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One of the most fundamental problems in quantum many-body physics is the characterization of
correlations among thermal states. Of particular relevance is the thermal area law, which justifies the tensor
network approximations to thermal states with a bond dimension growing polynomially with the system
size. In the regime of sufficiently low temperatures, which is crucially important for practical applications,
the existing techniques do not yield optimal bounds. Here, we propose a new thermal area law that holds for
generic many-body systems on lattices. We improve the temperature dependence from the originalOðβÞ to
Oðβ2=3Þ up to a logarithmic factor, thereby suggesting subballistic propagation of entanglement by
imaginary-time evolution. This qualitatively differs from the real-time evolution, which usually induces
linear growth of entanglement. We also prove analogous bounds for the Rényi entanglement of purification
and the entanglement of formation. Our analysis is based on a polynomial approximation to the exponential
function which provides a relationship between the imaginary-time evolution and random walks.
Moreover, for one-dimensional (1D) systems with n spins, we prove that the Gibbs state is well
approximated by a matrix product operator with a sublinear bond dimension for β ¼ o½logðnÞ�. This proof
allows us to rigorously establish, for the first time, a quasilinear time classical algorithm for constructing a
matrix product state representation of 1D quantum Gibbs states at arbitrary temperatures of β ¼ o½logðnÞ�.
Our new technical ingredient is a block decomposition of the Gibbs state that bears a resemblance to the
decomposition of real-time evolution given by Haah et al. [Proceedings of the 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS) (IEEE, New York, 2018), pp. 350–360].
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I. INTRODUCTION

A. Background

One of the most important challenges in quantum many-
body physics is to understand their thermal equilibrium
properties. Recently, with the advent of large quantum
simulators [1–5], the size and controllability of quantum
Gibbs states accessible for experiments have dramatically
improved. In fact, recent experiments have even succeeded

in implementing imaginary-time evolution [6]. These
developments are of considerable interest for quantum
computation, because quantum Gibbs states play crucial
roles in quantum machine learning [7–14] and quantum
algorithms such as semidefinite program solvers [15–17].
Beyond quantum computation, understanding and charac-
terizing quantum Gibbs states is relevant to many open
problems in quantum statistical physics and condensed
matter physics. Thus, understanding (i) the nature of
entanglement structures in quantum Gibbs states and
(ii) their simulability via tensor network methods is of
great interest.
It is now widely accepted that the area law plays a crucial

role [18,19] in the characterization of low-temperature
physics of many-body systems. This law states that the
entanglement entropy between two subsystems is at most
as large as the size of their boundaries. A similar notion also
applies to finite-temperature systems. Although a rigorous
proof of the area law at the zero temperature appears to be a
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notoriously challenging problem [20–27], an analogous
area law at finite temperatures has been proved by Wolf
et al. [28] in a simple and elegant manner. The authors
prove the following inequality:

IðL∶RÞρβ ≤ 2βkH∂Lk ∝ βj∂Lj; ð1Þ

with k � � � k being the operator norm and ∂L being the
surface region of L, where IðL∶RÞρβ is the mutual infor-
mation between the subsets L and R [see Eq. (7) below] and
H∂L denotes the boundary interaction Hamiltonian. The
upper bound (1) roughly denotes that the correlations
between two complementary regions are concentrated
around a distance OðβÞ of their boundary.
The thermal area law (1) is optimal at high temperatures

[β ≈Oð1Þ], because the dependence on j∂Lj cannot be
improved. One may similarly expect that, at low temper-
atures (β ≫ 1), linear dependence on β should be optimal.
This expectation is suggested by the theory of belief
propagation [29], which indicates that the nonlocal quan-
tum effects can be induced in a length scale of OðβÞ.
However, there are no definite numerical or theoretical
examples that achieve the upper bound (1). Indeed, for
specific systems [30–32], we can get much better area-law
bounds than (1). This result motivates the possibility of the
following improvement of the thermal area law (see Fig. 1):

IðL∶RÞρβ ≲ βγj∂Lj ðγ < 1Þ: ð2Þ

Any improvement along these lines is intimately associated
with new advances in our understanding of the low-
temperature physics. For instance, the widely known
relation between area laws and tensor networks suggests
that the identification of the minimum γc would also lead to
optimal representations of Gibbs states. This outcome
would result in faster algorithms for computing local
expectation values and evaluating the partition functions.
We now turn our attention to the simulability of the

quantum Gibbs state. There exists a large number of
classical [29,33–50] and quantum [51–59] algorithms to
study the properties of the quantum Gibbs states. At high
temperatures [β ¼ Oð1Þ], the Gibbs states have numerous
analytical properties, such as the exponential decay of
bipartite correlations [60–65], the large deviation principle
[66–68], and the approximate quantum Markov property
[69,70]. As a consequence, in this temperature regime, the
Gibbs states are proved to be generated by a finite-depth
quantum circuit [58,70], and the quantum partition function
can be computed in polynomial time [70–73].
Unfortunately, at lower temperatures, computational

complexity theory results severely limit the applicability
of the algorithms discussed above. Indeed, computing the
partition function of Gibbs states in two and higher
dimensions is already known to be NP-hard [74,75] (see
also Ref. [76]) except for special cases (e.g., ferromagnetic

spin systems [77,78]). This bottleneck is serious for several
practical applications in which the Gibbs states are
employed at low temperatures. For example, in the quan-
tum algorithm for semidefinite programming [15], the
quantum Gibbs states with β ¼ O½logðnÞ� (n, system size;
β, the inverse temperature) must be sampled. Similar
challenges are faced in the imaginary-time evolution, the
implementation of which is a central aim of near-term
quantum devices [6,79–85]. Thus far, below a threshold
temperature where the cluster expansion technique does not
work [86], little is known about the universal properties of
Gibbs states that may hold independent of the system’s
details. This lack provides a strong motivation to identify
the optimal thermal area laws.

B. Description of the main results

For the first main result of the present study, we prove the
inequality (2) for γ ¼ 2=3. On the other hand, we also prove
the lower bound of γc ≥ 1=5, using the example con-
structed in Ref. [87] (see Sec. III B), which means

1=5 ≤ γc ≤ 2=3:

There are two remarks: (i) The result is applicable only to a
finite-dimensional lattice, while there may be a counterex-
ample in general graph systems [88], and (ii) in high-
dimensional cases, the obtained result is slightly weaker,
as is given by IðL∶RÞρβ ≲ βγj∂Lj logðβγj∂LjÞ (see Theorem
1). To understand why the result is counterintuitive at first
sight, let us consider the case of real-time evolution eiHt. The
small-incremental-entangling (SIE) theorem [89–92] pre-
dicts the linear increase of the entanglement with respect to
time, which translates to the fact that the Schmidt rank of the
operator eiHt grows as eOðtÞ. This result suggests the same
linear dependence for the imaginary-time evolution operator

FIG. 1. Schematic depiction of our problem. By decomposing
the total system into L and R, we consider the mutual information
IðL∶RÞρβ between L and R. Then, the thermal area law in
Ref. [28] gives IðL∶RÞρβ ≲ βj∂Lj (γ ¼ 1 in the above picture).
We aim to establish a new thermal area law in the form of
IðL∶RÞρβ ≲ βγj∂Lj with γ < 1. In particular, it is a highly
nontrivial and fundamental question to identify the best exponent
γc for which the thermal area law holds in generic many-body
systems. Our main result provides the nontrivial upper bound
of γc ≤ 2=3.
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e−βH. However, the inequality (2) shows that the scaling of
the exponent is sublinear in β. This result means that the
entropy growth due to the imaginary-time evolution is more
diffusive in nature. We explain this difference in Sec. III A,
which can be traced back to a better polynomial approxi-
mation to e−x compared with e−ix [93]. This polynomial
approximation is caused by a random walk interpretation of
the Chebyshev basis expansion of e−x (see Sec. III A), which
is not available for e−ix. This random walk interpretation
further suggests that the entropy production in the imaginary-
time evolution is diffusive.
The improved area law not only is of fundamental interest

but also provides important insights regarding the efficient
representation of the quantum Gibbs states. In previous
studies [64,94,95], the approximations by matrix product
operators (MPOs) and projected entangled pair operators
(PEPOs) are investigated through cluster expansion tech-
niques. Furthermore, Ref. [95] explicitly gives the PEPO or
MPO construction scheme with the bond dimensions of

D ¼ ðn=ϵÞOðβÞ ðϵ; approximation errorÞ: ð3Þ

If we use the cluster expansion technique, this result is
expected to be the best estimation. However, the polynomial-
size bond dimension of nOðβÞ may still be a significant
overestimation. Improvements are strongly motivated by the
practical use of tensor network techniques in approximating
thermal states [33,41,48], which appears to be much more
successful than is guaranteed by the current analytical
bounds.
Our second main result focuses on classical algorithms

for approximating thermal states in one dimension (1D).
By applying our new analyses, we establish a sublinear
dependence of the bond dimension of the MPO approxi-
mation to the thermal state as

D ¼ eÕðβ2=3ÞþÕ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logðn=ϵÞ

p
� ð4Þ

with ϵ the approximation error, where we write O½n logðnÞ�
as ÕðnÞ by using the notation Õ. The estimated bond
dimension is smaller than any power of (n=ϵ) and is well
suited for numerical simulations.
Finally, we consider the computational complexity of the

construction of the MPO, which approximates 1D quantum
Gibbs states. Establishing provably efficient quasilinear
algorithms for physical systems is a central target in the
field of Hamiltonian complexity [96,97]. The general
difficulty lies in that the existence of an efficient MPO
description (4) does not necessarily imply an efficient
algorithm to find such a description [98,99]. So far, the
state-of-the-art algorithm [95] is based on cluster expan-
sion, and MPO construction requires a computation cost
which is proportional to n × ðn=ϵÞOðβÞ, where the estimated
exponent of (n=ϵ) is usually impractically large. However,
most classical heuristic algorithms employed in practice

usually require only (quasi)linear computational time with
respect to the system size [29,33–50]. We, for the first time,
give a quasilinear time algorithm that constructs the
approximate MPO, with a run time of

n × eÕðβÞþÕ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logðn=ϵÞ

p
�;

which is quasilinear in (n=ϵ) for arbitrary β ¼ o½logðnÞ�.
The rest of this paper is organized as follows. In Sec. II,

we formulate the precise setting and notations used
throughout the paper. In Sec. III, we state the main
theorems on the area law and the MPO approximation.
In addition, in Sec. III A, we show the relationship between
imaginary-time evolution and the random walk, and in
Sec. III B, we show the lower bound on the critical γc. In
Sec. IV, we give the quasilinear algorithm to compute the
MPO approximation of the 1D quantum Gibbs states. We
also provide a brief explanation regarding why the algo-
rithm works well. In Sec. V, we discuss several physical
implications from our analytical techniques. The proofs of
the main statements are given in Sec. VI. Finally, in
Sec. VII, we summarize the paper, along with a brief
discussion. To concentrate on the physics, we provide the
more intricate aspects of the proofs in Appendixes.

II. SETUP AND NOTATION

We consider a quantum system with n qudits, each of
which has a ς-dimensional Hilbert space. We denote the
Hilbert space dimension of a subset S ⊆ Λ, where Λ is a
lattice, by DS. For the present discussion, let us restrict
ourselves to the case of 1D lattice; we consider higher-
dimensional lattices later (see Sec. II A). We define the
Hamiltonian H as follows:

H ¼
Xn
i¼1

hi;iþ1; khi;iþ1k þ khi−1;ik ≤ g; ð5Þ

where hi;iþ1 contains interactions between i and iþ 1 and
k � � � k is the operator norm. By taking the energy units
appropriately, we set g ¼ 1. Here, we assume two-body
interactions of the Hamiltonian, but the generalization to
arbitrary k-body interactions (i.e., k-local Hamiltonian)
with k ¼ Oð1Þ is straightforward (see Appendix A). For
an arbitrary operator O, we define the Schmidt rank
SRðO; iÞ as the minimum integer such that

O ¼
XSRðO;iÞ

m¼1

O≤i;m ⊗ O>i;m; ð6Þ

where fO≤i;mg and fO>i;mg are operators acting on subsets
fjgj≤i and fjgj≥iþ1, respectively. Note that the Schmidt
rank SRðhi;iþ1; iÞ is always smaller than the local Hilbert
dimension ς [i.e., SRðhi;iþ1; iÞ ≤ ς].
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Throughout the paper, we focus on the Gibbs state ρβ
with an inverse temperature β:

ρβ ¼
e−βH

trðe−βHÞ :

To extend the concept of the entanglement area law from
the ground states to finite temperatures, we often utilize the
mutual information IðL∶RÞρ as in Ref. [28]. The mutual
information IðL∶RÞρ reduces to entanglement entropy
when ρ is given by a quantum pure state. For an arbitrary
decomposition of the total system Λ into Λ ¼ L ∪ R, it is
defined as

IðL∶RÞρβ ≔ SðρLβ Þ þ SðρRβ Þ − SðρβÞ; ð7Þ
where Sð� � �Þ is the von Neumann entropy, i.e., SðρÞ ≔
−tr½ρ logðρÞ�, and ρLβ ðρRβ Þ is the reduced density matrix in
subsets L (R). We define the subsets L and R as L ¼
f1; 2;…; i0g and R ¼ fi0 þ 1; i0 þ 2;…; ng, respectively.
Then, the boundary Hamiltonian H∂L is given by hi0;i0þ1,
which gives the previously known thermal area law (1) of

IðL∶RÞρβ ≤ 2βkhi0;i0þ1k: ð8Þ
For a more detailed characterization of the structure of

the quantum Gibbs state, we focus on the MPO represen-
tation. We aim to approximate the Gibbs state ρβ by the
following operator:

MD ¼
Xς

s1 ;s2 ;…;sn¼1

s1
0 ;s2 0 ;…;s0n¼1

trðA½s1;s1 0�
1 A½s2;s2 0�

2 � � �A½sn;s0n�
n Þ

js1; s2;…; snihs10; s20;…; s0nj; ð9Þ

where each of the matrices fA½si;s0i�
i gi;si;s0i is described by the

D ×D matrix. We refer to the matrix size D as the bond
dimension. By choosing D to be sufficiently large as
D ¼ eOðnÞ, we can describe arbitrary operators in the form
of MPO; however, only a relatively small bond dimension
is often required in practical applications [e.g., D ¼ oðnÞ].
To relate this requirement to the mutual information, notice
that IðL∶RÞ can, in general, be bounded by the bond
dimension of the purification. For the subclass of MPOs
with local purifications [28], this bound cannot exceed
2 logD for an arbitrary decomposition Λ ¼ L⊔R, although
no upper bound exists for general MPOs [100,101]. To
circumvent this difficulty, we directly give a bound on the
bond dimension of a purification that scales as Eq. (4) (see
Sec. VI A). The primary problem is to estimate how large
the bond dimension needs to be to achieve a certain
precision error.
In quantitatively estimating the approximation error, we

utilize the Schatten p-norm, which is defined for arbitrary
operator O as follows:

kOkp ≔ ½trðO†OÞp=2�1=p: ð10Þ

Note that kOk1 corresponds to the trace norm and kOk∞
corresponds to the standard operator norm, which we
denote by kOk for simplicity. WhenO is a density operator,
it is a common practice to consider the trace norm (i.e.,
p ¼ 1) for the approximation error. However, for estimat-
ing approximation errors in the present context, calcula-
tions in terms of the general Schatten p-norm are crucially
important. For example, let us consider the situation where
we have obtained a good approximation forO by Õ and are
interested in approximating Os by Õs. In order to achieve
kOs − Õsk1 ≪ 1, we need to prove kO − Õks ≪ 1; evi-
dently, approximation solely in terms of the trace norm is
not sufficient. This point is clarified in Lemmas 11 and 12
in Appendix B, which are based on the analyses in
Ref. [95]. This kind of the technique is crucial in devel-
oping a quasilinear time algorithm for the quantum Gibbs
states (Sec. IV).
The state-of-the-art results [95] ensure the existence of

MD such that kρβ −MDk1 ≤ ϵ with the bond dimension as
in Eq. (3). The bond dimension D is roughly related to the
mutual information IðL∶RÞρβ as IðL∶RÞρβ ≲ logðDÞ, and,
thus, the estimation (3) implies the area-law bound
of Eq. (8).

A. High-dimensional setup

In extending to the high-dimensional systems, we con-
sider a quantum system on a d-dimensional rectangular
lattice with d the spatial dimension (we note that our
analysis can also be applied to other lattices). For simplicity
of notation, we consider nearest-neighbor interactions as
follows:

H ¼
X
hi;ji

hi;j; max
i∈Λ

X
j

khi;jk ≤ g; ð11Þ

where hi; ji denotes the pairs of adjacent qudits and k � � � k
is the operator norm. By taking the energy unit appropri-
ately, we set g ¼ 1.
For convenience, we consider a vertical cut of the total

system (see Fig. 1, for example); however, the same
argument can be applied to a rectangular cut. For any
partition Λ ¼ L⊔R, we define an upper bound with the size
of the surface region as j∂Λj, which is as large as
Oðn1−1=dÞ. Note that j∂Λj ¼ 1 in the 1D lattice.

III. IMPROVED THERMAL AREA LAW

We first show our main result in the thermal area law.
The following theorem holds for arbitrary lattice
dimensions.
Theorem 1.—For an arbitrary cut Λ ¼ L ∪ R, the mutual

information IðL∶RÞρβ is upper bounded by
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IðL∶RÞρβ ≤ Cβ2=3j∂Λj½log2=3ðj∂ΛjÞ þ logðβÞ�; ð12Þ

where C is a constant of Oð1Þ. In particular, for one-
dimensional systems (j∂Λj ¼ 1), we have

IðL∶RÞρβ ≤ Cβ2=3 logðβÞ ¼ Õðβ2=3Þ: ð13Þ

We show the proof in Sec. VI A. The above result has a
logarithmic correction of logðj∂ΛjÞ to the area law in high
dimensions. Even then, for β ≳ log2ðj∂ΛjÞ, our result
provides a qualitatively better upper bound than the
previous one (1). We expect that this correction should
be removed using refined analyses on the Schmidt rank for
polynomials of the Hamiltonian.
Moreover, for the MPO representation of the 1D quan-

tum Gibbs states, we obtain the following theorem.
Theorem 2.—For arbitrary 1D quantum Gibbs state ρβ,

there exists a MPO MD as in Eq. (9) such that, for the
Schatten p-norm with p ¼ 1 and p ¼ 2,

kρβ −MDkp ≤ ϵkρβkp ð14Þ

with

D ≤ exp½q̃�ϵ logðq̃�ϵÞ�; ð15Þ

where q̃�ϵ ≔ C0
0max fβ2=3; ½β logðβn=ϵÞ�1=2g.

This proof is shown in Sec. VI B. We believe that the
aboveMPO could also be used to construct a quantum circuit
with depth polynomial in the stated bond dimensions. As far
as we know, explicit constructions of quantum circuits for
generic MPOs [or matrix product states (MPSs)] have been
an open problem except for special cases [102–104].
We remark on the generalization to high-dimensional

cases. As for the MPO representation, we can improve the β
dependence of the bond dimension in high dimensions.
However, the MPO representation for high-dimensional
systems is not useful, since the bond dimension is inher-
ently subexponentially large with respect to the system size.
For an arbitrary bipartition Λ ¼ L⊔R, the bond dimension
scales as eOðβ2=3Þj∂Λj ¼ eOðβ2=3Þn1−1=d . In order to obtain a
meaningful representation for a high-dimensional Gibbs
state, we need to consider the PEPO [64,94,95]. We
expect that the bond dimension of the PEPO might be
also sublinear as Eq. (15) in order to achieve a good
approximation (14). So far, this remains open and one of
the most important future directions (see also Sec. VII).
Now, we discuss the key principles that allow us to

improve the original thermal area law (see Appendix C
for the details). Our analysis utilizes various recent tech-
niques employed in the proofs of the area law for ground
states [23,26,27]. Inspired by these studies, we construct
an approximation of the quantum Gibbs state using an
appropriate polynomial of low degree [93] and then
perform a Schmidt-rank analysis adapted from Ref. [23].

As mentioned in the introduction, the main insight is that
the polynomial used by us satisfies the random walk
property, which we explain below.

A. Physical intuition from the random walk behavior

Before the main discussion, let us consider an illustrative
example of the random walk behavior in imaginary-time
evolution. We here consider a one-particle tight-binding
model as

H ¼
XR
x¼−R

ðjxihxþ 1j þ jxþ 1ihxj − 2jxihxjÞ; ð16Þ

where jxi is the state of the particle on site x. Then, the real-
time Schrödinger equation gives the ballistic propagation of
the particle. We consider a time-evolved quantum state
j0ðtÞi ¼ e−iHtj0i, where the initial state j0i is the localized
state on x ¼ 0. In Fig. 2(a), we show the fluctuation of
the position, which is given by the square root of the
variance VarðXÞ≔ h0ðtÞjX2j0ðtÞi− ½h0ðtÞjXj0ðtÞi�2, where
X ¼ P

R
x¼−R xjxihxj. In contrast, the imaginary-time

Schrödinger equation is formally equivalent to the random
walk differential equation. Hence, the fluctuation for the
state j0ð−iβÞi ¼ e−βHj0i grows diffusively with time t [see
Fig. 2(b)]. This result indicates that the imaginary-time
evolution may generally induce a diffusive propagation of
information in quantum many-body systems. In the follow-
ing sections, we mathematically justify this intuition.
Suppose x is fixed to be in a range ½0; b�. As shown in

Ref. [93], e−x can be approximated by a polynomial of
degree Oðb1=2Þ, for a constant error. This approximation is
the consequence of a random walk that is concentrated
around degree Oðb1=2Þ after b steps. Let us introduce y ∈
½−1; 1� such that x ¼ bð1þ yÞ=2 and e−x ¼ ðe−ð1=2Þð1þyÞÞb.
Below, we show that the exponential function e−bð1þyÞ=2
(b ∈ N) can be expanded in terms of the Chebyshev
polynomials as (see also Fig. 3)

FIG. 2. Comparison between real-time evolution and imaginary
time evolution in the tight-binding model (16) with R ¼ 500. In
(a) and (b), we plot the fluctuation of the position

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞp

after
the real and imaginary time evolutions, respectively. Here, the
state at the initial time is given by j0i. The fitting functions for (a)
and (b) are given by

ffiffiffi
2

p
t and 0.998769β1=2, respectively. This

clearly indicates that the real-time evolution induces a ballistic
propagation, whereas the imaginary-time evolution induces a
diffusive propagation.
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ðe−ð1=2Þð1þyÞÞb ¼
X∞

rb¼−∞
PðrbÞTrbðyÞ

¼
X∞

rb¼−∞

�
pðrbjrb−1Þ

X∞
rb−1¼−∞

pðrb−1jrb−2Þ � � �
X∞

r2¼−∞
pðr2jr1Þ

X∞
r1¼−∞

pðr1jr0Þ
�
TrbðyÞ ð17Þ

with r0 ¼ 0, where TrðxÞ is the Chebyshev polynomial and
pðrjr0Þ is a random walk probability from rb−1 to rb which
is defined below.
For its application to e−βH, we choose b ¼ βkHk.

