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The probability of two loci, separated by a certain genome length, being in contact can be inferred using
the chromosome conformation capture (3C) method and related Hi-C experiments. How to go from the
contact map, a matrix listing the mean contact probabilities between a large number of pairs of loci, to an
ensemble of three-dimensional structures is an open problem. A solution to this problem, without assuming
an assumed energy function, would be the first step in understanding the way nature has solved the
packaging of chromosomes in tight cellular spaces. We created a theory, based on polymer physics
characteristics of chromosomes and the maximum entropy principles, referred to as HIPPS (Hi-C-polymer-
physics-structures) method, that allows us to calculate the 3D structures solely from Hi-C contact maps.
The first step in the HIPPS method is to relate the mean contact probability (hpiji) between loci i and j and
the average spatial distance hr̄iji. This is a difficult problem to solve because the cell population is
heterogeneous, which means that a given contact exists only in a small unknown fraction of cells. Despite
the population heterogeneity, we first prove that there is a theoretical lower bound connecting hpiji and
hr̄iji via a power-law relation. We show, using simulations of a precisely solvable model, that the overall
organization is accurately captured by constructing the distance map from the contact map even if the cell
population is highly heterogeneous, thus justifying the use of the lower bound. In the second step, the mean
distance matrix, with elements hr̄iji0s, is used as a constraint in the maximum entropy principle to obtain
the joint distribution of spatial positions of the loci. Using the two steps, we created an ensemble of 3D
structures for the 23 chromosomes from lymphoblastoid cells using the measured contact maps as inputs.
The HIPPS method shows that conformations of chromosomes are heterogeneous even in a single cell type.
The differences in the conformational heterogeneity of the same chromosome in different cell types
(normal as well as cancerous cells) can also be quantitatively discerned using our theory. We validate the
method by showing that the calculated volumes of the 23 chromosomes from the predicted 3D structures
are in good agreement with experimental estimates. Because the method is general, the 3D structures for
any species may be calculated directly from the contact map without the need to assume a specific polymer
model, as is customarily done.
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I. INTRODUCTION

The question of how chromosomes are packed in the
tight space of the cell nucleus has taken center stage in
genome biology, largely due to the spectacular advances in
experimental techniques. In particular, the routine gener-
ation of a large number of contact maps, reporting on the
probabilities that pairs of loci separated by varying

genomic lengths are in proximity, for many species using
the remarkable Hi-C technique [1–6] has provided us a
glimpse into the organization of genomes. A high contact
count between two loci means that they interact with each
other more frequently compared to ones with low contact
count. Thus, the Hi-C data describe the chromosome
structures in statistical terms expressed in terms of a contact
matrix. An element in the contact matrix is the probability
(hpiji) that two loci i and j (genomic length is ji − jj) is in
contact. The Hi-C data provide only a two-dimensional
(2D) representation of the multidimensional organization of
the chromosomes. How we can go beyond the genomic
contact information to 3D distances between the loci, and
eventually the spatial location of each locus, is an important
unsolved problem. Imaging techniques, such as fluores-
cence in situ hybridization (FISH) and its variations, are the
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most direct way to measure the spatial distance and
coordinates of the genomic loci [7]. But currently, imaging
techniques are limited in scope because they only provide
information on a small number of loci pairs. In contrast, the
Hi-C technique yields average contact probabilities for a
large number of loci pairs. Is it possible to harness the
power of the Hi-C technique to construct, at least approx-
imately, the 3D structures of chromosomes? A major
problem with straightforward use of the Hi-C data arises
due to cell population heterogeneity (PH). By PH, we mean
that a given contact is present in only an (unknown) fraction
of cells. This means that there is no straightforward relation
connecting themean distance (hr̄iji) between loci i and j and
hpiji [8]. Because a given contact is not present in all the
cells, it also implies that there is conformational hetero-
geneity (CH) in the chromosome structures. Despite the
prevalence of PH, we answer the question posed above in the
affirmative by building on the precise results for an exactly
solvable generalized Rouse model for chromosomes
(GRMC) [8,9], and by using the theoretical distance dis-
tribution describing the chromosomes. Unlike many pre-
vious studies, we do not assume any energy function to
model chromosomes.
Many data-driven approaches have been developed to

reconstruct 3D structures of genomes from Hi-C data [10–
17] (see the summary in Ref. [18] for additional related
studies). Although these methods are insightful, they do not
take the polymer nature of chromosomes into consider-
ation. Therefore, it would be difficult to calculate distance
distributions between the loci, measured using imaging
experiments, using this approach. On the other hand,
polymer models of chromosomes [19,20] usually use
Monte Carlo or molecular dynamics simulation with an
assumed energy function with parameters that have to be
calculated (typically) by fitting the simulation results to
Hi-C data. In these cases, certain parameters such as bond
length and monomer size need to be set arbitrarily to reduce
the complexity of the model. Moreover, these studies have
not calculated the coordinates of the individual loci in
chromosomes using only the Hi-C data as the input. Here,
based on the analytically solvable generalized Rouse model
(GRM), we create a method using polymer characteristics
of chromosomes and maximum entropy principle to cal-
culate the structures of chromosomes solely from Hi-C
data. Recently, in a work [21] that is closely related to
certain aspects of the present study, it was assumed that the
energy function in GRM (referred to as the Gaussian
effective model in Ref. [21]) describes the chromosomes.
The spring constants between the loci are optimized to
match the measured contact map. However, we do not
assume any energy function, but use characteristics that
describe the polymeric properties of the chromosomes to
generate the distance map, which is then used in con-
junction with the maximum entropy principle to construct
3D structures from Hi-C data.

Translating the contact map to 3D structures is a difficult
problem to solve using solely data-driven approaches with-
out physical considerations that are reflected in the polymeric
nature of the chromosomes. One problem is the difficulty in
reconciling Hi-C (contact probabilities) and the FISH data
(spatial distances) [22–25]. For example, in interpreting the
Hi-C contact map, one makes the intuitively plausible
assumption that a loci pair with high contact probability
must also be spatially close. However, it has been demon-
strated usingHi-C and FISH data that high contact frequency
does not always imply proximity in space [22–25].
Elsewhere [8], we showed that because a given contact is
present only in certain cells (PH), a one-to-one relation
between contact probability and spatial distance between a
pair of loci does not exist. The discordance betweenHi-C and
FISH experiments makes it difficult to extract the ensemble
of 3D structures of chromosomes using Hi-C data alone
without taking into account the physics driving the con-
densed state of genomes. Even if one were to construct
polymer models that produce results that are consistent with
Hi-C contact maps, certain features of the chromosome
structures would be discordant with the FISH data, reflecting
the heterogeneous genome organization [26]. Thus, one
has to contend with two kinds of heterogeneities, which
we refer to as population heterogeneity and conformational
heterogeneity.
Despite the difficulties alluded to above, we have created

a theory, based on the theoretical distribution of distances
for polymers and the principle of maximum entropy to
determine the 3D structures solely from the Hi-C data. The
resulting physics-based data-driven method, which trans-
lates Hi-C data through polymer physics to 3D coordinates
of each locus, is referred to as HIPPS (Hi-C polymer
physics structures). The purposes of creating the HIPPS
method are twofold. (1) We first establish that there is a
lower theoretical bound for hr̄iji expressible in terms of a
calculable nonlinear function involving the contact prob-
ability even in the presence of PH. In other words, we prove
that hr̄iji ≥ ϕðpijÞwhere we compute ϕðpijÞ using familiar
polymer physics concepts. We establish this relationship
using the generalized Rouse model for chromosomes for
which accurate simulations can be performed. (2) However,
mean spatial distances, hriji0s, between a large number of
loci pairs do not give the needed 3D structures. In addition,
it is important to determine the variability in chromosome
structures because massive CH has been noted both in
experiments [26,27] and computations [8]. In order to solve
this nontrivial problem, we use the principle of maximum
entropy to obtain the ensemble of individual chromosome
structures.
The two-step HIPPS method, which allows us to go from

the Hi-C contact map to the three-dimensional coordinates,
xi (i ¼ 1; 2; 3;…; Nc), where Nc is the length of the
chromosome, may be summarized as follows. First, we
construct the mean distances hriji0s between all loci pairs,
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ði; jÞ0s, using a power-law relation connecting hpiji0s
and hriji0s. Then, using the maximum entropy principle,
we calculate the distribution PðfxigÞ with hriji0s as
constraints, from which an ensemble of chromosome 3D
structures (the 3D coordinates for all the loci) is
determined.
The application of our theory to determine the 3D

structure of chromosomes from any species is limited only
by the experimental resolution of the Hi-C technique.
Comparisons with experimental data for the sizes and
volumes of chromosomes derived from the calculated
3D structures are made to validate the theory. Our method
predicts that the structures of a given chromosome within a
single cell and in different cell types are conformationally
heterogeneous. Remarkably, the HIPPS method can detect
the differences in the extent of CH of a specific chromo-
some between normal and cancer cells.

