Appendix D 5, this computation is beyond practical reach of
the algorithm that we use here in the context of DCA.
A different strategy in the family of cluster extensions of

DMFT is to consider a real-space embedding and hence a
cluster with open boundary conditions, as in the CDMFT
approach [32,70]. Figure 9 also displays data from CDMFT
with Nc ¼ 64 ¼ 8 × 8. As apparent from the data, the
real-space embedding method again captures the momen-
tum differentiation of the coherence scale but fails in
opening the pseudogap for the same reasons as DCA
(ξmax

CDMFT ≈ 8=2 ¼ 4). From a quantitative perspective, a
recently introduced extrapolation scheme (center-focused
extrapolation, CDMFTþ CFE [71]; Appendix D 6)
improves the comparison with the benchmark; however,
for the U ¼ 2 case, it also fails to open a gap. Hence, the
size of the clusters has to be increased much beyond the

FIG. 9. Imaginary part of the self-energy for the antinode (upper row) and node (lower row) as a function of Matsubara frequencies for
DiagMC (first panel on the left-hand side), DCA (Nc ¼ 128, second panel), CDMFT (Nc ¼ 64, third panel), and center-focused
extrapolated CDMFT (CDMFTþ CFE, Nc ¼ 64, fourth panel).
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values of Nc considered here in order to reproduce the
pseudogap at this small interaction strength (see also
Ref. [48]).
Summarizing, we conclude that extensions of DMFT

based on cluster embedding methods succeed in reproduc-
ing the momentum dependence of the quasiparticle coher-
ence scale (nodal-antinodal differentiation) in the metallic
regime but that much larger cluster sizes would be
necessary in order to capture the opening of the insulating
pseudogap due to the very large correlation length in this
weak-coupling regime. Cluster embedding approaches
perform much better in regimes with a smaller correlation
length, such as larger values of U (i.e., in the strong-
coupling regime) [72] or (disregarding the sign problem)
when doping away from half-filling, as documented by the
success of these methods in capturing the strong-coupling
pseudogap of the doped Hubbard model [31,73–91]. Let us
also note here that, analogously to what was done with
DMFT in Fig. 8, allowing for AF order within these cluster
methods—and hence mimicking the large correlation
length regime as an ordered state—would most likely
improve the agreement; see also Ref. [92]. We do not
attempt this here—see, however, Sec. VI for additional
information about ordering within CDMFT.

B. DΓA, TRILEX, DF and DB

Inview of the limitations of cluster embedding theories for
this U ¼ 2 weak-coupling regime, we now turn to an
alternative way of treating long-ranged correlations more
efficiently here, namely, diagrammatic extensions of DMFT.
In Fig. 10, we display the results of several such

diagrammatic extensions for the frequency dependence
of the self-energy at the antinode at different temperatures
(apart from the diagrammatic extensions of DMFT, other
approximation methods are also considered; see next
subsection). Figure 11 displays the results for the nodal
point. Note that the lowest temperature displayed is not
always the same for the different methods, and it is useful to
refer to Table I as a reminder of the important crossover
scales. For the sake of comparison, the first panel shows,
again, the data from the DiagMC benchmark.
We observe that all of the diagrammatic extensions of

DMFT presented here [ladder DΓA with a Moriya λ
correction in the spin channel (Appendix D 6 a),
TRILEX Λ2 (Appendix D 8), ladder DF (Appendix D 9),
and single-shot DB (note that, in the absence of the
nonlocal interaction, the fully self-consistent DB theory
would coincide with the DF approach when the bosonic
hybridization function is discarded; see Appendix D 9)] are

FIG. 10. Imaginary parts of the self-energies at the antinode as a function of Matsubara frequencies calculated by various many-body
methods. Note that the lowest temperatures shown sometimes differ for the respective methods in order to show as many of the
respective temperature regimes as possible. Also note that the vertical axis is different for the last row of three figures.
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able to correctly reproduce the crossover from the incoher-
ent to the metallic regime. Indeed, all methods display
incoherent behavior (region ①) at high temperatures before
the onset of quasiparticles becomes visible—first for the
nodal point (region ②) and then, at lower temperatures, for
the antinode (region ③). The temperatures of this onset TQP,
only slightly, if at all, deviate from each other and the
benchmarks within the numerical accuracy.
Larger deviations, both on a qualitative and quantitative

level, become visible, however, when lowering the temper-
ature into the insulating pseudogap regime associated with
growing magnetic correlations. Let us remind the reader
that this crossover is signaled by a second change of slope
in the self-energies—first, at the antinode (region ④) and,
then, at the node (region ⑤)—corresponding to a scattering
rate that grows upon cooling.
Whereas DΓA and DF correctly reproduce these cross-

overs into the pseudogap regime, TRILEX does not exhibit
these changes of slope, down to the lowest temperatures
where the method could be converged. The DF method also
succeeds quantitatively, both at the node and at the
antinode, while the DB method appears to perform better
at the antinode than at the node (but does not open the gap
at the accessible temperatures). From a more quantitative
point of view, DF and DB slightly underestimate the

scattering rate at the node with respect to DiagMC, whereas
DΓA seems to slightly overestimate the scattering rate at
the antinode and simultaneously exhibits a slightly lower
TN� than the benchmark.
Summarizing, we conclude that among the diagrammatic

extensions of DMFT presented here, the DΓA and the DF
method appear to be best at capturing the different crossover
regimes for the self-energy. In terms of the practical ability of
performing calculations in this parameter regime, we must
point out that all methods suffer from convergence problems
when going down to lower and lower temperatures. The
reason for these difficulties varies from method to method.
For the benchmark method DiagMC, the series cannot be
summed at low T, and the DQMC suffers from the exponen-
tially growing correlation length forT < Tmin ≈ 0.063. In the
case of the DΓA (Tmin ≈ 0.05), lower temperatures can be
reached if one is able to converge in the internal momentum
grids. The same is true for TRILEX (Tmin ≈ 0.05), DF
(Tmin ≈ 0.05), and DB (Tmin ≈ 0.063). Also note that within
DiagMC, the lowest reachable temperature is different for
the node and antinode (1=TAN

min ¼ 18 vs 1=TN
min ¼ 16).

C. Other approaches: TPSC, TPSC+, fRG, and PA

Figures 10 and 11 also show results for three other
methods: TPSC/TPSC+, fRG, and PA. Similarly to

FIG. 11. Imaginary parts of the self-energies at the node as a function of Matsubara frequencies calculated by various many-body
methods. Note that the lowest temperatures shown sometimes differ for the respective methods in order to show as many of the
respective temperature regimes as possible.
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diagrammatic extensions of DMFT, all of these approaches
are able to reproduce the two distinct quasiparticle coher-
ence scales TN;AN

QP at the node and antinode. However, there
are significant deviations from the benchmark regarding the
onset of the insulating pseudogap behavior.
TPSC is one of the first methods in which a detailed

understanding of the mechanism responsible for the weak-
coupling pseudogap was achieved early on (see
Refs. [34,93,94] and Sec. VII). As seen from Figs. 10
and 11, the change of slope in the self-energies associated
with the pseudogap opening is indeed qualitatively cap-
tured by TPSC, but the onset temperatures TAN;N� are
severely overestimated. As discussed in Sec. VI, this is
due to an overestimation of spin fluctuations in this method.
A recent variant of the method, TPSC+ [36], leads to a
definite improvement in this respect, as shown in the
figures. TPSC+ partially feeds the self-energy back into
the fluctuation propagators, mimicking frequency-depen-
dent vertex corrections. The PA appears to eventually
capture the insulating behavior at the antinode, although
at lower temperatures, T < 0.05, in comparison to
DiagMC, but does not open a pseudogap at the node at
this temperature.
The fRG calculations are possible only down to a

“pseudocritical” temperature scale T ≃ 0.07 at which the
running coupling constants diverge (see, also, the discus-
sion in Ref. [59]). Down to this temperature, however, fRG
is in qualitative agreement with the benchmark and shows a
nonmetallic behavior at the antinode (regime ④).

V. DOUBLE OCCUPANCY AND
POMERANCHUK EFFECT

In view of its physical significance discussed below, in
this section, we present the temperature dependence of the
double occupancy:

D ¼ hn↑n↓i: ð3Þ

It is displayed as a function of temperature in Fig. 12, as
obtained from different methods. We see (left panel,
DQMC and DiagMC benchmarks) that there are three
regimes: At high T (down to about T ≃ 1), DðTÞ decreases
upon cooling and then reaches a minimum; at intermediate

temperatures, DðTÞ actually increases upon cooling; and,
finally, DðTÞ sharply drops when entering the gapped
regime. The high-T regime is expected and easy to under-
stand: As T is raised, an increasing number of high-energy
doubly occupied configurations are thermally populated,
which is apparent from the simple expression of DðTÞ in
the atomic (zero hopping) limit:

Dat ¼
1

2þ 2 exp (U=ð2TÞ) ; ð4Þ

which approaches D0 ¼ 0.25 for U=T → 0, i.e., at very
high temperatures or, alternatively, in the noninteracting
limit. The intermediate regime in which DðTÞ increases
upon cooling is more interesting—note that this regime
includes, in particular, large parts of the metallic region ③.
As observed early on in Ref. [95], this apparently counter-
intuitive nonmonotonic behavior of DðTÞ can be under-
stood qualitatively from entropy considerations. Observing
that the entropy S is obtained from the free energy F as
S ¼ −ð∂F=∂TÞ and that D ¼ ð∂F=∂UÞ, one obtains the
thermodynamic Maxwell relation:

∂D
∂T

����
U
¼ −

∂S
∂U

����
T
: ð5Þ

Increasing U at fixed temperature in the metallic regime
leads to an increase in entropy. Indeed, in this regime, the
entropy is linear in T, with a slope related to the effective
mass, which grows asU is increased. Hence, the right-hand
side of Eq. (5) is negative, and thus DðTÞ must increase
upon cooling or decrease upon heating in this regime. This
phenomenon is the same as the famous “Pomeranchuk
effect” in liquid 3He (Clausius-Clapeyron equation): Upon
heating the system, a tendency to increased localization
(smaller D) is found because localization leads to a higher
(spin) entropy and is thus thermodynamically favorable
(until thermal population of doubly occupied sites kicks in
at higher T). Note that the sign of ∂D=∂T also directly
determines the shape of the isentropic lines in the ðU; TÞ
plane, which are defined by SðTiðUÞ; UÞ ¼ const and
hence obey [96,97]

FIG. 12. Double occupancy D as a function of temperature from various methods.

TRACKING THE FOOTPRINTS OF SPIN FLUCTUATIONS: A … PHYS. REV. X 11, 011058 (2021)

011058-13



cðTiÞ
∂Ti

∂U ¼ Ti
∂D
∂T

����
T¼Ti

; ð6Þ

with cðTÞ ¼ Tð∂S=∂TÞ representing the specific heat per
lattice site. Hence, cooling can, in principle, be achieved by
increasing the interaction strength adiabatically in the regime
where ∂D=∂T < 0, as initially suggested in Ref. [96],
further discussed in Ref. [97], and experimentally realized
in cold atomic systemswith extendedSUð6Þ symmetry [98].
Finally, the low-T behavior in whichD sharply decreases

again upon cooling corresponds to temperatures around
regime ④ in which the system behaves as an antiferro-
magnetc insulator. We note that the total energy of the
Hubbard model is given by

hHi ¼ −t
X
hiji;σ

hc†iσcjσi þ U
X
i

hni↑ni↓i

¼ Ekin þ Epot; ð7Þ

so thatD ¼ Epot=U. The drop inD can be understood from
the fact that at small U, the crossover into the (Slater)
antiferromagnetic correlation regime corresponds to a gain
in potential energy [47,51,92]. It was shown in Ref. [92]
that at strong coupling, in contrast, D increases when
entering the (Heisenberg) antiferromagnetic correlations
regime, corresponding to a gain in kinetic energy.
We see (left panel of Fig. 12) that DMFT reproduces all

three regimes qualitatively but overestimates the amplitude
of the Pomeranchuk effect by approximately a factor of 2,
as discussed in Ref. [97]. The reason is that the spin entropy
in the localized state at high T is overestimated in DMFT
due to its neglect of spatial correlations. Obviously, in
DMFT, the sharp drop at low T corresponds to the phase
transition into an ordered phase—a mean-field description
of the actual crossover (see above). This drop is also
directly related to an increase of the local moment since via
hS2zi ¼ 1–2D the double occupancy is related to the
increase of AF correlations.
All the methods displayed in Fig. 12 qualitatively

reproduce the nonmonotonous behavior of DðTÞ, but the
sharp drop at low T is, as expected, only present in the
methods that can describe the low-T antiferromagnetic
insulator regime. For this reason, it is absent in the
TRILEX-based methods for the range of temperatures
studied (middle panel). Single-site TRILEX also over-
estimates D significantly, but cluster extensions of
TRILEX are closer to the benchmark at intermediate T.
DF similarly overestimates the double occupancy. For
details, including differences between different variants
of these “dual” methods, see the discussion about self-
consistency in Appendix D 9. Note that fRG qualitatively
captures the Pomeranchuk effect. In the present implemen-
tation, however, it does not display a drop at low
temperatures.

In contrast, DΓA and DB (single shot) follow the
benchmark quite accurately. Also, the PA appears to
capture all three described regimes, while TPSC and
TPSC+ qualitatively predict the correct physical picture,
albeit it is less accurate quantitatively than PA in compari-
son to the benchmarks.
The above results suggest that long-range magnetic

correlations are the cause of the downturn of the double
occupancy at low temperatures. To further establish this
point, in Fig. 13, we display the double occupancy vs
temperature calculated with DMFT by either constraining
the solution to remain paramagnetic or allowing for the
solution with long-range AF order (which is the lower-
energy stable solution at low T within DMFT). One sees
that only the latter displays the downturn, emphasizing that
the AF-ordered solution, despite violating the Mermin-
Wagner theorem, is a better approximation to thermody-
namic quantities in a regime where the correlation length is
large. We also display in Fig. 13 the results obtained with
DCA and CDMFT, restricted to the PM solution. In that
case, as expected, the downturn is not reproduced since the
cluster sizes investigated here are too small compared to the
correlation length (see also the discussion in Sec. IVA).
We end this section with a technical remark on the actual

calculation ofD in the investigated methods. In DQMC and
DiagMC, D can be directly calculated as an equal-time
correlation function. For the othermethods, the calculation of
the double occupancy is possible either via the (lattice)Green
function and self-energy, utilizing the equation-of-motion
technique based on the Galitskii-Migdal formula [99],

D ¼ T
U

X
k;ωn

Σðk; iωnÞGðk; iωnÞ ð8Þ

(used in the DΓA, DF, PA, and TPSC/TPSC+; for details on
the latter; see Appendix D 10), or, when allowed by the

FIG. 13. Results for the double occupancy from DMFT, DCA,
and CDMFT compared to DiagMC. For DMFT, we display both
the (metastable) solution obtained by constraining the system not
to order (PM) and the lower free-energy solution with AF
magnetic ordering. The zoom in the inset confirms the absence
of a downturn in the cluster techniques when constrained to the
PM solution due to the insufficient cluster size.
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algorithm used for the impurity solver, from a direct
computation on the impurity (for DMFT, its cluster exten-
sions and TRILEX; see also Ref. [100]). The DB result was
obtained via the local part of the lattice susceptibility as
discussed in Ref. [100]. For a comparison to self-consistent
DB, we refer to Appendix D 9. For details on the calculation
ofD in fRG, we refer to Appendix D 11. We note in passing
that, when applying Eq. (8), treating the high-frequency tails
is very important to obtain accurate results.

VI. INCLUDING FLUCTUATIONS BEYONDMEAN
FIELD: MAGNETIC CORRELATIONS

In this section, we turn to two-particle correlation func-
tions and compare the different methods for two important
observables probing the magnetic correlations: the static
antiferromagnetic spin susceptibility χsp(q¼ðπ;πÞ;iΩn¼0)
and the magnetic correlation length ξ.

