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We propose a novel nonequilibrium phenomenon, through which a prompt quench from a metal to a
transient superconducting state can induce large oscillations of the order parameter amplitude. We argue
that this oscillating mode acts as a source of parametric amplification of the incident radiation. We report
experimental results on optically driven K3C60 that are consistent with these predictions. The effect is found
to disappear when the onset of the excitation becomes slower than the Higgs-mode period, consistent with
the theory proposed here. These results open new possibilities for the use of collective modes in many-body
systems to induce nonlinear optical effects.
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I. INTRODUCTION

The quest for new functionalities in quantum materials
has recently been extended to nonequilibrium states,
which are interesting both because they exhibit new
physical phenomena and because of their potential for
high-speed device applications. Notable advances have
been made in the creation of metastable phases [1–9] and
in Floquet engineering under external periodic driving
[10–12]. In the context of nonequilibrium superconduc-
tivity, examples have included the generation of transient
superconductivity above the thermodynamic transition
temperature [6,8,9,13,14], the optical control of the
interlayer phase in cuprates [15,16], and the excitation
of coherent Higgs-mode oscillations [17–20].
The Higgs mode is a fundamental collective excitation

of systems with spontaneous symmetry breaking. It is a
gapped excitation associated with oscillations of the
amplitude of the order parameter. Examples of the Higgs
mode in condensed matter are plentiful: It has been

observed in the superconducting phase of Nb1−xTixN
[17–19], Bi2Sr2CaCu2O8þx [20], NbSe2 [21–24], and in
amorphous superconducting films [25]; in the dimerized
antiferromagnet TlCuCl3 [26], in a variety of incommen-
surate charge density wave (CDW) systems [27–29], and in
cold bosonic gases near the superfluid-to-Mott-insulator
transition [30,31].
In a number of experiments reported recently, super-

conductivity is created nonadiabatically after a rapid
change in microscopic interactions, as induced by the
application of a terahertz or midinfrared (MIR) pump
pulse [6,8,9,13,14,32–35]. Although the dynamics of this
process are not yet fully understood, we posit that the
“Mexican hat” effective potential for the superconducting
order parameter is established promptly after optical
excitation; see Fig. 1(a). The appearance of large Higgs
oscillations is then a natural attribute of such photo-
induced superconductivity if the quench is fast compared
to the frequency of the Higgs mode ωH; see Fig. 1(b) (the
order parameter dynamics following a sudden quantum
quench has been studied theoretically in a number of
related contexts; see, e.g., Refs. [36–39]).
We argue that in this situation, the coherent collective

mode can act as a source of parametric amplification
[40,41] for oscillations of long-lived phase fluctuations,
resulting in an enhanced reflectivity for a time-delayed
probe pulse. This phenomenon can be qualitatively
understood as a superconductor with an excited Higgs
mode, which then places a parametric modulation on
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low-frequency phase modes. We predict that the reflected
beam would then feature amplification of intensity at
the original frequency ω1, as well as the generation of
an idler signal at the complementary frequency ωH − ω1

[see Fig. 1(c)]. We dub this phenomenon “Higgs
amplification.”
We also report experimental results on optically driven

K3C60, which support these predictions. Using a pump-
probe technique, we illuminate our samples with a pump
pulse at 41 THz and a probe pulse spanning frequencies
between 1 and 7 THz. Phase-resolved detection of the
reflected signal allows us to reconstruct both the real and
imaginary parts of the conductivity at the probe frequency.
We find that when K3C60 is driven with pump pulses of
suitable duration, the incident probe light is locally ampli-
fied near the surface for frequencies below 10 meV=ℏ.
We analyze experimental results, taking into account the
penetration depth mismatch between the pump and probe
pulses. We observe an anomalous enhancement of the
reflectance, which, in an homogeneously excited medium,
would result in 6% amplification. For the penetration depth
of the probe beam of 700 nm, this corresponds to the
amplification coefficient α ∼ 103 cm−1.
Our underlying theoretical considerations are presented

in Secs. II and III. Experimental results are presented in
Sec. IV, and a comparison of theory and experiment is
given in Sec. V. Some implications of this work and the

outlook for further developments are given in Sec. VI.
Additional details of our analysis are given in three
Appendixes.

II. FROM HIGGS OSCILLATIONS TO
ANOMALOUS REFLECTION

The coupling between the Higgs mode and light can be
understood by observing that in a general state with broken
continuous symmetry, the Higgs mode can decay into a pair
of Goldstone modes. For neutral superfluids, this process
determines the lifetime of Higgs excitations [42]. In
superconductors, the Goldstone mode describes phase
fluctuations and therefore a charge current, which interacts
directly with photons. Deep inside the material, these
photons are gapped to the plasma frequency by the
Anderson-Higgs mechanism, thus protecting the Higgs
mode from decay into photons. On the other hand, near
the surface, a Higgs excitation can decay into a pair of
gapless vacuum photons whose frequencies add up to ωH,
which corresponds to an effective term in the Hamiltonian

HHiggs=photons ∼
X

ω1þω2¼ωH

ðha†ω1
a†ω2

þ h†aω1
aω2

Þ; ð1Þ

where h is a quantum field that annihilates a Higgs
excitation and aω annihilates a vacuum photon of frequency
ω. Hence, the energy of the excited Higgs mode is
converted into entangled photon pairs. In the absence of
the probe pulse, all photon pairs are generated equally.
However, the incoming probe enhances the generation of
pairs in which one of the photons matches the incident
photon frequency because of the bosonic stimulation factor.
One can understand the origin of the coupling in Eq. (1)

from the following consideration. In superconductors,
the diamagnetic coupling term between light and matter,
Hdia ¼ ðe2ℏ2=2mc2ÞnsA2, plays a key role, giving rise
to the London equation for the current response to an
electromagnetic field and to the Meissner effect. Here, ns is
the superfluid density, which, for a coherently excited
Higgs mode, is expected to oscillate at the Higgs frequency,
ns ¼ ns;0 þ δn cosðωHtÞ. In a quantized description of the
electromagnetic field, the vector potential A is a linear
combination of photon creation and annihilation operators,
schematically of the formA ∼