II. RESULTS

A. Inferring the mean distance matrix (R̄)
from the contact probability matrix (P)

for a homogeneous cell population

The elements, r̄ij, of the R̄ matrix give the mean spatial
distance between loci i and j. Note that rij is the distance
value for one realization of the genome conformation in a
homogeneous population of cells. Here, homogeneous
implies that a given contact is present with nonzero
probability in the entire cell population. The elements
pij of the Pmatrix are the contact probability between loci i
and j. We first establish a power-law relation between r̄ij
and pij in a precisely solvable model. For the generalized
Rouse model for chromosomes, described in Appendix A,
the relation between r̄ij and pij is given by

pij ¼ erfð2rc=
ffiffiffi
π

p
r̄ijÞ − ð4π=rcr̄ijÞe−4r

2
c=πr̄2ij

≡ fGRMCðr̄ijÞ; ð1Þ

where erfð·Þ is the error function and rc is the threshold
distance for determining if contact is established. This
equation provides a way to calculate the distance matrix
(R̄) directly from the contact matrix (P) by inverting
fGRMCðr̄ijÞ. Note that P is inferred only approximately
from Hi-C experiments. However, there are uncertainties,
in determining both rc due to systematic errors and pij due
to inadequate sampling, thus restricting the use of Eq. (1) in
practice. In light of these considerations, we address the
following questions. (a) How accurately can one solve the
inverse problem of going from the P to the R̄? (b) Does
the inferred R̄ faithfully reproduce the topology of the
spatial organization of chromosomes?We first answer these
questions using the GRMC.
To answer these two questions, we use a 12 Mbps length

segment of chromosome 5 (146 to 158 Mbps) as an

example. The loop anchors within this segment are derived
from the experiment data [6]. We choose the length of
polymer to be 10 000, with each monomer representing
1200 bps. We first constructed the distance map by solving
Eq. (1) for r̄ij for every pair ði; jÞ with contact probability
pij. The P matrix is calculated using simulations of the
GRMC, as described in Appendix B. For such a large
polymer, some contacts are almost never formed even in
long simulations, resulting in pij ≈ 0 for some loci pairs.
This would erroneously suggest that r̄ij → ∞, as a solution
to Eq. (1). Indeed, this situation arises often in the Hi-C
experimental contact maps where pij ≈ 0 for many ði; jÞ
pairs. To overcome the practical problem of dealing with
pij ≈ 0 for several pairs, we apply the block average (a
coarse-graining procedure) to P (described in Appendix C),
which decreases the size of the P. This procedure over-
comes the problem of having to deal with vanishingly small
values of pij while simultaneously preserving the informa-
tion needed to solve the inverse problem using Eq. (1).
The simulated and constructed distance maps are shown

in the lower and upper triangle, respectively in Fig. 1(a).
We surmise from Fig. 1(a) that the two distance maps are in
excellent agreement with each other. There is a degree of
uncertainty for the loci pairs with large mean spatial distance
(elements far away from the diagonal [Figs. 1(a) and 1(b)]
due to the unavoidable noise in the contact probabilitymatrix
P. The Spearman correlation coefficient between the simu-
lated and theoretically constructed maps is 0.97, which
shows that the distancematrix can be accurately constructed.
However, a single correlation coefficient is not sufficient to
capture the topological structure embedded in the distance
map. To further assess the global similarity between the R̄
from theory and simulations, we used the Ward linkage
matrix (WLM) [28], which can capture the hierarchy of the
3D structure.We have previously usedWLM to compare the
structures of interphase chromosomes [29]. Figure 1(c)
shows that the constructed R̄ indeed reproduces the hierar-
chical structural information accurately. These results show
that the matrix R̄, in which the elements represent the mean
distance between the loci, can be calculated accurately, as
long as the P is determined unambiguously. As is well
known, this is not possible to do in Hi-C experiments, which
renders solving the problem of going from P to R̄, and
eventually the precise three-dimensional structure, extremely
difficult.

B. A bound for the spatial distance between loci pairs
inferred from the contact probabilities

The results in Fig. 1 show that for a homogeneous
system (specific contacts are present in all realizations of
the polymer), R̄ can be faithfully reconstructed solely from
the P. However, the discrepancies between FISH and Hi-C
data in several loci pairs [23] suggest that there is PH,
which means that contact between i and j loci is present in
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only a fraction of the cells. In this case, which one has to
contend with in practice [8,26], the one-to-one mapping
between the contact probability and the mean 3D distances
[as shown by Eq. (1)] does not hold, leading to the paradox
[22,23] that a high contact probability does not imply small
interloci spatial distance.
Because of PH, one cannot determine the mean 3D

distance uniquely from the contact probability, which
implies that for certain loci the results of Hi-C and FISH
must be discordant. Recently, we solved the Hi-C–FISH
paradox by calculating the extent of cell population
heterogeneity using FISH data and concepts and theoretical
distribution of distances between monomers along poly-
mers. The distribution of subpopulations could be used to
reconstruct the Hi-C data. For a mixed population of cells,
the contact probability pij and the mean spatial distance
hr̄iji between two loci m and n are given by

hr̄iji ¼
XS
m

ηm;ijr̄m;ij; ð2Þ

hpiji ¼
XS
m

ηm;ijpm;ij; ð3Þ

where r̄m;ij and pm;ij are the mean spatial distance and
contact probability between i and j in mth subpopulation,
respectively. In the above equation, S is the total
number of distinct subpopulations and ηm;ij is the fraction
of mth subpopulation. The ηm;ij satisfy the constraintP

S
m ηm;ij ¼ 1. Although there exists a one-to-one relation

between pm;ij and r̄m;ij in each of the mth subpopulation, it

is not possible to determine hpiji solely from hr̄iji without
knowing the values of each ηm;ij and vice versa.
More generally, if we assume that there exists a con-

tinuous spectrum of subpopulations, hr̄iji and hpiji can be
expressed as

hr̄iji ¼
Z

dr̄ijKðr̄ijÞr̄ij; ð4Þ

hpiji ¼
Z

dpijQðpijÞpij; ð5Þ

where r̄ij andpij are themean spatial distance and the contact
probability associated with a single population, respectively.
Kðr̄ijÞ and QðpijÞ are the probability density distribution of
r̄mn and pmn over subpopulations, respectively.
We have shown [8] that the paradox arises precisely

because of the mixing of different subpopulations. The
value ηm;ij, Kðr̄ijÞ, or QðpijÞ in Eqs. (2)–(5) in principle
could be extracted from the distribution of hr̄iji, which can
be measured using imaging techniques. However, this is
usually unavailable or the data are sparse, which leads to
the question: Despite the lack of knowledge of the
composition of the cell populations (quantitative estimate
of PH), can we provide an approximate but reasonably
accurate relation between hpiji and hr̄iji? In other words,
rather than answer the question (a) posed in the previous
section precisely, as we did for the homogeneous GRMC,
we are seeking an approximate solution. The GRMC
calculations provide the insight needed to construct the
approximate relation connecting the distance and the
contact probability matrices.

FIG. 1. Comparison of the distance matrices (DM or R̄) for the GRMC. (a) The simulated R̄ (lower triangle) and the constructed R̄
(upper triangle) are compared side by side. The color bar indicates the value of the mean spatial distance hRmni. The constructed R̄ is
obtained by solving Eq. (3) using the contact probability P [calculated using Eq. (A1)]. The matrix size is 2000 × 2000 after the block
averaging is applied to the raw data (Appendix C). The threshold value for contact is rc ¼ 2.0a. The location of the loop anchors is
derived from experimental data [6] over the range from 146 to 158 Mbps for chromosome 5 in the human GM12878 cell line.
(b) Relative error δ is represented as a heat map. The relative error is calculated as δ ¼ ðdI − dSÞ=dS, where dI and dS are the inferred
and simulated distances, respectively; δ increases for loci with large genomic distance indicating the tendency to overestimate the
distances for loci pairs with small probabilities. (c) Ward linkage matrices (WLMs) from the simulation and theoretical predictions,
shown in the lower and upper triangle, respectively, are in excellent agreement with each other.
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C. A key inequality