A. Antiferromagnetic static spin susceptibility

The spin susceptibility (or spin correlation function) is
given by

χspðq; iΩnÞ ¼
Z

β

0

dτ
X
r

eiτΩne−iqrhSzðr; τÞSzð0; 0Þi; ð9Þ

where we define

Szðr; τÞ ¼ n↑ðr; τÞ − n↓ðr; τÞ; ð10Þ

and β ¼ 1=T. Note that we omit, for simplicity, an additional
prefactor of 1=2 for the spin operator and that hn↑i ¼ hn↓i ¼
0.5 at half-filling in the paramagnetic phase (T ≠ 0).
The temperature dependence of the static spin suscep-

tibility χspðq; iΩn ¼ 0Þ is of particular interest for the case
of the half-filled Hubbard model on the square lattice, as the
perfect nesting (see Fig. 1) leads to a strong enhancement at
Q ¼ ðπ; πÞ. The temperature dependence of χspðq ¼ Q;
iΩn ¼ 0Þ reflects the increasing dominance of antiferro-
magnetic spin fluctuations upon cooling. One starts at high
T with almost independent fluctuating moments and a
Curie law χspðq ¼ Q; iΩn ¼ 0Þ ∝ T−1 (bosonic mean-field
behavior). Approaching the T ¼ 0 ground state with anti-
ferromagnetic long-range order, the range of spin correla-
tions grows, and nonlocal spin fluctuations in the
paramagnetic phase (antiferromagnetic paramagnons)
develop. At low T, a regime with an exponentially growing
correlation length is found (see below).
Figures 14 and 15 display χspðq ¼ Q; iΩn ¼ 0Þ for

various methods as a function of (inverse) temperatures
on a logarithmic scale. We start our analysis with Fig. 14.
As already described in the mean-field picture in Sec. III,
both MFT (TMFT

Néel ≈ 0.21, orange triangles) and DMFT
(TDMFT

Néel ≈ 0.08, gray squares), due to their mean-field
nature, incorrectly predict finite Néel temperatures: The
crossover is mimicked as a true (continuous) phase tran-
sition (left panel). The thermodynamic transition manifests
itself as a divergence of the susceptibility at the corre-
sponding wave vector.
Of course, the Mermin-Wagner theorem prohibits finite-

temperature ordering in 2D, which is reflected in the data of
both benchmark methods DiagMC (black triangles) and
DQMC (black circles), whose susceptibilities do not
diverge at finite T. Rather, after following the mean-field
curves at high temperatures, the benchmark data enter an
intermediate regime in which χðQÞ appears to increase
approximately exponentially. This regime largely coincides
with the metallic regime ③, eventually crossing over into a
second exponential regime at low T (see also Sec. VI C),
which sets in at a temperature close to the DMFT Néel

FIG. 14. Antiferromagnetic static susceptibility χsp(q ¼
ðπ; πÞ; iΩn ¼ 0) as a function of (inverse) temperature for various
methods on a logarithmic scale.

FIG. 15. Antiferromagnetic static susceptibility χsp(q ¼ ðπ; πÞ; iΩn ¼ 0) as a function of (inverse) temperature for various methods
on a logarithmic scale (continued).
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ordering. This low-T exponential regime is to be expected
since, there, the charge degrees of freedom are frozen out
by the gap and the system enters the insulating regime ⑤, as
indicated by the black dashed line, TAN;DiagMC

� . In this
regime, the effective spin dynamics is expected to be
described by a nonlinear sigma model, and this exponential
growth is typical of the lower critical dimension d ¼ 2
[34,101–104]. The first exponential observed in the met-
allic regime is more surprising and will be discussed in
more detail below. Let us stress that, because of the reasons
already mentioned for single-particle quantities, both
benchmark methods are limited in terms of the temper-
atures they can reach (Tmin ≈ 0.07). Note that the lowest
reachable temperature can differ from that for the self-
energy.
The inclusion of short-range correlations with CDMFT

leads to (i) a quantitative agreement with the benchmark
until T ≈ 0.1 and (ii) only a slight drop of the Néel
temperature in comparison to DMFT, to TNéel ≈ 0.073.
In principle, as the cluster extensions of DMFT are
controlled methods, the Mermin-Wagner theorem is
restored in the infinite-cluster-size limit. However, this
restoration has been shown to be logarithmic in the strong-
coupling regime [105], which is in agreement with this very
small change in TNéel (see also Ref. [71]).
Turning to the diagrammatic extensions of DMFT, in the

left panel of Fig. 15, one can see that DΓA (left panel), which
respects the Mermin-Wagner theorem [51,53,54,106], cap-
tures well the different regimes of the benchmark (Curie law
at high temperatures and the two exponential regimes). The
small quantitative underestimation observed heremay poten-
tially be cured by an improved version of the Moriya λ
correction [51] or a more thorough treatment of the asymp-
totics of the vertex function as a function of frequency
[107–109]. DF and single-shot DB agree well with the
benchmark where the algorithm can be reliably converged.
In the case of TRILEX (central panel), we present results

for different variants of the method, all of which seem to
capture a low-temperature exponential scaling, however,
with different degrees of accuracy: Whereas single-site
TRILEX (red circles, solid line) and cluster TRILEX with
two cluster sites (TRILEX Nc ¼ 2, orange squares) largely
underestimate the values of the susceptibility, the result is
significantly improved by increasing the cluster size to four
(TRILEXNc¼4, yellow circles). Remarkably, the TRILEX
variant with the electron-boson vertex inserted on both
sides (TRILEX Λ2, red triangles; see Appendix D 8) seems
to be on top of the cluster Nc ¼ 4 results. Investigating how
these values eventually converge to the exact results with
Nc → ∞ is left for future studies.
We finally turn to the other methods (right panel): Both

PA and fRG quantitatively capture the high-T Curie regime.
The PA appears to systematically underestimate χsp from
1=T ¼ 10 on, whereas fRG overestimates it. Let us com-
ment here that, although the presented fRG scheme does

not fulfill the Mermin-Wagner theorem, its recent multiloop
extension [56–58] and the PA do [60,62] (see also
Ref. [55]). Both TPSC and TPSC+ are in agreement with
the benchmarks at high temperature, but, as already
mentioned in the previous section about the self-energy,
the spin-fluctuation intensity is significantly overestimated
in TPSC with respect to the benchmark (right panel). This
overestimation is improved again in the TPSC+.
Our results also demonstrate that, remarkably, neither the

fact that the Mermin-Wagner theorem is respected by a
theory nor that a theory uses self-consistent interacting
Green functions guarantees a quantitatively better result, as
can be inferred by a comparison of the TPSC or PA result
with the benchmark, respectively.

B. Magnetic correlation length

The spatial range of antiferromagnetic spin correlations
can be quantified by the magnetic correlation length ξ,
which, in practice, can be extracted by a fitting procedure
using the Ornstein-Zernike (OZ) form of the bosonic
propagator [110]:

χspðq; iΩn ¼ 0Þ ¼ A
ðq −QÞ2 þ ξ−2

: ð11Þ

The results presented in this section were obtained using a
slightly modified form of the OZ expression, appropriate for
a model on a lattice, as described in Appendix A. Note that
weneglect (small) deviations from theOZ formbeyondmean
field. Within the OZ form, the AF static susceptibility
discussed previously obeys χðQ; iΩn ¼ 0Þ ∼ Aξ2.
Figure 16 shows the correlation length ξ obtained via

such a fitting procedure applied to the susceptibility data
from the different methods. One can immediately see that
the curves are, to a large extent, qualitatively similar to the
susceptibility curves of Fig. 15. Interestingly, the inter-
mediate-T exponential behavior in the metallic regime is
clearly visible in the DiagMC benchmark data. The lowest-
T exponential regime in the insulator is hard to reach with
DiagMC, but it is obtained in DΓA (and, less clearly, in PA
and TRILEX), which can be used down to lower temper-
ature than the benchmark methods. We note, however, that
sizable quantitative differences do exist between the differ-
ent methods at low T, and hence we conclude that the
precise determination of the correlation length in the low-T
regime, where it becomes exponentially large, is a chal-
lenge for all state-of-the-art computational methods cur-
rently available.

C. Three regimes of magnetic correlations

Summarizing, we observe three successive regimes for
magnetic correlations as the temperature is lowered. At
high T (≳1=5), a Curie mean-field behavior is found with a
small correlation length (≲2), and all methods (except
static MFT) are basically in quantitative agreement in this
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regime. At intermediate temperatures 1=5≳ T ≳ 1=12.5≃
TDMFT
Néel , we find a correlation length that appears to increase

exponentially to a good approximation, with values ξðT ¼
1=5Þ ≃ 2 reaching ξðT ¼ 1=13Þ ≃ 10. This result is some-
what surprising since this regime is metallic with quasi-
particles that become more coherent as the temperature is
lowered, at least in the nodal region. We further discuss the
physical significance of this finding in Sec. VII by
comparing to spin-fluctuation theories. All methods repro-
duce this intermediate exponential regime qualitatively. On
the quantitative level, excellent agreement is found between
the benchmark DiagMC and, especially, DF and DB
throughout this regime. We also note very good agreement
for the determination of the correlation length with DMFT
and TPSC+ down to T ≃ 1=10. Most other methods (DΓA,
the various variants of TRILEX, and the PA) also provide a
satisfactory determination of the susceptibility and corre-
lation length in this intermediate regime.
The low-temperature insulating regime T ≲ 1=12.5 ≃

TDMFT
Néel is challenging to probe with current state-of-the-

art benchmark methods. The DΓA results down to T ¼
1=20 are consistent with the exponential growth of the
correlation length [47,51], expected from the low-energy
description of the spin degrees of freedom by a nonlinear
sigma model once a charge (pseudo)gap opens up. We note
significant discrepancies between the different approximate
methods available in this regime, however. The growth rate
of this exponential regime appears to be different (and
faster) than the one in the intermediate-T metallic regime, a
finding that will have to be confirmed in future work by
exact computational methods when they become capable of
reaching lower temperatures.

VII. INSIGHTS INTO THE NATURE AND ROLE
OF SPIN FLUCTUATIONS

In this section, we provide understanding into the
physical nature of the different regimes highlighted above,
especially the metallic regime and the (pseudo)gapped
insulating regime. We focus, in particular, on the nature
and role of spin fluctuations. We explore whether spin-
fluctuation theory of the weak-coupling type is able to

qualitatively describe the various regimes: This analysis
also provides analytical insights into the physics of these
different regimes. In particular, we focus on the following
key questions:

(i) What is the physical mechanism for opening the
pseudogap at low temperature?

(ii) What are the implications of the growing antiferro-
magnetic correlation length upon cooling for the
coherence of quasiparticles in the metallic regime?

(iii) To what extent can this metallic regime be charac-
terized as a Fermi liquid?

A. Weak-coupling spin-fluctuation theory

In this subsection, we interrogate weak-coupling spin-
fluctuation theory and ask whether it provides a satisfactory
description of the behavior of the self-energy, at least on a
qualitative level, in the different regimes of temperature.
This analysis will also provide guidance throughout the rest
of this section in identifying which fluctuations contribute
most to the self-energy.
In the simplest version of spin-fluctuation theory, the

self-energy can be expressed as (omitting the Hartree term)

ΣSFðk;iωnÞ

¼g2T
Z

d2q
ð2πÞ2

X
Ωn

Gðkþq;iωnþ iΩnÞχðq;iΩnÞ: ð12Þ

In this expression, χðq; iΩnÞ is the momentum- and
frequency-dependent spin susceptibility, and Gðk; iωnÞ is
the (lattice) Green function. In the following, we always
choose G ¼ G0 to be the noninteracting Green function;
see the end of Sec. VII B for comments about the draw-
backs of self-consistent schemes.
The coupling constant g in Eq. (12) characterizes the

coupling between electrons and the spin collective modes.
It is renormalized as compared to its bare value as U
increases. In the following, we are more interested in asking
whether weak-coupling spin-fluctuation theory qualita-
tively captures the different regimes than in quantitative
statements. However, when a comparison is attempted, a
value of g has to be chosen. For example, in the version of

FIG. 16. Magnetic correlation lengths ξ extracted from the magnetic susceptibility as a function of (inverse) temperature for various
methods on a logarithmic scale.
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TPSC considered in the present article, g is given by
(focusing on the spin channel only) g2TPSC ¼ 3

8
UUsp, with

Usp ¼ Uhn↑n↓i=hn↑ihn↓i. The factor 3=8 ensures rota-
tional invariance by properly accounting for the relative
contributions of longitudinal and transverse spin fluctua-
tions [111], while the expression of Usp is key to the TPSC
scheme; see also Appendix D 11. In the following, we shall,
for simplicity, use g2 ¼ 3U2=8 when performing quanti-
tative comparisons.
Figure 17 presents a comparison between the DΓA

results for the self-energy at the antinode k ¼ ðπ; 0Þ and
the spin-fluctuation expression Eq. (12) in which different
choices are made for the spin susceptibility χðq; iΩnÞ. We
perform the comparison using the susceptibility data from
DΓA due to its good agreement with the benchmark, the
availability of the q-resolved susceptibility, and its ability
to enter the highly insulating regime ⑤. This comparison is
performed for three different temperatures, corresponding
to the incoherent regime ①, the metallic regime ③, and the
pseudogapped insulating regime ⑤.
We begin the discussion with the result obtained using

the full (solid blue curve, square markers) DΓA suscep-
tibility. We see that, at a qualitative level, the spin-
fluctuation approximation succeeds in reproducing the
characteristic low-frequency dependence of the self-energy
associated with all three regimes. Furthermore, there is
good quantitative agreement in the incoherent regime ①.
With the chosen value of g, the self-energy is overestimated
in both the metallic and pseudogap regimes. Using
g ¼ gTPSC, together with the value of the double occupancy
calculated in Fig. 12, largely remedies this overestimation
for most of the metallic regime.
In order to better understand which spin fluctuations

dominate the different regimes, we have also applied
Eq. (12) by restricting the integration over the momentum
transfer q to the vicinity of the antiferromagnetic wave
vector Q¼ðπ;πÞ according to jqi −Qij < 2ξ−1; i ∈ fx; yg
(dashed blue curves in Fig. 17). We see that in the
pseudogap regime ⑤, the qualitative frequency dependence
of the antinodal self-energy is not modified by this

restriction (although obviously, as a result of the restriction
in the integration, the self-energy is underestimated by an
amount that is approximately frequency independent).
Thus, in this regime, the self-energy is indeed dominated
by the antiferromagnetic collective modes associated with
the vicinity of Q ¼ ðπ; πÞ. In contrast, a completely differ-
ent situation is found in the metallic regime ③: Restricting
the momentum sum to the vicinity of Q yields a spin-
fluctuation self-energy that has a qualitatively different
frequency dependence than the actual one, inconsistent
with the properties of a metal (and actually closer to the
shape associated with a pseudogap). It also underestimates
the overall order of magnitude of the self-energy by more
than a factor of 4. Thus, we conclude that the single-particle
properties in the metallic regime are not controlled only by
the spin fluctuations associated with the antiferromagnetic
wave vector: Taking into account spin fluctuations at other
wavevectors is crucial.Wewill comeback to this observation
in Sec. VII C. Finally, we note that the incoherent regime is
not affected by themomentum restriction simply because the
correlation length is so small there that our criterion on the
transfer momentum actually does not restrict the integration
domain significantly.
Finally, we consider whether the spin susceptibility in

Eq. (12) can be approximated, as often done in spin-
fluctuation theories, by an Ornstein-Zernike form empha-
sizing long-wavelength antiferromagnetic fluctuations:

χðq; iΩnÞ ¼
A

ðq −QÞ2 þ ξ−2 þ jΩnj
γ

: ð13Þ

As detailed in Appendix A, we use a lattice generalization
of this expression and perform a fit of the momentum and
frequency dependence of the DΓA susceptibility in order to
determine the amplitude A, correlation length ξ (Sec. VI),
and Landau damping coefficient γ as a function of temper-
ature. The antinodal self-energy obtained by inserting
expression (13) into the spin-fluctuation expression (12) is
displayed in Fig. 17 (purple data points). This approximation
is quantitatively accurate in the high-temperature incoherent

FIG. 17. Spin-fluctuation theory put to the test: comparison between the DΓA self-energy and the result of weak-coupling spin-
fluctuation theory for three temperatures corresponding to regimes ① (incoherent), ③ (metallic), and ⑤ (pseudogap). Both the full DΓA
susceptibility and its Ornstein-Zernike approximation are considered, as well as the effect of restricting the fluctuations to the long-
wavelength antiferromagnetic collective mode (see text).
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regime. It qualitatively captures the characteristic frequency
dependence of a pseudogap in the low-temperature regime,
as also detailed analytically in the following section, but it
considerably overestimates its magnitude. In contrast, in the
metallic regime, it fails quite severely both qualitatively and
quantitatively, indicating that the Ornstein-Zernike approxi-
mation fails to capture important spectralweight in χðq; iΩnÞ
atq far from ðπ; πÞ, which is crucial in themetallic regime, as
emphasized above and further detailed in Sec. VII C.

