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One of the most fundamental problems in quantum many-body physics is the characterization of
correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor
network approximations to thermal states with a bond dimension growing polynomially with the system
size. In the regime of sufficiently low temperatures, which is crucially important for practical applications,
the existing techniques do not yield optimal bounds. Here, we propose a new thermal area law that holds for
generic many-body systems on lattices. We improve the temperature dependence from the original O(f) to
O(F*?) up to a logarithmic factor, thereby suggesting subballistic propagation of entanglement by
imaginary-time evolution. This qualitatively differs from the real-time evolution, which usually induces
linear growth of entanglement. We also prove analogous bounds for the Rényi entanglement of purification
and the entanglement of formation. Our analysis is based on a polynomial approximation to the exponential
function which provides a relationship between the imaginary-time evolution and random walks.
Moreover, for one-dimensional (1D) systems with n spins, we prove that the Gibbs state is well
approximated by a matrix product operator with a sublinear bond dimension for f = o[log(n)]. This proof
allows us to rigorously establish, for the first time, a quasilinear time classical algorithm for constructing a
matrix product state representation of 1D quantum Gibbs states at arbitrary temperatures of f = o[log(n)].
Our new technical ingredient is a block decomposition of the Gibbs state that bears a resemblance to the
decomposition of real-time evolution given by Haah ef al. [Proceedings of the 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS) (IEEE, New York, 2018), pp. 350-360].

DOI: 10.1103/PhysRevX.11.011047

I. INTRODUCTION
A. Background

One of the most important challenges in quantum many-
body physics is to understand their thermal equilibrium
properties. Recently, with the advent of large quantum
simulators [1-5], the size and controllability of quantum
Gibbs states accessible for experiments have dramatically
improved. In fact, recent experiments have even succeeded
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in implementing imaginary-time evolution [6]. These
developments are of considerable interest for quantum
computation, because quantum Gibbs states play crucial
roles in quantum machine learning [7-14] and quantum
algorithms such as semidefinite program solvers [15-17].
Beyond quantum computation, understanding and charac-
terizing quantum Gibbs states is relevant to many open
problems in quantum statistical physics and condensed
matter physics. Thus, understanding (i) the nature of
entanglement structures in quantum Gibbs states and
(ii) their simulability via tensor network methods is of
great interest.

It is now widely accepted that the area law plays a crucial
role [18,19] in the characterization of low-temperature
physics of many-body systems. This law states that the
entanglement entropy between two subsystems is at most
as large as the size of their boundaries. A similar notion also
applies to finite-temperature systems. Although a rigorous
proof of the area law at the zero temperature appears to be a
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notoriously challenging problem [20-27], an analogous
area law at finite temperatures has been proved by Wolf
et al. [28] in a simple and elegant manner. The authors
prove the following inequality:

I(L:R),, < 2| Hou|| « BlOL

; (1)

with ||---|| being the operator norm and OL being the
surface region of L, where I(L:R), is the mutual infor-

mation between the subsets L and R [see Eq. (7) below] and
Hy; denotes the boundary interaction Hamiltonian. The
upper bound (1) roughly denotes that the correlations
between two complementary regions are concentrated
around a distance O(f) of their boundary.

The thermal area law (1) is optimal at high temperatures
[~ O(1)], because the dependence on |OL| cannot be
improved. One may similarly expect that, at low temper-
atures (ff > 1), linear dependence on f should be optimal.
This expectation is suggested by the theory of belief
propagation [29], which indicates that the nonlocal quan-
tum effects can be induced in a length scale of O(f).
However, there are no definite numerical or theoretical
examples that achieve the upper bound (1). Indeed, for
specific systems [30-32], we can get much better area-law
bounds than (1). This result motivates the possibility of the
following improvement of the thermal area law (see Fig. 1):

I(L:R), SPIOLI (r <1). 2)

Any improvement along these lines is intimately associated
with new advances in our understanding of the low-
temperature physics. For instance, the widely known
relation between area laws and tensor networks suggests
that the identification of the minimum y, would also lead to
optimal representations of Gibbs states. This outcome
would result in faster algorithms for computing local
expectation values and evaluating the partition functions.
We now turn our attention to the simulability of the
quantum Gibbs state. There exists a large number of
classical [29,33-50] and quantum [51-59] algorithms to
study the properties of the quantum Gibbs states. At high
temperatures [# = O(1)], the Gibbs states have numerous
analytical properties, such as the exponential decay of
bipartite correlations [60—65], the large deviation principle
[66-68], and the approximate quantum Markov property
[69,70]. As a consequence, in this temperature regime, the
Gibbs states are proved to be generated by a finite-depth
quantum circuit [58,70], and the quantum partition function
can be computed in polynomial time [70-73].
Unfortunately, at lower temperatures, computational
complexity theory results severely limit the applicability
of the algorithms discussed above. Indeed, computing the
partition function of Gibbs states in two and higher
dimensions is already known to be NP-hard [74,75] (see
also Ref. [76]) except for special cases (e.g., ferromagnetic

UG

FIG. 1. Schematic depiction of our problem. By decomposing
the total system into L and R, we consider the mutual information
I(L:R) p, between L and R. Then, the thermal area law in
Ref. [28] gives I(L:R) S BIOL| (y = 1 in the above picture).
We aim to establish a new thermal area law in the form of
I(L:R)p/i SPrIOL] with y < 1. In particular, it is a highly
nontrivial and fundamental question to identify the best exponent
7. for which the thermal area law holds in generic many-body
systems. Our main result provides the nontrivial upper bound
of y. <2/3.

spin systems [77,78]). This bottleneck is serious for several
practical applications in which the Gibbs states are
employed at low temperatures. For example, in the quan-
tum algorithm for semidefinite programming [15], the
quantum Gibbs states with § = O[log(n)] (n, system size;
p, the inverse temperature) must be sampled. Similar
challenges are faced in the imaginary-time evolution, the
implementation of which is a central aim of near-term
quantum devices [6,79—-85]. Thus far, below a threshold
temperature where the cluster expansion technique does not
work [86], little is known about the universal properties of
Gibbs states that may hold independent of the system’s
details. This lack provides a strong motivation to identify
the optimal thermal area laws.

B. Description of the main results

For the first main result of the present study, we prove the
inequality (2) for y = 2/3. On the other hand, we also prove
the lower bound of y. > 1/5, using the example con-
structed in Ref. [87] (see Sec. III B), which means

1/5<y.<2/3.

There are two remarks: (i) The result is applicable only to a
finite-dimensional lattice, while there may be a counterex-
ample in general graph systems [88], and (ii) in high-
dimensional cases, the obtained result is slightly weaker,
asis givenby I(L:R), < p|OL|log(p"|OL|) (see Theorem
1). To understand why the result is counterintuitive at first
sight, let us consider the case of real-time evolution e/”/. The
small-incremental-entangling (SIE) theorem [89-92] pre-
dicts the linear increase of the entanglement with respect to
time, which translates to the fact that the Schmidt rank of the
operator ¢'" grows as ¢®(). This result suggests the same
linear dependence for the imaginary-time evolution operator
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e PH_ However, the inequality (2) shows that the scaling of
the exponent is sublinear in f. This result means that the
entropy growth due to the imaginary-time evolution is more
diffusive in nature. We explain this difference in Sec. IIT A,
which can be traced back to a better polynomial approxi-
mation to e~* compared with e~ [93]. This polynomial
approximation is caused by a random walk interpretation of
the Chebyshev basis expansion of e~ (see Sec. III A), which
is not available for e=*. This random walk interpretation
further suggests that the entropy production in the imaginary-
time evolution is diffusive.

The improved area law not only is of fundamental interest
but also provides important insights regarding the efficient
representation of the quantum Gibbs states. In previous
studies [64,94,95], the approximations by matrix product
operators (MPOs) and projected entangled pair operators
(PEPOs) are investigated through cluster expansion tech-
niques. Furthermore, Ref. [95] explicitly gives the PEPO or
MPO construction scheme with the bond dimensions of

D = (n/e)°P (e, approximation error). (3)
If we use the cluster expansion technique, this result is
expected to be the best estimation. However, the polynomial-
size bond dimension of n®¥) may still be a significant
overestimation. Improvements are strongly motivated by the
practical use of tensor network techniques in approximating
thermal states [33,41,48], which appears to be much more
successful than is guaranteed by the current analytical
bounds.

Our second main result focuses on classical algorithms
for approximating thermal states in one dimension (1D).
By applying our new analyses, we establish a sublinear
dependence of the bond dimension of the MPO approxi-
mation to the thermal state as

D — oOF?)+01/Blog(n/e)] (4)

with e the approximation error, where we write O[n log(n)]
as O(n) by using the notation O. The estimated bond
dimension is smaller than any power of (n/¢) and is well
suited for numerical simulations.

Finally, we consider the computational complexity of the
construction of the MPO, which approximates 1D quantum
Gibbs states. Establishing provably efficient quasilinear
algorithms for physical systems is a central target in the
field of Hamiltonian complexity [96,97]. The general
difficulty lies in that the existence of an efficient MPO
description (4) does not necessarily imply an efficient
algorithm to find such a description [98,99]. So far, the
state-of-the-art algorithm [95] is based on cluster expan-
sion, and MPO construction requires a computation cost
which is proportional to 1 x (n/€)®¥), where the estimated
exponent of (n/¢) is usually impractically large. However,
most classical heuristic algorithms employed in practice

usually require only (quasi)linear computational time with
respect to the system size [29,33-50]. We, for the first time,
give a quasilinear time algorithm that constructs the
approximate MPO, with a run time of

1 5 O)+OL/Blogln/e)]

which is quasilinear in (n/€) for arbitrary = o[log(n)).

The rest of this paper is organized as follows. In Sec. II,
we formulate the precise setting and notations used
throughout the paper. In Sec. IIl, we state the main
theorems on the area law and the MPO approximation.
In addition, in Sec. III A, we show the relationship between
imaginary-time evolution and the random walk, and in
Sec. III B, we show the lower bound on the critical y,.. In
Sec. IV, we give the quasilinear algorithm to compute the
MPO approximation of the 1D quantum Gibbs states. We
also provide a brief explanation regarding why the algo-
rithm works well. In Sec. V, we discuss several physical
implications from our analytical techniques. The proofs of
the main statements are given in Sec. VI. Finally, in
Sec. VII, we summarize the paper, along with a brief
discussion. To concentrate on the physics, we provide the
more intricate aspects of the proofs in Appendixes.

II. SETUP AND NOTATION

We consider a quantum system with n qudits, each of
which has a ¢-dimensional Hilbert space. We denote the
Hilbert space dimension of a subset S C A, where A is a
lattice, by Ds. For the present discussion, let us restrict
ourselves to the case of 1D lattice; we consider higher-
dimensional lattices later (see Sec. I A). We define the
Hamiltonian H as follows:

n
H = Zhi,iJrl’ Nhiivill + hicill <9, (5)
i=1

where £; ;| contains interactions between i and i 4 1 and
|-+ is the operator norm. By taking the energy units
appropriately, we set g = 1. Here, we assume two-body
interactions of the Hamiltonian, but the generalization to
arbitrary k-body interactions (i.e., k-local Hamiltonian)
with k = O(1) is straightforward (see Appendix A). For
an arbitrary operator O, we define the Schmidt rank
SR(O, i) as the minimum integer such that

SR(0.i)

0= Z Osi.m ® O>i.m’ (6)

m=1

where {Og;,,} and {O., , } are operators acting on subsets
{J};<i and {j};5;;1, respectively. Note that the Schmidt
rank SR(h; ., 1) is always smaller than the local Hilbert
dimension ¢ [i.e., SR(h;;1,1) <<l
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Throughout the paper, we focus on the Gibbs state py
with an inverse temperature /3

e PH
PP (e PPy

To extend the concept of the entanglement area law from
the ground states to finite temperatures, we often utilize the
mutual information /(L:R), as in Ref. [28]. The mutual
information I(L:R) , reduces to entanglement entropy
when p is given by a quantum pure state. For an arbitrary
decomposition of the total system A into A =L UR, itis
defined as

I(L:R),, = S(pg) + S(pj) — S(pp). (7)

where S(---) is the von Neumann entropy, i.e., S(p) =
~tr[plog(p)], and p§ (pf) is the reduced density matrix in
subsets L (R). We define the subsets L and R as L =
{1,2,...,ip} and R = {iy + 1, iy + 2, ..., n}, respectively.
Then, the boundary Hamiltonian Hy, is given by h; ; ;1
which gives the previously known thermal area law (1) of

I(L:R),, <2|hiiys1ll- (8)

For a more detailed characterization of the structure of
the quantum Gibbs state, we focus on the MPO represen-
tation. We aim to approximate the Gibbs state p; by the
following operator:

g I o _ o o/
MD _ Z tI'(AESl,X[ ]Ag\zn‘z] . 'AL;\n“‘n])

S18250Sp=1
:1/.:2' ..... s;,:l

; ©)

151582, s 8,) (81758075 0y 8,

where each of the matrices {AE'S"’S;]} . is described by the

1,5;,8;

D x D matrix. We refer to the matrix size D as the bond
dimension. By choosing D to be sufficiently large as
D = ¢ we can describe arbitrary operators in the form
of MPO; however, only a relatively small bond dimension
is often required in practical applications [e.g., D = o(n)].
To relate this requirement to the mutual information, notice
that /(L:R) can, in general, be bounded by the bond
dimension of the purification. For the subclass of MPOs
with local purifications [28], this bound cannot exceed
2log D for an arbitrary decomposition A = LLIR, although
no upper bound exists for general MPOs [100,101]. To
circumvent this difficulty, we directly give a bound on the
bond dimension of a purification that scales as Eq. (4) (see
Sec. VI A). The primary problem is to estimate how large
the bond dimension needs to be to achieve a certain
precision error.

In quantitatively estimating the approximation error, we
utilize the Schatten p-norm, which is defined for arbitrary
operator O as follows:

0]l = [tr(0T0)P2]/P. (10)

Note that ||O||; corresponds to the trace norm and ||O]|,
corresponds to the standard operator norm, which we
denote by ||O|| for simplicity. When O is a density operator,
it is a common practice to consider the trace norm (i.e.,
p = 1) for the approximation error. However, for estimat-
ing approximation errors in the present context, calcula-
tions in terms of the general Schatten p-norm are crucially
important. For example, let us consider the situation where
we have obtained a good approximation for O by O and are
interested in approximating O* by O°. In order to achieve
|0* = 0%||;, < 1, we need to prove [|O — O||, < 1; evi-
dently, approximation solely in terms of the trace norm is
not sufficient. This point is clarified in Lemmas 11 and 12
in Appendix B, which are based on the analyses in
Ref. [95]. This kind of the technique is crucial in devel-
oping a quasilinear time algorithm for the quantum Gibbs
states (Sec. IV).

The state-of-the-art results [95] ensure the existence of
M, such that ||ps — Mp||; < e with the bond dimension as
in Eq. (3). The bond dimension D is roughly related to the
mutual information I(L:R)pﬁ as I(L:R)pﬁ < log(D), and,

thus, the estimation (3) implies the area-law bound
of Eq. (8).

A. High-dimensional setup

In extending to the high-dimensional systems, we con-
sider a quantum system on a d-dimensional rectangular
lattice with d the spatial dimension (we note that our
analysis can also be applied to other lattices). For simplicity
of notation, we consider nearest-neighbor interactions as
follows:

H = ;hw" l}le‘dAXZ [hijll < g, (11)
i ;

where (i, j) denotes the pairs of adjacent qudits and || - - - ||
is the operator norm. By taking the energy unit appropri-
ately, we set g = 1.

For convenience, we consider a vertical cut of the total
system (see Fig. 1, for example); however, the same
argument can be applied to a rectangular cut. For any
partition A = LUR, we define an upper bound with the size
of the surface region as |OA|, which is as large as
O(n'~/4). Note that |[OA| = 1 in the 1D lattice.

III. IMPROVED THERMAL AREA LAW

We first show our main result in the thermal area law.
The following theorem holds for arbitrary lattice
dimensions.

Theorem 1.—For an arbitrary cut A = L U R, the mutual
information /(L :R) p, 1s upper bounded by
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I(L:R),, < CF%0A]log”*(19A]) +log(p)].  (12)

where C is a constant of O(1). In particular, for one-
dimensional systems (|OA| = 1), we have

I(L:R),, < CFPlog(p) = O@R).  (13)

We show the proof in Sec. VI A. The above result has a
logarithmic correction of log(|0A|) to the area law in high
dimensions. Even then, for 2 log?(|0A|), our result
provides a qualitatively better upper bound than the
previous one (1). We expect that this correction should
be removed using refined analyses on the Schmidt rank for
polynomials of the Hamiltonian.

Moreover, for the MPO representation of the 1D quan-
tum Gibbs states, we obtain the following theorem.

Theorem 2.—For arbitrary 1D quantum Gibbs state pg,
there exists a MPO M as in Eq. (9) such that, for the
Schatten p-norm with p =1 and p = 2,

lpg = Mpll, < ellpgll, (14)
with
D < explg;log(g:)]. (15)

where §; := Cjy max {3, [flog(pn/e)]"/*}.

This proof is shown in Sec. VIB. We believe that the
above MPO could also be used to construct a quantum circuit
with depth polynomial in the stated bond dimensions. As far
as we know, explicit constructions of quantum circuits for
generic MPOs [or matrix product states (MPSs)] have been
an open problem except for special cases [102-104].