Let us consider a special case where there are only two
distinct discrete subpopulations, and the relation between the
r̄ijðr̄Þ and pijðpijÞ is given by Eq. (1). A given contact is
present with unity probability in the conformations in one
subpopulation and is absent in all the conformations in the
other subpopulation. According to Eqs. (2) and (3), we have
hr̄i ¼ ηr̄1 þ ð1− ηÞr̄2 ¼ ηf−1GRMCðp1Þ þ ð1− ηÞf−1GRMCðp2Þ
and hpi ¼ ηp1 þ ð1 − ηÞp2. Note that f−1GRMC exists since f
is a monotonic function of the argument. Figure 2(a) gives a
graphical illustration of the inequality f−1GRMCðhpiÞ ≤ hr̄i.
This inequality states that the mean spatial distance of the
whole population has a lower bound, f−1GRMCðhpiÞ, which is
the mean spatial distance inferred from themeasured contact
probability hpi as if there is only one homogeneous
population (absence of PH). This is a powerful result, which
is the theoretical basis for the HIPPS method, allowing us to
go from Hi-C data to an ensemble of 3D structures.
The inequality f−1GRMCðhpiÞ ≤ hr̄i shows that a theoreti-

cal lower bound for hr̄iji exists, given the value of hpiji
regardless of the compositions of the whole cell population.
The inequality can be generalized to account for arbitrary
discrete or continuous distribution of subpopulations. Let
us assume that for a homogeneous system, there exists a
convex and monotonic decreasing function ϕ relating the
contact probability p and the mean spatial distance r̄, r̄ ¼
ϕðpÞ (we neglect the suffix ij for better readability). Note
that ϕ takes the form of Eq. (1) for the GRMC. It can be
shown that the following inequality holds (Appendix D):

hr̄i ≥ ϕðhpiÞ: ð6Þ

The above equation [Eq. (6)] shows that the lower bound
for the mean spatial distance in the presence of PH is given
by the mean spatial distance computed from the measured
contact probability as if the cell population is homogeneous.
The equality holds exactly only when the population of cells
is precisely homogeneous. This finding is remarkably useful
in predicting the approximate spatial organization of chro-
mosomes from the Hi-C contact map, as we demonstrate
below. Assuming that the single homogeneous population
can be described by theGRMC, then the equality in Eq. (1) is
satisfied. However, according to Eq. (6), when there are
multiple such coexisting populations, the relation hr̄iji ≥
f−1GRMCðhpijiÞ holds. Thus, the precisely solvable model
suggests that the approximate power law relating hpiji
and hr̄iji could be used as a starting point in constructing
the spatial distancematrices using only the Hi-C contact map
for chromosomes.

D. Validation of the lower bound relating hpiji and hr̄iji
in a heterogeneous cell population (PH)

In order to investigate the effect of PH on the quality of
the constructed mean distance matrix hR̄i from the contact

probability matrix hPi, we simulated a model system with
two distinct cell populations. One has all the mediated
loops present (with fraction η), and the other is a polymer
chain without any loop constraints (with fraction 1 − η)
(see Appendix A for simulation details). We used the lower
bound, f−1GRMCðhpijiÞ, to infer hr̄iji from hpiji. The results,
shown in Figs. 2(b)–2(d), provide a numerical verification
of the theoretical lower bound linking the contact proba-
bility and the mean spatial distance. Figure 2(b) shows the
scatter plot for hr̄iji versus hpiji from the simulation. The
theoretical lower bound, f−1GRMCðhpijiÞ, is shown for
comparison. Figure 2(b) shows that the lower bound
holds. Using the f−1GRMCðhpijiÞ, we calculated the hR̄i
[see Fig. 2(d) from the simulated hPi]. Comparison
between the inferred and the simulated hR̄i [middle and
bottom in Fig. 2(d)] shows that the difference between the
two hR̄i’s is large near the loops, resulting in an under-
estimate of the spatial distances. This occurs because the
constructed hR̄i is obtained from the simulated hPi, which
is sensitive to the PH. The difference matrices show that,
although the constructed hR̄i underestimated the spatial
distances around the loops, most of the pairwise distances
are hardly affected. This exercise for the GRMC justifies
the use of the lower bound as a practical guide to construct
hR̄i from the hPi.
To show that the constructed hR̄i using the lower bound

gives a good global description of the chromosome
organization, we also calculated the often-used quantity
hRðsÞi, the mean spatial distance as a function of the
genomic distance s, as an indicator of the average structure
[Fig. 2(c)]. The calculated hRðsÞi differs only negligibly
from the simulation results. Notably, the scaling of hRðsÞi
versus s is not significantly altered [inset in Fig. 2(c)],
strongly suggesting that constructing the hR̄i using the
lower bound gives a good estimate of the average size of the
chromosome segment.

E. Inferring 3D organization of interphase
chromosomes from experimental Hi-C contact map

To apply the insights from the results from the GRMC to
determine the 3D structures of chromosomes, we conjec-
ture that a power-law relation [7,29], relating the contact
probability hpiji and the spatial distance hr̄iji, holds
generally for chromosomes. Thus, we write

hr̄iji ¼ Λhpiji−1=α; ð7Þ

where the coefficientsα andΛ are unknown. Again, note that
the h·i and ·̄ represent the average over subpopulations and
the average over individual conformations in a single
subpopulation, respectively. In a homogeneous system, the
equalities hr̄i ¼ r̄ and hpi ¼ p hold. For the GRMC,
Λ ¼ rc and α¼ 3.0. For a self-avoiding polymer, α ≈ 3.71
for two interior loci that are in contact (see Appendix E).
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FIG. 2. (a) Lower bound for the mean spatial distance hr̄i illustrated graphically. The blue curve is the function f−1GRMC which exists
since fGRMC is a monotonic function. The orange line is the secant line between the points [p1; f−1GRMCðp1Þ] and [p2; f−1GRMCðp2Þ]. All the
points between p1 and p2 on the x axis can be expressed as ηp1 þ ð1 − ηÞp2 ≡ hpi for some value of η ∈ ½0; 1�. The y-axis value
corresponding to hpi is ηf−1GRMCðp1Þ þ ð1 − ηÞf−1GRMCðp2Þ≡ hr̄i and f−1GRMCðhpiÞ for the orange line and blue curve, respectively. Note
that for any values of p1, p2, and η, the orange line is always above the blue curve, which proves the inequality f−1GRMCðhpiÞ ≤ hr̄i. From
the graph, it can also be noted the equality holds only when p1 ¼ p2. (b) Scatter plot for mean pairwise spatial distances versus the
contact probabilities for η ¼ 0.3. Solid black line is the theoretical lower bound, given by the solution f−1GRMCðhpijiÞ. (c) Plots of hRðsÞi
as a function of the genomic distance s, for η ¼ 0.3 and 0.7. The inset shows the same data on a log-log scale; hRðsÞi is calculated using
hRðsÞi ¼ ð1=TMÞPM

a¼1

P
T
t¼1½rðaÞij ðtÞδðs − ji − jjÞ=ðN − sÞ�. The theoretical predictions are in excellent agreement with simulations.

(d) Simulated hPi (top), simulated hR̄i and inferred hR̄i side by side (middle), and relative error map (bottom) for η ¼ 0.3 for GRMC.
Note that all the maps are block averaged from N ¼ 10 000 to size n ¼ 400 as explained in Appendix C. The inferred hR̄i is obtained
using hr̄iji ¼ f−1GRMCðhpijiÞ. Relative error map is shown with blue color indicating larger error.
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Based on experiments [7] and simulations using the chromo-
some copolymer model [29] a tentative suggestion could be
made for a numerical value for α ≈ 4.0. Given the paucity of
data needed to determine α, we follow the experimental lead
[7] and set it to 4.0. We show below that the power-law
relation given in Eq. (7) provides a way to infer the
approximate 3D organization of chromosomes from the
experimental Hi-C contact map.

F. Experimental validation of Eq. (7) and choice of α

Before describing the 3D structures, we first show that
Eq. (7) with α ¼ 4 is reasonable. To do so we calculated the
square of the radius of gyration of all the 23 chromosomes
usingR2

g ¼ ð1=2N2
cÞ
P

i;jhr̄iji2. The dashed line in Fig. 3(a)
is a fit of R2

g as a function of chromosome size, which yields
Rg ∼ N0.27

c , whereNc is the length of the chromosome. For a

collapsed polymer, Rg ∼ N1=3
c , and for an ideal polymer,

Rg ∼ N1=2
c . The exponent 0.27≲ 1=3 suggests that chromo-

somes adopt highly compact, space-filling structures, which
is also vividly illustrated in Fig. 4. To ascertain if the unusual
value of 0.27 is reasonable, we computed the volume of each
chromosome using ð4=3ÞπR3

g and compared the results with
experimental data [30]. The scaling of chromosomevolumes
versus Nc calculated from the predicted 3D chromosome
structures is in excellent agreement with the experimental
data [Fig. 3(b)].
Since thevalue ofΛ [Eq. (7)] is unknown,we estimate it by

minimizing the error between the calculated chromosome
volumes and experimental measurements. We find that
Λ ¼ 117 nm, which is the approximate size of a locus of
100 kbps (the resolution of the Hi-C map used in the
analysis). It is noteworthy that the genome density computed
using the value of Λ ¼ ½100 × 103=ð4=3ÞπΛ3� bps nm−3 ¼
0.015 bps nm−3 is consistent with the typical average
genome density of human cell nucleus 0.012 bps nm−3

[31]. The value of Λ does not change the scaling but only
the absolute size of chromosomes.

