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The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a remarkable tool for
analytically studying strongly coupled physics. Thanks to the AdS/CFT correspondence, strongly
correlated quantum systems can be understood as weakly coupled gravity theories, which live in a
holographic spacetime with an extra emergent dimension and constant negative curvature. Fundamental
observables such as correlation functions are identified with scattering amplitudes in curved spacetime,
which, in principle, can be computed by using standard perturbation theory. Unfortunately, such
holographic calculations are notoriously difficult, even for tree-level processes involving four
external particles. Despite relentless efforts over the past two decades, a full solution to this problem
was not found. In this article, we introduce a powerful new method that solves this long-standing problem.
We give a closed-form formula for all such four-point functions in a class of theories that constitute the
best-known paradigms of AdS/CFT. These models exhaust the theories compatible with maximal
supersymmetry, and they live in three, four, and six dimensions. Pivotal to our construction is the use
of symmetries. We show that in a judiciously chosen limit, symmetry principles dictate a drastic
simplification in holographic correlators, allowing them to be directly computed. Having solved this limit,
we further show that the full correlators can be recovered from this special configuration by using only
symmetries. In addition to providing valuable explicit expressions that have a wide range of applications in
AdS/CFT, our analysis leads to several important conceptual lessons. Our results point out remarkable
simplicities underlying the holographic correlators, as well as concrete ways to search for such structures.
Moreover, our construction identifies previously unknown elegant underlying organizing principles for
holographic correlators. These qualitative features of holographic correlators also echo the exciting
progress in the scattering amplitude program in flat space, suggesting tantalizing prospects of future cross-
fertilization of ideas.
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I. INTRODUCTION

Understanding nonperturbative phenomena at strong
coupling is one of the most challenging open problems
of modern physics. Analytic results at strong coupling are
scarce and extremely difficult to obtain. However, a
remarkable relation conjectured by Maldacena, the anti-
de Sitter/conformal field theory (AdS/CFT) correspon-
dence [1–3], provides a rare window through which we
can gain analytic insight into strongly coupled physics.
The conjecture identifies CFT, with a gravitational theory
(M-theory or string theory) that lives in a space with
constant negative curvature—AdS space. CFT is located at

the boundary of AdS space, and the correspondence gives a
concrete realization of the holographic principle [4,5]. The
most useful limit to exploit this correspondence is when
the bulk gravitational theory becomes weakly coupled, and
the dual CFT is strongly coupled. Then, through the weakly
coupled bulk description, we can study strong-coupling
physics by performing perturbative calculations. This
amazing conjecture has withstood numerous tests and
has led to a myriad of important theoretical progress and
applications (cf. Refs. [6–12] for reviews of the many
aspects of the AdS/CFT correspondence).
On the other hand, even though 22 years have passed since

its discovery, we are still far from harnessing the full
computational power of this correspondence, which becomes
particularly clear when considering the most fundamental
observables in the CFT—namely, correlation functions of
local operators. Various theoretical data can be extracted from
these CFT correlators. Via the correspondence, these corre-
lation functions are mapped to scattering amplitudes in AdS
space. However, computing these correlators using AdS
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perturbation theory, in general, is an enormously difficult
undertaking, and it is severely underexplored, even at
tree level.
We can make the calculations more tractable by delin-

eating a more specialized, yet still sufficiently general and
highly nontrivial problem. In order to have better analytic
control, we can first restrict ourselves to theories that have
the maximal amount of supersymmetry, which leads to the
three best-studied paradigms of AdS/CFT [13]:

(i) M-theory on AdS4 × S7 dual to the 3D N ¼ 8
Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory [14], with superconformal group OSpð8j4Þ;

(ii) IIB string theory on AdS5 × S5 dual to 4D N ¼ 4
super Yang-Mills theory, with superconformal
group PSUð2; 2j4Þ;

(iii) M-theory on AdS7 × S4 dual to the 6D N ¼ ð2; 0Þ
theory, with superconformal group OSpð8�j4Þ.

In these examples, the bulk geometry also contains an
additional sphere Sd−1 as the internal space. From the
boundary perspective, the isometry SOðdÞ of the sphere is
interpreted as a global symmetry of the theory, known as
R-symmetry. We can further simplify the computation by
taking the limit where string theory or M-theory becomes
weakly coupled classical supergravity. However, even in
this favorable regime and for the above theories, only
limited results are available in the literature. The basic CFT
operators to consider are the so-called local one-half
Bogomol’nyi-Prasad-Sommerfield (BPS) operators. Such
operators preserve half of the total supersymmetry and are
dual to scalar supergravity fields in AdS. Two- and three-
point functions are fully determined by superconformal
symmetry [15]. Therefore, starting at four points, we begin
to probe the nontrivial dynamics due to strong coupling.
We focus on such correlators. The correlators, in principle,
can be computed from a diagrammatic expansion in AdS
(in terms of the “Witten diagrams”) by following a standard
procedure similar to the one used for flat-space quantum
field theories. But to implement this procedure, one needs
to extract all the relevant vertices from a highly complicated
Kaluza-Klein (KK) reduction of the theory on the internal
manifold Sd−1. Moreover, there is an explosion of diagrams
when considering operators dual to higher KK modes.
These difficulties render the algorithm near impossible after
just a few low-lying cases [16–23].
This situation becomes even more troublesome when

contrasted with the progress made for flat-space scattering
amplitudes (see, e.g., Refs. [24,25] for textbook presenta-
tions). Since holographic correlators are on-shell scattering
amplitudes in anti-de Sitter space, it would be truly
surprising if no interesting structures were found in these
objects. Motivated by this analogy with flat-space ampli-
tudes and benefiting from developments in the conformal
bootstrap, a new method was proposed in Refs. [26,27].
This method uses the Mellin representation formalism
[28,29], where correlators are rephrased as Mellin

amplitudes. The Mellin space manifests the scattering
amplitude nature of holographic correlators in a way similar
to momentum space in flat space. By solely using symmetry
principles and consistency conditions, Refs. [26,27] obtained
a stunningly simple formula for all tree-level four-point
Mellin amplitudes for AdS5 × S5, as the solution to an
algebraic bootstrap problem. This method eschewed the
explicit details of the effective Lagrangian and avoided
diagrams altogether. The general formula was later con-
firmed in a large number of explicit examples [30–33] and
also provided essential data for studying correlators at one
loop [35–46]. The remarkable success of the method on
AdS5 × S5 was partially replicated on AdS7 × S4, where
the bootstrap problem was set up in Refs. [47,48].
Unfortunately, the problem was too difficult to be solved
in general, and only partial solutions for small weights were
obtained [47,48]. Moreover, the same approach for AdS5
and AdS7 was not applicable to AdS4 × S7 because of a
difference in the superconformal structure of correlators.
A complementary method was subsequently given in
Ref. [48], which introduced superconformal Ward identities
(WI) in Mellin space, and it can be applied to any spacetime
dimensions. However, this method also becomes cumber-
some for more general correlators, and only the simplest
AdS4 × S7 stress-tensor four-point function was explicitly
written down [48]. In summary, the bootstrap methods are
only successful in various limited domains, and they fail to
generate a complete general picture. Moreover, the bootstrap
nature of these methods prevents us from looking more
deeply and understanding the microscopic organizing prin-
ciples of holographic correlators.
In this paper, we achieve these unfinished goals and

thereby fully solve this long-standing problem. We develop
a unifying method for all three theories by borrowing new
ideas from flat-space amplitudes. This method leads
to a constructive derivation for all tree-level four-point
functions with arbitrary conformal dimensions, in all
backgrounds with maximal superconformal symmetry.
The result for AdS7 × S4 was already reported in an earlier
publication [49], while for AdS5 × S5, our results give a
proof of Refs. [26,27]. The derivation presented here shows
a surprising universality in holographic correlators across
diverse dimensions, and it underscores the pivotal role of
symmetries in their common organizing principles. Our
method starts with the crucial observation that symmetries
dictate a massive simplification in Mellin amplitudes in a
judiciously chosen kinematic limit. This limit is achieved
by requiring that the R-symmetry polarizations, i.e., the
polarizations on the internal sphere, of two scattering
particles are aligned. We call such configurations max-
imally R-symmetry violating (MRV), in analogy with
maximally helicity violating (MHV) in flat space. The
MRV amplitudes display two striking features: There
are no singularities in the u-channel, and the amplitude
develops a factor of 2 zeros in the u Mandelstam-Mellin
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variable. The first property follows from the fact that the
supergravity-field exchanges in the u-channel are sup-
pressed by the special choice of R-symmetry configuration.
The second property is the manifestation of the decoupling
of low-lying unprotected operators in this limit. Both
features are universal for correlators in all three theories,
and they are dictated by superconformal symmetry.
However, at the level of individual Witten diagrams, the
consequence of the u-channel zeros is highly nontrivial,
and it requires a conspiracy of the exchanged field inside
each individual supermultiplet. Imposing the presence of
zeros fixes the contribution of all component fields in the
multiplet up to an overall constant, which can be easily
computed by using the known bulk cubic couplings of
scalar fields. This process allows us to write down all MRV
amplitudes in these theories. However, the study of the
MRV amplitudes serves a greater purpose. From the MRV
limit, we can use R-symmetry to restore the generic
R-symmetry polarizations in the multiplet exchange ampli-
tudes. This operation determines the full correlators up to
the addition of possible contact interactions, which can be
mixed into the exchange amplitudes under field redefini-
tions. However, the contact terms are not arbitrary once a
choice for the exchange amplitudes is made, and they are
uniquely fixed by requiring that the correlators satisfy
superconformal Ward identities. Remarkably, we find a
prescription to recover exchange amplitudes from the MRV
limit such that no explicit contact terms are present. Using
this procedure, we construct all tree-level four-point func-
tions in AdS4 × S7, AdS5 × S5, and AdS7 × S4, and write
them in a closed-form formula, which exhibits remarkable
simplicity.
The rest of the paper is organized as follows. In Sec. II A,

we review the basic kinematics of four-point functions of
one-halfBPSoperators. InSec. II B,wereviewthe traditional
diagrammatic expansion method and various bootstrap
methods. We study the properties of the MRV limit in
Sec. III and present an efficient algorithm for constructing
all MRVamplitudes. In Sec. IV, we show how to recover the
full amplitude from the MRV limit and present the general
result for all four-point functions in the three maximally
superconformal backgrounds. In Sec. V, we address the
absence of contact terms by studying superconformal Ward
identities inMellin space.Wealsostudy theseWard identities
andMellin amplitudes near the flat-space limit.We conclude
in Sec. VI and outline a few future directions.

