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According to thermodynamics, the inevitable increase of entropy allows the past to be distinguished
from the future. From this perspective, any clock must incorporate an irreversible process that allows this
flow of entropy to be tracked. In addition, an integral part of a clock is a clockwork, that is, a system whose
purpose is to temporally concentrate the irreversible events that drive this entropic flow, thereby increasing
the accuracy of the resulting clock ticks compared to counting purely random equilibration events. In this
article, we formalize the task of autonomous temporal probability concentration as the inherent goal of any
clockwork based on thermal gradients. Within this framework, we show that a perfect clockwork can be
approximated arbitrarily well by increasing its complexity. Furthermore, we combine such an idealized
clockwork model, comprised of many qubits, with an irreversible decay mechanism to showcase the
ultimate thermodynamic limits to the measurement of time.
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I. INTRODUCTION

Time plays a special role in quantum physics. While
other physical quantities of interest are represented as
Hermitian operators, there is no observable corresponding
to time itself. That is, it is not possible to find an operator
conjugate to the Hamiltonian (representing energy) that
may serve as “time observable” in the same way as is done
for position and momentum [1] (see, e.g., Ref. [2] for some
caveats to this statement). Time thus plays the role of a
parameter in the equations of motion. Consequently, the
passage of time is estimated via the evolution of a reference
system—a clock. By tracking the dynamical evolution of
(observable quantities related to) such a clock system, it is
possible to extract information about the flow of time; see,
e.g., Refs. [3–10]. But what makes a specific system useful
as a clock? To address this question, we consider time to be
a continuously elapsing parameter t (“Schrödinger time”)
whose value is estimated by a clock in terms of discrete
increments (“ticks”). According to quantum theory, the
evolution of any closed system is time-reversal symmetric,
and, therefore, any complete description of an instrument

that measures time inevitably requires an irreversible part
that breaks this symmetry. By definition, the equilibrium
state of any system features no nontrivial evolution in time.
Thus, the first necessary ingredient for building a clock is
an out-of-equilibrium system, such that the clock can
harness the irreversible transition to higher entropy to
produce ticks.
Entropy-increasing processes are fundamentally stochas-

tic. Consequently, individual events resulting from such a
process provide little information about t and, thus, make
for rather bad clocks. While one could, in principle, use any
equilibrating system as a clock—such as a hot coffee mug
cooling down on your desk—its ticks, e.g., the spontaneous
emissions of thermal photons (which exhibit super-
Poissonian statistics), come at highly irregular intervals
with respect to Schrödinger time. Structuring this irregular
entropy flow into a series of ticks to allow for a precise
synchronization of events is exactly the purpose of a clock.
In this article, we formalize the task of timekeeping by
conceptually separating two stages:

(i) an irreversible process that follows the second law of
thermodynamics, i.e., an out-of-equilibrium system
moving toward equilibrium by means of discrete and
stochastic events, and

(ii) an internal clockwork that temporally concentrates
the probability of an irreversible event occurring,
thereby mitigating the fluctuations of the intervals
between the equilibration events.

As we see, the particular choice of (i) provides the
context for evaluating clock performance, because it
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represents a basic form of clock itself, while at the same
time limiting the performance of a clock for any given
clockwork. Stage (ii) gives rise to a clearly defined
mathematical task that we refer to as autonomous temporal
probability concentration (ATPC).
Here, we consider clocks to be autonomous. That is, the

Hamiltonian generating the evolution of the clockwork is
energy conserving and time independent, and the irrevers-
ible process is memoryless and requires no external control,
i.e., no active measurement. Although current quantum
clocks are usually far from autonomous, as they require
power input and are subject to losses, both of which are
usually not fully accounted for in their analysis, we focus on
autonomous clocks in order to provide a full analysis of the
resources that are fundamentally required to operate a clock.
To describe the performance of a clock, we use two

quantities: accuracy and resolution. The accuracy N ¼
ðt̄=ΔtÞ2 is the average number of ticks until the clock is, on
average, off by one tick with respect to Schrödinger time.
The resolution R ¼ 1=t̄ is the average of the tick frequency
with respect to Schrödinger time. Note that this choice for
quantifying the resolution is not the only possibility. We
choose the above definition since it represents a
conservative figure of merit, in the sense that it prevents
statistical outliers of ticks occurring at small times t from
unduly inflating the estimated resolution, as we discuss in
more detail in Sec. III.
That there is a trade-off relation between accuracy and

resolution, and that there is a proportional relation between
the entropy dissipated in the process and the clock perfor-
mance, was first noticed in a model of an autonomous
quantum clock as an open quantum system in Ref. [11]
and recently corroborated in a mesoscopic experiment
in Ref. [12].
Here, we combine these aspects and provide a detailed

investigation of the trade-offs between accuracy, resolution,
and entropy production for given energy and complexity
within the framework of autonomous quantum clocks
[13,14]. A central tenet for providing these trade-offs is the
separation of timekeeping into two separate processes men-
tioned above: (i) the irreversible out-of-equilibrium transi-
tions of the clockwork via interaction with an environment,
resulting in distinguishable events registered as “ticks,”which
we model with a decay mechanism, and (ii) the internal
closed-system (unitary) dynamics that provide a clockwork
and temporally concentrate the population of states from
which an irreversible transition can emerge. That is, the
clockwork ensures that the circumstances that allow for a tick
to happen (e.g., a specific energy level resonant with the out-
of-equilibrium dynamics being highly populated) occur only
within a very narrow time window.
We first find that a simple clockwork can concentrate

probability only in a limited fashion, prompting the
question of whether more complex designs could perform
better. We answer this question by finding an analytical

relation between ATPC and complexity of a specific
clockwork model. More generally, we identify the impor-
tant features of a clockwork that lead to this improvement
and prove that, for cold environments, ATPC can be
performed arbitrarily well. Then, we investigate whether
perfect ATPC allows for perfect clocks and find that the
answer is no. In fact, the irreversible process sets a limit to
the clock quality, and, while increasing the complexity
(and, thus, the concentration of probability) first improves
the quality of the clock, after a certain point a further
increase actually is detrimental. We thus illustrate the trade-
offs between accuracy, resolution, entropy production, and
clockwork complexity.
The specific clock model that we consider here consists

of (i) external heat baths as out-of-equilibrium resources,
(ii) a quantum system representing the “clockwork,” and
(iii) an external field that the clockwork can emit energy
(“ticks,” e.g., photons) into. In Sec. II, we first discuss the
role and choice of the clockwork and formalize the task of
ATPC. In Sec. III, we then discuss mechanisms for
coupling the clockwork to an equilibrating process to
produce ticks. In Sec. IV, we combine the two, to showcase
the limitations set by the irreversible process and how the
complexity of a clockwork can be utilized to reach the
maximal potential of a clock. We continue in Sec. V with a
discussion of the implications and the relation to other
literature on clocks and end with a short conclusion
in Sec. VI.

II. THERMAL MACHINES AND THE
CLOCKWORK

Let us now consider a clockwork in the sense discussed
above, that is, a device that contains a target subsystem,
which is to be prepared for an out-of-equilibrium transition,
thus resulting in a tick. From a thermodynamic perspective,
such a preparation requires work to be performed on the
target, which can be achieved by a quantum thermal
machine. Operating such a machine, in turn, requires an
out-of-equilibrium resource, which we here consider to be
provided by thermal baths at different temperatures, i.e., a
thermal gradient. More specifically, we assume that two
independent baths are available, a hot bath and a cold bath,
at temperatures TH and TC, respectively, where the latter
represents the environment. This setup is depicted in Fig. 1.
This choice is motivated, first, by the general availability

of heat baths; i.e., it is the most common out-of-equilibrium
resource found in nature, such as, e.g., the Sun. Second,
because systems are usually expected to thermalize (even-
tually) without detailed external control or timing, i.e.,
preparing such heat baths does not require any timing
device or detailed control of the system’s internal structure,
just an increase in average energy. Consequently, heat baths
allow for transparent bookkeeping of the relevant resour-
ces, i.e., of the average amount of entropy dissipated by the
clockwork for each tick.
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A specific focus of the analysis performed here lies on
the identification of trade-offs between different figures of
merit for the clock performance for fixed energy input
and clock complexity. In principle, the performance of a
given clock also depends on the (difference between
the) temperatures TC and TH. However, since we are
primarily interested in upper bounds on the relevant figures
of merit, we often concentrate on the case where the
environment temperature is TC ¼ 0. For the sake of
completeness, calculations for general TC can be found
in Appendixes B and C.
Our clockwork model then consists of two parts, a

d-dimensional “ladder” target system (in the simplest case,
a qubit, d ¼ 2) and a machine, which itself has some
substructure and couples to the ladder via unitary inter-
action. This interaction supplies work (which the machine
draws from its coupling to the heat baths) to the ladder,
driving it to its excited states. The ladder, in turn, couples
irreversibly to an external field, and, thus, these excitations
eventually result in ticks (i.e., energy emitted into the field).
Here, we consider a model where only a nonzero pop-
ulation PtopðtÞ of the “top level”—the most highly excited
state of the ladder—can lead to a tick. Barring some
improbable combination of selection rules, such a single
sharp energy transition can in practice, of course, only be
approximated. However, as becomes clear once we intro-
duce our model, allowing the possibility of clock ticks
occurring due to other transitions serves to spread the
temporal profile of the ticks, decreasing probability con-
centration. In the spirit of deriving idealized but funda-
mental bounds, we therefore focus on decays resulting
from only one particular transition. As a consequence, the

quality of the clockwork depends on the properties of the
particular probability distribution PtopðtÞ as a function of
Schrödinger time t. In particular, an ideal clockwork should
be capable of producing