We remark on the generalization to high-dimensional
cases. As for the MPO representation, we can improve the 3
dependence of the bond dimension in high dimensions.
However, the MPO representation for high-dimensional
systems is not useful, since the bond dimension is inher-
ently subexponentially large with respect to the system size.
For an arbitrary bipartition A = LUR, the bond dimension
scales as ¢QPON — (OB '™ 1y order to obtain a
meaningful representation for a high-dimensional Gibbs
state, we need to consider the PEPO [64,94,95]. We
expect that the bond dimension of the PEPO might be
also sublinear as Eq. (15) in order to achieve a good
approximation (14). So far, this remains open and one of
the most important future directions (see also Sec. VII).

Now, we discuss the key principles that allow us to
improve the original thermal area law (see Appendix C
for the details). Our analysis utilizes various recent tech-
niques employed in the proofs of the area law for ground
states [23,26,27]. Inspired by these studies, we construct
an approximation of the quantum Gibbs state using an
appropriate polynomial of low degree [93] and then
perform a Schmidt-rank analysis adapted from Ref. [23].

As mentioned in the introduction, the main insight is that
the polynomial used by us satisfies the random walk
property, which we explain below.

A. Physical intuition from the random walk behavior

Before the main discussion, let us consider an illustrative
example of the random walk behavior in imaginary-time
evolution. We here consider a one-particle tight-binding
model as

R
H="Y (k)4 1]+ e+ Dx[ =2l xl),  (16)

x=—R

where |x) is the state of the particle on site x. Then, the real-
time Schrodinger equation gives the ballistic propagation of
the particle. We consider a time-evolved quantum state
|0(z)) = e~'H!|0), where the initial state |0) is the localized
state on x = 0. In Fig. 2(a), we show the fluctuation of
the position, which is given by the square root of the
variance Var(X) := (0(¢)|X?]0(z)) — [(0(¢)|X]0(z))]?, where
X =5k .x|x){(x|. In contrast, the imaginary-time
Schrodinger equation is formally equivalent to the random
walk differential equation. Hence, the fluctuation for the
state |0(—if)) = e|0) grows diffusively with time 7 [see
Fig. 2(b)]. This result indicates that the imaginary-time
evolution may generally induce a diffusive propagation of
information in quantum many-body systems. In the follow-
ing sections, we mathematically justify this intuition.

Suppose x is fixed to be in a range [0, b]. As shown in
Ref. [93], e can be approximated by a polynomial of
degree O(b'/?), for a constant error. This approximation is
the consequence of a random walk that is concentrated
around degree O(b'/?) after b steps. Let us introduce y €
[—1,1] such that x = b(1 +y)/2 and e™* = (e~ (1/2(1+3))b,
Below, we show that the exponential function e=?(1+)/2
(b €N) can be expanded in terms of the Chebyshev
polynomials as (see also Fig. 3)

Var(X) Var(X)

140 10

120 8

100

80| 6

60| 4

40

20 t? B
) 20 40 60 80 100 20 40 60 80 100

(a)Real time evolution (b)Imaginary time evolution
FIG. 2. Comparison between real-time evolution and imaginary
time evolution in the tight-binding model (16) with R = 500. In
(a) and (b), we plot the fluctuation of the position 1/ Var(X) after
the real and imaginary time evolutions, respectively. Here, the
state at the initial time is given by |0). The fitting functions for (a)
and (b) are given by /2t and 0.998769'/2, respectively. This
clearly indicates that the real-time evolution induces a ballistic
propagation, whereas the imaginary-time evolution induces a
diffusive propagation.
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(e /AP =7 P(r,)T,, (5)

—0o0

rp

gk

Tp Ip—1=—00

with ry = 0, where T',(x) is the Chebyshev polynomial and
p(r|r') is a random walk probability from r,_; to r;, which
is defined below.

For its application to e, we choose b = f||H||.
Because the Schmidt rank and polynomial degree are
closely related [23], we get a diffusive interpretation of
the Schmidt rank of e?#. We thus infer a sublinear f
dependence of the mutual information, namely, y. < 1.
There are two main issues while achieving this value. First,
the above polynomial gives an approximation to e## only
in the operator norm, whereas we are searching for an
approximation in a family of norms. Second, even for a
constant error approximation in the operator norm, degree

Vb = \/B||H|| scales with the system size. We solve both
the problems using the quantum belief propagation in 1D
and a refined version of Suzuki-Trotter decomposition in
higher dimensions, which allows us to reduce the problem
to a local Hamiltonian Hg, where S is a much smaller
region. The loss incurred because of the belief propagation
and the conversion from the operator norm to other norms
leads to our main result of y,. < 2/3.

1. Derivation of Eq. (17)

As a first step, we expand

(=y) (18)

which is an expectation of (—y)/ according to the distri-
bution g(j) := (e~1/2/2/j!). Next, we introduce Chebyshev
polynomials 7,.(y) (for an integer r) and utilize the
observation from Ref. [93] that, for j > 0 and integer &,

(ey)IT,(=y) = f: B, (7P To(=y).
=2, L) )

where we set (] ,) =0 (s €N)and (/) = 0fors < 0and
s > j. Here, B;(r'|r) is the binomial distribution which is
centered at r with a variance of /j (see also Ref. [105]).
Now, we have all the tools to set up the random walk over
integers. By combining Eqgs. (18) and (19), we start with the
first random walk step of

0 (cs]

(P(’”b|”b—l) i p(roilry—) -+ Z p(ralry) Z P(”1|’”0))Trb(y) (17)

ry=—00

[Se]

e (1/2)(14y) — Z p(r]0)T,, (»), (20)
where the symmetric distribution p(r(]|0) [with

mean 0 and variance O(1)] is defined using p(r|0) =
>-%204q(j)B;(r1|0). The subsequent steps are obtained by

writing

8

e 1/2
J il
; 275!

T, (v)e /204 = T, () (=y)

r

Il
M L

p(ra|r)T,, (y)

Fp=—00

with p(ra|ry) =3 %, q(j)B;(r2|r1). One can show that
the function p(r,|r;) is symmetric around its mean r; and
has a variance of 0.5 [see Fig. 3 for the shape of p(r|2)]. By
repeating the process, we can arrive at Eq. (17). Thus,
(e=(1/2(43))P js an expectation over T,(y), according to a
distribution obtained by performing b steps of a symmetric
random walk with constant variance. It is now clear that the
degree is strongly concentrated around O(b'/2). This
random walk behavior is not available for ™, because
the distribution p(r,|r;) is not given by a real number. It
leads to O(b) approximate degree for real-time evolution.

0.7
0.6 p(r(2)
0.5
0.4
0.3
p(r]0)  p(rslra) o
~ r
/’“\ é[\} -2 0 2 4 6
T1 0 7r3 T2 T4
_ \_ T
p(ralr1) p(ralr3)

FIG. 3. Schematic picture of the random walk. The exponential
function ¢~?(1+)/2 is given by the expectation of T,,(x) with the
probability P(ry), as in Eq. (17). The probability P(r,) is
generated from the b-step random walk. In each step, the
probability from r to ¥’ is given by p(7’|r), which is a symmetric
function around r. In the picture, we give the numerical plot of
p(r|2), where the shape of p(r|r’) does not depend on 7.
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B. Lower bound on the critical 7y,

We here show that the exponent y in Eq. (2) is at least
larger than 1/5. According to Ref. [87], there exists a
frustration-free local Hamiltonian system with n qudits
(¢ = 3) such that the half-chain entanglement entropy is
linear in system size n, and the spectral gap A is given as

N
_ G 21
n*logn (21)

where c, is a constant of Q(1). For this Hamiltonian, let us
consider a quantum Gibbs state at the inverse temperature
of = 2c;'log(¢)n’logn. Then, the total weight of the
excited state is at most as large as ¢e P2 = elogle),
Therefore, this Gibbs state is exponentially close to the

ground state. Using the Fannes inequality [106], the half-
chain mutual information in the Gibbs state is

Q)
~log!/S p

I(L:R), = Q(n) B, (22)
which implies that /(L:R), should be at least larger
than B'/°.

IV. QUASILINEAR TIME ALGORITHM
FOR 1D GIBBS STATE

A. Main statement

Here, we show that the classical algorithm generating an
MPO approximation of the Gibbs state py is possible with a
run time of O(n' (1) as long as = o[log(n)]. We prove
the following theorem.

Theorem 3.—For arbitrary f3, we can efficiently compute
a matrix product operator M which approximates e in
the sense that

1My — e ||, <elle|, (e<1),  (23)

where the bond dimension of M is given by exp(Q..). Also,
the computational time to calculate M is nfexp(Q,) with

Q. = Cmax[$, /flog(n/e)]log[flog(n/e)],  (24)

where C is an O(1) constant. When f < log(n/e€) and
€ = 1/poly(n), the time complexity is given by

nexp {O[y/flog(n)]}. (25)

We compare the bond dimensions of ng /P With that of
the theoretical bound in Eq. (15). For g <log(n), both
estimations are in the form of ¢®lV/# log(n)]  whereas for

B> log(n), the estimation (15) gives a slightly bet-
ter bound.

B. MPO for ground space

We also discuss the consequences regarding the calcu-
lation of quantum ground states. Let us assume the
following condition for the density of states in an energy
shell (E — 1, E] for the low-energy regime [107-109]:

Ngy <nE (26)

with ¢ a constant of O(1), where Ny is the number of
eigenstates within the energy shell of (E — 1, E]. This con-
dition is typically observed for quantum Hamiltonians
which have a spectral gap between the ground state and
the first excited state [107]. Under this assumption, the
quantum Gibbs state is approximated by the ground state
up to an error of 1/poly(n) for p = Ollog(n)]; ie.,
llps — peolly = 1/poly(n). Then, the computation of the
quantum Gibbs state for f = O[log(n)] is closely related to
the computation of ground states.

By applying = Ol[log(n)] to Eq. (25), we obtain the
time complexity of an almost polynomial form, as
nOlloglog(m]  This result rigorously justifies the empirical
success of the imaginary-time-evolving block decimation
(TEBD) methods in the computation of the ground states
[43,45,47,48]. Our estimation, however, is still slightly
worse than the polynomial form (i.e., n°")). In the case of
the gapped ground states, the existing algorithms [98,99]
already achieve polynomial computational costs without
the assumption (26). Any small improvement of Eq. (25)
will allow us to obtain a quasilinear time algorithm for the
computation of the ground states under the assumption
of Eq. (26).

C. Details of the algorithm and proof of Theorem 3

The algorithm proceeds as follows. Suppose we are at a
high temperature S, < 1/16. First, the 1D Hamiltonian is
split into blocks of length £, = Ollog(n/e€)], as

J%o

&)
H= E;Hj, Hi= Y
p=

s=(j=1)Zy+1

hij,  (27)

where 7 is the number of blocks. We then write e ¥ as
follows:

ng o
e_/}H — H e/j()H] ij-1 e_/}OHl = H (Dj’ (28)
j=1 j=1

where H,.; = ngj H, and H,.q = 0. Here, the operator
®; is the nonlocal operator on the qudits {1,2, ..., j£,}. We
first approximate @; by the following operator on the local
region:

o = ePoH -1 p=Po(H_1+H;) (29)
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FIG. 4. Our algorithm proceeds by iterated approximations of e 0¥ performed f3/f3, times. In each step, we approximate the Gibbs
operator e 0¥ by the operator M, 3,- For this approximation, we establish a decomposition of e MM as a product of operators shown on
the right-hand side. This decomposition uses an imaginary-time version of the Lieb-Robinson bound and the Taylor truncation of the

exponential function.

The second approximation is the low-degree polynomial
expression of ®@;:

" = T, (BoH 1) Tl =o(Hy + H))) (30)
where 7', (x) = >, x™/m! is the truncated Taylor expan-
sion of the order of m = Ollog(n/¢)].

Using the above notation, we can approximate the high-
temperature Gibbs state by

o
My, =] ®)". (31)
j=1

We illustrate this construction in Fig. 4. We notice that
our construction resembles the decomposition of the real-
time evolution developed in Ref. [110]. Crucially, this
approximation is justified using an imaginary-time version
of the Lieb-Robinson bound (see Appendix E1 for
the proof).
Proposition 4—For f <1/16, Eq. (31) gives the
approximation of the Gibbs state up to an error of
|Mpel — 1] <, (32)
where M, has the bond dimension of eOlVlog(n/e)]
The sufficient computational time for the construction is
given by

nexp {O[y/log(n/e)]}.

We notice that the inequality (32) immediately reduces to

(33)

1My — ePH], < elle]], (34)

for an arbitrary positive p.

The computational time (33) is qualitatively explained as
follows. The operator My is a product of degree-m
polynomials 7,,(x). From Ref. [23], the Schmidt rank

of each of {<I>§-m) Fi

mPWm ~ Jog(n)V'°e" along every cut. Because {CDE-m)}';il

in Eq. (31) is upper bounded by

are locally defined, for every cut, a constant number of
operators in {fbgm)}?(’:l
Therefore, the computational time to construct M, is at

most nePlV/le(n/e),

To extend this result to arbitrary f, we utilize the
following upper bound (see Lemma 12 in Appendix B),
which slightly extends the analyses in Ref. [95]:

contribute to the Schmidt rank.

-2 — (1)

M)l < 3egge |,

(35)
for arbitrary positive integers ¢ and p, where M satisfies
the inequality (34) with € = ¢, for arbitrary p € N. We get
e PH = (¢=PH)(F/fo) and then multiply the above MPO
construction f/f, times, where f, is appropriately chosen
so that /5, becomes an even integer [i.e., ¢ = 3/(25)].
To make 3eyge’@? <e (<1), we need to choose
o = ¢/(6q) = efy/(3p).

By extending the Schmidt-rank estimation in Ref. [23],

we can ensure that the Schmidt rank of Méf /o)

large as exp(Q.). In more detail, we can prove the
following lemma (see Appendix E 6 for the proof).

Lemma 5.—Let My be an approximate operator
that has been defined in Eq. (31). Then, for arbitrary
g €N, the Schmidt rank of the power of My is upper
bounded by

is at most as
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log[SR(M)] < C'max(q. \/mq)log(mq)  (36)

for an arbitrary cut, where C" is an O(1) constant.

Because m has been chosen as m = O[log(n/¢)], this
upper bound is proportional to Q, for ¢ = O(f3). Therefore,
the quantum Gibbs state e is well approximated by the
MPO, with its bond dimensions of exp(Q,).

We have already prepared the MPO form of My in
Proposition 4. Using the standard results regarding the
canonical form of MPOs [111,112], we can efficiently
calculate MZO (g < p) from MZO_I
of at most poly[exp(Q.)]. We notice that, in each of the steps,
we can compress the MPO without any truncation error so
that the bond dimension of MZO is smaller than the bound in

in a computational time

Eq. (36). By recursively constructing Mgo, the computation

of M;;/j /o) requires the time steps as many as Eq. (25). We

thus prove Theorem 3. =

Finally, let us compare our method with the imaginary-
time-evolving block decimation (TEBD) methods
[33,41,48], which proceed by truncation of the Schmidt
rank at each imaginary-time Trotter step. A major limitation
of these studies is the lack of rigorous justification of the
Schmidt-rank truncation, as explained below.

In the TEBD algorithms [48], we start with a matrix
product operator M; which gives the approximation of
ePH for a certain ;. We then connect two MPOs as
M M, which is expected to approximate e~*1*/, To ensure
the precision of approximation, we use Lemma 11 for the
MPO M, which necessitates the approximation in terms of
general Schatten p-norm. Now, the main technical diffi-
culty comes from the Schmidt-rank truncation of M TM 1
which gives MPO M, in the next step. After the Schmidt-
rank truncation, we connect M;MZ to approximate the
Gibbs state e~*17, However, to ensure the good approxi-
mation from Lemma 11, we have to truncate the Schmidt
rank of M'{Ml so that M, is close to M'{Ml in terms of
the general Schatten p-norm. The Schmidt-rank trunca-
tion based on the singular value decomposition ensures
only the approximation in terms of Schatten 2-norm,
as in Lemma 1 in Ref. [113]. So far, we have no
mathematical tools to perform Schmidt-rank truncation,
which guarantees approximation in terms of the general
Schatten p-norm. In summary, even though the quantum
Gibbs state can be approximated by an MPO with a small
bond dimension, it is highly nontrivial to show whether
the truncation of the Schmidt rank retains the good
approximation.

We can circumvent this problem by constructing e#o
as a product of local polynomial approximations, which

covers the whole chain. Thus, the operator My (or Mg; /P 0))

has a finitely bounded Schmidt rank, and we do not
need to approximate it further using the Schmidt-rank
truncation.

V. FURTHER DISCUSSIONS

A. Rényi entanglement of purification

To characterize the bipartite correlations beyond mutual
information, we also consider the Rényi entanglement of
purification £, , [114], defined as follows.

Definition 1.—Let A’ be a copy of the total system with
the Hilbert space H'. For an arbitrary quantum state o, we
define E,, ,(c) for the partition A = L U R as

Epulo)s=  inf Eo(9)
Eo($) = Sulovu) (37)

where |¢) is the purification of o [i.e., try/(|@)(¢}]) = o],
S(-) is the Rényi entropy, and oy ;= trg p () {(e|).
namely, Sq(o,1) = (1/1 — a)log[tr(ef ;).