II. GENERALITIES

A. Kinematics

We focus on the one-half BPS local operators in super-
conformal field theories which have 16 supercharges. Such
operators OI1…Ik

k transform in the rank-k symmetric trace-
less representation of an SOðdÞ R-symmetry group, with
k ¼ 2; 3…. They have protected conformal dimension

Δk ¼ ϵk, where ϵ is related to the spacetime dimension
d via ϵ ¼ ðd − 2=2Þ. It is convenient to keep track of the
R-symmetry indices by contracting them with null vectors,

Okðx; tÞ ¼ OI1;…;Ik
k ðxÞtI1…tIk ; t · t ¼ 0: ð1Þ

The four-point functions are denoted by

Gk1k2k3k4ðxi; tiÞ ¼ hOk1Ok2Ok3Ok4i; ð2Þ

and they are functions of both the spacetime coordinates xi
and internal coordinates ti. We often leave the ki depend-
ence in Gk1k2k3k4ðxi; tiÞ implicit to avoid overloading the
notation. We can assume, without loss of generality, that the
weights ki are ordered as k1 ≤ k2 ≤ k3 ≤ k4. Then, we need
to further distinguish two possibilities:

k1 þ k4 ≥ k2 þ k3 ðcase IÞ;
k1 þ k4 < k2 þ k3 ðcase IIÞ: ð3Þ

We can extract a kinematic factor

Gðxi; tiÞ ¼
Y
i<j

�
tij
x2ϵij

�
γ0ij
�
t12t34
x2ϵ12x

2ϵ
34

�
E
GðU;V; σ; τÞ; ð4Þ

such that the correlators can be written as a function of the
cross ratios,

U ¼ x212x
2
34

x213x
2
24

; V ¼ x214x
2
23

x213x
2
24

;

σ ¼ t13t24
t12t34

; τ ¼ t14t23
t12t34

: ð5Þ

Here, xij ¼ xi − xj, tij ¼ ti · tj, and E is the extremality,

E ¼ k1 þ k2 þ k3 − k4
2

ðcase IÞ; E ¼ k1 ðcase IIÞ:
ð6Þ

The exponents are given by

γ012 ¼ γ013 ¼ 0; γ034 ¼
κs
2
; γ024 ¼

κu
2
;

γ014 ¼
κt
2
; γ023 ¼ 0 ðIÞ; γ014 ¼ 0; γ023 ¼

κt
2

ðIIÞ
ð7Þ

where

κs ≡ jk3 þ k4 − k1 − k2j;
κt ≡ jk1 þ k4 − k2 − k3j;
κu ≡ jk2 þ k4 − k1 − k3j: ð8Þ
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Since ti can only appear in Gðxi; tiÞ as polynomials of tij,

and Gðxi; λitiÞ ¼ ðQi λ
ki
i ÞGðxi; tiÞ under rescaling, it is

clear from Eq. (4) that GðU;V; σ; τÞ is a polynomial in σ
and τ of degree E. Writing Gðxi; tiÞ as in Eq. (4) ex-
ploits only the bosonic part of the superconformal
group. Fermionic generators imply further constraints,
known as the superconformal Ward identities. It is useful
to introduce the following change of variables:

U ¼ zz̄; V ¼ ð1 − zÞð1 − z̄Þ;
σ ¼ αᾱ; τ ¼ ð1 − αÞð1 − ᾱÞ: ð9Þ

The superconformal Ward identity reads [50]

ðz∂z − ϵα∂αÞGðz; z̄; α; ᾱÞjα¼1=z ¼ 0: ð10Þ
Because Gðz; z̄; α; ᾱÞ is symmetric under z ↔ z̄ and α ↔ ᾱ,
three more identities follow from the above identity by
replacing z with z̄ and α with ᾱ.

B. Methods for computing holographic correlators

1. Traditional method: Diagrammatic expansion

The traditional recipe to calculate holographic correla-
tors follows from a standard diagrammatic expansion in
AdS. More precisely, one obtains the effective action on
AdSdþ1, by performing a Kaluza-Klein reduction of the
D-dimensional supergravity theory on SD−d−1. For tree-
level four-point functions, the relevant information to be
extracted from the effective action are the cubic and quartic
vertices. One then uses these vertices to write down all the
possible exchange and contact Witten diagrams, and the
four-point correlator is given by the sum

Gtree ¼ GðsÞ
exch þ GðtÞ

exch þ GðuÞ
exch þ Gcon: ð11Þ

Here, the number of exchanged fields in a specific
four-point function is always finite. They are dictated
by two selection rules on the cubic couplings. The first
is an R-symmetry selection rule, which says that the
R-symmetry representation carried by the exchanged fields
(say, in the s-channel) must appear in the common tensor
product of the external representations (i.e., the overlap of
the tensor product of rank k1, k2 symmetric traceless
representations, and that of k3, k4). The second is a cutoff
on the conformal twist of the exchanged fields,

Δ − l < ϵmin fk1 þ k2; k3 þ k4g; ð12Þ
which arises from the requirement that the effective action
must remain finite. We organize the relevant exchanged
fields into superconformal multiplets in the table below
[51–54], where the superprimary scalar field sp is the bulk
dual of the one-half BPS operator Op. The fields Ap;μ and
Cp;μ are vector fields in AdS, and A2;μ is the graviphoton
field dual to the R-symmetry currents on the boundary. The

fields φp;μν are the symmetric traceless spin-2 tensor fields,
which include the graviton with p ¼ 2, dual to the stress-
tensor operator. Finally, tp and rp are scalar fields.

Field sp Ap;μ φp;μν Cp;μ tp rp

l 0 1 2 1 0 0
Δ ϵp ϵpþ 1 ϵpþ 2 ϵpþ 3 ϵpþ 4 ϵpþ 2
d1 p p − 2 p − 2 p − 4 p − 4 p − 4
d2 0 2 0 2 0 4

In the table, the quantum numbers d1, d2 are associated
with the R-symmetry representation of the component
fields, and they appear in the Dynkin labels as

SOð5Þ∶½d1; d2�; SUð4Þ∶
�
d2
2
; d1;

d2
2

�
;

SOð8Þ∶
�
d1;

d2
2
; 0; 0

�
: ð13Þ

We can write the exchange contributions more
explicitly as

GðsÞ
exch ¼

X
p

VðsÞ
p ; ð14Þ

VðsÞ
p ¼ λsYfp;0gW

ðsÞ
ϵp;0 þ λAYfp−2;2gW

ðsÞ
ϵpþ1;1

þ λφYfp−2;0gW
ðsÞ
ϵpþ2;2 þ λCYfp−4;2gW

ðsÞ
ϵpþ3;1

þ λtYfp−4;0gW
ðsÞ
ϵpþ4;0 þ λrYfp−4;4gW

ðsÞ
ϵpþ2;0; ð15Þ

where VðsÞ
p is the contribution from the multiplet p. Here,

WðsÞ
Δ;l are the standard exchange Witten diagrams in the

s-channel with dimension Δ and spin l, and Yfd1;d2g are R-
symmetry polynomials of σ and τ (see Supplemental
Material [55] for details), associated with the exchanged
irreducible representation labeled by the R-symmetry
quantum numbers fd1; d2g. Historically, such R-symmetry
structures were obtained by gluing together three-point
spherical harmonics. However, it is more convenient to
obtain them by solving the two-particle, quadratic,
R-symmetry Casimir equation [56], making Yfd1;d2g the
compact analogues of conformal blocks. The coefficients
λfield in Eq. (15) are pure numbers, which can be fixed by
using the explicit cubic vertices and appropriately taking
into account the normalization of Yfd1;d2g. Finally, Gcon

contains contact Witten diagrams up to four derivatives and
all possible R-symmetry structures. The simplest zero-
derivative contact Witten diagram is denoted by the D̄
function D̄Δ1Δ2Δ3Δ4

in the literature, and higher-derivative
contact diagrams can be related to the zero-derivative ones
by using differential recursion relations. The contact dia-
gram contribution could, in principle, be computed when
the quartic vertices are known.
Though clear physically, the traditional method suffers

from several severe practical drawbacks. First of all,
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extracting the vertices, especially the quartic vertices, from
the effective action is extremely hard. The general quartic
vertices are only known for IIB supergravity on AdS5 × S5

[57], where their complicated expressions covered 15
pages. Second, as one increases the external dimensions
(more precisely, the extremality E), one is greeted by a
proliferation of exchange Witten diagrams. Finally, the
exchange Witten diagrams are only tractable in position
space when the quantum numbers are fine-tuned. When the
spectrum satisfies the conditions

Δ1 þ Δ2 − ðΔ − lÞ ∈ 2Zþ or

Δ3 þ Δ4 − ðΔ − lÞ ∈ 2Zþ; ð16Þ
the exchangeWitten diagrams can bewritten as a finite sumof
contact diagrams [58], which is the case for AdS5 × S5 and
AdS7 × S4. However, the conditions are not satisfied by the
AdS4 × S7 background. These practical difficulties make it
clear that this brute-force approach is extremely cumbersome
at best and unlikely to yield any general result unless
powerful, underlying, organizing principles can be identified.