PtopðtÞ ¼
�
1; if t ¼ t0;

0; otherwise:
ð1Þ

While one would expect a perfect clockwork to be
capable of producing this distribution, it is also clear that
it is not always desirable in conjunction with an irreversible
mechanism. If the probability is arbitrarily temporally
concentrated, i.e., it is close to one for only a short period
of time, but the coupling of the ladder to the external field is
of finite strength, then the emission of the ladder energy
into the field has a chance not to occur during the peak, thus
skipping this tick and worsening the clock performance.
Nonetheless, an ideal clockwork should be capable of
approximating this ideal distribution to the desired pre-
cision set by the irreversible mechanism. Arguably, it seems
implausible that a heat engine itself, which intrinsically also
harnesses the stochastic flow of energy from a hot to a cold
bath, should be able to produce such a perfect signal.
However, it may be reasonable to expect that a sufficiently
complex clockwork, itself driven by a heat engine, could
approximate the ideal ATPC of Eq. (1). In the following, we
therefore investigate the role of the complexity of the
internal structure of the machine in approximating the ideal
ATPC. In order to do so, we decompose the machine into a
set of elementary few-qubit machines, each realizing an
effective virtual qubit [15]. This set allows the number of
(elementary) machines to be used as a proxy for the
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FIG. 1. Illustration of timekeeping at the level of individual irreversible events. The equilibration events that follow the second law of
thermodynamics are inherently stochastic and irregular; in our example, we use radiative decays from an excited energy level of a
quantum system (which we label “top”). By inserting an autonomously operating clockwork between the two out-of-equilibrium
systems (“hot” decaying quantum systems and a “cold” environment), these decays are temporally structured by temporal variation of
the population of the top level, a task that we refer to as autonomous temporal probability concentration. This task concentrates the
probability of such a decay around the oscillatory peaks of excited population. The panel on the right showcases how greater clockwork
complexity leads to a regularization of individual thermalization events, i.e., clock ticks, starting from a thermal population with
randomly distributed ticks depicted above, continuing to a simple clockwork with limited population and still significant variance,
resulting in ticks being more likely during peak populations and, thus, less frequent and more regular, and then finally a complex
clockwork, increasing population while decreasing temporal variance, giving yet more regular ticks. The tick distribution on the right is
exemplary and depicts random ticks, whose spacing approximates the cycle time of the clockwork as the temporal probability becomes
more concentrated around sharp peaks.
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complexity of the clockwork’s microscopic structure. In
terms of these quantifiers, i.e., the dimension d of the target
system and the numberMðd − 1Þ of virtual-qubit machines
(we consider each of the d − 1 transitions between neigh-
boring energy levels of the ladder to be coupled to M
virtual-qubit machines), a central result on autonomous
probability concentration that we derive in this paper can be
phrased as follows.
Result 1: Autonomous temporal probability concentra-

tion of qubit machines.—Driving a d-dimensional target
system at temperature TC ¼ 0, with M virtual-qubit
machines per transition between neighboring levels,
autonomously allows a top-level probability of

PtopðtÞ¼
�
1−

�
1−

�
ZH −1

ZH

�
d−1

�
M
�
sin2ðd−1ÞðgtÞ ð2Þ

to be reached. Here, ZH is the partition function of a qubit
coupled to the hot bath and can, thus, take values between 1
and 2.
In other words, we show in the following that the

behavior of an ideal clockwork [i.e., Eq. (1)] can be
approximated arbitrarily well by increasing the complexity
of the clockwork, that is, by increasing M and d.

A. Two-qubit machine

We begin by considering the simplest possible heat-
engine-driven clockwork: a two-dimensional ladder
coupled to a cold bath (the environment) and to a two-qubit
machine, i.e., d ¼ 2 and M ¼ 1. In terms of Hilbert space
dimension, this thermal machine is the smallest possible
[15], consisting of a cold qubit and a hot qubit, in contact
with the cold environment and a hot bath, respectively, as
illustrated in Fig. 2.
Before the machine is activated, the qubits interact only

with their respective baths. Under the assumption of weak

coupling between the qubits and baths, each qubit thermal-
izes to the corresponding bath temperature. Denoting the
energy gaps of the hot, cold, and ladder qubits as EH, EC,
and EL, respectively, the reduced states of the qubits can be
represented by the thermal states

ρi ¼
e−βiHi

Zi
; ð3Þ

with i ¼ H;C; L and where Zi ¼ 1þ e−βiEi are the
respective partition functions and Hi the corresponding
free Hamiltonians with eigenstates j0ii and j1ii. The total
initial state of the clockwork—the machine and the
ladder—thus takes the form ρ0 ¼ ρH ⊗ ρC ⊗ ρL.
We further assume that the timescale of the interaction

between the machine and target qubits is much shorter than
that of their thermalization with the respective baths.
Consequently, the relevant dynamics of the clockwork
are well described by energy-conserving unitary processes
on the clockwork Hilbert space H ¼ HH ⊗ HC ⊗ HL.
This description corresponds to assuming that the energy
scales of the clockwork are much greater than that of its
coupling to the environment. It is suited to our purpose of
obtaining fundamental limits to the task of ATPC, as
relaxing this assumption results in the regularity of the
clockwork being impaired by the randomness of the bath.
Now, since the purpose of the machine is to transfer energy
to the target system, we are interested in designing the
internal structure of the clockwork, namely, the energy
levels of the free Hamiltonian H0 ¼ HH þHC þHL and
an interaction Hamiltonian Hint such that ½H0; Hint� ¼ 0
and ½HL;Hint� ≠ 0. This structure can be achieved by
choosing the energy gaps to satisfy EH ≥ EC and
EL ¼ EH − EC, which results in two degenerate energy
levels of H0: j0C1H0Li and j1C0H1Li. This result, in turn,
allows us to define an interaction Hamiltonian that acts
nontrivially only within the degenerate subspace, given by

Hint ¼ gðj1C0H1Lih0C1H0Lj þ j0C1H0Lih1C0H1LjÞ; ð4Þ

where g ∈ R is a coupling constant. The unitary dynamics
generated by the total Hamiltonian H ¼ H0 þHint hence
conserves the total energy of the clockwork, since
½H0; Hint� ¼ 0. However, since ½HL;Hint� ≠ 0, the interac-
tion, once activated, can perform work on the ladder.
The resulting dynamics leads to an increase of the

population of the top energy level j1Li of the ladder, which
(in units where ℏ ¼ 1) is given by

PtopðtÞ ¼ Trðj1Lih1Lje−iHtρ0eiHtÞ: ð5Þ

The maximally reachable population depends on the
temperatures of the baths, as well as the energy gaps of
the machine qubits [15]. The top-level probability in Eq. (5)
evaluates to (see Appendix A)

FIG. 2. Energy-level structure of the minimal thermal clock-
work. The transitions induced by Hint are indicated by arrows.
The green arrows indicate the transition where the ladder gets
exited. The yellow arrows show the reverse transition. Coupling
the qubit with the biggest energy gap to the hot bath introduces a
bias toward the transition that is indicated by the green arrows.