A bound on the Rényi entanglement of purification
imposes a stronger restriction to the structure of the
quantum state than the mutual information in Eq. (7).
For instance, Ref. [115] shows that an upper bound on the
entanglement of purification of a 1D system guarantees an
efficient approximation by MPOs.

The mutual information I(L:R) p, is related to the

Rényi entanglement of purification with a=1 (see
Ref. [116]):

I(L:R), <2E, (o). (38)

We also present an upper bound on this quantity as
follows (see Sec. VI A for the proof).

Theorem 6.—For arbitrary nonzero 0 < a < 1, the Rényi
entanglement of purification E,, is upper bounded as
follows:

Epalp) < Comax [P 10g(p). U= P iog (%) | o9

The above upper bound implies that, for a < 1, the
entanglement scaling may be linear to f instead of $%/3.
This result can be explained as follows. To calculate the
Rényi entanglement of purification, we need to obtain the
MPO which has an approximation error e such that
D.e* <1, where D, is the bond dimension to achieve
error €. From the MPO with this property, we have

E,.(p) <log(D,). Because of D, < eVFel1/€) the con-
dition D.e* < 1 reduces to /flog(1/¢) — alog(1/e) S0
or log(1/€) 2 B/a?, which gives log(D,) ~ 3/ a.

Let us compare our result to those of previous studies
[64,94,95]. The bond dimension scales as D = (1/ €)0),
By using this estimation, there exists a critical a.
[=1-0(p")] that violates the finite upper bound of
E, (p) for a < a..
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B. Convex combination of matrix product states

Reference [117] shows that the thermal state can be
expressed as a convex combination of MPSs with bond
dimension scaling doubly exponentially with . We can
prove the following corollary, which substantially improves
their main result (see Sec. VIC for the proof).

Corollary 7.—The quantum Gibbs state py is given by a
convex combination of the matrix product states in the
following sense:

Dy
Hpﬁ =S pmy | <e (40)
=1

1

1

where {|M;)} are matrix product states with the bond
dimension of

D = explO(g;)). (41)

where §; has been defined in Theorem 2.

This result can be used to justify the minimally entangled
typical thermal states algorithm [33] and the algorithm of
Ref. [118] (see also Ref. [117] for more detailed motiva-
tions to study the convex combinations of MPSs). Using
our bounds, we provide further analytical evidence regard-
ing why these work in practice.

A related quantity in the study of mixed-state entangle-
ment is the entanglement of formation. It captures the
“average bond dimension” in the convex combination
shown in Eq. (40) and can be defined as follows.

Definition 2.—Let A’ be a copy of the total system with
the Hilbert space H'. For arbitrary quantum state o, we
define E; (o) for the partition A = L U R as

Ej4(0) = inf Z PpiSa(at™h. (42)

where again S,(-) is the Rényi entropy and the minimiza-

tion is over all pure-state decompositions ¢ = ) _; piotd.
Entanglement of formation is upper bounded by the

entanglement of purification [114] (see also Ref. [119]):

Ef,a(a) < Ep,a(a)’ (43)

where the equality holds for pure states. When ¢ is given by
the quantum Gibbs state pg, an upper bound follows from
Theorem 6:

E;o(pp) < Comax |p*/3 10g(ﬁ),<1_Ta)ﬂlog (é)] )

a

C. Real-time evolution

Our analyses can be partially applied to real-time evolu-
tion. In this case, we approximate the unitary time evolution

e M instead of the quantum Gibbs state e . The most
essential difference is that the random-walk-like behavior
[i.e., Eq. (17)] cannot be justified. Mathematically, the
polynomial approximation based on Eq. (17) (see also
Lemma 15) is applicable only to imaginary-time evolution.

Hence, the MPO approximation of e~*" requires the bond
dimensions of ) instead of ¢?""). This requirement is
expected and consistent with the numerical calculations and
the theoretical upper bound [§9-92].

Still, our results on the quasilinear time algorithm can be
also applied to real-time evolution, where we utilize
only the Taylor expansion (30). Let us approximate the
unitary time evolution e~#' by using a MPO M,. For an
arbitrary quantum state |y), we obtain

(M, = e )| < 1M, — ™| .

Recall that the Schatten norm with p = oo is equivalent to
the operator norm. Hence, by applying Theorem 3 to the
case of f =it and p = oo, we can obtain the following
corollary.

Corollary 8.—For arbitrary ¢, we can efficiently compute
a matrix product operator M, that approximates e~/" in the
sense that

|M, — e[| < 1/poly(n), (44)

where the bond dimension of M, is given by exp {O(]1]) +
O[+/]t[1og(n)]}. The computational time to calculate M, is
given by

nexp {O(|1]) + O[/|1[ log(n)]}. (45)

For |7| <log(n), our result gives a quasilinear com-
putational cost for n; thus, it is better than the previous
computational cost eP"+0logn/e)l  which is derived
from the Lieb-Robinson bound [120,121]. However, for
|| Z log(n), the computational cost (45) grows exponen-
tially with 7 and has the same limitation as the previous

methods.

D. Entanglement rate by imaginary-time evolution

The quantum Gibbs state is regarded as an imaginary-
time evolution of the uniformly mixed state, namely,
ps < ePpy_ye7P/2. Thus, the entropy-production rate
of the imaginary-time evolution is sublinear with respect
to . Can we extend it to general quantum states instead of
the uniformly mixed state? Clearly, when we consider the
arbitrary quantum state |y), the answer is no; that is, the
entanglement generation by e for a given cut (e.g.,
A = LUR) is usually unbounded. Even if there are no
interactions between L and R or e P = ¢ PHL @ ¢ PHr,
the entanglement rate can be nonzero if an initial state is
arbitrarily chosen. For example, let us consider the initial
state |w) as
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) = CZeﬂ(EL-f+ER'[>|EL,i> ® |Eg,),

where C is a normalization constant and |E; ;) (|[Eg;)) is
the eigenstate of H; (Hy) with corresponding eigenvalue
E; ; (Eg;). Then, we have

e_ﬂHL ® e_ﬂHR|l//
le™e @ e Py

S IEL) ® ),

which is the maximally entangled state. In the above case,
the entanglement entropy is significantly increased by the
Hamiltonian with no boundary-boundary interactions.

In order to obtain a nontrivial result, we here consider the
imaginary-time evolution for a product state |P; z) as

ePHIP; g)
P TSI ST
|PLr(P)) e PH|Pp &)l

(46)
This setup is feasible in experimental settings [6,82]. When
we consider the real-time evolution (i.e., f = it), the SIE
theorem [91] gives the upper bound for the entanglement
rate as O(z). In contrast, no theoretical studies have given
an upper bound of the entanglement generation by the
imaginary-time evolution. It is an intriguing open problem
whether or not the entanglement rate is finitely bounded for
large f.

Using our current analyses, we can partially answer this
question. To approximate |P; z(/)), we use an operator Op,
that satisfies SR(Op) = D for the cut of A = LUR and
approximates |P; z(f)) as |Pr () = Op|Prr). We aim
to estimate the approximation error of |P; r(f)) depending
on the Schmidt rank D. Let us set the ground-state energy
of H equal to zero. Then, from the inequality (49) in
Proposition 9 with p = oo, there exists Op such that

€
P — Op|PLR)ll € —r—n
||| LR(ﬁ)> D| L.R>|| —= ||e_ﬁH‘PL.R

M
D — OB )+01/Blog(p/e)] (47)

If e |P, )|l = O(1), the entanglement entropy of Py ¢
satisfies the same inequality as Eq. (12) and scales as /3.
However, in general, the quantity ||e”#|P z)|| is expo-
nentially small for n, and, hence, the value of € should be as
small as ¢©) which gives the entanglement scaling as
\/np. This result is still nontrivial but is rather worse than
the expected scaling of /3.

To improve the bound, a refined approximation error is
required, which is given by the following form of

|0pe?™ 1] <€ (48)

instead of the approximation |[e™"# — Op]|, < ele™"||,
for the Schatten p-norm. The approximation of the form of

Eq. (48) can be derived for sufficiently high temperatures
(see Proposition 4). If we can extend Proposition 9 in
Sec. VI to the form (48), we are able to prove that the
entanglement rate by the imaginary-time evolution (46) is
upper bounded by O(5*3).

Finally, we mention that in various cases the entangle-
ment rate can be smaller than O($%3). In particular, when
the ground state is noncritical (or gapped), the imaginary-
time evolution for e#|P ) is expected to rapidly
converge to the ground state [41-48]. Indeed, in the case
where the Hamiltonian is gapped and defined on a spin
chain, there exists a product state which has an O(1)
overlap with the ground state [22,23,27]. If we choose
it as the initial state |P; z), the entanglement entropy
for e PH|P; 1)/||le”"| Py )| approaches a constant value
(i.e., the entanglement entropy of the ground state) expo-
nentially fast with g. Thus, the entanglement rate should be
much smaller than O($%3). It is an intriguing question to
investigate which class of quantum many-body systems
shows a nontrivial entanglement rate for the imaginary-time
evolution.

VI. PROOFS OF THE MAIN THEOREMS

Here we prove Theorems 1 (Theorem 6) and 2 regarding
the thermal area law. For simplicity, we focus on one-
dimensional systems; however, the essence of the proof is
the same in high-dimensional cases (see Appendix D). In
Sec. VIC, we also prove Corollary 7, which is based on
Theorem 2.

Both Theorems 1 and 2 are based on the following basic
approach. We aim to approximate the Gibbs state p; by
another operator p; which has a smaller Schmidt rank for a
given cut A = L U R. This approximation is formalized in
the following proposition, which plays a central role in
deriving our main results.

Proposition 9.—Let € be an arbitrary error such that
€ < e. Then, there exists an operator ps which approx-
imates py as follows:

log = Psll, < ellpgsll, (49)

for arbitrary p € N, and

SR(py, iy) < explq; log(g;)] (50)

with

q; = Comax {1, [plog(p/e)]'/*}. (51)

where C is a constant of O(1).

The proof is shown in Appendix C. For sufficiently small
€, this estimation gives a sublinear dependence of the
Schmidt rank with respect to (1/€). For example, for

e = 1/poly(n), we have SR(py. iy) < n'°¢""*(") which is
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slower than any power of n. If the Schmidt rank of the
OF") | the error €

function of the

approximating operator pg exceeds e
decays superpolynomially as a
Schmidt rank.

A. Proof of Theorems 1 and 6

Theorems 1 and 6 give upper bounds on the mutual
information and the Rényi entanglement of purification,
respectively. Because of the inequality (38), Theorem 6
includes Theorem 1, once we consider E,, ; (p). Hence, we
need to prove only Theorem 6.

We start from the purification in the form of

Dy
w) =Z712(e P2 @ 1)> A ® iy (52)

=

where {|j) };3:“1 is an arbitrary orthonormal basis and we

denote the partition function tr(e=?) by Z. Note that from
the above definition try (|w){(y|) = e#¥/Z. Then, from
the definition of the Rényi entanglement of purification
(37), we have

E,.(p) < E (). (53)

Next, we estimate an upper bound on E, ().
From Proposition 9, we can find an approximation pg/4

of e PH/4 such that
e P —pyall, < elleP/4], (54)

for all p, where the Schmidt rank of pg/4 is upper bounded
by Eq. (50). Define |) as

Dy
7) =271} o @1 1) @ 1) (55)
j=1

where we define Z:= tr(ﬁ;/4ﬁﬁ/4ﬁﬁ/4ﬁ;/4). Using the
inequality (B9) with p =2, O = e1/4 and O = py,
we first obtain for Z!/? = ||[);/4[)/,/4||2

VA ||ﬁ;/4ﬁ/}/4 — e PHR||, 4 [le PR,

< Be+ Dle? 2], = Be+ 1)Z'2, (56)
where we use the triangle inequality in the first inequality.
We then obtain the fidelity between |w) and |@) as
follows:

(Wlw) = Z71PZ712|pyae P43
Z—]

3e+1

||ﬁ/3/4€_/3H/4||%, (57)

where we apply the inequality (56) to Z in the last
inequality. From the triangle inequality, we obtain the
upper bound of ||p/4e##/4||, in the following form:

||ﬁﬁ/4e_ﬁH/4||2 > [lePH/2||, — | (Ppa — e PHI)e=PH/4|
g2 A _ _
e e e el PR P!
> [le [}/ = el|ePHI42 = (1 - €)Z'/2,
(58)
where we use [|eH#/2||, = |le"||}/* and the Holder

inequality in the second inequality, in the third inequality
we use the inequality (54), and the last equation is derived

from ||e#H/4||, = ||e="H||}/*. By applying inequality (58)
to Eq. (57), we obtain the inequality of

(1-¢)?
3e+1

(Wly) = 2 1= 5e, (59)

which implies

) = W) I> <2 = 2(lw) < 10e. (60)

In the following, using the above upper bound, we estimate
the upper bound of Rényi entanglement entropy for
arbitrary a > 0. We consider the cases of a = 1 and a < 1
separately.

1. Case of a=1

We first consider the case of @ = 1. We define |,) as an
approximation of |y) which satisfies

) = 1) |I* < 1/5%, (61)

where we use Eq. (55) for the representation of | ). From
Theorem 1, the Schmidt rank of |,), say, Dy, is upper
bounded from above by

D, < e4sloglds) (62)

with g, = Cmax {$*/3, [flog(s)]"/?>}. We define 5 as an
integer such that

_ C/)IZ/S
qs{ = C[plog(s)]'/? for s > 5,

for s <5,

where 5 is in the order of exp[O(8'/3)].
Let us denote the Schmidt decomposition of |w) in
Eq. (52) as follows:

Dll/
ly) = Zﬂm|l//L,L’,m> ® [WrRm): (63)
m=1

011047-12



IMPROVED THERMAL AREA LAW AND QUASILINEAR TIME ...

PHYS. REV. X 11, 011047 (2021)

where |y ;,,) and |yg g ) are defined on the Hilbert
space of LUL’ and RUR', respectively. From the above
representation, we obtain the Rényi entropy with ¢ =1 as

A (64)

m=1

which is equal to the standard entanglement entropy.

To estimate S, (|y)), we utilize the Eckart-Young theo-
rem. By applying the inequality (B5) to |w) and |i7,), we
obtain the following inequality:

S8 < ) -

m>D

ws)lI> < 1/s2, (65)

where, in the second inequality, we use the condition (61).
To upper bound the Rényi entropy, we first define

D s (66)

where we define Dy = 0. We then obtain

Ds+l

Zﬂm log(u3) =Y >k log(ul,)
s=5 m=D;+1
<log(Dy) — I'2log s . (67)
5=5 m=D,+1 Dy = Dy

where we use the fact that the uniform distribution max-
imizes Zm‘*}j L Hmlog(un), e, ph o = pp ==
me =T12/(D,,, — Dy). Because of the inequalities (62)
and (65), we have I'? < 1/s2:

CP*1og(CH*3) + iu/s)z log(3s2)
n i C[ﬁlog(s)] 1/2 log{C‘Lﬁlog(s)] 1/2} |

— 52
=

Sily)) <

where we apply the inequality —xlogx < —xlog(x/3) <
—ylog(y/3) for 0 <x<y<1 to —IZlog(T’?). Using
5 = exp[O(B'/3)], the second and the third terms become
less dominant in comparison with the first term when f is
large. We thus obtain the main inequality (39) in the
theorem for a = 1.

2. Case of a < 1

We follow the same analyses as in the case of @ = 1. In
this case, we define |,’) as an approximation of |y) which
satisfies

llw) = 1) 1* < 572/, (68)

where the Schmidt rank of |7}, say,
from above by

Dy, is upper bounded

D, < edslogld) (69)

with ¢} = Cmax {*/3, [~ Blog(s)]'/?>}. We define 5 as
an integer such that

/{ = Cﬂz/S
= Cla~'plog(s)]'/? for s > ¥,

for s <¥§,

where we have 5" = exp[O(ap'/?)].
Using the Schmidt decomposition as in Eq. (63), the
a-Rényi entropy is given by

Sallw)) =

~log <Z i ) (70)

5s=0 m=D}+1

For a < 1, we obtain the upper bound of

D/

s+1 F/z a D/l —a

> s - ) <A
S D’ -D S2

m=D}+1 s+1 s

where we adopt the similar notation (66) for T, and, to
derive "> < s7%/% we use the condition (68) and the
Eckart-Young theorem as in Eq. (65). Therefore, we have
the following upper bound for the summation:

—a

D
1- s+1
<Dl 4y =5

5>5

< p(1-a) TP log(Cp")

N Z@Xp {(1 -a)E, log“;(S) log[¢, log'/?(s)]}

9’

§>5

where we define ¢, := C \/f/a. For the estimation of the
summation for ) ¢, we also use the inequality of

dx

/Wexp{(l—a)ﬁalog“z( x) log[¢, log"/?(x)]}

— /oo 2te_t2 (1-Q) &, tlog(&,t dt< e Ci(1-a)?¢2 log? (¢, ),
0

where C, is a constant of O(1). By combining the above
inequalities together, we obtain
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llalog(z > /t%f‘)

s=0 Dy<m<D;,

< Comax [ log(B). (1 — a)(B/a) log(p/a)].