B. Analytical insights into the pseudogap
insulating regime

Here, we provide some analytical insights into the low-T
pseudogap regime, based on the weak-coupling spin-
fluctuation theory and the Ornstein-Zernike approximation
for the spin susceptibility in Eq. (13). As seen above, these
approximations are qualitatively reasonable (although not
quantitatively accurate) in this regime. For pioneering
works on the formation of a pseudogap due to antiferro-
magnetic correlation, see Refs. [34,104]. In the latter, the
authors focused on orientational fluctuations of the anti-
ferromagnetic order described by a nonlinear sigma model
and, expressing the physical electron as a product of a
Schwinger boson and an auxiliary fermion, and were able
to describe the crossover from a weak-coupling pseudogap
in the Slater regime to a strong-coupling insulating gap in
the Mott-Hubbard regime.
In this “renormalized classical” regime, only the lowest

Matsubara frequency needs to be retained in Eq. (12),
leading to [34,89,94]

ImΣðkF; iωnÞ ¼ −g̃
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
n − ω2

c

p ln
ωn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n − ω2

c

p
ωn −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n − ω2

c

p : ð14Þ

In this expression, the prefactor A of the spin susceptibility
has been combined with g2 and numerical prefactors to
yield a coupling g̃ ∝ Ag2 with the dimension of energy. In
Eq. (14), only the dominant term has been retained; kF is a
point on the Fermi surface away from the van Hove
singularity (i.e., from the antinode), so the Fermi velocity
vF is nonvanishing; and ωc designates the important low-
energy scale:

ωc ≡ vF
ξ

¼ vF
ξ0

e−2πρs=T; ð15Þ

which explicitly depends on the Fermi velocity (i.e., kF). In
the last expression, we postulated an exponential growth of
the correlation length, characteristic of the low-T gapped
regime, with ρs as the spin stiffness. Expression (14) has
the following behavior at low and high (imaginary)
frequencies:

ImΣðkF; iωnÞ ∼ −2g̃T
1

ωn
ln
ωn

ωc
ðωn ≫ ωcÞ ð16Þ

∼ − πg̃
T
ωc

ðωn ≪ ωcÞ: ð17Þ

These expressions shed light on the dependence of the self-
energy on Matsubara frequency reported above in the low-
T regime. The lowest Matsubara frequency in this regime is
always larger than the tiny low-energy scale ωc: In fact, the
condition πT ≫ ωc defines the range of low temperatures
in which the insulating or pseudogap behavior is observed
[34,94]. In this regime, the Matsubara frequency self-
energy seemingly displays a downwards divergent behavior
as in Eq. (16). However, if a calculation for low ω≲ ωc was
possible, it would actually display a saturation to a finite
value as in Eq. (17).
For completeness, we discuss the implications of this

expression for the low-frequency spectral function and self-
energy on the real-frequency axis. Analytically continuing
the above expression yields (for k ≠ kAN)

ReΣretðkF;ωÞ ¼ g̃
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 þ ω2
c

p ln

����ωþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ω2

c

p
ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ω2

c

p ����; ð18Þ

ImΣretðkF;ωÞ ¼ −πg̃
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 þ ω2
c

p ; ð19Þ

with the following asymptotic forms:

jωj ≫ ωc∶ ReΣ ≃ 2
g̃T
ω

ln
ω

ωc
; −ImΣ ≃ π

g̃T
jωj ; ð20Þ

jωj ≪ ωc∶ ReΣ ≃ 2
g̃T
ω2
c
ω; −ImΣ ≃ π

g̃T
ωc

; ð21Þ

with a slope obviously having a sign opposite to that of a
Fermi liquid (Z > 1). The corresponding self-energy and
spectral function on the Fermi surface Aðk;ωÞ ¼ −Im½ωþ
μ − εk − Σ�−1=π are plotted in Fig. 18. The two prominent

FIG. 18. Pseudogap regime: real (orange) and imaginary (blue)
parts of the self-energy on the real axis phenomenologically
calculated in weak-coupling spin-fluctuation theory and its
corresponding spectral function (red).
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peaks at the edge of the pseudogap in the spectral function
can be understood by using the asymptotic form of ReΣ for
ω > ωc in the quasiparticle equation ω − ReΣðωÞ ¼ 0. We
see that the poles of the Green function are located at a
frequency ω such that ω2 ¼ 2g̃T lnω=ωc. The dominant
term on the rhs of this equation is from −2g̃T lnωc, and we
finally obtain the locations of the main peaks at

ωpeak ¼ �2
ffiffiffiffiffiffiffiffiffi
πg̃ρs

p þ � � � ; ð22Þ

where the corrections are linear in temperature. Hence, the
location of these peaks becomes temperature independent
in the low-T limit. As T → 0, these two peaks evolve
continuously into the gap-edge peaks defining the single-
particle excitations across the insulating gap due to long-
range antiferromagnetic order. Note that, within mean-field
theory, the T ¼ 0 gap is given by Ums, with ms the
staggered magnetization, and that close to a quantum
critical point, the scalingms ∝

ffiffiffiffiffi
ρs

p
indeed holds, establish-

ing consistency with Eq. (22) (in the present case of d ¼ 2,
additional logarithmic corrections intervene). Note that the
above derivation of the pseudogap behavior down to T ¼ 0
relies on the exponential growth of the correlation length
and hence would not apply if the ground state did not have
long-range order. For an alternative approach based on
thermal fluctuations starting from the T ¼ 0 ordered state,
see Ref. [112].
The widths of the AF insulating peaks [20,103,104] are

of order ðg̃T2=ρsÞ1=2 (for a DMFT analysis, see also
Ref. [65]). Furthermore, it is interesting to understand
the pseudogap regime in terms of lengths instead of the
energy ωc [34]. The one-particle thermal de Broglie
wavelength vF=ðπTÞ determines the maximum distance
over which an electron wave packet remains coherent
despite thermal agitation. Equation (21) shows that the
imaginary part of the self-energy at zero frequency
becomes very large when this length is smaller than the
correlation length for spin fluctuations, leading to the
decrease of spectral weight at zero frequency. For electrons
in the pseudogap regime, the spins appear to be ordered
over the length where temperature does not destroy its
coherence. This argument holds only in two dimensions. In
higher dimensions, the phase space associated with the
integration over wave vectors in Eq. (12) diminishes
the importance of long-wavelength fluctuations [34] for
the self-energy. As is well known from DMFT, in infinite
dimensions, the self-energy is not influenced by long-
wavelength spin fluctuations [9,10].
A similar analysis can be performed for Fermi-surface

points in the vicinity of a van Hove singularity, i.e., when
vF ¼ 0. The expansion of the dispersion relation is then
stopped only after the second-order term, giving, for kAN ¼
ðπ; 0Þ after integration over qx,

−
1

π
ImΣretðkAN;ωÞ ¼ ð23Þ

g̃2

ð2πÞ2 T
Z

dqy
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ q2y
q 1

ωþ ξ−2 þ 2q2y
; ð24Þ

which yields logarithmic divergences. Even if these diver-
gences could be cut off, for ω → 0,

−
1

π
ImΣretðkAN;ω → 0Þ ∝ 1

2
g̃2Tξ2; ð25Þ

so the imaginary part of Σ is now proportional to ξ2 instead
of ξ (see also Refs. [34,51,113], [114,115] for second-order
perturbation theory (2PT) and Ref. [116] in the context of
ferromagnetic fluctuations), i.e., way larger than for
momenta away from van Hove points.
To conclude this subsection on the pseudogap insulating

regime, we recall some findings and comment on the ability
of the description of this regime in self-consistent theories.
First, we note that if one uses G (with a finite self-energy)
instead of G0 as a fermionic propagator in Eq. (12), one
obtains Im Σðk; 0Þ ∝ T−2, hence missing the exponential
growth of Eqs. (17) and (25) [51] (see also Ref. [103]).
On more general grounds, we note that the self-

consistency at the level of vertex corrections should be
consistent with the one of the Green function. This remark
serves as a warning about imposing self-consistency solely
over the Green function. When using approximate schemes
that truncate perturbation theory or select a specific class of
diagrams without taking vertex corrections into account in
a consistent manner, self-consistency may lead to an
incorrect physical description—especially in relation to
the opening of insulating gaps. For an insightful discussion
of these limitations of self-consistent perturbation theory,
see Sec. 6.1 of Ref. [34]. Observations about the inad-
equacy of self-consistency in truncated perturbation theory
approximations have previously been made in other con-
texts as well, such as the GW approximation and DMFT,
where it is well known that self-consistent perturbation
theory truncated to second order fails in yielding Hubbard
bands and the opening of a Mott gap [10,117–120].
However, an additional, completely different problem
can arise when self-consistent theories (e.g., bold diagram-
matic Monte Carlo [121,122]) are applied: Because of
the multivaluedness of the Luttinger-Ward functional
[123–127], intimately related [128] to divergences in vertex
functions [129–136], the bold approaches may converge to
an unphysical branch.

C. Insights into the metallic regime

1. Temperature dependence and characteristic scales

Finally, in this section, we provide insights into the
physics of the metallic regime. In Fig. 19, we display the
quantities

THOMAS SCHÄFER et al. PHYS. REV. X 11, 011058 (2021)

011058-20



Zk ¼
�
1 −

∂ImΣðk; iωÞ
∂ω

����
ω→0

�
−1
; ð26Þ

and

γk ¼ τ−1k ¼ −Zk · ImΣðk; iωÞjω→0 ð27Þ

as a function of temperature, at the nodal and antinodal
points on the Fermi surface, obtained by a fit to the
DiagMC self-energy on Matsubara frequencies. For the
details about how these parameters are extracted, see
Appendix B. For a Fermi liquid, Zk would correspond
to the quasiparticle spectral weight and γk to the inverse of
the quasiparticle lifetime. However, we are dealing with a
perfectly nested system in which Fermi-liquid behavior
does not strictly apply, and this interpretation has to be
taken with care, as further discussed in Sec. VII C 3.
Indeed, we observe that γk at the nodal point follows an
approximately T-linear temperature dependence for
T ≳ 0.1. The antinodal value of γk is significantly larger,
highlighting momentum differentiation.
The metallic regime ③ was conventionally defined above

as the regime where the self-energy has a negative slope at

low frequency, thus allowing us to define a Zk smaller than
unity, as indicated on the upper panel of Fig. 19. From the
T dependence of γk, we see that regime ③ defined in this
manner actually consists of two subregimes (see also
Refs. [137,138]): For 0.1≲ T ≲ TAN

QP (regime ③a covering
most of region ③), the inverse quasiparticle lifetime γk
decreases upon reducing T, indicating an increase of quasi-
particle coherence upon cooling (as is characteristic of a
metal).WhencoolingbelowT ≃ 1=10, aminimumofγk (and
Zk) is found, below which the lifetime decreases upon
cooling as a precursor of the pseudogap regime (regime③b).
In order to rationalize these findings,we turn again to spin-

fluctuation theory, Eq. (12). In contrast to the pseudogap
regime, it is crucial here to perform the full convolution over
all Matsubara frequencies. Using the spectral representation
of χðq; iΩnÞ, the single-particle scattering rate at zero
frequency is obtained from Eq. (12) as

− ImΣðk;i0þÞ

∼g2
Z

d2q
Z

dω
1

sinhðβωÞImχðq;ωÞδðω−εkþqÞ: ð28Þ

The key point here is to compare the width in frequency of
the two factors entering this expression: 1= sinh βω and
Imχðq;ωÞ. Thewidth of the former is of order temperatureT,
while the width of the latter is set by Landau damping, as is
clear from the Ornstein-Zernike form Eq. (13) applicable
close to the antiferromagnetic wave vector, which reads, for
real frequencies,

Imχðq;ωÞ ¼ A
ω=γ

½ðq −QÞ2 þ ξ−2�2 þ ðω=γÞ2 : ð29Þ

This expression peaks at the characteristic spin-fluctuation
frequency:

ωsf ¼ γξ−2: ð30Þ

Hence, for T ≲ ωsf, only the low-frequency behavior of
Imχðq;ωÞ matters in Eq. (28). This analysis shows that,
besides the scale ωc ¼ vF=ξ that controls the pseudogap
regime, the spin-fluctuation scaleωsf ¼ γξ−2 is important for
the physics of the metallic regime (see Ref. [139] and
references therein). In Fig. 20, we display these two scales
as a function of temperature, with ξðTÞ and γðTÞ determined
from a fit to the DΓA susceptibility as described above and in
AppendixA.We compare these two scales to the temperature
itself and observe that this indeed defines three distinct
regimes, which correspond to a very good approximation to
the regimes observed in our numerical results, namely (note
that ωsf < ωc),

(i) T ≲ ωsf (ξ≲
ffiffiffiffiffiffiffiffi
γ=T

p
): metallic regime ③a.

(ii) T ≳ ωc (ξ≳ vF=T, Vilk criterion): insulating
pseudogap regime ④, ⑤.

FIG. 19. Quasiparticle parameters Zk (upper panel; the gray
box denotes the boundaries of the inset) and γk (lower panel) at
the antinode (red circles) and node (blue triangles) for the
DiagMC benchmark as a function of temperature.
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(iii) ωsf ≲ T ≲ ωc (vF=T ≳ ξ≳ ffiffiffiffiffiffiffiffi
γ=T

p
). In this narrow

intermediate regime (0.06≲ T ≲ 0.1, ③b), the
pseudogap is not yet fully opened, but the scattering
rate no longer behaves as in a metal: It displays a
minimum and increases at lower T as the pseudogap
regime is entered, as displayed in Fig. 19. We note, in

passing, that the upper boundary of this regime
coincides with the temperature at which the double
occupancy displays a local maximum (see Fig. 12),
corresponding to the onset temperature above which
local magnetic moments are formed (see also
Refs. [49,136]). It also has corresponding signatures
in other thermodynamic observables [49].

2. Which fluctuations dominate the metallic regime?

Expression (28) also allows us to understand an impor-
tant observation made in Sec. VII A, namely, that in the
metallic regime, the spin fluctuations contributing to the
self-energy are not dominated only by the vicinity of
the antiferromagnetic wave vector.
In order to further document and validate this point, in

Fig. 21, we display a comparison between the momentum
dependence of the spin susceptibility as obtained in DΓA
and that of its Ornstein-Zernike fit (the latter privileges the
vicinity of the antiferromagnetic wave vector). We see (left
panel) that at T ¼ 1=8, which lies in the metallic regime,
the OZ fit very poorly captures the momentum dependence
of the susceptibility far from Q. In particular, the OZ fit
misses the sizable weight that is visible in the DΓA
susceptibility along the diagonals ðqx;�qxÞ. That weight
comes from scattering associated with nesting vectors
parallel to the antiferromagnetic zone boundaries, as is
apparent already in second-order perturbation theory [114].
In contrast, the OZ form is much more accurate at lower

FIG. 20. Comparison of the two energy scales ωc ¼ vF=ξ and
ωsf ¼ γξ−2 to inverse temperature (or, equivalently, of the
correlation length to the two length scales

ffiffiffiffiffiffiffiffi
γ=T

p
and vF=T).

This comparison delimitates three regimes: the metallic regime
③a, a narrow precursor regime of the pseudogap ③b, and a
nonmetallic pseudogap regime ④, ⑤. The scales are determined
by a fit to the frequency and momentum dependence of the DΓA
susceptibility (see text).

FIG. 21. Comparison between the static antiferromagnetic susceptibilities obtained from DΓA and fits to an Ornstein-Zernike form
(see Appendix A and Figs. 25 and 27 for the corresponding fit parameters). In the temperature regime around 1=T ¼ 8, the DΓA
susceptibility has, in addition to the antiferromagnetic peak atQ ¼ ðπ; πÞ, important contributions associated with the nesting vectors of
the form ðqx;�qxÞ (“ridges” in the upper middle panel). Although describing the vicinity ofQ ¼ ðπ; πÞ accurately, the Ornstein-Zernike
form does not account for these contributions (lower middle panel). At lower temperatures, these contributions become negligible. The
gray planes in the middle upper panel indicate the cuts shown, i.e., q ¼ ðqx; πÞ and q ¼ ðqx; qxÞ.
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temperatures when ξ has grown to larger values and the
system is in the pseudogap regime (right panel): Indeed, the
physics of the pseudogap is dominated by antiferromag-
netic fluctuations (Sec. VII B).
This argument is further documented in Fig. 22, which

displays the ratio between the susceptibility integrated over
a region of the order of 2ξ−1 around Q to its integral over
the whole zone. It is seen that this ratio decreases as T is
lowered throughout the metallic regime, while it increases
again in the pseudogap regime: Hence, a large fraction of
the spectral weight is missed by focusing on the vicinity of
Q in the metallic regime. Figure 22 also shows that the OZ
fit overestimates the relative spectral weight associated with
the vicinity of the antiferromagnetic wave vector.
Using the expressions (28) and (29), it can be shown that

the contribution of the ðπ; πÞ spin fluctuations to the
zero-frequency scattering rate on the FS (away from the
van Hove point) behaves in the metallic regime as
∼g2ðA=γÞT2ξ3=vF. As shown in Appendix A, the ratio
A=γ decreases quickly upon cooling in this regime, which
ensures that this contribution to the scattering rate also
decreases despite the fast increase of the correlation length.
A similar remark applies to the local (momentum-
integrated) scattering rate, for which this contribution
can be estimated as ∼g2ρ0ðA=γÞT2ξ2 (up to logarithmic
terms). However, importantly, the local self-energy
involves contributions from fluctuations at all wave vectors,
as is already clear at the level of the spin-fluctuation
approximation by integrating Eq. (28) over k. This
explains why DMFT provides, in the metallic regime, an
excellent approximation to the local component of the self-
energy. In contrast, the DMFT approximation does not
properly capture the contributions to the self-energy of
fluctuations that are strongly peaked at a specific wave
vector. For a plot of the (negative) imaginary part of

the local self-energy extrapolated to zero Matsubara
frequency as a function of temperature, we refer to Fig. 28
in Appendix A.
Summarizing,wehave shown that a comparison of the two

key energy scalesωc ¼ vF=ξ andωsf ¼ γξ−2 to temperature
allows for a determinationof thedifferent physical regimes as
a function of temperature, in excellent quantitative agreement
with our numerical results. The momentum-differentiated
metallic regime evolves at low T into a precursor regime of
the pseudogap, where the quasiparticle lifetime reaches a
maximum.Wehave also shown that themetallic regime is not
dominated by the spin fluctuations associated with only the
antiferromagnetic wave vector, and we explained why
quasiparticles with a lifetime increasing upon cooling can
coexist with antiferromagnetic fluctuations characterized by
a correlation length that strongly increases (approximately
exponentially).