SCHWARZHANS, LOCK, ERKER, FRIIS, and HUBER PHYS. REV. X 11, 011046 (2021)

011046-4



PtopðtÞ ¼
�

ZH − 1

ZCZHZL

�
sin2ðgtÞ

þ
�ðZC − 1ÞðZL − 1Þ

ZCZHZL

�
cos2ðgtÞ

þ ZL − 1

ZL
−
ðZC − 1ÞðZL − 1Þ

ZCZHZL
: ð6Þ

For TC ¼ 0, this probability simplifies to

PtopðtÞ ¼
�
1 −

1

ZH

�
sin2ðgtÞ: ð7Þ

Thus, even when TC ¼ 0, this function is far away
from the ideal shape in Eq. (1), in terms of both its maximal
value and the width of the distribution around its peak.
Even in the limit TH → ∞, the maximal value reached at
t ¼ ðπ=2gÞ is only 1

2
. Moreover, this top-level population

could also be achieved by directly coupling the ladder to the
hot bath. Thus, the two-qubit machine does not provide
the desired ATPC by itself. However, in the following, we
present a generalization of this framework which allows
arbitrarily precise ATPC and, hence, an ideal clockwork to
be approximated to within any given error.

B. Generalized machines

In the following, we present a generalized clockwork
model that allows both the “sharpness” and the amplitude
of PtopðtÞ to be controlled, while keeping track of all the
relevant resources. This model can be achieved by two
qualitatively different but compatible extensions that we
refer to as “horizontal” and “vertical” extensions, as
illustrated in Fig. 3. The horizontal extension allows the
amplitude of PtopðtÞ to be increased, while the vertical
extension allows the width of the peak of PtopðtÞ to be

decreased, thus increasing its sharpness. Specifically, we
add more levels to the target ladder and with it more two-
qubit machines, interacting with each successive transition
(vertical extension); to a given transition, we add more
machines (horizontal extension). We start by collecting all
interactions along a vertical column (see Fig. 3) of
machines interacting with the ladder into a term H1.
This collection vertically extends the interaction of a single
two-qubit machine [Eq. (4)] along all ladder states, i.e.,

H1¼ g
Xd−1
n¼1

ðj1C0Hih0C1HjMn
1
⊗ jnþ1LihnLjþH:c:Þ; ð8Þ

for the first vertical column, where Mj
i denotes the Hilbert

space of the jth two-qubit machine acting on the ith ladder
transition. We then add another term H2, which does the
same for the second vertical column, albeit with an addi-
tional projector onto the subspace orthogonal to the one on
which H1 acts nontrivially to ensure commutativity of H1

and H2. This process continues for M vertical columns,
always projecting onto the orthogonal subspace of all
previously added machines. Using MðiÞ to denote the
Hilbert space of the vertical group of the ith machine,
i.e., MðiÞ ≔⊗d−1

j¼1 M
j
i , we can then write our generalization

of the interaction Hamiltonian from the previous section in
a compact notation as

Hint ¼
XM
k¼1

⊗
k−1

i¼1
1MðiÞ ⊗ JMðkÞL ⊗

M

i¼kþ1
ΠMðiÞ ¼

XM
k¼1

Hk: ð9Þ

Here, we define the projectors

ΠMðiÞ ≔ 1MðiÞ −
Xd−1
n¼0

jnMðiÞ ihnMðiÞ j ð10Þ

FIG. 3. On the right-hand side, the notion of “horizontal” and “vertical” extension is schematically illustrated. The ladder dimension d
determines the number of vertical extensions (“rows”). Each pair of neighboring energy levels of the ladder couples to M copies of the
two-qubit machine, where M determines the number of horizontal extensions (“columns”). On the left-hand side, the energy-level
structure of a horizontally extended machine for a two-machine clockwork coupling to a two-level ladder (d ¼ 2) is illustrated. This case
is a special case of the generalized clockwork shown on the right-hand side. The different energy-conserving transitions induced byHint
are indicated by the differently colored arrows and dots, where the dots represent a conditioning of the transitions of machine 2 either on
the ground state (orange) or on the exited state (purple) of machine 1. The reverse transitions are not depicted here for the sake of clarity.
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and the operator

JMðkÞL ≔ ig
Xd−1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðd − nÞ

p
ðjnMðkÞ ; nLi

× hn − 1MðkÞ ; n − 1Lj − H:c:Þ; ð11Þ

and the states jnMðkÞ i are defined as

jnMðkÞ i ≔ ⊗
n

j¼1
j1C0HiMj

k
⊗
d−1

l¼nþ1
j0C1HiMl

k
: ð12Þ

That is, the state jnMðkÞ i can be considered to be the nth
excited state of the kth vertical group MðkÞ in the sense that

the first n machines Mj
k for j ¼ 1;…; n are in the “used”

state j1C0HiMj
k
, whereas the remaining d − nþ 1 machines

Ml
k, with l ¼ nþ 1;…; d − 1, are in the “unused” state

j0C1HiMl
k
. The relative normalization factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðd − nÞp

of
the different interaction terms in the Hamiltonian is
precisely chosen such that the different subspace rotations
are in phase to single out a sin2ðd−1ÞðgtÞ scaling of PtopðtÞ as
opposed to a mixture of different powers of trigonometric
functions. For further details, see Appendix C.
In the following, we briefly discuss the horizontal and

vertical extensions separately to outline their physical
impact.

1. Horizontal extension

As shown in Appendix B, for TC ¼ 0, the interaction
Hamiltonian for d ¼ 2 in Eq. (9) then modifies the top-level
probability from Eq. (7) to

PtopðtÞ ¼
�
1 −

1

ZM
H

�
sin2ðgtÞ: ð13Þ

For finite TC, the weight of this sinusoidal term changes,
and there are additional constant and cosine terms, whose
relative weight increases with increasing TC (see
Appendix B).
From Eq. (13), we see that the maximal value of PtopðtÞ

increases with increasingM, and total population inversion
can be achieved in the limit M → ∞. However, in order to
achieve ATPC, only increasing the magnitude of PtopðtÞ is
not sufficient, since this increase neglects the temporal
concentration. In the next section, we therefore introduce
the vertical extension, which allows us to temporally
concentrate PtopðtÞ, leading to sharper peaks.

2. Vertical extension

For the vertical extension, we generalize the ladder to a
nondegenerate system with d evenly spaced energy eigen-
states, with the gap between neighboring states equal to EL.
To each of the d − 1 pairs of neighboring energy levels of

the vertically extended ladder, a two-qubit machine can be
coupled in the way described in the previous section.
In total, the vertically extended clockwork thus consists of
a d-dimensional ladder and d − 1 two-qubit machines, as
illustrated in Fig. 3. The resulting top-level probability for
TC ¼ 0 becomes

PtopðtÞ ¼
�
ZH − 1

ZH

�ðd−1Þ
sin2ðd−1ÞðgtÞ: ð14Þ

We thus see that just vertically extending the machine
makes the temporal distribution sharper, but it also
decreases the achievable top-level population.

3. General extended clockwork

Finally, by combining the horizontal and vertical exten-
sions, we can combine the advantages of both, i.e.,
simultaneously increase the top-level population and the
sharpness of the temporal distribution. Straightforward
calculation of the top-level probability for TC ¼ 0 (shown
in detail in Appendix C) yields

PtopðtÞ¼
�
1−

�
1−

�
ZH −1

ZH

�
d−1

�
M
�
sin2ðd−1ÞðgtÞ: ð15Þ

For TC only slightly greater than zero, Eq. (15) smoothly
approximates the above top-level probability (see
Appendix C).
A direct consequence of the particular form of the top-

level probability in Eq. (15) is that the amplitude and
temporal variance (sharpness) of PtopðtÞ can be optimized
to within any desired error by controlling the number of
machines (M) per neighboring pair of energy levels in the
horizontal extension and the dimension of the ladder (d) in
the vertical extension, respectively.
Since we restrict the clockwork to consist of qubit

machines that have up to Mðd − 1Þ-body interactions,
and the Hilbert space of the machine is 4Mðd−1Þ dimen-
sional, the most reasonable quantifier of complexity should
be related simply to M and d. We, therefore, focus on
elucidating the role of M and d separately. What we can
now see is that, in order to decrease the temporal variance
(increasing d) while increasing the amplitude (increasing
M), the complexity necessarily has to increase. Thus, for a
fixed complexity, there exists a trade-off between temporal
variance and probability amplitude.
In the following sections, we include the irreversible

decay mechanism to numerically analyze how accuracy and
resolution of clocks are influenced by changes in M and d.