This result gives the main inequality (39) in the theorem for
a < 1. This completes the proof. [

B. Proof of Theorem 2

Here, we prove Theorem 2, which gives the MPO
approximation of the quantum Gibbs state.

We first prove the case of p=2. Let p; be an
approximation of p; such that for a given cut A = LUR.
We define the Schmidt rank of ps as D, , which satisfies the
inequality (50) with the approximation error €,, namely,

g = Psll, < eollppll, (71)
with
SR(:ﬁﬂ’ ZO) = Deo < exp[q: log(Q:)]’ (72)

where ¢} is defined in Eq. (51). For the cut, we define the
Schmidt decomposition of py as follows:

Pp = Z/’tmq)L,m ® q)R,m (/lm > 0), (73)

where {®; ,,} ({®g,,}) are orthonormal operator bases
which satisfy
||¢)L,mH2 = 1’ tr(q)L,mq)L,m') =0 (74)

for m # m'. Note that, from the above definition, we have
losl3 = - (75)
m

By applying the Eckart-Young theorem (B7) to p; and
Pp» we obtain

> #i < llop = pll3 < €llosll3, (76)

m>D€0

where we use the inequality (71) with p = 2. Then, from
Lemma 1 in Ref. [113], there exists an MPO M, such that

los = Mp, 113 < 2e5nllpgl3- (77)

Therefore, by choosing €, = [¢/(2n)]'/?, we obtain the
desired approximation error (14), and the bond dimension
D,, satisfies the inequality (15).

Second, we prove the case of p = 1. For this proof, we
consider the purification of the quantum Gibbs state pg/, as
in Eq. (52), which is denoted by |y):

Dy
vy =272 @)Y lia @ i)

Jj=1

>}

4

= Vm‘l//L.L’.m> ® |WR,R’.m>’ (78)
1

3
I

where, in the second equation, we use an expression of the
Schmidt decomposition similar to that of Eq. (63). If we can
obtain an MPS M, ) such that

llw) = Mp )l < (79)

we obtain

lea (] = M) (M, DI, = llop = M|, <. (80)
where we define Mp, = try (|Mp, ) (Mp, |). Note that
|Mp, ){Mp | is given by a MPO with the bond dimension
of D2.

Our task is now to find an MPS [Mp, ) which satisfies
Eq. (79). For this purpose, we consider the purification of
ﬁ;/4ﬁ/,»/4 as in Eq. (55), which we denote by [i7). Here, pj/4
gives the approximation of pg/4 as

g4 = Ppralla < €illppalla (81)

with SR(pg/4.i9) = D, < explq;, log(g;,)] for a given cut
A = LUR. The Schmidt rank of |) along the cut is upper
bounded by D%I. In contrast, from the inequality (60), we
obtain

Ily) = )1 < 10e;. (82)

and, hence, the Eckart-Young theorem gives the same
inequality as Eq. (76):

Y vi < lllw) = ) < 106, (83)

m>DZ

Thus, from Lemma 1 in Ref. [113], there exists an MPS
|M Dg}) such that

) = Mo )| < /20mer. (84)

To obtain the approximation error €, we need to choose
€1 = €/(20n). Therefore, if we choose D = D )400,2)s
there exists an MPO M, that satisfies the inequality (14)
with p = 1. Note that the bond dimension D002
satisfies the inequality (15) by choosing Cj, appropriately.
This completes the proof of Theorem 2. [
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C. Proof of Corollary 7

Here, we prove that the quantum Gibbs state is well
approximated by a convex combination of matrix product
states as in Eq. (40):

Dy
Pﬂ“ZPi|Mi><Mi|- (85)
i=1

We then show that the approximation error € is achieved by
taking the bond dimension as in Eq. (41).

The proof is based on Theorem 2. We first consider the
MPO approximation of e##/2 as follows:

€
|e=PH/2 — M| < 5 |e=PH/2]],, (86)

where the bond dimension of My, is given by Eq. (15) [or
Eq. (41)]. By using Lemma 11 with p =1, we get

—_ € —_
e = MyaMjll, <5l (87)

By inserting 1 = Z?:Al |P;)(P;| with {P,-}f):A1 the product-
state basis, we obtain

e PH B iMﬁ/ZPi><Pi|M;/2 <€ (88)
tr(e ") tr(e ") 2
where we use ||ePH ||, = tr(e7PH).
We now define
M) = Mp)o|Pi) Dy [Mp)2| Pi) |I?
M PN b Mgl T
Dy
Op = Zpi|Mi><Mi|’ (89)
i=1

where oy is the normalized quantum state and satisfies
llosll; = 1 because of Y, [|My,|P;)||* = tr<M/3/2M/T3/2) =
[Mg)2|l3. The MPO My, has the bond dimension of
Eq. (41), and, hence, the quantum state My ,|P;) is also

given by a matrix product state with Eq. (41). We obtain the
norm difference between py and o4 as

M5 13 [Mpal3
_ < _ W7 p/e2 _ W7 pel2
llos = opll, < ’Pﬂ (e ) | | e %,
€ 1Mp)13
< S| iy <e. 90
S -l gl <e o0

where we use Eq. (88) for the first term and for the second
term we use |[og4||; = 1 and

|tr(e ) —[[Mys 13| = |tr(e 7 — Mﬁ/zM/Tj/z)\
< e = MMyl

< gtr(e_ﬂH). (91)

We thus prove the inequality (40). This completes the
proof. m

VII. CONCLUSION

We have shown two main results in this work. The first
one is the improved thermal area law that gives a scaling of
O(p*3) over all lattices (Theorem 1). This scaling behavior
is qualitatively explained by the fact that the imaginary-
time evolution is intrinsically related to the random walk
as in Eq. (17). In the 1D case, we also give an MPO
representation of the quantum Gibbs state with a sublinear
bond dimension with respect to the system size n (Theorem
2). The second one is a quasilinear time algorithm for
preparing an MPO approximation to the 1D thermal state
(Theorem 3), which improves upon all the prior rigorous
constructions. It also justifies the quasilinear runtime of
several heuristic algorithms inspired by the MPO-based
techniques. Moreover, our algorithm can be applied to the
computation of the ground state under the low-energy-
density assumption of Eq. (26). Our first technical insight
is the use of polynomial approximations of the exponen-
tial function, which are based on Taylor truncation and
Chebyshev expansion (17). The second technical contri-
bution is a Trotter-Suzuki-type decomposition of the Gibbs
state (see Fig. 4). It would be interesting to see the
possibility to further develop our approximation by using
the results in Ref. [122].

We leave the following questions to be considered in
future work.

(1) High-dimensional PEPO representation with sub-
linear bond dimension.—Our analytical approach
has improved the bond dimension of the MPO for
1D quantum Gibbs states. Here, the point is to utilize
the estimation in Ref. [23] to efficiently encode the
polynomial of the Hamiltonian to the MPO repre-
sentation. We expect that the same improvement
should be possible in the PEPO approximation for
the high-dimensional Gibbs state. Even though
the PEPO representation of the quantum Gibbs state
does not imply an efficient simulation by itself
[74,75], it is of great importance in the implemen-
tation of numerical algorithms employing the PEPO
ansatz. The key question is how to encode the
polynomial of the Hamiltonian to a PEPO repre-
sentation with a nontrivial bond dimension. Such a
representation will also be useful in the context of
area laws for ground states in higher dimensions.

(i) Improving the run time of the algorithm.—Our
algorithm presented in Theorem 3 has a run time
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of ne@?)+OlV/Flogn] We expect that this time could

be improved to neQW)+O/Plogm)] | pecause this
result matches the bond dimension of the MPO
constructed in Theorem 2. Another challenge is to
improve the run time to the subexponential form
with respect to log(n) for p = O[log(n)]. This
improvement would lead to quasilinear time algo-
rithms for ground states under the assumption (26).
The main difficulty lies in constructing a better
polynomial approximation to the quantum Gibbs
state than ng/ﬂ(’) in Eq. (31).

(iii) Stronger norm inequality for imaginary-time
evolution.—As discussed in Sec. V D, we observed
that an approximation of the form [|Ope’" — 1|| < e
instead of the current one [le " —Op|| , <e[e™H|| ,
would lead to an imaginary-time version of the SIE
theorem.

(iv) Circuit complexity of preparing 1D quantum Gibbs
state.—As discussed after Theorem 2, we believe
that our MPO approximation could be used to
construct a quantum circuit for preparing the quan-
tum Gibbs state. So far, the best estimation requires
n°®) to prepare the 1D quantum Gibbs states on the
quantum computer [52]. The quantum preparation of
the quantum Gibbs state is expected to be easier than
the MPO construction on the classical computer.
Hence, we conjecture that the sufficient number of
the elementary quantum gates should be also quasi-
linear as in Eq. (25).

For instance, the adiabatic algorithm presented in
Ref. [55] could be used in this context, by establish-
ing the injectivity of the MPO in Eq. (14). As
another route, we may be able to employ the
techniques in Appendix B in Ref. [17], which
implemented the smooth function of a Hamiltonian
(see also Sec. V.3 in Ref. [59] for further discus-
sions). By using this method, which relies on
polynomial approximations to e, the polynomial
presented in Theorem 3 could be efficiently imple-
mented on a quantum computer.

(v) Improving the thermal area law to '/*|0L|.—In this
work, we identified the critical y,. satisfying Eq. (2) as
1/5 <y. <2/3. From the random walk behavior in
Sec. IIT A, we expect that y. may be equal to 1/2 or
even smaller, which would suggest the diffusive
propagation of information by the imaginary-time
evolution. For the characterization of entanglement
structures of quantum many-body systems at finite
temperatures, identification of the optimal y is one of
the most fundamental future problems.
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APPENDIX A: MORE DETAILED SETUP

We here recall the setup. We consider a quantum spin
system with n spins, where each of the spins sits on a vertex
of the d-dimensional graph (or d-dimensional lattice) with
A the total spin set, namely, |A| = n. We assume that a
finite-dimensional Hilbert space (¢ dimension) is assigned
to each of the spins. For a partial set X C A, we denote
the cardinality, that is, the number of vertices contained
in X, by |X| (e.g., X = {iy, 15, ..., i|x|}). We also denote the
complementary subset of X by X¢:= A\X. We denote the
Hilbert space of a subset X C A and its dimension by Hy
and Dy, respectively.

For arbitrary subsets X,Y C A, we define dy y as the
shortest path length on the graph that connects X and Y; that
is,if X NY # @, dyy = 0. When X is composed of only
one element (i.e., X = {i}), we denote dy; y by d, y for the
simplicity. We also define diam(X) as follows:

diam(X) := 1 + max(d; ;). (Al)

ijex
1. One-dimensional k-local Hamiltonian

Let us now define one-dimensional systems, where the
Hamiltonian H is given by the general k-local operator:

H= 3 b mx Y <o

XCA,diam(X)<k X:X>3i

(A2)

where iy are the interaction terms acting on the subset X.
Here, ) y.ys; means the summation which picks up all the
subsets X C A such that X ©i. In the main text, we
consider the Hamiltonian in the form of Eq. (5). By
choosing k = 2 and g = 1, the Hamiltonian (A2) reduces
to the form of Eq. (5).
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We here define Ag; (A.;) for an arbitrary i € A as the
subset {j};<; ({j};~;)- We denote v; by the interaction
between Ag; and A ;:

v = Z hy. (A3)

X:XNAL#D.XNAL #0

For the Hamiltonian (5) in the main text, v; is simply given
by h; ;.. We then define the Schmidt rank SR (v;, i) as Djq.:

SR(Uiv l) < Dlocv (A4)

where D, is at most of cO%).

2. High-dimensional k-local Hamiltonian

In considering d-dimensional systems, we also consider
the k-local operator:

H= Y he  max > |yl <o (AS)
XCA.|X|<k X X3i
diam(X)<k
We slice the total system A into [, pieces:
A = A1|_|A2|_| A LIAIA’
Aj <[OA] = O(n®14), (A6)

where [, is the system length, namely, [, = O(n!/), and
we define |OA| as an integer which gives the upper bounds
for |A].

Similar to the one-dimensional case, we define A; (A.;)
for an arbitrary i € A as the subset | |A; (| |A;). We then

j<i >
define the Schmidt rank SR(O,i) in the same way as
Eq. (6). We also define v; as the interaction between A;
and A.;:
v = Z hx. (A7)

X XNA,#3.X0A. #D

Here, each of the {v; Al consists of at most of O(|0A])
local interaction terms hy. We define D). as the upper
bound for the Schmidt ranks of {v;}:

SR(Ui’ l) < Dloc = go(k)|8A| (A8)

APPENDIX B: BASIC ANALYTICAL TOOLS

1. Generalized Holder inequality for Schatten norm

For a general Schatten p-norm, we can prove the
following generalized Holder inequality (see Proposition
2.5 in Ref. [123]):

(B1)

N
A <TTosl,,.
p =l

where > % 1/p;=1/p. From the inequality, we can

immediately obtain

10101, < (041,10, (B2)

where we set p; = p and p, = oo in Eq. (B1).

2. The Eckart-Young theorem

We here show the Eckart-Young theorem [124] without
the proof.

Lemma 10 (the Eckart-Young theorem).—Let us con-
sider a normalized state |y) and give its Schmidt decom-
position as

D,

= talwim) ® [wam), (B3)

where /41 >py 2 py- 2 pp, and  {[yi.)}, DV and

{|y/2m>} », are orthonormal states, respectively. We then
consider another quantum state |y) with its Schmidt rank D
and define the overlap with the state |y) as |||w) — [@)]l-
Then, for the Schmidt-rank truncation as

W) =D HulWim) ® [Wam), (B4)

m<D

the Eckart-Young theorem gives the following inequality:

Dt < llw) = ) 2,

m>D

) = lwp) > = (B3)

where [ir) can be unnormalized.

We note that the Eckart-Young theorem can be also
applied to operator by regarding it as the vector with D
elements. For an operator O, we can obtain the Schmidt
decomposition as

Do

0= 101 ® s,

m=1

(B6)

where {0, ,} and {O,,} are operator bases with the
property of |0y |, =1 and tr(0, , 0 ,,y) = for m # m'.
For an arbitrary operator O with its Schmidt rank D, we
obtain

0= 0pl3="> w2 <

m>D

(B7)

where we define Op =3, p 01 @ O,,,. We note
that in applying the operator the Eckart-Young theorem is
applied only to the Schatten 2-norm. As far as we know, the
Eckart-Young theorem cannot be extended to the general
Schatten p-norm.
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3. Approximation of square operators

In the analyses, we often use the following lemma, which
connects the closeness between two operators to that
between square of the two operators.

Lemma 11.—Let O and O be operators which are close
to each other in the following sense:

10 = Oll5, < 8]0, (6<1). (B8)

Then, the square of the operator O, which is 070, is close
to 07O as follows:

oo - 00|, <35]070],. (B9)

The proof is straightforward by extending the result in
Ref. [95], where the positivity of O is assumed. We show
the proof in the following.

a. Proof of Lemma 11
Following Ref. [95], we start from

|ofo - 00|, = [|0%(0 - 0) - (07 - 0%)0|,
<lo*(o-0)l,+ (0" - 0",
where the inequality is derived from the triangle inequality.

By using the Holder inequality (B1) with p; = p, = 2p,
we obtain

||0T(0 _ O)Hp < ||OT||2p||0 0||2p < 5”0”217’

where we use the inequality (B8) and [|O7|,, = [|O]|,. In
the same way, we obtain

10" = 0%)0l, <[00, <8[[0]3,(1+6),

where the last inequality is derived from [0, =
10 =0+ Oll, <[]0 = Oll, +[[Oll2,, < [[O]5,(1 + 6).
The definition of the Schatten norm (10) implies

[r(070)P]'P = {uf(0TO)(0TO) P2} P
=o'o],.

1015, =

where we use Hermiticity of OTO. By combining all the
above inequalities, we arrive at the inequality of

070 - 00|, <56(2+5)||070]|, < 35/ 0

where we use the condition § < 1 in the last inequality. This
completes the proof of the inequality (B9). ]

4. Approximation of gth power of operators
The statement in Lemma 11 is extended to arbitrary
powers. 5
Lemma 12.—Let O and O be operators which satisfy the
inequality
10 = Ollag, <8[[01l5, (6 < 1). (B10)
Then, the pth power of the operator OO is close to
(OT0)P as follows:
l(0T0) - (O7C

0)|l, < 38qe*4[|(070)7| .~ (BI1)

The proof is a simple generalization of Proposition 1 in
Ref. [95] to arbitrary Schatten p-norms.

a. Proof of Lemma 12

Following Ref. [95], we start from the equation as
follows:

(0t0)1 - y4=s(0t0 - 070)(0T0)*!