2. Bootstrap methods

In recent years, a number of powerful bootstrap methods
[26,27,47,48,59,60] have been developed to efficiently
compute holographic correlators, which have superseded
the traditional method. These bootstrap methods exploit
symmetries and self-consistency conditions and fix the
correlators by making no reference to the explicit details of
the effective Lagrangian. Below, we give an overview of
these methods and discuss their respective strengths and
limitations.
Position-space method.—A first improvement of the

traditional algorithm was made in Refs. [26,27] and was
termed the position-space method. The idea is to leave λfield
in Eq. (15) as an unfixed parameter and parametrize themost
general contact contribution Gcon with unknown coeffi-
cients. In models where the truncation conditions (20) are
satisfied, one can write the exchange Witten diagrams in
terms of a finite number of D̄ functions. Furthermore, the D̄
functions can be uniquely decomposed as

RΦðz; z̄ÞΦðU;VÞ þ RlogUðz; z̄Þ logU
þ RlogVðz; z̄Þ logV þ R1ðz; z̄Þ; ð17Þ

whereΦðU;VÞ is the scalar box diagram in four dimensions,
and the coefficient functions RXðz; z̄Þ are rational functions
of z and z̄. One then imposes the superconformal Ward
identities (10), which can be cast into the same form (17) by
using differential recursion relations ofΦðU;VÞ. The super-
conformal Ward identities uniquely fix all the unknown
coefficients in the ansatz up to an overall rescaling factor.
This method has the advantage of being very concrete, and it
sidesteps the need for obtaining the complicated vertices. On
the other hand, the method is applied on a case-by-case

basis, and it loses steam for higher-weight external oper-
ators. The position-space method can be applied to super-
gravity theories on AdS5 × S5 [26,27], AdS7 × S4 [47], and
AdS3 × S3 × K3 [60,61] backgrounds [62]. However, it is
not applicable to 11D supergravity on AdS4 × S7, where the
exchange Witten diagrams do not truncate. Finally, the
expressions of holographic correlators in position space are
usually highly complicated and beg for a more transparent
representation, which we now introduce.
Intermezzo: Mellin space.—A useful tool for holo-

graphic correlators is the Mellin representation formalism
[28,29]. This formalism is exploited in the methods below
and will also be used later as the language of this paper. In
the Mellin representation,

Gtree ¼
Z

i∞

−i∞

dsdt
ð4πiÞ2 U

s
2
−asV

t
2
−atMðs; t; σ; τÞΓfkig;

Γfkig ¼ Γ
�
ϵðk1 þ k2Þ − s

2

�
Γ
�
ϵðk3 þ k4Þ − s

2

�
Γ

×

�
ϵðk1 þ k4Þ − t

2

�
Γ
�
ϵðk2 þ k3Þ − t

2

�
Γ

×

�
ϵðk1 þ k3Þ − u

2

�
Γ
�
ϵðk2 þ k4Þ − u

2

�
; ð18Þ

where as ¼ ðϵ=2Þðk1 þ k2Þ − ϵE, at ¼ ðϵ=2Þminfk1 þ k4;
k2 þ k3g, and sþ tþ u ¼ ϵ

P
4
i¼1 ki ≡ ϵΣ, the analytic

structure of the holographic correlators becomes particu-
larly clear. The Mellin amplitudes of exchange Witten
diagrams are a sum over simple poles,

MðsÞ
Δ;lðs; tÞ ¼

X∞
m¼0

Qm;lðt; uÞ
s − Δþ l − 2m

; ð19Þ

where Qm;lðt; uÞ are degree-l polynomials in t and u. The
residuesQm;lðt; uÞ vanish for m ≥ m0 when the conditions
(20) are satisfied,

Δ1 þ Δ2 ¼ Δ − lþ 2m0 or Δ3 þ Δ4 ¼ Δ − lþ 2m0;

ð20Þ
truncating the infinite series into a finite sum, in order to be
consistent with the large-N expansion [27]. On the other
hand, contact diagrams with 2L derivatives have Mellin
amplitudes that are polynomials in the Mandelstam vari-
ables of degree L. Note that, in the literature, it is also
conventional to write Eq. (19) as

MðsÞ
Δ;lðs; tÞ ¼

X∞
m¼0

Q̃m;lðtÞ
s − Δþ l − 2m

þ Pl−1ðs; tÞ; ð21Þ

where one Mandelstam variable is eliminated from
Qm;lðt; uÞ and Pl−1ðs; tÞ is a degree-(l − 1) polynomial.
In Eq. (19), we have absorbed the regular terms into the
numerator, which is related to the fact that exchange Witten
diagrams are not uniquely defined. We can add to them any
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contact terms with degree l − 1, which corresponds to
choosing different on-shell equivalent cubic couplings.
The Mellin algebraic bootstrap method.—Amore elegant

method was formulated in Refs. [26,27,47], which rephrased
the task of computing holographic four-point functions as
solving an algebraic bootstrap problem in Mellin space. This
method exploits the special structure of the correlators as
dictated by the superconformal Ward identities,

G ¼ G0 þD ∘H; ð22Þ

where G0 is a protected part of the correlator that does not
contribute to theMellin amplitude,D is a differential operator
determined by superconformal symmetry, andH is known as
the reduced correlator. We can define a reduced Mellin
amplitude M̃ from H and translate the differential operator
D into a difference operator D̂ inMellin space. Then, we have

M ¼ D̂ ∘ M̃; ð23Þ

which implements the superconformal symmetry at the level
ofMellin amplitudes. The bootstrap problem is formulated by
further imposing Bose symmetry, analytic properties, and a
flat-space limit on the Mellin amplitude M. Such algebraic
bootstrap problems are highly constraining, and they fix the
correlators uniquely up to an overall constant. The bootstrap
problem for AdS5 × S5 was fully solved in Refs. [26,27] for
arbitrary four-point functions, and it led to an extremely
compact answer. The merit of this approach is that one can
treat all external dimensions on the same footing and obtain
the correlators without computing any diagrams. However,
the analytic structure of the reduced amplitude M̃ is not as
transparent as that of the full amplitude M. This fact
sometimes makes it difficult to find a general efficient ansatz
for M̃, such as in AdS7 × S4, and the problem is solved only
on a case-by-case basis [47,48]. Moreover, for d ¼ 3, the
differential operatorD is nonlocal, which makes it difficult to
interpret in Mellin space.
Mellin superconformal Ward identities.—Complementary

to the above Mellin algebraic bootstrap method is another
Mellin-space technique that can be applied to any spacetime
dimensions, which was first developed in Ref. [48]. This
method can be viewed as the Mellin-space parallel of the
position-space method. We can translate Eqs. (11), (14), and
(15) into

Mðs; t; σ; τÞ ¼ MðsÞ
exch þMðtÞ

exch þMðuÞ
exch þMcon;

MðsÞ
exchðs; t; σ; τÞ ¼

X
p

SðsÞ
p ðs; t; σ; τÞ;

SðsÞ
p ¼ λsYfp;0gM

ðsÞ
ϵp;0 þ λAYfp−2;2gM

ðsÞ
ϵpþ1;1

þ λφYfp−2;0gM
ðsÞ
ϵpþ2;2 þ λCYfp−4;2gM

ðsÞ
ϵpþ3;1

þ λtYfp−4;0gM
ðsÞ
ϵpþ4;0 þ λrYfp−4;4gM

ðsÞ
ϵpþ2;0; ð24Þ

with unfixed λfield, and Mcon will be taken as an arbitrary
degree-1 polynomial in s, t, and a degree-E polynomial in σ, τ.
Then, we impose the superconformal constraints from the
superconformal Ward identities (10). Implementing these
constraints in Mellin space may appear difficult as only U
and V appear in the definition (18), which is invariant under
z ↔ z̄. However, the superconformal Ward identity (10)
breaks the symmetry of z and z̄ and creates complicated
branch cuts when rewritten in terms of U and V. The
observation of Ref. [48] is that we can take the sum of a
holomorphic and an antiholomorphic copy [64],

ðz∂z − ϵα∂αÞGðz; z̄; α; ᾱÞjα¼1=z ¼ 0;

ðz̄∂ z̄ − ϵα∂αÞGðz; z̄; α; ᾱÞjα¼1=z̄ ¼ 0: ð25Þ

Then, the coefficients can always be written in terms of
polynomials in U and V, which are easy to interpret as
difference operators in Mellin space. These difference equa-
tions (graded by different powers of the spectator cross ratio ᾱ)
constitute the Mellin superconformal Ward identities. By
imposing these identities, one fixes all the coefficients in
the ansatz up to an overall constant. Note that inMellin space,
exchangeWitten diagrams can be easily written down for any
spacetime dimension and conformal dimension. This fact
greatly extends the rangeof applicability of thismethod.Using
this Mellin-space technique, Ref. [48] obtained the first four-
point correlator in AdS4 × S7 for the stress-tensor multiplet,
where all other methods had fallen short. On the other hand,
the method suffers from the same shortcomings as the
position-space approach, in that it is difficult to go beyond
individual correlators.
Other approaches.—There are other methods for com-

puting holographic correlators by incorporating bootstrap
ideas. By using factorization and supersymmetric twistings,
Ref. [65] computed the five-point function of one-half BPS
operators in the stress-tensor multiplet for IIB supergravity
on AdS5 × S5. In AdS3, there is also a method to construct
four-point functions from the heavy-heavy-light-light limit
by using crossing and consistency with superconformal
OPE [66–68]. This approach complements the bootstrap
method in AdS3 [60].