P
ωðaω þ a†ωÞ. This descrip-

tion implies that the diamagnetic term gives rise to the
term (1), where h is a quantum analog of the oscillating part
of the superfluid density δn. Interactions of this type are
known to give rise to stimulated emission and parametric
down conversion of light [43].
These considerations give rise to the following mecha-

nism of Higgs amplification. Consider an incident probe
pulse composed of N photons at frequency ω1 < ωH as it is
reflected from a superconductor. The term a†ω1

a†ω2
creates a

pair of photons, leading to a state with N þ 1 photons at ω1

Re Im
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FIG. 1. (a) Schematic potential in a broken symmetry state. The
collective excitations are Goldstone and Higgs modes. (b) Sudden
change in system parameters at time t ¼ 0 leading to a rapid
inversion in the potential, thus inducing Higgs oscillations.
(c) Light amplification in a superconductor with an excited
Higgs mode. Left panel: probe pulse containing N photons of
frequency ω1, incident on a superconductor with an excited Higgs
mode (represented by a wave). Right panel: output consisting of
N þ 1 photons of frequency ω1, plus a single photon of frequency
ω2 traveling “backward,” due to in-plane momentum conserva-
tion. When many Higgs excitations undergo stimulated decay, a
large number of both ω1 and ω2 photons are produced.
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and one ω2 ¼ ωH − ω1 photon; see Fig. 1(c). The ampli-
tude of this process is enhanced by a Bose factor offfiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
. As long as the Higgs mode remains excited, this

process leads to amplification of ω1 photons and generation
of ω2 photons, until the Higgs mode is depleted. The net
effect is outgoing light with two frequencies, ω1 and ω2,
related by ω1 þ ω2 ¼ ωH, and the outgoing light at ω1

having a higher intensity than the incoming signal.
In typical superconductors, the Higgs frequency is

smaller than the plasma frequency. Then, incident light
with ω1 < ωH does not penetrate deeply into the material,
and Higgs amplification is a surface effect. In particular,
because of the evanescent nature of the waves inside the
material, there are no phase-matching conditions in this
process. Thus, there is not a discrete set of frequencies at
which Higgs amplification is resonantly enhanced, and
hence the level of amplification is expected to depend
smoothly on the probe frequency ω1. The frequency scale
for the Higgs mode is comparable to the superconducting
gap. Hence, for many superconductors, Higgs amplifica-
tion is expected to occur in the terahertz, a frequency range
that is of great current interest for fundamental science and
technology applications [44,45]. The next section presents
a calculation of Higgs amplification based on a semi-
classical description of photons using Maxwell’s equations.
Our discussion is agnostic about the specific microscopic
mechanism underlying light-induced superconductivity
and, assuming that Higgs oscillations have been coherently
excited, directly studies their effect on optical properties.

III. OPTICAL PROPERTIES OF A
SUPERCONDUCTOR WITH AN EXCITED

HIGGS MODE

The optical properties of a superconductor with an
excited Higgs mode are understood as follows. Consider
Maxwell’s equations combined with the relation between
the electrical current in the material and electric field:

∇ ×B −
ϵ

c2
∂E
∂t ¼ μ0j; ð2Þ

∇ × Eþ ∂B
∂t ¼ 0: ð3Þ

Here, ϵ is the dielectric constant arising from bound
charges, and j is the free current density. For z > 0, outside
the superconductor, ϵ ¼ ϵout (in vacuum, ϵout ¼ 1, but we
allow for interfaces with other media), and we assume the
current j vanishes; for z < 0, ϵ ¼ ϵs, and the current
satisfies the London equation,

j ¼ ΛðtÞvs: ð4Þ

Here, vs ¼ ðℏ=2eÞ∇θ −A, where θ is the superconducting
phase and A is the vector potential. Note that ∂tvs ¼ E.

In an equilibrium superconductor, ΛðtÞ reduces to the static
value Λs ¼ ðe2ns=mÞ, where ns is the superfluid density.
More generally, in a time-modulated superconductor,
Eq. (4) accurately describes the total current induced by
a vector potentialA in the limit whereA and Λ vary slowly
compared to any microscopic frequencies such as the
superconducting energy gap and the scattering rate 1=τ
for electrons in the normal state. We use it here under the
assumption that it is at least a good starting approximation
for the frequencies of interest to us. Equation (4) will later
be supplemented by a more general relation in which the
effects of dissipation are taken into account. A more general
description of the electromagnetic response of a Higgs-
modulated superconductor is provided in Appendix A.
Generally, the value of Λ will depend on the value of the

superconducting energy gap. (Although the special case
of an ideal clean superconductor at T ¼ 0 is an exception
to this rule, we expect that the gap dependence will be
manifest in the systems of interest to us because of the
polaronic effects and coupling to impurities [46].) Since the
Higgs mode represents a modulation in the energy gap,
we expect it to induce a similar modulation in Λ.
Consequently, we may write

ΛðtÞ ¼ Λs þ Λme−iωHt þ Λ�
meiωHt; ð5Þ

where Λm describes the amplitude of the modulation and
ωH is the Higgs-mode frequency. For a BCS superconduc-
tor, ωH ¼ 2Δ, where Δ is the quasiparticle gap [22].
Different frequencies mix because of the time depend-

ence in Λ: Incident light with frequency ω1 will produce
outgoing light with frequencies ω1 and ω2 ¼ ωH − ω1; see
Fig. 1(c). Mixing of the Higgs modulation and the signal
beam is also expected to induce light at the frequency
ω3 ¼ ω1 þ ωH. We note, however, that the ω3 frequency
lies well above the quasiparticle threshold 2Δ, and we
expect that this channel of mode mixing will be suppressed
relative to the channel at ω2. This case can be understood
by observing that at such high frequencies, the current
should be carried primarily by quasiparticles, rather than
supercurrents, and one might expect the quasiparticle
current to be less sensitive than the supercurrent to
modulations of the superconducting amplitude. In the
remainder of this paper, for the sake of simplicity, we
assume that the excitation of the ω3 mode is negligible, and
we omit it entirely from our considerations. Our results
should be qualitatively applicable, however, as long as the
excitation of the ω3 mode is substantially weaker than that
of the ω2 mode.
Prior to solving the reflection problem, it is useful to

first consider the evanescent wave solutions inside the
superconductor. To simplify our discussion, we assume
here that Λm is spatially uniform inside the superconductor.
Nonuniformities in Λm due to the short penetration depth of
the exciting radiation will be taken into account in the
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processing of the experimental data, as detailed in
Appendix B. For the case of uniform Λm, the evanescent
solutions are characterized by the spacetime dependence
(V stands for j, vs, E, or B),

V ¼ ðV1e−iω1t þ V�
2e

iω2tÞeκz þ c:c: ð6Þ

Note that the same spatial dependence appears for ω1 and
−ω2 terms since they mix with each other homogeneously
in space. This case should be contrasted with the static case,
where each frequency mode decays with its own κ.
Substituting Eq. (6) into Eq. (4) and collecting terms with
frequencies ω1 and −ω2 yields

j1 ¼ Λsvs;1 þ Λmv�s;2 ¼ Λs
E1

−iω1

þ Λm
E�

2

iω2

; ð7Þ

j�2 ¼ Λsv�s;2 þ Λ�
mvs;1 ¼ Λs

E�
2

iω2

þ Λ�
m

E1

−iω1

: ð8Þ

For linearly polarized light, Eν ¼ Eνêx, Bν ¼ Bνêy, and
jν ¼ jνêx, where ν ∈ f1; 2g. Then, Eq. (3) yields
Bν ¼ ðκ=iωνÞEν, and Eq. (2) becomes