(010)1 =3 (0"

s=1

(B12)

We can easily check that the above equation holds for
arbitrary ¢. By using the triangle inequality for the Schatten
norm, we have

I(oT0)? - (070)|,

q
Z )= (0t0 - 010)(070)*!||,.  (B13)

Then, our task is to estimate the upper bound of the norm of
(070)?=* (070 — OT0)(0T0)*~". From the generalized
Holder inequality (B1), we obtain

[(070)*=*(0T0-0"0)(0"0)* ',
< H(OTO)q_SHpq/ (g—s) ||0T0_ OTOHqu(OTO)X_I ||pq/(s—1)

<|070l3"-35(10701| .4 - |07 0I5 (B14)

where the equations [|(070)4*| ,,/(,—) = II0TO||34" and
1(070) | ,ys-1) = IO7Ol5,"  are  straightforwardly
derived from the definition (10) and we use the inequal-
ity (B9) for ||0'0 —0'0||,,. Furthermore, by using

|oro|,,=lo'0-o‘o+o0'0|,,<0'0-070|,,+
|oto|,,<(36+1)|00|,,. the inequality (B14)
reduces to

[(0T0)7=*(0T0 - OT0)(0T0)* |,

<35(36+ 1)4]|0" 0|34 < 38e3%||(O7 0)‘1||p. (B15)
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By applying the inequality (B15) to Eq. (B13), we
obtain the main inequality (B11). This completes the
proof of the inequality (B11). [

5. Upper bound on the norm for
multicommutators

For the norm of multicommutators, we can prove the
following lemma (see Lemma 3 in Ref. [125]).
Lemma 13.—Let {A;}Y | be k,-local operators such that

As = Z g x, m&}\x Z ||as,X|| < gs-
IX|<k, Y

(B16)

Then, for an arbitrary operator Oy supported on a subset X,
the norm of the multicommutator is bounded from above by

M
lady, ady, , ---ady, (Ox)] (B17)
where K, = |X| + ngn_l k,.

Forgi=g="--=gy=yg and ky =k, =---=ky;, =k,
we have
||adAMadAM—l o 'adAl(OX)H

x| (1X] X
<QaMIL (1) (XM =1 )10+l
<@gt ot 10x|
(B13)

APPENDIX C: FULL PROOF
OF PROPOSITION 9

In this section, we show the proof outline of Proposition
9 in Sec. VI which plays key roles in the proofs of the main
results (Theorems 1, 2, and 6). We prove it based on several
essential Lemmas 14—17. Throughout the proof, while
considering the Schmidt rank for a target decomposition
A =L U R, we denote SR(O, iy) by SR(O) for simplicity.

1. Proof strategy

We here relabel each of the sites such that L = {i};.,,
and R = {i};5,/>41, Where the length ¢ is a multiple of 4 to

Ly
]

HLO Vo
OOO00OO0O0000
LO 012.--.

be chosen later. We can arbitrarily extend the system size
A — AUOA without changing the Hamiltonian. We have
only to add zero operators:
H)y 50 = Hy + O, (C1)

where 0, is the zero operator acting on SA. Note that 05,
still satisfies the form of Eq. (A2).

We then decompose the total system into three pieces Ly,
S, and R, (see Fig. 5), where Ly = {i},<o, S = {i} <i<s>
and Ry = {i};»,,1. Accordingly, we also decompose the
Hamiltonian as follows:

H:HS+HLO+HRO+UO+Uf9

Hp =Y hy.,  Hg = > hy,

XCL, XCR,

HS = th,

Xcs
(C2)

where v, and v, are defined by Eq. (A3). We note that Hy,
H;,, and Hp commute with each other. By shifting the
energy origin appropriately, we set

Hg >0, (C3)

where > means that Hy is positive semidefinite. We divide
p into 2q pieces (¢ € N) and introduce

Po = P/ (2q).

The first step of the proof is the approximation of p,
which is in the following form:

po = e PH,

Do = ége_ﬂO(HLO+HRO)

&)0 = (DLI ® q)Rl’

‘7:m (ﬁOHS)d)Oﬂ
(C4)

where ®; and @y, are operators supported on L; and Ry,
respectively (i.e., Ly = {i};cz/a and Ry = {i};537/441), and
the degree m polynomial F,,(x) approximates the expo-
nential function e, For every § < 1/(3q), we estimate
the length ¢ and the degree m such that

||,00 _Z)O||2qp < 5||/7()||2qp- (CS)

Ry
1

Vy HR

(mym'} ’

QO 0OO0COOCOCI0OOOOLVOVOOC
S

i ?0+1 Ro

Y
L

FIG. 5.

Y
R

The decomposition of the system considered in the proof.
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Then, by applying inequality (B11), we have

e =5l < 38qe™ p5”l, < elle™ ], (C6)
with € = 3eqs, where we use pg! = e and 35 <
3eqé from &< 1/(3q). Therefore, by choosing p =
el /tr(ePH), we can achieve the bound (49). Note that
the condition € < e in Proposition 9 is due to the equations
€ =3egb and 6§ < 1/(3q).

The second step is to estimate the upper bound of the
Schmidt rank of 5, which is given by

[ e ot tHr) 7 (o H 5) P ™. (C7)
Then, the sufficient Schmidt rank to achieve the inequal-
ity (C6) is given by a function of ¢ [see Eq. (C52)
below for more details]. By choosing ¢g so that the
Schmidt rank is minimum, we show that the Schmidt
rank is upper bounded by Eq. (50). We thus prove
Proposition 9. In the following, we show the details of
the above arguments.

2. Approximation of p,

In the following, we define a parameter v as follows:

v = max|f, log(6/6)]. (C8)
In addition, we choose ¢ such that
q* 2 p. (C9)

Let Hy = Hg + H;, + Hg,. We first relate the two oper-
ators py = e H and e #Ho, We can formally write the
following:
po = Py ], (C10)

where @, is usually a highly nonlocal operator. The first
lemma ensures that the @ is approximated by an operator
supported on L LIR;. y

Lemma 14.—There exists an operator @) = ®; & D,
such that, for

ph = B hod], (n

we have

loh = poll p, < 3e=1 /Pt o], (C12)
for arbitrary po € N, where we assume —c¢,Z/fy + ¢, <0
and ¢; and ¢, are O(1) constants.

The proof of this lemma is based on the belief propa-
gation [29,69] and the Lieb-Robinson bound [126,127].

a. Proof of Lemma 14

For the proof, we start from the belief propagation [29],
which gives

po = e P = djePoth ], (C13)
where the operator @ is defined as
q)(] — Tefol (/)(T)dl"
b(z) = —ﬁovoz— Pove
wio [ o0t H) + oole.Hldr (€14

where H, = Hy + 7(vy + vs), 7 denotes the ordering oper-
ator, vy(t,H,)=e™Mppe ™ p,(t,H,) = ey, e
and ¢(7) is defined as

6_27[|t|/ /}0
g(1) = sen(t) T Sanm (C15)
Note that the function g(7) decays exponentially with ¢
and, hence, the operator ¢(r) is quasilocal due to
the Lieb-Robinson bound [126,127]. We aim to obtain the
approximation ®y~ ®; ® Pp =: ®, and consider the
norm difference of
o = ||BoeHod) — A (Cl6)

for arbitrary p, € N.

In order to quantitatively evaluate the quasilocality of
¢(r), we first define vy(¢, H,, L) as an approximation of
vo(t, H,) in the region L:

UO(I’ HT’Ll) =

traz, [vo(f, He)| ® iA\Ll-

AL,

We define v,(t, H,, R;) in the same way. By utilizing the
Lieb-Robinson bound [127], we obtain the approximation
error of

lvg(t, H,) = vo(t, Hy, Ly) || < clele= /40 (C17)
where ¢, ¢/, and v are constants of O(1) and we obtain the
same upper bound for |[v.(7,H,)— v.(t,H., Ry)|. By
using the notations of vy(¢, H,, L) and v,(t, H,, R;), we
define ¢, (7) and ¢g (7) as follows:

i, (6 =5 00+ i [ g0)0o(t.He L),

_ﬂ . 0o
¢r, (7) ‘=TOW+ ifo g(t)vy(t, H,, Ry )dt.
We notice that ¢, () and ¢ (7) are supported on the
subsets L, and R, respectively. We then approximate ¢(z)
by ¢(z) = ¢y, () + g, () with an error of
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Ip(z) = p(2)|| < cofge 1P (0<z<py) (C18)

with ¢y and ¢ constants of O(1), where the inequality is
derived from the approximation error in Eq. (C17) and the
exponential decay of g(z) as in Eq. (C15).

From the approximation of ¢(z) by ¢(z), we define
D, as

&)O T j;)] P(r)dz = (I)L1 ® @Rl, (C19)

-
where we define @ := Te_ﬁ)‘/’“(f)df and ®p :=
1

T e_ﬁ);”?l(’)‘h. By using the inequality (C18), we can
obtain the approximation error of @, by

= 1
11 = Bo®5" || < et/ Jy 19l

< coﬂ(z)e_clf/ﬂ(ﬁ’zd]ﬁo’ (C20)

with ¢} an O(1) constant, where the upper bound ||¢(7)|| <
By can be derived by following Ref. [69] [see Eq. (42)

therein]. By letting O := CiJO(I)(j !, we have, using the
triangle inequality,
| @ge oo — (i)oe_ﬁ‘)ﬂoégﬂpo = [lpo = Oopo O}
< (1 = 00)po O3l , + [10ap0(1 = OY) 5,

+ /(1= 00)po(1 = O) .

||P0
(C21)

From the upper bound (C20), the norm of 1 — O, satisfies
the following inequality:

[T = 0|l = [|1 = D@ || < emr?/Poterth,

where we choose ¢, = O(1) such that cyfZe’1#0 < e,
Then, the condition —c &/ + c2fp <0 in the lemma
implies ||1 — Oyl| < 1. Therefore, by applying the Holder
inequality (B2) to each of the terms in Eq. (C21), we obtain

|De o] — Bye oo dy|
< lpoll p, (11 = Ooll* +2[I1 = Op||)

<3| gy, (€22)

where, in the second inequality, we get |1 — Og||> < ||1 -
Oyl due to |1 — Op|| < 1. This completes the proof. =

The lemma implies that, as the length £ becomes
large, the approximation error decays exponentially with
e~O/P)_ Thus, in order to achieve the inequality

5
lp6 = Pollagy < 3 1P0ll2gp» (C23)

we need to choose £ as

Po

£ > 23+ 10g(6/8). (C24)
¢ Ci

By using the parameter v in Eq. (C8), we can write

¢ = ¢ pov =cwp/(2q), (C25)
where ¢, is a constant of O(1).

Second, we approximate e 0o by an operator with
small Schmidt rank. For this purpose, we use the fact that
Hy, H Lo» and H R, commute with each other and write
e~PoHo — g=Po(H1y+Hry) o=FoHs Then, we approximate e #oHs
by a low-degree polynomial of Hg. The most straightfor-
ward approximation is given by the truncation of the Taylor
expansion, which gives a good approximation of e#fls by
taking the polynomial degree as large as ||foHsl| +
log(1/8,) with &, the precision error. Unfortunately, we
cannot get any improvement of the thermal area law if we
utilize the Taylor expansion.

One of the key aspects of our proof is the use of the
following lemma from Theorem 4.1 in Ref. [93][], which
allows us to achieve the improved thermal area law.

Lemma 15.—1Let &, € (0,1). For any m satisfying

log(1/89)] log(1/8y)  (C26)

m > cp\/max[By|| H
[with ¢, = O(1)], there exists a polynomial F,,(x) with
degree m that satisfies

Ful)—e| <8 for x € [0 pollHsl].  (C27)
When fy||Hgl|| > log(1/8,), the above estimation gives a
significantly better polynomial degree than that from the
Taylor expansion.

We recall that this polynomial approximation is
obtained from the Chebyshev polynomial expansion (17)
in Sec. Il A, which is characterized by the random walk
behavior (see Fig. 3).

By using the polynomial F,,(x) defined above, we
approximate the operator pj, in Eq. (C11) as

Po = @ge ot Hr) 7 (5o H g )B. (C28)
Because of Eq. (C3), the spectrum of ffoH is included in
the span of [0, §y||Hs||], and, hence, the inequality (C27)
gives
1 (BoH s) — e PoMs]| < 8. (C29)
We note that the current approximation (C29) is obtained in
terms of the operator norm (i.e., Schatten co-norm) instead
of the generic Schatten p-norm. The next problem is to
estimate the approximation error |py — po|| ,, for an arbi-
trary Schatten p,-norm. We prove the following lemma.
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Lemma 16.—Let py € N and &, € (0,1). Under the
choice of ®; ® ®p in Lemma 14, # in Eq. (C24), and
m, F,,(x) in Lemma 15, we have

10y = Poll p, < DY P60 Ipoll,,,e (C30)

where ¢ is an O(1) constant.

b. Proof of Lemma 16

From the definitions (C11) and (C28) of pf and py,
respectively, we start from the inequality

oo — P0||p0—||q) ﬂoHL°+HR“)[5Em(HS>—e_ﬂOHS]‘i)OHPO
< || ot ) [F, (Hg) — e Potis]||, - || @]

(C31)

where we use Holder’s inequality (B2). From the definition
(C19) of @, ® Dy, we obtain

D> = || @, @ D, ||* < P (C32)
We next consider
e ) [, () = et
DLORO Dy
n(Ey) — e7Poss |Po (C33)

—poBok;
P

where {ES}SD:L‘I’RO and {ES/}SD,S: , are eigenvalues of H; +
Hp, and Hyg, respectively. Note that the Hamiltonians H; ,
Hp,, and Hg commute with each other and are diagonaliz-
able simultaneously. From the assumption (C3), we have
e =0, and ep, < ||Hgl|.

From the inequality (C27), which is

|Fm(x) —e™*| <6 forx €[0,pollHsll],  (C34)
we have
| Fu(eg) — ePose o < 500, (C35)

By applying the above inequality to Eq. (C33), we obtain

et 180 7, () = el

Dryry Dy
< g E e_pOﬂOEs 550
s=1 s'=1
D 5 0 Dryry Dy
< S ; E E e FOﬁO se PO/}OIZ/
S
E 1€ TPoPosy s=1 s'=1
Do || ,~Po(Hy,+Hg,+Hs)
< Dby || oo ro TS |70 (C36)
Dy _ -
where we use > 5 e Pofocy > emPofort — |,
We next consider the upper bound of [|e~#%0|| | in terms

of |leH], . Recall that H,
hence’ e_/}OHO — e_ﬁ()(H_“()_”f)‘
Thompson inequality, we have

= HLO +HRO +HS and,
By using the Golden-
tr(e—PoﬂoHo) < tr(e—PoﬂoH . e—Poﬂo(vo+Uf))
< ePoﬂoH’Uo+wHtr(e—PoﬂoH)

< e29kpofo || e PoH ||11;g

(C37)

where we use |[vg+ v/|| <2¢k from the condition in
Eq. (A2). Note that tr(e~Po#oHo) = ||e=PoHo||10. By combin-
ing the inequalities (C36) and (C37), we arrive at the
inequality

[l oo M) [, (Hg) — e s e
< Dy e20Pobo] | e=PoH |75

Po

(C38)

By applying the inequalities (C32) and (C38) to Eq. (C31),
we obtain the main inequality (C30) with ¢; = 2¢’ + 2¢k.
This completes the proof. [

Let us substitute p, = 2¢p in Lemma 16 and choose 6,
that satisfies

D;/(qu)éoecgﬁo — g .

This choice ensures that ||pf,
we conclude that

_ﬁ0||2qp < (5/2)||p0||2qp’ and

||/00 _/50H2qp < ||p0 _p6||2qp + ||p6 _lbOHqu < 6”/00”2(1[7’

where we use the inequality (C23). Therefore, the choice of
Po as in Eq. (C28) achieves the inequality (C5).
Let us simplify the expression for all the parameters
appearing so far. We consider
Sy = ge—@ﬂngl/(ZqF) — §e—c3ﬁ0—c§f/(2qp)
c.Civpy
2qp

— log(1/8y) =log(2/8) + c3py + (C39)
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where we define Dy = ¢’ =: ¢’ and use the expression of
¢ in Eq. (C25). From the assumption (C9), we have
Bo = (B/2q) < q/2. This result yields

c.v
log(2/8) + c3py < log(1/8y) < log(2/8) + c3p + Zpl

C]I/
4

<log(2/8) + c3fy + Ce

where we use p > 1. Using the definition (C8) of v, we can
thus write
log(1/8y) = v (C40)

for some constant ¢,. From the choice of # in Eq. (C24), we
have

max [fo||Hs[. log(1/80)] = O(Bo?),  (C41)
where we use ||Hg|| < g¢ from the condition in Eq. (A2).
Hence, we obtain the following simpler form of m:

m = [c;/max|[f (1/8)]log(1/6)]
VBt (C42)

3. Schmidt-rank analysis

The remaining task is to estimate the Schmidt rank of the
operator ﬁ(z)q which is given by Eq. (C7). For this purpose,
we consider the following more general problem for the
simplicity of notation. We also utilize the lemma in the
subsequent sections. Let us define a decomposition of
the total system into [,S, and R (see Fig. 6). We then aim to
estimate the Schmidt rank of an operator of the form

Gt = [@1G,, (Hs)®o]M, (C43)
where G,,(x) is an arbitrary degree m polynomial, the
operators ®; and ®, are supported on L and R, respec-
tively, and Hg is a local Hamiltonian on the subset S
(|S| = ¢). The Schmidt-rank estimation for an arbitrary
polynomial of H is given in Ref. [23]. However, in
the present case, the additional operators ®; and @,
prohibit the direct application of that results to
Eq. (C43). In the following lemma, we can obtain the

¢1a @2

(6]6]6]1616]6]6161616]16]6)

L R
¢

FIG. 6. The decomposition of the system in the Schmidt-rank
analysis.

modified version of the Schmidt-rank estimation in
Ref. [23]. For the generalization to high-dimensional
systems in Appendix D, we consider the high-dimensional
Hamiltonian (AS5).