Because the Schmidt rank and polynomial degree are
closely related [23], we get a diffusive interpretation of
the Schmidt rank of e−βH. We thus infer a sublinear β
dependence of the mutual information, namely, γc < 1.
There are two main issues while achieving this value. First,
the above polynomial gives an approximation to e−βH only
in the operator norm, whereas we are searching for an
approximation in a family of norms. Second, even for a
constant error approximation in the operator norm, degreeffiffiffi
b

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
βkHkp

scales with the system size. We solve both
the problems using the quantum belief propagation in 1D
and a refined version of Suzuki-Trotter decomposition in
higher dimensions, which allows us to reduce the problem
to a local Hamiltonian HS, where S is a much smaller
region. The loss incurred because of the belief propagation
and the conversion from the operator norm to other norms
leads to our main result of γc ≤ 2=3.

1. Derivation of Eq. (17)

As a first step, we expand

e−ð1=2Þð1þyÞ ¼
X∞
j¼0

e−1=2

2jj!
· ð−yÞj; ð18Þ

which is an expectation of ð−yÞj according to the distri-
bution qðjÞ ≔ ðe−1=2=2jj!Þ. Next, we introduce Chebyshev
polynomials TrðyÞ (for an integer r) and utilize the
observation from Ref. [93] that, for j > 0 and integer k,

ð−yÞjTrð−yÞ ¼
X∞

r0¼−∞

Bjðr0jrÞTr0 ð−yÞ;

Bjðr0jrÞ ¼ 2−j
�

j
ðjþ r0 − rÞ=2

�
; ð19Þ

where we set ð j
sþ1=2Þ ¼ 0 (s ∈ N) and ðjsÞ ¼ 0 for s < 0 and

s > j. Here, Bjðr0jrÞ is the binomial distribution which is
centered at r with a variance of

ffiffi
j

p
(see also Ref. [105]).

Now, we have all the tools to set up the random walk over
integers. By combining Eqs. (18) and (19), we start with the
first random walk step of

e−ð1=2Þð1þyÞ ¼
X∞

r1¼−∞
pðr1j0ÞTr1ðyÞ; ð20Þ

where the symmetric distribution pðr1j0Þ [with
mean 0 and variance Oð1Þ] is defined using pðr1j0Þ ≔P∞

j¼0 qðjÞBjðr1j0Þ. The subsequent steps are obtained by
writing

Tr1ðyÞe−ð1=2Þð1þyÞ ¼
X∞
j¼0

e−1=2

2jj!
· Tr1ðyÞð−yÞj

¼
X∞

r2¼−∞
pðr2jr1ÞTr2ðyÞ

with pðr2jr1Þ ≔
P∞

j¼0 qðjÞBjðr2jr1Þ. One can show that
the function pðr2jr1Þ is symmetric around its mean r1 and
has a variance of 0.5 [see Fig. 3 for the shape of pðrj2Þ]. By
repeating the process, we can arrive at Eq. (17). Thus,
ðe−ð1=2Þð1þyÞÞb is an expectation over TrðyÞ, according to a
distribution obtained by performing b steps of a symmetric
random walk with constant variance. It is now clear that the
degree is strongly concentrated around Oðb1=2Þ. This
random walk behavior is not available for eix, because
the distribution pðr2jr1Þ is not given by a real number. It
leads to OðbÞ approximate degree for real-time evolution.

FIG. 3. Schematic picture of the random walk. The exponential
function e−bð1þyÞ=2 is given by the expectation of TrbðxÞ with the
probability PðrbÞ, as in Eq. (17). The probability PðrbÞ is
generated from the b-step random walk. In each step, the
probability from r to r0 is given by pðr0jrÞ, which is a symmetric
function around r. In the picture, we give the numerical plot of
pðrj2Þ, where the shape of pðrjr0Þ does not depend on r0.
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B. Lower bound on the critical γc
We here show that the exponent γ in Eq. (2) is at least

larger than 1=5. According to Ref. [87], there exists a
frustration-free local Hamiltonian system with n qudits
(ς ¼ 3) such that the half-chain entanglement entropy is
linear in system size n, and the spectral gap Δ is given as

Δ ¼ cΔ
n4 log n

; ð21Þ

where cΔ is a constant of Ωð1Þ. For this Hamiltonian, let us
consider a quantum Gibbs state at the inverse temperature
of β ¼ 2c−1Δ logðςÞn5 log n. Then, the total weight of the
excited state is at most as large as ςne−βΔ ¼ e−n logðςÞ.
Therefore, this Gibbs state is exponentially close to the
ground state. Using the Fannes inequality [106], the half-
chain mutual information in the Gibbs state is

IðL∶RÞρβ ¼ ΩðnÞ ¼ Ωð1Þ
log1=5 β

β1=5; ð22Þ

which implies that IðL∶RÞρβ should be at least larger

than β1=5.

IV. QUASILINEAR TIME ALGORITHM
FOR 1D GIBBS STATE

A. Main statement

Here, we show that the classical algorithm generating an
MPO approximation of the Gibbs state ρβ is possible with a
run time of Oðn1þoð1ÞÞ as long as β ¼ o½logðnÞ�. We prove
the following theorem.
Theorem 3.—For arbitrary β, we can efficiently compute

a matrix product operator Mβ which approximates e−βH in
the sense that

kMβ − e−βHkp ≤ ϵke−βHkp ðϵ ≤ 1Þ; ð23Þ

where the bond dimension ofMβ is given by expðQϵÞ. Also,
the computational time to calculate Mβ is nβ expðQϵÞ with

Qϵ ≔ Cmax½β;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logðn=ϵÞ�

p
log½β logðn=ϵÞ�; ð24Þ

where C is an Oð1Þ constant. When β ≲ logðn=ϵÞ and
ϵ ¼ 1=polyðnÞ, the time complexity is given by

n exp fÕ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logðnÞ�

p
g: ð25Þ

We compare the bond dimensions ofMðβ=β0Þ
β0

with that of
the theoretical bound in Eq. (15). For β ≲ logðnÞ, both
estimations are in the form of eÕ½

ffiffiffiffiffiffiffiffiffiffiffi
β logðnÞ

p
�, whereas for

β ≫ logðnÞ, the estimation (15) gives a slightly bet-
ter bound.

B. MPO for ground space

We also discuss the consequences regarding the calcu-
lation of quantum ground states. Let us assume the
following condition for the density of states in an energy
shell ðE − 1; E� for the low-energy regime [107–109]:

N E;1 ≤ ncE ð26Þ

with c a constant of Oð1Þ, where N E;1 is the number of
eigenstates within the energy shell of ðE − 1; E�. This con-
dition is typically observed for quantum Hamiltonians
which have a spectral gap between the ground state and
the first excited state [107]. Under this assumption, the
quantum Gibbs state is approximated by the ground state
up to an error of 1=polyðnÞ for β ¼ O½logðnÞ�; i.e.,
kρβ − ρ∞k1 ¼ 1=polyðnÞ. Then, the computation of the
quantum Gibbs state for β ¼ O½logðnÞ� is closely related to
the computation of ground states.
By applying β ¼ O½logðnÞ� to Eq. (25), we obtain the

time complexity of an almost polynomial form, as
nO½log logðnÞ�. This result rigorously justifies the empirical
success of the imaginary-time-evolving block decimation
(TEBD) methods in the computation of the ground states
[43,45,47,48]. Our estimation, however, is still slightly
worse than the polynomial form (i.e., nOð1Þ). In the case of
the gapped ground states, the existing algorithms [98,99]
already achieve polynomial computational costs without
the assumption (26). Any small improvement of Eq. (25)
will allow us to obtain a quasilinear time algorithm for the
computation of the ground states under the assumption
of Eq. (26).

C. Details of the algorithm and proof of Theorem 3

The algorithm proceeds as follows. Suppose we are at a
high temperature β0 ≤ 1=16. First, the 1D Hamiltonian is
split into blocks of length l0 ¼ O½logðn=ϵÞ�, as

H ¼
Xn0
j¼1

Hj; Hj ¼
Xjl0

s¼ðj−1Þl0þ1

hj;jþ1; ð27Þ

where n0 is the number of blocks. We then write e−βH as
follows:

e−βH ¼
Yn0
j¼1

eβ0H1∶j−1e−β0H1∶j ≕
Yn0
j¼1

Φj; ð28Þ

where H1∶j ¼
P

s≤j Hs and H1∶0 ¼ 0̂. Here, the operator
Φj is the nonlocal operator on the qudits f1; 2;…; jl0g. We
first approximate Φj by the following operator on the local
region:

Φ̃j ¼ eβ0Hj−1e−β0ðHj−1þHjÞ: ð29Þ
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The second approximation is the low-degree polynomial
expression of Φ̃j:

Φ̃ðmÞ
j ¼ Tmðβ0Hj−1ÞTm½−β0ðHj−1 þHjÞ�; ð30Þ

where TmðxÞ ¼
P

m
s¼0 x

m=m! is the truncated Taylor expan-
sion of the order of m ¼ O½logðn=ϵÞ�.
Using the above notation, we can approximate the high-

temperature Gibbs state by

Mβ0 ≔
Yn0
j¼1

Φ̃ðmÞ
j : ð31Þ

We illustrate this construction in Fig. 4. We notice that
our construction resembles the decomposition of the real-
time evolution developed in Ref. [110]. Crucially, this
approximation is justified using an imaginary-time version
of the Lieb-Robinson bound (see Appendix E 1 for
the proof).
Proposition 4.—For β ≤ 1=16, Eq. (31) gives the

approximation of the Gibbs state up to an error of

kMβeβH − 1k ≤ ϵ; ð32Þ

where Mβ has the bond dimension of eÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�.

The sufficient computational time for the construction is
given by

n exp fÕ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�g: ð33Þ

We notice that the inequality (32) immediately reduces to

kMβ − e−βHkp ≤ ϵke−βHkp ð34Þ

for an arbitrary positive p.
The computational time (33) is qualitatively explained as

follows. The operator Mβ0 is a product of degree-m
polynomials TmðxÞ. From Ref. [23], the Schmidt rank

of each of fΦðmÞ
j gn0j¼1 in Eq. (31) is upper bounded by

mOð ffiffiffi
m

p Þ ∼ logðnÞ
ffiffiffiffiffiffiffi
log n

p
along every cut. Because fΦðmÞ

j gn0j¼1

are locally defined, for every cut, a constant number of

operators in fΦðmÞ
j gn0j¼1 contribute to the Schmidt rank.

Therefore, the computational time to construct Mβ0 is at

most neÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�.

To extend this result to arbitrary β, we utilize the
following upper bound (see Lemma 12 in Appendix B),
which slightly extends the analyses in Ref. [95]:

ke−2qβ0H − ðM†
β0
Mβ0Þqkp ≤ 3ϵ0qe3ϵ0qke−βHkp ð35Þ

for arbitrary positive integers q and p, where Mβ0 satisfies
the inequality (34) with ϵ ¼ ϵ0 for arbitrary p ∈ N. We get
e−βH ¼ ðe−β0HÞðβ=β0Þ and then multiply the above MPO
construction β=β0 times, where β0 is appropriately chosen
so that β=β0 becomes an even integer [i.e., q ¼ β=ð2β0Þ].
To make 3ϵ0qe3ϵ0q ≤ ϵ (≤ 1), we need to choose
ϵ0 ¼ ϵ=ð6qÞ ¼ ϵβ0=ð3βÞ.
By extending the Schmidt-rank estimation in Ref. [23],

we can ensure that the Schmidt rank ofMðβ=β0Þ
β0

is at most as
large as expðQϵÞ. In more detail, we can prove the
following lemma (see Appendix E 6 for the proof).
Lemma 5.—Let Mβ be an approximate operator

that has been defined in Eq. (31). Then, for arbitrary
q ∈ N, the Schmidt rank of the power of Mβ is upper
bounded by

FIG. 4. Our algorithm proceeds by iterated approximations of e−β0H , performed β=β0 times. In each step, we approximate the Gibbs
operator e−β0H by the operator Mβ0. For this approximation, we establish a decomposition of e−β0H as a product of operators shown on
the right-hand side. This decomposition uses an imaginary-time version of the Lieb-Robinson bound and the Taylor truncation of the
exponential function.
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log½SRðMq
βÞ� ≤ C0 maxðq; ffiffiffiffiffiffiffi

mq
p Þ logðmqÞ ð36Þ

for an arbitrary cut, where C0 is an Oð1Þ constant.
Because m has been chosen as m ¼ O½logðn=ϵÞ�, this

upper bound is proportional toQϵ for q ¼ OðβÞ. Therefore,
the quantum Gibbs state e−βH is well approximated by the
MPO, with its bond dimensions of expðQϵÞ.
We have already prepared the MPO form of Mβ0 in

Proposition 4. Using the standard results regarding the
canonical form of MPOs [111,112], we can efficiently
calculate Mq

β0
(q≲ β) from Mq−1

β0
in a computational time

of at most poly½expðQϵÞ�.We notice that, in each of the steps,
we can compress the MPO without any truncation error so
that the bond dimension ofMq

β0
is smaller than the bound in

Eq. (36). By recursively constructing Mq
β0
, the computation

of Mðβ=β0Þ
β0

requires the time steps as many as Eq. (25). We
thus prove Theorem 3. ▪
Finally, let us compare our method with the imaginary-

time-evolving block decimation (TEBD) methods
[33,41,48], which proceed by truncation of the Schmidt
rank at each imaginary-time Trotter step. A major limitation
of these studies is the lack of rigorous justification of the
Schmidt-rank truncation, as explained below.
In the TEBD algorithms [48], we start with a matrix

product operator M1 which gives the approximation of
e−β1H for a certain β1. We then connect two MPOs as
M†

1M1, which is expected to approximate e−2β1H. To ensure
the precision of approximation, we use Lemma 11 for the
MPOM1, which necessitates the approximation in terms of
general Schatten p-norm. Now, the main technical diffi-
culty comes from the Schmidt-rank truncation of M†

1M1,
which gives MPO M2 in the next step. After the Schmidt-
rank truncation, we connect M†

2M2 to approximate the
Gibbs state e−4β1H. However, to ensure the good approxi-
mation from Lemma 11, we have to truncate the Schmidt
rank of M†

1M1 so that M2 is close to M†
1M1 in terms of

the general Schatten p-norm. The Schmidt-rank trunca-
tion based on the singular value decomposition ensures
only the approximation in terms of Schatten 2-norm,
as in Lemma 1 in Ref. [113]. So far, we have no
mathematical tools to perform Schmidt-rank truncation,
which guarantees approximation in terms of the general
Schatten p-norm. In summary, even though the quantum
Gibbs state can be approximated by an MPO with a small
bond dimension, it is highly nontrivial to show whether
the truncation of the Schmidt rank retains the good
approximation.
We can circumvent this problem by constructing e−β0H

as a product of local polynomial approximations, which

covers the whole chain. Thus, the operatorMβ0 (orM
ðβ=β0Þ
β0

)
has a finitely bounded Schmidt rank, and we do not
need to approximate it further using the Schmidt-rank
truncation.

V. FURTHER DISCUSSIONS

A. Rényi entanglement of purification

To characterize the bipartite correlations beyond mutual
information, we also consider the Rényi entanglement of
purification Ep;α [114], defined as follows.
Definition 1.—Let Λ0 be a copy of the total system with

the Hilbert space H0. For an arbitrary quantum state σ, we
define Ep;αðσÞ for the partition Λ ¼ L ∪ R as

Ep;αðσÞ ≔ inf
jϕi∈H⊗H0

EαðϕÞ;

EαðϕÞ ¼ SαðσL;L0 Þ; ð37Þ

where jϕi is the purification of σ [i.e., trΛ0 ðjϕihϕjÞ ¼ σ],
Sαð·Þ is the Rényi entropy, and σL;L0 ≔ trR;R0 ðjϕihϕjÞ,
namely, SαðσL;L0 Þ ¼ ð1=1 − αÞ log½trðσαL;L0 Þ�.
A bound on the Rényi entanglement of purification

imposes a stronger restriction to the structure of the
quantum state than the mutual information in Eq. (7).
For instance, Ref. [115] shows that an upper bound on the
entanglement of purification of a 1D system guarantees an
efficient approximation by MPOs.
The mutual information IðL∶RÞρβ is related to the

Rényi entanglement of purification with α ¼ 1 (see
Ref. [116]):

IðL∶RÞσ ≤ 2Ep;1ðσÞ: ð38Þ

We also present an upper bound on this quantity as
follows (see Sec. VI A for the proof).
Theorem 6.—For arbitrary nonzero 0 < α ≤ 1, the Rényi

entanglement of purification Ep;α is upper bounded as
follows:

Ep;αðρÞ ≤ C̃0max

�
β2=3 logðβÞ; ð1 − αÞβ

α
log

�
β

α

��
: ð39Þ

The above upper bound implies that, for α < 1, the
entanglement scaling may be linear to β instead of β2=3.
This result can be explained as follows. To calculate the
Rényi entanglement of purification, we need to obtain the
MPO which has an approximation error ϵ such that
Dϵϵ

α ≲ 1, where Dϵ is the bond dimension to achieve
error ϵ. From the MPO with this property, we have

Ep;αðρÞ ≲ logðDϵÞ. Because of Dϵ ≲ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logð1=ϵÞ

p
, the con-

dition Dϵϵ
α ≲ 1 reduces to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logð1=ϵÞp

− α logð1=ϵÞ≲ 0

or logð1=ϵÞ ≳ β=α2, which gives logðDϵÞ ≈ β=α.
Let us compare our result to those of previous studies

[64,94,95]. The bond dimension scales as D ¼ ð1=ϵÞOðβÞ.
By using this estimation, there exists a critical αc
[¼ 1 −Oðβ−1Þ] that violates the finite upper bound of
Ep;αðρÞ for α < αc.
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B. Convex combination of matrix product states

Reference [117] shows that the thermal state can be
expressed as a convex combination of MPSs with bond
dimension scaling doubly exponentially with β. We can
prove the following corollary, which substantially improves
their main result (see Sec. VI C for the proof).
Corollary 7.—The quantum Gibbs state ρβ is given by a

convex combination of the matrix product states in the
following sense:

����ρβ −
XDΛ

i¼1

pijMiihMij
����
1

≤ ϵ; ð40Þ

where fjMiig are matrix product states with the bond
dimension of

D ¼ exp½Õðq̃�ϵÞ�; ð41Þ

where q̃�ϵ has been defined in Theorem 2.
This result can be used to justify the minimally entangled

typical thermal states algorithm [33] and the algorithm of
Ref. [118] (see also Ref. [117] for more detailed motiva-
tions to study the convex combinations of MPSs). Using
our bounds, we provide further analytical evidence regard-
ing why these work in practice.
A related quantity in the study of mixed-state entangle-

ment is the entanglement of formation. It captures the
“average bond dimension” in the convex combination
shown in Eq. (40) and can be defined as follows.
Definition 2.—Let Λ0 be a copy of the total system with

the Hilbert space H0. For arbitrary quantum state σ, we
define Ef;αðσÞ for the partition Λ ¼ L ∪ R as

Ef;αðσÞ ≔ inf
X
i

piSαðσðiÞL Þ; ð42Þ

where again Sαð·Þ is the Rényi entropy and the minimiza-
tion is over all pure-state decompositions σ ¼ P

i piσ
ðiÞ.

Entanglement of formation is upper bounded by the
entanglement of purification [114] (see also Ref. [119]):

Ef;αðσÞ ≤ Ep;αðσÞ; ð43Þ

where the equality holds for pure states. When σ is given by
the quantum Gibbs state ρβ, an upper bound follows from
Theorem 6:

Ef;αðρβÞ ≤ C̃0max

�
β2=3 logðβÞ; ð1 − αÞβ

α
log

�
β

α

��
:

C. Real-time evolution

Our analyses can be partially applied to real-time evolu-
tion. In this case, we approximate the unitary time evolution

e−iHt instead of the quantum Gibbs state e−βH. The most
essential difference is that the random-walk-like behavior
[i.e., Eq. (17)] cannot be justified. Mathematically, the
polynomial approximation based on Eq. (17) (see also
Lemma 15) is applicable only to imaginary-time evolution.
Hence, the MPO approximation of e−iHt requires the bond
dimensions of eOðtÞ instead of eOðt2=3Þ. This requirement is
expected and consistent with the numerical calculations and
the theoretical upper bound [89–92].
Still, our results on the quasilinear time algorithm can be

also applied to real-time evolution, where we utilize
only the Taylor expansion (30). Let us approximate the
unitary time evolution e−iHt by using a MPO Mt. For an
arbitrary quantum state jψi, we obtain

kðMt − e−iHtÞjψik ≤ kMt − e−iHtk∞:

Recall that the Schatten norm with p ¼ ∞ is equivalent to
the operator norm. Hence, by applying Theorem 3 to the
case of β ¼ it and p ¼ ∞, we can obtain the following
corollary.
Corollary 8.—For arbitrary t, we can efficiently compute

a matrix product operatorMt that approximates e−iHt in the
sense that

kMt − e−iHtk ≤ 1=polyðnÞ; ð44Þ
where the bond dimension of Mt is given by exp fÕðjtjÞ þ
Õ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijtj logðnÞp �g. The computational time to calculateMt is
given by

n exp fÕðjtjÞ þ Õ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtj logðnÞ

p
�g: ð45Þ

For jtj≲ logðnÞ, our result gives a quasilinear com-
putational cost for n; thus, it is better than the previous
computational cost eOðtÞþO½logðn=ϵÞ�, which is derived
from the Lieb-Robinson bound [120,121]. However, for
jtj ≳ logðnÞ, the computational cost (45) grows exponen-
tially with t and has the same limitation as the previous
methods.