�
κ2c2 þ ω2

1ϵ1 ϒω1=ω2

ϒ�ω2=ω1 κ2c2 þ ω2
2ϵ2̄

��
E1

E�
2

�
¼ 0: ð9Þ

Here, ϒ≡ Λm=ε0, ϵ1 ≡ ϵðω1Þ, and ϵ2̄ ≡ ϵð−ω2Þ, where
ϵðωÞ ¼ ϵs − Λs=(ε0ωðωþ i0þÞ) is the dielectric function
of the superconductor. [Note that, by changing the form of
ϵðωÞ, one can generalize the discussion, e.g., to introduce
dissipation.] The allowed values of κ are obtained by
requiring the determinant of the above matrix to vanish,

κ2�c
2 ¼ −

ω2
1ϵ1 þ ω2

2ϵ2̄
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

1ϵ1 − ω2
2ϵ2̄Þ2

4
þ jϒj2

r
; ð10Þ

and the fields inside the superconductor satisfy

Et
1;�

Bt
1;�

¼ iω1

κ�
≡ η�; ð11Þ

Et�
2;�

Bt
1;�

¼ −iω2ðκ2�c2 þ ω2
1ϵ1Þ

ϒκ�
≡ ϕ�; ð12Þ

Bt�
2;�

Bt
1;�

¼ ðκ2�c2 þ ω2
1ϵ1Þ

ϒ
≡ γ�; ð13Þ

where the superscript t indicates that these act as trans-
mitted fields in the reflection problem.
Next, we consider a normally incident signal beam of

frequency ω1, and reflected beams at frequencies ω1 and
ω2, with

Ei
1;B

i
1 ∝ e−iω1ðtþz

ffiffiffiffiffi
ϵout

p
=cÞ; ð14Þ

Er
ν;Br

ν ∝ e−iωνðt−z ffiffiffiffiffi
ϵout

p
=cÞ; ð15Þ

where ν ∈ f1; 2g. The fields are linearly polarized as
before, Eν ¼ Eνêx, Bν ¼ Bνêy, and Maxwell’s equations
constrain them to satisfy Ei

1 ¼ −ðc= ffiffiffiffiffiffiffi
ϵout

p ÞBi
1 and Er

ν ¼
ðc= ffiffiffiffiffiffiffi

ϵout
p ÞBr

ν. Within the superconductor, the transmitted
fields are superpositions of two evanescent waves of the
form (6) with κ ¼ κ�, whose amplitudes are fixed by
boundary conditions imposed independently on each
frequency:

Bi
1 þ Br

1 ¼ Bt
1;þ þ Bt

1;−; ð16Þ

Ei
1 þ Er

1 ¼ Et
1;þ þ Et

1;−; ð17Þ

Br�
2 ¼ Bt�

2;þ þ Bt�
2;−; ð18Þ

Er�
2 ¼ Et�

2;þ þ Et�
2;−: ð19Þ

Combining these with Eqs. (11)–(13) yields

r≡ Br
1

Bi
1

¼ ð1þ ζÞ þ ffiffiffiffiffiffiffi
ϵout

p ðηþ þ ζη−Þ
ð1þ ζÞ − ffiffiffiffiffiffiffi

ϵout
p ðηþ þ ζη−Þ

; ð20Þ

r12 ≡ Br�
2

Bi
1

¼ 2ðγþ þ ζγ−Þ
ð1þ ζÞ − ffiffiffiffiffiffiffi

ϵout
p ðηþ þ ζη−Þ

; ð21Þ

where

ζ ¼ −
γþ − ffiffiffiffiffiffiffi

ϵout
p

ϕþ
γ− − ffiffiffiffiffiffiffi

ϵout
p

ϕ−
: ð22Þ

Equations (20) and (21) are the main theoretical results of
this paper: r is the reflection amplitude of the signal beam,
whereas r12 is the amplitude of the emitted idler mode at the
downconverted frequency ω2 ¼ ωH − ω1, normalized by
the amplitude of the incident signal beam.
Figure 2 shows R ¼ jrj2 and R12 ¼ jr12j2 as a function

of ω1, in the case ωH < ωps, where ωps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λs=ðε0ϵsÞ

p
is

the superconducting plasma frequency of the material.
Note that, in the absence of dissipation, there is amplifi-
cation R > 1 over the entire range 0 < ω1 < ωH, and the
maximum amplification occurs at ω1 ¼ ωH=2. One can
study the effect of dissipation by writing ϵðωÞ ¼
ϵs − σðωÞ=ðiε0ωÞ in Eqs. (20) and (21) and by adding a
real part to the conductivity function σðωÞ. This process
suppresses the reflectivity and also reduces the frequency
ω1 at which the maximum occurs, as shown in Fig. 2(a).
Note that the net amplification in Fig. 2 is small, of the

order of a few percent. In order to understand this, we focus
on ω1 ¼ ω2 ¼ ωH=2, where the maximum is obtained,
with the value

MICHELE BUZZI et al. PHYS. REV. X 11, 011055 (2021)

011055-4



Rmax ¼ 1þ ϵoutω
2
HðDþ −D−Þ2

½ϵoutω2
H þDþD−�2

; ð23Þ

where D� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðΛs � jΛmjÞ=ε0 − ϵsω

2
H

p
. For ω2

H ≪ Λs=ε0
and Λm ≪ Λs, Eq. (23) becomes

Rmax ¼ 1þ jΛmj2
Λ2
s

ϵoutω
2
H

4ϵsω
2
ps
: ð24Þ

The factor jΛmj2=Λ2
s expresses the fact that the amplifica-

tion is proportional to the intensity of the modulation. The
factor ϵoutω2

H=ð4ϵsω2
psÞ is the square of the London pen-

etration depth divided by the wavelength of the incident
light; it expresses the fact that amplification is weak if the
light cannot probe deeply into the superconductor. This
observation suggests that, in order to enhance the ampli-
fication, one could consider instances in which the light can
probe a larger region of the superconductor prior to being

reflected. Two possible approaches to achieve this result
come to mind: first, by using incoming light with a shallow
incidence angle to the sample, thus introducing geometrical
factors that enhance the effect; second, by studying systems
in which the Higgs frequency exceeds the plasma fre-
quency. These possibilities will be discussed elsewhere
[47]. Note that, in a realistic superconductor, the penetra-
tion of light is controlled by the total plasma frequency ωp,
which receives contributions from all charge carriers, not
just the superconducting ones. It is this total plasma
frequency that presumably controls the strength of the
Higgs amplification in Eq. (24).
In the next section, we present experimental evidence

for Higgs amplification in the superconductor K3C60. This
material is a natural candidate system for Higgs amplifi-
cation. In this compound, the low density of electrons
(three per C60 molecule) and the weak hopping between
C60 molecules conspire to yield an anomalously small
plasma frequency ωp ¼ 72 meV=ℏ. Optical excitation at
midinfrared wavelengths has been shown to transform the
high-temperature ðT ≫ TcÞ metallic phase of K3C60 into a
transient nonequilibrium state with the same optical proper-
ties as the low-temperature superconductor (T < Tc). The
transient state, which is thought to be a photoinduced
nonequilibrium superconductor, displays a saturated reflec-
tivity (R ¼ 1), a gap in the real part of the optical
conductivity σ1, and a divergent low-frequency imaginary
conductivity σ2 [8].
It is difficult to make an a priori estimation of ωH. One