III. IRREVERSIBILITY AND CLOCK TICKS

Any autonomous quantum clock (or any clock for that
matter) inevitably produces entropy in order to tick [11], as
it needs to be subject to an irreversible evolution. While the
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internal clockwork produces a temporally well-concen-
trated and repeating distribution, there needs to be an
irreversible process that turns this entropy into a measur-
able signal. For this process to happen, there needs to be a
system that is driven out of equilibrium in order to relax
back to equilibrium while producing a tick. In our case,
the system that is driven out of equilibrium is the ladder.
The system with respect to which the ladder is driven out of
equilibrium is assumed to couple to the ladder such that the
top level is unstable and decays, emitting energy into that
system. As an example, one can take this system to be a
photon field at the environment temperature TC that
couples to the ladder, such that when the top-level
population decays to the ground state it emits a photon
of energy Eγ ¼ ðd − 1ÞEL. However, note that the
assumption that only this particular ladder transition
couples to the field is an idealization for the purpose of
deriving fundamental bounds (as discussed in Sec. II).
Since any irreversible process can be viewed as a reversible
process on a larger Hilbert space, the presence of such a
decay channel must, in principle, also allow for the reverse
process of exciting the ladder while absorbing energy, e.g.,
in the form of a photon in the example above. However, the
probability for this process to happen can be made
arbitrarily small by demanding that the background temper-
ature of the field satisfies ðEγ=kBTCÞ ≫ 1.
The number of possible decay processes is vast.

However, since our aim is to capture all resources that
are necessary to operate a clock, allowing for decay
processes that require memory misses the purpose, since
the required resources are not clearly defined for them. We
therefore require the photon field to be memoryless, i.e.,
that correlations with the ladder are diluted very quickly
and are, thus, negligible. The resulting dynamics are
governed by the law of exponential decay and, thus,
constitute an ideal case, giving an effective upper bound
to the clock performance and allowing us to keep track of
the resources that are invested. In particular, the probability
density for a tick occurring at time t is given by (see
Appendix D)

PtickðtÞ ¼ cPtopðtÞe−c
R

Ptopðt0Þdt0 ; ð16Þ

where c is the coupling strength of the photon field with the
top level of the ladder.
Let us now consider the energetic resources required to

run the clock. We first note that, taking TC ¼ 0, as the
clockwork state evolves, each branch of its superposition
where the ladder’s top level is excited corresponds to a
transition of d − 1 machines: j0MðkÞ i → jd − 1MðkÞ i, where
the value of k differs between branches, and we recall that
the fjnMðkÞ ig are defined in Eq. (12). Thus, regardless of
which branch is realized, if the ladder’s top level is excited,
then the heat flow from the hot bath into the total system is

given byQin ¼ ðd − 1ÞEH. This heat flow does the work of
driving the ladder from j0iL to jd−1iL, i.e.,W¼ðd−1ÞEL.
After the clock ticks and the cold qubits of the machines
rethermalize, Qout ¼ ðd − 1ÞEC of heat is dissipated into
the cold bath. Since EH ¼ELþEC, we, thus, have the usual
relation for a thermal machine, i.e., Qin¼WþQout, and the
thermal efficiency of the process is ηth ≔ ðW=QinÞ ¼
ðEL=EL þ ECÞ. From this result, one can see that, as
EC=EL decreases, we approach the Carnot efficiency bound
ηth ≤ 1.
Curiously, for TC ¼ 0 and M → ∞, the top-level pop-

ulation is just PtopðtÞ ¼ sin2ðd−1ÞðgtÞ. If interpreted as a heat
engine whose purpose is to charge a battery (the ladder),
then one can indeed reach an efficiency of ηth ≈ 1 and still
charge the battery in finite time τ ¼ ðπ=2gÞ. Even the
task of ATPC can be achieved to arbitrary precision at
perfect efficiency. One can interpret this result as sufficient
clockwork complexity permitting perfect efficiency at
finite power.
In any case, the efficacy of ATPC and the resulting clock

dynamics are essentially determined by the ladder dimen-
sion d and the number of driving machines M, which
together correspond to a simple notion of clockwork
complexity. In order to investigate how these affect the
quality of the clock, we quantify this quality using two
notions introduced in Ref. [11]. These are the accuracy,
which is the average number of ticks until the next tick is
off by the average time between two ticks, i.e.,

N ¼
�

t̄
Δt

�
2

; ð17Þ

and the resolution, which is the inverse average time
between two ticks, i.e.,

R ¼ 1

t̄
: ð18Þ

Here, t̄ ¼ R∞
0 tPtickðtÞdt and ðΔtÞ2 ¼ t2 − ðt̄Þ2 with t2 ¼R∞

0 t2PtickðtÞdt.
Let us remark here that our choice of quantifier

for the resolution R is not the only option. For instance,
another candidate to quantify the resolution would be
1=t ¼ R∞

0
1
t PtickðtÞdt. However, for this choice, small times

would contribute much more strongly to the average than
for the inverse of the average times. For example, already a
single outlier at a very small value of t would result in a
very large value of 1=t, and one would conclude that the
resolution was very high, even if most of the events were
observed at larger values of t. Conversely, choosing 1=t̄ as a
quantifier means that even a few outliers at large values
t would result in a low resolution. Therefore, our choice
R ¼ 1=t̄ represents the more conservative of these choices,
ensuring that our description results in upper bounds on the
resolution.

AUTONOMOUS TEMPORAL PROBABILITY CONCENTRATION: … PHYS. REV. X 11, 011046 (2021)

011046-7



In the following section, we present numerical calcu-
lations of the accuracy as a function of the resolution, the
clockwork complexity, and the energy dissipated per tick.
For comparison, let us take as a baseline an example

where there are no qubit machines employed, and the ladder
simply begins in equilibriumwith the hot bath and emits this
energy into the cold bath via the irreversible process; i.e.,
there is no ATPC. In that case, the top-level probability is
constant, i.e., PtopðtÞ ¼ exp ½−βHðd − 1ÞEL�=ZL, which
results in R¼ð1=t̄Þ¼ ð1=ΔtÞ¼ cexp ½−βHðd−1ÞEL�=ZL,
and, thus, the resolution is essentially determined by the
decay rate c and the population of the decaying level. The
accuracy is simply N ¼ 1. This result highlights the main
purpose of a clockwork: An individual event resulting from
pure thermalization results in an accuracy of 1 and comes at a
work cost of ðd − 1ÞEL, whereas the clockwork can increase
the accuracy while keeping the work cost of one tick
constant.

IV. NUMERICAL RESULTS

Since we are interested in upper bounds on the clock
quality, for the following results we assume the temperature
of the hot bath to be infinite, i.e., TH → ∞, as well as
TC ¼ 0. The curves in the following figures are generated
numerically by varying three free parameters, namely, M,
d, and c (varying g has the inverse effect of varying c—see
Appendix F). In particular, each curve corresponds to fixed
values of M and c while d varies; we display the accuracy
N on the vertical axes and the ladder dimension d (Fig. 4),
the resolution R (Fig. 5), and the energy dissipation rate ε
(Fig. 6), respectively, on the horizontal axes. First, we
analyze the relation between the sharpness of the peak of
PtopðtÞ and the clock accuracy. Recalling the discussion in
Sec. II B 2, we note that the sharpness of PtopðtÞ increases
with increasing d, and the latter may therefore be used as a
measure of the sharpness of PtopðtÞ. In Fig. 4, the behavior
of the accuracy as d increases is depicted for different
ladder-bath coupling strengths c and different values of M.
For small d, we see that the accuracy increases linearly.
However, increasing the sharpness beyond a certain point
leads to a decrease in accuracy (this behavior is discussed in
detail in Sec. V). The value of c therefore puts a bound on
the maximally achievable accuracy for all potential clocks.
The same limiting behavior is apparent if we fix c and vary
g instead (see Appendix F), for reasons that we discuss
below.
In order to analyze both accuracy and resolution with

respect to the clockwork complexity in Fig. 5, we compare
those two quantities for different fixed values of M while
varying d. Increasing M allows us to reach a higher
maximal accuracy, while increasing d (which increases
from right to left in Fig. 5) allows us to trade resolution for
accuracy up to the optimal point, after which the accuracy
reduces again. We further observe that all clocks with the

same c and g lie under a curve defined by the case of
M → ∞. Increasing c allows for clocks of higher quality,
i.e., that have higher accuracy and resolution. Furthermore,
the position of the maximum depends on the value of g.
Here, g is chosen to be equal to EC. Increasing this value
shifts the peak to the right, i.e., to higher resolutions (see
Appendix F).
Finally, in order to analyze the effect of the energy

dissipation rate ε ¼ Qout=t̄ on the clock accuracy with
respect to different values of M and d, which are simply
related to the complexity of the clockwork (see Sec. II B 3),
in Fig. 6 we plot the accuracy over the energy dissipation
rate ε for clockworks of different complexity. In particular,
we compare different values of M while varying d. What
we can see in Fig. 6 is that, for fixed M (at fixed c and g),
increasing the energy dissipation rate (which is achieved by
increasing d) increases the accuracy at a certain slope until
a maximum is reached. Increasing d further decreases the
accuracy. Furthermore, for a given c, increasingM leads to

FIG. 4. The effect of the ladder dimension d on the clock
accuracy N for different M. The top three curves show this effect
in the limit M → ∞ for different c, where ½c� ¼ s−1.