D. Entanglement rate by imaginary-time evolution

The quantum Gibbs state is regarded as an imaginary-
time evolution of the uniformly mixed state, namely,
ρβ ∝ e−β=2ρβ¼0e−β=2. Thus, the entropy-production rate
of the imaginary-time evolution is sublinear with respect
to β. Can we extend it to general quantum states instead of
the uniformly mixed state? Clearly, when we consider the
arbitrary quantum state jψi, the answer is no; that is, the
entanglement generation by e−βH for a given cut (e.g.,
Λ ¼ L⊔R) is usually unbounded. Even if there are no
interactions between L and R or e−βH ¼ e−βHL ⊗ e−βHR,
the entanglement rate can be nonzero if an initial state is
arbitrarily chosen. For example, let us consider the initial
state jψi as
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jψi ¼ C
X
i

eβðEL;iþER;iÞjEL;ii ⊗ jER;ii;

where C is a normalization constant and jEL;ii (jER;ii) is
the eigenstate of HL (HR) with corresponding eigenvalue
EL;i (ER;i). Then, we have

e−βHL ⊗ e−βHR jψi
ke−βHL ⊗ e−βHR jψik ∝

X
i

jEL;ii ⊗ jER;ii;

which is the maximally entangled state. In the above case,
the entanglement entropy is significantly increased by the
Hamiltonian with no boundary-boundary interactions.
In order to obtain a nontrivial result, we here consider the

imaginary-time evolution for a product state jPL;Ri as

jPL;RðβÞi ≔
e−βHjPL;Ri
ke−βHjPL;Rik

: ð46Þ

This setup is feasible in experimental settings [6,82]. When
we consider the real-time evolution (i.e., β ¼ it), the SIE
theorem [91] gives the upper bound for the entanglement
rate as OðtÞ. In contrast, no theoretical studies have given
an upper bound of the entanglement generation by the
imaginary-time evolution. It is an intriguing open problem
whether or not the entanglement rate is finitely bounded for
large β.
Using our current analyses, we can partially answer this

question. To approximate jPL;RðβÞi, we use an operatorOD

that satisfies SRðODÞ ¼ D for the cut of Λ ¼ L⊔R and
approximates jPL;RðβÞi as jPL;RðβÞi ≈ODjPL;Ri. We aim
to estimate the approximation error of jPL;RðβÞi depending
on the Schmidt rank D. Let us set the ground-state energy
of H equal to zero. Then, from the inequality (49) in
Proposition 9 with p ¼ ∞, there exists OD such that

kjPL;RðβÞi −ODjPL;Rik ≤
ϵ

ke−βHjPL;Rik
;

D ¼ eÕðβ2=3ÞþÕ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logðβ=ϵÞ

p
�: ð47Þ

If ke−βHjPL;Rik ¼ Oð1Þ, the entanglement entropy of PL;R

satisfies the same inequality as Eq. (12) and scales as β2=3.
However, in general, the quantity ke−βHjPL;Rik is expo-
nentially small for n, and, hence, the value of ϵ should be as
small as eOðnÞ, which gives the entanglement scaling asffiffiffiffiffiffi
nβ

p
. This result is still nontrivial but is rather worse than

the expected scaling of β2=3.
To improve the bound, a refined approximation error is

required, which is given by the following form of

kODeβH − 1k ≤ ϵ ð48Þ

instead of the approximation ke−βH −ODkp ≤ ϵke−βHkp
for the Schatten p-norm. The approximation of the form of

Eq. (48) can be derived for sufficiently high temperatures
(see Proposition 4). If we can extend Proposition 9 in
Sec. VI to the form (48), we are able to prove that the
entanglement rate by the imaginary-time evolution (46) is
upper bounded by Õðβ2=3Þ.
Finally, we mention that in various cases the entangle-

ment rate can be smaller than Õðβ2=3Þ. In particular, when
the ground state is noncritical (or gapped), the imaginary-
time evolution for e−βHjPL;Ri is expected to rapidly
converge to the ground state [41–48]. Indeed, in the case
where the Hamiltonian is gapped and defined on a spin
chain, there exists a product state which has an Oð1Þ
overlap with the ground state [22,23,27]. If we choose
it as the initial state jPL;Ri, the entanglement entropy
for e−βHjPL;Ri=ke−βHjPL;Rik approaches a constant value
(i.e., the entanglement entropy of the ground state) expo-
nentially fast with β. Thus, the entanglement rate should be
much smaller than Oðβ2=3Þ. It is an intriguing question to
investigate which class of quantum many-body systems
shows a nontrivial entanglement rate for the imaginary-time
evolution.

VI. PROOFS OF THE MAIN THEOREMS

Here we prove Theorems 1 (Theorem 6) and 2 regarding
the thermal area law. For simplicity, we focus on one-
dimensional systems; however, the essence of the proof is
the same in high-dimensional cases (see Appendix D). In
Sec. VI C, we also prove Corollary 7, which is based on
Theorem 2.
Both Theorems 1 and 2 are based on the following basic

approach. We aim to approximate the Gibbs state ρβ by
another operator ρ̂β which has a smaller Schmidt rank for a
given cut Λ ¼ L ∪ R. This approximation is formalized in
the following proposition, which plays a central role in
deriving our main results.
Proposition 9.—Let ϵ be an arbitrary error such that

ϵ ≤ e. Then, there exists an operator ρ̂β which approx-
imates ρβ as follows:

kρβ − ρ̂βkp ≤ ϵkρβkp ð49Þ

for arbitrary p ∈ N, and

SRðρ̂β; i0Þ ≤ exp½q�ϵ logðq�ϵÞ� ð50Þ

with

q�ϵ ¼ C0 max fβ2=3; ½β logðβ=ϵÞ�1=2g; ð51Þ

where C0 is a constant of Oð1Þ.
The proof is shown in Appendix C. For sufficiently small

ϵ, this estimation gives a sublinear dependence of the
Schmidt rank with respect to ð1=ϵÞ. For example, for
ϵ ¼ 1=polyðnÞ, we have SRðρ̂β; i0Þ ≤ nlog

−1=2ðnÞ, which is
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slower than any power of n. If the Schmidt rank of the
approximating operator ρ̂β exceeds eÕðβ2=3Þ, the error ϵ
decays superpolynomially as a function of the
Schmidt rank.

A. Proof of Theorems 1 and 6

Theorems 1 and 6 give upper bounds on the mutual
information and the Rényi entanglement of purification,
respectively. Because of the inequality (38), Theorem 6
includes Theorem 1, once we consider Ep;1ðρÞ. Hence, we
need to prove only Theorem 6.
We start from the purification in the form of

jψi ¼ Z−1=2ðe−βH=2 ⊗ 1̂Þ
XDΛ

j¼1

jjiΛ ⊗ jjiΛ0 ; ð52Þ

where fjjigDΛ
j¼1 is an arbitrary orthonormal basis and we

denote the partition function trðe−βHÞ by Z. Note that from
the above definition trΛ0 ðjψihψ jÞ ¼ e−βH=Z. Then, from
the definition of the Rényi entanglement of purification
(37), we have

Ep;αðρÞ ≤ EαðψÞ: ð53Þ

Next, we estimate an upper bound on EαðψÞ.
From Proposition 9, we can find an approximation ρ̂β=4

of e−βH=4 such that

ke−βH=4 − ρ̂β=4kp ≤ ϵke−βH=4kp ð54Þ

for all p, where the Schmidt rank of ρ̂β=4 is upper bounded
by Eq. (50). Define jψ̃i as

jψ̃i ≔ Z̃−1=2ρ̂†β=4ρ̂β=4 ⊗ 1̂
XDΛ

j¼1

jji ⊗ jji; ð55Þ

where we define Z̃ ≔ trðρ̂†β=4ρ̂β=4ρ̂β=4ρ̂†β=4Þ. Using the

inequality (B9) with p ¼ 2, O ¼ e−βH=4, and Õ ¼ ρ̂β=4,

we first obtain for Z̃1=2 ¼ kρ̂†β=4ρ̂β=4k2

Z̃1=2 ≤ kρ̂†β=4ρ̂β=4 − e−βH=2k2 þ ke−βH=2k2
≤ ð3ϵþ 1Þke−βH=2k2 ¼ ð3ϵþ 1ÞZ1=2; ð56Þ

where we use the triangle inequality in the first inequality.
We then obtain the fidelity between jψi and jψ̃i as
follows:

hψ̃ jψi ¼ Z−1=2Z̃−1=2kρ̂β=4e−βH=4k22
≥

Z−1

3ϵþ 1
kρ̂β=4e−βH=4k22; ð57Þ

where we apply the inequality (56) to Z̃ in the last
inequality. From the triangle inequality, we obtain the
upper bound of kρ̂β=4e−βH=4k2 in the following form:

kρ̂β=4e−βH=4k2 ≥ ke−βH=2k2 − kðρ̂β=4 − e−βH=4Þe−βH=4k2
≥ ke−βHk1=21 − kρ̂β=4 − e−βH=4k4 · ke−βH=4k4
≥ ke−βHk1=21 − ϵke−βH=4k24 ¼ ð1 − ϵÞZ1=2;

ð58Þ

where we use ke−βH=2k2 ¼ ke−βHk1=21 and the Hölder
inequality in the second inequality, in the third inequality
we use the inequality (54), and the last equation is derived
from ke−βH=4k4 ¼ ke−βHk1=41 . By applying inequality (58)
to Eq. (57), we obtain the inequality of

hψ̃ jψi ≥ ð1 − ϵÞ2
3ϵþ 1

≥ 1 − 5ϵ; ð59Þ

which implies

kjψi − jψ̃ik2 ≤ 2 − 2hψ̃ jψi ≤ 10ϵ: ð60Þ

In the following, using the above upper bound, we estimate
the upper bound of Rényi entanglement entropy for
arbitrary α > 0. We consider the cases of α ¼ 1 and α < 1
separately.

1. Case of α= 1

We first consider the case of α ¼ 1. We define jψ̃si as an
approximation of jψi which satisfies

kjψi − jψ̃ sik2 ≤ 1=s2; ð61Þ

where we use Eq. (55) for the representation of jψ̃ si. From
Theorem 1, the Schmidt rank of jψ̃ si, say, Ds, is upper
bounded from above by

Ds ≤ eqs logðqsÞ ð62Þ

with qs ¼ C̃max fβ2=3; ½β logðsÞ�1=2g. We define s̄ as an
integer such that

qs

�¼ C̃β2=3 for s ≤ s̄;

¼ C̃½β logðsÞ�1=2 for s > s̄;

where s̄ is in the order of exp½Oðβ1=3Þ�.
Let us denote the Schmidt decomposition of jψi in

Eq. (52) as follows:

jψi ¼
XDψ

m¼1

μmjψL;L0;mi ⊗ jψR;R0;mi; ð63Þ
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where jψL;L0;mi and jψR;R0;mi are defined on the Hilbert
space of L⊔L0 and R⊔R0, respectively. From the above
representation, we obtain the Rényi entropy with α ¼ 1 as

S1ðjψiÞ ¼ −
X∞
m¼1

μ2m logðμ2mÞ; ð64Þ

which is equal to the standard entanglement entropy.
To estimate S1ðjψiÞ, we utilize the Eckart-Young theo-

rem. By applying the inequality (B5) to jψi and jψ̃ si, we
obtain the following inequality:

X
m>Ds

μ2m ≤ kjψi − jψ̃ sik2 ≤ 1=s2; ð65Þ

where, in the second inequality, we use the condition (61).
To upper bound the Rényi entropy, we first define

Γ2
s ≔

XDsþ1

m¼Dsþ1

μ2m; ð66Þ

where we define D0 ¼ 0. We then obtain

S1ðjψiÞ ¼ −
XDs̄

m¼1

μ2m logðμ2mÞ −
X∞
s¼s̄

XDsþ1

m¼Dsþ1

μ2m logðμ2mÞ

≤ logðDs̄Þ −
X∞
s¼s̄

XDsþ1

m¼Dsþ1

Γ2
s log

Γ2
s

Dsþ1 −Ds
; ð67Þ

where we use the fact that the uniform distribution max-
imizes

PDsþ1

m¼Dsþ1 μ
2
m logðμ2mÞ, i.e., μ2Dsþ1 ¼ μ2Dsþ2 ¼ � � � ¼

μ2Dsþ1
¼ Γ2

s=ðDsþ1 −DsÞ. Because of the inequalities (62)

and (65), we have Γ2
s ≤ 1=s2:

S1ðjψiÞ ≤ C̃β2=3 logðC̃β2=3Þ þ
X∞
s¼s̄

ð1=sÞ2 logð3s2Þ

þ
X∞
s¼s̄

C̃½β logðsÞ�1=2 logfC̃½β logðsÞ�1=2g
s2

;

where we apply the inequality −x log x ≤ −x logðx=3Þ ≤
−y logðy=3Þ for 0 < x ≤ y ≤ 1 to −Γ2

s logðΓ2
sÞ. Using

s̄ ¼ exp½Oðβ1=3Þ�, the second and the third terms become
less dominant in comparison with the first term when β is
large. We thus obtain the main inequality (39) in the
theorem for α ¼ 1.

2. Case of α < 1

We follow the same analyses as in the case of α ¼ 1. In
this case, we define jψ̃ s

0i as an approximation of jψi which
satisfies

kjψi − jψ̃ s
0ik2 ≤ s−2=α; ð68Þ

where the Schmidt rank of jψ̃ s
0i, say, Ds, is upper bounded

from above by

D0
s ≤ eq

0
s logðq0sÞ ð69Þ

with q0s ¼ C̃max fβ2=3; ½α−1β logðsÞ�1=2g. We define s̄0 as
an integer such that

q0s

�¼ C̃β2=3 for s ≤ s̄0;

¼ C̃½α−1β logðsÞ�1=2 for s > s̄0;

where we have s̄0 ¼ exp½Oðαβ1=3Þ�.
Using the Schmidt decomposition as in Eq. (63), the

α-Rényi entropy is given by

SαðjψiÞ ¼
1

1 − α
log

�X∞
s¼0

XD0
sþ1

m¼D0
sþ1

μ2αm

�
: ð70Þ

For α < 1, we obtain the upper bound of

XD0
sþ1

m¼D0
sþ1

μ2αm ≤ ðD0
sþ1 −D0

sÞ
�

Γ02
s

D0
sþ1 −D0

s

�
α

≤
D01−α

sþ1

s2
;

where we adopt the similar notation (66) for Γ0
s, and, to

derive Γ02
s ≤ s−2=α, we use the condition (68) and the

Eckart-Young theorem as in Eq. (65). Therefore, we have
the following upper bound for the summation:

X∞
s¼0

X
Ds<m≤Dsþ1

μ2αm

≤ D01−α
s̄ þ

X
s≥s̄

D01−α
sþ1

s2

≤ eð1−αÞC̃β2=3 logðC̃β2=3Þ

þ
X
s≥s̄

exp fð1 − αÞc̃α log1=2ðsÞ log½c̃α log1=2ðsÞ�g
s2

;

where we define c̃α ≔ C̃
ffiffiffiffiffiffiffiffi
β=α

p
. For the estimation of the

summation for
P

s≥s̄, we also use the inequality of

Z
∞

1

exp fð1 − αÞc̃α log1=2ðxÞ log½c̃α log1=2ðxÞ�g
x2

dx

¼
Z

∞

0

2te−t
2þð1−αÞc̃αt logðc̃αtÞdt ≤ eC̃1ð1−αÞ2c̃2α log2ðc̃αÞ;

where C̃1 is a constant of Oð1Þ. By combining the above
inequalities together, we obtain
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1

1 − α
log

�X∞
s¼0

X
Ds<m≤Dsþ1

μ2αm

�

≤ C̃0max ½β2=3 logðβÞ; ð1 − αÞðβ=αÞ logðβ=αÞ�:

This result gives the main inequality (39) in the theorem for
α < 1. This completes the proof. ▪

B. Proof of Theorem 2

Here, we prove Theorem 2, which gives the MPO
approximation of the quantum Gibbs state.
We first prove the case of p ¼ 2. Let ρ̂β be an

approximation of ρβ such that for a given cut Λ ¼ L⊔R.
We define the Schmidt rank of ρ̂β asDϵ0 , which satisfies the
inequality (50) with the approximation error ϵ0, namely,

kρβ − ρ̂βkp ≤ ϵ0kρβkp ð71Þ

with

SRðρ̂β; i0Þ ≔ Dϵ0 ≤ exp½q�ϵ logðq�ϵÞ�; ð72Þ

where q�ϵ is defined in Eq. (51). For the cut, we define the
Schmidt decomposition of ρβ as follows:

ρβ ¼
X
m

μmΦL;m ⊗ ΦR;m ðμm > 0Þ; ð73Þ

where fΦL;mg (fΦR;mg) are orthonormal operator bases
which satisfy

kΦL;mk2 ¼ 1; trðΦL;mΦL;m0 Þ ¼ 0 ð74Þ

for m ≠ m0. Note that, from the above definition, we have

kρβk22 ¼
X
m

μ2m: ð75Þ

By applying the Eckart-Young theorem (B7) to ρβ and
ρ̂β, we obtain

X
m>Dϵ0

μ2m ≤ kρβ − ρ̂βk22 ≤ ϵ20kρβk22; ð76Þ

where we use the inequality (71) with p ¼ 2. Then, from
Lemma 1 in Ref. [113], there exists an MPOMDϵ

such that

kρβ −MDϵ0
k22 ≤ 2ϵ20nkρβk22: ð77Þ

Therefore, by choosing ϵ0 ¼ ½ϵ=ð2nÞ�1=2, we obtain the
desired approximation error (14), and the bond dimension
Dϵ0 satisfies the inequality (15).
Second, we prove the case of p ¼ 1. For this proof, we

consider the purification of the quantum Gibbs state ρβ=2 as
in Eq. (52), which is denoted by jψi:

jψi ¼ Z−1=2ðe−βH=2 ⊗ 1̂Þ
XDΛ

j¼1

jjiΛ ⊗ jjiΛ0

¼
XDψ

m¼1

νmjψL;L0;mi ⊗ jψR;R0;mi; ð78Þ

where, in the second equation, we use an expression of the
Schmidt decomposition similar to that of Eq. (63). If we can
obtain an MPS jMD̃ϵ

i such that

kjψi − jMD̃ϵ
ik ≤ ϵ; ð79Þ

we obtain

ktrΛ0 ðjψihψ j − jMD̃ϵ
ihMD̃ϵ

jÞk
1
¼ kρβ −MD̃2

ϵ
k
1
≤ ϵ; ð80Þ

where we define MD̃2
ϵ
≔ trΛ0 ðjMD̃ϵ

ihMD̃ϵ
jÞ. Note that

jMD̃ϵ
ihMD̃ϵ

j is given by a MPO with the bond dimension
of D̃2

ϵ .
Our task is now to find an MPS jMD̃ϵ

i which satisfies
Eq. (79). For this purpose, we consider the purification of
ρ̂†β=4ρ̂β=4 as in Eq. (55), which we denote by jψ̃i. Here, ρ̂β=4
gives the approximation of ρβ=4 as

kρβ=4 − ρ̂β=4k2 ≤ ϵ1kρβ=4k2 ð81Þ

with SRðρ̂β=4; i0Þ ¼ Dϵ1 ≤ exp½q�ϵ1 logðq�ϵ1Þ� for a given cut
Λ ¼ L⊔R. The Schmidt rank of jψ̃i along the cut is upper
bounded by D2

ϵ1. In contrast, from the inequality (60), we
obtain

kjψi − jψ̃ik2 ≤ 10ϵ1; ð82Þ

and, hence, the Eckart-Young theorem gives the same
inequality as Eq. (76):

X
m>D2

ϵ1

ν2m ≤ kjψi − jψ̃ik2 ≤ 10ϵ1: ð83Þ

Thus, from Lemma 1 in Ref. [113], there exists an MPS
jMD2

ϵ1
i such that

kjψi − jMD2
ϵ1
ik ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
20nϵ1

p
: ð84Þ

To obtain the approximation error ϵ, we need to choose
ϵ1 ¼ ϵ=ð20nÞ. Therefore, if we choose D ¼ Dϵ2=ð400n2Þ,
there exists an MPO MD that satisfies the inequality (14)
with p ¼ 1. Note that the bond dimension Dϵ2=ð400n2Þ
satisfies the inequality (15) by choosing C0

0 appropriately.
This completes the proof of Theorem 2. ▪
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C. Proof of Corollary 7

Here, we prove that the quantum Gibbs state is well
approximated by a convex combination of matrix product
states as in Eq. (40):

ρβ ≈
XDΛ

i¼1

pijMiihMij: ð85Þ

We then show that the approximation error ϵ is achieved by
taking the bond dimension as in Eq. (41).
The proof is based on Theorem 2. We first consider the