3. Perfect nesting and non-Fermi-liquid behavior

In the half-filled model with t0 ¼ 0 considered in this
paper, we do not expect Fermi-liquid behavior to hold in
the metallic phase because of perfect nesting. Indeed, the
whole one-dimensional set of wave vectors with qx ¼ �qy
maps a point on the diamond-shaped Fermi surface onto
another one. In this section, we briefly discuss whether
our computations can detect hints of non-Fermi-liquid
behavior, despite providing data restricted to imaginary
(Matsubara) frequencies.
In a Fermi liquid, the self-energy takes the following

form, when considered on the Fermi surface and at low
frequency and temperature:

−ImΣðkF;ωÞ ∝ ω2 þ ðπTÞ2 þ � � � : ð31Þ

On the Matsubara axis, the rhs of this expression reads
−ω2

n þ ðπTÞ2. This contribution vanishes when considering
the first Matsubara frequency ω0 ¼ πT. Hence, the temper-
ature dependence of ImΣðkF; iω0Þ at the first Matsubara
frequency is controlled by the dominant term ð1−1=ZÞω0 ¼
ð1−1=ZÞπTþ�� �, with no quadratic correction of order T2:
Linear dependence of this quantity on temperature is a
hallmark of Fermi-liquid behavior (first Matsubara fre-
quency rule; see Ref. [140]). Figure 23 displays the T
dependence of this quantity as obtained from the benchmark
DiagMC at both the nodal and antinodal points on the Fermi
surface. We see a visible deviation from linearity throughout
themetallic regime, indeed hinting at a departure fromFermi-
liquid behavior. Further evidence for non-Fermi-liquid
behavior is provided by the dependence on temperature of
the parameters Zk and γk obtained by a fit of the self-energy
on Matsubara frequencies and displayed in Fig. 19. Indeed,
(i) Zk does not stabilize to a T-independent value before the
pseudogap kicks in but rather slowly decreases throughout
the metallic regime, and (ii) the temperature dependence of
γk is better described as T linear rather than quadratic-like in

FIG. 22. Main panel: relative contributions to the AF suscep-
tibility from wave vectors in the vicinity of Q ¼ ðπ; πÞ for DΓA
(solid line, black circles) and the Ornstein-Zernike fit (dashed
line, black triangles) as a function of T. Inset: For completeness,
γk from DΓA is shown for the different regimes as a function
of temperature for the antinode (red circles) and node (blue
triangles).
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a Fermi liquid. Further details about the proper interpretation
of the Matsubara fitted parameters Zk and γk when Fermi-
liquid behavior does not apply are given in Appendixes B
and C.
ThebreakdownofFermi-liquidtheoryinaperfectlynested

system was explored earlier in Ref. [141] and subsequent
works. To understand its origin, it is useful to consider the
spin-fluctuation expression (28) and note that, when Imχ is
free fromsingularities andbehaves linearly as a functionofω
at low frequency, this equation yields the characteristic
Fermi-liquid T2 behavior for T ≲ ωsf and ω ¼ 0:

−ImΣðk; i0þÞ ∼ g2T2

Z
d2q

1

Γq
δðεkþqÞ; ð32Þ

in which 1=Γq ≡ Imχðq;ωÞ=ωjω¼0. In turn, non-Fermi-
liquid behavior in a perfectly nested system can be traced
to singularities in Imχðq;ωÞ. These singularities are
already manifest at the level of second-order perturbation
theory, as studied in detail in Ref. [114] and also recently
in Ref. [137]. In Appendix C, we discuss second-
order perturbation theory in more detail, together with a
comparison to our computational results. Theoretical
approaches of the non-Fermi-liquid singularities for nested
systems beyond lowest-order perturbation theory have been
attempted using parquet [142] and fRG [143,144] methods,
butwearenotawareofa full solutionof thecaseconsidered in
the present paper.
From a computational standpoint, a precise characteri-

zation of non-Fermi-liquid behavior in the metallic phase
would require algorithms that are able to determine the
behavior of the self-energy and response functions directly
on the real-frequency axis, in both the ω > T and ω < T
regimes (the latter being inaccessible to methods that
provide data for Matsubara frequencies only). This task
goes beyond the scope of the present work and is a major

challenge motivating the development of new computa-
tional methods (see, e.g., Refs. [145–148]).

D. A simple approximation

In the previous sections, we have seen that fluctuations
from all momentum transfers q contribute to the local
(momentum-integrated) part of the self-energy in the
metallic regime. Long-wavelength antiferromagnetic fluc-
tuations associated with q ≃Q become increasingly impor-
tant as the temperature is lowered and are responsible for
the formation of the pseudogap. This observation suggests
trying a simple approximation in which one relies on
DMFT for the local part of the self-energy, while a weak-
coupling approximation, Eq. (12), is used to account for the
nonlocal part, namely,

Σðk;iωnÞ≃ΣDMFTðiωnÞþ½ΣSFðk;iωnÞ−Σloc
SF ðiωnÞ�: ð33Þ

In this expression, the last term removes the local contribu-
tion from the spin-fluctuation formula, so the local,
k-averaged part of the self-energy is entirely accounted
for by DMFT. Note that, in this subsection, we take the self-
energy from paramagnetically restricted DMFT. To evaluate
Eq. (33), we use the bare value g2 ¼ 3U2=8 of the coupling
to spin fluctuations and the DΓA spin susceptibility. We
recall that the latter is simply given by χ−1ðq;ωÞ ¼
χ−1DMFTðq;ωÞ þ λ, with λ the Moriya correction, which
ensures consistency with the Mermin-Wagner theorem and
is determined such that T

P
q;n χðq; iΩnÞ ¼ χloc, with χloc

being the local susceptibility as obtained in DMFT from the
effective impurity model (for details, see Appendix D 6 a).
Expression (33) is actually a simplified version of the DΓA,
in which vertex functions are set to unity. (See also
Appendix D 6 a for the DΓA equation of motion. For an
analysis in the context of superconductivity in cuprates, see
Ref. [149].)
The result of this simple “DMFT+SF” approximation of

Eq. (33) is compared, in Fig. 24 (top row), to the DiagMC
benchmark and to DΓA for three temperatures. We see
that it performs excellently in the incoherent and in the
metallic regime. In the pseudogap regime, it is qualitatively
reasonable, but it overestimates the magnitude of the self-
energy at low frequency (in accordance with the observa-
tions made above.) This case indicates that, for this rather
weak value of the coupling U ¼ 2, the vertex correction
terms included in DΓA are not essential in the metallic
regime but become increasingly important as the temper-
ature is lowered into the pseudogap regime.
The lower panels in Fig. 24 display the local part of the

self-energy as obtained from DMFT, together with its
approximation from weak-coupling spin-fluctuation theory
[the local term removed in Eq. (33)], in comparison to
DiagMC. This result clearly demonstrates that a weak-
coupling spin-fluctuation approximation does not provide a
good estimate of the local component, even at this weak

FIG. 23. Diagnosing non-Fermi-liquid behavior: The imagi-
nary part of the self-energy at the first Matsubara frequency
calculated by DiagMC for the nodal and antinodal points displays
the deviation from linearity as a function of T (see text).
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value of U. In contrast, the nonperturbative DMFT pro-
vides an excellent description of the k-averaged (local)
self-energy, while nonlocal contributions can be reasonably
accounted for by weak-coupling spin-fluctuation theory at
this value of U.

VIII. CONCLUSION AND OUTLOOK

In this article, we have purposefully focused on
an apparently “simple” regime of the two-dimensional
Hubbard model (simple square lattice, weak coupling,
half-filling) with three goals in mind: (i) assessing the
ability of state-of-the-art computational methods to address
the physics of this model at finite temperature, through the
computation of a range of one-particle and two-particle
observables; (ii) providing an extensive assessment of
basically all many-body methods currently available for
this purpose, by comparing them to two very different
Monte Carlo methods (DQMC and DiagMC) serving as
benchmarks; and, importantly, (iii) investigating the rich
physics associated with the different regimes and cross-
overs found in this model, as it evolves upon cooling from a
high-temperature incoherent regime into a momentum-
differentiated metal and eventually into an insulating
regime with a pseudogap, and elucidating the nature and
role of spin fluctuations in these different regimes.
It is satisfying to observe that the two benchmark

methods considered in this article are successful at com-
puting the properties of this model throughout the metallic
regime and are in excellent agreement with each other.
However, we also found that they face rather severe
limitations when attempting to reach low temperatures,

to the extent that only the onset of the pseudogap regime
can be reached. Indeed, the pseudogap is associated with
an exponentially growing antiferromagnetic correlation
length, which requires prohibitively large systems to be
simulated with DQMC, while DiagMC, which, in contrast,
works directly in the thermodynamic limit, is faced with
convergence issues when summing the perturbative series at
low T. We are hopeful that these issues can be overcome by
using recent improvements of diagrammatic Monte Carlo
based on the CDet algorithm [25], together with improved
schemes for summing the perturbative series.
Many of the methods considered in this article use the

DMFT as a starting point and treat spatial fluctuations
beyond this starting point to various degrees of approxi-
mation. Obviously, the chosen regime of parameters
puts DMFT very much out of its “comfort zone” since
the physics at low T is dominated by long-range spatial
fluctuations, which, in two dimensions, also prevent long-
range order at any nonzero temperature. Nonetheless, we
have emphasized and documented that, when properly
interpreted, DMFT provides a useful initial description
of the different regimes. Indeed, in the low-T pseudogap
regime when the correlation length is large, describing the
system as long-range ordered is a reasonable mean-field
starting point. Furthermore, remarkably, we found that
DMFT provides a highly accurate determination of the
local (momentum-averaged) self-energy, not only at highT,
as expected, but also through most of the metallic regime.
This observation is striking given that the correlation length
reaches values as large as ten lattice spacings in this regime,
and we further comment below on the physical reason
explaining this finding.

FIG. 24. Upper row: weak-coupling spin-fluctuation theory combined with DMFT according to Eq. (33)—a simplified version of
DΓA ignoring vertex corrections (see text) and comparison to the DiagMC benchmark (black circles). Lower row: comparison between
the local self-energy as obtained from DMFT and the corresponding weak-coupling spin-fluctuation approximation to the DiagMC
benchmark (black circles).
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Because of the very large correlation length at low T,
cluster extensions of DMFT are not the best route to follow
in this parameter regime of the Hubbard model. Although
they succeed in describing the momentum-differentiated
metallic regime in satisfactory agreement with the bench-
marks, huge cluster sizes would be required to properly
capture the pseudogap regime. Cluster extensions of DMFT
are much better equipped for addressing strong-coupling
regimes with shorter correlation lengths.
In contrast, we found that extensions of DMFT (ladder-

DΓA, TRILEX, ladder-DF, and single-shot DB), which
make use of response and vertex functions in order to take
into account the contributions of fluctuations to the self-
energy, perform much better here. We assessed their
respective degree of accuracy and found that the DΓA
and DF/DB methods are particularly successful at describ-
ing all physical regimes of interest, in satisfactory agree-
ment with the benchmarks, including the onset of the
pseudogap regime. They also allow one to enter deeper in the
pseudogap regime: It is an open question for future work to
assess their degree of validity in this low-T regime when
accurate and controlled benchmarks become available.
We have also considered many-body methods that do

not make use of DMFT as a starting point, such as TPSC/
TPSC+, fRG, and the PA. TPSC played an important role
early on in elucidating the physical origin of the weak-
coupling pseudogap in relation to long-wavelength anti-
ferromagnetic correlations. We found that it captures the
different regimes qualitatively but strongly overestimates
the onset of the pseudogap temperature and the correlation
length itself. TPSC+, a recent extension of the method,
leads to significant improvements. In contrast, the PA
underestimates the pseudogap onset temperature, espe-
cially at the nodal point, whereas it captures the behavior
of double occupancy very accurately. The conventional
one-loop fRG shown here is in qualitative agreement with
the benchmark until its running coupling constants diverge.
However, we remark that the present implementation can
be systematically improved by the recently introduced
multiloop extension of fRG that converges to the parquet
approximation [57,150], as well as expanding around the
DMFT solution (DMF2RG) [151,152]. Their combination,
a multiloop expansion of the fRG around DMFT, provides
a very promising direction for future studies.
On the physics side, perhaps themost intriguing finding of

our study is that, in the metallic regime, single-particle
excitations with a lifetime that increases upon cooling appear
to happily coexist with an antiferromagnetic correlation
length that increases steeply, reaching about ten lattice
spacings at the onset of the pseudogap. We have provided
an explanation to this finding and also shown that spin
fluctuations associated with the vicinity of the antiferromag-
netic wave vector are not the only important contributions to
the self-energy in this regime. Fluctuations from all nesting
vectors also contribute to the self-energy on the Fermi

surface, and fluctuations from all momentum transfers
contribute especially to the local, momentum-integrated,
self-energy. Importantly, this observation explains why the
latter is so accurately captured by single-site DMFT, even in
the presence of strong antiferromagnetic fluctuations, which
are responsible for the momentum differentiation on the
Fermi surface.
At the lowest temperatures, antiferromagnetic fluctuations

eventually dominate, destroying the coherent metal, which
gives way to the pseudogap regime (with a narrow precursor
regime at which the quasiparticle lifetime reaches a maxi-
mum). This result provides a rationale for the success of
methods such as DΓA and the DF, which incorporate
fluctuations of all wave vectors beyond DMFT. In the
parameter regime of interest, we have proposed and tested
a simplified version of such an approach.
We have documented, in detail, the rich sequence of

crossovers occurring in this model upon reducing the
temperature, from an incoherent regime at high T all the
way down to the pseudogap regime at low T, through
the intermediate-temperature momentum-differentiated
metal, and we have assessed the ability of the different
computational methods to capture these crossovers. By
analyzing the contribution of spin fluctuations, we showed
that these different regimes are delimited by the comparison
of temperature itself to the two characteristic energy scales
vF=ξ and γξ−2 or, equivalently, of the correlation length ξ to
the thermal de Brogliewavelength,∼vF=T, and to the length
scale associated with Landau damping, ∼

ffiffiffiffiffiffiffiffi
γ=T

p
(with γ

being the Landau damping constant).
Finally, we have also emphasized (Sec. VII C 3 and

Appendixes B and C) the limitations of imaginary-time
(Matsubara frequency) computational methods in probing
the delicate, low-energy, non-Fermi-liquid singularities of
this perfectly nested model in the metallic regime.
In the future, the numerical, theoretical, and physical

insights obtained in this article should finddirect applications
in computational studies [149,153,154] of materials for
which the interplay between local electronic correlations
and long-wavelength spin fluctuations play a crucial role,
such as Sr2RuO4 [155–157] or the iron-based superconduc-
tors [158]. On the model level, our findings will be
immediately useful for describing how physical fluctuations
(density, magnetic, and pairing) on the two-particle level
influence one-particle spectral functions and self-energies,
and how quasiparticles are affected and sometimes destroyed
altogether by these fluctuations [128,159–164].
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APPENDIX A: ORNSTEIN-ZERNIKE FORM
OF THE MAGNETIC SUSCEPTIBILITY

Close to a magnetic phase transition, the magnetic
susceptibility (bosonic propagator) assumes the following
Ornstein-Zernike form [110]:

χðq; iΩnÞ ¼
A

ðq −QÞ2 þ ξ−2 þ jΩnj
γ

; ðA1Þ

with A being a prefactor, γ the Landau damping constant
(the dynamical critical exponent has been set to z ¼ 2
here), and ξ the magnetic correlation length. This form can
be used to evaluate the spin-fluctuation diagram given in
Eq. (12). In the renormalized classical regime ⑤, the sum
may be restricted to the lowest Matsubara frequency
without great loss of precision, which is, however, not
possible in the metallic regime ③. The estimation of the
correlation length from the static magnetic susceptibility in
this paper has been performed by an empirically more
robust formula (especially in the limit of small ξ) of the
Ornstein-Zernike form, which incorporates the lattice
(tight-binding) structure of the problem [72], neglecting
a possible anomalous exponent η (cf. η ≈ 0.037 for the
three-dimensional Heisenberg model [166]):

χspðq; iΩn ¼ 0Þ ¼ A

4 sin2ðqx−Qx
2

Þ þ 4 sin2ðqy−Qy

2
Þ þ ξ−2

;

ðA2Þ

and reduces to the original form in the long-wavelength
limit (small arguments of the sine). For the fits shown, we
fixed qy ¼ π. Figure 25 shows data for the static anti-
ferromagnetic susceptibility in DΓA (upper row) and the
respective Ornstein-Zernike fits for various temperatures.
Note, again, as discussed in the main text, that the Ornstein-
Zernike fit is most accurate only around the vicinity of
Q ¼ ðπ; πÞ and may not capture the physics at other q
points, which is important, e.g., in the metallic regime (see
Sec. VII C). These fits of the static antiferromagnetic
susceptibility are used to determine the prefactor A and
the magnetic correlation length ξ. For extracting the Landau
damping γ, A and ξ have been fixed, and γ has been fitted
from the frequency dependence of the propagator. The
upper panels of Fig. 26 show these fits of DΓA data for
three representative temperatures. The lower panels show
the obtained parameters A, ξ, and γ as a function of
temperature.
We see that the prefactor AðTÞ rapidly decreases

with temperature in the metallic regime. This can be
rationalized by observing that the local susceptibility
χloc ¼

R
d2q=ð2πÞ2χðq;Ωn ¼ 0Þ obeys a Curie-Weiss

law in this regime, implying that A ln ξ ∼ C=ðT þ ΘÞ
and hence that A decreases linearly with T. In contrast,
in the low-T insulating regime, the sum rule
T
P

n

R
d2q=ð2πÞ2χðq;Ωn ¼ 0Þ ¼ n − 2hn↑n↓i implies

TA ln ξ ∼ const, and hence, A reaches a constant value at
low T. For the temperature dependence of the local spin
susceptibility in DΓA, see Fig. 27. The (negative) imagi-
nary part of the local self-energy extrapolated to zero
Matsubara frequency as a function of temperature, relevant
for the discussion in Sec. VII C 2, is shown in Fig. 28.
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FIG. 25. Static (zero-frequency) antiferromagnetic susceptibilities obtained from DΓA (uppermost row), the fitted data from an
Ornstein-Zernike form (second row), and a comparison of both at the momentum cuts q ¼ ðqx; πÞ (third row) and q ¼ ðqx; qxÞ (lowest
row) for various temperatures.