G. Generating ensembles of 3D structures using the
maximum entropy principle

The great variability in the genome organization (CH)
has been noted before [8,26,27]. To determine the structural
heterogeneity of the chromosomes, we ask the question of
how to generate an ensemble of structures consistent with
the mean pairwise spatial distances between the loci. More
precisely, what is the joint distribution of the position of the
loci, PðfxigÞ, subject to the constraint that the mean
pairwise distance is hkxi − xjki ¼ hr̄iji? Generally, there
exists an infinite number of PðfxigÞ, satisfying the mean
pairwise spatial distance constraints. We seek the
PMaxEntðfxigÞ, yielding the maximum entropy among all
possible PðfxigÞ’s. The maximum entropy principle has
been previously used in the context of genome organization

[32,33] for different purposes. We note parenthetically that
enforcing the constraints of the mean pairwise distances is
equivalent to preservation of the mean squared pairwise
distances. In practice, we found that constraining the
squared distances, hkxi − xjk2i ¼ hr̄2iji, yields better
numerical convergence. The PMaxEntðfxigÞ subject to the
constraints associated with the mean squared pairwise
spatial distances is given by

PMaxEntðfxigÞ ¼
1

Z
exp

�
−
X
i<j

kijkxi − xjk2
�
: ð8Þ

FIG. 3. (a) Plot of the square of the radius of gyration R2
g as a

function of the chromosome size. The dashed line is a fit to the
data with the slope 0.54, which implies that Rg ∼ N0.27. The data
are for the 23 chromosomes. (b) Volume of each chromosome
versus the length in units of base pairs. The experimental values
(black squares) are computed using the data in Ref. [30]. The
dashed line is the fit to the experimental data with slope of 0.8.
Volume of each chromosome is calculated using λVnuc, where λ is
the percentage of volume of the nucleus, Vnuc. The values of λ are
provided in Fig. S5 in Ref. [30], and Vnuc ¼ ð4=3Þπr3nuc where
rnuc ¼ 3.5 μm is the radius of human lymphocyte cell nucleus
[30]. Volumes of the chromosomes obtained using theory and
computation are calculated using ð4=3ÞπR3

g (color circles). The
Pearson correlation coefficient between predicted values, without
any adjustable parameters, and the experimental data is 0.79.
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(a)

(b)

FIG. 4. (a) Representative 3D reconstructed structures for all the 23 human interphase chromosomes using the inferred distance
matrices, which are calculated using Eq. (7) with Λ ¼ 117 nm and α ¼ 4.0. The colors encode the genomic position of the loci. The
resolution of loci is 100 kbps. Red and purple represent the 50 and 30 ends, respectively. The structures with radii of gyration that are
close to the population average are selected. The structures are rendered using bond radius, Λ ¼ 117 nm. More individual
conformations are shown in Fig. 16. (b) Violin plot for the relative shape anisotropy κ2 (Appendix G) for all the 23 chromosomes.
The chromosomes are ordered with increasing of hκ2i.
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In the above equation, Z is a normalization factor and kij0s
are the Lagrange multipliers that are chosen so that the
average values hkxi − xjk2i match hr2iji. The latter could
either be inferred from the Hi-C contact map or directly
measured in FISH experiments. The merit of the maximum
entropy distribution [Eq. (8)] is that it is both data driven
and physically meaningful since the parameters kij are
inferred from experimental data and the term kijkxi − xjk2
may be interpreted as pairwise potential energy between
two loci i and j. Indeed, Eq. (8) is exactly the same as the
generalized Rouse model [9] where kij0s are the spring
constants between the genomic loci, which has been used
as basis for modeling chromosomes recently [34].
The procedure used to generate an ensemble of 3D

chromosome structures is the following. First, we compute
the mean spatial distance matrix from the contact map
using Eq. (7) with α ¼ 4.0. The value of the scaling factor
Λ ¼ 117 nm was calculated using an additional experi-
mental constraint (see the previous section). Recall that Λ
only sets the overall length scale but has no effect on the
conformational ensemble of the chromosome. Using an
iterative scaling algorithm [35,36], we obtain the values of
kij (Appendix F). Once the values of kij are obtained,
PMaxEnt can be directly sampled as a multivariate normal
distribution, which can then be used to generate an
ensemble of chromosome structures.
In Fig. 5(a) we compare the inferred distance matrix and

the distance matrix for chromosome 1 obtained using the
maximum entropy principle. It is visually clear that the two
distance matrices are in excellent agreement with each
other (see Figs. S2–S7 in Supplemental Material for the
other chromosomes [37]). We should emphasize that the
maximum entropy method described here, in principle, can
achieve exact match with the inferred distance matrix. The
small discrepancies are due to (1) the quality of conver-
gence and (2) the intrinsic error in the Hi-C map and the
inferred distance matrix derived from it.

H. Characteristics of the predicted 3D chromosome
structures

To illustrate the applicability of HIPPS, we choose the
Hi-C data for cell line GM12878 [6]. The 3D conforma-
tions are specified by xi, i ¼ 1; 2; 3;…; Nc, where Nc is the
number of loci at a given resolution (the centromeres are
discarded due to lack to information about them in the Hi-C
contact map). The resolution is set to be 100 kbps per
monomer. The values of Nc for all the 23 chromosomes are
listed in Table S1 in Supplemental Material [37]. We
generated an ensemble of 1000 structures for each of the
23 human interphase chromosomes using the HIPPS
procedure. Figure 4(a) shows the typical conformations
for each chromosome. Visually it is clear that there is
considerable shape heterogeneity among the chromosomes.
To quantify their shapes, we calculated the distribution of

relative shape anisotropy κ2 (Appendix G). Figure 4(b)
shows a violin plot for κ2 (going from the smallest to the
largest value) for the 23 chromosomes. The chromosomes
exhibit considerable variations in κ2. Chromosome 13 is
most spherical and chromosomes 19, 9, and 21 have the
most elongated shape.

I. Biological implications based on the 3D structures

We can draw important conclusions from the calculated
3D structural ensemble for chromosomes with some
biological implications that we mention briefly here.
Compartments and microphase separation.—The prob-

abilistic representation of the chromosome 1 structures are
shown in Figs. 5(b)–5(d), where we align all the con-
formations and superimpose them. First, we note that such
a probabilistic representation demonstrates clear hierarchi-
cal folding of chromosomes. Loci pairs separated by small
genomic distance (similar color) are also close in space
[Fig. 5(b); see Fig. 13 for the other chromosomes]. Long-
range mixing between different loci is avoided, supporting
the notion of crumpled globule [38–40]. Second, the
chromosome structures exhibit clear microphase separation
(different colors are segregated). These are referred to as A
and B compartments [Fig. 5(c); see Fig. 14 for the other
chromosomes], representing the two epigenetic states
(euchromatin and heterochromatin), which we previously
determined using the spectral clustering technique [29].
Each compartment predominantly contains loci belonging
to either euchromatin or heterochromatin. Contacts within
each compartment are enriched. Interactions between loci
within a single epigenetic state (euchromatin or hetero-
chromatin) are more likely than between loci belonging to
distinct epigenetic states. In the Hi-C data, the compart-
ments appear as a prominent checkerboard pattern in the
contact maps. Figure 5(c) shows that the two compartments
are spatially separated and organized in a polarized fashion,
which is consistent with multiplexed FISH and single-cell
Hi-C data [27].
Mapping ATAC-seq to 3D structures.—Advances in

sequencing technology have been used to infer epigenetic
information in chromatin without the benefit of integrating
it with structures. In particular, the assay for transposase
accessible chromatin using sequencing (ATAC-seq) [41]
technique provides chromatin accessibility, which in turn
provides insights into gene regulation and other functions.
The ATAC-seq read counts are obtained and processed
(Appendix H) from the data taken from Ref. [41] under
GEO (Gene Expression Omnibus) accession number
GSE47753. Then the data are binned into four quantiles.
Figure 5(d) shows that the loci with high ATAC and low
ATAC signals are spatially segregated. For the majority of
the 23 chromosomes, the spatial pattern of ATAC-seq is
consistent with the formation of A and B compartments
(Fig. 15). With the structures determined by the HIPPS
method in hand, we mapped the ATAC-seq data onto an
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ensemble of conformations for chromosome 1 from
GM12878 cell in Fig. 5(d). It appears that accessibilities
in chromosome 1 for various functions (such as nucleo-
some positioning and transcription factor binding regions)
are spatially segregated. Such segregation between loci
with high ATAC reads and those with low ATAC reads are
also visually clear in other chromosomes as well (Fig. 15).
Remarkably, these results, derived from the HIPPS method,
follow directly from the Hi-C data without creating a
polymer model with parameters that are fit to the exper-
imental data.