MPO approximation of e−βH=2 as follows:

ke−βH=2 −Mβ=2k2 ≤
ϵ

6
ke−βH=2k2; ð86Þ

where the bond dimension of Mβ=2 is given by Eq. (15) [or
Eq. (41)]. By using Lemma 11 with p ¼ 1, we get

ke−βH −Mβ=2M
†
β=2k1 ≤

ϵ

2
ke−βHk1: ð87Þ

By inserting 1̂ ¼ PDΛ
i¼1 jPiihPij with fPigDΛ

i¼1 the product-
state basis, we obtain

���� e−βH

trðe−βHÞ −
XDΛ

i¼1

Mβ=2jPiihPijM†
β=2

trðe−βHÞ
����
1

≤
ϵ

2
; ð88Þ

where we use ke−βHk1 ¼ trðe−βHÞ.
We now define

jMii ≔
Mβ=2jPii
kMβ=2jPiik

; pi ≔
kMβ=2jPiik2
kMβ=2k22

;

σβ ≔
XDΛ

i¼1

pijMiihMij; ð89Þ

where σβ is the normalized quantum state and satisfies

kσβk1 ¼ 1 because of
P

i kMβ=2jPiik2 ¼ trðMβ=2M
†
β=2Þ ¼

kMβ=2k22. The MPO Mβ=2 has the bond dimension of
Eq. (41), and, hence, the quantum state Mβ=2jPii is also
given by a matrix product state with Eq. (41). We obtain the
norm difference between ρβ and σβ as

kρβ − σβk1 ≤
����ρβ − kMβ=2k22

trðe−βHÞ σβ
����
1

þ
����σβ − kMβ=2k22

trðe−βHÞ σβ
����
1

≤
ϵ

2
þ
				1 − kMβ=2k22

trðe−βHÞ
				 · kσβk1 ≤ ϵ; ð90Þ

where we use Eq. (88) for the first term and for the second
term we use kσβk1 ¼ 1 and

jtrðe−βHÞ − kMβ=2k22j ¼ jtrðe−βH −Mβ=2M
†
β=2Þj

≤ ke−βH −Mβ=2M
†
β=2k1

≤
ϵ

2
trðe−βHÞ: ð91Þ

We thus prove the inequality (40). This completes the
proof. ▪

VII. CONCLUSION

We have shown two main results in this work. The first
one is the improved thermal area law that gives a scaling of
Õðβ2=3Þ over all lattices (Theorem 1). This scaling behavior
is qualitatively explained by the fact that the imaginary-
time evolution is intrinsically related to the random walk
as in Eq. (17). In the 1D case, we also give an MPO
representation of the quantum Gibbs state with a sublinear
bond dimension with respect to the system size n (Theorem
2). The second one is a quasilinear time algorithm for
preparing an MPO approximation to the 1D thermal state
(Theorem 3), which improves upon all the prior rigorous
constructions. It also justifies the quasilinear runtime of
several heuristic algorithms inspired by the MPO-based
techniques. Moreover, our algorithm can be applied to the
computation of the ground state under the low-energy-
density assumption of Eq. (26). Our first technical insight
is the use of polynomial approximations of the exponen-
tial function, which are based on Taylor truncation and
Chebyshev expansion (17). The second technical contri-
bution is a Trotter-Suzuki-type decomposition of the Gibbs
state (see Fig. 4). It would be interesting to see the
possibility to further develop our approximation by using
the results in Ref. [122].
We leave the following questions to be considered in

future work.
(i) High-dimensional PEPO representation with sub-

linear bond dimension.—Our analytical approach
has improved the bond dimension of the MPO for
1D quantum Gibbs states. Here, the point is to utilize
the estimation in Ref. [23] to efficiently encode the
polynomial of the Hamiltonian to the MPO repre-
sentation. We expect that the same improvement
should be possible in the PEPO approximation for
the high-dimensional Gibbs state. Even though
the PEPO representation of the quantum Gibbs state
does not imply an efficient simulation by itself
[74,75], it is of great importance in the implemen-
tation of numerical algorithms employing the PEPO
ansatz. The key question is how to encode the
polynomial of the Hamiltonian to a PEPO repre-
sentation with a nontrivial bond dimension. Such a
representation will also be useful in the context of
area laws for ground states in higher dimensions.

(ii) Improving the run time of the algorithm.—Our
algorithm presented in Theorem 3 has a run time
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of neÕðβÞþÕ½
ffiffiffiffiffiffiffiffiffiffiffi
β logðnÞ

p
�. We expect that this time could

be improved to neÕðβ2=3ÞþÕ½
ffiffiffiffiffiffiffiffiffiffiffi
β logðnÞ

p
�, because this

result matches the bond dimension of the MPO
constructed in Theorem 2. Another challenge is to
improve the run time to the subexponential form
with respect to logðnÞ for β ¼ O½logðnÞ�. This
improvement would lead to quasilinear time algo-
rithms for ground states under the assumption (26).
The main difficulty lies in constructing a better
polynomial approximation to the quantum Gibbs

state than Mðβ=β0Þ
β0

in Eq. (31).
(iii) Stronger norm inequality for imaginary-time

evolution.—As discussed in Sec. V D, we observed
that an approximation of the form kODeβH − 1k ≤ ϵ
instead of the current one ke−βH−ODkp≤ ϵke−βHkp
would lead to an imaginary-time version of the SIE
theorem.

(iv) Circuit complexity of preparing 1D quantum Gibbs
state.—As discussed after Theorem 2, we believe
that our MPO approximation could be used to
construct a quantum circuit for preparing the quan-
tum Gibbs state. So far, the best estimation requires
nOðβÞ to prepare the 1D quantum Gibbs states on the
quantum computer [52]. The quantum preparation of
the quantum Gibbs state is expected to be easier than
the MPO construction on the classical computer.
Hence, we conjecture that the sufficient number of
the elementary quantum gates should be also quasi-
linear as in Eq. (25).
For instance, the adiabatic algorithm presented in

Ref. [55] could be used in this context, by establish-
ing the injectivity of the MPO in Eq. (14). As
another route, we may be able to employ the
techniques in Appendix B in Ref. [17], which
implemented the smooth function of a Hamiltonian
(see also Sec. V. 3 in Ref. [59] for further discus-
sions). By using this method, which relies on
polynomial approximations to e−βH, the polynomial
presented in Theorem 3 could be efficiently imple-
mented on a quantum computer.

(v) Improving the thermal area law to β1=2j∂Lj.—In this
work, we identified the critical γc satisfying Eq. (2) as
1=5 ≤ γc ≤ 2=3. From the random walk behavior in
Sec. III A, we expect that γc may be equal to 1=2 or
even smaller, which would suggest the diffusive
propagation of information by the imaginary-time
evolution. For the characterization of entanglement
structures of quantum many-body systems at finite
temperatures, identification of the optimal γ is one of
the most fundamental future problems.
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APPENDIX A: MORE DETAILED SETUP

We here recall the setup. We consider a quantum spin
system with n spins, where each of the spins sits on a vertex
of the d-dimensional graph (or d-dimensional lattice) with
Λ the total spin set, namely, jΛj ¼ n. We assume that a
finite-dimensional Hilbert space (ς dimension) is assigned
to each of the spins. For a partial set X ⊆ Λ, we denote
the cardinality, that is, the number of vertices contained
in X, by jXj (e.g., X ¼ fi1; i2;…; ijXjg). We also denote the
complementary subset of X by Xc ≔ ΛnX. We denote the
Hilbert space of a subset X ⊆ Λ and its dimension by HX
and DX, respectively.
For arbitrary subsets X; Y ⊆ Λ, we define dX;Y as the

shortest path length on the graph that connectsX and Y; that
is, if X ∩ Y ≠ ∅, dX;Y ¼ 0. When X is composed of only
one element (i.e., X ¼ fig), we denote dfig;Y by di;Y for the
simplicity. We also define diamðXÞ as follows:

diamðXÞ ≔ 1þmax
i;j∈X

ðdi;jÞ: ðA1Þ

1. One-dimensional k-local Hamiltonian

Let us now define one-dimensional systems, where the
Hamiltonian H is given by the general k-local operator:

H ¼
X

X⊂Λ;diamðXÞ≤k
hX; max

i∈Λ

X
X∶X∋i

khXk ≤ g; ðA2Þ

where hX are the interaction terms acting on the subset X.
Here,

P
X∶X∋i means the summation which picks up all the

subsets X ⊂ Λ such that X ∋ i. In the main text, we
consider the Hamiltonian in the form of Eq. (5). By
choosing k ¼ 2 and g ¼ 1, the Hamiltonian (A2) reduces
to the form of Eq. (5).
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We here define Λ≤i (Λ>i) for an arbitrary i ∈ Λ as the
subset fjgj≤i (fjgj>i). We denote vi by the interaction
between Λ≤i and Λ>i:

vi ¼
X

X∶X∩Λ≤i≠∅;X∩Λ>i≠∅
hX: ðA3Þ

For the Hamiltonian (5) in the main text, vi is simply given
by hi;iþ1. We then define the Schmidt rank SRðvi; iÞ asDloc:

SRðvi; iÞ ≤ Dloc; ðA4Þ

where Dloc is at most of ςOðkÞ.

2. High-dimensional k-local Hamiltonian

In considering d-dimensional systems, we also consider
the k-local operator:

H ¼
X

X⊂Λ;jXj≤k
diamðXÞ≤k

hX; max
i∈Λ

X
X∶X∋i

khXk ≤ g: ðA5Þ

We slice the total system Λ into lΛ pieces:

Λ ¼ Λ1⊔Λ2⊔ � � �⊔ΛlΛ ;

jΛjj ≤ j∂Λj ¼ Oðnd−1=dÞ; ðA6Þ

where lΛ is the system length, namely, lΛ ¼ Oðn1=dÞ, and
we define j∂Λj as an integer which gives the upper bounds
for jΛjj.
Similar to the one-dimensional case, we define Λ≤i (Λ>i)

for an arbitrary i ∈ Λ as the subset ⨆
j≤i
Λj (⨆

j>i
Λj). We then

define the Schmidt rank SRðO; iÞ in the same way as
Eq. (6). We also define vi as the interaction between Λ≤i
and Λ>i:

vi ¼
X

X∶X∩Λ≤i≠∅;X∩Λ>i≠∅
hX: ðA7Þ

Here, each of the fviglΛi¼1 consists of at most of Oðj∂ΛjÞ
local interaction terms hX. We define Dloc as the upper
bound for the Schmidt ranks of fvig:

SRðvi; iÞ ≤ Dloc ¼ ςOðkÞj∂Λj: ðA8Þ

APPENDIX B: BASIC ANALYTICAL TOOLS

1. Generalized Hölder inequality for Schatten norm

For a general Schatten p-norm, we can prove the
following generalized Hölder inequality (see Proposition
2.5 in Ref. [123]):

����
Ys
j¼1

Oj

����
p

≤
Ys
j¼1

kOjkpj
; ðB1Þ

where
P

s
j¼1 1=pj ¼ 1=p. From the inequality, we can

immediately obtain

kO1O2kp ≤ kO1kpkO2k; ðB2Þ

where we set p1 ¼ p and p2 ¼ ∞ in Eq. (B1).

2. The Eckart-Young theorem

We here show the Eckart-Young theorem [124] without
the proof.
Lemma 10 (the Eckart-Young theorem).—Let us con-

sider a normalized state jψi and give its Schmidt decom-
position as

jψi ¼
XDψ

m¼1

μmjψ1;mi ⊗ jψ2;mi; ðB3Þ

where μ1 ≥ μ2 ≥ μ3 � � � ≥ μDψ
and fjψ1;migDψ

m¼1 and

fjψ2;migDψ

m¼1 are orthonormal states, respectively. We then
consider another quantum state jψ̂iwith its Schmidt rankD
and define the overlap with the state jψi as kjψi − jψ̂ik.
Then, for the Schmidt-rank truncation as

jψDi ¼
X
m≤D

μmjψ1;mi ⊗ jψ2;mi; ðB4Þ

the Eckart-Young theorem gives the following inequality:

kjψi − jψDik2 ¼
X
m>D

μ2m ≤ kjψi − jψ̂ik2; ðB5Þ

where jψ̂i can be unnormalized.
We note that the Eckart-Young theorem can be also

applied to operator by regarding it as the vector with D2
Λ

elements. For an operator O, we can obtain the Schmidt
decomposition as

O ¼
XDO

m¼1

μmO1;m ⊗ O2;m; ðB6Þ

where fO1;mg and fO2;mg are operator bases with the
property of kO1;mk2 ¼ 1 and trðO1;mO1;m0 Þ ¼ for m ≠ m0.
For an arbitrary operator Ô with its Schmidt rank D, we
obtain

kO −ODk22 ¼
X
m>D

μ2m ≤ kO − Ôk22; ðB7Þ

where we define OD ≔
P

m≤D μmO1;m ⊗ O2;m. We note
that in applying the operator the Eckart-Young theorem is
applied only to the Schatten 2-norm. As far as we know, the
Eckart-Young theorem cannot be extended to the general
Schatten p-norm.
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3. Approximation of square operators

In the analyses, we often use the following lemma, which
connects the closeness between two operators to that
between square of the two operators.
Lemma 11.—Let O and Õ be operators which are close

to each other in the following sense:

kO − Õk2p ≤ δkOk2p ðδ ≤ 1Þ: ðB8Þ

Then, the square of the operator O, which is O†O, is close
to Õ†Õ as follows:

kO†O − Õ†Õkp ≤ 3δkO†Okp: ðB9Þ

The proof is straightforward by extending the result in
Ref. [95], where the positivity of O is assumed. We show
the proof in the following.

a. Proof of Lemma 11

Following Ref. [95], we start from

kO†O − Õ†Õkp ¼ kO†ðO − ÕÞ − ðÕ† −O†ÞÕkp
≤ kO†ðO − ÕÞkp þ kðÕ† −O†ÞÕkp;

where the inequality is derived from the triangle inequality.
By using the Hölder inequality (B1) with p1 ¼ p2 ¼ 2p,
we obtain

kO†ðO − ÕÞkp ≤ kO†k2pkO − Õk2p ≤ δkOk22p;

where we use the inequality (B8) and kO†k2p ¼ kOk2p. In
the same way, we obtain

kðÕ† −O†ÞÕkp ≤ δkOk2pkÕk2p ≤ δkOk22pð1þ δÞ;

where the last inequality is derived from kÕk2p ¼
kÕ −O þ Ok2p ≤ kÕ −Ok2p þ kOk2p ≤ kOk2pð1 þ δÞ.
The definition of the Schatten norm (10) implies

kOk22p ≔ ½trðO†OÞp�1=p ¼ ftr½ðO†OÞðO†OÞ†�p=2g1=p
¼ kO†Okp;

where we use Hermiticity of O†O. By combining all the
above inequalities, we arrive at the inequality of

kO†O − Õ†Õkp ≤ δð2þ δÞkO†Okp ≤ 3δkO†Okp;

where we use the condition δ ≤ 1 in the last inequality. This
completes the proof of the inequality (B9). ▪

4. Approximation of qth power of operators

The statement in Lemma 11 is extended to arbitrary
powers.
Lemma 12.—Let O and Õ be operators which satisfy the

inequality

kO − Õk2qp ≤ δkOk2qpðδ ≤ 1Þ: ðB10Þ

Then, the pth power of the operator O†O is close to
ðÕ†ÕÞp as follows:

kðO†OÞq − ðÕ†ÕÞqkp ≤ 3δqe3δqkðO†OÞqkp: ðB11Þ

The proof is a simple generalization of Proposition 1 in
Ref. [95] to arbitrary Schatten p-norms.

a. Proof of Lemma 12

Following Ref. [95], we start from the equation as
follows:

ðO†OÞq− ðÕ†ÕÞq ¼
Xq
s¼1

ðO†OÞq−sðO†O− Õ†ÕÞðÕ†ÕÞs−1:

ðB12Þ

We can easily check that the above equation holds for
arbitrary q. By using the triangle inequality for the Schatten
norm, we have

kðO†OÞq − ðÕ†ÕÞqkp

≤
Xq
s¼1

kðO†OÞq−sðO†O − Õ†ÕÞðÕ†ÕÞs−1kp: ðB13Þ

Then, our task is to estimate the upper bound of the norm of
ðO†OÞq−sðO†O − Õ†ÕÞðÕ†ÕÞs−1. From the generalized
Hölder inequality (B1), we obtain

kðO†OÞq−sðO†O− Õ†ÕÞðÕ†ÕÞs−1kp
≤ kðO†OÞq−skpq=ðq−sÞkO†O− Õ†ÕkpqkðÕ†ÕÞs−1kpq=ðs−1Þ
≤ kO†Okq−spq ·3δkO†Okpq ·kÕ†Õks−1pq ; ðB14Þ

where the equations kðO†OÞq−skpq=ðq−sÞ ¼ kO†Okq−spq and

kðÕ†ÕÞs−1kpq=ðs−1Þ ¼ kÕ†Õks−1pq are straightforwardly
derived from the definition (10) and we use the inequal-
ity (B9) for kO†O − Õ†Õkpq. Furthermore, by using
kÕ†Õkpq ¼ kÕ†Õ−O†OþO†Okpq ≤ kÕ†Õ−O†Okpqþ
kO†Okpq ≤ ð3δþ 1ÞkO†Okpq, the inequality (B14)
reduces to

kðO†OÞq−sðO†O − Õ†ÕÞðÕ†ÕÞs−1kp
≤ 3δð3δþ 1ÞqkO†Okqpq ≤ 3δe3δqkðO†OÞqkp: ðB15Þ
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By applying the inequality (B15) to Eq. (B13), we
obtain the main inequality (B11). This completes the
proof of the inequality (B11). ▪

5. Upper bound on the norm for
multicommutators

For the norm of multicommutators, we can prove the
following lemma (see Lemma 3 in Ref. [125]).
Lemma 13.—Let fAsgMs¼1 be ks-local operators such that

As ¼
X
jXj≤ks

as;X; max
i∈Λ

X
X∶X∋i

kas;Xk ≤ gs: ðB16Þ

Then, for an arbitrary operatorOX supported on a subset X,
the norm of the multicommutator is bounded from above by

kadAM
adAM−1

� � � adA1
ðOXÞk ≤

YM
m¼1

ð2gmKmÞkOXk; ðB17Þ

where Km ≔ jXj þP
s≤m−1 ks.

For g1 ¼ g2 ¼ � � � ¼ gM ¼ g and k1 ¼ k2 ¼ �� � ¼ kM ¼ k,
we have

kadAM
adAM−1

� � � adA1
ðOXÞk

≤ ð2gkÞM jXj
k

�jXj
k

þ 1

�
� � �

�jXj
k

þM − 1

�
kOXk:

ðB18Þ

APPENDIX C: FULL PROOF
OF PROPOSITION 9

In this section, we show the proof outline of Proposition
9 in Sec. VI which plays key roles in the proofs of the main
results (Theorems 1, 2, and 6). We prove it based on several
essential Lemmas 14–17. Throughout the proof, while
considering the Schmidt rank for a target decomposition
Λ ¼ L ∪ R, we denote SRðO; i0Þ by SRðOÞ for simplicity.

1. Proof strategy

We here relabel each of the sites such that L ¼ figi≤l=2
and R ¼ figi≥l=2þ1, where the length l is a multiple of 4 to

be chosen later. We can arbitrarily extend the system size
Λ → Λ⊔δΛ without changing the Hamiltonian. We have
only to add zero operators:

H0
Λ⊔δΛ ¼ HΛ þ 0̂δΛ; ðC1Þ

where 0̂δΛ is the zero operator acting on δΛ. Note that 0̂δΛ
still satisfies the form of Eq. (A2).
We then decompose the total system into three pieces L0,

S, and R0 (see Fig. 5), where L0 ¼ figi≤0, S ¼ fig1≤i≤l,
and R0 ¼ figi≥lþ1. Accordingly, we also decompose the
Hamiltonian as follows:

H ¼ HS þHL0
þHR0

þ v0 þ vl; HS ≔
X
X⊂S

hX;

HL0
≔

X
X⊂L0

hX; HR0
≔

X
X⊂R0

hX; ðC2Þ

where v0 and vl are defined by Eq. (A3). We note that HS,
HL0

, and HR0
commute with each other. By shifting the

energy origin appropriately, we set

HS ≽ 0; ðC3Þ

where ≽ means that HS is positive semidefinite. We divide
β into 2q pieces (q ∈ N) and introduce

ρ0 ≔ e−β0H; β0 ≔ β=ð2qÞ:

The first step of the proof is the approximation of ρ0,
which is in the following form:

ρ̃0 ≔ Φ̃†
0e

−β0ðHL0
þHR0

ÞFmðβ0HSÞΦ̃0;

Φ̃0 ≔ ΦL1
⊗ ΦR1

; ðC4Þ

where ΦL1
and ΦR1

are operators supported on L1 and R1,
respectively (i.e., L1 ¼ figi≤l=4 and R1 ¼ figi≥3l=4þ1), and
the degree m polynomial FmðxÞ approximates the expo-
nential function e−β0x. For every δ ≤ 1=ð3qÞ, we estimate
the length l and the degree m such that

kρ0 − ρ̃0k2qp ≤ δkρ0k2qp: ðC5Þ

FIG. 5. The decomposition of the system considered in the proof.
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Then, by applying inequality (B11), we have

ke−βH − ρ̃2q0 kp ≤ 3δqe3δqkρ2q0 kp ≤ ϵke−βHkp ðC6Þ

with ϵ ¼ 3eqδ, where we use ρ2q0 ¼ e−βH and 3δqe3δq ≤
3eqδ from δ ≤ 1=ð3qÞ. Therefore, by choosing ρ̂ ¼
ρ̃2q0 =trðe−βHÞ, we can achieve the bound (49). Note that
the condition ϵ ≤ e in Proposition 9 is due to the equations
ϵ ¼ 3eqδ and δ ≤ 1=ð3qÞ.
The second step is to estimate the upper bound of the

Schmidt rank of ρ̃2q0 , which is given by

½Φ̃†
0e

−β0ðHL0
þHR0

ÞFmðβ0HSÞΦ̃0�2q: ðC7Þ

Then, the sufficient Schmidt rank to achieve the inequal-
ity (C6) is given by a function of q [see Eq. (C52)
below for more details]. By choosing q so that the
Schmidt rank is minimum, we show that the Schmidt
rank is upper bounded by Eq. (50). We thus prove
Proposition 9. In the following, we show the details of
the above arguments.