FIG. 26. Upper row: Fits of the frequency-dependent part of the (inverse) antiferromagnetic susceptibility from DΓA by an Ornstein-
Zernike form at three dierent temperatures. Lower row: The prefactor A and the magnetic correlation length ξ have been fixed to the ones
of the static propagator and their temperature dependencies together with the one of the Landau damping γ are shown.
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APPENDIX B: LOW-FREQUENCY EXPANSION
OF THE SELF-ENERGY

In a Fermi liquid, the self-energy on the Fermi surface
can be expanded at low (imaginary) frequency as a Taylor
series:

ΣðkF; iω → 0Þ ≃ ReΣðkF; 0Þ þ iImΣðkF; 0Þ

þ iω
∂ImΣðkF; iωÞ

∂ω þ � � � : ðB1Þ

Inserting this expression into Dyson’s equation G−1 ¼
G−1

0 − Σ, we see that the spectral function displays a
quasiparticle peak with a spectral weight Zk and width
γk (inverse of the quasiparticle lifetime τk) given by

Zk ¼
�
1 −

∂ImΣðk; iωÞ
∂ω

����
ω→0

�
−1
; ðB2Þ

γk ¼ τ−1k ¼ −Zk · ImΣðk; iωÞjω→0: ðB3Þ

Performing, also, a Taylor expansion for momenta k close
to the Fermi surface, the renormalization of the quasipar-
ticle effective mass is obtained as

�
m�

m

�
−1
����
kF

¼ ZkF

�
1þ êkF

·∇kReΣðk; iω → 0Þ
êkF

·∇kεk

�
k¼kF

:

ðB4Þ

In practice, Zk and γk, as displayed, e.g., in our discussion
of the metallic regime in Fig. 19, are obtained in this article
by a fit of the imaginary part of the self-energy ImΣðk; iωnÞ
calculated on the discrete set of Matsubara frequencies, by
a fourth-order polynomial. This method is common prac-
tice in analyzing computational results available in imagi-
nary time at finite temperature. The sign of the slope of the
self-energy at low Matsubara frequencies was also used to
distinguish between “metallic” behavior (Zk < 1) and the
pseudogap and incoherent regimes in which the positive
slope corresponds formally to Zk > 1. Care should be
applied, however, in interpreting the values of Zk and γk
obtained from such Matsubara fits in terms of quasiparticle
properties, when the system does not obey Fermi-liquid
behavior at low frequencies or low temperatures (as is the
case here because of perfect nesting and of the gradual
opening of the pseudogap). We illustrate and clarify this
point by considering, for simplicity, a linear fit of the
imaginary part of the self-energy over the first two
Matsubara frequencies ω0 ¼ πT and ω1 ¼ 3πT, namely,

ImΣðiωnÞ ¼ ImΣði0þÞjlinfit þ ωn

�
1 −

1

Zlinfit

�
þ � � � ;

ðB5Þ

with

ImΣði0þÞjlinfit ¼
ω1ImΣðiω0Þ − ω0ImΣðiω1Þ

ω1 − ω0

;

1 −
1

Zlinfit
¼ ImΣðiω1Þ − ImΣðiω0Þ

ω1 − ω0

: ðB6Þ

For simplicity, we have dropped the momentum dependence
in these expressions: It is understood that the analysis is
performed at a given value of k. We now use the
spectral representation of the self-energy ΣðiωnÞ ¼R
dω½σðωÞ=iωn − ω�, with σðωÞ≡ −ð1=πÞImΣðωþ i0þÞ,

yielding

−ImΣðiωnÞ ¼ ωn

Z
dω

σðωÞ
ω2
n þ ω2

: ðB7Þ

Substituting this into Eqs. (B6), after simple algebra, we
finally obtain

FIG. 27. Inverse local spin susceptibility calculated in DΓA as a
function of temperature, which exhibits Curie-Weiss (Curie)
behavior in the metallic (insulating) regime.

FIG. 28. Imaginary (negative) part of the local self-energy
extrapolated to zero Matsubara frequency as a function of
temperature calculated in DiagMC (black circles), DMFT (blue
squares), and DΓA (red triangles).
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−ImΣði0þÞjlinfit¼ 12π3T3

Z
dω

σðωÞ
ðπ2T2þω2Þð9π2T2þω2Þ ;

1−
1

Zlinfit
¼
Z

dωσðωÞ 3π2T2−ω2

ðπ2T2þω2Þð9π2T2þω2Þ :

We now analyze how these two quantities behave in the low-
temperature limit. To this aim, we consider cases in which
ω=T scaling applies for small ω and T (but an arbitrary ratio
ω=T), and where σðω; TÞ ¼ Tαϕðω=TÞ, with ϕ a scaling
function such that ϕðx ≪ 1Þ ∼ const and ϕðx ≫ 1Þ ∼ jxjα.
The case α ¼ 2 corresponds to a Fermi liquid for which the
scaling function is known to be ϕðxÞ ¼ Aðπ2 þ x2Þ. Avalue
of α < 2 corresponds to non-Fermi-liquid behavior with
ω=T scaling, as found, for example, close to quantum critical
points controlled by strong-coupling fixed points [167]. For
an analysis of non-Fermi-liquid behavior and ω=T scaling
within second-order perturbation theory, see Appendix C.
To obtain the low-T behavior of −ImΣði0þÞjlinfit, we

observe that the ω=T scaling form can be directly sub-
stituted in the above expression while preserving the
convergence of the integral, which leads to, for T → 0,

−ImΣði0þÞjlinfit ∼ 12π3Tα

Z
dx

ϕðxÞ
ðπ2 þ x2Þð9π2 þ x2Þ :

ðB8Þ

This expression demonstrates that a fit to the self-energy on
Matsubara frequencies is able to correctly capture the non-
Fermi-liquid temperature dependence of the scattering rate.
Note that for this to hold, it is crucial that ω=T scaling
indeed applies. This derivation has been performed, for
simplicity, for a linear fit, but it extends to a higher-order
polynomial fit.
The low-T analysis of Zlinfit proceeds along slightly

different lines. Indeed, direct substitution of the ω=T
scaling form into the equation above would lead to an
ultraviolet divergent integral when α > 1. In that case, the
limit T → 0 can directly be taken to yield

α > 1∶ ZlinfitjT→0 ¼
�
1þ

Z
dω

σðω; T ¼ 0Þ
ω2

�
−1
: ðB9Þ

This formula is indeed the exact T ¼ 0 expression of the
quasiparticle weight resulting from the spectral represen-
tation. Note that, for σðωÞ ∼ ωα with α > 1 at low fre-
quency, the above integral converges in the infrared and
that, in this case, there are coherent quasiparticles, with a
finite spectral weight and a scattering rate ∼Tα smaller than
their energy. In the opposite case α < 1, the ω=T scaling
function must be used, which yields the low-T behavior:

Zlinfit ∼
�
1þ 1

T1−α ×
Z

dxϕðxÞ x2 − 3π2

ðπ2 þ x2Þð9π2 þ x2Þ
�−1

:

At low T, Zlinfit vanishes at T1−α, indicating the breakdown
of the quasiparticle concept. For α ¼ 1, a very slow
logarithmic vanishing of Z is expected.
In conclusion, this analysis demonstrates that when ω=T

scaling applies, together with a simple power-law behavior,
a fit to the self-energy over Matsubara frequencies is able to
pick up the correct T dependence of the scattering rate and
quasiparticle weight in both the Fermi-liquid and non-
Fermi-liquid cases, in spite of the fact that the frequency
dependence of the self-energy for ω < T is inaccessible
from Matsubara frequencies. Note that ω=T scaling typ-
ically applies in the quantum critical regime associated with
quantum critical points (QCP) controlled by a strong-
coupling fixed point [167]. In this work, the QCP is the
one associated with the disappearance of antiferromagnet-
ism atU ¼ 0, and hence, it is not clear whetherω=T scaling
applies in the metallic regime. Logarithmic violations may
be expected, for example.

APPENDIX C: SELF-ENERGY FROM
SECOND-ORDER PERTURBATION THEORY

For further reference, and to facilitate the discussion of
the consequences of perfect nesting in Sec. VII C 3, here we
show the results of 2PT for the self-energy.

1. Real frequencies

We first consider the self-energy in 2PT on the real-
frequency axis (see also Refs. [114,137]). Its functional
form can be gained by using the careful analytic calcu-
lations performed in Sec. 4.4 of Ref. [114], which we
summarize in this subsection. We start by considering the
expression on the Matsubara axis,

ImΣðk; iωnÞ ¼ U2T
X
q;iΩn

G0ðkþ q; iωn þ iΩnÞχ0ðq; iΩnÞ;

ðC1Þ

with the (noninteracting) bubble

χ0ðq; iΩnÞ ¼ −T
X
k0;iωn0

G0ðk0 þ q; iωn0 þ iΩnÞG0ðk0; iωn0 Þ;

ðC2Þ

and G0 being the noninteracting Green function.

a. Analytical considerations

Analytic continuation of Eq. (C1) gives

ReΣðk;ωÞ ¼ U2

8π3
P
Z

d2q
Z

dω0Imχ0ðq;ω0Þ

×
nBðω0Þ þ nFðξ0kþqÞ
ωþ ω0 − ξ0kþq

; ðC3Þ
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ImΣðk;ωÞ ¼ −
U2

8π2

Z
d2q

Z
dω0Imχ0ðq;ω0Þ

× ½nBðω0Þ þ nFðξ0kþqÞ�δðωþ ω0 − ξ0kþqÞ;
ðC4Þ

where nF;B denote Fermi and Bose distribution functions,
respectively, P is the principal value, and ξ0k ¼ εk − μ.
These expression show that at frequencies lower than the
temperature jωj ≪ πT (and, therefore, smaller than the first
Matsubara frequency), the self-energy takes a clear non-
Fermi-liquid form for Fermi-surface vectors kF (see also
Sec. VII C):

ReΣðkF;ωÞ ∼jωj≪πT

(
−ω ln jωj kF ≠ kN

sgnðωÞ ffiffiffiffiffiffijωjp
kF ¼ kN

ðC5Þ

and

ImΣðkF;ωÞ − ImΣðkF; 0Þ ∼jωj≪πT

( jωj kF ≠ kNffiffiffiffiffiffijωjp
kF ¼ kN;

ðC6Þ

with kN ¼ ðπ=2; π=2Þ.
The singular behavior of the self-energy at low frequency

jωj ≪ πT comes from the singular behavior of the imagi-
nary part of the susceptibility,

Imχ0ðq;ωÞ ∼ −
ω

T
ln

���� jωj − ωsðqÞ
Δ2

����; ðC7Þ

where Δ ∼ πT and

ωsðqÞ ¼ 4j sin ðjqxj=2Þ − sin ðjqyj=2Þj: ðC8Þ

The origin of these singularities, which appear at small
frequency ωwhen q is near the diagonal, can be understood
roughly from the fact that for any external momentum q
located near the diagonal of the Brillouin zone, there are
electrons near the half-filled diamond Fermi surface that
can also be scattered to electrons near the Fermi surface.
More precisely, suppose that an electron below the Fermi

surface at k − q=2 is excited above the Fermi surface
at kþ q=2 such that ω ¼ ξ0kþq=2 − ξ0k−q=2. All internal
momenta k in the bubble must be considered, while ω
and q are fixed. But the velocity of the particle-hole
excitation ∇kðξ0kþq=2−ξ0k−q=2Þ vanishes at k ¼ ð�π=2;
�π=2Þ for any value of q, which leads to van Hove-like
singularities in theparticle-hole excitations. The integral over
k gives logarithmic contributions to Imχ0ðq;ωÞ that are
finite, except forω ¼ ωsðqÞ, where they divergewhenωsðqÞ
is different from zero. Note that the singular frequencyωsðqÞ
vanishes when q is on the diagonal.

These singularities influence the low-frequency behavior
of the imaginary part of the self-energy ImΣðkF;ωÞ as
follows. We now consider the imaginary part in Eq. (C4)
and integrate over the δ distribution to arrive at

ImΣðk;ωÞ ¼ −
U2

8π2

Z
d2q

Z
dω0Imχ0ðq; ξ0kþq=2 − ωÞ

× ½nBðξ0kþq=2 − ωÞ þ nFðξ0kþq=2Þ�: ðC9Þ

For the sake of detecting non-Fermi-liquid behavior, we are
interested in the regime where the inequality jωj ≪ πT is
satisfied. In that regime, it is the classical limit of the Bose
function that dominates, and singularities come only from
integrals of the logarithms in Eq. (C7), whose arguments
are then jjξ0kþq=2 − ωj − ωsðqÞj.
We take the integral over qx to run over the Brillouin

zone; then, the integral over qy is restricted by the Bose
function to a range near the diagonals where the inequality
jξ0kþq=2j ≪ πT is satisfied. This process determines the
limits of integration over qy to be of order δqy ∼ πT=vF
away from the diagonal. The argument of the logarithm
jjξ0kþq=2 − ωj − ωsðqÞj, when expanded near the diagonal,
can be approximated by

− ωþ (2 sinðky − qxÞ � 2 cosðqx=2Þ)δqy
≡ −ωþ αðky; qxÞδqy: ðC10Þ

The integral over qy can be performed, leading to other
logarithms that depend on αðky; qxÞ. The singular part of
the remaining qx integral comes from regions where
αðky; qxÞ is small. The final result is obtained by expanding
αðky; qxÞ around values of qx where αðky; qxÞ vanishes. In
the Taylor expansion of αðky; qxÞ, there are terms linear in
δqx that give the final −jωj result for ImΣðk ¼ ðkx; kyÞ;ωÞ
everywhere, except when the linear term in the expansion
of αðky; qxÞ vanishes, which occurs for kF ¼ ð�π=2;
�π=2Þ. There, the leading term scales as δq2x, which
modifies the integral over qx and leads to ImΣðkx; ky;ωÞ
proportional to −

ffiffiffiffiffiffijωjp
. The Fermi points kF ¼ ð�π=2;

�π=2Þ seem special because it is there that the energy
ξ0kþq=2 − ξ0k−q=2 associated with particle-hole excitations
can be small for the largest range of values of q near the
diagonal.

b. Numerical evaluation

In Fig. 29, we show the numerical evaluation of these
expressions for the real (first panel) and imaginary (second
and third panel) parts for U ¼ 2t and 1=T ¼ 16, i.e., deep
inside the metallic regime for the antinode (red), node
(blue), and generic point k ¼ ð3π=4; π=4Þ (light green). In
both the real and imaginary parts, one can clearly see non-
Fermi-liquid behavior at low frequencies: Here, the slope of

TRACKING THE FOOTPRINTS OF SPIN FLUCTUATIONS: A … PHYS. REV. X 11, 011058 (2021)

011058-31



the real part is reversed for the node and the generic k-point
while being nonlinear also for the antinode. For compari-
son, we also show (with the dotted-dashed line) the
respective low-frequency result from the Fermi-liquid fit
from the Matsubara axis (see later in this Appendix), which
is oblivious to the features at jωj ≪ πT.
Focusing on the imaginary part, one can observe that,

despite their different magnitudes, the functional forms of
the antinode and the generic point are very similar.
However, the node exhibits a completely different func-
tional behavior, eventually resulting in jImΣðk ¼ N; 0Þj >
jImΣ(k ¼ ð3π=4; π=4Þ; 0)j for very small frequencies, and
it is indeed compatible with a square-root behavior. In
addition to its frequency behavior, we extract the zero-
frequency dependence on temperature, shown in the upper

panel of Fig. 30. Although log-corrections are expected
[114], the dependence appears rather linear. Eventually, with
our precise numerical data, we can numerically demonstrate
that ImΣðk;ωÞ indeed exhibits ω=T scaling as discussed in
the main text, by plotting (ImΣðk;ωÞ − ImΣðk; 0Þ)=T over
ω=T (lower panel of Fig. 30), which results in an excellent
data collapse over a broad temperature (and frequency) range
inside the metallic regime. However, as already stated in
Appendix B, ω=T scaling typically applies in the quantum
critical regime associated with QCPs controlled by a strong-
coupling fixed point [167]. The QCP present is associated
with the disappearance of antiferromagnetism atU ¼ 0, and
hence, it is not clear whether ω=T scaling generally applies
(e.g., logarithmic corrections may be expected).