J. Conformational heterogeneity of A and B
compartmentalization

To quantify the extent of CH in chromosomes, we
examined the variations among the 1000 conformations
generated for chromosome 5. Figure 6(a) shows the
histogram (PðRgÞ) of Rg, the radius of gyration Rg.
There is considerable dispersion in PðRgÞ in chromosome
5, whose overall shape is anisotropic [see Fig. 4(b)]. We

then wondered what is the degree of variations in the
organization of the A and B compartments? Specifically,
we are interested in determining whether A and B compart-
ments are spatially separated in a single cell. To answer this
question, we first introduce a quantitative measure of the
degree of mixing between A and B compartments, Qk,

Qk ¼
1

Nc

X
i

jnAði; kÞ=n̂A − nBði; kÞ=n̂Bj
k

; ð9Þ

where k is the number of the nearest neighbors of loci i. In
Eq. (9), nAði; kÞ and nBði; kÞ are the number of neighboring
loci belonging to A compartment and B compartment for
loci i out of k nearest neighbors, respectively [nAði; kÞþ
nBði; kÞ ¼ k]. With Nc ¼ ðNA þ NBÞ, the fraction of loci
in the A compartment is n̂A ¼ NA=Nc and n̂B ¼ NB=Nc is
the fraction in the B compartment where NA and NB are the
number of A and B loci, respectively. The k neighbors of i
are computed as follows. First, the distance from i to all the
loci are calculated. From these distances, the k smallest

FIG. 5. (a) Comparison between the Hi-C (lower triangle) and the contact maps calculated from an ensemble of 3D structures for
chromosome 1 using the HIPPS method (hPi → hR̄i → 3D structures → contact map). (b) Comparison between the distance matrix
inferred from the Hi-C data (lower triangle) and the distance matrix calculated from an ensemble of 3D structures for chromosome 1
using the HIPPS method (hPi → hR̄i → 3D structures → mean distance map). A and B compartments, determined using spectral
biclustering [29], are also shown. (c) Comparison between the contact probability profile PðsÞ inferred from experiment and the
calculated curve using the HIPPS method. (d) Superposition of 1000 3D structures for chromosome 1. Each point represents one locus
from one conformation. The cloud representation demonstrates the probabilistic nature of chromosome conformation, with color
representing the genomic location of the loci along the genome. The resolution of the locus is 100 kbps. (e) Same cloud point
representations as (d) with colors indicating the A and B compartments. Phase separation between A and B compartments is vividly
illustrated. (f) Same as (d) and (e) but with ATAC-seq read counts coded in color.
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values are chosen, and this process is repeated for all i. Note
that Qk is length-scale invariant because it is a function of
only the number of nearest neighbors, which allows us to
compare the structures with different values of Rg on equal
footing. The value of Qk ¼ 2 for perfect demixing and
Qk ¼ 0 implies perfect mixing between the A and B
compartments. Figure 6(b) shows the PðQkÞ histograms
for different values of k. The distribution is clearly skewed
toward large values, indicating the demixing of the A and B
compartments on the population level. However, the dis-
tributions also show the presence of a small fraction of
single-cell chromosomes conformations with Qk ≈ 0.8,

implying mixing between A and B compartments to some
extent.

K. Chromosome organizations in different cell types

Since chromosome conformations in a single cell exhibit
extensive variations, it is natural to wonder how conforma-
tional heterogeneous a given chromosome is in different
cell types, and if the HIPPS method can quantify these
differences at the single-cell level. We are searching for
differences in the conformational heterogeneity of a specific
chromosome in different cell types. It is difficult to answer
the question posed above precisely because the conforma-
tional heterogeneity of a chromosome in a given cell type
could overwhelm the analysis. Furthermore, one has to
contend with high-dimensional data (each conformation
has 3N coordinates) in the ensemble of conformations.

FIG. 6. (a) Distribution of the radius of gyration PðRgÞ of
chromosome 5 from GM12878 cell type. Three structures
whose Rg values are in the 0.15 quantile, 0.5 quantile, and 0.75
quantile, respectively, are shown. (b) Distribution of the degree of
mixing between A and B compartments PðQkÞ [Eq. (9)]
for chromosome 5.

(a)

(b)

FIG. 7. (a) t-SNE plot for the ensemble of chromosomes 21
structures for 7 cell types (IMR-90, HMEC, GM12878, HUVEC,
K562, NHEK, KBM7). We used 1000 independent conforma-
tions for each cell type. A conformation is represented by the
distance matrix. The metric used to compare two single chro-
mosomes is the squared Euclidean norm between the distance
matrices. (b) The distribution of FðkÞ [Eq. (10)] for different cell
types. We take k ¼ 8, corresponding to 8 nearest neighbors.
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FIG. 8. (a) Comparison between Hi-C CM and the simulated CM using the HIPPS method for HeLa cell line chromosome 14 at 0, 2, 4,
6, 12 h after the release from prometaphase. The experiment Hi-C data are taken from Gene Expression Omnibus (GEO) repository
under accession number GSE133462. The simulated CM is calculated from an ensemble of 10 000 3D conformations with a chosen
contact threshold whose value is determined to minimize the squared difference between the Hi-C and simulated CM. (b) Superposition
of 1000 3D structures for chromosome 14 at each time point. Each point represents one locus from one conformation. The color encodes
the genomic location of the loci along the genome. (c) Same cloud representation as (b) with colors indicating the A and B
compartments. (d) Top: the change of κ2 as a function of time. κ2 is normalized by its initial (t ¼ 0) value κ2ð0Þ. Bottom: the histogram
of κ2ð0Þ. (e) Top: the change of the radius gyration Rg as a function of time. Rg is normalized by its initial value Rgð0Þ. Bottom: the
histogram of Rgð0Þ. (f) Top: the time evolution of the degree of compartmentalization Qk, which is calculated using Eq. (9). Bottom: the
histogram of Qkð0Þ. (d,e,f) Top: each colored line represent one of the 23 chromosomes.
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In order to delineate the differences in the conforma-
tional heterogeneities of a specific chromosome in different
cell types, we used a machine learning method for
analyzing large data [42]. To compare two chromosome
conformations, we first normalized the distance matrix such
that

P
i;j r

2
ij ¼ 1. By so doing, we eliminate the effect of the

overall size of the individual chromosome conformation,
thus allowing us to compare them solely in terms of their
3D structures. We generated 1000 structures for chromo-
some 21 from 7 cell types using Hi-C data [6]. Figure 7(a)
shows the t-SNE (t-distributed stochastic neighbor embed-
ding) plot [42] for 7000 individual chromosome confor-
mations from 7 different cell types (1000 conformations for
each cell type). In Fig. 7(a) the conformations of chromo-
some 21 in the 2D t-SNE representation are shown as blue
(IMR-90), red (HUVEC), and green (GM12878) dots. It is
clear that the structural ensembles of chromosome 21 from
different cell types have different degrees of overlap with
each other. IMR-90 (fibroblast), HUVEC (umbilical vein
endothelium), and GM12878 (lymphoblastoid), which are
normal human cells, form compact, distinct clusters with
negligible overlap with each other. In sharp contrast, the
conformations of the same chromosome in HMEC (breast
epithelial cell), K562 (myeloid leukemia cell in bone
marrow), NHEK (epidermal keratinocytes type of skin
cell), and KBM7 (a different leukemia cell) cells display
very large variations. They are not as compact and their
phase space structure in terms of the low-dimensional
t-SNE coordinates show overlapping regions [Fig. 7(a)].
To further distinguish between conformational hetero-

geneity of a given chromosome in different cell types, we
computed the value of QðkÞ described above for each
chromosome and FðkÞ, which quantifies the multibody
long-range interactions of the chromosome structure. We
define FðkÞ as

FðkÞ ¼ 1

kNcF0ðkÞ
X
i

X
j∈miðkÞ

jj − ij; ð10Þ

where k is the number of nearest neighbors andmiðkÞ is the
set of loci that are k nearest neighbors of locus i; F0ðkÞ ¼
ð1=2Þð1þ k=2Þ is the value of FðkÞ for a straight chain.
From Eq. (10), it follows that the presence of long-range
interaction increases the value of FðkÞ. It is worth noting
that FðkÞ can also be viewed as a measure of how well the
linear relation along the genome is preserved in the 3D
structure. Figure 7(b) shows the distributions of FðkÞ for
each cell type. GM12878 cell has the largest enrichment of
long-range multibody clusters whereas NHEK and HMEC
cells have the least. However, there is extensive overlap
between different cell types, as assessed by FðkÞ.
Remarkably, we find that there are substantial variations
in the structural ensembles of chromosome 21, and by
implication others as well, not only within a single cell but
also among single cells belonging to different tissues. From
our perspective, it is most interesting that the HIPPS

method when combined with machine learning techniques
can quantitatively predict such differences.