2. Approximation of ρ0
In the following, we define a parameter ν as follows:

ν ¼ max½β0; logð6=δÞ�: ðC8Þ

In addition, we choose q such that

q2 ≥ β: ðC9Þ

Let H0 ≔ HS þHL0
þHR0

. We first relate the two oper-
ators ρ0 ¼ e−β0H and e−β0H0 . We can formally write the
following:

ρ0 ¼ Φ0e−β0H0Φ†
0; ðC10Þ

where Φ0 is usually a highly nonlocal operator. The first
lemma ensures that the Φ is approximated by an operator
supported on L1⊔R1.
Lemma 14.—There exists an operator Φ̃0 ¼ ΦL1

⊗ ΦR1

such that, for

ρ00 ¼ Φ̃0e−β0H0Φ̃†
0; ðC11Þ

we have

kρ00 − ρ0kp0
≤ 3e−c1l=β0þc2β0kρ0kp0

ðC12Þ

for arbitrary p0 ∈ N, where we assume −c1l=β0þc2β0 ≤ 0
and c1 and c2 are Oð1Þ constants.
The proof of this lemma is based on the belief propa-

gation [29,69] and the Lieb-Robinson bound [126,127].

a. Proof of Lemma 14

For the proof, we start from the belief propagation [29],
which gives

ρ0 ¼ e−β0H ¼ Φ0e−β0H0Φ†
0; ðC13Þ

where the operator Φ0 is defined as

Φ0 ≔ T e
R

1

0
ϕðτÞdτ;

ϕðτÞ ≔ −β0v0 − β0vl
2

þ iβ0

Z
∞

−∞
gðtÞ½v0ðt; HτÞ þ vlðt; HτÞ�dt; ðC14Þ

whereHτ ¼ H0 þ τðv0 þ vlÞ, T denotes the ordering oper-
ator, v0ðt;HτÞ¼eitHτv0e−itHτ , vlðt;HτÞ¼eitHτvle−itHτ ,
and gðtÞ is defined as

gðtÞ ≔ sgnðtÞ e−2πjtj=β0

1 − e−2πjtj=β0
: ðC15Þ

Note that the function gðtÞ decays exponentially with t
and, hence, the operator ϕðτÞ is quasilocal due to
the Lieb-Robinson bound [126,127]. We aim to obtain the
approximation Φ0 ≈ΦL1

⊗ ΦR1
≕ Φ̃0 and consider the

norm difference of

ϵΦ ≔ kΦ̃0e−βH0Φ̃†
0 − e−β0Hkp0

ðC16Þ

for arbitrary p0 ∈ N.
In order to quantitatively evaluate the quasilocality of

ϕðτÞ, we first define v0ðt; Hτ; L1Þ as an approximation of
v0ðt; HτÞ in the region L1:

v0ðt; Hτ; L1Þ ≔
1

DΛnL1

trΛnL1
½v0ðt; HτÞ� ⊗ 1̂ΛnL1

:

We define vlðt; Hτ; R1Þ in the same way. By utilizing the
Lieb-Robinson bound [127], we obtain the approximation
error of

kv0ðt; HτÞ − v0ðt; Hτ; L1Þk ≤ cjtje−c0ðl=4−vtÞ; ðC17Þ

where c, c0, and v are constants of Oð1Þ and we obtain the
same upper bound for kvlðt; HτÞ − vlðt; Hτ; R1Þk. By
using the notations of v0ðt; Hτ; L1Þ and vlðt; Hτ; R1Þ, we
define ϕ̃L1

ðτÞ and ϕ̃R1
ðτÞ as follows:

ϕ̃L1
ðτÞ ≔ −β0

2
v0 þ iβ0

Z
∞

−∞
gðtÞv0ðt; Hτ; L1Þdt;

ϕ̃R1
ðτÞ ≔ −β0

2
vl þ iβ0

Z
∞

−∞
gðtÞvlðt; Hτ; R1Þdt:

We notice that ϕ̃L1
ðτÞ and ϕ̃R1

ðτÞ are supported on the
subsets L1 and R1, respectively. We then approximate ϕðτÞ
by ϕ̃ðτÞ ¼ ϕ̃L1

ðτÞ þ ϕ̃R1
ðτÞ with an error of
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kϕðτÞ − ϕ̃ðτÞk ≤ c0β20e
−c1l=β0 ð0 ≤ τ ≤ β0Þ ðC18Þ

with c0 and c1 constants of Oð1Þ, where the inequality is
derived from the approximation error in Eq. (C17) and the
exponential decay of gðtÞ as in Eq. (C15).
From the approximation of ϕðτÞ by ϕ̃ðτÞ, we define

Φ̃0 as

Φ̃0 ≔ T e−
R

1

0
ϕ̃ðτÞdτ ¼ ΦL1

⊗ ΦR1
; ðC19Þ

where we define ΦL1
≔ T e−

R
1

0
ϕ̃L1

ðτÞdτ and ΦR1
≔

T e−
R

1

0
ϕ̃R1

ðτÞdτ. By using the inequality (C18), we can
obtain the approximation error of Φ0 by

k1 − Φ̃0Φ−1
0 k ≤ c0β20e

−c1l=β0e2
R

1

0
kϕðτÞkdτ

≤ c0β20e
−c1l=β0þ2c0

1
β0 ; ðC20Þ

with c01 anOð1Þ constant, where the upper bound kϕðτÞk ≤
c01β0 can be derived by following Ref. [69] [see Eq. (42)
therein]. By letting O0 ≔ Φ̃0Φ−1

0 , we have, using the
triangle inequality,

kΦ0e−β0H0Φ†
0 − Φ̃0e−β0H0Φ̃†

0kp0
¼ kρ0 −O0ρ0O

†
0kp0

≤ kð1 −O0Þρ0O†
0kp0

þ kO0ρ0ð1 −O†
0Þkp0

þ kð1 −O0Þρ0ð1 −O†
0Þkp0

: ðC21Þ

From the upper bound (C20), the norm of 1 −O0 satisfies
the following inequality:

k1 −O0k ¼ k1 − Φ̃0Φ−1
0 k ≤ e−c1l=β0þc2β0 ;

where we choose c2 ¼ Oð1Þ such that c0β20e
2c0

1
β0 ≤ ec2β0 .

Then, the condition −c1l=β0 þ c2β0 ≤ 0 in the lemma
implies k1 −O0k ≤ 1. Therefore, by applying the Hölder
inequality (B2) to each of the terms in Eq. (C21), we obtain

kΦ0e−β0H0Φ†
0 − Φ̃0e−β0H0Φ̃†

0kp0

≤ kρ0kp0
ðk1 −O0k2 þ 2k1 −O0kÞ

≤ 3e−c1l=β0þc2β0kρ0kp0
; ðC22Þ

where, in the second inequality, we get k1 −O0k2 ≤ k1 −
O0k due to k1 −O0k ≤ 1. This completes the proof. ▪

The lemma implies that, as the length l becomes
large, the approximation error decays exponentially with
e−Oðl=β0Þ. Thus, in order to achieve the inequality

kρ00 − ρ0k2qp ≤
δ

2
kρ0k2qp; ðC23Þ

we need to choose l as

l ≥
c2
c1

β20 þ
β0
c1

logð6=δÞ: ðC24Þ

By using the parameter ν in Eq. (C8), we can write

l ¼ c̃1β0ν ¼ c̃1νβ=ð2qÞ; ðC25Þ

where c̃1 is a constant of Oð1Þ.
Second, we approximate e−β0H0 by an operator with

small Schmidt rank. For this purpose, we use the fact that
HS, HL0

, and HR0
commute with each other and write

e−β0H0 ¼e−β0ðHL0
þHR0

Þe−β0HS . Then, we approximate e−β0HS

by a low-degree polynomial of HS. The most straightfor-
ward approximation is given by the truncation of the Taylor
expansion, which gives a good approximation of e−β0HS by
taking the polynomial degree as large as kβ0HSk þ
logð1=δ0Þ with δ0 the precision error. Unfortunately, we
cannot get any improvement of the thermal area law if we
utilize the Taylor expansion.
One of the key aspects of our proof is the use of the

following lemma from Theorem 4.1 in Ref. [93][], which
allows us to achieve the improved thermal area law.
Lemma 15.—Let δ0 ∈ ð0; 1Þ. For any m satisfying

m > cf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½β0kHSk; logð1=δ0Þ� logð1=δ0Þ

p
ðC26Þ

[with cf ¼ Oð1Þ], there exists a polynomial FmðxÞ with
degree m that satisfies

jFmðxÞ − e−xj ≤ δ0 for x ∈ ½0; β0kHSk�: ðC27Þ

When β0kHSk ≫ logð1=δ0Þ, the above estimation gives a
significantly better polynomial degree than that from the
Taylor expansion.
We recall that this polynomial approximation is

obtained from the Chebyshev polynomial expansion (17)
in Sec. III A, which is characterized by the random walk
behavior (see Fig. 3).
By using the polynomial FmðxÞ defined above, we

approximate the operator ρ00 in Eq. (C11) as

ρ̃0 ≔ Φ̃0e
−β0ðHL0

þHR0
ÞFmðβ0HSÞΦ̃†

0: ðC28Þ

Because of Eq. (C3), the spectrum of β0HS is included in
the span of ½0; β0kHSk�, and, hence, the inequality (C27)
gives

kFmðβ0HSÞ − e−β0HSk ≤ δ0: ðC29Þ

We note that the current approximation (C29) is obtained in
terms of the operator norm (i.e., Schatten ∞-norm) instead
of the generic Schatten p-norm. The next problem is to
estimate the approximation error kρ00 − ρ̃0kp0

for an arbi-
trary Schatten p0-norm. We prove the following lemma.
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Lemma 16.—Let p0 ∈ N and δ0 ∈ ð0; 1Þ. Under the
choice of ΦL1

⊗ ΦR1
in Lemma 14, l in Eq. (C24), and

m;FmðxÞ in Lemma 15, we have

kρ00 − ρ̃0kp0
≤ D1=p0

S δ0ec3β0kρ0kp0
; ðC30Þ

where c3 is an Oð1Þ constant.

b. Proof of Lemma 16

From the definitions (C11) and (C28) of ρ00 and ρ̃0,
respectively, we start from the inequality

kρ00− ρ̃0kp0
¼ kΦ̃†

0e
−β0ðHL0

þHR0
Þ½FmðHSÞ− e−β0HS �Φ̃0kp0

≤ ke−β0ðHL0
þHR0

Þ½FmðHSÞ− e−β0HS �kp0
· kΦ̃0k2;
ðC31Þ

where we use Hölder’s inequality (B2). From the definition
(C19) of ΦL1

⊗ ΦR1
, we obtain

kΦ̃0k2 ¼ kΦL1
⊗ ΦR1

k2 ≤ e2c
0β0 : ðC32Þ

We next consider

ke−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0
p0

¼
XDL0R0

s¼1

XDS

s0¼1

e−p0β0Ẽs jFmðεs0 Þ − e−β0εs0 jp0 ; ðC33Þ

where fẼsgDL0R0
s¼1 and fεs0gDS

s0¼1
are eigenvalues of HL0

þ
HR0

and HS, respectively. Note that the Hamiltonians HL0
,

HR0
, and HS commute with each other and are diagonaliz-

able simultaneously. From the assumption (C3), we have
ε1 ¼ 0, and εDS

≤ kHSk.
From the inequality (C27), which is

jFmðxÞ − e−xj ≤ δ0 for x ∈ ½0; β0kHSk�; ðC34Þ

we have

jFmðεs0 Þ − e−β0εs0 jp0 ≤ δp0

0 : ðC35Þ

By applying the above inequality to Eq. (C33), we obtain

ke−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0
p0

≤
XDL0R0

s¼1

XDS

s0¼1

e−p0β0Ẽsδp0

0

≤
DSδ

p0

0PDS
s0¼1

e−p0β0εs0

XDL0R0

s¼1

XDS

s0¼1

e−p0β0Ẽse−p0β0εs0

≤ DSδ
p0

0 ke−β0ðHL0
þHR0

þHSÞkp0
p0
; ðC36Þ

where we use
PDS

s0¼1
e−p0β0εs0 ≥ e−p0β0ε1 ¼ 1.

We next consider the upper bound of ke−β0H0kp0
in terms

of ke−β0Hkp0
. Recall that H0 ¼ HL0

þHR0
þHS and,

hence, e−β0H0 ¼ e−β0ðH−v0−vlÞ. By using the Golden-
Thompson inequality, we have

trðe−p0β0H0Þ ≤ trðe−p0β0H · e−p0β0ðv0þvlÞÞ
≤ ep0β0kv0þvlktrðe−p0β0HÞ
≤ e2gkp0β0ke−β0Hkp0

p0
; ðC37Þ

where we use kv0 þ vlk ≤ 2gk from the condition in
Eq. (A2). Note that trðe−p0β0H0Þ ¼ ke−β0H0kp0

p0
. By combin-

ing the inequalities (C36) and (C37), we arrive at the
inequality

ke−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0
p0

≤ DSδ
p0

0 e2gkp0β0ke−β0Hkp0
p0
: ðC38Þ

By applying the inequalities (C32) and (C38) to Eq. (C31),
we obtain the main inequality (C30) with c3 ¼ 2c0 þ 2gk.
This completes the proof. ▪

Let us substitute p0 ¼ 2qp in Lemma 16 and choose δ0
that satisfies

D1=ð2qpÞ
S δ0ec3β0 ¼

δ

2
:

This choice ensures that kρ00 − ρ̃0k2qp ≤ ðδ=2Þkρ0k2qp, and
we conclude that

kρ0 − ρ̃0k2qp ≤ kρ0 − ρ00k2qp þ kρ00 − ρ̃0k2qp ≤ δkρ0k2qp;

where we use the inequality (C23). Therefore, the choice of
ρ̃0 as in Eq. (C28) achieves the inequality (C5).
Let us simplify the expression for all the parameters

appearing so far. We consider

δ0 ¼
δ

2
e−c3β0D−1=ð2qpÞ

S ¼ δ

2
e−c3β0−cςl=ð2qpÞ

→ logð1=δ0Þ ¼ logð2=δÞ þ c3β0 þ
cςc̃1νβ0
2qp

; ðC39Þ
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where we define DS ¼ ςl ≕ ecςl and use the expression of
l in Eq. (C25). From the assumption (C9), we have
β0 ¼ ðβ=2qÞ ≤ q=2. This result yields

logð2=δÞ þ c3β0 ≤ logð1=δ0Þ ≤ logð2=δÞ þ c3β0 þ
cςc̃1ν
4p

≤ logð2=δÞ þ c3β0 þ
cςc̃1ν
4

;

where we use p ≥ 1. Using the definition (C8) of ν, we can
thus write

logð1=δ0Þ ¼ c̃2ν ðC40Þ

for some constant c̃2. From the choice of l in Eq. (C24), we
have

max½β0kHSk; logð1=δ0Þ� ¼ Oðβ0lÞ; ðC41Þ

where we use kHSk ≤ gl from the condition in Eq. (A2).
Hence, we obtain the following simpler form of m:

m ¼ dcf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½β0kHSk; logð1=δ0Þ� logð1=δ0Þ

p
e

¼ c̃02
ffiffiffiffiffiffiffiffiffiffi
νβ0l

p
: ðC42Þ

3. Schmidt-rank analysis

The remaining task is to estimate the Schmidt rank of the
operator ρ̃2q0 which is given by Eq. (C7). For this purpose,
we consider the following more general problem for the
simplicity of notation. We also utilize the lemma in the
subsequent sections. Let us define a decomposition of
the total system into L̃, S, and R̃ (see Fig. 6). We then aim to
estimate the Schmidt rank of an operator of the form

Ĝm;M ¼ ½Φ1GmðHSÞΦ2�M; ðC43Þ

where GmðxÞ is an arbitrary degree m polynomial, the
operators Φ1 and Φ2 are supported on L̃ and R̃, respec-
tively, and HS is a local Hamiltonian on the subset S
(jSj ¼ l). The Schmidt-rank estimation for an arbitrary
polynomial of H is given in Ref. [23]. However, in
the present case, the additional operators Φ1 and Φ2

prohibit the direct application of that results to
Eq. (C43). In the following lemma, we can obtain the

modified version of the Schmidt-rank estimation in
Ref. [23]. For the generalization to high-dimensional
systems in Appendix D, we consider the high-dimensional
Hamiltonian (A5).
Lemma 17.—For an arbitrary operator in the form of

Eq. (C43), the Schmidt rank across the bipartition of the
system to the left and right at the point i ∈ S is upper
bounded by

SRðĜm;M; iÞ ≤ min
l̃∶l̃≤l

½ςl̃j∂Λjð10mMDlocÞ2Mþ2l̃þð2kmM=l̃Þ�;

ðC44Þ

where ∂Λ and Dloc are defined in Eqs. (A6) and (A8),
respectively. If we consider a one-dimensional Hamiltonian
with two-body interactions (k ¼ 2), we have j∂Λj ¼ 1
and Dloc ≤ ς.
We can further extend Lemma 17 to the following

operator:

ĜðpÞ
m;M ¼ ½Φ1GmðHS1ÞGmðHS2Þ � � �GmðHSpÞΦ2�M;

where Sj ⊆ S (j ¼ 1; 2;…; p) with jSj ¼ l. We then obtain
the following corollary.
Corollary 18.—For an arbitrary operator in the form of

Eq. (C43), the Schmidt rank across the bipartition of the
system to the left and right at the point i ∈ S is upper
bounded by

SRðĜðpÞ
m;M; iÞ ≤ min

l̃∶l̃≤l
½ςl̃j∂Λjð10mMDlocÞ2pMþ2pl̃þð2pkmM=l̃Þ�;

ðC45Þ

where ∂Λ and Dloc are defined in Eqs. (A6) and (A8),
respectively.
Proof of Corollary 18.—The proof is the same as that of

Lemma 17. The difference is that the inequality (C47) is
replaced by

SRðĜðpÞ
m;M; iÞ

≤ min
l̃∶l̃≤l

�
ςl̃j∂Λj

Yp
j¼1

m

�
M
l̃

�
2

max
s∈½l0�

SRsðĜðjÞ;≤ðmM=l0Þ;s
m;M Þ

�
;

where ĜðjÞ;≤ðmM=l0Þ;s
m;M for the Hamiltonian HSj is defined in

the same way as Ĝ≤ðmM=l0Þ;s
m;M in Eq. (C47) for the

Hamiltonian HS. We then obtain the same inequality as
Eq. (C50) and prove the inequality (C45). This completes
the proof. ▪

a. Proof of Lemma 17

We apply an analysis similar to that in Ref. [26], which
modifies the proof in Ref. [23] for the Schmidt-rank
estimation.

FIG. 6. The decomposition of the system in the Schmidt-rank
analysis.
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First, we decompose S into ðl0 þ 2Þ blocks fBsgl0þ1
s¼0

with jBsj ¼ k (s ¼ 1; 2;…; l0) and l0 ¼ l̃=k (see Fig. 7).

Here, l̃ is a control parameter such that l̃ ≤ l. We then
decompose the Hamiltonian HS as

HS ¼ hB0
þ hBl0þ1

þ
Xl0
s¼1

hBs
; ðC46Þ

where hBs
is comprised of the internal interactions in Bs and

block-block interactions between Bs and Bsþ1. Note
that the interaction length is at most k, and, hence, only
adjacent blocks can interact with each other. Also, from the
inequality(A8), the Schmidt rank of hBs

is upper bounded
by Dloc ¼ ςOðkÞj∂Λj.
We expand GmðHSÞ ¼

P
m
j¼0 ajðHSÞj by using the

decomposition (C46). Using the polynomial interpolation
argument in Ref. [23], it holds that (see Lemmas 5.2 and 5.3
in Ref. [26])

SRðĜm;M; iÞ ≤ min
l̃∶l̃≤l

��
mM
l̃

�
2

ςl̃j∂Λjmax
s∈½l0�

SRsðĜ≤ðmM=l0Þ;s
m;M Þ

�
; l0 ¼ l̃=k; ðC47Þ

where SRsð� � �Þ is the Schmidt rank across the bipartition between Bs and Bsþ1. Also, the operator Ĝ
≤ðmM=l0Þ;s
m;M is derived

from Ĝm;M by considering only those terms in which hBs
occurs at most ðmM=l0Þ times. LetHS ¼ Pþ hBs

þQ, where P is
to the “left” of hBs

andQ is to the “right” of hBs
and expand the powersHS. From ½P;Q� ¼ 0, any particular power ðHSÞT is

a linear combination of the following terms:

ðPp1Qq1ÞhBs
ðPp2Qq2ÞhBs

…ðPpT0−1QqT0−1ÞhBs
ðPpT0QqT0 Þ

with
P

T 0
i¼1ðpi þ qiÞ ≤ T and T 0 ≤ T. This combination allows us to expand Ĝm;M as a linear combination of the following

terms:

Φ1ðPp1;1Qq1;1ÞhBs
ðPp1;2Qq1;2ÞhBs

…ðPp1;T1−1Qq1;T1−1ÞhBs
ðPp1;T1Qq1;T1 Þ

Φ2Φ1ðPp2;1Qq2;1ÞhBs
ðPp2;2Qq2;2ÞhBs

…ðPp2;T2−1Qq2;T2−1ÞhBs
ðPp2;T2Qq2;T2 Þ

…

Φ2Φ1ðPpM;1QqM;1ÞhBs
ðPpM;2QqM;2ÞhBs

…ðPpM;TM−1QqM;TM−1ÞhBs
ðPpM;TMQqM;TM ÞΦ2: ðC48Þ

Above, the positive integers Ti and the powers pi;k; qi;k ≥ 0
are such that

XM
i¼1

XTi

k¼1

ðpi;k þ qi;kÞ ≤ mM; ðC49Þ

since the total degree is mM. But, recall that we are

interested in Ĝ≤ðmM=l0Þ;s
m;M where hBs

occur at most ðmM=l0Þ
times, which enforces the following constraint:

XM
i¼1

ðTi − 1Þ ≤ mM
l0

⇒
XM
i¼1

Ti ≤
mM
l0

þM:

The number of the combinations of positive integers
fT1; T2;…TMg satisfying

P
M
i¼1 Ti ¼ r is smaller than r

multicombination from a set of M elements and, hence, is
upper bounded by

��
M

r

��
¼

�
M þ r − 1

r

�
≤ 2Mþr−1:

Then, the combinations of positive integers fT1; T2;…TMg
satisfying

P
M
i¼1 Ti ≤ ðmM=l0Þ þM is smaller than

XðmM=l0ÞþM

r¼0

2Mþr−1 ≤ 22MþðmM=l0Þ:

FIG. 7. The decomposition of the subset S into blocks.
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When a tuple fT1; T2;…TMg is given, the number of the
nonzero integers in fpi;k; qi;kgi∈½M�;k∈½Ti� which appears in
Eq. (C48) is equal to

XM
i¼1

2Ti ≤ 2

�
mM
l0

þM

�
:

Therefore, for a fixed fT1; T2;…TMg, the number of the
combinations of positive integers fpi;k; qi;kgi∈½M�;k∈½Ti� sat-
isfying Eq. (C49) is upper bounded by ðmMÞ multicombi-
nation from a set of ðPM

i¼1 2TiÞ elements:

��P
M
i¼1 2Ti

mM

��
≤
�� 2mM

l0
þ 2M

mM

��

¼
�2mM

l0
þ 2M þmM − 1

mM

�

≤ ð5mMÞð2mM=l0Þþ2M:

For each of the nonzero integers in fpi;k; qi;kgi∈½M�;k∈½Ti�, the
Schmidt rank of the expression in Eq. (C48), across the cut
between Bs and Bsþ1, is at most DmM=l0

loc . It is because only
hBs

increases the Schmidt rank across the cut between Bs

and Bsþ1 and the number of hBs
appearing in Eq. (C48) is

smaller than ðmM=l0Þ from the definition of Ĝ≤ðmM=l0Þ;s
m;M .