Lemma 17.—For an arbitrary operator in the form of
Eq. (C43), the Schmidt rank across the bipartition of the
system to the left and right at the point i € S is upper
bounded by

SR(@mM, i) < min [¢ 2|0A|(IOmMDIOC)2M+2?+(2kmM/Z)]’
7ie<t

(C44)

where A and Dy, are defined in Egs. (A6) and (AS8),
respectively. If we consider a one-dimensional Hamiltonian
with two-body interactions (k =2), we have |0A| =1
and Dy, <c.

We can further extend Lemma 17 to the following
operator:

Qﬁfk; = [®,G(Hs,)Gn(Hs,) - Gu(Hs, ) D)™,
whereSj cSG=12,...
the following corollary.

Corollary 18.—For an arbitrary operator in the form of
Eq. (C43), the Schmidt rank across the bipartition of the

system to the left and right at the point i € S is upper
bounded by

, p) with |S| = #. We then obtain

SR(QE:,EVI’ l) < ?rr}jnf[gﬂ@M(1OmMDloc)2pM+2pZ’+(2pkmM/Z’)}’
<

(C45)

where OA and Dy, are defined in Eqs. (A6) and (AS8),
respectively.

Proof of Corollary 18.—The proof is the same as that of
Lemma 17. The difference is that the inequality (C47) is
replaced by

SR(Gi. 1)

< min |: f@A|Hm< > maxSR, (g( )M(mM/lo) ) ,
=7 7<t "

s€(ly]

<(mM/ly),s

where gm M for the Hamiltonian H is defined in

the same way as g,—n (mM/h)s 30 Eq. (C47) for the
Hamiltonian Hg. We then obtain the same inequality as
Eq. (C50) and prove the inequality (C45). This completes
the proof. [

a. Proof of Lemma 17

We apply an analysis similar to that in Ref. [26], which
modifies the proof in Ref. [23] for the Schmidt-rank
estimation.
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By |B1|B2|Bs| - |Byy| Biy+1

> {\
k@t/

hp,

FIG. 7. The decomposition of the subset S into blocks.

First, we decompose S into (Iy + 2) blocks {B}!
with |B,| = k (s = 1,2,...,1y) and I, = Z/k (see Fig. 7).
|

SR(Gy p. i) < min K’"M)

7it<t 4

where SR;(- -

/10N maxSR, (G M)y |
s€(lo] '

-) is the Schmidt rank across the bipartition between B and B, . Also, the operator g,;

Here, 7 is a control parameter such that Z < #. We then
decompose the Hamiltonian Hg as

lo
+ Z hg,.
s=1

where hp is comprised of the internal interactions in B, and
block-block interactions between B and B .. Note
that the interaction length is at most k, and, hence, only
adjacent blocks can interact with each other. Also, from the
inequality(A8), the Schmidt rank of A is upper bounded
by Dy, = go(k>‘aA|'

We expand G, (Hg) =
decomposition (C46). Using the polynomial interpolation
argument in Ref. [23], it holds that (see Lemmas 5.2 and 5.3
in Ref. [26])

HS — hBo + hBlo+l (C46)

"oa;(Hs) by using the

(mM/1y)

ly=7/k, (C47)

mM/h)s s derived

from Qm, u by considering only those terms in which /5 occurs at most (mM/ 1) times. Let Hg = P + hy_+ Q, where P is
to the “left” of hp_and Q is to the “right” of h5_and expand the powers H. From [P, Q] = 0, any particular power (Hs)" is

a linear combination of the following terms:

(Ppl th)th (szqu)hB

;oo (PP QI ) h (PP Q")

with lel (pi+¢q;) £Tand T < T. This combination allows us to expand Qm! u as a linear combination of the following

terms:

@, (PP],] Qi )th (PPl,zQ%.z)hBy .
(I)zq)l (Pl’z.l Qflz,l )hBA (Pﬂz.z Qéhz)

©,0, (PpM_l Qmi )th (PPM,z QQM,Z)I/[BS ...

Above, the positive integers T'; and the powers p; x, q;; > 0
are such that

T;

M
Z p1k+q1k < mM,
i=1 k=1

(C49)

since the total degree is mM. But, recall that we are

interested in ="/ where hy occur at most (mM/I,)

times, which enforces the following constraint:

M mM
Z(T—l <—:> Ti<——+M.
i=1 0

(PPI.T]—I qu.Tl—l)
hB . (PPZ.TZ—I Q(IZ.TZ—I )

(PPM,’I'M—I QqM.’[‘M—] )hBY (PPM.TM QqM.TM )@2

hB (PP1.71 QQLT] )
hB\. (PPZ.TZ QqZ.T2 )

(C48)

|

The number of the combinations of positive integers
{T|,T,,...Ty} satisfying > X T; = r is smaller than r
multicombination from a set of M elements and, hence, is
upper bounded by

()~ (7 e

Then, the combinations of positive integers {7, Ty, ... Ty }
satisfying >M T, < (mM/ly) + M is smaller than

(mM/ly)+M
Z oM+r=1 < 22M-+(mM /1)
r=0
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When a tuple {7, T5, ...T),} is given, the number of the
nonzero integers in {p;, qi,k}ie[M],ke[T,-] which appears in
Eq. (C48) is equal to

M

M
3 o, gz(ml—+M>.
i=1

0

Therefore, for a fixed {T,T>,...T);}, the number of the
combinations of positive integers {p;, g }iepm refr,] Sat-
isfying Eq. (C49) is upper bounded by (mM) multicombi-
nation from a set of (> ™, 2T;) elements:

()= (%)

(M 2M A mM - 1
- mM
< (SmM)(2’”M/’0)+2M.

For each of the nonzero integers in {p; t. ¢; « }iejm) xe(r;) the
Schmidt rank of the expression in Eq. (C48), across the cut

between B, and By, , is at most ngiw b Tt is because only
hp, increases the Schmidt rank across the cut between B
and B and the number of hp appearing in Eq. (C48) is

smaller than (mM /) from the definition of QE(T,IM/ lo)s.
Therefore, we finally arrive at the inequality of
SR, (gi(ﬁwlo),s) < 22M+(mM/lo) (5 B ) (2mM /o) +2M D{Ziw[o
< (10mM D, )M+ @mM/l)
— (lomMDloc>2M+(2kmM/?)’

where we use [, = Z/k in the last equation. By applying the
above inequality to Eq. (C47), we obtain

2
g R

s€ll)
2
<m (A; >g2m\ (lomMD]OC)2M+(2kmM/Z’)

< g?\a/\\ (10m M DIOC)2M+2?+(2kmM/2) . (CSO)

where we use ("M)2 < (mM)*. This completes the
proof. L]

In considering one-dimensional systems in Lemma 17
with £ = ¢, we have

SR(Gyr) < ¢ (10mMgk)2M+26+2kmb /0)

< (IOmMgk)2M+3f+(2kmM/f) (CSI)

because of [JA| = 1 and D)., < ¢ [see also the inequality

(A4)]. By applying the above inequality to p, in Eq. (C28)

with M = 2¢ [Eq. (C7)], m = &’\/upy¢ [Eq. (C42)], and
¢ =Py = cup/(2q) [Eq. (C25)], we obtain

SR(ﬁ(z)q) < (zomqgk)4q+351uﬂ/(2q)+452’kq\/uﬂo/)f’

= (20mqch)4+4ke/VENa+(/2)e pulq (C52)
Now, we specify the choice of ¢ by solving for
g% = fv = fmax <10g(2/6),2£>, (C53)
q

where we use the definition of v in Eq. (C8). This choice
gives the result of

g o max {2, [flog(2/3)]'?),  (C54)
where we choose g appropriately so that the condition (C9)
may be satisfied (i.e., < ¢?). From &§=¢/(3eq) =
O(e/p), by applying the notation of g} in Eq. (51) to
Eq. (C52), we finally obtain

SR(pg?) < e loslar), (C55)

This completes the proof of Proposition 9. L]

APPENDIX D: PROOF OF THEOREM 1
IN HIGH-DIMENSIONAL CASES

We here prove the improved thermal area law for high-
dimensional Hamiltonians (A5).

1. Restatement

For the convenience of the reader, we restate the state-
ment in the form of the following theorem.

Theorem 19.—Let us consider a d-dimensional lattice
and a vertical cut of the total system: A = LUR with L =
A] |_|A2|_| cee |—|A1 and L = Ai+] LIAi+2|—| cee LIAIA’ where we
use the notation in Eq. (A6). Then, we obtain the improved
area law for the mutual information as follows:

I(L:R),, < ClOA|F*1og*(BIOA]), (D1)
where C is a constant which depends on %, g, ¢, and d.

Remark.—The above upper bound is qualitatively better
than the established thermal area law of I(L:R) Y |OA|

for 2 log?(|0A]). For simplicity, we here consider a
vertical cut of the total system, but the generalization to
a rectangular cut is straightforward.

We notice that the logarithmic correction originates from
the superexponential dependence of m in Lemma 17. If we
can improve the m independence in Lemma 17,

(10mM D, ) M+20+2kmM/2) _, (congt)2M+20+(2kmM/?)
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we can prove the improved area law in the form
of I(L:R), < ClOA|S>.

2. High-level overview

We, in the following, restrict ourselves to the inverse
temperature such that

p = log*(|oA

) (D2)

since the regime of # < log?(|0A|) in Eq. (D1) is already
covered by the previous thermal area law [28].

The proof strategy is very close to that in the one-
dimensional case. We here relabel each of the sites such that
L ={Ai}icep and R = {A;};5,/241 [see Eq. (A6) for the
definition of A;], where the length ¢ is an integer which is a
multiple of 4 to be chosen later. We then decompose the
total system into three pieces L, S, and R, (see Fig. 5),
where Ly = {A;}i<o, S = {Ai}1<icer and Ry = {A;}isp 1
Accordingly, we also decompose the Hamiltonian as
follows:

H:HS+HLO+HRO+UO+UK’
HL0 = Z hy, HRO = Z hy,

X:XCL,
where v; is defined in Eq. (A7). We note that Hg, H;, , and
Hp, commute with each other. As in the one-dimensional
case, by shifting the energy origin appropriately, we set
Hg > 0, (D4)

where > means that H is positive semidefinite. We divide
B into 2q pieces (¢ € N) and introduce

po = e,

Bo = B/ (2q). (D5)

The first difference from the one-dimensional case is that
we cannot derive Lemma 14 as in the case of 1D, since we
cannot utilize the belief propagation technique [29] in
high-dimensional systems. In high-dimensional cases, the
operator ¢(7) in Eq. (C14) has the norm of O(fy|0A|),
while in the one-dimensional case, it has the norm of
O(py). This fact reduces the approximation error in
Eq. (C12) to =0/ OGO || py|| , ~in high-dimensional
systems. Hence, we need to choose £ = O(B3|0A]) to
ensure a good approximation error, but this choice is too
large to be utilized in the derivation of the improved
thermal area law.

In order to overcome this difficulty, we choose g = O(f3)
such that

o= B/2) <557 (D6)

As shown in Lemma 20 below, this condition allows
us to construct the operator p, as in Eq. (C5) (.e.,
190 = ollzgp < 8l1pollagp) in the following form:

Po = @ge ot (B0 H),

By =Dy, @ Dp,. (D7)

where @, and @y, are operators supported on L; and Ry,
respectively (i.e., L1 = {A;};<o/a and Ly = {A;}i530/441);
and the degree m polynomial F,(x) approximates the
exponential function e#*. As in the inequality (C6), this
operator gives the approximation

le P —pg?||, < elle ||, with e:=3eqs. (D8)

The mutual information is roughly determined by the
upper bound of the Schmidt rank of ﬁé”, which is given by

[@oe 0ot i) . (BoH s) | (D9)
The Schmidt rank of the above operator is
(mq)C@+OON)+Oma/?) from Lemma 17. In the one-
dimensional case, for g = O(f), this estimation gives
the Schmidt rank of ¢®?) and spoils the improved thermal
area law. However, in high-dimensional systems, the
contribution of ¢®) is much smaller than ¢/”’I?Al as long
as f# < |OA]®. Therefore, it is still possible to derive an
improved area law from the approximation by Eq. (D9).
This point is the second difference between the 1D case and
high-dimensional cases.

In the proof of the area law, we roughly choose (see
Appendix D 4 for more details)

mr|OANVE,  qrp. Y3 (D10)

which gives the Schmidt rank of the operator (D9) as
(1mq)©@rOUION T/ )  exp[f2 |OA] log(BlOA])]. We
thus obtain the inequality (D1).

In the following, we show how the basic lemmas in the
one-dimensional case are extended to the high-dimen-
sional cases.

3. Approximation of p, of Eq. (D7)
We relate the two operators py = e and e~Foflo, We
can formally write
po = @ge ot (D11)
where @ = e#oH ¢foflo is usually a highly nonlocal oper-

ator. The lemma below ensures that the @, is approximated
by an operator supported on L;LIR;.
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Lemma 20.—Let H and H,, be Hamiltonians as follows:

I:I - HL| —|— HRI .
Hy=H; + Hg, — vy — vy (D12)
We then define
D) =D, ® By, = e~PoHl ePoMlo,
&)L = o PoHL; pPo(HL —v0)
1 9
d)R := ¢ PoHkr, eﬁo(HR,—W)_ <D13)
1
Then, for f, <1/(32gk) and ¢ >2klog(|0Al]), the
approximated operator
Py = Popg = Pye oo (D14)
satisfies
19h = Poll , < 210A[e= /W |pg|l,,  (DI15)

for arbitrary p, € N.

As mentioned in the previous subsection, this decom-
position has an advantage over the belief propagation
method used in Lemma 14. By using the decomposition

|

G(z) i= ¢~ ¢7Ho g=7Ho gH

‘We then obtain

(D14), we can achieve the upper bound of |9A|e=O)

instead of ¢~Q©)+O(0A])

a. Proof of Lemma 20
We first define V as V := H — Hy, = H — H,,, namely,

V = 1)() + Vp. (D16)
We also define V' := H, — H,,.
We here aim to prove
||e=FoH ePobo g=PoHo ghoH _ 1|| < 2|@Ale~*/0).  (D17)

When we obtain the above upper bound, we arrive at the
main inequality as follows:

||é0p6 — pOH = ||e_ﬁ0Heﬁ0HOe_/j0H0

= || e~ PoH pPoHo p=PoHo pPoH p=PoH _ e—ﬂoHHp

—_ e_ﬁOHHp

< ||e—ﬂoﬁeﬁoﬁoe—ﬂoHoeﬂoH —1]- ||e—ﬂoH||p

< 2|0A|e4/2K) || e~PoH | (D18)

P’

where the first inequality comes from Holder’s inequal-
ity (B2).
In order to derive the inequality (D17), we define G(7) as

(D19)

d S - - o ~ ~
E g(T) — e—rH (HO _ H)eTHQ(T) + e—rHerHoe—THo (H _ HO)eTH()e—THO eTHg(T)

= —e (V= eHoe=oy etth g=tHo) et G ()

(D20)

where we use the definition of H — Hy, = H — H,, = V. The solution of the above differential equation is given by

b - i o
G(po) = T exp (‘/ ' e (V — etHoe=Ho VeTH"e—THU)eTHa%),
0

(D21)

where 7 is the ordering operator. From the above equation, we obtain the upper bound of ||e~#ofl efoHo g=FoHo ghoH _ || =

1G(Bo) — 11| as

B _ _ _ _
1G(Bo) = 11| < exp (/ e (v~ e’HOe—fHoveTHoe—f”O)efH||dr> ~1.
0

(D22)

We can prove the following upper bound (see below for the proof):

||€_TI:](V _ eTI:IQe—THQ VerHoe—TI:IO)eTFI || <

For ¢ > 2klog(|0A

), we have

k|OA ¢
MM ey, 5, =L 0

D2
2 ' 4k (D23)
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k| OA
g /5'|2 g < OA8=/ ) < [9A[e=/20) < 1, (D24)

where we use f, < 1/(32gk) and e? < 8. We thus use the inequality (D23) to reduce the inequality (D22) to

kfo|OA
1G(By) — 1| < exp <%|| 8—v> — 1 < gkPo|OA|87% < 2|0A[8~7/(#) < 2|0A|e~?/ (K, (D25)
where we use ¢* — 1 < 2x for 0 < x <1 and gkf, < 1/32. This completes the proof. m

b. Proof of the inequality (D23)

We start from the following equation:

. N 7 d . -
V — eHoe=tHo Y/ otHo p—tHo — —/ d—(eXHOe_"HOVeXHOe_XHO)dx
0 X

— _ /T (exI:IOe—xHO [exHOHOe—xHO _ HO? V} exHOe—xI:IO)dx
0
= /T (e*Hoe=xHo[gxHo ! g=xHo V] gxHo g=xHo) . (D26)
0
where we use the definition V' := H, — H,,. This result yields
||€—TI:1<V _ rHoe—rHO Ve‘rHoe—rHU) H H < / ||e—TH xHoe—xHO[ xH Ve —xH V] xHoe—xHU erH”dx

/ ”e—rH xHO e~*Ho VeXHO]e_XHOeTngx. (D27)