possible approach would be to choose ωH ¼ 2Δ=ℏ, as
expected of a weakly coupled BCS superconductor.
However, beyond the questions regarding the applicability
of BCS theory to the photoinduced state of K3C60, a direct
experimental determination of Δ is not possible since the
superconducting gap is hidden behind a broad midinfrared
absorption peak in the optical conductivity, as discussed
below. In what follows, we find that the analysis of the
measured reflection based on the predictions of Higgs
amplification implies a Higgs frequency ωH ≈ 24 meV=ℏ.
Hence, K3C60 combines a relatively large value of ωH=ωp,
as is necessary to enhance the reflectance in Eq. (24),
together with the possibility for rapid quenches into the
superconducting state by pump pulses, as needed to induce
large Higgs oscillations. In particular, by modifying the
type of quench protocol used, one may control the
amplitude of Higgs oscillations.
In order to compare to experiments in photoinduced

superconductors, we must relate to two considerations that
are not taken into account in our model. The first one
concerns the Higgs decay mechanism. In a realistic system,
the Higgs oscillations are damped by decay into quasi-
particles in a process that is kinematically marginal, leading
to a slow, power-law damping [48–52], which is eventually
expected to be superseded by a faster decay, since the light-
induced superconductivity itself is short-lived. In our

(a)

(b)

FIG. 2. (a) Reflection coefficient R and (b) downconversion
intensity R12 as a function of the signal frequency ω1. We assume
ϵs¼5, ϵout ¼ 5.62 (corresponding to diamond), and Λm ¼ 0.4Λs.
Two different values of the Higgs frequency were taken, ωH ¼
0.5ωps and ωH ¼ 0.8ωps, where ωps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λs=ðε0ϵsÞ

p
is the super-

conducting plasma frequency. The green curves, corresponding
to ωH ¼ 0.8ωps, illustrate the effects of dissipation, taken into
account by assuming ϵðωÞ ¼ ϵs − σðωÞ=ðiε0ωÞ with σðωÞ ¼
σr þ iΛs=ðωþ i0þÞ, where σr is a real constant; the blue and
orange curves include no dissipation, σr ¼ 0. Results are for the
model in which Λm is uniform in space.
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analysis, the decay of the Higgs mode can be taken into
account by replacing the monochromatic oscillations in the
superfluid density by an integral:

ΛðtÞ ¼ Λs þ
Z

dωΛðωÞeiωt; ð25Þ

where Λs is the static superfluid density. We regain the
monochromatic case for

ΛðωÞ ¼ Λmδðω − ωHÞ þ Λ�
mδðωþ ωHÞ; ð26Þ

but, more generally, Higgs decay requires broadening of
these delta functions into complex functions of non-
zero width.
Each frequency ω, when considered in isolation, gives

rise to amplification in proportion to jΛðωÞj2; see, e.g.,
Eq. (24). When considered in conjunction, the total
amplification is then the integral over the amplification
due to each independent frequency, weighted by jΛðωÞj2.
This result is correct to leading order in the Higgs
amplitude and may receive corrections of order jΛj4.
There are two different ways to see this. One is from a
quantum point of view, starting from Eq. (1). Signal
amplification arising from different Higgs frequency com-
ponents gives rise to idlers of different frequencies. To the
extent that these idlers are classical beams, these processes
are not quantum coherent, and their amplitudes must add in
quadrature. Another, more general consideration, is that to
leading order in the Higgs oscillations, signal amplification
cannot depend on the relative phase of different Fourier
components ΛðωÞ. This result implies that the predicted
signal amplification is relatively robust to broadening
arising from a finite Higgs lifetime since the amplification
factors due to independent frequencies simply add up. As
alluded to above, the idler beam is much less robust, as it
will get broadened in frequency. Hence, an independent
observation of the idler spectrum would not only give
information about the Higgs frequency but also about
its decay.
The second consideration relates to the lack of global

phase coherence: When quenching from the normal state
into a superconducting phase, superconductivity nucleates
locally in different regions of the sample (whose character-
istic size is given by the coherence length). Then, the
spontaneously broken phase is expected to vary spatially
across different regions for the entire duration of the
experiment because the coarsening dynamics for the phase
is very slow, preventing the formation of global phase
coherence over the lifetime of the photoinduced state.
In contrast to the phase, in the clean-sample limit, the
amplitude of the superconducting order parameter is
expected to be relatively homogeneous across the sample
(but oscillating in time because of excitation of the Higgs
mode). Higgs amplification is caused by the oscillations in

amplitude of the superconducting order parameter, which
are not strongly affected by the phase inhomogeneity.
In principle, one may worry about the interaction of light
with the supercurrents associated (through the Josephson
relation) with gradients in the superconducting phase.
However, to the extent that the coarsening dynamics are
slow, these supercurrents vary only slowly in time, and they
do not couple to electromagnetic radiation at the frequen-
cies probed in the experiment. Hence, we expect the
mechanism of Higgs amplification to occur, despite the
lack of global phase coherence.

IV. EXPERIMENTAL RESULTS

We follow the same protocol described in Refs. [8,9] to
photoinduce the transient optical properties of a non-
equilibrium superconductor in K3C60 but using shorter
and more intense pulses. To test the hypotheses discussed
in the theory section above, we additionally analyze
conditions in which the quench is made slower with
respect to the Higgs-mode frequency of the photoinduced
state. The pump-pulse FWHM duration τ is tuned to
different values between 100 fs and 1.8 ps. This range of
pulse durations is interesting because it crosses a char-
acteristic timescale τ� ¼ 2π=ωH ¼ h=ð24 meVÞ ∼ 172 fs,
which corresponds to the period of the amplitude (Higgs)
mode in the photoinduced superconductor. Note that in
our experimental geometry, the idler mode is not detected.
In future studies, this mode could provide a measurement
of the Higgs frequency and would allow for distinguishing
Higgs amplification from other types of parametric
amplification [53,54].
In the excitation regime explored in this experiment,

when the pump pulse is significantly longer than τ�, the
transient state displays a reflection coefficient at the surface
that is saturated at R ¼ 1 for all frequencies below about
10 meV. By reconstructing the complex optical conduc-
tivity with the same procedure used previously [9], we
extract a gapped real optical conductivity σ1 at all frequen-
cies ω < 10 meV and a divergent low-frequency imaginary
conductivity σ2, indicative of a light-induced superconduct-
ing state. Our experiment reveals that as the pulse duration
is made progressively shorter than τ�, the transient state
acquires a reflection coefficient that is larger than R ¼ 1
immediately after the pump, indicative of optical amplifi-
cation through the nonadiabatic creation of a superconduct-
ing state. The real part of the optical conductivity σ1 is
negative at all frequencies, ω < 10 meV, while its imagi-
nary part σ2 remains divergent. Conceptually, the observed
dependence on the pulse duration can be understood from
the following consideration. Although the underlying
mechanism of photoinduced superconductivity is still the
subject of debate, we assume, as a first approximation, that
the “effective” final-state Hamiltonian experienced by the
low-energy electrons depends only on the total pulse
energy and not its duration (later, we will show evidence
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that the shorter pulses actually drive the superconductivity
more strongly and induce a slightly larger superfluid
density, although this is a weak effect). Furthermore, we
assume that the superconducting state lasts longer than the
probe sequence. Hence, qualitatively, we assume that by
controlling the pump-pulse duration, we preserve the final
effective Hamiltonian for electrons but change the rate at
which the microscopic parameters are modified. In the case
of a superconductor, we expect that the Higgs-amplitude
mode gets strongly excited when the interaction strength is
modified on a timescale shorter than τ� ¼ 2π=ωH.
K3C60 polycrystalline powders were excited at normal