III. EVOLUTION OF CHROMOSOME
STRUCTURES FROM MITOSIS TO INTERPHASE

We next tested to ensure that our theory can also be
applied to Hi-C data for different time points during the cell
cycle. We apply the HIPPS method to the recent Hi-C data
from Abramo et al. [43] in which the Hi-C experiments
were performed for HeLa cells at several time points after
the arrest of the prometaphase. Figure 8(a) shows the
experiment Hi-C map for HeLa cell chromosome 14 at 6
different time points. The 0 hour corresponds to the arrest
of prometaphase. The compartment features emerge during
the cell cycle, and are visible after 2 hours. Prior to this time
point, the Hi-C contact map is rather featureless.
Using the HIPPS, we obtained the ensembles of 3D

structures corresponding to the 6 time points. Figure 8(b)
shows the superposition of 1000 3D structures. Similar to
Fig. 8, each point represents one locus from one con-
formation. The color encodes the genomic location of each
locus along the genome. Individual chromosome confor-
mations are also shown in Fig. 17. Figure 8(b) shows that
the shape of the chromosome changes dramatically during
the progression from the mitotic stage to the interphase. At
0 hour, the chromosome adopts a curved cylinder shape
while at 12 hours it is more rounded. To quantitatively
investigate the changes in the chromosome shape and size
during the cell cycle, we compute κ2 and the radius of
gyration Rg at various time points for all the chromosomes.
The results show that the κ2 is roughly a constant during the
first 2 hours, and slowly decreases as time increases from 2
to 12 hours [Fig. 8(d)]. The size of the chromosomes
(measured by Rg), in general, increases after the cell exits
mitosis [Fig. 8(e)].
Next we investigate the sequestration of A and B

compartments. As Fig. 8(a) suggests, the compartments
are absent during the mitotic and only start appearing
after 2 hours. The distribution of A and B locus shown in
Fig. 8(c) are largely consistent with the Hi-C data. Visually,
the degree of segregation between A and B compartments at
0 hour is less than that at 12 hour end point. To quantify this
trend, we compute the Qk [Eq. (9)] for the available time
points for all the chromosomes. We find that Qk values are
nearly constant before 2 hour, and start to increase afterward
and reach a plateau after 6 hours when the segregation
between the compartments is complete [Fig. 8(f)].

IV. ARE MITOTIC CHROMOSOMES HELICAL?

We have shown that the HIPPS method can be applied to
the Hi-C data for different cell states, including the mitosis.
We then wondered if the mitotic chromosome structures are
helical. Gibcus et al. [44] recently suggested that during the
prometaphase the chicken cell chromosomes adopt a
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FIG. 9. (a) Comparison between the theoretical Hi-C CM (described in the text) and the simulated CM for α ¼ 3.0, 3.5, 4.0, 4.5.
(b) Experimental and simulated contact probability profiles PðsÞ for different values of α for chicken mitotic chromosomes. (c) Angle
correlation function cðs; dÞ for individual structures and the average curve hcðs; dÞi (black curve). The value of d is 32. (d) Fourier
transform of average cðs; dÞ. Three peaks are marked with corresponding length scales in terms of number base pairs. (e) Angle
correlation function cðs; dÞ with d ¼ 32 computed from the average structures shown in (f). (f) The averaged structure for α ¼ 3.0, 3.5,
4.0, 4.5. A total number of 100 000 random independent individual structures are used to compute the average structure.
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helical backbone stabilized by condensin II proteins. We
apply our HIPPS to Gibcus et al. data [44] to test if our
HIPPS method can recover such structure. Since the mitotic
Hi-C maps are featureless (without any compartments or
topologically associating domains), we convert the PðsÞ
curve (computed from the Hi-C contact map) to a theo-
retical Hi-C map to reduce the noise and sampling error in
the contact map, and then applied the HIPPS method on the
resulting contact map. Furthermore, since the value of α
[Eq. (7)] for mitotic chromosomes is not known, we test our
model using four different α values, α ¼ 3.0, 3.5, 4.0, 4.5.
The results show that the HIPPS can reasonably reproduce
the contact map [Fig. 9(a)] and the dependence of PðsÞ on s
[Fig. 9(b)]. For α ¼ 3.0, the PðsÞ matches the experimental
curve well for all s, and quantitatively for s > 106 bps. The
optimal value of α ¼ 3.0 suggests that mitotic chromo-
somes may be approximately treated as a near ideal
polymer. It is remarkable that without almost no adjustable
parameter we can reproduce the experimental PðsÞ curve
including the bump at s ≈ 6 Mbps [Fig. 9(b)].
To quantitatively investigate whether the mitotic chro-

mosomes structures are helical or have other periodicity, we
compute the angle correlation for each individual confor-
mations. The angle correlation is defined as

cðs; dÞ ¼ hr⃗i;iþd · r⃗iþs;iþsþdi; ð11Þ

where r⃗i;iþd is the vector between ith and (iþ d)th loci, and
d is the control parameter. For a perfect helical structure,
cðs; dÞ would exhibit oscillations reflecting the helix pitch
as the period. Figure 9(c) shows the results for cðs; dÞ with
d ¼ 32. The value of d is chosen to be 32 because the
resulting periodicity is most prominent. Remarkably, we
find that there is clear evidence of periodicity. The Fourier
transform of cðsÞ [Fig. 9(d)] shows that the most prominent
peak in the amplitude spectrum is at s ≈ 7.8 Mbps, which is
in very good agreement with the value reported in Gibcus
et al. [44]. These authors suggested through a combination
of experiments and simulations inspired by the data that
7–8 Mbps is the length of each helical turn. In addition to
this peak, we also find a few less prominent peaks as
marked in Fig. 9(d), which suggests that the periodicity also
is present at s ≈ 2 Mbps and s ≈ 1 Mbps. Finer scale
periodicity, which was not reported in Gibcus et al. [44],
could be tested using higher resolution experiments.
Next we compute the “average” structure defined as

follows. First, we generate an ensemble of 100 000 inde-
pendent individual conformations. Next, we align all
structures to a reference structure, with accounting for
handedness. Then, the coordinates for each locus in the
averaged structure is computed as the mean value of the
coordinates of that locus in each individual conformation.
The results are shown in Fig. 9(f) for different value of α.
Clear helical pattern can be observed for α ¼ ð3.0; 3.5Þ

whereas it is less transparent for α ¼ ð4.0; 4.5Þ. Figure 9(e)
shows the angle correlation cðs; dÞwithd ¼ 32 inwhich the
oscillation pattern is clearly observed. We note that such
helical pattern is not obvious visually for individual con-
formation (Fig. 18), suggesting that mitotic chromosome
conformations display a degree of heterogeneity with the
presence of helical periodicity.

V. DISCUSSION AND CONCLUSION

Using an analytic expression for the distance distribution
of distances between monomers in polymers and the
principle of maximum entropy, and precise numerical
simulations of a nontrivial model, we have provided an
approximate solution to the problem of how to construct an
ensemble of three-dimensional coordinates of each locus in
a chromosome from the measured probabilities (hpiji0s)
that loci pairs are in contact. The key finding that makes our
theory possible is that hpiji is related to hr̄iji through a
power law [7,8]. The inferred mean spatial distances are
then used as constraints to obtain an ensemble of structures
using the maximum entropy principle. The physically well-
tested theory, leading to the HIPPS method, allowed us to
use the Hi-C contact map and create an ensemble of three-
dimensional chromosome structures without any under-
lying model. The theory is general enough that sparse data
from Hi-C and FISH experiments may be combined to
produce the 3D structures of chromosomes for any species.
The HIPPS method could be improved in at least two

ways. First, the theory relies on Eq. (7), which relates the
average contact probability between two loci to the mean
distance between them. Even though choosing α ¼ 4.0 in
Eq. (7) provides a reasonable description of the sizes of all
the chromosomes, it should be treated as a tentative
estimate. More precise data, accompanied by an analyti-
cally solvable polymer model containing consecutive
loops, as is prevalent in the chromosomes, could produce
more accurate structures. Second, as the resolution of Hi-C
map improves, the size of the contact matrix will not only
increase but the matrix would be increasingly sparse
because of the intrinsic population and conformational
heterogeneities. Thus, mathematical theories for dealing
with sparse matrices will have to be utilized in order to
extract chromosome structures.
We should emphasize that if the chromosome structures

are used in conjunction with an underlying accurate
polymer model, then the HIPPS method could also be
used to predict structures of chromosomes in single cells,
which would shed light on the extent of their conforma-
tional heterogeneity. Ultimately, this might well be the
single most important utility of our theory.
The code for the HIPPS method presented in this work

and its detailed user instruction can be accessed at the GitHub

repository [45].
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APPENDIX A: SIMULATION DETAILS