2. Imaginary frequencies and comparison

In order to compare our findings on the real axis with the
DiagMC benchmark, we directly evaluate Eq. (C1) on the
Matsubara axis. We use meshes of Niω ¼ 200 Matsubara
frequencies and a linear momentum mesh of Nq ¼ Nk ¼
200 for the summations performed. Figure 31 shows the
2PT data (blue crosses) in comparison to the DiagMC
benchmark (black circles and dashed line) for the antinode

FIG. 29. Upper panels: real and imaginary parts of the self-
energy from 2PT at 1=T ¼ 16 for antinode (red), node (blue), and
the generic point k ¼ ð3π=4; π=4Þ (light green) on the real-
frequency axis. The dotted-dashed line shows the respective
result from a Fermi-liquid fit from the Matsubara axis.

FIG. 30. Upper panel: imaginary part of the self-energy on the
real axis at zero frequency and various Fermi-surface points
calculated in second-order perturbation theory as a function of
temperature. Lower panel: data collapse from ω=T scaling at the
generic momentum point for several temperatures in the metallic
regime. The inset shows a zoom to low frequencies.
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(uppermost row) and node (second row) as well as for the
generic point k ¼ ð3π=4; π=4Þ (third row) for various
temperatures. The benchmark result is described quantita-
tively by 2PT in the incoherent regime and fairly well inside
the high-temperature metallic regime. In particular, 2PT
exhibits a clear momentum differentiation between the
node and antinode. However, it fails in the description of
the pseudogap; i.e., the regimes ④ and ⑤ are absent. This
result is particularly apparent when comparing the emerg-
ing energy and length scales obtained from Ornstein-
Zernike fits (last row, cf. discussion in Sec. VII C and
Fig. 20).
However, as already discussed before, it may be quite

difficult to judge this issue by looking at data from the
Matsubara axis only. Therefore, we additionally compute
the self-energy in 2PTon a continuous imaginary frequency
grid (solid orange lines in Fig. 31; see insets for a
zoom [168]). One indeed observes that, for frequencies
much smaller than the ones accessible by a Matsubara grid
jωj ≪ πT, the slope of the imaginary part of the self-energy

changes, at least in this fully nested case, to positive,
yielding clear non-Fermi-liquid behavior. This behavior is
particularly emphasized at the nodal point (second row).
Using a Fermi-liquid ansatz (see Appendix B), one can

extract a momentum-dependent quasiparticle weight Zk
and inverse quasiparticle lifetime γk from the Matsubara
axis (Fig. 32). As already discussed in the main text, these
parameters are only meaningful (in the strict sense of
describing Landau quasiparticles) if the low-frequency
behavior of the self-energy is the “correct” one, i.e.,
compatible with the one expected by a Fermi liquid
(e.g., in exhibiting a negative slope and a long quasiparticle
lifetime). In order to estimate the quality of this plain
Matsubara fit, we show the “offset” −ImΣðk;ω → 0Þ from
both the real-frequency data (crosses in the lowest panel of
Fig. 32) and the Matsubara fits. We notice that both
methods of extraction are in very good agreement inside
the metallic regime, except at the nodal point, where a
severe underestimation by the Matsubara data of about
50% is found.

FIG. 31. Comparison of the imaginary part of the self-energy as a function of imaginary frequency for the antinode and node (first and
second rows, respectively) obtained by 2PT (orange solid lines; blue crosses mark the Matsubara frequencies) to the DiagMC
benchmark (black open circles, dashed lines) for various temperatures (1=T ¼ 1, 4, 10, and 16 from left to right). The insets show a
zoom of the lowest-frequency data (the interval range of the y axis is constant for all k-points shown in order to ensure comparability).
Third row: results for k ¼ ð3π=4; π=4Þ. Lowest row: Ornstein-Zernike parameters (for the bubble) and energy scales for 2PT (obtained
from a Matsubara fit) as functions of (inverse) temperature.
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APPENDIX D: BRIEF DESCRIPTION AND
REFERENCES OF THE PRESENTED METHODS

Asone of the goals of this paper is a synopsis of a variety of
different modern many-body techniques, in this Appendix,
we give a short overview. Of course, the Appendix cannot
serve as an exhaustive review, but it contains the basic idea of
each method as well as the necessary references for further
information and, if necessary, computational details for
obtaining the results presented in this paper.

1. DiagMC

Diagrammatic Monte Carlo (DiagMC), first developed by
Svistunov and Prokofiev [24], is based on the idea of
stochastically sampling Feynman diagrams contributing to
a perturbative expansion directly in the thermodynamic limit.
In a broad sense, the diagrammatic Monte Carlo approach
consists of the choice of a diagrammatic expansion for a given
observable, a numerical algorithm computing the correspond-
ing expansion coefficients, and, if necessary, the resummation
techniques applied to the resulting perturbative series.
The physicallymost natural [169], skeleton expansions are

potentially dangerous when applied to the two-dimensional
fermionic Hubbardmodel, as they can converge to thewrong
results in the vicinity of half-filling or whenever the local
magnetic moment develops [123,126–128,136]. In contrast,
bare expansions have a well-defined analytic structure and
generally have a nonzero convergence radius in the two-
dimensional fermionic Hubbardmodel. Such expansions can
beconstructedaroundanarbitrarystartingpoint[160,170–173].
The default choice [174,175] is to expand around the non-
interactingHamiltonianwith thechemical potential shiftedbya
constant (α ¼ U=2 at half-filling) [176], which effectively
eliminates all diagrams with Hartree-type insertions, leading
to a much improved variance, which is what we adopt here.
The choice of algorithm used to compute the expansion

coefficients determines how large expansion orders can be
obtainedwith reasonable error bars. In this paper, we employ
the currently most efficient class of algorithms, based on the
connected determinants diagrammatic Monte Carlo method
(CDet) introduced for connected quantities byRossi [25] and
generalized to the evaluation of one-particle irreducible self-
energy diagrams in Refs. [27,48,177]. The particular self-
energy implementation used in this paper is ΣDDMC from
Ref. [26] as it is very well suited for the computation of
specific k-points directly in momentum space. In its original
formulation, CDet only works with bare diagrammatic
expansions [consisting exclusively of interaction vertices
and bare propagators G0ðr; τÞ], although a generalization to
semibold [170] and bold [122,178] schemes has recently
been developed [172,173]. Contrary to previously developed
diagrammatic Monte Carlo algorithms [121,122,174,175,
178–180] that evaluate a single Feynman diagram at each
Monte Carlo step, CDet computes a factorial number of
relevant diagrams permuted over all internal vertices at
exponential cost, scaling with the expansion order m as
oð3mÞ for connected quantities [25] and oðm23mÞ for one-
particle irreducible quantities [27,48,177] [or, alternatively,
scaling as oðm22mÞ and oðm42mÞ, respectively [181] ]. This
improvement is achieved by grouping all possible diagram
topologies of a particular diagram order into determinants
and subsequently subtracting all disconnected, and in the
case of the self-energy, also all one-particle-reducible,
diagrams from the sum by using a recursive formula. As a
consequence of the exponential scaling, the total error of a
convergent series scales polynomially with computational

FIG. 32. Quasiparticle parameters Zk (upper panel) and γk
(middle panel) and the imaginary part of the self-energy extrapo-
lated to zero frequency (lower panel) at the antinode (red circles),
node (blue triangles), and k ¼ ð3π=4; π=4Þ (orange squares) in
second-order perturbation theory as a function of temperature.
The values for the crosses in the lowest panel have been obtained
directly from the real-frequency axis.
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time [182]. The statistical variance of the algorithm only
allows for the computation of a finite number of expansion
coefficients, typicallym ∼ 10–12 (compared tom ∼ 6–7 for
previous diagrammatic Monte Carlo algorithms).
In challenging cases, such as low temperatures and/or

high values of physical coupling, resummation techniques
are needed to evaluate the series close to, or beyond, the
radius of convergence, which constitutes the only source of
systematic error in this approach. A protocol for the
resummation of extrapolation, which gives control over
this systematic error, has been developed in Ref. [26].
At half-filling, every other order is equal to zero for the

double occupancy (even) as well as for the self-energy
evaluated at every k-point on the noninteracting Fermi
surface (odd). A consequence of particle-hole symmetry at
half-filling is that a single calculation of the expansion
coefficients at a given temperature yields results for all
values of U, provided the series is resummable (away from
half-filling, this is still the case; however, the evaluated
density n also changes as a function of interaction strength
U). For all presented observables, the limiting factor to the
applicability of this approach at high enough interactions
and low enough temperatures is the presence of singular-
ities in the vicinity of the positive real axis in the complex
plane of interaction strength U, which render the resum-
mation of the series prohibitively difficult. Despite the fact
that, in this work, series have only been evaluated within
their radius of convergence, resummation by means of Padé
and Dlog-Padé approximants [26,183,184] has been per-
formed in order to accelerate the convergence of series
while controlling the systematic error of the extrapolations.
In the half-filled two-dimensional Hubbard model, this
approach has previously allowed for numerically exact
results that shed light on the metallic to quasi-antiferro-
magnetic crossover as described by the self-energy [48] as
well as various other thermodynamic observables [49,185].

2. DQMC

The determinantal quantum Monte Carlo (DQMC)
algorithm, formulated by Blankenbecler, Scalapino, and
Sugar [23], is a controlled method and has been widely
applied to finite-temperature simulations of correlated
fermion systems. Its basic methodology is to transform
two-body interactions into free fermions coupled with
auxiliary fields and then sample the fields to compute
fermionic observables. To achieve this goal, a
Trotter decomposition [e−ΔτĤ ¼ e−ΔτĤ0=2e−ΔτĤI e−ΔτĤ0=2þ
O½ðΔτÞ3� is used in this work, where Ĥ0 and Ĥ1 are the
tight-binding and interacting parts of the model
Hamiltonian] and a Hubbard-Stratonovich (HS) transfor-
mation (the discrete spin decomposition [186] for an on-site
Hubbard interaction is used in this work) are applied within
the discretization for the inverse temperature as β ¼ MΔτ.
When convergence Δτ → 0 can be established, the method
is numerically exact.

The systematic error from finite Δτ is controllable and
can be eliminated by extrapolating simulations with several
different Δτ values. In Fig. 33, we present representative
results of systematic Trotter errors in DQMC simulations.
Two systems, L ¼ 24 with βt ¼ 10 and L ¼ 28 with
βt ¼ 15, are studied. We concentrate on the self-energy
at k ¼ ðπ=2; π=2Þ (upper panel) and the spin susceptibility
(lower panel). The results for both parameters show
convergence to the Δτ ¼ 0 limit for Δτt ≤ 0.06 within
our statistical uncertainty, which means that our choice of
Δτt ≤ 0.02 is reliable.
Further details about the DQMC algorithm can be found

in several review papers [187,188]. We have also imple-
mented our most recent improvements [189,190] of this
method in this work. The minus-sign problem is absent for
the Hubbard model at half-filling studied in this work, and
the DQMC method can reach large system sizes. For the
calculation of dynamical quantities, the imaginary-time
single-particle Green function and correlation functions are
measured in the DQMC simulation, and then, the imagi-
nary-frequency observables are obtained through the
Fourier transformation. The Dyson equation is then applied
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FIG. 33. DQMC: Trotter extrapolation for the lowest Matsu-
bara frequency of the imaginary part of the self-energy at the node
(upper panel) and the magnetic susceptibility at the antiferro-
magnetic wave vector (lower panel).
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to compute the self-energy. For the U=t ¼ 2 case, con-
vergence to the thermodynamic limit of all the physical
observables is observed for up to L ¼ 32 for βt ≤ 10. For
lower temperatures, we perform finite-size scalings using
second-order polynomials with constraints of monotonic
behaviors to reach the thermodynamic limit. We typically
use between 104 and 3 × 105 measurement samples for
systems with linear system size from L ¼ 20 to L ¼ 48. In
DQMC, the number of Matsubara frequencies is deter-
mined by the number of imaginary-time slicesM, which in
turn depends on the Trotter step, chosen here to be Δτ ¼
0.02 as mentioned earlier.

3. MFT

The calculation of the static mean-field theory (MFT)
susceptibility is analytically equivalent to the (non-self-
consistent) random phase approximation (RPA). The idea
of the RPA, originally introduced in Ref. [191], is building
ladders for the susceptibilities with the bare interactionU in
the physically relevant channel, utilizing the noninteracting
susceptibility Eq. (C2). Thus, the fermionic propagator is
the noninteracting Green function G0ðk; iωnÞ. The inter-
acting susceptibility is obtained via

χRPAsp ðq; iΩnÞ ¼
2χ0ðq; iΩnÞ

1 −Uχ0ðq; iΩnÞ
: ðD1Þ

We use a momentum grid with maximum linear mesh sizes
of Nq ¼ 128 and Nk ¼ 128 and the number of fermionic
Matsubara frequencies being Niω ¼ 1000.

4. DMFT

The dynamical mean field theory (DMFT) has become
one of the standard techniques for tackling strongly
correlated systems over the past decades. Its basic idea
consists in mapping the full lattice Hamiltonian Eq. (1) onto
a self-consistently determined single-site Anderson impu-
rity model. This procedure is exact in infinite dimensions,
but it represents an approximation in finite dimensions
because it neglects spatial correlations. Hence, the self-
energy in DMFT is purely local. For further details of the
algorithm, we recommend the seminal papers [9,10] and
the review [28]. The self-energy and magnetization data
presented in this paper have been produced using a state-of-
the-art continuous-time quantum Monte Carlo impurity
solver in its interaction expansion (CT-INT [176,192,193]),
which is, like the DMFT self-consistency scheme, entirely
implemented in the TRIQS framework [194]. For the
calculation of the (magnetic) susceptibility and correlation
length, we used data from both (i) an exact diagonalization
(with four bath sites) impurity solver and the implementa-
tion of the Bethe-Salpeter equations presented in Ref. [195]
and (ii) the CT-INT solver and two-particle response
function framework of TRIQS [196], carefully cross-

checking that they obtain the same results. As the magnetic
correlations (and correlation lengths) grow exponentially,
reaching low temperatures, we used a very dense momen-
tum grid for these data, with maximum linear mesh sizes of
Nq ¼ 200 and Nk ¼ 200 and the number of fermionic
Matsubara frequencies being Niω ¼ 160. In the case of the
CT-INT impurity solver, we used Ncycles ¼ 1.2 × 107

Monte Carlo steps.

5. Cluster extensions of DMFT

a. DCA

The dynamical cluster approximation (DCA) [29,67,68]
is an embedding technique wherein the electron self-energy
is obtained from the solution of an impurity model with Nc
interacting sites coupled to an infinite bath. As such, the
DCA is just one particular generalization to Nc > 1 of the
“single-site” dynamical mean-field method that becomes
exact as the number of impurity sites Nc → ∞ [10,28,29].
The DCA formulation partitions the Brillouin zone into Nc
equal-area tiles and approximates the self-energy in each
tile a, Σa as a piecewise constant function of momentum as

Σðk;ωÞ ¼
X

a¼1.::Nc

ϕaðkÞΣaðωÞ; ðD2Þ

where ϕaðkÞ ¼ 1 if k ∈ a and ϕaðkÞ ¼ 0 for k ∉ a.
Similar to DMFT, the DCA invokes a self-consistency loop
where an initial guess for the impurity model parameters
produces a set of Σa, which are then used to update the bath.
In this work, we obtain results for large values of Nc in the
paramagnetic phase but note that, at the weak-coupling and
low temperatures studied in this work, the DCA expansion
in cluster size Nc does not appear to be in a scaling regime,
and therefore, one needs much larger clusters in order to
estimate the infinite-system-size limit [48,197].
To solve the Nc-site impurity problem, we use the

continuous-time auxiliary-field method [193,198] with
submatrix updates [199]. Similar to other methods that
employ Hubbard-Stratonovich decoupling, the primary
computational hurdle is finding determinants of an m×m
matrix, where m is referred to as the expansion order.
Unlike Hirsch-Fye solvers that employ a fixed Δτ, the
expansion order and time steps in the continuous-time
auxiliary-field method (CT-AUX) are not fixed—an impor-
tant improvement that removes the necessity for a Δτ → 0
extrapolation. In the case of the DCA, applying CT-AUX to
clusters of size Nc results in an expansion orderm ∝ βUNc
[73]. In this work, we have presented data primarily for
fixed cluster size Nc ¼ 128 on a bipartite cluster. The DCA
self-consistency is presumed to be paramagnetic and is
iterated approximately 15–20 times until the deviation
between iterations is much less than the statistical error
obtained from approximately 2 × 106 samples of each
frequency up to n ¼ 1024. Our DCA and CT-AUX codes
are based on the ALPS libraries [200,201].