incidence with 170-meV linearly polarized, midinfrared
pulses. Their duration was tuned from 100 fs to 1.8 ps by
chirping them through linear propagation in transparent
and highly dispersive CaF2 rods. For all pulse durations,
the pulse energy and the number of incident photons
were maintained at a constant level. The transient, low-
frequency, optical properties of photoexcited K3C60 were
retrieved as a function of pump-probe delay using transient,
terahertz, time-domain spectroscopy using THz pulses
with a bandwidth that ranged from 1 to 7 THz. These
probe pulses were made to strike the sample at near-normal
incidence, with a 7° incidence angle (see Fig. 3), and
they were p-polarized, that is, with the electric field
perpendicular to that of the MIR pump pulses. The
measurement of the electric field reflected from the sample
yielded a phase-resolved measurement of the reflection
coefficient and, through it, the complex optical properties.
The penetration depth of the midinfrared pump (200 nm)
was shorter than that of the THz probe (600–900 nm). To
account for this difference, the data were analyzed as
discussed in Appendix B in order to obtain the reflectivity
corresponding to an effective semi-infinite and homo-
geneously pumped medium.
Figures 4(a) and 4(b) compare the transient optical

properties of K3C60 upon photoexcitation with intense
midinfrared pulses of 1.8-ps and 100-fs duration,

respectively. The red curves report the optical properties
of the equilibrium metallic state, while the light-blue dots
represent those of the transient state, measured at the peak
of the response. For longer excitation pulses [1.8 ps,
Fig. 4(a)], the transient optical properties resemble those
of the equilibrium superconductor with a reflectivity
saturated at R ¼ 1, a gapped real conductivity (σ1 ≈ 0),
and a divergent imaginary conductivity for all frequencies
below about 10 meV. For τ ¼ 100 fs [Fig. 4(b)], we find
that below about 10 meV, the reflectivity becomes larger
than R ¼ 1, reaching an average value in the gapped region
of about 1.04, with a maximum of about 1.06. The
extracted real part of the optical conductivity is correspond-
ingly negative, indicative of negative dissipation. These
two observations suggest amplification of the incoming
low-frequency THz probe light. Importantly, the imaginary
part of the optical conductivity maintains a 1=ω behavior
below about 10 meV, indicating the superconducting nature
of the transient state.
The evolution of the optical properties for pump pulses

either shorter or longer than τ� can be captured by the
average value of the reflectivity in the 5–8-meV frequency
range and the superfluid density extracted by a 1=ω fit to
the imaginary part of the optical conductivity at low
frequencies. Figures 5(a) and 5(b) show the evolution of
these two quantities as a function of the duration of the
excitation pulse [Fig. 5(b)]. The average reflectivity in the
gapped region decreases from about 1.04 to about 1, as
the pump-pulse duration varies from 100 fs to 1.8 ps. The
blue-shaded area in the top panel highlights the regime
where light amplification is observed. At the same time, the
superfluid density of the photoinduced superconductor
does not appear to strongly depend on the pulse duration
of the excitation pulse. In Appendix C, we show that the
observed amplification cannot be explained by heating of
the sample upon photoexcitation.
It is also interesting to explore the dependence of the

light amplification on the sample temperature. Figure 6
shows the temperature dependence of the frequency-aver-
aged reflectivity and of the superfluid density, both mea-
sured at a fixed pump-pulse duration of 100 fs. Even at the
highest measured temperature, 300 K, the system behaves
as a superconductor with a superfluid density comparable
to that of the equilibrium superconductor at low temper-
atures. However, the frequency-averaged reflectivity is
approximately 1; i.e., there is no amplification at
T ¼ 300 K, which may indicate that the Higgs mode
becomes overdamped at high temperatures, reminiscent
of what occurs in equilibrium as the critical temperature of
the superconductor is approached, when the order param-
eter dynamics become overdamped. As the temperature is
lowered, we find that the data are qualitatively similar at the
two intermediate temperatures, 100 K and 200 K, indicat-
ing that the phenomenon of Higgs amplification is robust
over a wide temperature window.

FIG. 3. Sketch of the experimental geometry. K3C60 is excited
with vertically polarized midinfrared pulses. The THz probe
pulses are polarized in the horizontal plane.
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Most interesting, however, are the data at the lowest
temperature, T ¼ 25 K, where we again find a lack of
amplification. Note that, as shown in Fig. 6(b), the super-
fluid density of the photoinduced superconducting state at
T ¼ 25 K significantly exceeds that of the low-temperature
equilibrium superconductor. This requires borrowing spec-
tral weight from higher energies, beyond that contained in
the Drude peak of the normal state, and may be an
indication that the superfluid density is near saturation.
This offers a possible clue for the lack of amplification at
25 K: When the order parameter is close to saturation,
excitation of the Higgs mode results in oscillations in the
pairing gap without significant modulations in the super-
fluid density, which has little room to oscillate when it is
near saturation.
To better understand this last point, it is useful to consider

the analogous situation for equilibrium superconductors.
The superfluid density ns ¼ jψ j2 and the pairing gap Δ are
independent parameters that can behave very differently
from each other. For instance, consider a clean BCS

superconductor at low temperatures. Then, Δ depends on
details of the electron-phonon coupling, while the electro-
magnetic response at frequencies below 2Δ is given by a
London equation in which the superfluid density ns equals
the total electron density [55]. In this case, the Higgs mode
consists of modulations of the pairing gap Δ, but ns cannot
be modulated because all carriers participate in the super-
conductivity. By contrast, in dirty superconductors, in
superconductors with large quantum fluctuations (e.g.,
due to competing orders), and in superconductors at finite
temperature, the superfluid density is strongly reduced from
its saturation value, making room for oscillations in ns to
occur together with the oscillations in Δ.