III. MAXIMALLY R-SYMMETRY
VIOLATING LIMIT

A. Properties of the MRV amplitudes

While the full Mellin amplitudes appear rather compli-
cated, there are special limits where the amplitudes simplify
drastically and give a hint for their underlying organizing
principles. One such limit is the MRV limit, introduced
in Ref. [49]. In the ordering of k1 ≤ k2 ≤ k3 ≤ k4, the
(u-channel) MRV limit is reached by setting t1 ¼ t3 for the
auxiliary R-symmetry null vectors. This choice of null
vectors means that in Gðxi; tiÞ, t1 cannot be contracted with
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t3, and no t13 can appear. In terms of the R-symmetry cross
ratios, it corresponds to setting σ ¼ 0, τ ¼ 1. We denote the
MRV amplitude as [69]

MRVðs; tÞ ¼ Mðs; t; 0; 1Þ: ð26Þ

Note that the MRV limit can also be defined in other
channels: In the s-channel, it corresponds to t1 ¼ t2, and
in the t-channel, it amounts to t2 ¼ t3 (case I) or t1 ¼ t4
(case II) [70]. The three limits are related by Bose
symmetry. Restricting the amplitudes to the MRV limit
suppresses certain R-symmetry representations in that
channel. For example, all the u-channel supergravity field
exchanges are suppressed in the σ ¼ 0, τ ¼ 1 limit because
the R-symmetry polynomials all contain at least one power
of t13. This observation gives the first simplifying property
of MRVamplitudes: The MRVamplitudes have no poles in
the u-channel.
Moreover, in such special R-symmetry configurations,

we see the following interesting phenomenon: The super-
primary is absent, whereas superdescendants are present
[71]. In particular, let us consider the long supermultiplet
where the superprimary is a double-trace operator of the
schematic form ½∶Ok2∂JOk4∶�fd1;d2g. In order for all super-
descendants (in particular, the operator acted with Q4Q̄4,
which has maximal deviation in R-symmetry from the
superprimary) to have R-symmetry charges admissible in
the tensor products of Ok1 ×Ok3 and Ok2 ×Ok4 , the
representation of the superprimary must satisfy d1 þ d2 ≤ 2
E þ κt þ κu − 4. This requirement implies that in the
MRV configuration, the R-symmetry polynomial associated
with fd1; d2g vanishes. Moreover, one can show that
the only superdescendant that contributes to this limit is
Q4Q̄4½∶Ok2∂JOk4∶�fd1;d2g. Therefore, we expect to see long
operators (albeit not superprimaries) in the u-channel MRV
configuration with conformal twist of at least
ϵðk2 þ k4Þ þ 4, which is reflected by the double pole at u ¼
ϵðk2 þ k4Þ þ 4 in theΓfkig factor in Eq. (18).Upon doing the
inverse Mellin integral, we see a logarithmic singularity,
which is the hallmark of an unprotected long operator. On
the other hand, this lower bound for logarithmic singularities

cannot be further lowered because ϵðk2 þ k4Þ is the minimal
twist of the double-trace operators constructed fromOk2 and
Ok4 for the superprimaries of the long multiplets. Thus,
we have the second important property of the MRV
amplitudes: The MRVamplitudes contain a factor of zeros,
ðu − ϵk2 − ϵk4Þðu − ϵk2 − ϵk4 − 2Þ.
These zeros are precisely needed to cancel one of the

double poles in Γfkig, such that no logarithmic singularities
at these twists show up.

B. All MRV amplitudes

These two properties of MRVamplitudes have profound
consequences in understanding the structure of holographic
correlators. In fact, the u-channel zeros are satisfied by each
individual supermultiplet exchange in the s-channel (and
separately, in the t-channel), which gives rise to an efficient
way to fix the relative values of λfield inside each multiplet.
More precisely, we choose the contact terms in the
exchange Witten diagrams (19) by setting t ¼ ϵΣ − u −
ðΔ − lÞ − 2m in the numerators Qm;lðt; uÞ,

PðsÞ
Δ;lðs; uÞ ¼

X∞
m¼0

Qm;l(ϵΣ − u − ðΔ − lÞ − 2m; u)
s − Δþ l − 2m

: ð27Þ

This choice corresponds to the so-called Polyakov-Regge
blocks [72,73] (see also Refs. [74–76] for related blocks),
which have improved u-channel Regge behavior,

PðsÞ
Δ;lðs; uÞ →

1

s
; s → ∞; u fixed: ð28Þ

For simplicity, we focus on case I of Eq. (3) in what
follows, in addition to the ordering k1 ≤ k2 ≤ k3 ≤ k4.
However, in the next section, when we assemble the
ingredients into the final results and express them in terms
of κs, κt, κu, the expressions will be valid for any ordering
of ki thanks to Bose symmetry. By using the result (A.10)
in the Supplemental Material [55], the SOðdÞ R-symmetry
polynomials take the following values in the MRV limit:

YMRV
fp;0g ≡ Yfp;0gð0; 1Þ ¼

ðκt
2
!Þðpþk2−k1

2
!ÞΓ½dþpþk2−k1−2

2
�Γ½dþpþk4−k3−2

2
�

ðκu
2
!Þðpþk1−k2

2
!ÞΓ½d−k1−k3þk2þk4−2

2
�Γ½2pþd−2

2
� ;

YMRV
fp;2g ≡ Yfp;2gð0; 1Þ ¼ −

ðpþ k2 − k1 þ d − 2Þðpþ k4 − k3 þ d − 2Þ
ðdþ p − 2Þðdþ 2p − 2Þ YMRV

fp;0g;

YMRV
fp;4g ≡ Yfp;4gð0; 1Þ ¼

4ðd − 3Þðpþk2−k1þd−2
2

Þ2ðpþk4−k3þd−2
2

Þ2
ðd − 2Þ( − ðdþ pÞ)2ð− ðdþ2pÞ

2
Þ2

YMRV
fp;0g: ð29Þ

Requiring the presence of zeros at every pole s ¼ ϵpþ 2m imposes strong constraints on λfield and solves them in terms
of λs,
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λðpÞA ¼
YMRV

fp;0g
YMRV

fp−2;2g

ϵðk1−k2þpÞðk3−k4þpÞ
2pðpϵþ2Þ λðpÞs ;

λðpÞφ ¼
YMRV

fp;0g
YMRV

fp−2;0g

ϵ2ðk1−k2þpÞðk3−k4þpÞðk1ϵ−k2ϵþpϵþ2Þðk3ϵ−k4ϵþpϵþ2Þ
16ðpϵþ1Þðpϵþ2Þ2ðpϵþ3Þ λðpÞs ;

λðpÞC ¼
YMRV

fp;0g
YMRV

fp−4;2g

ϵ3ðk1−k2þp−2Þðk1−k2þpÞðk3−k4þp−2Þðk3−k4þpÞ(ϵðk1−k2þpÞþ2)(ϵðk3−k4þpÞþ2)

32ðp−2Þððp−1Þϵþ1Þððp−1Þϵþ2Þðpϵþ2Þ2ðpϵþ3Þ λðpÞs ;

λðpÞr ¼
YMRV

fp;0g
YMRV

fp−4;0g

ϵ2ðϵþ2Þðk1−k2þp−2Þðk1−k2þpÞðk3−k4þp−2Þðk3−k4þpÞ
8ðp−2Þðp−1Þðϵþ1Þððp−1Þϵþ2Þðpϵþ2Þ λðpÞs ;

λðpÞt ¼
YMRV

fp;0g
YMRV

fp−4;4g

ϵ4ðk1−k2þp−2Þðk1−k2þpÞðk3−k4þp−2Þðk3−k4þpÞ
256(ðp−2Þϵþ1)(ðp−2Þϵþ2Þ(ðp−1Þϵþ1)

×
(ϵðk1−k2þp−2Þþ2)(ϵðk1−k2þpÞþ2)(ϵðk3−k4þp−2Þþ2)(ϵðk3−k4þpÞþ2)

(ðp−1Þϵþ2)2(ðp−1Þϵþ3)ðpϵþ2Þðpϵþ3Þ λðpÞs : ð30Þ

Here, we have added a superscript to the coefficients λðpÞfield to emphasize that they belong to the pth multiplet. Inserting the
solutions into SðsÞ

p in Eq. (24) leads to a great simplification. We obtain the following contribution from each supermultiplet
to the MRV limit:

SðsÞ
p ðs; t; 0; 1Þ ¼

X∞
m¼0

4λðpÞs ðpϵþ 1Þðpϵ − ϵþ 1Þ
ðk1 − k2 − pÞðk4 − k3 þ pÞðk1ϵ − k2ϵ − pϵ − 2Þðk3ϵ − k4ϵ − pϵ − 2Þ

×
ðu − ϵk2 − ϵk4Þðu − ϵk2 − ϵk4 − 2Þ

ðpþ 1Þ−2ðmþ pϵ − ϵÞ2

�
fm;0jΔE¼ϵp

s − ϵp − 2m

�
; ð31Þ

where the u-channel zeros are factored out, leaving just a
sum over simple poles with constant residues. The terms in
the brackets are just the scalar exchange Mellin amplitude
at each simple pole, with fm;lE defined in Supplemental
Material [55]. Notice that the MRV amplitude for each
multiplet does not depend on the R-symmetry group
SOðdÞ.
To write down the full MRV amplitude, we just need to

sum over all multiplets, which is restricted to be finite by
the selection rules

p −maxfjk1 − k2j; jk3 − k4jg ¼ 2; 4;…2E − 2: ð32Þ

The strength of the contribution from each multiplet,

captured by λðpÞs , can be determined from the three-point
functions of the superprimaries,

hOk1ðx1; t1ÞOk2ðx2; t2ÞOk3ðx3; t3Þi

¼ CðϵÞ
k1k2k3

ðα1; α2; α3Þ
tα312t

α2
13t

α1
23

x2ϵα312 x2ϵα213 x2ϵα123

; ð33Þ

where

α1 ¼
1

2
ðk2 þ k3 − k1Þ; α2 ¼

1

2
ðk1 þ k3 − k2Þ;

α3 ¼
1

2
ðk1 þ k2 − k3Þ: ð34Þ

The three-point coefficients read [77–81]

C
ð1
2
Þ

k1k2k3
¼ π

n
3
4

2−α−
1
4

Γ½α
2
þ 1�

Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ½ki þ 2�p
Γ½αiþ1

2
� ; ð35Þ

Cð1Þ
k1k2k3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p
n

; ð36Þ

Cð2Þ
k1k2k3

¼ 22α−2

ðπnÞ32 Γ½α�
Y3
i¼1

Γ½αi þ 1
2
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ½2ki − 1�p ; ð37Þ

where α ¼ α1 þ α2 þ α3. λ
ðpÞ
s is given in terms of CðϵÞ

k1k2k3
by

λðpÞs ¼
�ðpþk1−k2

2
!Þðpþk4−k3

2
!Þ

p!ðk1þk4−k2−k3
2

!Þ

�
CðϵÞ
k1k2p

CðϵÞ
k3k4p

; ð38Þ

where the number in the brackets is a gluing factor for the
R-symmetry due to the fact that we have normalized the
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R-symmetry polynomials to have unit coefficients for σE.
The MRV amplitudes are then simply given by

MRVðs; tÞ ¼ MRVðsÞðs; tÞ þMRVðtÞðs; tÞ; ð39Þ

where

MRVðsÞðs; tÞ ¼
X
p

SðsÞ
p ðs; t; 0; 1Þ; ð40Þ

with the summation over p inside the finite range (32) and
MRVðtÞðs; tÞ related to MRVðsÞðs; tÞ by Bose symmetry.
Note that no additional contact terms are allowed in the
MRV amplitudes, which follows from the simple fact that
contact terms are, at most, linear in the Mandelstam
variables, while the requisite zeros are already quadratic.
The absence of additional contact terms tells us something
quite remarkable about the structure of supergravity the-
ories in AdS: Supersymmetry in the MRV limit not only
determines the relative cubic couplings of components
within the same multiplet, but its implication reaches
quartic couplings as well. It is also worth pointing out
that the MRV amplitudes have an improved u-channel
Regge behavior compared to a Witten diagram exchanging
a spinning field and with generic choices of contact terms.
The MRV amplitudes behave in the same way as the
Polyakov-Regge blocks.