Therefore, we finally arrive at the inequality of

SRsðĜ≤ðmM=l0Þ;s
m;M Þ ≤ 22MþðmM=l0Þð5mMÞð2mM=l0Þþ2MDmM=l0

loc

≤ ð10mMDlocÞ2Mþð2mM=l0Þ

¼ ð10mMDlocÞ2Mþð2kmM=l̃Þ;

where we use l0 ¼ l̃=k in the last equation. By applying the
above inequality to Eq. (C47), we obtain

m

�
M2

l̃

�
ςl̃j∂Λjmax

s∈½l0�
SRsðĜ≤ðmM=l0Þ;s

m;M Þ

≤ m

�
M2

l̃

�
ςl̃j∂Λjð10mMDlocÞ2Mþð2kmM=l̃Þ

≤ ςl̃j∂Λjð10mMDlocÞ2Mþ2l̃þð2kmM=l̃Þ; ðC50Þ

where we use ðmM
l Þ2 ≤ ðmMÞ2l̃. This completes the

proof. ▪

In considering one-dimensional systems in Lemma 17
with l̃ ¼ l, we have

SRðĜm;MÞ ≤ ςlð10mMςkÞ2Mþ2lþð2kmM=lÞ

≤ ð10mMςkÞ2Mþ3lþð2kmM=lÞ ðC51Þ
because of j∂Λj ¼ 1 and Dloc ≤ ςk [see also the inequality
(A4)]. By applying the above inequality to ρ̃0 in Eq. (C28)

with M ¼ 2q [Eq. (C7)], m ¼ c̃20
ffiffiffiffiffiffiffiffiffiffi
νβ0l

p
[Eq. (C42)], and

l ¼ c̃1νβ0 ¼ c̃1νβ=ð2qÞ [Eq. (C25)], we obtain

SRðρ̃2q0 Þ ≤ ð20mqςkÞ4qþ3c̃1νβ=ð2qÞþ4c̃2 0kq
ffiffiffiffiffiffiffiffiffi
νβ0=l

p

¼ ð20mqςkÞð4þ4kc̃2 0=
ffiffiffiffi
c̃1

p Þqþð3=2Þc̃1βν=q: ðC52Þ

Now, we specify the choice of q by solving for

q2 ¼ βν ¼ βmax

�
logð2=δÞ; β

2q

�
; ðC53Þ

where we use the definition of ν in Eq. (C8). This choice
gives the result of

q ∝ max fβ2=3; ½β logð2=δÞ�1=2g; ðC54Þ

where we choose q appropriately so that the condition (C9)
may be satisfied (i.e., β ≤ q2). From δ ¼ ϵ=ð3eqÞ ¼
Oðϵ=βÞ, by applying the notation of q�ϵ in Eq. (51) to
Eq. (C52), we finally obtain

SRðρ̃2q0 Þ ≤ eq
�
ϵ logðq�ϵÞ: ðC55Þ

This completes the proof of Proposition 9. ▪

APPENDIX D: PROOF OF THEOREM 1
IN HIGH-DIMENSIONAL CASES

We here prove the improved thermal area law for high-
dimensional Hamiltonians (A5).

1. Restatement

For the convenience of the reader, we restate the state-
ment in the form of the following theorem.
Theorem 19.—Let us consider a d-dimensional lattice

and a vertical cut of the total system: Λ ¼ L⊔R with L ¼
Λ1⊔Λ2⊔ � � �⊔Λi and L ¼ Λiþ1⊔Λiþ2⊔ � � �⊔ΛlΛ , where we
use the notation in Eq. (A6). Then, we obtain the improved
area law for the mutual information as follows:

IðL∶RÞρβ ≤ Cj∂Λjβ2=3 log2=3ðβj∂ΛjÞ; ðD1Þ

where C is a constant which depends on k, g, ς, and d.
Remark.—The above upper bound is qualitatively better

than the established thermal area law of IðL∶RÞρβ ≲ βj∂Λj
for β ≳ log2ðj∂ΛjÞ. For simplicity, we here consider a
vertical cut of the total system, but the generalization to
a rectangular cut is straightforward.
We notice that the logarithmic correction originates from

the superexponential dependence of m in Lemma 17. If we
can improve the m independence in Lemma 17,

ð10mMDlocÞ2Mþ2l̃þð2kmM=l̃Þ → ðconstÞ2Mþ2l̃þð2kmM=l̃Þ;
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we can prove the improved area law in the form
of IðL∶RÞρβ ≤ Cj∂Λjβ2=3.

2. High-level overview

We, in the following, restrict ourselves to the inverse
temperature such that

β ≥ log2ðj∂ΛjÞ; ðD2Þ

since the regime of β < log2ðj∂ΛjÞ in Eq. (D1) is already
covered by the previous thermal area law [28].
The proof strategy is very close to that in the one-

dimensional case. We here relabel each of the sites such that
L ¼ fΛigi≤l=2 and R ¼ fΛigi≥l=2þ1 [see Eq. (A6) for the
definition of Λi], where the length l is an integer which is a
multiple of 4 to be chosen later. We then decompose the
total system into three pieces L0, S, and R0 (see Fig. 5),
where L0 ¼ fΛigi≤0, S ¼ fΛig1≤i≤l, and R0 ¼ fΛigi≥lþ1.
Accordingly, we also decompose the Hamiltonian as
follows:

H ¼ HS þHL0
þHR0

þ v0 þ vl; HS ≔
X

X∶X⊂S
hX;

HL0
≔

X
X∶X⊂L0

hX; HR0
≔

X
X∶X⊂R0

hX; ðD3Þ

where vi is defined in Eq. (A7). We note that HS, HL0
, and

HR0
commute with each other. As in the one-dimensional

case, by shifting the energy origin appropriately, we set

HS ≽ 0; ðD4Þ

where ≽ means that HS is positive semidefinite. We divide
β into 2q pieces (q ∈ N) and introduce

ρ0 ≔ e−β0H; β0 ≔ β=ð2qÞ: ðD5Þ

The first difference from the one-dimensional case is that
we cannot derive Lemma 14 as in the case of 1D, since we
cannot utilize the belief propagation technique [29] in
high-dimensional systems. In high-dimensional cases, the
operator ϕðτÞ in Eq. (C14) has the norm of Oðβ0j∂ΛjÞ,
while in the one-dimensional case, it has the norm of
Oðβ0Þ. This fact reduces the approximation error in
Eq. (C12) to e−Oðl=β0ÞþOðβ0j∂ΛjÞkρ0kp0

in high-dimensional
systems. Hence, we need to choose l ¼ Oðβ20j∂ΛjÞ to
ensure a good approximation error, but this choice is too
large to be utilized in the derivation of the improved
thermal area law.
In order to overcome this difficulty, we choose q ¼ OðβÞ

such that

β0 ≔ β=ð2qÞ ≤ 1

32gk
: ðD6Þ

As shown in Lemma 20 below, this condition allows
us to construct the operator ρ̃0 as in Eq. (C5) (i.e.,
kρ0 − ρ̃0k2qp ≤ δkρ0k2qp) in the following form:

ρ̃0 ≔ Φ̃0e
−β0ðHL0

þHR0
ÞFmðβ0HSÞ;

Φ̃0 ≔ ΦL1
⊗ ΦR1

; ðD7Þ

where ΦL1
and ΦR1

are operators supported on L1 and R1,
respectively (i.e., L1 ¼ fΛigi≤l=4 and L1 ¼ fΛigi≥3l=4þ1),
and the degree m polynomial FmðxÞ approximates the
exponential function e−β0x. As in the inequality (C6), this
operator gives the approximation

ke−βH − ρ̃2q0 kp ≤ ϵke−βHkp with ϵ ≔ 3eqδ: ðD8Þ

The mutual information is roughly determined by the
upper bound of the Schmidt rank of ρ̃2q0 , which is given by

½Φ̃0e
−β0ðHL0

þHR0
ÞFmðβ0HSÞ�2q: ðD9Þ

The Schmidt rank of the above operator is
ðmqÞOðqÞþOðlj∂ΛjÞþOðmq=lÞ from Lemma 17. In the one-
dimensional case, for q ¼ OðβÞ, this estimation gives
the Schmidt rank of eOðβÞ and spoils the improved thermal
area law. However, in high-dimensional systems, the
contribution of eOðβÞ is much smaller than eβ

2=3j∂Λj as long
as β ≤ j∂Λj3. Therefore, it is still possible to derive an
improved area law from the approximation by Eq. (D9).
This point is the second difference between the 1D case and
high-dimensional cases.
In the proof of the area law, we roughly choose (see

Appendix D 4 for more details)

m ≈ j∂Λj ffiffiffi
l

p
; q ≈ β; l ≈ β2=3; ðD10Þ

which gives the Schmidt rank of the operator (D9) as
ðmqÞOðqÞþOðlj∂ΛjÞþOðmq=lÞ ≈ exp½β2=3j∂Λj logðβj∂ΛjÞ�. We
thus obtain the inequality (D1).
In the following, we show how the basic lemmas in the

one-dimensional case are extended to the high-dimen-
sional cases.

3. Approximation of ρ0 of Eq. (D7)

We relate the two operators ρ0 ¼ e−β0H and e−β0H0 . We
can formally write

ρ0 ¼ Φ0e−β0H0 ; ðD11Þ

where Φ0 ¼ e−β0Heβ0H0 is usually a highly nonlocal oper-
ator. The lemma below ensures that the Φ0 is approximated
by an operator supported on L1⊔R1.
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Lemma 20.—Let H̃ and H̃0 be Hamiltonians as follows:

H̃ ¼ HL1
þHR1

;

H̃0 ¼ HL1
þHR1

− v0 − vl: ðD12Þ

We then define

Φ̃0 ≔ Φ̃L1
⊗ Φ̃R1

¼ e−β0H̃eβ0H̃0 ;

Φ̃L1
≔ e−β0HL1eβ0ðHL1

−v0Þ;

Φ̃R1
≔ e−β0HR1eβ0ðHR1

−vlÞ: ðD13Þ

Then, for β0 ≤ 1=ð32gkÞ and l ≥ 2k logðj∂ΛjÞ, the
approximated operator

ρ00 ¼ Φ̃0ρ0 ¼ Φ̃0e−β0H0 ðD14Þ

satisfies

kρ00 − ρ0kp0
≤ 2j∂Λje−l=ð2kÞkρ0kp0

ðD15Þ

for arbitrary p0 ∈ N.
As mentioned in the previous subsection, this decom-

position has an advantage over the belief propagation
method used in Lemma 14. By using the decomposition

(D14), we can achieve the upper bound of j∂Λje−OðlÞ

instead of e−OðlÞþOðj∂ΛjÞ.

a. Proof of Lemma 20

We first define V as V ≔ H −H0 ¼ H̃ − H̃0, namely,

V ¼ v0 þ vl: ðD16Þ

We also define V 0 ≔ H0 − H̃0.
We here aim to prove

ke−β0H̃eβ0H̃0e−β0H0eβ0H − 1k ≤ 2j∂Λje−l=ð2kÞ: ðD17Þ

When we obtain the above upper bound, we arrive at the
main inequality as follows:

kΦ̃0ρ
0
0 − ρ0k ¼ ke−β0H̃eβ0H̃0e−β0H0 − e−β0Hkp

¼ ke−β0H̃eβ0H̃0e−β0H0eβ0He−β0H − e−β0Hkp
≤ ke−β0H̃eβ0H̃0e−β0H0eβ0H − 1k · ke−β0Hkp
≤ 2j∂Λje−l=ð2kÞke−β0Hkp; ðD18Þ

where the first inequality comes from Hölder’s inequal-
ity (B2).
In order to derive the inequality (D17), we define GðτÞ as

GðτÞ ≔ e−τH̃eτH̃0e−τH0eτH: ðD19Þ

We then obtain

d
dτ

GðτÞ ¼ e−τH̃ðH̃0 − H̃ÞeτH̃GðτÞ þ e−τH̃eτH̃0e−τH0ðH −H0ÞeτH0e−τH̃0eτH̃GðτÞ
¼ −e−τH̃ðV − eτH̃0e−τH0VeτH0e−τH̃0ÞeτH̃GðτÞ; ðD20Þ

where we use the definition of H −H0 ¼ H̃ − H̃0 ¼ V. The solution of the above differential equation is given by

Gðβ0Þ ¼ T exp

�
−
Z

β0

0

e−τH̃ðV − eτH̃0e−τH0VeτH0e−τH̃0ÞeτH̃dτ
�
; ðD21Þ

where T is the ordering operator. From the above equation, we obtain the upper bound of ke−β0H̃eβ0H̃0e−β0H0eβ0H − 1k ¼
kGðβ0Þ − 1k as

kGðβ0Þ − 1k ≤ exp

�Z
β0

0

ke−τH̃ðV − eτH̃0e−τH0VeτH0e−τH̃0ÞeτH̃kdτ
�
− 1: ðD22Þ

We can prove the following upper bound (see below for the proof):

ke−τH̃ðV − eτH̃0e−τH0VeτH0e−τH̃0ÞeτH̃k ≤
gkj∂Λj

2
8−sl ; sl ≔

l
4k

− 2: ðD23Þ

For l ≥ 2k logðj∂ΛjÞ, we have
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gkβj∂Λj
2

8−sl ≤ j∂Λj8−l=ð4kÞ ≤ j∂Λje−l=ð2kÞ ≤ 1; ðD24Þ

where we use β0 ≤ 1=ð32gkÞ and e2 < 8. We thus use the inequality (D23) to reduce the inequality (D22) to

kGðβ0Þ − 1k ≤ exp

�
gkβ0j∂Λj

2
8−sl

�
− 1 ≤ gkβ0j∂Λj8−sl ≤ 2j∂Λj8−l=ð4kÞ ≤ 2j∂Λje−l=ð2kÞ; ðD25Þ

where we use ex − 1 ≤ 2x for 0 ≤ x ≤ 1 and gkβ0 ≤ 1=32. This completes the proof. ▪

b. Proof of the inequality (D23)

We start from the following equation:

V − eτH̃0e−τH0VeτH0e−τH̃0 ¼ −
Z

τ

0

d
dx

ðexH̃0e−xH0VexH0e−xH̃0Þdx

¼ −
Z

τ

0

ðexH̃0e−xH0 ½exH0H̃0e−xH0 −H0; V�exH0e−xH̃0Þdx

¼
Z

τ

0

ðexH̃0e−xH0 ½exH0V 0e−xH0 ; V�exH0e−xH̃0Þdx; ðD26Þ

where we use the definition V 0 ≔ H0 − H̃0. This result yields

ke−τH̃ðV − eτH̃0e−τH0VeτH0e−τH̃0ÞeτH̃k ≤
Z

τ

0

ke−τH̃exH̃0e−xH0 ½exH0V 0e−xH0 ; V�exH0e−xH̃0eτH̃kdx

¼
Z

τ

0

ke−τH̃exH̃0 ½V 0; e−xH0VexH0 �e−xH̃0eτH̃kdx: ðD27Þ

The commutator ½V 0; e−xH0VexH0 � is decomposed by the Baker-Campbell-Hausdorff expansion:

½V 0; e−xH0VexH0 � ¼
X∞
s¼0

ð−xÞs
s!

adV 0adsH0
ðVÞ: ðD28Þ

Because the supports of V and V 0 are separated at least by a distance of l=4 − 2k, we have

adV 0adsH0
ðVÞ ¼ 0 for s ≤

l=4 − 2k
k

≕ sl: ðD29Þ

Furthermore, we have

e−τH̃exH̃0 ½V 0; e−xH0VexH0 �e−xH̃0eτH̃ ¼
X∞
m2¼0

ð−τÞm2

m2!

X∞
m1¼0

xm1

m1!

X∞
s¼slþ1

ð−xÞs
s!

adm2

H̃
adm1

H̃0
adV 0adsH0

ðVÞ: ðD30Þ

From Lemma 13 or inequality (B18), the norm of the multicommutator is upper bounded by

kadm2

H̃
adm1

H̃0
adV 0adsH0

ðhXÞk ≤ ð2gkÞm1þm2þsþ1ðm1 þm2 þ sþ 1Þ!khXk; ðD31Þ

where hX is supported on X such that jXj ≤ k. Then, because of the definition of vi in Eq. (A7), we have

kadm2

H̃
adm1

H̃0
adV 0adsH0

ðviÞk ≤ ð2gkÞm1þm2þsþ1ðm1 þm2 þ sþ 1Þ!
X

X∶X∩Λ≤i≠∅;X∩Λ>i≠∅
khXk

≤ ð2gkÞm1þm2þsþ1ðm1 þm2 þ sþ 1Þ!
X

j∈Λi⊔Λi−1⊔���Λi−kþ1

X
X∶X∋j

khXk

≤ gkj∂Λjð2gkÞm1þm2þsþ1ðm1 þm2 þ sþ 1Þ!; ðD32Þ
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where we use jΛij þ jΛi−1j þ � � � þ jΛi−kþ1j ≤ kj∂Λj. Because of V ¼ v0 þ vl, we obtain

kadm2

H̃
adm1

H̃0
adV 0adsH0

ðVÞk ≤ j∂Λjð2gkÞm1þm2þsþ2ðm1 þm2 þ sþ 1Þ!: ðD33Þ

By using the inequality

ðm1 þm2 þ sþ 1Þ!
m1!m2!s!

¼ ðm1 þ 1Þ!
m1!1!

ðm1 þm2 þ 1Þ!
ðm1 þ 1Þ!m2!

ðm1 þm2 þ sþ 1Þ!
ðm1 þm2 þ 1Þ!m2!

≤ 8m1þ14m22s; ðD34Þ

we have

X∞
m2¼0

τm2

m2!

X∞
m1¼0

xm1

m1!

X∞
s¼slþ1

xs

s!
kadm2

H̃
adm1

H̃0
adV 0adsH0

ðVÞk

≤
X∞
m2¼0

τm2

X∞
m1¼0

xm1

X∞
s¼slþ1

xsj∂Λjð2gkÞm1þm2þsþ2
ðm1 þm2 þ sþ 1Þ!

m1!m2!s!

≤
32g2k2j∂Λj
1 − 16gkx

1

1 − 8gkτ
ð4gkxÞslþ1

1 − 4gkx
: ðD35Þ

From maxðτ; xÞ ≤ β0 ≤ 1=ð32gkÞ, the above inequality reduces to

X∞
m2¼0

τm2

m2!

X∞
m1¼0

xm1

m1!