The GRMC is a variant of a model introduced previously
[9] as a caricature of physical gels. Recently, we used the
GRMC [8] as the basis to characterize the massive
heterogeneity in chromosome organization. The energy
function for the GRMC is [8]

Uðr1;…; rNÞ ¼
XN−1

i¼1

US
i þ

X
fp;qg

UL
fp;qg: ðA1Þ

For the bonded stretch potential US
i , we use

US
i ¼

κ

2
ðjriþ1 − rij − aÞ2; ðA2Þ

where a is the equilibrium bond length. The interaction
between the loop anchors is modeled using

UL
fp;qg ¼

ω

2
ðjrp − rqj − aÞ2; ðA3Þ

where the spring constant may be associated with the CTCF
facilitated loops. The labels fp; qg represent the indices of
the loop anchors, which are taken from the Hi-C data [6].
The energy function for the ideal Rouse chain simulated

in this work is

Uðr1;…; rNÞ ¼
XN−1

i¼1

US
i ; ðA4Þ

which is obtained from the energy function for GRMC by
eliminating the loop constraints [setting ω ¼ 0 in Eq. (A3)].
In order to accelerate conformational sampling, we per-

formed Langevin dynamics simulations at low friction [46].
The total number N of monomers is 10 000. We simulated
each trajectory for 108 time steps, and saved the snapshots
every 10 000 time steps. We generated ten independent
trajectories, which are sufficient to obtain reliable statistics
(see Fig. S8 in Supplemental Material [37]).

APPENDIX B: DATA ANALYSES OF THE
SIMULATION DATA

The contact probability between the mth and nth loci in
the simulation is calculated using

Pmn ¼
1

TM

XM
a¼1

XT
t¼1

Θ½rc − jrðaÞm ðtÞ − rðaÞn ðtÞj�; ðB1Þ

where Θð·Þ is the Heaviside step function, rc is the
threshold distance for determining the formation of con-
tacts, the summation is over the snapshots along the
trajectory, M is the total number of independent trajecto-
ries, and T is the number of snapshots in a single trajectory.
The mean spatial distance between the ith and the jth loci
in the simulations is calculated using

hRmni ¼
1

TM

XM
a¼1

XT
t¼1

jrðaÞm ðtÞ − rðaÞn ðtÞj: ðB2Þ

The objective is to calculate hRmni from Pmn, and to
determine, if in so doing, we get reasonably accurate results.
Because these quantities can be computed precisely for the
GRMC, the ½Pmn; hRmni� relationship can be rigorously
tested.

APPENDIX C: BLOCK AVERAGE

Figure 10 shows the procedure used for the block
average procedure when dealing with several vanishing
(or very small) contact probabilities Pmns. Such a method
could be used for (almost) any sparse matrix. Let the size of
original contact matrix (CM) be N × N. By setting a
coarse-grained level n, the original CM is divided into
blocks, each with size n × n. The new coarse-grained CM
is constructed in such a way that the values of elements in
the ðN=nÞ × ðN=nÞ are the arithmetic average of elements
in each block. We then demonstrate that this coarse-
graining procedure does not alter the structural information
embedded in the original CM.

APPENDIX D: DERIVATION OF A LOWER
BOUND FOR THE SPATIAL DISTANCE IN

TERMS OF CONTACT PROBABILITY

Let us use ·̄ and h·i to denote the average over each
genome conformation in a single homogeneous population
and the average over each individual subpopulation,
respectively. The separate averages account for PH and
CH. Here, r̄ij and pij are the mean spatial distance and the
contact probability between loci i and j for a single
homogeneous (sub)population. hr̄iji and the hpiji are the
mean spatial distance and the contact probability between
loci i and j measured for the whole population. It is easy to
see that if the population is homogeneous, we have hr̄iji ¼
r̄ij and hpiji ¼ pij.
In this appendix, we prove that there exists a theoretical

lower bound for hr̄iji for a given value of hpiji. We assume
that for a homogeneous population, where only one cell
population is present, there exists a convex and monotonic
decreasing function relating the contact probability between
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two loci and their mean spatial distance, r̄ij ¼ ϕðpijÞ. For
better readability, we will neglect the suffix ij from now on.
For a heterogeneous population, the contact probability is
calculated as

hpi ¼
Z

rc

0

Z
∞

0

drdr̄Kðr̄ÞPðrjr̄Þ

¼
Z

∞

0

dr̄Kðr̄Þ
Z

rc

0

drPðrjr̄Þ

¼
Z

1

0

pK½ϕðpÞ� dr̄
dp

dp

≡
Z

1

0

pψðpÞdp; ðD1Þ

whereKðr̄Þ is the distribution of r̄ for all the subpopulations
(accounts for PH) and Pðrjr̄Þ is the distribution of spatial
distance for a single subpopulation (accounts for CH) given

its mean value r̄. rc is the threshold distance for determining
the contact. Note that p ¼ R rc

0 drPðrjr̄Þ by definition.
ψðpÞ≡ K½ϕðpÞ�ðdr̄=dpÞ is the probability measure of p
over individual subpopulation. Since ϕ is a convex function,
according to Jensen’s inequality, we have

ϕðhpiÞ ≤ hϕðpÞi ¼
Z

ϕðpÞψðpÞdp: ðD2Þ

Replace the ψðpÞ by K½ϕðpÞ�ðdr̄=dpÞ. We obtain

ϕðhpiÞ ≤
Z

ϕðpÞK(ϕðpÞ) dr̄
dp

dp

¼
Z

r̄Kðr̄Þdr̄ ¼ hr̄i: ðD3Þ

Equation (D3) shows that the lower bound for hr̄i is the
mean spatial distance inferred from the hpi as if the

(a)

(b)

FIG. 10. (a) Illustration of block average performed on sparse contact map matrix (hPi). There are zero value elements in the original
hPi (matrix on the left). When constructing the distance matrix hR̄i from such hPi, the zero value contact probability would naively
imply that hr̄i → ∞. To overcome this problem, we use block averages. The original N × NhPi are replaced by blocks with size n (red
blocks on top left). The value of the matrix element in each block is computed as the mean value of the original elements in each block
(matrix on the right). The size of the matrix is reduced from N to N=n, where n is the normalization factor. The same procedure could
also be applied to hR̄i. (b) Block average does not alter the information embedded in the original hPi and the calculated hR̄i. RðsÞ is
computed for different values of the normalization factor n. The insensitivity of the results to the block averaging justifies its use in
overcoming the problem of missing data points on the hPi.
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population of genome is homogeneous. In other words,
there is only one single population without PH.
To demonstrate the validity of Eq. (D3), we consider the

special case where there are only two distinct discrete
subpopulations. In this case, it is obvious that hr̄i ¼ ηr̄1 þ
ð1 − ηÞr̄2 and hpi ¼ ηp1 þ ð1 − ηÞp2. Note that r̄1 ¼
ϕðp1Þ and r̄2 ¼ ϕðp2Þ. Let us denote p1 ¼ x and
p2 ¼ y. Given the value of the contact probability hpi,
we show that the lower bound for hr̄i is ϕðhpiÞ. This is
equivalent to the optimization problem,

maximize fðx; yÞ
subject to gðx; yÞ ¼ 0; ðD4Þ

where fðx; yÞ ¼ −ηϕðxÞ − ð1 − ηÞϕðyÞ ≡ −hr̄i and
gðx; yÞ ¼ ηxþ ð1 − ηÞy − hpi. The Lagrange multiplier is
Lðx; y;ϕÞ ¼ fðx; yÞ − ϕgðx; yÞ. Using the condition that
∇x;y;ϕLðx; y;ϕÞ ¼ 0, it can be shown that fðx; yÞ is maxi-
mized when x ¼ y. Thus, we proved that hr̄i is minimized
whenp1 ¼ p2 and its minimum value isϕðhpiÞ. This is also
graphically illustrated in Fig. 2(a) in the main text.