IV. ALL TREE-LEVEL CORRELATORS FROM
THE MRV LIMIT

A. Full amplitudes from MRV amplitudes

Much more information can be extracted from the MRV
limit. In fact, in constructing the MRVamplitudes, we have
determined the whole polar part of the full Mellin ampli-
tude. This statement follows from the fact that all R-
symmetry polynomials (29) are nonvanishing in the MRV
limit. We can therefore restore the full σ, τ dependence in
Eq. (24) by using R-symmetry [84]. More precisely, we can
write

S̃ðsÞ
p ¼ λsYfp;0gP

ðsÞ
ϵp;0 þ λAYfp−2;2gP

ðsÞ
ϵpþ1;1

þ λφYfp−2;0gP
ðsÞ
ϵpþ2;2 þ λCYfp−4;2gP

ðsÞ
ϵpþ3;1

þ λtYfp−4;0gP
ðsÞ
ϵpþ4;0 þ λrYfp−4;4gP

ðsÞ
ϵpþ2;0; ð41Þ

where we have used the Polyakov-Regge blocks, and this
corresponds to a specific choice of contact terms. Various

λðpÞfield have been obtained in Eqs. (30) and (38). It follows

that S̃ðsÞ
p gives the correct residues for any σ and τ.

However, note that the s-channel Polyakov-Regge
blocks are not symmetric in t and u. More precisely, the
Bose symmetry in exchanging 1 and 2 is broken by the
choice of contact terms, which can be easily seen by the fact

that the s-channel Polyakov-Regge blocks have improved
Regge behavior in the u-channel but not in the t-channel. To
restore the s-channel Bose symmetry in the s-channel
multiplet exchange, we give the following simple prescrip-

tion [49]. The amplitude S̃ðsÞ
p takes the form of a sum over

simple poles at s ¼ ϵpþ 2m. For each term in the sum, the
numerator contains a quadratic factor in u of the form

u2 þ αði; j;m;pÞuþ βði; j;m;pÞ: ð42Þ
We can restore Bose symmetry by eliminating m from this
factor from the relation

tþ uþ ϵpþ 2m ¼ ϵΣ ð43Þ

where we have substituted the pole values of s into the
relation among the three Mandelstam variables. This
process gives a symmetric s-channel exchange, which

we denote as SðsÞ
p . Using the other generators of Bose

symmetry, we can similarly obtain SðtÞ
p and SðuÞ

p . Note that
our prescription is not equivalent to simply using the Mellin
exchange amplitudes from the Supplemental Material [55],
which have already been symmetrized (or antisymme-
trized) in Eq. (41). The difference is obvious in the
MRV limit, as the symmetrized bosonic Mellin exchange
amplitudes do not have improved u-channel Regge behav-
ior. In principle, having specified the polar part of the
amplitude, there is still the possibility of adding contact
terms. The truly distinguishing feature of our prescription,
however, is that the fullMellin amplitude can bewritten as a
sum of exchange amplitudes over multiplets, with no
additional contact terms [85]. The Mellin amplitudes are
given by

Mðs;t;σ;τÞ¼Msðs;t;σ;τÞþMtðs;t;σ;τÞþMuðs;t;σ;τÞ;
ð44Þ

Ms ¼
X
p

SðsÞ
p ðs; t; σ; τÞ; Mt ¼

X
p

SðtÞ
p ðs; t; σ; τÞ;

Mu ¼
X
p

SðuÞ
p ðs; t; σ; τÞ; ð45Þ

with the multiplet amplitudes SðsÞ
p , SðtÞ

p , and SðuÞ
p obtained

with the above prescription. The absence of contact terms
can be proven by the superconformal Ward identities, as we
discuss in detail in Sec. V.
Let us now rewrite the Mellin amplitude Mðs; t; σ; τÞ

into a different form that is more suitable for presenta-
tion. As we have seen, the Mellin amplitude has a series of
simple poles at s ¼ ϵps þ 2m, t ¼ ϵpt þ 2m, u ¼ ϵpu þ
2m, with

ps −maxfjk1 − k2j; jk3 − k4jg ¼ 2; 4;…; 2E − 2; ð46Þ
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pt −maxfjk1 − k4j; jk2 − k3jg ¼ 2; 4;…; 2E − 2; ð47Þ

pu −maxfjk1 − k3j; jk2 − k4jg ¼ 2; 4;…; 2E − 2: ð48Þ

A series of poles s ¼ ϵps þ 2m truncates if

ϵðk1 þ k2Þ − ϵps ¼ 2m0; m0 ∈ Zþ;

or ϵðk3 þ k4Þ − ϵps ¼ 2n0; n0 ∈ Zþ: ð49Þ

The sum over m is from 0 to m0 − 1 or from 0 to n0 − 1 if
only one of them is an integer. In the case when bothm0 and
n0 are integers, m is summed over from 0 to
minfm0; n0g − 1. The truncation of poles in t and u is
analogous. In the following, we write Msðs; t; σ; τÞ as a
sum over poles, and we decompose the numerators into
different R-symmetry structures spanned by the monomials
of σ, τ,

Msðs; t; σ; τÞ ¼
X
i;j

σiτj
X
s0

Ri;j
s ðt; uÞ
s − s0

: ð50Þ

The residues Ri;j
s0 ðt; uÞ are a sum over supergravity multip-

lets labeled by the Kaluza-Klein level p in the finite set
(32),

Ri;j
s0 ðt; uÞ ¼

X
p

Ri;j
p;mðt; uÞ; ϵpþ 2m ¼ s0; m ∈ N:

ð51Þ

The other two channels Mtðs; t; σ; τÞ and Muðs; t; σ; τÞ,
are similar and can be obtained fromMsðs; t; σ; τÞ by Bose
symmetry. Using our method described above, we calculate
Ri;j

p;mðt; uÞ for all correlators in AdS4 × S7, AdS5 × S5, and
AdS7 × S4. We present their explicit expressions in the next
subsection.

B. All Mellin amplitudes for all maximally
supersymmetric CFTs

Let us define a set of convenient combinations u�, t�,

u� ¼ u� ϵ

2
κu −

ϵ

2
Σ; t� ¼ t� ϵ

2
κt −

ϵ

2
Σ; ð52Þ

where we recall that ϵ ¼ ðd − 2=2Þ. We find that the
residues from each multiplet take the universal form

Ri;j
p;mðt; uÞ ¼ Ki;j

p ðt; uÞLi;j
p;mN

i;j
p ð53Þ

in any spacetime dimension, and we give the expressions
for Ki;j

p , Li;j
p;m, and Ni;j

p in each background below.
AdS5 × S5: Let us begin with the case of d ¼ 4, where

the bulk theory is IIB supergravity on AdS5 × S5. The
above procedure gives the following result:

Ki;j
p ¼ 2ið2iþ κuÞt−tþ þ 2jð2jþ κtÞu−uþ

− 2jκutþu− − 2iκtuþt−

þ 1

4
ð2p − κt − κuÞð2pþ κt þ κuÞðu−t− þ 4ijÞ

þ 1

2
ðκu þ κt − 2pÞðκu þ κt þ 2pÞðit− þ ju−Þ

þ 4ijðtþκu þ uþκtÞ − 8ijtþuþ; ð54Þ

Li;j
p;m ¼ ð−1Þiþjþ2p−κt−κu

4

Q
4
i¼1

ffiffiffiffi
ki

p

n2i!j!m!Γ½pþmþ 1�Γ½k1þk2−2m−p
2

�Γ½k3þk4−2m−p
2

� ;

ð55Þ

and

Ni;j
p ¼ 2−3pΓ½2pþΣ−κs−4l

4
�

Γ½κuþ2þ2i
2

�Γ½2ðpþ2Þ−Σþκsþ4l
4

�Γ½κtþ2þ2j
2

�
; ð56Þ

where iþ jþ l ¼ E. Note that Li;j
p;m contains two Gamma

factors, Γ½k1 þ k2 − 2m − p=2�Γ½k3 þ k4 − 2m − p=2�, in
the denominator. Since ki þ kj − p ∈ 2Zþ by cubic vertex
selection rules, they implement the truncation of poles in
the Mellin amplitude.
All tree-level four-point functions for AdS5 × S5 were

given in Refs. [26,27] after solving the bootstrap problem
and were written in terms of the reduced Mellin amplitude.
The full amplitude can be obtained by acting with the
superconformal difference operator R̂ (see Refs. [26,27] for
details). Upon comparing the residues, we find that above
expressions reproduce the known result.
AdS7 × S4: Next, we turn to d ¼ 6, which corresponds

to 11D supergravity on AdS7 × S4. The full solution to all
four-point functions was recently obtained in Ref. [49]. The
residue factors are given by