The commutator [V’, e=*oVe*Ho] is decomposed by the Baker-Campbell-Hausdorff expansion:

) adyady (V). (D28)

[V’, e—xHovexHo] —_ Z (—X
s=0

Because the supports of V and V' are separated at least by a distance of /4 — 2k, we have

Z/4 -2k
adyady, (V) =0 fors < /T =:5,. (D29)

Furthermore, we have

o oo o0
e—THexHo [V —xH VexHO xHOe

adgz adg(‘) adysady (V). (D30)

»=0 tom = s=s,+1

From Lemma 13 or inequality (B18), the norm of the multicommutator is upper bounded by

||adgzadg;advlad§10(hx)\| < (2gk)m*m st (my + my + 5 + 1)1 (D31)
where hy is supported on X such that |X| < k. Then, because of the definition of v; in Eq. (A7), we have
lady*ad' adyadyy, ()| < (2gk)™ "4 (my + my + 5 +1)! > 24
X:XNA#DB.XNA. #D
< (2gk)™ 5 (my 4+ my + 5 + 1)) Z Z ([ Ax |l
JENUA Uy X1X3)
< gk|OA|(2gk)™Fmtst (my + my + 5 + 1)1, (D32)
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where we use [A;| + [A;_j| + -+ + |Aj_ry1| < k|OA|. Because of V = vy + v,, we obtain

||adgzadg(‘)advfad;,0(V)|| < |OA|(2gk)™ M2 (my 4+ my + 5 + 1)1 (D33)
By using the inequality
(ml +m2—|—s—|—1) _ (ml +1) (m1 +m2—|—1) (m] —|—m2—|—s—|—1) <8m1+14m22Y (D34)
mylmy!s! m!1 (my+ D)lmy! (my 4 my + 1)my,!
we have
=) my, =)
Z ! Z x— Z .l Had'”zad"” ady-adg; (V)]
»=0 :Om s= Sf+1
i i S [aA| gk (MM s !
,=0 =0 s=s,+1 ml!mz!s!
272 so+1
< 32¢°k*|OA| 1 (4gkx) ‘ (D35)
1 —16gkx 1 —8gkr 1 —4gkx
From max(z,x) < fy < 1/(32gk), the above inequality reduces to
> Z 5D lladady adyad (V)] < 13RI (D36)
»=0 1=0 s s,«+l
By combining the inequalities (D30) and (D36), we obtain
e~ exHol!, e=HoyexHole= oot || < 1362K%|OA|87. (D37)
From the inequality (D27), we thus prove the inequality of
. . S k|OA
e~ (V — etoe=Hoy emHoe=Ho) e || < 136%k?¢|OA|875 < %8_ (D38)
[
where we use 7 < ffy < 1/(32gk) in the second inequality. Do i= @ye Pt i) £ (BIH). (D41)

This completes the proof. n

The lemma implies that, as the length # becomes large,
the approximation error decays exponentially with e=9().
Thus, in order to achieve the inequality

S
Hp6 _:00”2(”7 SEHIOOHqu’ (D39)
we need to choose # as
£ > 2klog(4|0A|/6). (D40)

We approximate e by an operator with small
Schmidt rank. For this purpose, we use the fact that Hg,
H;, and Hp commute with each other and write

ePoHo = g~PolHigtHry)) g=FoHs  Then, we approximate
e Pofls by using the polynomial of Hg in Lemma 15. By
using the polynomial F,(x) defined there, we approximate
the operator pf, in Eq. (D14) by

Because of Eq. (C3), the spectrum of ffyH is included in
the span of [0, ;| |, and, hence, the inequality (C27)
gives

| Fn(BoHs) — e PoHs|| < &, (D42)

by choosing m appropriately following Lemma 15.
The next problem is to estimate the approximation error
lpo = Poll , for an arbitrary Schatten py-norm. We prove
the following lemma, which is similar to Lemma 16.

Lemma 21.—Let py € N and &, € (0,1). Under the
choice of ®;, ® ®p in Lemma 14, £ in Eq. (D40), and
m, F,,(x) in Lemma 15, we have

19 = Boll oy < Dy "°50elM 7 1pgll,,  (D43)

for fy < 1/(32gk).
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c. Proof of Lemma 21

From the definitions (D14) and (D41) of p{ and py,
respectively, we start from the inequality of

19y = Boll, = |Doe™0 o) [F, (H) — e ]|,
< ||t ) [(F,, (Hg) — e PHs]|, - (|,
(D44)
where we use Holder’s inequality (B2) in the second line.

From the definition (D13) of ®,, we obtain the following
upper bound (see below for the proof):

1| < eloM/13. (D45)

Next, we obtain the same inequality as Eq. (C36), which
gives the upper bound of

et 0 ., () = e o)

< Dssh|| ¢~PolHiytHay +Hs)| o

e (D46)

In order to estimate the upper bound of
|| olHo T HHS) || in terms of [le |, we use the
Golden-Thompson inequality to derive
tr(e—PoﬂoHo) < tr(e—Poﬂo(Do+W) . e—l’oﬂoH)
< e2PoPogk|OA| He—/”oang

< eI/ 18] Pl (D47)

where we use tr(ePoboflo) = ||e=PoHo||P0 " g1 < 1/(32gk),
and derive the upper bound of ||v;|| from the definition
(A7):

lil] < >

X:XNA#@ XNA. #D

< D S Jligll < gk[OAL.

JEAUA_ UAjyyy X:X3j

x|

By combining the inequalities (D46) and (D47), we
arrive at the inequality of
et ) 7, (H5) = et |

< D e N1 ot |70, (D48)

By applying the inequalities (D45) and (D48) to Eq. (D44),

we obtain the main inequality (C30). This completes the
proof. m

d. Proof of the inequality (D45)
By using Eq. (D13), we have

(Dol < [|ePolrr gfoltHr=v0) || . || g=PoHr, gPolHR,=ve) ||

We here consider

e PoHL pPo(HL —v0) — T exp <_ /‘/}(J

e ML, UOeXHLl dx) ,
0

which gives rise to the inequality of

leofs Pl =t0)|| < exp ( / " et gerin ||dX>'
0
(D49)

We thus aim to derive the upper bound of ||e ™11 pye*u1 ).

By using the Baker-Campbell-Hausdorff expansion, we
have

- o~
e~ pyettin || < Z;)%Hadgh (vo)[.  (D50)

By using Lemma 13 or the inequality (B18), the norm of
llady; (vo)|| is upper bounded as follows:
1

ladz, (vo)ll < gklOA|(2gk)"m!, (D51)

where we use an analysis similar to Eq. (D32). Hence, we
calculate the upper bound of ||e™t1pye* ]| as

—xH, . aH, 2 X" "
e mye i | < 35 gkl oA 2gkym
m=0""""

_ gk|OA] <16gk

= ——|0A
1—2gkx~ 15 07

(D52)

where we use x <f,<1/(32gk). By applying this
inequality to Eq. (D49), we have

||e—/foHL] e/fo(HLl—Uo)H < e (169kBy/15)|0A] < e(1/30)[0A] (D53)

We obtain the same inequality for ||e#ofm folHr=ve)|
This completes the proof. m

Let us substitute py = 2¢gp in Lemma 21 and choose &,
such that it satisfies

1)
D;/(2QP)506\0A\/7 < 5 ) (D54)

This choice ensures that ||pg — po|l2,, < (6/2)poll2,,» and
we conclude that

1P0 = Poll2gp < lPo = Pollagp + 110 = Pollagy

S5||p0||2qp’ (DSS)
where we use the inequality (D39).

Let us simplify the expression for all the parameters
appearing so far. We first consider
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Dg = gISI < ef|é)A|log(g)’ (D56)

and, hence, from Eq. (D54) with ¢ = 3/(2f3,) and p > 1,
we can choose J; as

1 4
log(1/8y) = log(2/5) + [OA] 7 + bo IOg(G)B

B 1 ¢ log(2/6)
— (o] (5 + hotox(c) 5 + 5

= V/|OA| (D57)

with

, 1 ¢ log(2/s)
v _7+ﬂ010g<g)ﬁ+ |6A|

< const x 7.

(D58)

Also, the norm of the Hamiltonian f,H g is bounded from
above by

PollHs|| < PoglS| < Pogl|OA|, (D59)

where we use the definition (A6) of |OA|. Because of the
above upper bound, we have

max fo||Hs||. log(1/3y)] < [OA| max[foge, V]

= O(Z|0A]). (D60)

|

Hence, from the inequality (C26) in Lemma 15, we obtain
the following form of m to achieve the inequality (D42):

m = [cp\/max|By||Hs|. log(1/8y)] log(1/8,)]

= N2 (D61)

where ¢ is a constant of O(1).

Finally, we apply Lemma 17 to ﬁgq. We have
Do < ¢*|OA], and, hence,

SR(Gm,M) < min [g?|£)A|(lomMgk|8A|)2M+22+(2kmM/i)].

SR(pp") < min {gzj 10A] (

4. Choice of polynomial degree m and region length ¢
We here consider how to choose the parameters m and 7.
We assume |R| > |L| (> |OA|) and choose 5 as § = 1/|LJ?,
and the condition for # in Eq. (D63) reads
¢ > 2klog(4|0A|/8) = ¢, log(|L]), (D65)
where ¢; is a constant which depends only on g, k, and d.
Then, under the condition of > log?(|0A|) « log?(|L]),
we can choose ¢ such that

£ <&/p. (D66)

106ﬁg"| 9 A|2 NoZ 2B/ Bo+22+28k(B/ o) |OAIZ VI E
Po '

?:2<¢
(D62)
Under the choice of
G =00's  M=2q=(p/po).  m=CloANVZ.
¢ > 2klog(4|0A|/8) > ¢’ log(|OA]/6), (D63)
we reduce the upper bound of Eq. (D62) to
(D64)

|
We then obtain the upper bound of / in Eq. (D57) as

log(2|L[?)

oA (D67)

V' =2+ ¢ plog(e) + < o,

1
7

where ¢, is a constant which depends only on g, &, d, and ¢.
We here denote

10ZBHONPVYE _ o iosipion)

SR(;,gq) < min [26(1/Bo+&)F1og(BON]) . o 10g(c)|OAI+22 /&3 k(B/fo)Zs log(BIOAZ!£1/210A]
0 0<

<t

D68
5 (D68)
with ¢ an O(1) constant.
Then, the upper bound (D64) is simplified as
|
(D69)

— (FPIOBPION) min (o7 B(©IOAEsloz(AlON)Z £ PO

7:r<t
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where we define

28 /% &3k/ By,

In the above upper bound, we would like to choose

6'4 = 26’3(1/,3() + Ei) and 5‘5 =

7 - Klo;zg) /)’log(ﬁ|8A|)>1/2f1/4—‘. (D70)

In order that the choice above is consistent with Z < Z, the
length ¢ should satisfy

> (-5 progpon)))”
> (o progtslon) )

We note that this choice of ¢ exists under the constraints
of Egs. (D65) and (D66) because of > log?(|0A]). By
applying the above choice of Z with Eq. (D71) to the upper
bound (D69), we finally arrive at the inequality

(D71)

SR(py") < exp [¢4Blog(BIOA]) + T6|OA|F> log? (BlOA])].

(D72)

The inequality Slog(B|OA|) > |OA|B* 3 log?3 (BIOA])
holds for = |OA|’. However, when = O(|0OA]®), the
upper bound gives el?AF and is worse than the trivial
upper bound e®™ because of [OA| = O(nl4=1/4), We
thus conclude that the second term in Eq. (D72) is more
dominant than the first term.

We have chosen 6 = 1/|L|?, and, hence, the inequality
(D8) for p =1 ensures

3ep
_ )
P =Dyl < 5=

D73
2p|L (B73)

e

where we set |l e?#||, = 1. Then, by using the Alicki-
Fannes inequality [106,128], the main inequality (D1) is
obtained:

I(L:R),, <I(L:R); + O(B/IL])

< 210g[SR(5)] + O(B/|L|)

< C|OA|B*310g?3(B|OA]), (D74)

where the inequality /(L:R), < 21og[SR(p])] is derived
0

from the purification of jg¢ as

Dy
w) = (pf ® 1) Z ibA ® i) ar- (D75)

where {11)}7

Sec. VIA). The mutual information /(L:R) is smaller
0

is an arbitrary orthonormal basis (see also

than 2 times the entanglement entropy for |y) [see the
inequality (38) in the main text], which is trivially smaller
than 2log[SR(p{)]. This completes the proof. L]

APPENDIX E: PROOFS OF PROPOSITION 4
AND LEMMA 5

1. Proposition 4 for general k-local Hamiltonian (A2)

We here prove the following statement about high
temperatures which plays a crucial role in obtaining the
quasilinear time algorithm.

Proposition 22.—For < 1/(8gk), we can construct a
matrix product representation My of p; up to an error

1My = ||, < elle]], (E1)

for an arbitrary positive p, where My has the bond

dimension of eCVIe(/] The sufficient computational
time for this construction is given by

nePlVlog(n/e)] (E2)

We notice that the computational cost does not depend
on p.

We here consider general k-local Hamiltonians. In the
main text, the Hamiltonian (5) is considered. By choosing

g=1 (E3)

in Proposition 22, we can obtain Proposition 4. Here,
the equation g=1 is derived from the condition
max;ef,) ([|2i-1il| + [[Aiis1l]) < g=11n Eq. (5).

2. Proof strategy

We aim to give an explicit algorithm to obtain the MPO
approximation of e™# for < 1/(8¢gk). We decompose
the total system into small blocks {B,}:”, with length £,
(i.e., |By| = ¢y), which gives ||A|| = ny¢, (see Fig. 8). In
fact, we may not be able to find an integer n, satisfying
n = nyt, but we can arbitrary extend the system size A —
AUJSA without changing the Hamiltonian. We have only to
add the zero operators, and the form of Eq. (A2) is still
retained as follows:

H — E hx,
XCAUSA,|X|<k

sup > Il < g

IEAUSA y x5

where iy = Oy if X N 6A # @.
We then define H,.; as

st = BlLIle_Il_IB

i (E4)

By using this notation, we define operators ®; and @, .; as

follows:

;= P o= PH L Q. =00, D, (E5)
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Bj B Bj
Lo o o
<+ 0000000000000 O0O0O0O0OOOO0O0O0O0OO = - -
\_'_I

Tn(BHj-1)

Y
Ton(—BHj j41)

l_'_l

T (BHj41)
T

T (—=BHj1,5+2)

FIG. 8.
two-step approximation: (i) e ~ é)lz,,o and (ii) <i>1:n0 ~ ")

1:ny°
(m)
1:ng

Basic strategy for the approximation of e## [ < 1/(8gk)]. We decompose the total systems into blocks. We then take the
which yield e## ~ &™)

1y Here, the approximated quantum Gibbs

state ®\"” is constructed from the polynomials T, (SH j-1) and T, (=BH;_, ;) as in Eq. (ER).

where 7', (x) = >, x™ /m! is the truncated Taylor expan-
sion. In the following, we estimate the parameters ¢, and m
to achieve the precision of

where we define H,., = 0. Note that each of {® ; };7‘):1 may
1o

jo1> we have

be highly nonlocal. By using {®;}

ePH = (I)l gyt (E6)

m) pH
|@7, ™ =1l <e. (E9)
We, in the following, derive efficient approximations for ) )
The above upper bound yields, for an arbitrary Schatten

{@;}}2,. For this purpose, we define ®; and ®,.; as
follows: p-nor,
- - O - () - 5(m) -
&)z Moty = iy, B, e, < (@, — 1)e ]|
Hi= > hy+ . < DY e 1] - [l
X:XCBj X:XﬂBﬁé®~XnB/+1#® S €||€_ﬂH| b (EIO)

Hjjpr=H;+Hj,. (E7)

where we use the Holder inequality (B2) in the second step.

Here, H; is comprised of the internal interaction in
the block B; and the block-block interactions between
Bj and B, ;. We f”lrst approximate e ?H by ‘i)l:m,- Then,
we approximate ®;., by using polynomial approxi-
mations as

‘i)j'm) = T,,(BH;_1)T,,(=PH _1 ).
o) — a3 =)

®\") =T, (~pH )T, (BH\)T,(~pH) 2) Ty (BH) T (~fHa3) - Tpu(BHo ) Tpu(~fHy 1 ).

In Appendix E 3, we prove that the inequality (E9) is
achieved by choosing £, and m as

¢y = coklog(6n/e) and m = c;log(6n/e), (EI11)
where ¢, and ¢, are constants of O(1). Under the choice
(m)

above, we estimate the Schmidt rank @) n, ACTOSS an
arbitrary cut.
Here, ég'f’r)m is given by
(E12)

Let us consider a cut between A; and A.; for a fixed i € A. Then, at most five polynomials contribute to the Schmidt

rank of SR(®\"

1:ngy?

T, (=PH 1 j+2) (j € [ng)). We thus obtain

i) (see Fig. 8), where we denote them as T,,(=fpH;_, ;), T,,(BH;), T,,(=pH,; j11), T,,(fH 1,), and
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log [SR(®!")