THOMAS SCHÄFER et al. PHYS. REV. X 11, 011058 (2021)

011058-36



b. CDMFT

Cellular dynamical mean-field theory (CDMFT) is the
real-space cluster extension of DMFT [29,77,81,202].
While proposed around the same time, it has so far been
less widely used than the complementary dynamical cluster
approximation, which is formulated in momentum space.
The impurity of the auxiliary Anderson model in CDMFT,
contrary to single-site DMFT, usually consists of super-
structures obtained by upfolding the lattice unit cell. On the
square lattice, e.g., these superstructures may consist of
N × N quadratic patches. Hence, nonlocal correlations are
included on length scales given by the cluster size as
intersite single-particle self-energies. Even within the afore-
mentioned patch geometries, which typically retain point-
group symmetry, translational symmetry is broken (for
N > 2 even within the cluster). Reperiodization schemes
suffer from ambiguity and may even lead to convergence
problems when attempted inside the self-consistency loop.
The lattice quantities are therefore approximated from the
converged CDMFT solution by restoring the translational
invariance for the Green function, the self-energy, or its
cumulants [32,70,202–207]. This study uses the cumulant
scheme presented in Appendix B of Ref. [71].
A recent study [71] has shown that a so-called center-

focused extrapolation of self-energies (and even suscep-
tibilities) to infinite cluster sizes (with a linear regression in
1=N) yields the best results in comparison to numerically
exact diagrammatic quantum Monte Carlo calculations.
The CDMFTþ CFE self-energies presented in this paper
have been obtained by considering quadratic patches of up
to N ¼ 8 for the extrapolation scheme. The auxiliary
impurity models were solved using a state-of-the-art
continuous-time quantum Monte Carlo impurity solver
in its interaction expansion (CT-INT [176,192,193]),
implemented in the TRIQS framework [194]. We used
20 CDMFT self-consistency loops (until convergence).
Afterwards, we performed 30 simulations with different
random seeds starting from this previously converged
solution. We take the self-energy as the mean of these
30 simulations. The simulations start with 10 000 warmup
cycles, followed by 4 × 106 measurement cycles (the length
of a cycle is 300 Monte Carlo steps).
For the calculation of the magnetic susceptibility, we

applied an antiferromagnetic staggered field H and mea-
sured the staggered magnetization m. We then linearized
the m −H curve at small fields:

Reχ(q ¼ ðπ; πÞ; iΩn ¼ 0) ¼ ∂m
∂H

����
H¼0

: ðD3Þ

Figure 34 shows a sample of these curves for various
temperatures. The transition to an antiferromagnetic
ordered state is signaled as a vertical tangent at H ¼ 0,
i.e., as a divergence of the susceptibility, at 1=TNéel ≈ 13.7.
This temperature represents a very small correction with
respect to DMFT, where 1=TNéel ≈ 12.5.

6. Diagrammatic extensions of DMFT

A different route for the inclusion of spatial correlations
on top of DMFT is to take its diagrammatic extensions. The
principle is to extract a higher-order correlation function
from an auxiliary impurity model and consistently calculate
the desired observables from it. For a very recent overview
of diagrammatic extension of DMFT, see Ref. [33]. More
detailed information for each method is given below.

a. DΓA
In the dynamical vertex approximation (DΓA) [53,106],

the two-particle analog of the self-energy, the fully irre-
ducible two-fermion scattering vertex Λ, in the spirit of
DMFT, is assumed to be purely local. In order to obtain
the corresponding susceptibilities and self-energies, with-
out the knowledge of leading instabilities, the parquet
equations have to be solved self-consistently (see
Refs. [208,209] for nanoscopics, Ref. [210] for π-tons,
and Refs. [62,211] for the two-dimensional Hubbard
model). However, if (like in the present case of the
Hubbard model) the leading instability is known, the
scheme can be significantly facilitated by considering only
the Bethe-Salpeter equations in the associated scattering
channel and the Dyson-Schwinger equation, in order to
obtain susceptibilities and self-energies (for successful
applications, see Refs. [47,52,72,153,154,209,212–217]).
In the vicinity of a phase transition, in order to restore the
proper sum rules for the susceptibilities (and, thus, the
asymptotics of the self-energy and, therefore, the two-
particle self-consistency), within the ladder version of the
DΓA, a Moriyaesque so-called λ correction is used
[51,53,106,218]. For the results presented in the main text
of the current paper, this correction is only done for the spin
susceptibility (λsp, see below). For the calculation of the
(magnetic) susceptibility and correlation length, we used
data from an exact diagonalization (with four bath sites)
impurity solver, and the implementation of the Bethe-
Salpeter equations and Dyson-Schwinger equation

FIG. 34. Antiferromagnetic staggered magnetization m vs
staggered applied field H in CDMFT on an 8 × 8 lattice for
various temperatures.
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presented in Ref. [195] (again, like in the DMFT case) was
cross-checked with CT-INT. We used a momentum grid
with maximum linear mesh sizes of Nq ¼ 200 and Nk ¼
200 and the total number of fermionic, as well as bosonic
Matsubara frequencies, being Niω ¼ NiΩ ¼ 160. For com-
pleteness, it is instructive to version of a Moriyaesque λ
correction [51,53], it is instructive to also compare the results
obtained with the correction in both particle-hole channels
(i.e., charge and spin, λsp þ λch; see Eq. (6) in Ref. [51])

1

β

X
Ω;q

χΩ;λrr;q ¼ 1

β

X
Ω
χΩr ðD4Þ

[with r ¼ ðch; spÞ] to the ones obtained with only a
correction in the spin channel [λsp, Eq (5) in Ref. [51] ]:

1

β

X
Ω;q

1

2
½χΩ;λspsp;q þ χΩch;q� ¼

1

β

X
Ω
χΩ;AIM↑↑ ¼ n

2

�
1 −

n
2

�
: ðD5Þ

Results for both schemes are presented in Fig. 35. In
comparison with DiagMC in Fig. 10, the self-energy
obtained with λsp þ λch would lead to a slightly better
agreement of the imaginary part at low frequencies at the
antinode in comparison to the benchmark (left and central
panels) but a slightly worse agreement for the susceptibility,
the correlation length, and T� (right panel). It should be
noted that the spin susceptibility and correlation length of
DΓA with λsp agree almost perfectly with a version of TPSC
+, coined TPSCþ GG, down to low T. A more detailed
comparison of different TPSC variants is given in
Appendix D 11. Eventually, in order to be able to compare

the simple DΓAesque approximation discussed in Sec. VII
D, we recall the Dyson-Schwinger equation of motion for
the ladder version of the DΓA (see Refs. [53,106,219], here
omitting the Hartree term):

Σðk; iωnÞ ¼
UT2

2

X
q;iΩn

½γωΩch;q − 3γωΩsp;q þ 2

þ UγωΩch;qχ
Ω
ch;q þ 3UγωΩsp;qχ

Ω
sp;q

−
X
k0;iω0

n

ðFωω0Ω
ch − Fωω0Ω

sp Þ

×Gðk0; iω0
nÞGðk0 þ q; iω0

n þ iΩnÞ�
×Gðkþ q; iωn þ iΩnÞ; ðD6Þ

where χ refers to the physical,Moriya-corrected susceptibility,
F denotes the full two-particle vertex from the self-consis-
tently determined Anderson impurity model in DMFT and
G ≔ GDMFT, and the last line of the equation accounts for
double-countingcorrectionsof the local part of the self-energy.
Here, γ denotes the electron-boson coupling vertex (already
integrated over the internal momentum k). For the simple
approximation in Sec. VII D, the electron-boson coupling
vertex is set to unity for all momenta and frequencies. A
precise definition of the components of the equation ofmotion
can be found in Eq. (4.19) of Ref. [219].

b. TRILEX

The triply irreducible local expansion (TRILEX) method
is a relatively recent approach to strong correlations, which
utilizes the decoupling of the fermion-fermion interaction
of the Hubbard Hamiltonian into auxiliary bosons

FIG. 35. Results from alternative Moriya correction schemes in ladder DΓA for various quantities. Note that the lowest temperatures
shown for the self-energy do not agree, in order to show the full gap in both schemes.
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[220,221]. For these bosons, the fermion-boson vertex of a
self-consistently determined impurity model is extracted,
and the lattice polarization and self-energy are calculated
via Hedin’s equations. The beauty of this approach consists
in the facts that (i) the fermion-boson vertex is relatively
easy to calculate (compared to the four-point vertex), (ii) the
convergence of the method to the exact solution can be
achieved via a cluster extension of TRILEX [222] (we used
DCA clusters with two and four sites in this paper), and
(iii) the extension for treating superconductivity is straight-
forward [223]. However, the interaction is not unique, and
it comes at the price of introducing an additional (Fierz)
parameter α, which, in this paper, is set in such a way that
we decouple only the spin channel (i.e., α ¼ 1=3 in
Heisenberg spin decoupling [221]). This choice can be
motivated by a so-called fluctuation diagnostics analysis of
the self-energy in the pseudogap regime of the Hubbard
model [88]. A different route to enhance the results of
TRILEX can be made by inserting the fermion-boson
vertex on both sites of the Hedin equations (an approach
that we call TRILEX Λ2; see also Refs. [224,225] for a
similar idea in the dual theories; see also Ref. [226] for an
efficient evaluation of the polarization bubble in DMFTand
Ref. [227] for the question of conservation in two-particle
self-consistent theories). The self-energies in the main text
using this method show results that turn out to be similar to
Nc ¼ 4 cluster TRILEX. We used momentum grids with
maximum linearmesh sizes ofNq ¼ 128 andNk ¼ 128, and
the number of fermionic and bosonic Matsubara frequencies
were chosen as Niω ¼ 200 and NiΩ ¼ 20, respectively. For
the impurity solver (CT-INT [176,192,193]), we used
Ncycles ¼ 6.9 × 107 Monte Carlo steps.

c. DF

The dual-fermion (DF) approach [228–230] is a dia-
grammatic extension of the single-site DMFT, motivated by
the idea that nonlocal corrections to DMFT can be captured
by a perturbative expansion around a solution of the
dynamical mean-field impurity problem.
In the dual-fermion formalism [228,231], one replaces

the lattice problem with a lattice of coupled Anderson
impurity problems, resulting in an action of the form

S½f; f�� ¼
X
ωkσ

g−2ω (ðΔω − ϵkÞ−1 þ gω)f�ωkσfωkσ þ
X
i

Vi;

ðD7Þ

with Vi ≡ V½f�i ; fi�, and where gw is the momentum-
independent Green function of the Anderson impurity
problem; Δω is the hybridization function between the
impurity and the bath [28,228]. The dual-fermion action
now depends on f and f�, which are dual operators
obtained via a Hubbard-Stratonovich transformation, and
in this dual space, the interaction terms become local and

are collected in the function Vi [232–234]. Correctly
representing Vi remains problematic due to the complexity
of higher-leg vertex functions [235,236], so we truncate the
vertex at the level of four-leg operators, although higher-
order contributions may be important [33,237,238]. Once
the dual self-energy Σ̃ðk;ωÞ is obtained, the lattice self-
energy is given by

Σðk;ωÞ ¼ Σ̃ðk;ωÞ
1þ gωΣ̃ðk;ωÞ

þ ΣDMFTðωÞ: ðD8Þ

We present DF results from the open-source opendf code
[231], starting from a single-site (Nc ¼ 1) dynamical mean-
field solution obtained with a CT-AUX [73,193,199]
impurity solver. The method treats all local correlations
in a nonperturbative manner via DMFT and then perturba-
tively includes nonlocal correlations via a restricted set of
self-consistent ladder diagrams for the nonlocal (“dual”)
self-energy in the charge and spin channels, which is
known as the self-consistent ladder dual-fermion method
[230]. From this method, one can also extract two-particle
spin susceptibilities, which we present. However, there is
no self-consistency on the two-particle level, and as such,
the status of two-particle susceptibilities from DF is known
to be approximate and expected to maintain only qualitative
correctness [239]. In all cases, the input DMFT solutions
(Green functions and vertices) are obtained using a CT-
AUX method [193].
DMFT results for the full vertex Fν;ν0;ω are obtained with

a frequency truncation in ν; ν0;ω. We present results with
truncations jνcj ¼ jν0cj ¼ 96 in fermionic frequencies and
jωcj ¼ 64 in bosonic frequencies. The DF result is not
strongly dependent upon this truncation. More important is
the known sensitivity of the result to the momentum
resolution [240]. As such, we employ a 64 × 64 k-space
grid in the DF self-consistency. Further, the result for the
lattice self-energy is extremely sensitive to the value of the
dual self-energy due to the inversion in Eq. (C7). We iterate
the DF self-consistency until convergence on the scale of
1 × 10−8. We also refer to a recent study of the doped
Hubbard model in a dual parquet scheme [241,242] and a
dual parquet solution of the Falicov-Kimball model [243].

d. DB

The dual boson (DB) approach [244–246] is an exten-
sion of the DF approach that, additionally to the local
Coulomb interaction, accounts for the effect of nonlocal
interactions in different bosonic channels (ς). Within the
DB approach, local electronic correlations are considered
exactly in the framework of the (extended) dynamical
mean-field theory (EDMFT) [247,248]. Nonlocal collec-
tive fluctuations are treated diagrammatically beyond the
EDMFT level. For this aim, dual-boson fields φς are
introduced in addition to dual-fermion variables fð�Þ that
are already present in the DF approach. The DB theory is
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derived analytically using a path-integral formalism, so
many existing EDMFT-based approaches can be obtained
as a certain approximation of the DB method [225,246].
Also, the DB theory fulfills the Mermin-Wagner theorem,
which allows us to avoid unphysical phase transitions in
two dimensions [249].
The action of the DB theory is as follows:

S̃ ¼ −
X
k;ω;σ

f�kωσG̃
−1
kωσfkωσ −

1

2

X
q;Ω;ς

φς
qΩW̃

ς−1
qΩ φς

−q;−Ω þ F̃ :

ðD9Þ

Here, the bare fermion G̃k;ν;σ and boson W̃ς
q;ω propa-

gators are given by nonlocal parts of the EDMFT Green
function and renormalized interaction [246], respectively.
The interaction part F̃ ½f�; f;φ� of the dual action contains

all possible, exact, local fermion-fermionand fermion-boson
vertex functions of the impurity problem. Here, as well as in
most of the DB approximations, we restrict ourselves to the
lowest-order (two-particle) interaction terms that are given
by the four-leg fermion-fermion and three-leg fermion-
boson vertex functions. This truncation of the interaction
allows us to describe collective charge [250,251] and spin
[252,253] degrees of freedom in a conserving way using the
ladder DB approximation [244–246,254].
In the main part of the text, only single-shot ladder dual-

boson results are discussed. These calculations are per-
formed on the basis of the converged DMFT solution of the
problem, where the bosonic hybridization function is equal
to zero. Importantly, in the latter case, the DB theory fully
coincides with the DF approach if only the local Coulomb
interaction is considered. The corresponding local impurity
problem is solved using the open-source CT-HYB solver
[255,256] based on the ALPS libraries [257]. This solution
requires Ncycles ¼ 8.1 × 107 Monte Carlo steps. After that,
we calculate the dual self-energy and polarization operator
diagrammatically and perform only the inner self-consis-
tency loop in order to obtain the dressed Green function and
renormalized interaction using the Dyson equation. For this
purpose, we use a momentum grid with a maximum linear
mesh size of Nk ¼ 128, with the number of fermionic and
bosonic Matsubara frequencies being Niω ¼ 256 and
NiΩ ¼ 64, respectively. The expression for the lattice
self-energy of the DB approach coincides with the one
of the DF theory in Eq. (D8). The lattice polarization
function can be found using a similar expression [224]:

Πðq;iΩnÞ¼
Π̃ðq;iΩnÞ

1þWðiΩnÞΠ̃ðq;iΩnÞ
þΠEDMFTðiΩnÞ: ðD10Þ

The fully self-consistent DB calculations can be per-
formed as follows. To obtain the fermionic hybridization of
the effective impurity problem, we use the outer self-
consistency condition that equates the local part of the

lattice Green function and local impurity Green functionP
k Gkωσ ¼ gωσ. Regarding the bosonic hybridization

function, there is no clear method for how this quantity
has to be determined. Here, we investigate two different
self-consistency schemes that fix the bosonic hybridization.
For the X-self-consistent (Xsc) result, the local part of the
lattice susceptibility is equated to the corresponding local
susceptibility of the impurity problem

P
q X

ς
Ω ¼ χςΩ. The

other self-consistency can be imposed on a renormalized
(screened) interaction (Wsc)

P
q W

ς
Ω ¼ wς

Ω. The renormal-
ized interaction W of the lattice problem can be defined as

Wς−1ðq; iΩnÞ ¼ Uς−1 − Πςðq; iΩnÞ; ðD11Þ

where Uch=sp ¼ �U=2 [225]. The EDMFT renormalized
interaction can be obtained by neglecting the dual con-
tribution to the polarization operator in Eq. (D11), so that
Πςðq; iΩnÞ ¼ ΠςEDMFTðiΩnÞ. The renormalized interaction
of the impurity problem can be found as

wς−1ðiΩnÞ ¼ (Uς þ YςðiΩnÞ)−1 − ΠςEDMFTðiΩnÞ; ðD12Þ

where YςðiΩnÞ is the bosonic hybridization function.
Corresponding results are shown in Figs. 36 and 37. We
note, as well, that the comparisons between self-consistent
DB and self-consistent DF schemes are in good agreement,
but they differ from the exact result. As we point out in the
main text, the single-shot DB approach correctly reprodu-
ces exact DiagMC results at almost all temperatures.
Surprisingly, we observe that the Xsc DB calculations
strongly deviate from the exact result presented in both
figures. At the same time, we find that the Wsc DB result
for the self-energy agrees with DiagMC calculations even
better than the single-shot DB one. However, two-particle
quantities, such as the lattice susceptibility and double
occupancy, get worse when the self-consistency on the
renormalized interaction is utilized. This observation can be
explained by the fact that the considered bosonic self-
consistencies cannot fix all desired single- and two-particle
quantities at the same time. Therefore, the question of a
good self-consistency for the bosonic hybridization func-
tion remains open.