Ki;j
p ¼ 2ið2iþ κuÞt−tþ þ 2jð2jþ κtÞu−uþ þ 2jð1 − κuÞtþu− þ 2ið1 − κtÞuþt−

þ 1

4
ð2p − κt − κuÞð2p − 2þ κt þ κuÞðu−t− þ 16ijÞ

þ ðκu þ κt − 2pÞðκu þ κt þ 2p − 2Þðit− þ ju−Þ
þ 8ij(tþðκu − 1Þ þ uþðκt − 1Þ) − 8ijtþuþ; ð57Þ
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Li;j
p;m ¼ ð−1Þiþjþ2p−κt−κu

4 π−
3
2Γ½k1þk2−pþ1

2
�Γ½k3þk4−pþ1

2
�Γ½k1þk2þp

2
�Γ½k3þk4þp

2
�

n3m!i!j!
Q

4
a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ka − 2Þ!p
Γ½2pþm�Γ½k1 þ k2 −m − p�Γ½k3 þ k4 −m − p� ; ð58Þ

Ni;j
p ¼ 2Σ−6ð2p − 1ÞΓ½2ðp−1ÞþΣ−κs−4l

4
�

Γ½κuþ2þ2i
2

�Γ½2ðpþ2Þ−Σþκsþ4l
4

�Γ½κtþ2þ2j
2

�
: ð59Þ

The Gamma functions Γ½k1 þ k2 −m − p�Γ½k3 þ k4 −m − p� in Li;j
p;m also ensure that the number of poles in the AdS7 ×

S4 Mellin amplitudes is finite.
AdS4 × S7: Finally, we consider d ¼ 3, which corresponds to 11D supergravity on AdS4 × S7. The only correlator that

has been obtained in the literature is the four-point function of the stress-tensor multiplet [48]. Here, we present new results,
which generalize to four-point functions of arbitrary one-half BPS operators:

Ki;j
p ¼ 2ið2iþ κuÞt−tþ þ 2jð2jþ κtÞu−uþ − 2jð2þ κuÞtþu− − 2ið2þ κtÞuþt−

þ 1

4
ð2p − κt − κuÞð4þ 2pþ κt þ κuÞðu−t− þ ijÞ

þ 1

4
ðκu þ κt − 2pÞðκu þ κt þ 2pþ 4Þðit− þ ju−Þ

þ 2ij(tþð2þ κuÞ þ uþð2þ κtÞ) − 8ijtþuþ; ð60Þ

Li;j
p;m ¼

ffiffiffi
π

p Q
4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðki þ 1Þ!p
n

3
2i!j!m!Γ½pþ2mþ3

2
�Γ½k1þk2−pþ2

4
�Γ½k3þk4−pþ2

4
�Γ½k1þk2þpþ4

4
�Γ½k3þk4þpþ4

4
�

ð−1Þiþjþ2p−κt−κu
4

Γ½k1þk2−4m−p
4

�Γ½k3þk4−4m−p
4

� ; ð61Þ

Ni;j
p ¼ 2−

11þΣ
2 ð1þ pÞΓ½2ðpþ2ÞþΣ−κs−4l

4
�

Γ½κuþ2þ2i
2

�Γ½2ðpþ2Þ−Σþκsþ4l
4

�Γ½κtþ2þ2j
2

�
: ð62Þ

Unlike the previous two cases, the Gamma function factors Γ½k1 þ k2 − 4m − p=4�Γ½k3 þ k4 − 4m − p=4� in Li;j
p;m do not

guarantee that the Mellin amplitudes will have a finite number of poles. Upon setting ki ¼ 2, we reproduce the result
of Ref. [48].
Clearly, the Mellin amplitude residues in the three maximally supersymmetric backgrounds are highly similar. In fact, we

can accentuate their similarity by writing a formula that interpolates M-theory and string-theory amplitudes. More precisely,
we can modify Ki;j

p , L
i;j
p;m, and Ni;j

p by introducing ϵ dependence as follows:

Ki;j
p ¼ 2ið2iþ κuÞt−tþ þ 2jð2jþ κtÞu−uþ − 2j

�
2

ϵ
− 2þ κu

�
tþu− − 2i

�
2

ϵ
− 2þ κt

�
uþt−

þ 1

4
ð2p − κt − κuÞ

�
2pþ 4

ϵ
− 4þ κt þ κu

�
ðu−t− þ 4ϵ2ijÞ

þ ϵ

2
ðκu þ κt − 2pÞ

�
κu þ κt þ 2pþ 4

ϵ
− 4

�
ðit− þ ju−Þ

þ 4ϵij(tþ
�
κu þ

2

ϵ
− 2

�
þ uþ

�
κt þ

2

ϵ
− 2

�
) − 8ijtþuþ; ð63Þ

Li;j
p;m ¼

π−
ðϵ−1Þð2ϵþ5Þ

6 2
2ðϵ−1Þð2ϵ−1Þ

3

Q
4
i¼1 (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki þ 1

ϵ − 1
q

Γ½2
3
(ð1þ ϵÞki þ 2 − ϵ)�13ð1ϵ−ϵÞ)

n1þϵΓ½2 − ϵþmþ ϵp�

×
ðΓ½ð1þϵÞðk1þk2þpÞ

6
þ 2ð2−ϵÞ

3
�Γ½ð1þϵÞðk3þk4þpÞ

6
þ 2ð2−ϵÞ

3
�Þ−2

3
ð1ϵ−ϵÞ

i!j!m!

×
ð−1Þiþjþ2p−κt−κu

4 ðΓ½ð1þϵÞðk1þk2−pÞ
6

þ 1
2
�Γ½ð1þϵÞðk3þk4−pÞ

6
þ 1

2
�Þ−2

3
ð1ϵ−ϵÞ

Γ½ϵ
2
ðk1 þ k2 − pÞ −m�Γ½ϵ

2
ðk3 þ k4 − pÞ −m� ; ð64Þ
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and

Ni;j
p ¼ 2Σðϵ−1Þ−4−ϵΓ½1

4
ð4ϵ − 4þ 2pþ Σ − κs − 4lÞ�( − ð5ϵ2−15ϵþ6

ϵ Þpþ 1 − ϵ)

Γ½κuþ2þ2i
2

�Γ½2ðpþ2Þ−Σþκsþ4l
4

�Γ½κtþ2þ2j
2

�
: ð65Þ

When substituting ϵ ¼ 1
2
, 1, and 2, the above formulas

reduce to the results in respective dimensions. Of course,
such interpolation formulas that go through the three
physical ϵ values are far from being unique, and we do
not expect, on any grounds, that M-theory and string-theory
correlators should be physically connected. Nevertheless,
what we wish to highlight are the similarities of analytic
structures in the residues, which allow them to be com-
pactly encapsulated in a single set of formulas. We also
want to mention that the above sum over the multiplets p
can be performed in a closed form, and this leads to a
hypergeometric series. However, we think that it is better to

leave the sum unperformed, which makes the analytic
structure more clear.

C. Examples

Let us demonstrate our general formulas with a few
illuminating examples. The simplest example has ki ¼ 2,
which corresponds to the stress-tensor four-point functions.
The extremality E is 2. Therefore, i, j run from 0 to 2, and
the Mellin amplitudes are degree-2 polynomials in σ, τ.
There is only one value p ¼ 2 in the range of summation
(32), which means only the stress-tensor multiplet contrib-
utes. Using our formulas, we find that, for ϵ ¼ 1,

MAdS5
2222 ðs; t; σ; τÞ ¼ MAdS5

2222;sðs; t; σ; τÞ þMAdS5
2222;tðs; t; σ; τÞ þMAdS5

2222;uðs; t; σ; τÞ;

MAdS5
2222;sðs; t; σ; τÞ ¼ −

2

n2

�ðt − 4Þðu − 4Þ þ ðsþ 2Þ(ðt − 4Þσ þ ðu − 4Þτ)
s − 2

�
;

MAdS5
2222;tðs; t; σ; τÞ ¼ τ2MAdS5

2222;s

�
t; s;

σ

τ
;
1

τ

�
; MAdS5

2222;uðs; t; σ; τÞ ¼ σ2MAdS5
2222;s

�
u; t;

1

σ
;
τ

σ

�
; ð66Þ

where sþ tþ u ¼ 8. For ϵ ¼ 2, we get

MAdS7
2222 ðs; t; σ; τÞ ¼ MAdS7

2222;sðs; t; σ; τÞ þMAdS7
2222;tðs; t; σ; τÞ þMAdS7

2222;uðs; t; σ; τÞ;

MAdS7
2222;sðs; t; σ; τÞ ¼ −

1

n3

�ðt − 8Þðu − 8Þ þ ðsþ 2Þ(ðt − 8Þσ þ ðu − 8Þτ)
s − 4

þ ðt − 8Þðu − 8Þ þ ðsþ 2Þ(ðt − 8Þσ þ ðu − 8Þτ)
4ðs − 6Þ

�
;

MAdS7
2222;tðs; t; σ; τÞ ¼ τ2MAdS7

2222;s

�
t; s;

σ

τ
;
1

τ

�
; MAdS7

2222;uðs; t; σ; τÞ ¼ σ2MAdS7
2222;s

�
u; t;

1

σ
;
τ

σ

�
; ð67Þ

where sþ tþ u ¼ 16. These two correlators, respectively, reproduce the results of Refs. [17,18]. When ϵ ¼ 1
2
, we have

MAdS4
2222 ðs; t; σ; τÞ ¼ MAdS4

2222;sðs; t; σ; τÞ þMAdS4
2222;tðs; t; σ; τÞ þMAdS4

2222;uðs; t; σ; τÞ;

MAdS4
2222;sðs; t; σ; τÞ ¼

X∞
m¼0

−
3(ðt − 2Þðu − 2Þ þ ðsþ 2Þ(ðt − 2Þσ þ ðu − 2Þτ))ffiffiffiffiffiffi

2π
p

n
3
2Γð1

2
−mÞ2m!Γðmþ 5

2
Þðs − 1 − 2mÞ ;