FIG. 5. The trade-off between clock accuracy N and resolution
R for clockworks of various complexities, where R is increased
by decreasing d. For finite horizontal extensionsM, we show this
behavior for a fixed photon field coupling c ¼ 25, where
½c� ¼ s−1. Increasing M allows for higher maximal accuracy,
and, thus, the orange line represents an upper bound of the
accuracy for a given resolution for all clocks with c ¼ 25. For
M → ∞, we see that increasing c increases the potentially
achievable combinations accuracy and resolution. We choose g ¼
EC in all cases.
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a lower slope (approaching the slope of M → ∞) while
allowing for higher maximal accuracy, which suggests that
a greater maximal accuracy can be achieved at the cost of a
greater energy dissipation rate. We also note that increasing
c increases the maximally achievable accuracy N, as can
also be seen in Figs. 4 and 5. At the same time, increasing c
increases the resolution (which can be seen in Fig. 6). Since
Qout does not depend on c, this increase in resolution leads
to a higher energy-dissipation rate for all values of d andM,
thus increasing the slope of the N-ε curve (in the linear
regime). For reasons of visual clarity, this increase is not
depicted in Fig. 6. One should note, however, that increas-
ing c indefinitely would eventually break the assumptions
inherent in our analysis and force us to explore deviations
from a Markovian exponential decay toward memory
effects in the irreversible dynamics.

V. DISCUSSION

Our results have two general implications. The first
concerns the task of autonomous probability concentration.
We show that, in principle, sufficiently increasing the
clockwork complexity alone is enough to concentrate the
temporal probability arbitrary well. In particular, this task
can again be split into two conceptually different subtasks:
maximizing the achievable population and improving the
temporal sharpness with which this (maximal) population
can be reached. By splitting the clockwork into a target
ladder and virtual-qubit machines coupled to the different
ladder transitions, we are able to analyze how more

complex clockworks can help to achieve the two respective
subtasks. While we work with equally spaced ladder
systems, the same result (qualitatively) also holds for
arbitrarily spaced target Hamiltonians, simply by redefin-
ing the respective coupling strengths (the g’s) of the
interaction Hamiltonians. We equip our clockwork with
a particular tensor product structure, the division into two-
qubit machines, for the sake of keeping track of its
complexity. Our machine operates optimally within the
framework set by this division, but whether more general
machines could also achieve the same performance with a
smaller overall size remains an open question.
In our analysis, we optimize the internal structure of the

clock, i.e., the clockwork, to concentrate the probability in
a fashion that most closely resembles the temporal dis-
tribution of an ideal clockwork. For given c, this optimi-
zation amplifies the clock quality only up to a limit, which
we showcase in Fig. 4. This limit can intuitively be
understood by considering the two key timescales of the
clock, namely, that of the clockwork’s dynamics and that of
the irreversible decay. Increasing d while keeping c fixed,
one eventually reaches a point where PtopðtÞ is so well
concentrated temporally that the comparative slowness of
the decay mechanism reduces the probability that the clock
will tick. In other words, it becomes more likely that the
decay mechanism will skip that peak. We see the inverse of
this behavior if, instead of c, we consider curves of fixed g
(see Appendix F), as increasing g speeds up the clockwork,
effectively making the limit imposed by c more restrictive.
This result brings us to the second implication of our

work. The irreversible mechanism, in our case character-
ized by the parameter c, puts an absolute upper bound on
the achievable combinations of resolution and accuracy,
i.e., the clock quality, and thus determines the potential for
how well a particular physical process can be used as the
basis for a clock. The question of how well this upper
bound can be approximated brings us to the role of our two
extensions. First of all, the horizontal extension, i.e., the
coupling of multiple elementary machines to a single
transition between neighboring ladder levels, primarily
serves the purpose of increasing the possible population
inversion and with it the achievable top-level population.
As we see in Eq. (16), c always appears multiplied by the
prefactor of the sine in Eq. (15), resulting in an effective
coupling:

CM ¼ c

�
1 −

�
1 −

�
ZH − 1

ZH

�
d−1

�
M
�
: ð19Þ

From this result, we can see that increasing the horizontal
extension M is physically equivalent to increasing the
coupling c, and this equivalence is why they play the same
role in Fig. 4 (though we note that CM is bounded with
respect to M but not with respect to c). One cannot make a
similar statement to relate c with the vertical extension d,

FIG. 6. The accuracy N as a function of the energy dissipation
rate ε ¼ Qout=t̄ (with ½ε� ¼ EC s−1) for different numbers of
horizontal extensions M, with c ¼ 105 s−1. As M increases, the
maxima of the curves obtained by varying d are shifted toward
higher values of N and ε, i.e., up and to the right, reaching finite
values (not shown) in the limit M → ∞ (black curve). The
individual peaks obtained for a given coupling strength c and
number M of horizontal extensions correspond to the clocks that
achieve maximal accuracy under these constraints. We exclude
suboptimal cases, i.e., cases where increasing d reduces reso-
lution and accuracy.
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since the exponent of the sine in Eq. (15) varies as d does.
As noted above, d sharpens the temporal distribution, thus
increasing the accuracy of the clock as long as the limit set
by c andM [via Eq. (19)] is not surpassed, as demonstrated
in Fig. 4.
In the regime where the accuracy grows linearly with

the sharpness (Fig. 4), which is determined by d (see
Appendix F), there exists a trade-off relation between
accuracy and resolution. To see this relation, note that the
resolution decreases monotonically with d [see Fig. 7(b)].
For fixed c and g, the case of M → ∞ represents an upper
bound on the clockwork quality, i.e., on the achievable
combinations of accuracy and resolution, which is illus-
trated in Fig. 5.
In our computations, we focus on the limit TC → 0.

State-of-the-art atomic clocks operate at optical frequencies
[16] and at even higher frequencies in novel proposals [17].
The vacuum state of any optical-frequency mode of the
electromagnetic field has a population of approximately 1
at room temperature, and this situation is thus virtually
indistinguishable from temperature 0. For clocks operating
at much lower frequencies, such as those based on micro-
wave transitions, cooling the environmental degrees of
freedom into which the irreversible mechanism dissipates
heat would be necessary in order to approach the funda-
mental limits we derive here.
It is nonetheless important to stress that we are interested

in fundamental limits of timekeeping and the associated
complexity and cost, which one of the reasons why we
consider autonomous clocks in contrast with atomic clocks,
for example, which require external control. For the
practical purpose of building clocks for everyday use,
atomic clocks can require as little as 30 mW [18], which
is many orders of magnitude above the scale defined by the
system energy and the timescale of the relevant processes
but still insignificant for global energy use. The majority of
that cost, however, comes from the fact that at some point
that single event needs to be amplified and registered by a
measurement apparatus, whose inherent irreversible nature
is also thermodynamic and comes with its own costs and
limitations [19]. Conversely, the inevitable imperfections of
clocks and the associated costs also limit the achievable
quality of measurements and, consequently, of all estima-
tion procedures, e.g., of work itself [20].
As far as current and future prospects are concerned, the

limits derived in this paper have more fundamental rel-
evance for the autonomous control of quantum systems by
a quantum clock [21,22]. Here, a small quantum system is
envisioned to be controlled by an autonomous quantum
clock. This control is important for any type of unitary
process requiring precise timing, from small machines
operating in cycles [23] to general repeating unitary
processes such as circuit-based cooling models [24–28].
Coming back to the actual energy cost, there are a