APPENDIX E: CONNECTION BETWEEN THE
CONTACT PROBABILITY AND MEAN

SPATIAL DISTANCE

For a self-avoiding homopolymer, the distance distribu-
tion between two monomers along a polymer chain is [47]

Pðrjr̄Þ ¼ Aðr=r̄Þ2þg exp½−Bðr=r̄Þδ�; ðE1Þ

where r is the distance between two monomers, r̄ is the
mean distance between them. g is “correlation hole”
exponent, and δ is related to the Flory exponent by
δ ¼ 1=ð1 − νÞ. Given the contact threshold, the contact
probability p between the two monomers is

p ¼
Z

rc

0

Pðrjr̄Þdr: ðE2Þ

If the contact threshold is small compared to the size of the
chain r ≪ r̄, the integral can be approximately evaluated as

p ¼ lim
rc→0

Z
rc

0

Pðrjr̄Þdr

¼ lim
rc→0

Z
rc

0

Aðr=r̄Þ2þg exp½−Bðr=r̄Þδ�dr

∼ r̄−ð3þgÞ: ðE3Þ

Thus, the contact probability between two monomers p is
connected to their mean distance r̄ by a scaling exponent,
−ð3þ gÞ. For an ideal chain, g ¼ 0, we recover the
asymptotically exact relation p ∼ r̄−3. For a self-avoiding
chain, there are three cases [47]: (i) two monomers are at
the two ends of the chain, (ii) one monomer is in the chain

interior, while the other is at the end, and (iii) two
monomers are located in the central part of a chain. The
correlation hole exponents corresponding to the three cases
[47] are g1 ¼ 0.273, g2 ¼ 0.46, and g3 ¼ 0.71. Thus, we
have p ¼ r̄−3.273 for the contact between two ends of a self-
avoiding chain. p ¼ r̄−3.46 for contact between two mono-
mers in case (ii), and p ¼ r̄−3.71 for the contacts between
two monomer located in the chain interior.
For polymers in poor solvents (likely more relevant to

the human interphase chromosomes), the value of g is not
well known. Using simulations, Bohn et al. [48] showed
that for an equilibrium collapsed homopolymer chain, g ¼
−0.11 for two ends of the chain. This leads to the contact
probability between two ends of an equilibrium homo-
polymer globule and the mean distance p ¼ r̄−2.89. But the
values of g for scenarios (ii) and (iii) are unknown. In
addition, copolymer and out-of-equilibrium states of chro-
mosomes further complicate the theoretical calculations.
Hence, the theoretical estimate of the relation between p
and r̄ for chromosomes is not known rigorously.
Nevertheless, we expect based on the arguments given
here that a power law connecting p and r̄ ought to exist. We
use the relation based on experimental data and our
previous study [29].

APPENDIX F: ITERATIVE SCALING
ALGORITHM FOR MAXIMUM ENTROPY

PRINCIPLE

Here, we describe the algorithm for obtaining the kij’s in
Eq. (8). The algorithm we adopted is iterative scaling
[35,36]. Denote kijðtÞ as the value of kij at tth iteration; it is
updated according to

kijðtþ 1Þ ¼ kijðtÞ þ
rP

i<jhr2ijðtÞi
ln
hr2ijðtÞi
hr2iji

; ðF1Þ

where r is the learning rate. hr2ijðtÞi is the average squared
pairwise distance at tth iteration and hr2iji is the targeted
squared pairwise distance. Generally, the value of hr2ijðtÞi
can be estimated by numerical sampling methods, such as
Monte Carlo simulation or Langevin dynamics, under the
values of parameters kijðtÞ. In this particular case, hr2ijðtÞi
can be directly computed since PMaxEnt is a multivariate
normal distribution. Following the derivation in our pre-
vious work [8],

hr2ijðtÞi ¼ 3σ2ijðtÞ; ðF2Þ

where σ2ij ¼ Ωii þ Ωjj − 2Ωij. Ωii, Ωjj, and Ωij are the
elements of the matrix Ω which is defined as
Ω ¼ −VΛ−1VT . V and Λ are computed through the
eigendecomposition of the connectivity matrix K such that
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K ¼ VΛVT . The connectivity matrix K is defined as Kij ¼
kij for i ≠ j and Kii ¼ −

P
j;j≠i kij.

To demonstrate the effectiveness of the algorithm,
Fig. 11 shows the comparison between targeted average
distance matrix and simulated average distance matrix at
different iteration steps. It is clear that after a sufficient
number of steps, the simulated distance matrix converges to
the targeted one with high accuracy.

APPENDIX G: RELATIVE SHAPE ANISOTROPY

To quantify the shape of each chromosome conforma-
tion, we calculate the relative shape anisotropy (κ2) using

κ2 ¼ 3

2

λ21 þ λ22 þ λ23
ðλ1 þ λ2 þ λ3Þ2

−
1

2
; ðG1Þ

where λ1;2;3 are the eigenvalues of the gyration tensor. The
bound for κ2 is 0 ≤ κ2 ≤ 1, where 0 is for highly symmetric
conformation and 1 corresponds to a rod.

APPENDIX H: PROCESSING ATAC-seq DATA

Each monomer or locus in the 3D structures generated is
assigned a value representing its ATAC signal. We use
ATAC BED file from GEO repository GSE47753. The

original data, however, needed to be processed in order to
use in conjunction with our model. The procedure is
illustrated in Fig. 12. Each line in the BED file corresponds
to an ATAC peak, associated with the peak value and the
start and end genomic positions of the segment. In our

(a)

(b) (c)

E

FIG. 11. (a) Comparison between the targeted distance matrix (lower triangle) and the distance matrix at different iteration steps. At
iteration step 1000, we achieve good agreement with targeted distance matrix. (b) The error as a function of iteration steps. The error is
defined as the L2 norm between targeted distance matrix and simulated distance matrix. (c) The scatter plot between targeted hr2iji and
hr2ijðtÞi at t ¼ 1000. The Pearson correlation coefficient between hr2iji and hr2ijðt ¼ 1000Þi is 0.92.

FIG. 12. The procedure for processing ATAC-seq peak data.
The raw ATAC-seq read counts data are illustrated at the top
track. Each chromatin segment has a read count value. The
segments are not distributed uniformly, but have different lengths,
and have missing parts. In our model, each locus has a fixed
genomic length. Thus, to estimate the read counts associated with
each locus, we calculate the contribution from the original ATAC-
seq segments (blue track) to the segments represented by the
locus (yellow track). NA indicates that the data is either not
available or missing.
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FIG. 13. Superposition of an ensemble of 3D structures for all 23 chromosomes. A total number of 1000 conformations are aligned
and superimposed for each chromosome. Each point represents one locus from a single conformation, with color representing the
genomic location of the locus along the genome.
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FIG. 14. Superposition of an ensemble of 3D structures for all 23 chromosomes. A total number of 1000 conformations are aligned
and superimposed for each chromosome. Each point represents a single locus from one conformation, with colors representing the A and
B compartments. Note that the A and B compartments do not necessarily correspond to the same epigenetic state across different
chromosomes since the assignment of label A or label B is arbitrary.
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FIG. 15. An ensemble of 3D structures for all 23 chromosomes obtained from 1000 conformations that are aligned and superimposed
for each chromosome. Each point represents one locus from one conformation. The colors encode the ATAC-seq signal values.
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model, each monomer represents a 100 kbps genome
segment. We count how many base pairs are overlapped
between the segment represented by a single locus in our
model and the segment in the ATAC-seq data. The con-
tribution of the locus to ATAC signal value is computed
proportionally from the peak value. For instance, the
segment in the ATAC data that has a peak value of 100,
and whose length is 50 kpbs, would have an overlap of
length 30 kbps with the locus. Then the contribution of
ATAC signal from the segment in the ATAC data is
ð30=50Þ × 100 ¼ 60. If a segment has no data in the
ATAC BED file, we set the peak value to zero.

APPENDIX I: CODE AVAILABILITY

The code for the HIPPS method presented in this work
and its detailed user instruction can be accessed at the GitHub

repository [45].

The program is used as a PYTHON script. The script
accepts a Hi-C contact map or a mean spatial distance map
as an input, and generates an ensemble of individual
conformations. The Hi-C contact map can be in either
cooler format or pure text format. The output conforma-
tions are in .xyz format, which users can use to compute
various quantities of interest or can be rendered using visual
molecular dynamics or other compatible softwares.
The script accepts a number of options. A partial list of

available options are the following.
(i) Number of individual conformations to be

generated.
(ii) Number of iterations of iterative scaling.
(iii) Value of learning rate r in Eq. (F1).
(iv) The Chromosome region of interest.
A detailed set of instructions and examples are provided

on the GitHub page [45].

FIG. 16. More individual conformations for all 23 chromosomes for GM12878 cell line. Six individual conformations are shown for
each chromosome. The colors encode the genomic position of the loci. Red and blue represent the 50 and 30 ends, respectively. The
resolution of loci is 100 kbps.

FROM HI-C CONTACT MAP TO THREE-DIMENSIONAL … PHYS. REV. X 11, 011051 (2021)

011051-23



FIG. 17. Individual conformation for chromosome 14 for HeLa cell line at 0, 2, 4, 6, 12 h. Four individual conformations are shown for
each time point. Each individual conformation is generated randomly. The colors encode the genomic position of the loci. Red and blue
represent the 50 and 30 ends, respectively.

FIG. 18. Individual conformation for chromosome 7 for chicken DT-40 cell line. Six individual conformations are shown. Each
individual conformation is generated randomly. The colors encode the genomic position of the loci. Red and blue represent the 50 and 30
ends, respectively.
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