MAdS4
2222;tðs; t; σ; τÞ ¼ τ2MAdS4

2222;s

�
t; s;

σ

τ
;
1

τ

�
;MAdS4

2222;uðs; t; σ; τÞ ¼ σ2MAdS4
2222;s

�
u; t;

1

σ
;
τ

σ

�
; ð68Þ

where sþ tþ u ¼ 4. These equations reproduce the result of Ref. [48], where the contact terms have now been
automatically absorbed in the exchange contribution according to our prescription.
Another interesting case is the next-to-next-to-extremal correlators with k1 ¼ k2 ¼ 2 and k3 ¼ k4 ¼ k. Let us give only

the explicit result for AdS4 × S7, which has not appeared in the literature. This family of correlators will be the starting point
for constructing the four-point function h2222i at one loop. These correlators also have E ¼ 2. Therefore, p ¼ 2 for the
s-channel exchanges, while p ¼ k for the t- and u-channel exchanges. We have
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MAdS4
22kk;sðs; t; σ; τÞ ¼

X∞
m¼0

−
3k

8
ffiffiffiffiffiffi
2π

p
n

3
2m!Γ½k−2m−1

2
�Γ½1−2m

2
�Γ½5þ2m

2
�

×
ð2t − k − 2Þð2u − k − 2Þ þ 4ðsþ 2Þ(σðt − k

2
− 1Þ þ τðu − k

2
− 1Þ)

s − 1 − 2m
; ð69Þ

where sþ tþ u ¼ 2þ k, and

MAdS4
22kk;tðs; t; σ; τÞ ¼

X∞
m¼0

−
3kτΓ½k

2
þ 1�

8
ffiffiffi
2

p
n

3
2m!Γ½k−1

2
�Γ½1−2m

2
�2Γ½kþ3þ2m

2
�

×
ð2tþ kþ 2Þð2u − k − 2Þ þ 2ðs − kÞ(σðkþ 2tþ 2Þ þ τð2u − k − 2Þ)

t − k
2
− 2m

; ð70Þ

MAdS4
22kk;uðs; t; σ; τÞ ¼ MAdS4

22kk;tðs; u; τ; σÞ: ð71Þ

Note that when k is odd, the pole series in MAdS4
22kk;s truncates, while if k is even, this does not happen.

Finally, let us give an example with higher extremality E ¼ 3. We consider the case with ki ¼ 3. In the sum over
multiplets, p now takes values 2 and 4 according to Eq. (32). Using our formulas, we get

MAdS4
3333;sðs; t; σ; τÞ ¼

X∞
m¼0

−
27(ðt − 3Þðu − 3Þ þ ðsþ 2Þ(ðt − 3Þσ þ ðu − 3Þ))

4n
3
2

ffiffiffiffiffiffi
2π

p
m!Γ½1 −m�2Γ½2mþ5

2
�ðs − 1 − 2mÞ

þ
X∞
m¼0

48

5n
3
2

ffiffiffiffiffiffi
2π

p
m!Γ½1−2m

2
�2Γ½2mþ7

2
�ðs − 2 − 2mÞ

×

�
ðt − 3Þðu − 3Þ þ 4ðsþ 3Þ(ðsþ 2Þστ − ðt − 3Þσ2 − ðu − 3Þτ2)

þ ðsþ 3Þ(ðt − 3Þσ þ ðu − 3Þτ) − 4(ðt − 3Þ
�
u −

15

4

�
σ þ ðu − 3Þ

�
t −

15

4

�
τ)

�
; ð72Þ

where sþ tþ u ¼ 6. The other two channels are related by
crossing symmetry,

MAdS4
3333;tðs; t; σ; τÞ ¼ τ3MAdS4

3333;s

�
t; s;

σ

τ
;
1

τ

�
;

MAdS4
3333;uðs; t; σ; τÞ ¼ σ3MAdS4

3333;s

�
u; t;

1

σ
;
τ

σ

�
: ð73Þ

V. SUPERCONFORMAL WARD IDENTITIES

A. Ward identities in Mellin space

In the previous section, we constructed the polar part of
the general Mellin amplitudes for the backgrounds
AdS4 × S7, AdS5 × S5, and AdS7 × S4, and claimed that
no further contact terms are needed. In order to show that
these contact terms are absent, we need to show that these
amplitudes satisfy the superconformal WI. Note that since
the WI are not heavily used in our construction, this also
serves as a nontrivial check of our results. In the cases of
AdS5 × S5 and AdS7 × S4, one can efficiently impose the
WI by requiring the existence of a reduced amplitude M̃,
as discussed in Sec. II B. However, for AdS4 × S7, this is
not possible. Below, we develop an efficient method to

impose the WI in Mellin space at the level of the full
amplitude, expanding on Ref. [48]. We start by recalling the
WI (10) in space-time,

ðz∂z − ϵα∂αÞGðz; z̄; α; ᾱÞjα¼1=z ¼ 0: ð74Þ
In order to write this relation in Mellin space, we first note

z∂z ¼ U∂U −
z

1 − z
V∂V: ð75Þ

In Mellin space, U∂U and V∂V have a very simple, multi-
plicative action, which follows from the definition (18),

U∂U →

�
s
2
− as

�
×; V∂V →

�
t
2
− at

�
× : ð76Þ

On the other hand, z does not. In order to proceed, we write
the Mellin amplitude in terms of the R-symmetry cross
ratios α, ᾱ and expand it in powers of α:

Mðs; t; α; ᾱÞ ¼
XE
q¼0

αqMðqÞðs; t; ᾱÞ: ð77Þ

In terms of the components MðqÞðs; t; ᾱÞ, the WI take the
form
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XE
q¼0

(ð1 − zÞzE−q
�
s
2
− as − q

�

− zE−qþ1

�
t
2
− at

�
)MðqÞðs; t; ᾱÞ ¼ 0: ð78Þ

We can obtain an inequivalent relation by replacing z → z̄,

XE
q¼0

(ð1 − z̄Þz̄E−q
�
s
2
− as − q

�

− z̄E−qþ1

�
t
2
− at

�
)MðqÞðs; t; ᾱÞ ¼ 0: ð79Þ

Considering two independent linear combinations of the
relations above, we arrive at

XE
q¼0

(ðζðE−qÞ� − ζðE−qþ1Þ
� Þ

�
s
2
− as − q

�

− ζðE−qþ1Þ
�

�
t
2
− at

�
)MðqÞðs; t; ᾱÞ ¼ 0; ð80Þ

where we have defined

ζðnÞþ ¼ zn þ z̄n; ζðnÞ− ¼ zn − z̄n

z − z̄
: ð81Þ

The crucial observation is that, while z and z̄ by themselves

do not have a simple action in Mellin space, ζðnÞ� , which
should be interpreted as operators, do. Indeed, for each n,

ζðnÞ� are simply polynomials of U and V, while powers of U
and V act in Mellin space as shift operators. This obser-
vation leads to the following representation in Mellin space:

ζð0Þþ ¼ 2; ζð0Þ− ¼ 0; ð82Þ

ζð1Þþ ¼ 1þ Û − V̂; ζð1Þ− ¼ 1; ð83Þ

ζð2Þþ ¼ 1 − 2V̂ þ Û2 þ V̂2 − 2dUV; ζð2Þ− ¼ 1þ Û − V̂;

ð84Þ

and so on, where dUmVn is the shift operator corresponding
to UmVn, given by

dUmVn ∘Mðs; tÞ ¼ Γfkigðs− 2m; t− 2nÞ
Γfkigðs; tÞ

Mðs− 2m; t− 2nÞ:

ð85Þ

Note that for a given extremality E, only operators up to

ζðEþ1Þ
� appear.

1. An example

The simplest example is that of ki ¼ 2, namely, the
correlator of the stress-tensor multiplet. So let us work out
this case in detail. We focus on Eq. (80), involving ζ−,
which has not been explicitly considered before. In this
case, the extremality E ¼ 2, and we can decompose the
Mellin amplitude as

Mðs; t; α; ᾱÞ ¼ Mð0Þðs; tÞ þ αMð1Þðs; tÞ þ α2Mð2Þðs; tÞ;
ð86Þ

where the dependence on ᾱ has not been explicitly shown
since it acts as a spectator. The WI take the form

ζð1Þ− (ðsþ t − 8ϵÞMð2Þðs; tÞ þ ð2ϵ − sÞMð1Þðs; tÞ)þ ζð2Þ− (ðsþ t − 6ϵÞMð1Þðs; tÞ − sMð0Þðs; tÞ)
þ ζð3Þ− ðsþ t − 4ϵÞMð0Þðs; tÞ ¼ 0; ð87Þ

or, explicitly, after acting with the shift operators,

ðt − 4ϵÞMð0Þðs; tÞ − 2ðs − 4ϵÞ2ðt − 4ϵÞ2
ðsþ t − 4ϵ − 2Þ2(sþ t − 4ðϵþ 1Þ)M

ð0Þðs − 2; t − 2Þ

þ ðs2 − 2sð4ϵþ 1Þ þ 8ϵð2ϵþ 1ÞÞ2
ðsþ t − 4ϵ − 2Þ2(sþ t − 4ðϵþ 1Þ)M

ð0Þðs − 4; tÞ − ðt − 4ϵÞ2ðsþ 2t − 8ϵ − 4Þ
ðsþ t − 4ϵ − 2Þ2 Mð0Þðs; t − 2Þ

þ ðt2 − 2tð4ϵþ 1Þ þ 8ϵð2ϵþ 1ÞÞ2
ðsþ t − 4ϵ − 2Þ2(sþ t − 4ðϵþ 1Þ)M

ð0Þðs; t − 4Þ þ ðs − 4ϵÞ2ðt − 4ϵÞ
ðsþ t − 4ϵ − 2Þ2M

ð0Þðs − 2; tÞ

þ ðs − 4ϵÞ2ðsþ t − 6ϵ − 2Þ
ðsþ t − 4ϵ − 2Þ2 Mð1Þðs − 2; tÞ − ðt − 4ϵÞ2ðsþ t − 6ϵ − 2Þ