V. COMPARISON OF THEORY
AND EXPERIMENT

The experimental data do not give a direct measurement
of the Higgs frequency—in the light-induced supercon-
ducting state, the gap measured in σ1ðωÞ coincides with the

FIG. 4. (a) Reflectivity and complex optical conductivity (sample-diamond interface) of K3C60 measured at equilibrium (red solid
curves) and at the peak of the pump-probe response (light-blue dots) with a pump-pulse duration of 1800 fs. For nonequilibrium
systems, we present inferred local quantities at the sample-diamond interface as discussed in Sec. V and Appendix A. (b) Same
quantities, measured with a pump-pulse duration of 100 fs. The shaded area highlights the frequency range where amplification is
observed. All data are taken at T ¼ 100 K and at a fluence of 4.5 mJ=cm2. The blue solid curves are the optical conductivity and
reflectivity calculated from the theoretical model, taking into account Higgs modulations. The corresponding fit parameters are shown in
Table I.
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lower edge of the midinfrared absorption peak of K3C60,
suggesting that the superconducting gap 2Δ is hidden
under the spectral weight of this broad peak. However,
there are two independent observations that give consistent
estimates for ωH. First, as argued earlier, the maximum
of light amplification occurs slightly below ωH=2. The
reflectivity measured with the shortest excitation pulse
(τ ¼ 100 fs) shown in Fig. 4(a) would then suggest that
ωH is somewhat bigger than 20 meV=ℏ. Second, as
mentioned earlier, the onset temperature of the light-
induced superconductivity corresponds to a gap 2ΔðT¼0Þ
of 30 meV=ℏ for the zero-temperature transient super-
conductor. This value gives an upper bound on ωH, which
tracks 2ΔðTÞ.
The measured optical conductivity σðωÞ has Higgs

modulations built in. In order to make a comparison
between theory and experiment, we need to model
the optical conductivity of the static superconducting state,
σ̃. We parametrize σ̃ as a sum of Drude and Lorentzian
peaks:

σ̃ðωÞ ¼ Λs

γD − iω
þ
X3
n¼1

Bnω

iðΩ2
n − ω2Þ þ γnω

: ð27Þ

The Lorentzians represent the broad midinfrared absorption
peak in K3C60 [56]. For simplicity, we assume this peak
to be unaffected by the onset of superconductivity, and we
fix the parameters Bn, Ωn, and γn by fitting to the
conductivity of the equilibrium normal state, as discussed
in Appendix E. For the light-induced superconducting
phase, we maintain the same values for the Lorentzian
peaks, while for the Drude peak, we replace γD → 0þ and
allow Λs (which plays the role of the static superfluid
density) to vary.
Given the static conductivity σ̃, we use the results of

Sec. III to model the Higgs amplification phenomenon.
We apply Eq. (20) to compute the complex reflection
coefficient r at the signal frequency, in which we take
ϵðωÞ ¼ ϵs − σ̃ðωÞ=ðiε0ωÞ. By inverting the Fresnel equa-
tion, r is then expressed as an effective optical conductivity
σðωÞ (see Appendix D), allowing us to make a comparison
of the full complex response of the system.
We find that it is possible to describe the experimental

data well by taking ωH ¼ 24 meV=ℏ. Then, for each value
of τ, there are only two parameters we allow to change:

FIG. 5. (a) Inferred local transient reflectivity (sample-
diamond interface), averaged between 5 and 8 meV, as a
function of the pump-pulse duration. The blue-shaded region
indicates the range of pulse durations where amplification is
observed. (b) ωσ2ðω → 0Þ ¼ Λs, which is proportional to the
transient superfluid density, extracted by a low-frequency 1=ω
fit to σ2ðωÞ. All data were taken at T ¼ 100 K and a constant
pump fluence of 4.5 mJ=cm2.

FIG. 6. (a) Inferred local transient reflectivity (sample-diamond
interface) averaged between 5 and 8 meV, as a function the initial
temperature. The blue-shaded region indicates the temperature
range where amplification is observed. (b) Temperature depend-
ence of ωσ2ðω → 0Þ ¼ Λs, which is proportional to the transient
superfluid density, extracted by a low-frequency 1=ω fit to the
transient σ2ðωÞ. The red dashed lines indicate the equilibrium
superconducting transition temperature Tc ¼ 20 K of K3C60. All
data were taken at a constant pump-pulse duration of 100 fs and a
constant pump fluence of approximately 5.5 mJ=cm2 (which is
somewhat larger than the fluence in the data in Figs. 4 and 5).
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the superfluid density Λs and the amplitude of Higgs
modulations, Λm=Λs. We emphasize that all other param-
eters in the model are determined in an unbiased manner by
comparison with the equilibrium optical properties of the
normal state. The blue solid curves in Figs. 4(a) and 4(b)
show the complex optical conductivity and the reflectivity
of the superconductor, with parameters as chosen in Table I.
These results show good agreement with measurements,
despite the limited number of fitting parameters used and
the simplicity of the model, which does not take into
account the full microscopic details of the system. In our fit,
we find that the Higgs modulation amplitude increases with
decreasing τ, in agreement with the expectation that shorter
pulses give rise to more rapid quenches into the super-
conducting state and therefore to larger Higgs oscillations.
In addition, we find that Λs is slightly larger than its
equilibrium value in the normal state Λs;eq. This effect is
larger for the shorter pulses. Even though the total pump-
pulse energy is maintained at a fixed level, the shorter
pulses have higher peak intensities and can drive the
superconductor more strongly since the pump drives the
system nonlinearly. Note that, in order to preserve sum
rules, spectral weight is required to transfer from higher
energies and may be an indication that the plasmonic peak
must be modified in a complete microscopic description of
the phenomenon.
The goal of our theoretical analysis is to provide the

simplest physical picture of Higgs amplification. Therefore,
we limit our discussion to the simplest case, in which the
Higgs modulations are assumed to be monochromatic and
spatially uniform. In practice, one may expect broadening
of the Higgs excitation in frequency, due to its finite
lifetime, and in momentum, due to the nonequilibrium
character of photoinduced superconductivity. This more
comprehensive picture could be obtained by performing
frequency- and angle-resolved measurements. However,
these experiments would require more advanced instru-
mentation, including THz and IR free-electron-laser radi-
ation. Importantly, this advanced instrumentation would
allow for the separate measurement of both signal and idler
amplification, which would provide direct access to the
underlying nonlinear dynamics of the photoinduced super-
conducting order parameter.
We note that one of the strengths of our model is that it

makes falsifiable predictions that discriminate between
different interpretations of the observed phenomenology
of photoexcited K3C60, which includes the possibility to

distinguish between models where there is an actual,
transient, dynamically created, superconducting state, as
opposed to other nonequilibrium states. For instance, light
amplification has been proposed to occur in the absence of
superconductivity [57]. However, in this proposal, sym-
metry considerations imply that amplification should only
occur for reflection at shallow incidence, which is in
contrast to our measurements, in which amplification
occurs for near-normal incidence. Thus, our observations
provide new support that the photoinduced state is indeed
superconducting in character.