7. Other approximations

a. TPSC and TPSC+

i. TPSC

The two-particle self-consistent (TPSC) [93,94,258]
approach is a nonperturbative approach that is only valid
from weak to intermediate interaction strengths; hence, it
does not describe theMott transition. Nevertheless, there are
a large number of physical phenomena that it allows us to
study with an accuracy comparable to other numerically
exact methods. In particular, in two dimensions, it describes
the entry into the renormalized classical regime of
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antiferromagnetic fluctuations. There are no adjustable
parameters as opposed to, for example, self-consistent
renormalized spin-fluctuation theory. It satisfies conserva-
tion laws for total spin and total charge, the Mermin-Wagner
theorem, and the Pauli principle in the form hn2σi ¼ hnσi, as
well as the local spin and local charge sum rules. The two
local sumrules, in addition to the ansatz that the renormalized
irreducible spin interactionvertex is given byUsphn↑ihn↓i ¼
Uhn↑n↓i, suffice to obtain the irreducible vertices

Usp ≡
δΣð1Þ

↑

δGð1Þ
↓

−
δΣð1Þ

↑

δGð1Þ
↑

; Uch ≡
δΣð1Þ

↑

δGð1Þ
↓

þ δΣð1Þ
↑

δGð1Þ
↑

; ðD13Þ

and then compute the spin and charge susceptibilities from

χspðqÞ ¼
χð1ÞðqÞ

1 − 1
2
Uspχ

ð1ÞðqÞ ; ðD14aÞ

χchðqÞ ¼
χð1ÞðqÞ

1þ 1
2
Uchχ

ð1ÞðqÞ : ðD14bÞ

The local spin and charge sum rules are given by TrχspðqÞ ¼
n − 2hn↑n↓i and TrχchðqÞ ¼ nþ 2hn↑n↓i − n2, respec-
tively, and the trace is over the spin and momentum space.
The above ansatz for Usp was inspired from Ref. [259,260]
and was found independently in Ref. [261].
At the first-level approximation [hence, the superscript

“(1)”] of TPSC, the irreducible particle-hole bubble dia-
gram is obtained from

χð1ÞðqÞ ¼ −Tr½Gð1ÞGð1Þ� ¼ −
X
k

G0ðkÞG0ðkþ qÞ;

ðD15Þ

where the Green function Gð1Þ
σ ðkÞ includes a constant self-

energy Σð1Þ
σ and renormalized chemical potential that lead

to a noninteracting form G0ðkÞ. The two irreducible
vertices suffice to find an improved self-energy [111] that
does not assume Migdal’s theorem and that takes into
account rotational invariance and crossing symmetry,

Σð2Þ
σ ðkÞ ¼ Un−σ

þU
8

X
q

½3UspχspðqÞ þ UchχchðqÞ�Gð1Þ
σ ðk − qÞ:

ðD16Þ

The consistency condition between one-particle and two-
particle properties (Galitskii-Migdal formula referred to in
the main text),

1

2
Tr½Σð2ÞGð1Þ� ¼ Uhn↑n↓i; ðD17Þ

serves as a guide for the domain of validity of TPSC.
(Double occupancy obtained from sum rules on spin and
charge equals that obtained from the self-energy and the
Green function. When 1

2
Tr½Σð2ÞGð2Þ� starts to deviate from

FIG. 37. Results from alternative DB schemes—single-shot
(DB), self-consistent (XscDB), and W-self-consistent (WscDB)—
for the double occupancy compared to DiagMC.

FIG. 36. Results from alternative DB schemes—single-shot (DB), self-consistent (XscDB), and W-self-consistent (WscDB)—for
various quantities.

TRACKING THE FOOTPRINTS OF SPIN FLUCTUATIONS: A … PHYS. REV. X 11, 011058 (2021)

011058-41



the above, the method starts to fail.) See Refs. [34,262] for
detailed comparisons with QMC calculations and other
approaches and discussions of the physics. Reference [31]
reviews the work related to the pseudogap and super-
conductivity up to 2005, including detailed comparisons
with quantum cluster approaches in the regime of validity
that overlaps with TPSC (intermediate coupling). A peda-
gogical review of the results and derivations appears
in Ref. [35].
TPSC numerical results in the present paper have

been obtained on a 256 × 256 lattice and with 2 × 1024
Matsubara frequencies with tails treated analytically.
Because of the self-energy iterations, we use a 128×128
lattice and 2 × 512 Matsubara frequencies in TPSC+
calculations, so the sufficient precision can be obtained
using moderate computational resources, as in TPSC.

ii. TPSC+

One of the main limitations of TPSC is that, even for
weak to intermediate interaction strengths, it is not valid
deep in the renormalized classical regime [258]. For
example, for the half-filled Hubbard model with only
nearest-neighbor hopping, one finds that Usp tends to zero
as the temperature goes to zero, contrary to the fact that Usp

and the site double occupancy hn↑n↓i ¼ ðUsp=UÞhn↑ihn↓i
must saturate to a finite value as T → 0 due to virtual states.
To remedy this problem, an improved TPSC has recently

been proposed [36]. We refer to this extension as TPSC+. It
is based on an extension of the ideas of Kadanoff and
Martin [263] who treated the normal state of supercon-
ductors in such a way that it connects smoothly to the
superconducting state described by the BCS equation. The
key idea is that the pair susceptibility takes an asymmetric
form χðqÞ ¼ −Tr½GðkÞG0ðq − kÞ�. It is called the pairing
approximation or GG0 theory in this context, and it has
been extensively used by Levin’s group to study pairing
pseudogaps and related phenomena [264,265].
We apply that idea to the repulsive Hubbard model and

use the asymmetric form in the particle-hole bubble,

χ̃ð2Þ ¼ −
1

2
Tr½G̃ð2Þðkþ qÞGð1ÞðkÞ þ G̃ð2Þðk − qÞGð1ÞðkÞ�;

ðD18Þ

where the self-energy Σ̃ð2Þ entering G̃ð2Þ has the same form
as Eq. (D16): Contrary to the original Kadanoff-Martin
approach, the irreducible vertices are computed from the
same sum rules and ansatz, but the susceptibilities in
Eq. (D14) are obtained from χ̃ð2Þ instead of from χð1Þ.
The tilde symbol (̃ ) indicates that Σ̃ð2Þ, G̃ð2Þ, and χ̃ð2Þ self-
consistently depend on each other. Note that the trace also
includes the spin.

The advantages of this approach are as follows. (a) The
generalized Stoner criterion for the phase transition temper-
ature TN becomes identical to the mean-field gap equation
in the antiferromagnetic state, with the interaction vertex
reduced from the bare U to Usp [36]. (b) The Mermin-
Wagner theorem and the Pauli principle are satisfied.
Analytical arguments that demonstrate these results pro-
ceed in a manner analogous to those in TPSC. (c) One- and
two-particle properties are consistent in the sense that
1
2
Tr½Σ̃ð2ÞG̃ð2Þ� ¼ Uhn↑n↓i is satisfied exactly with double

occupancy equal to that obtained from the local spin and
charge sum rules. (d) Analytical arguments analogous to
those in TPSC show that there is a pseudogap in two
dimensions that is a precursor to the antiferromagnetically
ordered state at zero temperature. Because the susceptibility
dressed by the self-energy remains finite at zero temper-
ature, renormalized Usp remains finite while pushing TN to
zero. Furthermore, at zero temperature, the size of the
pseudogap Δpseudogapð0Þ becomes equal to the finite mag-
netic gap Δð0Þ.
On the downside, the susceptibilities at zero wave vector

do not vanish at finite frequency, as conservation laws say
they should. However, the values of the zero-wave-vector
susceptibilities at finite frequency are generally small.
Finally, the f-sum rule is also slightly violated.
Heuristically, another explanation of the approach comes

from the expected cancellations between vertices and self-
energy. Consider the Bethe-Salpeter equation for the four-
point function (susceptibilities),

δG
δϕ

¼ −G
δG−1

δϕ
G; ðD19Þ

where we have used the identityGG−1 ¼ δð1 − 2Þ. Suppose
a quasiparticle picture applies, namely,G ¼ ZG0, whereZ is
the quasiparticle weight.
In some approximation, the Z−1 from the vertices

δG−1=δϕ cancels Z from one of the Green functions. In
some sense, Usp and Uch account for the average momen-
tum-space screening of the interaction vertices, while Z−1

accounts for their frequency dependence.
Numerical results for TPSC+ in the present paper have

been obtained on a 128 × 128 lattice with 2 × 512
Matsubara frequencies. Fast Fourier transforms with a
uniform grid for imaginary time τ are used in the self-
consistent calculations of Σ̃2PT and χ̃2PT.
Eventually, we would like to comment on result from a

TPSC+ variety, which utilizes the full Green function G
instead of G0 and is therefore coined TPSCþ GG. In
Fig. 35, we see that there is very good agreement of the
TPSCþ GG with DΓA for the spin susceptibility and
correlation length. Figure 38 now also shows that at low T,
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the double occupancy agrees well with the benchmark,
although it does not open the pseudogap.

b. fRG

The characteristic scale-dependent behavior of numerous
strongly correlated electron systems can be treated in a
flexible and unbiased way by the functional renormalization
group (fRG); see Refs. [37,266–268] for a review (see also
Refs. [269–272] for the context of thepseudogap). Its starting
point is an exact functional flow equation, which yields the
gradual evolution from a microscopic model action to the
final effective action as a function of a continuously

decreasing energy scale. Expanding in powers of the fields,
one obtains an exact hierarchy of flow equations for the
n-particle irreducible vertex functions, which, in practical
implementations, is truncated at the two-particle level.
Neglecting the renormalization of three- and higher-order
particle vertices yields approximate one-loop flow equations
for the self-energy and two-particle vertex [273].
The underlying approximations are devised for the weak

to moderate coupling regimes. A substantial improvement
with respect to previous fRG-based computation schemes
relies on an efficient parametrization of the two-particle
vertex, where we combine the so-called “truncated unity”
fRG [274–276] using the channel decomposition in

FIG. 38. Results from TPSC, TPSC+, and TPSCþ GG.

FIG. 39. Comparison of the imaginary parts of the self-energies at the antinode (upper panel) and node (lower panel) as a function of
Matsubara frequencies calculated by using the scale derivative of the Schwinger-Dyson equation (fRG, left panels, presented in the main
text) and by the conventional self-energy flow [fRG (conv.), middle panels]. In contrast to the results shown in Figs. 10 and 11, the
reduced renormalization of the self-energy in fRG (conv.) leads to an enhanced spin susceptibility Reχspðq ¼ ðπ; πÞ; iΩ0Þ (right upper
panel) and correlation length ξ (lower right panel). The self-energy implementation in the conventional flow does not capture the
pseudogap opening.

TRACKING THE FOOTPRINTS OF SPIN FLUCTUATIONS: A … PHYS. REV. X 11, 011058 (2021)

011058-43



conjunction with a form-factor expansion for the momen-
tum dependence with the full frequency treatment [277],
which includes the high-frequency asymptotics [107,235].
Here, we use the Katanin replacement [278] in the flow
equation for the two-particle vertex as a first step towards
the multiloop extension of the fRG, which would allow us
to sum up all the diagrams of the parquet approximationwith
their exact weight [57,150]. In order to account for the form-
factor truncation, the self-energy flow is determined by the
scale derivative of the Schwinger-Dyson equation [58,59]
replacing the conventional one-loop flow equation (in
Fig. 39). We refer to Refs. [58,59,150] for the details of
the algorithmic implementation and, in particular, also for the
postprocessed computation of the susceptibilities from the
flowing vertex and self-energy; the technical parameters are
reported inTable II. The double occupancy is calculated from
two-particle quantities according to

D ¼ 1

2β

X
q;Ωn

½χchðq; iΩnÞ − χspðq; iΩnÞ� þ
n2

4
: ðD20Þ

We note that, also taking into account multiloop corrections,
these algorithmic advancements have been shown to bring
the fRG for interacting fermions on 2D lattices to a
quantitatively reliable level, in particular, recovering the
PA [58,150].

c. PA

The parquet approach is a diagrammatic scheme first
introduced by DeDominicis and Martin in 1964 [38]. It
relies on the classification of diagrams contributing to the
full one-particle irreducible two-particle vertex in terms of
their two-particle reducibility. These diagrams can be either
fully two-particle irreducible or two-particle reducible in
one of three channels [39,279,280]. The method is
unbiased with respect to the channels and exact if using
the exact, fully two-particle irreducible vertex as an input.
The parquet approximation (PA) applied here consists in

setting this fully two-particle irreducible vertex to the bare
Hubbard U, i.e., its lowest-order contribution, which is
correct only up to fourth order in perturbation theory. The
PA has previously been used to study several condensed-
matter problems, including the Hubbard model
[210,211,281–285]. The results presented here have been
obtained with the TUPS [62] implementation, which relies
on the method of truncated unities [61,276] and vertex
asymptotics [107,286] in order to represent vertex func-
tions, as well as a previously developed parallelization
scheme in order to perform computations efficiently
[282,283].
All results are converged in the number of discrete lattice

momenta (Nq) and positive fermionic Matsubara frequen-
cies (Nfþ) used. Concretely, we use linear mesh sizes of

Nq ¼ 48 and Nfþ ¼ 40 at βt ¼ 16 and fewer frequencies
and momenta for higher temperatures. The results for βt ¼
20 have been extrapolated to an infinite grid size. The
number of basis functions (NFF) inherent to the truncated
unity method [61] is set to NFF ¼ 9 for all calculations. As
has been shown in Ref. [61], it is sufficient to reproduce the
full basis results for βt ≤ 5, but it constitutes an additional
approximation for lower temperatures. This approximation
is quite likely responsible for the PA underestimation of the
AFM susceptibility (and, as a consequence, the pseudogap
temperature) in comparison with the benchmark. The AFM
susceptibility is also underestimated in the full parquet
DΓA scheme, when the number of basis functions NFF is
limited to NFF ≤ 9, as has been shown in Ref. [287]. Avery
promising new computational scheme has recently been
proposed [288], which may allow for significant reduction
of frequency box sizes and thus make computations with
more basis functions (NFF > 9) feasible. The double
occupancy was calculated using Eq. (8). Note that in the
PA, the sum rule relating the double occupancy obtained
from one-particle and two-particle quantities,

TABLE II. Technical parameters for the fRG calculations for all
temperatures, performed with a smooth frequency cutoff. Here, n
is the number of positive fermionic frequencies that determine the
parametrization of the two-particle vertex (see Ref. [150] for the
definitions). The rest function contains ð4nþ 1Þ × ð2nÞ × ð2nÞ,
the K2-function and the fermion-boson vertex ð4nþ 1Þ × ð2nÞ,
theK1-function (128nþ 1), and the self-energy ð8nÞ frequencies.
The fermionic momentum dependence of the vertices and
response functions is accounted for by a form-factor expansion,
where we consider only the local s-wave contribution since, at
half-filling, the physics is dominated by antiferromagnetic
fluctuations. The remaining momentum dependence of the
vertices, the response functions, and the self-energy is calculated
on ðkx × kxÞ equally spaced momentum patches, while the Green
functions and their summation in the particle-hole and particle-
particle excitation are calculated on a ðpx × pxÞ grid. The grid for
the vertices and response functions is refined around q ¼ ðπ; πÞ,
adding ðkrefinex × krefinex Þ patches from the ðpx × pxÞ grid, account-
ing for 216 additional patches with respect to the ones already
included in the ðkx × kxÞ grid.
1=T n kx krefinex px

1 4 8 15 40
2 4 8 15 40
3 4 8 15 40
5 6 12 15 60
7 8 16 15 80
8 8 16 15 80
10 8 16 15 80
11 8 16 15 80
12 8 16 15 80
13 8 20 15 100
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D ¼ 1

2β

X
q;Ωn

½χchðq; iΩnÞ − χspðq; iΩnÞ� þ
n2

4

¼ 1

β

X
k;ωn

Σðk; iωnÞGðk; iωnÞ; ðD21Þ

is fulfilled, by construction. The PA also fulfills [60,62] the
Mermin-Wagner theorem [21,22].
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