ðsþ t − 4ϵ − 2Þ2 Mð1Þðs; t − 2Þ

þ ðt − 4ϵÞMð1Þðs; tÞ þ ðsþ t − 8ϵÞMð2Þðs; tÞ ¼ 0: ð88Þ

Note this equation gives Mð2Þðs; tÞ in terms of Mð0Þðs; tÞ and Mð1Þðs; tÞ, which is a general phenomenon: For a general
extremality E, we can use the WI involving ζ− to solve forMðEÞðs; tÞ in terms of the other ones. Returning to Eq. (88), for
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d ¼ 4, 6, we can simply plug in the results given in Sec. IV C and check that they indeed satisfy this relation for ϵ ¼ 1 and
ϵ ¼ 2, respectively. For d ¼ 3, we can resum the expression given in Eq, (68) to obtain

MAdS4
2222;sðs; t; σ; τÞ ¼

�
−

3ðt − 2Þðu − 2Þ
2

ffiffiffi
2

p
π3=2n3=2ðs − 1Þsðsþ 2ÞΓ½1 − s

2
� þ

3
ffiffiffi
2

p ðt − 2Þðtþ u − 6Þ
π3=2n3=2ðs − 1Þs2ðsþ 2Þ2Γ½− s

2
− 1� σ

þ 3
ffiffiffi
2

p ðu − 2Þðtþ u − 6Þ
π3=2n3=2ðs − 1Þs2ðsþ 2Þ2Γ½− s

2
− 1� τ

�
hðsÞ; ð89Þ

where we have introduced

hðsÞ ¼ ffiffiffi
π

p ðs2 þ 3s − 4ÞΓ
�
1 −

s
2

�
þ 8Γ

�
3 − s
2

�
: ð90Þ

Adding the contributions in the t- and u-channels, we can
obtain the corresponding expressions for MðqÞðs; tÞ, for
q ¼ 0, 1, 2. Plugging them into Eq. (88), we can check that,
indeed, the identity is satisfied for ϵ ¼ 1=2.
We have checked the above WI for a vast variety of

examples. We have found that our answer satisfies the WI
in each case, without the addition of a contact term. This
result actually proves that by using the representation we
have chosen, our result provides the full answer and not just
the polar part of the amplitude.

B. WI and the flat-space limit

It is illuminating to study the superconformal Ward
identities and the Mellin amplitudes around the flat-space
limit, where s, t are large. In the flat-space limit, shift
operators act multiplicatively. Indeed, in this limit,
Mðs − 2m; t − 2nÞ ∼Mðs; tÞ plus higher-order derivative
corrections, and one can explicitly check that

dUmVn ∘Mðs; tÞ ¼ s2mt2n

ðsþ tÞ2ðmþnÞ þ � � � ; ð91Þ

which leads to the following rule for the operators ζðnÞ� to
leading order:

ζðnÞþ ¼ 2sn

ðsþ tÞn þ � � � ; ζðnÞ− ¼ nsn−1

ðsþ tÞn−1 þ � � � : ð92Þ

Plugging these expressions into Eq. (80) and taking the flat-
space limit, we observe that the equation for ζþ is trivially
satisfied to leading order, while the remaining equation
gives

XE
q¼0

sE−q

ðsþ tÞE−q M
ðqÞ
flatðs; t; ᾱÞ ¼ 0: ð93Þ

However, this equation simply implies that, in the flat-
space limit,

Mflat

�
s; t;

sþ t
s

; ᾱ

�
¼ 0;

Mflat

�
s; t; α;

sþ t
s

�
¼ 0; ð94Þ

as a consequence of the superconformal Ward identities, in
any number of dimensions. The second relation follows
from replacing α → ᾱ.
From our results, we can study the explicit form of the

amplitudes in the flat-space limit. In all cases, we find

lim
s;t→∞

Mðs; t; σ; τÞ ¼ N fkig
Θflat

4 ðs; t; σ; τÞ
stu

Pfkigðσ; τÞ;

with sþ tþ u ¼ 0 in the flat-space limit, and

Θflat
4 ðs; t; σ; τÞ ¼ ðtuþ tsσ þ suτÞ2: ð95Þ

Note that Pfkigðσ; τÞ is an R-symmetry polynomial explic-
itly given by

Pfkig ¼
X

iþjþk¼E−2
0≤i;j;k≤E−2

ðE − 2Þ!σiτj
i!j!k!ðiþ κu

2
Þ!ðjþ κt

2
Þ!ðkþ κs

2
Þ! :

The form of the flat-space limit is completely universal, and
the prefactor Θflat

4 and the polynomials Pfkigðσ; τÞ do not
depend on the number of dimensions. Furthermore, rewrit-
ingΘflat

4 in terms of α, ᾱ and using sþ tþ u ¼ 0, we obtain

Θflat
4 ðs; t; α; ᾱÞ ¼ ðsþ t − sαÞ2ðsþ t − sᾱÞ2; ð96Þ

which neatly factorizes into a holomorphic and an anti-
holomorphic part. Note that the presence of this factor
implies the relations (94) indeed hold. For d ¼ 4, 6, the
presence of the prefactor Θflat

4 ðs; t; α; ᾱÞ in the flat-space
limit has also been discussed in Refs. [86,87]. In those
cases, the solutions to the WI can be written as a shift
operator acting on a reduced amplitude, and we can show
that the flat-space limit of such a shift operator always
contains the prefactor Θflat

4 ðs; t; α; ᾱÞ.
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VI. CONCLUSION

In this paper, we solved a long-standing problem in AdS/
CFT. We developed a constructive method that gives all
tree-level four-point holographic correlators in all theories
with maximal superconformal symmetry. Our method
exploits the remarkable simplicity of the Mellin amplitude
in a special R-symmetry limit. The simplicity arises as a
result of superconformal symmetry and makes it possible to
directly compute all the amplitudes in this limit. This limit
also hides new powerful organizing principles for holo-
graphic correlators, which allow us to reconstruct the full
amplitudes from this limit. The reconstruction procedure is
based purely on symmetries, and it is universal for all
spacetime dimensions. This method allows us to derive
results for different backgrounds on the same footing,
which overcomes the limitations of all previous methods.
For d ¼ 4, our result constitutes a proof for the conjecture
[26,27]. For d ¼ 6, we reproduce the results recently
reported in Ref. [49], and for d ¼ 3, we provide new
results. Our results lead to an array of interesting questions,
applications, and avenues for future research. We list a
few below.

(i) The multitude of four-point functions constructed in
this paper contain a wealth of theoretical data. These
data include anomalous dimensions and three-point
function coefficients, and are of great importance for
studying strongly coupled, superconformal field
theories. For example, in d ¼ 3, part of the data
can be compared with other exact results, obtained
from topological twisting and supersymmetric
localization [88–91]. Moreover, these data can also
be used to calibrate the numerical bootstrap bounds
at large central charge [88,89,92].

(ii) The data from bulk tree-level supergravity are also
the necessary input for studying AdS quantum
gravity using conformal bootstrap techniques. A
systematic procedure to compute loop corrections
is given in Ref. [35], which works in a similar
fashion as the amplitude unitarity method in flat
space. The algorithm takes tree-level data as input
and outputs loop-level amplitudes, which capture the
quantum corrections. While the computation of
loop-level correlators is quite advanced in AdS5 ×
S5 [36–46,93], it is still in its infancy for AdS7 × S4

[94]. Similar progress for AdS4 × S7 at one loop is
yet to be made. Systematically understanding the
structure of general loop-level correlators will con-
stitute an important next step in advancing the
general program of holographic correlators.

(iii) Moreover, our results contain a fascinating feature
that could lead to great progress at higher points,
therefore extending this program in another important
direction. In our construction, we give a prescription
for restoring Bose symmetry in the exchange ampli-
tudes, which remarkably, at the same time, expresses

the full amplitude as a sum over exchange amplitudes
with no extra contact terms. The absence of contact
terms is a clear indicationof on-shell reconstructibility
in AdS, and a similar phenomenon was also observed
at the level of the five-point function [65]. In flat
space, such reconstructibility leads to efficient recur-
sive algorithms that generate higher-point amplitudes
from lower-point ones. It would be interesting to have
a better understanding of the observed reconstructi-
bility in AdS and to explore similar recursive com-
putational methods.

(iv) In this paper, we showed that the MRV limit of
amplitudes encodes important physics. We can also
study various other limits of the general four-point
correlators. One particularly interesting limit is to
take ki to be large, where we would expect to see the
semiclassical behavior of membranes or strings
scattering in AdS.

(v) It would also be interesting to generalize our
techniques to study theories with less supersym-
metry. Some initial progress using bootstrap meth-
ods has been reported in Ref. [59] for the simplest
four-point functions. We expect that using the
MRV limit will greatly facilitate the analysis and
allow for a similar solution for general correlators
in these theories. It would be very interesting to see
whether the same organizing principles will con-
tinue to hold for theories with less supersymmetry
and, in particular, whether intrinsic contact terms
are absent.

(vi) On a technical note, we have also initiated a study of
the Mellin superconformal Ward identities (and their
solutions) around the flat-space limit. It may be
interesting to pursue this further to construct the
solution to the superconformal Ward identities for
the d ¼ 3 case, where the solution in position space
is not tractable because of the appearance of non-
local differential operators.

(vii) Finally, our results and techniques for holographic
correlators have demonstrated many similarities to
those for flat-space scattering amplitudes. The MRV
notion that played a key role in this paper was, in
fact, motivated by the similar MHV concept in flat
space. We believe that there is a promising future-
research avenue that further explores and exploits
such connections and will greatly benefit both fields
of research through the exchange of ideas. For
example, there has been some progress in under-
standing gravitational MHV amplitudes through
twistor actions in the presence of a cosmological
constant (see Ref. [95] and references therein).
Relatedly, there have also been some attempts
[96,97] to develop a Cachazo-He-Yuan formalism
[98] in AdS by using ambitwistor string techniques.
It would be very interesting to make a connection
between these formalisms and the results of
this paper.
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