VI. OUTLOOK

We envision several potentially interesting applications
of the Higgs amplification phenomenon. Of particular
interest for quantum information is the possibility for the
generation of entangled photon pairs at THz frequencies, as
expected from Eq. (1). Properties of the entangled photons
may be controlled by tuning the intensity, duration, and
angle of incidence of the pump beam.
The notions introduced above can be generalized to the

nonlinear dynamics of other kinds of nonequilibrium
condensates, including charge and spin density waves,
and excitonic condensates.
Systems with several competing orders should exhibit

multiple finite-energy collective modes, leading to an
additional richness of the order parameter dynamics. The
interaction between light and strongly excited collective
modes opens a new frontier in the study of light-matter
interactions in many-body quantum states.
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APPENDIX A: ELECTROMAGNETIC RESPONSE
OF A SUPERCONDUCTOR WITH HIGGS

MODULATIONS

Consider a superconductor with a time-dependent super-
fluid density ns,

nsðtÞ ¼ ns;0 þ δnðtÞ; ðA1Þ

where ns;0 is the steady-state value of ns and δnðtÞ is a
modulation due to Higgs oscillations. In the main text,
we focused on the monochromatic case, δnðtÞ ¼
2δn cosðωHtÞ, but we now consider a more general sit-
uation. When probed by a weak electromagnetic field, the
current density in the system can be written as

jðtÞ ¼
Z

dt0Πðt − t0Þvsðt0Þ

þ
Z

dt0dt00Kðt − t0; t − t00Þδnðt0Þvsðt00Þ; ðA2Þ

which is correct to linear order in both vs ¼ ðℏ=2eÞ∇θ −A
(θ is the superconducting phase and A is the vector
potential) and the Higgs modulation δn. Here, for simplic-
ity, we have assumed these fields to be homogeneous in
space; otherwise, one must generalize the response func-
tions Π and K to include spatial dependence as well. By
causality, Πðt1Þ and Kðt1; t2Þ vanish unless their arguments
are positive.
After Fourier transforming, the relation above becomes

jðωÞ¼ΠðωÞvsðωÞþ
Z

dω0Kðω0;ω−ω0Þδnðω0Þvsðω−ω0Þ:

ðA3Þ

Note that, since ∂tvsðtÞ ¼ EðtÞ, ΠðωÞ is related to the
optical conductivity σðωÞ of the steady-state superconduc-
tor by ΠðωÞ ¼ −iωσðωÞ. Causality implies that the
response function Kðω1;ω2Þ is analytic in the upper half
complex plane as a function of each of its two arguments.
Hence, it satisfies independent Kramers-Kronig relations
with respect to both ω1 and ω2:

ReKðω1;ω2Þ ¼ P
1

π

Z
∞

−∞

ImKðω0
1;ω2Þ

ω0
1 − ω1

dω0
1; ðA4Þ

ImKðω1;ω2Þ ¼ −P
1

π

Z
∞

−∞

ReKðω0
1;ω2Þ

ω0
1 − ω1

dω0
1; ðA5Þ

and similarly for ω2.

One can recover Eq. (4) for Kðt − t0; t − t00Þ ∝
δðt − t0Þδðt − t00Þ, i.e., by assuming an instantaneous
response to the external fields. This procedure is justified
in the limit where the external fields vary slowly compared
to all microscopic energy scales, and we assume that this is
a good starting approximation for the frequencies consid-
ered here. Note that this form respects causality and
therefore is guaranteed to satisfy the Kramers-Kronig
relations. Also note that in our comparison to experiment,
dissipation is taken into account in ΠðωÞ ¼ −iωσðωÞ,
where σðωÞ is chosen as in the discussion follow-
ing Eq. (27).

APPENDIX B: DETERMINING THE OPTICAL
CONDUCTIVITY OF AN EQUIVALENT

HOMOGENEOUS MEDIUM

In the time-resolved experiments, one measures the
pump-induced difference in the complex, reflected, electric
field ΔẼrðωÞ. The “raw” complex reflection coefficient in
the photoexcited state r̃pumpedðωÞ can then be extracted by
inverting the following equation:

ΔẼrðωÞ
Ẽ0
rðωÞ

¼ r̃pumpedðωÞ − r̃0ðωÞ
r̃0ðωÞ

; ðB1Þ

where r̃0ðωÞ is the unperturbed complex reflection coef-
ficient of K3C60 known from broadband FTIR measurement
and Ẽ0

rðωÞ is the reflected electric field in the unperturbed
state. If the pump light penetrates to a distance which is
several times longer than the probe light, one can assume that
the probe pulse samples a volume in the material that has
been homogeneously transformed by the pump. In this case,
it is possible to directly extract the complex-valued optical
response functions by inverting the Fresnel equations.
The conditions assumed in the previous paragraph are

not correct for the experiments presented here because the
penetration depth of the midinfrared pump (220 nm) is
at least 3 times shorter than that of the THz probe (600–
900 nm). Nevertheless, it is instructive to see what results
for the optical conductivity would be obtained if the
assumption is made.
In the first panel of Fig. 7, we show raw data for the

reflectivity, in equilibrium and after photoexcitation by
pulses of three different lengths. In the second and third
panels, we show the values of σ1ðωÞ and σ2ðωÞ that one
would obtain from the observed reflectivities using the
Fresnel equations, assuming optical conductivities inde-
pendent of distance from the surface.
In contrast, the curves in Fig. 4 were obtained after

taking into account that the penetration depth of the probe
radiation is longer than that of the pump pulse, using the
following approach. As the pump penetrates the material,
its intensity is reduced, and it will induce progressively
weaker changes in the refractive index of the sample.
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This situation is modeled by “slicing” the probed thickness
of the material into thin layers, where we assume that
the pump-induced changes in the refractive index are
proportional to the pump intensity in the layer, i.e.,
ñðω; zÞ ¼ ñ0ðωÞ þ ΔñðωÞe−αz, where n0ðωÞ is the unper-
turbed complex refractive index, α is the attenuation
coefficient at the pump frequency, and z is the spatial
coordinate along the sample thickness.
For each probe frequency ωi, the complex reflection

coefficient r̃ðΔñÞ of such a multilayer stack is calculated
with a characteristic matrix approach [58], keeping Δñ as a
free parameter. As Eq. (B1) directly relates the measured
quantity ΔẼrðωÞ=Ẽ0

rðωÞ to the changes in reflectivity, we
can extract Δñ by minimizing numerically:

����ΔẼrðωiÞ
Ẽ0
rðωiÞ

−
r̃ðωi;ΔñÞ − r̃0ðωiÞ

r̃0ðωiÞ
����: ðB2Þ

Note that ΔñðωÞ represents the pump-induced change in
the refractive index at the surface, where the pump has not
yet been attenuated by the absorption in the material. By
taking ñðωÞ ¼ ñ0ðωÞ þ ΔñðωÞ, one can reconstruct the
optical response functions of the material as if it had been
homogeneously transformed by the pump.
The blue data points in Fig. 4 show the data processed in

this manner to obtain the optical properties applicable to the
region closest to the surface, where the excitation pulse is
strongest. Specifically, panels in the second and third
columns show the effective values of σ1ðωÞ and σ2ðωÞ
deduced for this region, while the first column shows the
reflectivity that would be expected if these values of the
optical conductivity were to hold independent of depth.
The blue solid curves show values obtained from the
theoretical model with Higgs modulation. Comparing

Figs. 4 and 7, we see that while the curves differ in detail,
the enhanced optical response for the shortest pulse data,
seen in both figures, tends to support our theoretical model.
In particular, while we do not actually observe amplifica-
tion in the raw reflected signal, our analysis suggests that
amplification would have been observed if the pump pulse
were able to penetrate more deeply into the sample.