By using Lemma 17 with @,
obtain from Eq. (E11)

=®,=1and M =1, we

log {SR[T,,,(BH,). |} < Cmax(m/¢,.~/m)log(cm)

= O[/log(n/e¢)], (E14)

where C is a constant of O(1) which depends on k.
log [SR(®{").i)] is

log(n/e)]. This result ensures

Therefore, for an arbitrary cut,

bounded from above by O[
that the operator Cbg'ﬁ“
operator with a bond dimension of OV/Ioen/e)]  Because
the operator égmgo satisfies the approximation error of
Eq. (E10), we prove the first part of the statement in
Proposition 22.

In order to prove the second part of the statement, we

consider the computational cost to construct the MPO of
535'",)10 We first note that each of the polynomials 7,,(8H ;)
and T,,(fH; ;) is described by a local MPO with bond

is expressed by a matrix product

dimension D = ¢®V1°2/€)] In the computations of H]q.
and H?. i+1 (@ <m), we can utilize the compression of
the MPO which is based on the singular value decom-
position. Next, recall that we can express arbitrary local
Hamiltonians by the MPO with a constant bond dimension
[112]. Using this result, we recursively construct the
power of the Hamiltonian H{ from H?_l. At each stage
of this recursion, we ensure that the bond dimension is
smaller than D, by compressing the MPO using the sin-
gular value decomposition. By representing the MPO in
the canonical form [112], this compression can be per-
formed efficiently with a computational cost of poly(D)
(since the Schmidt coefficient beyond the rank D is exactly
equal to zero, and the error in this compression is equal to
zero). These procedures allow us to construct the local
MPO of T,(fH;) and T,(BH,;.;) with a run time

of poly(D) = OlVlog(n/e)]

The remaining task is to connect all the local MPOs of
T, (fH;) and T,,(BH; ;) to construct the operator d~>(1':",)lo
in Eq. (E12). From the inequality (E13), the bond dimen-
sion is at most D°, and, hence, the iterative multiplications
of the functions 7', (fH ;) and T, (fH ; ;1) require poly(D)
computational time, which results in the total computa-
tional time of n x poly(D) = ne®WV1oe(W/A)l  This com-
pletes the proof of Proposition 22. [

0’ l)] < lOg {SR[Tm( ﬁHj 1j> ]} + IOg {SR[
+log {SRIT,,(BH,;.1). i1} + log {SR|

To(PH)), i]} + log {SRT,,(=pH, j11). i]}

T (=BH 11 j42), ]} (E13)

3. Proof of the choice (E11)

We prove that the choice of Eq. (E11) achieves the
approximation error (E9). In order to estimate the lhs in
Eq. (E9), we recursively estimate

= |7, 1]l (E15)
where we set ®@,., = ®,., = 1. Because of D, = e PH
as in Eq. (E6), we have ¢, = @ noeﬂH —1||. By using €,
we can calculate the upper bound of €;,;. From
@,.; = e P, we have
" o1  — Hmep-l (e —/}Hqu)(’")q) 1 eﬁH,])
L1014 = P10 %0 +1
~ ) _ ~
= o7, (E16)

where ¥, = ¢! lrf&)ﬁf)l(bjjleﬂ” 1, We then obtain

ci)(lr'rl/?+lq)l_'lj+l —1

= (@17~ (¥, = 1) + (¥, = 1) + (@{)or), - 1),

and, hence,

€j11 L €;0; +€;+ 6, (E17)
where §; := ||¥; — 1||. When we obtain §; <5, we have
€41 < (1 + 0)e; + 6, which yields €, < (1 +8)" — 1. We

here use €, = 0. For 6 < 1/n,, we have

€, < 2n00. (E18)
Therefore, the problem reduces to the estimation of §;.
The operator '¥; includes the imaginary-time evolution
by eH:i but the high-temperature assumption of
p < 1/(8gk) allows us to prove §; < 1. In order to
calculate the upper bound of ||¥; — 1||, we define

T(m) = ¢ PHI: /(I)( )CI) Jrleﬁl-ll ;

J
Y.:=¢ —-pH 1:’(I)j+1q)j+leﬂ i,

J

ey =1, s =¥ -1 (E19)

11_

The above definition implies ‘i‘j -1= ‘P&'")‘I‘j — 1, and,
hence,
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19 - 1)) < gy -
Indeed, we prove the following lemmas.
Lemma 23.—Under the assumption of § < 1/(8gk), we
obtain the upper bound of

81 < (4/3)CO/M B OTL — 1. (B21)

j+1
Here, m is a control parameter and can be chosen
appropriately.

Lemma 24.—Under the assumption of § < 1/(8gk), we
obtain the upper bound of

8j2 < 10g£y2700/ke1095%0/3 < 10g£,27%0/C0 - (E22)

| o!"

— U <ITw(PH ;=)
<|ITw(p

j+1 j+1

Because of HHj—l” < gty and ||H,_, ;|| < 2g7,, we have
T (BH 1 )| < eOV0) = (O30 ol | < (O,

In order to achieve ||<I>]+1CI>]Jrl — 1| < &(4/3)~ /=1 (or
01 <€), we need to choose m such that

| T (=BH 1 P — 1| < 2e"Ol). (E24)

From ||fH;_, ;|| < pgto = O(¢y/k) for p < 1/(8gk), the

above inequality is satisfied by choosing m = O(¢,/k) +
Ollog(1/€)]. The choice of Eq. (E23) implies
m = ¢ log(1/&), (E25)

where ¢ is a constant of O(1).
Under the above choices of £, and m, we obtain & i1 < €
and & o S 6, and, hence, from the inequality (E20), we have

1P, — 1] < 3. (E26)

We thus obtain 6 = 3¢, which reduces the inequality
(E18) to

€y, < 6Eny < 6nE. (E27)

we can obtain the desired

(r )1 and e, This completes

the proof. u

By choosing & =¢/(6n),
precision (E9) between &

DY = 1)+ (¥ - 1)+ (¢ = 1)

T, (—pH;_y j)ePHir1i — 1]e P + T, (BH;_,
,—1)|| |l PRt - ||T,,(—pH -,

where the second inequality is derived from e!%9%%//3 <
2312 < 92/3

Based on the above lemma, we choose the block
size £ as

Lﬂo = Coklog(l/é>, (E23)
where ¢ is a constant such that §;, < 10g£,277/CGK < &
and we fix € (< 1) afterward. Also, in order to upper bound

;1 in Eq. (E21), we need to estimate the norm of

(m
bl 1

= T (BH ;1) Ty (=PH _y ;) e e7PHimr — 1.,

We then obtain

et 1]

.j)eﬂHjil'j - 1” + ||Tm(ﬂHj—1)e_/}Hj71 - 1”

4. Proof of Lemma 23

We here consider an arbitrary operator O¢ supported on
S and derive the upper bound of

_pH,., NP
eﬂHl;jOSeﬂHl:,:Z;) — adf; (Os). (E28)

By using Lemma 13 or the inequality (B18), we can derive

< gk 0g TTUSI/K + (s = 1)),

s=1

ladg, (O] (E29)

where we use the condition that H,.; and H; are k-local
operators as in Eq. (A2). We then obtain

., . . 29kﬁ
leH150geP1]| < || O Z H [S1/k+s = 1]

s=1

—2gkp)~ ISI/k,

= [l0s]|(1 (E30)

where we use the equation of
Do X" /mI L (v + s = 1).

We then choose Og as CD;'?, o7 -

(I-x)7 =
1, which yields
e_ﬂHl:jOSeﬁHlij — Tﬁm) — 1 (E31)

From the definitions (E7) and (E8), we have

EXOF:

,+1q)_ 1= Tm(ﬁHj)Tm(—ﬁHj,j+1)eﬂH"”‘eﬂH-",
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and, hence, the support of this operator satisfies

|Supp(® 5'114’,11)\ <20+ k. (E32)

Therefore, by using the inequality (E30) with
|S| = 2¢, + k, we have

||\P£m 1|| < (4/3) (2¢0/k) +l||q)]+1q)]+l 1”’ (E33)

where we use 1 —2gkfi > 3/4 because of f < 1/(8gk).
This completes the proof of Lemma 23. [

5. Proof of Lemma 24

We here estimate the norm of

W —1=ePMud;, o7 M -1
— (e—ﬂHl:/&)j+leﬂH1;/)(e—ﬂﬁl:_/q);ileﬂlej) —1.
For the estimation, we are going to simplify the operators
e_ﬂHljjéjJrleﬂHljj and e_/’H':KI)JTlleﬂHW.

We first consider e #71:i®;, /1 and start from the
equation of

4

P = (Te Jo " Hime ™y oty (B34)
where 7 is the ordering operator. Then, from
<I>jfl1 = ePHiimie™PHii the above equation reduces
e @7l ePf to the following form:

e PHu@T i = Te I Hﬁ?ndf,
HY) = e Pt (E35)
In a similar way, we can represent e /i1 as
e PHjjm = (Te_foﬂeﬁHij']eTdeT)e_ﬁH", (E36)
and, hence, we have from ®; | := e/fieHisn
e—ﬁﬁlzjd)jﬂeﬁﬁlzj — o—PHy; ’Te‘foﬁe(ﬁ ) 1y le-w—amdf)eﬁ,,l:j

o~ PHL G g

T [Pttty

Pt
— Te JoHhdr (E37)
where we define I:IEQI as
Hﬁ?l = e_/jHl:je(/j_T)HjHj+le‘(ﬂ_‘f)HjeﬁHl:j' (E38)

We now prove the following claim.
Claim 25—Let {A;}Y, and {B-}’V1 e arbitrary
operators. We also define D, ;= —ehiet .. oM and

®@p ;=i eP2¢P1. We then obtain the following upper

bound as

=

@y nPpy — 1] < (E39)

DY " [letet — 1|,

where @ := exp[3_\ (A ]| + || B,]])].
Proof of Claim 25 —By using the triangle inequality, we
first obtain
[@anPpy = 1| < [[Pan-1Ppy-1— 1
+ Dy o (eMePy — 1) @p |
<@ n-1 Pyt — 1] + @l vePy — 1],

(E40)
where we use ||®@4y_i| - [|[@pn_1] < D. By iteratively
applying the above inequality to ||®, Dy, — 1||, we arrive
at the main inequality (E39). n

By using the Trotter decomposition in the expressions
of Egs. (E35) and (E37), we can assign as @,y —
ePHiid;, e and Qpy = e PHu@7] P in the

limit of N — oco. Then, from Lemma 25, we obtain
T B T ~(p—7
W, -1 < (Dﬂ/o 1Y), — BY ) |de, (E41)

where we define @ as

¥ /j T =T
B, = exp ( [+ ||H§-+>1|dr). (E42)

To complete the proof, we need to show the follow-
ing claim.

Claim 26.—Under the assumption of # < 1/(8gk), the
following upper bounds hold:

3 T _
1HS), — BV < 1092200/ (E43)
and
Dy < 0903, (E44)

By applying the above claim to Eq. (E41), we prove
Lemma 24. [

a. Proof of Claim 26

We first estimate the norm of HE +>1 Hﬁ le For this
purpose, we first note that the H;_; is supported on the
subset B;_U{j‘y + 1, jty + 2, ..., jfo + k — 1}, namely,

Supp(Hj_l) C Bju{]fo + 1,jf0 +2, ...,jbﬂo +k},
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where Supp(- - -) denotes the support of the operator. On the other hand, because H ; includes at most k-body interactions,
the support of ad}’,j(Hj 1) is given by

Supplady; (Hj1.1)] € {(j + 1)60 — gk, (j + 1)¢o — gk + 1,.... (j + 1) }UB; 1 UB, 1. (E45)

Therefore, we have

This result implies
ady (Hjy,) =ady (H;y) form <£o/k—1. (E47)
Hence, from the definition (E38) of 7l i1 ), we have
O™y m
,+1 Z Z TadH::jade<Hj+l)
m=0 m,+m,= ! 2:
(—T)’” " . (=A)" (B=7)" my  m
= Y —ady (Hi)+ Y. > ————ady! adj?(Hj.). (E48)
m<tofk—1 M ' m>ofk—1 my+my=m T ma
Therefore, we have the upper bound of
" m ﬁml |ﬁ - T|m2 m ms
||H,+1 ,+1 I < > (%adHl;j(HjH) + 0y m—l,m—z,adHltjadH;(Hj+l)>' (E49)
m>¢y/k—1 : my+my=m : :

The remaining task is to estimate the summations. By applying the inequality (E29) with Oy = hy, we obtain

adyy ad () < (2gk)™ s ( (ESO)

where hy is an interaction operator in H; . From this inequality with m, = 0 and the definition of H;,,, we have

2gkp £o/k-1
> o= Had Sl <kl Y (2gko)™ < % (ES1)
m>¢y/k— 1 m>¢q/k—1
where we use 7 < . From the definition of H;, in Eq. (E7), we have
o . 2gkﬂ o/k—1 gf 2gkﬂ to/k—1
S D adg ()l < PP Sy < S0RIET (E52)
m>tok—1"T" — 2gkp X:XNB 40 = 2gkp
where we use the 3 x.xnp o x|l < Xies, > ox:xsi llhx[| < g|B;| with the condition in Eq. (A2).
In a similar way, we calculate
ﬂ ! |ﬁ - T| m (ml + mZ)' ng(4gkﬁ)f0/k_1
lady) ady’(H i)l < gfo (2gkp)" = ,
m>¢y/k—1 mﬁ%—m ! ¥ m>;/k—l m]-4;=m nmy !mz! 1- 49](,8
(E53)

where we use Y, 1, —[(m1 + my)!/m!m,!| = 2". By applying the inequalities (E51) and (ES3) to Eq. (E49), we obtain

I < < 9C0gkB)VT gt (4gkB) !
i lls 1 —2gkp 1 — 4gkp

(7)
|15, - 7Y, (E54)

Therefore, by using the assumption < 1/(8gk), we prove the inequality (E43).
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The above analyses can also be utilized to estimate the norms of ||H

obtain

@) o~ T
1 ] < Z%

m=0

From the inequality (E53), we can also derive

ﬁ |ﬂ_T| my m f
I < Z Z ladp, adp (H )l <

=0 my+my=

m
ladg;, (Hj )l <

i1/l and HH j+11/- From the inequality (ES1), we first
920
—. E55
T2 (E53)
(E56)

1—4gkp”

By applying the above two inequalities to Eq. (E42) under the assumption < 1/(8gk), we prove the inequality (E44). This

completes the proof of Claim 26.

6. Proof of Lemma 5

We here prove Lemma 5 in the main text, which gives the upper bound of the Schmidt rank of

in Eq. (E12):

M[j - Tm(_ﬁHl)Tm(ﬂHl)Tm(_/BHl.Z)

Tm(ﬂHZ)

M with Mz equal to CTJ(lmio

Tm(_ﬁHZS) e Tm(ﬂHnU—l )Tm(_ﬁHnO—l.n0)1 (E57)

where m and £, are chosen as in Eq. (E11). Our purpose is to prove that, for arbitrary ¢ € N, the Schmidt rank of the gth

power of My is upper bounded by

log[SR(M)] < Cmax(g. /iq) log(ma).

(E58)

As shown in the inequality (E13), for an arbitrary cut, at most five polynomials contribute to the Schmidt rank. We denote

them as T,,(—pH;_, ;). T,,(BH,),

My =T, (-pH,_; ;)

Tm(_ﬂHj,jJrl )s
where

P = Tm(_ﬂHl)
®, = Tm(ﬁHjJrZ)

T, (=BH; 1)

T,,(BH )T, (=pH, ) -
Ty(=PH 5 j43)

T,(pH 1), and T,,(=fH ;4 ji2) (J € [ng]). We then denote My by

T, (BH )T (—PH 11 j12) P2, (E59)
( ﬂH] =2,j— l) m(ﬂH'—1)7
Tm(ﬁHno—l) m(_ﬂHno—l.nU)' (E6O)

Note that the Hamiltonians H; and H ;, are defined on the subsets B; and B;UB;, |, respectively (see Fig. 8). We then
apply Corollary 18 to M" w1th p =5 and ¢ = 2¢. The inequality (C45) gives

SR(Mg) < min [gz?(lomqgk)10q+10£’+(10kmq/2”)] < min [(lomquk)10q+102+(10kmq/2)]_

7:022¢,

We now choose ¢ as

¢ =/kmqg = ] /z—(l)fgq,

where the second equation comes from the choice of

Eq. (E11). Because of the constraint Z < 27, the exponent
q should satisfy

(E62)

q<ﬂf0 _4cok
Cq Cq

log(6n/e). (E63)

(E61)
7:2<2¢,

Under this condition, we can choose Z as in Eq. (E62), and,
hence, we obtain

Mj)] < C'log(mq)|q + \/mq]
< Cy/mqlog(mq),

with C" and C constants of O(1), where we use ¢ Sm
because of ¢ < (2¢y/c;)¢, and £y  m from Eq. (E11).

On the other hand, for g > (4cq/cy)¢y, we cannot
choose ¢, as in Eq. (E62). We here choose # = 2£,, and
obtain

log[SR(
(E64)
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10k 5k
10g + 107 + — _ 10g + 20£, + 224
4 Zo
5¢, 5
< (10 F2 ﬂ) q.  (E65)
€o €o

where we use £y < c¢,q/(4cy) and m/€y = ¢;/(cok) from
Eq. (E11). We thus obtain

log[SR(M})] < Cqlog(mq). (E66)

By combining the inequalities (E64) and (E66), we obtain
the main inequality (E58). This completes the proof. m
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