number of interesting observations that follow from our

clock model. First of all, the horizontal extension always
comes at a finite energy cost and dissipation for each tick
for any clock. The vertical extension, on the other hand,
linearly increases the energy cost and dissipation and, as
long as the limit imposed by the c and M is not exceeded,
also increases the accuracy as d increases. This limit can be
qualitatively understood as a point after which further
concentrating probability is actually detrimental to clock
performance. We can observe that the increase in accuracy
follows a linear behavior in d, before switching to a
sublinear behavior close to the peak, after which it actually
decreases accuracy again. Thus, in addition to recovering
the observation that N ∝ ΔS, i.e., that a clock’s accuracy is
essentially determined by the entropy it dissipates (which
seems to be a prevalent feature in all classical and quantum
clocks [12]), we pinpoint which combination of the
resources M, d, and c allow us to maintain this linear
regime. The proportionality factor itself can be identified
numerically from the plots in Fig. 6.
Finally, let us put our clockwork model in context with

recent literature on quantum clocks. In Refs. [29–32], the
relationship between achievable clock accuracy as a func-
tion of “clock dimension” is studied by means of repeated
applications of maps from a clock system to a register.
These works provide fundamental bounds for clock accu-
racy for fixed system dimension d, showing that the
accuracy of classical (incoherent) clocks can at best scale
linearly in d, whereas a quantum clock’s accuracy (with
states featuring coherence) may scale as d2. The clock
system considered in these works is exactly what we here
refer to as the ladder system. Meanwhile, the map that
Refs. [29–33] refer to as being responsible for creating a
tick event in the register subsumes the interactions between
the ladder, the qubit machines, and the heat baths and also
includes the irreversible mechanism and the subsequent
readout. In other words, our work provides a concrete
physical realization of the maps that effect the transfer of
ticks to the register. In Fig. 4, we see that, in the regime of
the clockwork not exceeding the clock potential dictated by
the irreversible mechanism, the accuracy scales linearly
with the ladder dimension d, which is already the optimal
achievable scaling [32].

VI. CONCLUSION

In this article, we have put forward a framework for
studying fundamental limits of timekeeping. The concep-
tual split of any such task into a clockwork, which creates a
temporally concentrated probability distribution and a
mechanism for irreversibility, allowed us to derive an
analytic formula for the achievable temporal probability
concentration of the clockwork. The irreversible mecha-
nism provides a context for the operation of the clock by
allowing the passage of time to be tracked in the first place.
Meanwhile, the chosen irreversible mechanism sets the
reference timescale that ultimately constrains the
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potential of any clockwork that harnesses this mecha-
nism to form a clock. But it is the clockwork that needs
to be appropriately tuned to achieve maximal perfor-
mance given these constraints. By composing the clock-
work of the smallest possible thermal machines, we
were further able to conceptually split the task of
autonomous probability concentration into two subtasks.
First, by having more machines interact with a single
transition, we can increase the maximum top-level prob-
ability and, with it, the effective coupling to the irrevers-
ible mechanism. Second, by concatenating multiple
transitions of this kind, we are able to sharpen the
temporal distribution. This sharpening reveals the intricate
ways in which the complexity of the clockwork deter-
mines its performance.
In the future, it will be interesting to study more exotic

irreversible mechanisms beyond exponential decay and
whether they could be harnessed to further improve the
clock quality. Moreover, one might study increasing clock-
work complexity in a manner other than the addition of
qubits. Furthermore, beyond simply asking if optimal ATPC
is achievable in some limit, it would be of interest to ask
which temporal probability profile [i.e., PtickðtÞ] opti-
mizes clock performance under some constraints and the
extent to which such a profile is achievable with a
quantum machine. Another interesting avenue would
be to make a stronger connection to experimental
implementations of clocks and how the notion of irre-
versibility versus temporal probability concentration can
be more formally made on larger scales. One experiment
in that direction is performed in Ref. [12], using a
nanomechanical membrane. Photoisomerization could
also provide a potential platform for implementing such
a clock at molecular scales [34]. While there are many
open paths to explore and questions to answer, our results
consolidate the fact that perfect clocks are practically
impossible when derived from first principles and that
significant thermodynamic resources have to be invested
to reach the potential of any physical system to act as
a clock.
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APPENDIXES

In these Appendixes, we provide detailed derivations and
background information for the results presented in the

main text. In Appendix A, we first present a derivation of
the top-level probability for the two-qubit machine of
Sec. II A. In Appendix B, we then present the derivation
of the top-level probability for the horizontal extension of
the clockwork for arbitrary temperatures TH and TC. In
Appendix C, we then again focus on the case TC ¼ 0, for
which we derive the top-level probability in the full
horizontal and vertical extension. Appendix D contains
the derivation of the tick probability. Appendix E presents
the details for the numerical computation of accuracy and
resolution. Appendix F discusses the behavior of clocks
with changing ladder dimension d as well as changing
coupling constant g.

APPENDIX A: TOP-LEVEL PROBABILITY
OF A TWO-QUBIT CLOCKWORK

Here, we present a derivation of the top-level probability
PtopðtÞ from Eq. (7). That is, we consider the minimal
clockwork discussed in Sec. II A, which consists of a hot
qubit (coupling to the hot bath at temperature TH, as well as
a cold qubit and a ladder (both coupling to a cold bath at
temperature TC). The derivation presented here is a special
case (M ¼ 1 and TC ¼ 0) of the more general derivation
of the top-level probability within the horizontal extension
that we present in Appendix B (whereM > 1 and both TH
and TC can take on arbitrary values). Nevertheless, we
first go through the much simpler derivation for M ¼ 1
and TC ¼ 0 here, which serves as a guiding example
for the much more involved general calculation that is
to follow.
Assuming that the systems have thermalized with

their respective baths, the initial state of the clockwork
is given by

ρ0 ¼ j0ih0jC ⊗ τH ⊗ j0ih0jL ¼ j0i

× h0jC⊗
1

ZH
ðj0ih0jHþe−βHEH j1ih1jHÞ⊗ j0ih0jL;

ðA1Þ
where ZH ¼ 1þ e−βHEH is the partition function of the hot
qubit. Since the interaction term Hint in the total
Hamiltonian H ¼ H0 þHint is chosen such that the free
energy (that is, with respect to the free Hamiltonian H0) is
conserved, ½H0; Hint� ¼ 0, and because the initial state ρ0 is
diagonal in the eigenbasis of H0, we can write the top-level
probability from Eq. (5) as

PtopðtÞ¼Trðj1ih1jLe−iHtρ0eiHtÞ
¼Trðj1ih1jLe−iHinttρ0eiHinttÞ
¼TrðT0j0ih0jC ⊗ τHT

†
0Þ; ðA2Þ

where T0 is a matrix encoding the transition amplitude
between the ground state and excited state of the ladder,
given by
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T0 ¼L h1je−iHinttj0iL ¼
X∞
k¼0

ð−itÞk
k! Lh1jHk

intj0iL: ðA3Þ

Now, because H2
int is proportional to the identity on its support, that is,

H2
int ¼ g2ðj1ih0jC ⊗ j0ih1jH ⊗ j1ih0jL þ H:c:Þ2

¼ g2ðj1ih1jC ⊗ j0ih0jH ⊗ j1ih1jL þ j0ih0jC ⊗ j1ih1jH ⊗ j0ih0jLÞ; ðA4Þ

even powers of Hint do not contribute to T0. However, for odd powers, we have H2kþ1
int ¼ g2kHint, such that we find

Lh1jH2kþ1
int j0iL ¼ g2kþ1j1ih0jC ⊗ j0ih1jH. With this result, we can evaluate the transition matrix T0, i.e.,

T0 ¼
X∞
k¼0

ð−itÞ2kþ1

ð2kþ 1Þ! Lh1jH
2kþ1
int j0iL

¼
X∞
k¼0

ð−igtÞ2kþ1

ð2kþ 1Þ! j1ih0jC ⊗ j0ih1jH ¼ sinðgtÞj1ih0jC ⊗ j0ih1jH: ðA5Þ

Inserting the result into Eq. (A2), we finally arrive at the
top-level probability

PtopðtÞ¼TrðT0j0ih0jC ⊗ τHT
†
0Þ

¼ sin2ðgtÞLh1jτHj0iL
¼ sin2ðgtÞ e−βHEH

1þe−βHEH
¼ sin2ðgtÞ

�
1−

1

ZH

�
: ðA6Þ

APPENDIX B: THE HORIZONTAL EXTENSION

In this Appendix, we present more technical details of
the horizontal extension of the autonomous clockwork
from a single (M ¼ 1) to multiple (M > 1) two-qubit
machines interacting with the same two-level (d ¼ 2)
transition of the ladder system. In particular, we derive

the top-level probability for the horizontal extension for
arbitrary temperatures TC and TH.
Following a similar approach as in Eq. (A2), we define

transition operators

Tn ≔ Lh1je−iHinttjniL ¼ Lh1j
X∞
j¼0

ð−itÞj
j!