X∞
s¼slþ1

xs

s!
kadm2

H̃
adm1

H̃0
adV 0adsH0

ðVÞk ≤ 13g2k2j∂Λj8−sl : ðD36Þ

By combining the inequalities (D30) and (D36), we obtain

ke−τH̃exH̃0 ½V 0; e−xH0VexH0 �e−xH̃0eτH̃k ≤ 13g2k2j∂Λj8−sl : ðD37Þ

From the inequality (D27), we thus prove the inequality of

ke−τH̃ðV − eτH̃0e−τH0VeτH0e−τH̃0ÞeτH̃k ≤ 13g2k2τj∂Λj8−sl ≤ gkj∂Λj
2

8−sl ; ðD38Þ

where we use τ ≤ β0 ≤ 1=ð32gkÞ in the second inequality.
This completes the proof. ▪
The lemma implies that, as the length l becomes large,

the approximation error decays exponentially with e−OðlÞ.
Thus, in order to achieve the inequality

kρ00 − ρ0k2qp ≤
δ

2
kρ0k2qp; ðD39Þ

we need to choose l as

l ≥ 2k logð4j∂Λj=δÞ: ðD40Þ

We approximate e−β0H0 by an operator with small
Schmidt rank. For this purpose, we use the fact that HS,
HL0

, and HR0
commute with each other and write

e−β0H0 ¼ e−β0ðHL0
þHR0

Þe−β0HS . Then, we approximate
e−β0HS by using the polynomial of HS in Lemma 15. By
using the polynomial FmðxÞ defined there, we approximate
the operator ρ00 in Eq. (D14) by

ρ̃0 ≔ Φ̃0e
−β0ðHL0

þHR0
ÞFmðβ0HSÞ: ðD41Þ

Because of Eq. (C3), the spectrum of β0HS is included in
the span of ½0; β0kHSk�, and, hence, the inequality (C27)
gives

kFmðβ0HSÞ − e−β0HSk ≤ δ0 ðD42Þ

by choosing m appropriately following Lemma 15.
The next problem is to estimate the approximation error
kρ00 − ρ̃0kp0

for an arbitrary Schatten p0-norm. We prove
the following lemma, which is similar to Lemma 16.
Lemma 21.—Let p0 ∈ N and δ0 ∈ ð0; 1Þ. Under the

choice of ΦL1
⊗ ΦR1

in Lemma 14, l in Eq. (D40), and
m;FmðxÞ in Lemma 15, we have

kρ00 − ρ̃0kp0
≤ D1=p0

S δ0ej∂Λj=7kρ0kp0
ðD43Þ

for β0 ≤ 1=ð32gkÞ.
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c. Proof of Lemma 21

From the definitions (D14) and (D41) of ρ00 and ρ̃0,
respectively, we start from the inequality of

kρ00 − ρ̃0kp0
¼ kΦ̃0e

−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0

≤ ke−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0
· kΦ̃0k;
ðD44Þ

where we use Hölder’s inequality (B2) in the second line.
From the definition (D13) of Φ̃0, we obtain the following
upper bound (see below for the proof):

kΦ̃0k ≤ ej∂Λj=15: ðD45Þ

Next, we obtain the same inequality as Eq. (C36), which
gives the upper bound of

ke−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0
p0

≤ DSδ
p0

0 ke−β0ðHL0
þHR0

þHSÞkp0
p0
: ðD46Þ

In order to estimate the upper bound of
ke−β0ðHL0

þHR0
þHSÞkp0

in terms of ke−β0Hkp0
, we use the

Golden-Thompson inequality to derive

trðe−p0β0H0Þ ≤ trðe−p0β0ðv0þvlÞ · e−p0β0HÞ
≤ e2p0β0gkj∂Λjke−β0Hkp0

p0

≤ ep0j∂Λj=16ke−β0Hkp0
p0
; ðD47Þ

where we use trðe−p0β0H0Þ ¼ ke−β0H0kp0
p0
, β0 ≤ 1=ð32gkÞ,

and derive the upper bound of kvik from the definition
(A7):

kvik ≤
X

X∶X∩Λ≤i≠∅;X∩Λ>i≠∅
khXk

≤
X

j∈Λi⊔Λi−1⊔���Λi−kþ1

X
X∶X∋j

khXk ≤ gkj∂Λj:

By combining the inequalities (D46) and (D47), we
arrive at the inequality of

ke−β0ðHL0
þHR0

Þ½FmðHSÞ − e−β0HS �kp0
p0

≤ DSδ
p0

0 ep0j∂Λj=16ke−β0Hkp0
p0
: ðD48Þ

By applying the inequalities (D45) and (D48) to Eq. (D44),
we obtain the main inequality (C30). This completes the
proof. ▪

d. Proof of the inequality (D45)

By using Eq. (D13), we have

kΦ̃0k ≤ ke−β0HL1eβ0ðHL1
−v0Þk · ke−β0HR1eβ0ðHR1

−vlÞk:

We here consider

e−β0HL1eβ0ðHL1
−v0Þ ¼ T exp

�
−
Z

β0

0

e−xHL1v0e
xHL1dx

�
;

which gives rise to the inequality of

ke−β0HL1eβ0ðHL1
−v0Þk ≤ exp

�Z
β0

0

ke−xHL1v0e
xHL1kdx

�
:

ðD49Þ

We thus aim to derive the upper bound of ke−xHL1v0e
xHL1k.

By using the Baker-Campbell-Hausdorff expansion, we
have

ke−xHL1v0e
xHL1k ≤

X∞
m¼0

xm

m!
kadmHL1

ðv0Þk: ðD50Þ

By using Lemma 13 or the inequality (B18), the norm of
kadmHL1

ðv0Þk is upper bounded as follows:

kadmHL1
ðv0Þk ≤ gkj∂Λjð2gkÞmm!; ðD51Þ

where we use an analysis similar to Eq. (D32). Hence, we
calculate the upper bound of ke−xHL1v0e

xHL1k as

ke−xHL1v0e
xHL1k ≤

X∞
m¼0

xm

m!
· gkj∂Λjð2gkÞmm!

¼ gkj∂Λj
1 − 2gkx

≤
16gk
15

j∂Λj; ðD52Þ

where we use x ≤ β0 ≤ 1=ð32gkÞ. By applying this
inequality to Eq. (D49), we have

ke−β0HL1eβ0ðHL1
−v0Þk ≤ eð16gkβ0=15Þj∂Λj ≤ eð1=30Þj∂Λj: ðD53Þ

We obtain the same inequality for ke−β0HR1eβ0ðHR1
−vlÞk.

This completes the proof. ▪

Let us substitute p0 ¼ 2qp in Lemma 21 and choose δ0
such that it satisfies

D1=ð2qpÞ
S δ0ej∂Λj=7 ≤

δ

2
: ðD54Þ

This choice ensures that kρ00 − ρ̃0k2qp ≤ ðδ=2Þkρ0k2qp, and
we conclude that

kρ0 − ρ̃0k2qp ≤ kρ0 − ρ00k2qp þ kρ00 − ρ̃0k2qp
≤ δkρ0k2qp; ðD55Þ

where we use the inequality (D39).
Let us simplify the expression for all the parameters

appearing so far. We first consider
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DS ¼ ςjSj ≤ elj∂Λj logðςÞ; ðD56Þ

and, hence, from Eq. (D54) with q ¼ β=ð2β0Þ and p ≥ 1,
we can choose δ0 as

logð1=δ0Þ ¼ logð2=δÞ þ j∂Λj
�
1

7
þ β0 logðςÞ

l
β

�

¼ j∂Λj
�
1

7
þ β0 logðςÞ

l
β
þ logð2=δÞ

j∂Λj
�

¼ ν0j∂Λj ðD57Þ

with

ν0 ≔
1

7
þ β0 logðςÞ

l
β
þ logð2=δÞ

j∂Λj ≤ const × l: ðD58Þ

Also, the norm of the Hamiltonian β0HS is bounded from
above by

β0kHSk ≤ β0gjSj ≤ β0glj∂Λj; ðD59Þ

where we use the definition (A6) of j∂Λj. Because of the
above upper bound, we have

max½β0kHSk; logð1=δ0Þ� ≤ j∂Λjmax½β0gl; ν0�
¼ Oðlj∂ΛjÞ: ðD60Þ

Hence, from the inequality (C26) in Lemma 15, we obtain
the following form of m to achieve the inequality (D42):

m ¼ dcf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½β0kHSk; logð1=δ0Þ� logð1=δ0Þ

p
e

¼ c̃j∂Λj ffiffiffiffiffiffiffi
ν0l

p
; ðD61Þ

where c̃ is a constant of Oð1Þ.
Finally, we apply Lemma 17 to ρ̃2q0 . We have

Dloc ≤ ςkj∂Λj, and, hence,

SRðĜm;MÞ ≤ min
l̃∶l̃≤l

½ςl̃j∂Λjð10mMςkj∂ΛjÞ2Mþ2l̃þð2kmM=l̃Þ�:

ðD62Þ

Under the choice of

Ĝm;M ¼ ρ̃2q0 ; M ¼ 2q ¼ ðβ=β0Þ; m ¼ c̃j∂Λj ffiffiffiffiffiffiffi
ν0l

p
;

l ≥ 2k logð4j∂Λj=δÞ ≥ c̃0 logðj∂Λj=δÞ; ðD63Þ

we reduce the upper bound of Eq. (D62) to

SRðρ̃2q0 Þ ≤ min
l̃∶l̃≤l

�
ςl̃j∂Λj

�
10c̃βςkj∂Λj2 ffiffiffiffiffiffiffi

ν0l
p

β0

�2β=β0þ2l̃þ2c̃kðβ=β0Þj∂Λjl̃−1
ffiffiffiffiffi
ν0l

p �
: ðD64Þ

4. Choice of polynomial degree m and region length l

We here consider how to choose the parametersm and l.
We assume jRj ≥ jLj (≥ j∂Λj) and choose δ as δ ¼ 1=jLj2,
and the condition for l in Eq. (D63) reads

l ≥ 2k logð4j∂Λj=δÞ ≥ c̃1 logðjLjÞ; ðD65Þ

where c̃1 is a constant which depends only on g, k, and d.
Then, under the condition of β ≥ log2ðj∂ΛjÞ ∝ log2ðjLjÞ,
we can choose l such that

l ≤ c̃10β: ðD66Þ

We then obtain the upper bound of ν0 in Eq. (D57) as

ν0 ¼ 1

7
þ c̃01β0 logðςÞ þ

logð2jLj2Þ
j∂Λj ≤ c̃2; ðD67Þ

where c̃2 is a constant which depends only on g, k, d, and ς.
We here denote

10c̃βςkj∂Λj2 ffiffiffiffiffiffiffi
ν0l

p

β0
≤ ec̃3 logðβj∂ΛjÞ ðD68Þ

with c̃3 an Oð1Þ constant.
Then, the upper bound (D64) is simplified as

SRðρ̃2q0 Þ ≤ min
l̃∶l̃≤l

½e2c̃3ð1=β0þc̃0
1
Þβ logðβj∂ΛjÞ · el̃ logðςÞj∂Λjþ2c̃

ffiffiffiffi
c̃2

p
kðβ=β0Þc̃3 logðβj∂ΛjÞl̃−1l1=2j∂Λj�

¼ ec̃4β logðβj∂ΛjÞ min
l̃∶l̃≤l

½el̃ logðςÞj∂Λjþc̃5β logðβj∂ΛjÞl̃−1l1=2j∂Λj�; ðD69Þ
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where we define c̃4 ≔ 2c̃3ð1=β0 þ c̃01Þ and c̃5 ≔
2c̃

ffiffiffiffiffi
c̃2

p
c̃3k=β0.

In the above upper bound, we would like to choose

l̃ ¼

�

c̃5
logðςÞ β logðβj∂ΛjÞ

�
1=2

l1=4

�
: ðD70Þ

In order that the choice above is consistent with l̃ ≤ l, the
length l should satisfy

l ≥
�

c̃5
logðςÞ β logðβj∂ΛjÞ

�
2=3

: ðD71Þ

We note that this choice of l exists under the constraints
of Eqs. (D65) and (D66) because of β ≥ log2ðj∂ΛjÞ. By
applying the above choice of l̃ with Eq. (D71) to the upper
bound (D69), we finally arrive at the inequality

SRðρ̃2q0 Þ≤ exp ½c̃4β logðβj∂ΛjÞþ c̃6j∂Λjβ2=3 log2=3ðβj∂ΛjÞ�:
ðD72Þ

The inequality β logðβj∂ΛjÞ ≥ j∂Λjβ2=3 log2=3ðβj∂ΛjÞ
holds for β ≳ j∂Λj3. However, when β ¼ Oðj∂Λj3Þ, the
upper bound gives ej∂Λj3 and is worse than the trivial
upper bound eOðnÞ because of j∂Λj ¼ Oðnðd−1Þ=dÞ. We
thus conclude that the second term in Eq. (D72) is more
dominant than the first term.
We have chosen δ ¼ 1=jLj2, and, hence, the inequality

(D8) for p ¼ 1 ensures

ke−βH − ρ̃2q0 k1 ≤
3eβ

2β0jLj2
; ðD73Þ

where we set ke−βHk1 ¼ 1. Then, by using the Alicki-
Fannes inequality [106,128], the main inequality (D1) is
obtained:

IðL∶RÞρβ ≤ IðL∶RÞρ̃2q
0
þOðβ=jLjÞ

≤ 2 log½SRðρ̃q0Þ� þOðβ=jLjÞ
≤ Cj∂Λjβ2=3 log2=3ðβj∂ΛjÞ; ðD74Þ

where the inequality IðL∶RÞρ̃2q
0
≤ 2 log½SRðρ̃q0Þ� is derived

from the purification of ρ̃2q0 as

jψi ¼ ðρ̃q0 ⊗ 1̂Þ
XDΛ

j¼1

jjiΛ ⊗ jjiΛ0 ; ðD75Þ

where fjjigDΛ
j¼1 is an arbitrary orthonormal basis (see also

Sec. VI A). The mutual information IðL∶RÞρ̃2q
0

is smaller

than 2 times the entanglement entropy for jψi [see the
inequality (38) in the main text], which is trivially smaller
than 2 log½SRðρ̃q0Þ�. This completes the proof. ▪

APPENDIX E: PROOFS OF PROPOSITION 4
AND LEMMA 5

1. Proposition 4 for general k-local Hamiltonian (A2)

We here prove the following statement about high
temperatures which plays a crucial role in obtaining the
quasilinear time algorithm.
Proposition 22.—For β ≤ 1=ð8gkÞ, we can construct a

matrix product representation Mβ of ρβ up to an error

kMβ − e−βHkp ≤ ϵke−βHkp ðE1Þ

for an arbitrary positive p, where Mβ has the bond

dimension of eÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�. The sufficient computational

time for this construction is given by

neÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�: ðE2Þ

We notice that the computational cost does not depend
on p.
We here consider general k-local Hamiltonians. In the

main text, the Hamiltonian (5) is considered. By choosing

k ¼ 2; g ¼ 1 ðE3Þ

in Proposition 22, we can obtain Proposition 4. Here,
the equation g ¼ 1 is derived from the condition
maxi∈½n�ðkhi−1;ik þ khi;iþ1kÞ ≤ g ¼ 1 in Eq. (5).

2. Proof strategy

We aim to give an explicit algorithm to obtain the MPO
approximation of e−βH for β ≤ 1=ð8gkÞ. We decompose
the total system into small blocks fBsgn0s¼1 with length l0

(i.e., jBsj ¼ l0), which gives kΛk ¼ n0l0 (see Fig. 8). In
fact, we may not be able to find an integer n0 satisfying
n ¼ n0l0, but we can arbitrary extend the system size Λ →
Λ⊔δΛ without changing the Hamiltonian. We have only to
add the zero operators, and the form of Eq. (A2) is still
retained as follows:

H ¼
X

X⊂Λ⊔δΛ;jXj≤k
hX; sup

i∈Λ⊔δΛ

X
X∶X∋i

khXk ≤ g;

where hX ¼ 0̂X if X ∩ δΛ ≠ ∅.
We then define H1∶j as

H1∶j ¼
X
X⊂B≤j

hX; B≤j ≔ B1⊔B2⊔ � � �⊔Bj: ðE4Þ

By using this notation, we define operators Φj and Φ1∶j as
follows:

Φj ≔ eβH1∶j−1e−βH1∶j ; Φ1∶j ¼ Φ1Φ2 � � �Φj; ðE5Þ
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where we define H1∶0 ¼ 0̂. Note that each of fΦjgn0j¼1 may
be highly nonlocal. By using fΦjgn0j¼1, we have

e−βH ¼ Φ1∶n0 : ðE6Þ

We, in the following, derive efficient approximations for
fΦjgn0j¼1. For this purpose, we define Φ̃j and Φ̃1∶j as
follows:

Φ̃j ≔ eβHj−1e−βHj−1;j ; Φ̃1∶j ¼ Φ̃1Φ̃2 � � � Φ̃j;

Hj ≔
X

X∶X⊂Bj

hX þ
X

X∶X∩Bj≠∅;X∩Bjþ1≠∅
hX;

Hj;jþ1 ≔ Hj þHjþ1: ðE7Þ

Here, Hj is comprised of the internal interaction in
the block Bj and the block-block interactions between
Bj and Bjþ1. We first approximate e−βH by Φ̃1∶n0. Then,
we approximate Φ̃1∶n0 by using polynomial approxi-
mations as

Φ̃ðmÞ
j ≔ TmðβHj−1ÞTmð−βHj−1;jÞ;

Φ̃ðmÞ
1∶j ¼ Φ̃ðmÞ

1 Φ̃ðmÞ
2 � � � Φ̃ðmÞ

j ; ðE8Þ

where TmðxÞ ¼
P

m
s¼0 x

m=m! is the truncated Taylor expan-
sion. In the following, we estimate the parameters l0 andm
to achieve the precision of

kΦ̃ðmÞ
1∶n0e

βH − 1k ≤ ϵ: ðE9Þ

The above upper bound yields, for an arbitrary Schatten
p-norm,

kΦ̃ðmÞ
1∶n0 − e−βHk

p
≤ kðΦ̃ðmÞ

1∶n0e
βH − 1Þe−βHk

p

≤ kΦ̃ðmÞ
1∶n0e

βH − 1k · ke−βHkp
≤ ϵke−βHkp; ðE10Þ

where we use the Hölder inequality (B2) in the second step.
In Appendix E 3, we prove that the inequality (E9) is

achieved by choosing l0 and m as

l0 ¼ c0k logð6n=ϵÞ and m ¼ c1 logð6n=ϵÞ; ðE11Þ

where c0 and c1 are constants of Oð1Þ. Under the choice

above, we estimate the Schmidt rank Φ̃ðmÞ
1∶n0 across an

arbitrary cut.

Here, Φ̃ðmÞ
1∶n0 is given by

Φ̃ðmÞ
1∶n0 ¼ Tmð−βH1ÞTmðβH1ÞTmð−βH1;2ÞTmðβH2ÞTmð−βH2;3Þ � � �TmðβHn0−1ÞTmð−βHn0−1;n0Þ: ðE12Þ

Let us consider a cut between Λ≤i and Λ>i for a fixed i ∈ Λ. Then, at most five polynomials contribute to the Schmidt

rank of SRðΦ̃ðmÞ
1∶n0 ; iÞ (see Fig. 8), where we denote them as Tmð−βHj−1;jÞ, TmðβHjÞ, Tmð−βHj;jþ1Þ, TmðβHjþ1Þ, and

Tmð−βHjþ1;jþ2Þ (j ∈ ½n0�). We thus obtain

FIG. 8. Basic strategy for the approximation of e−βH [β ≤ 1=ð8gkÞ]. We decompose the total systems into blocks. We then take the

two-step approximation: (i) e−βH ≈ Φ̃1∶n0 and (ii) Φ̃1∶n0 ≈ Φ̃ðmÞ
1∶n0 , which yield e−βH ≈ Φ̃ðmÞ

1∶n0 . Here, the approximated quantum Gibbs

state Φ̃ðmÞ
1∶n0 is constructed from the polynomials TmðβHj−1Þ and Tmð−βHj−1;jÞ as in Eq. (E8).
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log ½SRðΦ̃ðmÞ
1∶n0 ; iÞ� ≤ log fSR½Tmð−βHj−1;jÞ; i�g þ log fSR½TmðβHjÞ; i�g þ log fSR½Tmð−βHj;jþ1Þ; i�g

þ log fSR½TmðβHjþ1Þ; i�g þ log fSR½Tmð−βHjþ1;jþ2Þ; i�g: ðE13Þ

By using Lemma 17 with Φ1 ¼ Φ2 ¼ 1 and M ¼ 1, we
obtain from Eq. (E11)

log fSR½TmðβHjÞ; i�g ≤ Cmaxðm=l0;
ffiffiffiffi
m

p Þ logðςmÞ
¼ Õ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�; ðE14Þ

where C is a constant of Oð1Þ which depends on k.

Therefore, for an arbitrary cut, log ½SRðΦ̃ðmÞ
1∶n0 ; iÞ� is

bounded from above by Õ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞp �. This result ensures

that the operator Φ̃ðmÞ
1∶n0 is expressed by a matrix product

operator with a bond dimension of eÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�. Because

the operator Φ̃ðmÞ
1∶n0 satisfies the approximation error of

Eq. (E10), we prove the first part of the statement in
Proposition 22.
In order to prove the second part of the statement, we

consider the computational cost to construct the MPO of

Φ̃ðmÞ
1∶n0 . We first note that each of the polynomials TmðβHjÞ

and TmðβHj;jþ1Þ is described by a local MPO with bond

dimension D ¼ eÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�. In the computations of Hq

j

and Hq
j;jþ1 (q ≤ m), we can utilize the compression of

the MPO which is based on the singular value decom-
position. Next, recall that we can express arbitrary local
Hamiltonians by the MPO with a constant bond dimension
[112]. Using this result, we recursively construct the
power of the Hamiltonian Hq

j from Hq−1
j . At each stage

of this recursion, we ensure that the bond dimension is
smaller than D, by compressing the MPO using the sin-
gular value decomposition. By representing the MPO in
the canonical form [112], this compression can be per-
formed efficiently with a computational cost of polyðDÞ
(since the Schmidt coefficient beyond the rank D is exactly
equal to zero, and the error in this compression is equal to
zero). These procedures allow us to construct the local
MPO of TmðβHjÞ and TmðβHj;jþ1Þ with a run time

of polyðDÞ ¼ eÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�.