APPENDIX C: SIMULATION OF THE POSSIBLE
EFFECTS OF SAMPLE HEATING

In this Appendix, we consider whether the optical
properties observed in the experiment could be due to
the temperature change of the sample caused by absorption
of the pump laser. In the following, we simulate the
expected change in optical properties that would arise if
the only effect of the midinfrared pump laser consisted of
heating up the sample. As discussed in Appendix B, the
finite penetration depth of the pump has to be taken into
account to obtain the response functions of a homo-
geneously transformed medium. Note that this also applies
in a heating scenario, where the amount of energy absorbed
from the pump decays exponentially as a function of
distance from the surface [59]. To describe this scenario,
we model the energy density deposited by the pump as

EðzÞ ¼ ð1 − RÞ F
dpump

exp

�
−

z
dpump

�
; ðC1Þ

where R is the reflectivity of the sample at the frequency of
the pump, dpump ≈ 0.22 μm is the intensity penetration
depth of the pump calculated from the unperturbed optical
properties as 4πImðñðλpumpÞÞ=λpump, and F ¼ 4.5 mJ=cm2

is the excitation fluence. The temperature profile TfðzÞ

FIG. 7. The first panel shows raw data for the reflectivity (sample-diamond interface), in equilibrium and after photoexcitation by
pulses of three different lengths. The second and third panels show the values of σ1ðωÞ and σ2ðωÞ that one would obtain from the
observed reflectivity via the Fresnel equations, assuming optical conductivities independent of distance from the surface. Note that this
neglects the fact that the intensity of the pump-pulse decays as a function of distance from the surface of the sample, and the probe is
sampling an inhomogeneously transformed volume.
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inside the sample is related to the deposited energy density
EðzÞ by the following integral equation:

EðzÞ ¼
Z

TfðzÞ

T i

CpðTÞdT; ðC2Þ

where T i ¼ 100 K is the initial temperature of the sample
and CpðTÞ is the specific heat of K3C60 taken from the
interpolation of an equilibrium measurement [60]. At the
surface of the material, the temperature reaches approxi-
mately 280 K for the fluence used in this work. As heat
diffusion happens on much longer timescales [61] than
those explored in this work, the temperature profile TfðzÞ is
assumed to be constant in time.
The spatial distribution of the complex refractive index is

then determined via ñðω; zÞ ¼ ñðω; TfðzÞÞ. The corre-
sponding values of ñðω; TÞ are extracted from equilibrium
measurements of ñðωÞ at 100 K, 200 K, and 300 K, with a
linear interpolation for intermediate values. We note that
the equilibrium optical properties of K3C60 show a very
weak temperature dependence in the range between 100 K
and 300 K [8].
The complex reflection coefficient of this stratified

medium r̃pðωÞ is then calculated using a characteristic
matrix approach [58]. From this, the quantity that would be
measured in a transient THz reflection experiment,
ΔẼrðωÞ=Ẽ0

rðωÞ [see Eq. (B1)], is then obtained as

ΔẼrðωÞ
Ẽ0
rðωÞ

¼ r̃pðωÞ − r̃0ðωÞ
r̃0ðωÞ

; ðC3Þ

where r̃0ðωÞ is the complex equilibrium reflection coef-
ficient at the base temperature T ¼ 100 K. The result of
this calculation is then reprocessed to extract the optical
properties of a homogeneously transformed medium using
the same method as described in Appendix B. The results
are shown in Fig. 8. Importantly, the reconstructed optical

properties show very different signatures from those shown
in Fig. 4. The reflectivity of the homogeneously trans-
formed medium is only slightly enhanced (≈5%) with
respect to the equilibrium value, and the optical conduc-
tivity spectrum shows an increase of the Drude spectral
weight in σ1ðωÞ, rather than the opening of an optical gap.
Furthermore, while the data reported in Fig. 4 show no
change for all probe photon energies greater than about
18 meV, the simulated data show changes up to about
30 meV. These observations show that the signatures of
Higgs-based amplification—such as above-unity refle-
ctivity, a negative σ1ðωÞ, and divergent σ2ðωÞ—cannot
be explained in a heating-only scenario.

APPENDIX D: EXPRESSING THE
REFLECTIVITY IN TERMS OF A COMPLEX

CONDUCTIVITY FUNCTION

In theory, we compute the complex reflection amplitude
r, using Eq. (20). To convert this to a conductivity function,
we use the Fresnel relation for the reflection amplitude at
the interface between two media,

rðωÞ ¼
ffiffiffiffiffiffiffi
ϵout

p − i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðωÞp

ffiffiffiffiffiffiffi
ϵout

p þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðωÞp : ðD1Þ

Here, the first medium is diamond, which, to a good
approximation, has a frequency-independent dielectric
function

ffiffiffiffiffiffiffi
ϵout

p ¼ 2.37. This relation is inverted,

ϵðωÞ ¼ ϵout

�
1 − rðωÞ
1þ rðωÞ

�
2

; ðD2Þ

in order to obtain the complex conductivity using
σðωÞ ¼ −iε0ω½ϵðωÞ − ϵs�.

FIG. 8. Simulated reflectivity (sample-diamond interface) and real and imaginary parts of the optical conductivity, retrieved using the
procedure described in Appendix C for a pump-induced heating-only scenario.
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APPENDIX E: OPTICAL CONDUCTIVITY IN
THE NORMAL STATE

We model the optical conductivity σ̃ðωÞ of the equilib-
rium normal state as the sum of a Drude peak, representing
the conduction band, and a sum of three Lorentzians,
representing a broad midinfrared absorption peak [56]:

σeqðωÞ ¼
Λs;eq

γD − iω
þ
X3
n¼1

Bnω

iðΩ2
n − ω2Þ þ γnω

: ðE1Þ

A fit to the optical conductivity of the equilibrium
normal state in the measured range 4 meV=ℏ < ω <
100 meV=ℏ (see Fig. 9) gives the following values:
Λs;eq ¼ 3; 470 Ω−1 cm−1 meV=ℏ, γD ¼ 3.56 meV=ℏ,
B1 ¼ 18; 300 Ω−1 cm−1 meV=ℏ, Ω1 ¼ 70.4 meV=ℏ,
γ1 ¼ 86.6 meV=ℏ, B2 ¼ 4; 600 Ω−1 cm−1 meV=ℏ,
Ω2 ¼ 26.1 meV=ℏ, γ2 ¼ 34.0 meV=ℏ, B3 ¼
2; 400 Ω−1 cm−1 meV=ℏ, Ω3 ¼ 102.6 meV=ℏ, and
γ3 ¼ 35.0 meV=ℏ.
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