Hj
intjniL

¼ Lh1j
X∞
j¼0

ð−itÞj
j!

XM
k¼1

Hj
kjniL; ðB1Þ

for n ¼ 0, 1, where the last equality follows from the fact
that the interaction terms Hk given by the terms in Eq. (9)
have mutually disjoint support, i.e., HkHk0 ¼ 0 for k ≠ k0.
Before we calculate these transition operators, we note that
Hk satisfies the cyclic property

H2q
k ¼ g2q ⊗

k−1

i¼1
1Mi

⊗ ðj0C1Hih0C1HjMk
⊗ j0ih0jL þ j1C0Hih1C0HjMk

⊗ j1ih1jLÞ ⊗
M

j¼kþ1
ΠMj

for q ∈ N>0; ðB2Þ

H2qþ1
k ¼ g2qþ1 ⊗

k−1

i¼1
1Mi

⊗ ðσ−Mk
⊗ σþL þ σþMk

⊗ σ−LÞ ⊗
M

j¼kþ1
ΠMj

¼ g2qþ1Hk for q ∈ N; ðB3Þ

where Mi ¼ M1
i ¼ C1

i ⊗ H1
i denotes the Hilbert space of the ith horizontal extension, σþL ≔ j1Lih0Lj ¼ ðσ−LÞ†,

σþMk
≔ j0C1Hih1C0HjMk

¼ ðσþMk
Þ†, and jlCmHihpCqHjMk

≔ jlihpjCk
⊗ jmihqjHk

, with l, m, p, q ¼ 0, 1.

Now, for the transition operator T0, we note that only odd powers of Hk can map j0iL to j1iL, and therefore

T0 ¼
X∞
q¼0

XM
k¼1

ð−itÞ2qþ1

ð2qþ 1Þ! Lh1jH
2qþ1
k j0iL ¼ sinðgtÞ

�XM
k¼1

⊗
k−1

j¼1
1Mj

⊗ σ−Mk
⊗
M

l¼kþ1
ΠMl

�
: ðB4Þ

We can calculate T1 similarly, noting that only even powers of Hk contain the factor j1ih1jL:

T1 ¼
X∞
q¼0

XM
k¼1

ð−itÞ2q
ð2qÞ! Lh1jH2q

k j1iL ¼ cosðgtÞ
�XM

k¼1

⊗
k−1

j¼1
1Mj

⊗ j1C0Hih1C0HjMk
⊗
M

l¼kþ1
ΠMl

�
þ Π̃; ðB5Þ
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where Π̃ is a projection defined by

Π̃ ≔ 1HnL −
XM
k¼1

⊗
k−1

j¼1
1Mj

⊗ j1C0Hih1C0HjMk
⊗
M

l¼kþ1
ΠMl

¼ ⊗
M

k¼1
ΠMk

þ
XM
k¼1

⊗
k−1

j¼1
1Mj

⊗ j0C1Hih0C1HjMk
⊗
M

j0¼kþ1
ΠMj0 : ðB6Þ

In order to evaluate the top-level probability, let us briefly inspect the initial state ρ0 in this situation, which is given by

ρ0 ¼ ⊗
M

i¼1
τCi

⊗ τHi
⊗ τL

¼ ⊗
M

i¼1

�
1

ZC
j0ih0jCi

þZC−1

ZC
j1ih1jCi

�
⊗
�

1

ZH
j0ih0jHi

þZH−1

ZH
j1ih1jHi

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TrLðρ0Þ

⊗
�

1

ZL
j0ih0jLþ

ZL−1

ZL
j1ih1jL

�
: ðB7Þ

We split the initial state into two parts: one where the ladder is initially exited and one where it is not, i.e.,

ρ0 ¼
1

ZL
TrLðρ0Þ ⊗ j0ih0jL þ ZL − 1

ZL
TrLðρ0Þ ⊗ j1ih1jL: ðB8Þ

The top-level probability can then be seen to split into two separate contributions, corresponding to the two terms in
Eq. (B8), that is,

PtopðtÞ ¼
1

ZL
Tr½T0TrLðρ0ÞT†

0� þ
ZL − 1

ZL
Tr½T1TrLðρ0ÞT†

1�: ðB9Þ

We first consider the part of ρ0 where the ladder is initially in the ground state. Considering⊗k−1
j¼1 1Mj

⊗ σ−Mk
⊗M

l¼kþ1 ΠMl
in

Eq. (B4), we see that for each k there are k − 1 machines that are acted upon only by identities, meaning the partial trace
over each of these machines simply contributes a factor 1. There are M − k machines that are acted upon by an operator
ΠMj

, each leading to a factor of

Tr

�
1

ZHZC
ΠMj

½j0ih0jCj
þ ðZC − 1Þj1ih1jCj

� ⊗ ½j0ih0jHj
þ ðZH − 1Þj1ih1jHj

�Π†
Mj

�

¼ Tr

�
1

ZHZC
½j0C0Hih0C0HjMj

þ ðZH − 1ÞðZC − 1Þj1C1Hih1C1HjMj
�
�
¼ 1þ ðZC − 1ÞðZH − 1Þ

ZHZC
ðB10Þ

in Tr½T0TrLðρ0ÞT†
0�. In addition, there is always exactly one machine which is acted upon by σ−Mk

, contributing a factor of

Tr

�
1

ZHZC
σ−Mk

½j0ih0jCk
þ ðZC − 1Þj1ih1jCk

� ⊗ ½j0ih0jHk
þ ðZH − 1Þj1ih1jHk

�σþMk

�

¼ Tr

�
1

ZHZC
ðZH − 1Þj1C0Hih1C0Hj

�
¼ ZH − 1

ZHZC
ðB11Þ

in Tr½T0TrLðρ0ÞT†
0�. The first term of PtopðtÞ is thus given by the sum over all k ∈ 1; 2;…;M [see Eq. (B4)], multiplied by

the initial population of the ladder ground state, resulting in

1

ZL
Tr½T0TrLðρ0ÞT†

0� ¼
1

ZL

ZH − 1

ZHZC

XM
k¼1

�
1þ ðZC − 1ÞðZH − 1Þ

ZHZC

�
k−1

sin2ðgtÞ: ðB12Þ

The second part of PtopðtÞ can be calculated in the same way. Comparing Eq. (B5) with Eq. (B4), one sees that (aside from
the oscillating scalar factors) the first term of T1 differs from T0 by replacing σ−Mk

in the latter with j1C0Hih1C0HjMk
, and the

corresponding factor ZH − 1=ZHZC is thus replaced by
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Tr

�
1

ZHZC
j1C0Hih1C0HjMk

½j0ih0jCk
þ ðZC − 1Þj1ih1jCk

� ⊗ ½j0ih0jHk
þ ðZH − 1Þj1ih1jHk

�j1C0Hih1C0HjMk

�

¼ Tr

�
1

ZHZC
ðZC − 1Þj1C0Hih1C0HjMk

�
¼ ZC − 1

ZHZC
: ðB13Þ

The transition operator T1 additionally contains the static term Π̃, which means that PtopðtÞ contains the additional term