The remaining task is to connect all the local MPOs of

TmðβHjÞ and TmðβHj;jþ1Þ to construct the operator Φ̃ðmÞ
1∶n0

in Eq. (E12). From the inequality (E13), the bond dimen-
sion is at most D5, and, hence, the iterative multiplications
of the functions TmðβHjÞ and TmðβHj;jþ1Þ require polyðDÞ
computational time, which results in the total computa-

tional time of n × polyðDÞ ¼ neÕ½
ffiffiffiffiffiffiffiffiffiffiffiffi
logðn=ϵÞ

p
�. This com-

pletes the proof of Proposition 22. ▪

3. Proof of the choice (E11)

We prove that the choice of Eq. (E11) achieves the
approximation error (E9). In order to estimate the lhs in
Eq. (E9), we recursively estimate

ϵj ≔ kΦ̃ðmÞ
1∶jΦ−1

1∶j − 1k; ðE15Þ

where we set Φ̃1∶0 ¼ Φ1∶0 ¼ 1. Because of Φ1∶n0 ¼ e−βH

as in Eq. (E6), we have ϵn0 ¼ kΦ̃ðmÞ
1∶n0e

βH − 1k. By using ϵj,
we can calculate the upper bound of ϵjþ1. From
Φ1∶j ¼ e−βH1∶j , we have

Φ̃ðmÞ
1∶jþ1Φ−1

1∶jþ1 ¼ Φ̃ðmÞ
1∶jΦ−1

1∶jðe−βH1∶jΦ̃ðmÞ
jþ1Φ−1

jþ1e
βH1∶jÞ

¼ Φ̃ðmÞ
1∶jΦ−1

1∶jΨ̃j; ðE16Þ

where Ψ̃j ≔ e−βH1∶jΦ̃ðmÞ
jþ1Φ−1

jþ1e
βH1∶j . We then obtain

Φ̃ðmÞ
1∶jþ1Φ−1

1∶jþ1 − 1

¼ ðΦ̃ðmÞ
1∶jΦ−1

1∶j − 1ÞðΨ̃j − 1Þ þ ðΨ̃j − 1Þ þ ðΦ̃ðmÞ
1∶jΦ−1

1∶j − 1Þ;

and, hence,

ϵjþ1 ≤ ϵjδj þ ϵj þ δj; ðE17Þ

where δj ≔ kΨ̃j − 1k. When we obtain δj ≤ δ̄, we have
ϵjþ1 ≤ ð1þ δ̄Þϵj þ δ̄, which yields ϵn0 ≤ ð1þ δ̄Þn0 − 1. We
here use ϵ0 ¼ 0. For δ̄ ≤ 1=n0, we have

ϵn0 ≤ 2n0δ̄: ðE18Þ

Therefore, the problem reduces to the estimation of δj.
The operator Ψj includes the imaginary-time evolution

by e−βH1∶j, but the high-temperature assumption of
β < 1=ð8gkÞ allows us to prove δj ≪ 1. In order to
calculate the upper bound of kΨ̃j − 1k, we define

ΨðmÞ
j ≔ e−βH1∶jΦ̃ðmÞ

jþ1Φ̃
−1
jþ1e

βH1∶j ;

Ψj ≔ e−βH1∶jΦ̃jþ1Φ−1
jþ1e

βH1∶j ;

δj;1 ¼ kΨðmÞ
j − 1k; δj;2 ¼ kΨj − 1k: ðE19Þ

The above definition implies Ψ̃j − 1 ¼ ΨðmÞ
j Ψj − 1, and,

hence,
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kΨ̃j − 1k ≤ kðΨðmÞ
j − 1ÞðΨj − 1Þ þ ðΨj − 1Þ þ ðΨðmÞ

j − 1Þk
≤ δj;1δj;2 þ δj;2 þ δj;1: ðE20Þ

Indeed, we prove the following lemmas.
Lemma 23.—Under the assumption of β ≤ 1=ð8gkÞ, we

obtain the upper bound of

δj;1 ≤ ð4=3Þð2l0=kÞþ1kΦ̃ðmÞ
jþ1Φ̃

−1
jþ1 − 1k: ðE21Þ

Here, m is a control parameter and can be chosen
appropriately.
Lemma 24.—Under the assumption of β ≤ 1=ð8gkÞ, we

obtain the upper bound of

δj;2 ≤ 10gl02
−l0=ke10gβl0=3 ≤ 10gl02

−l0=ð3kÞ; ðE22Þ

where the second inequality is derived from e10gkβ=3 ≤
e5=12 < 22=3.
Based on the above lemma, we choose the block

size l0 as

l0 ¼ c0k logð1=ϵ̃Þ; ðE23Þ

where c0 is a constant such that δj;2 ≤ 10gl02
−l0=ð3kÞ ≤ ϵ̃

and we fix ϵ̃ (< 1) afterward. Also, in order to upper bound
δj;1 in Eq. (E21), we need to estimate the norm of

Φ̃ðmÞ
jþ1Φ̃

−1
jþ1 − 1

¼ TmðβHj−1ÞTmð−βHj−1;jÞeβHj−1;je−βHj−1 − 1:

We then obtain

kΦ̃ðmÞ
jþ1Φ̃

−1
jþ1 − 1k ≤ kTmðβHj−1Þ½Tmð−βHj−1;jÞeβHj−1;j − 1�e−βHj−1 þ TmðβHj−1Þe−βHj−1 − 1k

≤ kTmðβHj−1Þk · ke−βHj−1k · kTmð−βHj−1;jÞeβHj−1;j − 1k þ kTmðβHj−1Þe−βHj−1 − 1k:

Because of kHj−1k ≤ gl0 and kHj−1;jk ≤ 2gl0, we have
kTmðβHj−1Þk≤eOðβgl0Þ ¼eOðl0=kÞ and ke−βHj−1k≤eOðl0=kÞ.

In order to achieve kΦ̃ðmÞ
jþ1Φ̃

−1
jþ1 − 1k ≤ ϵ̃ð4=3Þ−ð2l0=kÞ−1 (or

δj;1 ≤ ϵ̃), we need to choose m such that

kTmð−βHj−1;jÞeβHj−1;j − 1k ≤ ϵ̃e−Oðl0=kÞ: ðE24Þ

From kβHj−1;jk≲ βgl0 ¼ Oðl0=kÞ for β ≤ 1=ð8gkÞ, the
above inequality is satisfied by choosing m ¼ Oðl0=kÞþ
O½logð1=ϵ̃Þ�. The choice of Eq. (E23) implies

m ¼ c1 logð1=ϵ̃Þ; ðE25Þ

where c1 is a constant of Oð1Þ.
Under the above choices of l0 and m, we obtain δj;1 ≤ ϵ̃

and δj;2 ≤ ϵ̃, and, hence, from the inequality (E20), we have

kΨ̃j − 1k ≤ 3ϵ̃: ðE26Þ

We thus obtain δ̄ ¼ 3ϵ̃, which reduces the inequality
(E18) to

ϵn0 ≤ 6ϵ̃n0 ≤ 6nϵ̃: ðE27Þ

By choosing ϵ̃ ¼ ϵ=ð6nÞ, we can obtain the desired

precision (E9) between Φ̃ðmÞ
1∶n0 and e−βH. This completes

the proof. ▪

4. Proof of Lemma 23

We here consider an arbitrary operator OS supported on
S and derive the upper bound of

e−βH1∶jOSeβH1∶j ¼
X∞
m¼0

ð−βÞm
m!

admH1∶j
ðOSÞ: ðE28Þ

By using Lemma 13 or the inequality (B18), we can derive

kadmH1∶j
ðOSÞk ≤ ð2gkÞmkOSk

Ym
s¼1

½jSj=kþ ðs − 1Þ�; ðE29Þ

where we use the condition that H1∶j and Hj are k-local
operators as in Eq. (A2). We then obtain

ke−βH1∶jOSeβH1∶jk ≤ kOSk
X∞
m¼0

ð2gkβÞm
m!

Ym
s¼1

½jSj=kþ s − 1�

¼ kOSkð1 − 2gkβÞ−jSj=k; ðE30Þ

where we use the equation of ð1 − xÞ−y ¼P∞
m¼0 x

m=m!
Q

m
s¼1ðyþ s − 1Þ.

We then choose OS as Φ̃ðmÞ
jþ1Φ̃

−1
jþ1 − 1, which yields

e−βH1∶jOSeβH1∶j ¼ ΨðmÞ
j − 1: ðE31Þ

From the definitions (E7) and (E8), we have

Φ̃ðmÞ
jþ1Φ̃

−1
jþ1 ¼ TmðβHjÞTmð−βHj;jþ1ÞeβHj;jþ1eβHj;
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and, hence, the support of this operator satisfies

jSuppðΦ̃ðmÞ
jþ1Φ̃

−1
jþ1Þj ≤ 2l0 þ k: ðE32Þ

Therefore, by using the inequality (E30) with
jSj ¼ 2l0 þ k, we have

kΨðmÞ
j − 1k ≤ ð4=3Þð2l0=kÞþ1kΦ̃ðmÞ

jþ1Φ̃
−1
jþ1 − 1k; ðE33Þ

where we use 1 − 2gkβ ≥ 3=4 because of β ≤ 1=ð8gkÞ.
This completes the proof of Lemma 23. ▪

5. Proof of Lemma 24

We here estimate the norm of

Ψj − 1 ¼ e−βH1∶jΦ̃jþ1Φ−1
jþ1e

βH1∶j − 1

¼ ðe−βH1∶jΦ̃jþ1eβH1∶jÞðe−βH1∶jΦ−1
jþ1e

βH1∶jÞ − 1:

For the estimation, we are going to simplify the operators
e−βH1∶jΦ̃jþ1eβH1∶j and e−βH1∶jΦ−1

jþ1e
βH1∶j .

We first consider e−βH1∶jΦ̃jþ1eβH1∶j and start from the
equation of

eβH1∶jþ1 ¼ ðT e−
R

β

0
eτH1∶jHjþ1e

−τH1∶j dτÞeβH1∶j ; ðE34Þ

where T is the ordering operator. Then, from
Φ−1

jþ1 ¼ eβH1∶jþ1e−βH1∶j , the above equation reduces
e−βH1∶jΦ−1

jþ1e
βH1∶j to the following form:

e−βH1∶jΦ−1
jþ1e

βH1∶j ¼ T e−
R

β

0
HðτÞ

jþ1
dτ;

HðτÞ
jþ1 ≔ e−ðβ−τÞH1∶jHjþ1eðβ−τÞH1∶j : ðE35Þ

In a similar way, we can represent e−βHj∶jþ1 as

e−βHj∶jþ1 ¼ ðT e−
R

β

0
e−τHjHjþ1e

τHjdτÞe−βHj; ðE36Þ

and, hence, we have from Φ̃jþ1 ≔ eβHje−βHj;jþ1

e−βH1∶jΦ̃jþ1eβH1∶j ¼ e−βH1∶jðT e−
R

β

0
eðβ−τÞHjHjþ1e

−ðβ−τÞHjdτÞeβH1∶j

¼ T e−
R

β

0
e−βH1∶j eðβ−τÞHjHjþ1e

−ðβ−τÞHjeβH1∶j dτ

¼ T e−
R

β

0
H̃ðτÞ

jþ1
dτ; ðE37Þ

where we define H̃ðτÞ
jþ1 as

H̃ðτÞ
jþ1 ≔ e−βH1∶jeðβ−τÞHjHjþ1e−ðβ−τÞHjeβH1∶j : ðE38Þ

We now prove the following claim.
Claim 25.—Let fAjgNj¼1 and fBjgNj¼1 be arbitrary

operators. We also define ΦA;j ≔ eA1eA2 � � � eAj and

ΦB;j ≔ eBj � � � eB2eB1 . We then obtain the following upper
bound as

kΦA;NΦB;N − 1k ≤ Φ̄
XN
s¼1

keAseBs − 1k; ðE39Þ

where Φ̄ ≔ exp½PN
s¼1ðkAsk þ kBskÞ�.

Proof of Claim 25.—By using the triangle inequality, we
first obtain

kΦA;NΦB;N − 1k ≤ kΦA;N−1ΦB;N−1 − 1

þΦA;N−1ðeANeBN − 1ÞΦB;N−1k
≤ kΦA;N−1ΦB;N−1 − 1k þ Φ̄keANeBN − 1k;

ðE40Þ

where we use kΦA;N−1k · kΦB;N−1k ≤ Φ̄. By iteratively
applying the above inequality to kΦA;sΦB;s − 1k, we arrive
at the main inequality (E39). ▪
By using the Trotter decomposition in the expressions

of Eqs. (E35) and (E37), we can assign as ΦA;N →
e−βH1∶jΦ̃jþ1eβH1∶j and ΦB;N → e−βH1∶jΦ−1

jþ1e
βH1∶j in the

limit of N → ∞. Then, from Lemma 25, we obtain

kΨj − 1k ≤ Φ̄β

Z
β

0

kHðτÞ
jþ1 − H̃ðβ−τÞ

jþ1 kdτ; ðE41Þ

where we define Φ̄β as

Φ̄β ≔ exp

�Z
β

0

kHðτÞ
jþ1k þ kH̃ðτÞ

jþ1kdτ
�
: ðE42Þ

To complete the proof, we need to show the follow-
ing claim.
Claim 26.—Under the assumption of β < 1=ð8gkÞ, the

following upper bounds hold:

kHðτÞ
jþ1 − H̃ðβ−τÞ

jþ1 k ≤ 10gl02
−l0=k ðE43Þ

and

Φ̄β ≤ e10gβl0=3: ðE44Þ

By applying the above claim to Eq. (E41), we prove
Lemma 24. ▪

a. Proof of Claim 26

We first estimate the norm of HðτÞ
jþ1 − H̃ðτÞ

jþ1. For this
purpose, we first note that the Hj−1 is supported on the
subset Bj−1⊔fjl0 þ 1; jl0 þ 2;…; jl0 þ k − 1g, namely,

SuppðHj−1Þ ⊂ Bj⊔fjl0 þ 1; jl0 þ 2;…; jl0 þ kg;
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where Suppð� � �Þ denotes the support of the operator. On the other hand, because Hj includes at most k-body interactions,
the support of adqHj

ðHjþ1Þ is given by

Supp½adqHj
ðHjþ1Þ� ⊂ fðjþ 1Þl0 − qk; ðjþ 1Þl0 − qkþ 1;…; ðjþ 1Þl0g⊔Bjþ1⊔Bjþ2: ðE45Þ

Therefore, we have

½Hj−1; admHj
ðHjþ1Þ� ¼ 0 if kþmk ≤ l0: ðE46Þ

This result implies

admHj
ðHjþ1Þ ¼ admH1∶j

ðHjþ1Þ for m ≤ l0=k − 1: ðE47Þ

Hence, from the definition (E38) of H̃ðβ−τÞ
jþ1 , we have

H̃ðβ−τÞ
jþ1 ¼

X∞
m¼0

X
m1þm2¼m

ð−βÞm1

m1!

ðβ − τÞm2

m2!
adm1

H1∶j
adm2

Hj
ðHjþ1Þ

¼
X

m≤l0=k−1

ð−τÞm
m!

admH1∶j
ðHjþ1Þ þ

X∞
m>l0=k−1

X
m1þm2¼m

ð−βÞm1

m1!

ðβ − τÞm2

m2!
adm1

H1∶j
adm2

Hj
ðHjþ1Þ: ðE48Þ

Therefore, we have the upper bound of

kHðτÞ
jþ1 − H̃ðβ−τÞ

jþ1 k ≤
X

m>l0=k−1

�
τm

m!
admH1∶j

ðHjþ1Þ þ
X

m1þm2¼m

βm1

m1!

jβ − τjm2

m2!
adm1

H1∶j
adm2

Hj
ðHjþ1Þ

�
: ðE49Þ

The remaining task is to estimate the summations. By applying the inequality (E29) with OS ¼ hX, we obtain

adm1

H1∶j
adm2

Hj
ðhXÞ ≤ ð2gkÞm1þm2ðm1 þm2Þ!khXk; ðE50Þ

where hX is an interaction operator in Hjþ1. From this inequality with m2 ¼ 0 and the definition of Hjþ1, we have

X
m>l0=k−1

τm

m!
kadmH1∶j

ðhXÞk ≤ khXk
X

m>l0=k−1
ð2gkτÞm ≤ khXk

ð2gkβÞl0=k−1
1 − 2gkβ

; ðE51Þ

where we use τ ≤ β. From the definition of Hjþ1 in Eq. (E7), we have

X
m>l0=k−1

τm

m!
kadmH1∶j

ðHjþ1Þk ≤
ð2gkβÞl0=k−1

1 − 2gkβ

X
X∶X∩Bj≠∅

khXk ≤
gl0ð2gkβÞl0=k−1

1 − 2gkβ
; ðE52Þ

where we use the
P

X∶X∩Bj≠∅ khXk ≤
P

i∈Bj

P
X∶X∋i khXk ≤ gjBjj with the condition in Eq. (A2).

In a similar way, we calculate

X
m>l0=k−1

X
m1þm2¼m

βm1

m1!

jβ − τjm2

m2!
kadm1

H1∶j
adm2

Hj
ðHjþ1Þk ≤ gl0

X
m>l0=k−1

ð2gkβÞm
X

m1þm2¼m

ðm1 þm2Þ!
m1!m2!

¼ gl0ð4gkβÞl0=k−1
1 − 4gkβ

;

ðE53Þ

where we use
P

m1þm2¼m½ðm1 þm2Þ!=m1!m2!� ¼ 2m. By applying the inequalities (E51) and (E53) to Eq. (E49), we obtain

kHðτÞ
jþ1 − H̃ðβ−τÞ

jþ1 k ≤
gl0ð2gkβÞl0=k−1

1 − 2gkβ
þ gl0ð4gkβÞl0=k−1

1 − 4gkβ
: ðE54Þ

Therefore, by using the assumption β ≤ 1=ð8gkÞ, we prove the inequality (E43).
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The above analyses can also be utilized to estimate the norms of kHðτÞ
jþ1k and kH̃ðτÞ

jþ1k. From the inequality (E51), we first
obtain

kHðτÞ
jþ1k ≤

X∞
m¼0

τm

m!
kadmH1∶j

ðHjþ1Þk ≤
gl0

1 − 2gkβ
: ðE55Þ

From the inequality (E53), we can also derive

kH̃ðτÞ
jþ1k ≤

X∞
m¼0

X
m1þm2¼m

βm1

m1!

jβ − τjm2

m2!
kadm1

H1∶j
adm2

Hj
ðHjþ1Þk ≤

gl0

1 − 4gkβ
: ðE56Þ

By applying the above two inequalities to Eq. (E42) under the assumption β ≤ 1=ð8gkÞ, we prove the inequality (E44). This
completes the proof of Claim 26. ▪

6. Proof of Lemma 5

We here prove Lemma 5 in the main text, which gives the upper bound of the Schmidt rank ofMq
β withMβ equal to Φ̃

ðmÞ
1∶n0

in Eq. (E12):

Mβ ¼ Tmð−βH1ÞTmðβH1ÞTmð−βH1;2ÞTmðβH2ÞTmð−βH2;3Þ � � �TmðβHn0−1ÞTmð−βHn0−1;n0Þ; ðE57Þ

where m and l0 are chosen as in Eq. (E11). Our purpose is to prove that, for arbitrary q ∈ N, the Schmidt rank of the qth
power of Mβ is upper bounded by

log½SRðMq
βÞ� ≤ Cmaxðq; ffiffiffiffiffiffiffi

mq
p Þ logðmqÞ: ðE58Þ

As shown in the inequality (E13), for an arbitrary cut, at most five polynomials contribute to the Schmidt rank. We denote
them as Tmð−βHj−1;jÞ, TmðβHjÞ, Tmð−βHj;jþ1Þ, TmðβHjþ1Þ, and Tmð−βHjþ1;jþ2Þ (j ∈ ½n0�). We then denote Mβ by

Mβ ¼ Φ1Tmð−βHj−1;jÞTmðβHjÞTmð−βHj;jþ1ÞTmðβHjþ1ÞTmð−βHjþ1;jþ2ÞΦ2; ðE59Þ

where

Φ1 ¼ Tmð−βH1ÞTmðβH1ÞTmð−βH1;2Þ � � �Tmð−βHj−2;j−1ÞTmðβHj−1Þ;
Φ2 ¼ TmðβHjþ2ÞTmð−βHjþ2;jþ3Þ � � �TmðβHn0−1ÞTmð−βHn0−1;n0Þ: ðE60Þ

Note that the Hamiltonians Hj and Hj;jþ1 are defined on the subsets Bj and Bj⊔Bjþ1, respectively (see Fig. 8). We then
apply Corollary 18 to Mq

β with p ¼ 5 and l ¼ 2l0. The inequality (C45) gives

SRðMq
βÞ ≤ min

l̃∶l̃≤2l0
½ςl̃ð10mqςkÞ10qþ10l̃þð10kmq=l̃Þ� ≤ min

l̃∶l̃≤2l0
½ð10mqς2kÞ10qþ10l̃þð10kmq=l̃Þ�: ðE61Þ

We now choose l̃ as

l̃ ¼
ffiffiffiffiffiffiffiffiffi
kmq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1
c0

l0q
r

; ðE62Þ

where the second equation comes from the choice of
Eq. (E11). Because of the constraint l̃ ≤ 2l0, the exponent
q should satisfy

q ≤
4c0
c1

l0 ¼
4c20k
c1

logð6n=ϵÞ: ðE63Þ

Under this condition, we can choose l̃ as in Eq. (E62), and,
hence, we obtain

log½SRðMq
βÞ� ≤ C0 logðmqÞ½qþ ffiffiffiffiffiffiffi

mq
p �

≤ C
ffiffiffiffiffiffiffi
mq

p
logðmqÞ; ðE64Þ

with C0 and C constants of Oð1Þ, where we use q≲m
because of q ≤ ð2c0=c1Þl0 and l0 ∝ m from Eq. (E11).
On the other hand, for q > ð4c0=c1Þl0, we cannot

choose l0 as in Eq. (E62). We here choose l̃ ¼ 2l0 and
obtain
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10qþ 10l̃þ 10kmq

l̃
¼ 10qþ 20l0 þ

5kmq
l0

≤
�
10þ 5c1

c0
þ 5c1

c0

�
q; ðE65Þ

where we use l0 < c1q=ð4c0Þ and m=l0 ¼ c1=ðc0kÞ from
Eq. (E11). We thus obtain

log½SRðMq
βÞ� ≤ Cq logðmqÞ: ðE66Þ

By combining the inequalities (E64) and (E66), we obtain
the main inequality (E58). This completes the proof. ▪
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