Tr

�
1

ZM
HZ

M
C
Π̃ ⊗

M

k¼1
½j0ih0jCk

þ ðZC − 1Þj1ih1jCk
� ⊗ ½j0ih0jHk

þ ðZH − 1Þj1ih1jHk
�Π̃
�

¼ ½1þ ðZC − 1ÞðZH − 1Þ�M
ZM

HZ
M
C

þ
XM
k¼1

½1þ ðZC − 1ÞðZH − 1Þ�k−1ðZH − 1Þ
Zk−1

H Zk−1
C

: ðB14Þ

Thus, the second term of PtopðtÞ becomes

ZL − 1

ZL
Tr½T1TrLðρ0ÞT†

1� ¼
ZL − 1

ZL

ZC − 1

ZHZC

XM
k¼1

�
1þ ðZC − 1ÞðZH − 1Þ

ZHZC

�
k−1

cos2ðgtÞ

þ ZL − 1

ZL

�½1þ ðZC − 1ÞðZH − 1Þ�M
ZM

HZ
M
C

þ
XM
k¼1

½1þ ðZC − 1ÞðZH − 1Þ�k−1ðZH − 1Þ
Zk−1

H Zk−1
C

�
; ðB15Þ

and the total top-level probability of the horizontal extension is given by

PtopðtÞ ¼
XM
k¼1

�
1þ ðZC − 1ÞðZH − 1Þ

ZHZC

�
k−1

�
1

ZL

ZH − 1

ZHZC
sin2ðgtÞ þ ZL − 1

ZL

ZC − 1

ZHZC
cos2ðgtÞ

�

þ ZL − 1

ZL

�½1þ ðZC − 1ÞðZH − 1Þ�M
ZM

HZ
M
C

þ
XM
k¼1

½1þ ðZC − 1ÞðZH − 1Þ�k−1ðZH − 1Þ
Zk−1

H Zk−1
C

�
: ðB16Þ

Taking the limit TC → 0, the top-level probability becomes

PtopðtÞ ¼
�
1 −

1

ZM
H

�
sin2ðgtÞ: ðB17Þ

APPENDIX C: DETAILS ON THE VERTICAL
EXTENSION

Here, we present a detailed derivation of the top-level
probability PtopðtÞ for the vertical extension of the clock-
work. That is, we consider Mðd − 1Þ two-qubit machines
coupled to the d-level ladder, such that M machines
nontrivially couple to each of the d − 1 ladder transitions.
For the purpose of this derivation, we consider the general
case that both the cold and hot bath have finite temper-
atures, in particular, TC ≥ 0 and TH < ∞, but we assume
that TC < TH. To label the different machines, we denote
the Hilbert space of the jth machine coupling to the ith
ladder transition (i.e., the transition between the ladder
levels ji − 1iL and jiiL) by Mi

j, where i ∈ f0; 1;…; d − 1g
and j ∈ f1; 2;…;Mg. Moreover, we denote the Hilbert
space of the collection of all machines within the same
column (see, e.g., the illustration in Fig. 3), i.e., the

collection of jth machines for all ladder transitions, as
MðjÞ ≔⊗d−1

i¼1 Mi
j. Following these conventions, we define

the fully (horizontally and vertically) extended interaction
Hamiltonian as

Hint¼
XM
k¼1

⊗
k−1

i¼1
1MðiÞ ⊗ JMðkÞL ⊗

M

j¼kþ1
ΠMðjÞ ¼

XM
k¼1

Hk: ðC1Þ

Here, the operator Hk acts nontrivially on the joint Hilbert
spaceMðkÞ of the kth column and the ladder via the operator

JMðkÞL ≔ ig
Xd−1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðd−nÞ

p
ðjnMðkÞ ;nLi

× hn−1MðkÞ ;n−1Lj−H:c:Þ: ðC2Þ

However, the action of JMðkÞL is conditioned on the
states of the machines corresponding to the columns
Mðkþ1Þ, Mðkþ2Þ, …, MðMÞ through the projectors

ΠMðkÞ ≔ 1MðkÞ −
XN−1

n¼0

jnMðkÞ ihnMðkÞ j ¼ 1MðkÞ − Π̄MðkÞ ; ðC3Þ
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where j0MðkÞ i ≔ ⊗d−1
j¼1 j0C1HiMj

k
and the states jnMðkÞ i for

n ¼ 1;…; d − 1 are defined as

jnMðkÞ i ≔ ⊗
n

j¼1
j1C0HiMj

k
⊗
d−1

l¼nþ1
j0C1HiMl

k
: ðC4Þ

The state jnMðkÞ i can be considered to be the nth excited
state of the kth vertical group MðkÞ in the sense that the first
n machines Mj

k for j ¼ 1;…; n are in the used state
j1C0HiMj

k
, whereas the remaining d − nþ 1 machines

Ml
k for l ¼ nþ 1;…; d − 1 are in the unused state

j0C1HiMl
k
. Similarly, the state j0MðkÞ i represents the corre-

sponding “ground state.”
Further note that JMðkÞL acts as an effective generator of

rotations on the states jnL; nMðkÞ i for n ¼ 0;…; d − 1. To be
more precise, JMðkÞL can be considered to be a spin-j
representation [for j ¼ ðd − 1=2Þ] of the generator of

rotations around the y axis on the subspace WðkÞ ≔
spanðfjnMðkÞ ign¼0;…;d−1Þ ⊂ MðkÞ of the Hilbert space
MðkÞ of the kth vertical group of machines. Let us further
denote the orthogonal complement of WðkÞ with respect to
MðkÞ by W⊥

ðkÞ, such that MðkÞ ¼ WðkÞ ⊕ W⊥
ðkÞ. We then

observe that kerðJMðkÞLÞ ¼ W⊥
ðkÞ ⊗ HL. Since ΠMðkÞ proj-

ects onto W⊥
ðkÞ, we see that Hk has support only on the

subspace suppðHkÞ¼⊗k−1
i¼1MðiÞ⊗WðkÞ ⊗m

j¼kþ1W
⊥
ðjÞ⊗

HL of the total Hilbert space of the ladder and all machines.
Moreover, these subspaces are orthogonal for different
values of k, i.e.,

HkHk0 ¼ 0 ∀ k ≠ k0: ðC5Þ

As a consequence, we have Hq
int ¼ ðPM

k¼1 HkÞq ¼P
M
k¼1 H

q
k , which we can use in the power expansion of

e−iHintt, that is,

e−iHintt ¼
X∞
q¼0

ð−itÞq
q!

Hq
int ¼ 1þ

X∞
q¼1

ð−itÞq
q!

Hq
int ¼ 1þ

XM
k¼1

X∞
q¼1

ð−itÞq
q!

Hq
k

¼ 1þ
XM
k¼1

⊗
k−1

i¼1
1MðiÞ ⊗

�X∞
q¼1

ð−itÞq
q!

JqMðkÞL

�
⊗
M

j¼kþ1
ΠMðjÞ ; ðC6Þ

wherewe isolate the leading-order term (q ¼ 0) in the expansion and use the fact that the 1MðiÞ andΠMðjÞ are idempotent. Next,

we observe that by definition JqMðkÞLΠ̄MðkÞ ¼JqMðkÞL for all q ≥ 1. We then define the operator UMðkÞLðtÞ ≔ e
−iJMðkÞLt and write

UMðkÞLΠ̄MðkÞ ¼ e
−iJMðkÞLtΠ̄MðkÞ ¼

�
1MðkÞL þ

X∞
q¼1

ð−itÞq
q!

JqMðkÞL

�
Π̄MðkÞ ¼ 1L ⊗ Π̄MðkÞ þ

X∞
q¼1

ð−itÞq
q!

JqMðkÞL: ðC7Þ

Inserting Eq. (C7) into Eq. (C6), we obtain

e−iHintt ¼ 1 − 1L ⊗
XM
k¼1

⊗
k−1
i¼1

1MðiÞΠMðkÞ ⊗
XM
j¼kþ1

ΠMðjÞ þ
XM
k¼1

⊗
k−1
i¼1

1MðiÞ ⊗ UMðkÞLΠMðkÞ ⊗
XM
j¼kþ1

ΠMðjÞ

¼ 1 − 1L ⊗
XM
k¼1

Π̃½k� þ
XM
k¼1

Ũ½k� ¼ 1þ
XM
k¼1

Ũ½k�; ðC8Þ

where we define 1̄ ≔ 1 − 1L ⊗
P

M
k¼1 Π̃½k�. The projectors Π̃½k� and operators Ũ½k� are defined, respectively, as

Π̃½k� ≔ ⊗
k−1

i¼1
1MðiÞ ⊗ Π̄MðkÞ ⊗

M

j¼kþ1
ΠMðjÞ ; ðC9Þ

Ũ½k� ≔ ⊗
k−1

i¼1
1MðiÞ ⊗ UMðkÞLΠ̄MðkÞ ⊗

M

j¼kþ1
ΠMðjÞ ; ðC10Þ

such that Ũ½k�Ũ½k0� ¼ 0 and Π̃½k�Π̃½k0� ¼ 0 ∀ k ≠ k0, while ð1L ⊗ Π̃½k0�ÞŨ½k� ¼ Ũ½k�ð1L ⊗ Π̃½k0�Þ ¼ δkk0Ũ½k� and
1̄Ũ½k� ¼ Ũ½k�1̄ ¼ 0.

With this result, we are now in a position to provide a compact expression of the top-level probability PtopðtÞ, which takes
the form
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PtopðtÞ ¼ Tr½jd − 1ihd − 1jLρ� ¼ Tr½Lhd − 1je−iHinttρ0eiHinttjd − 1iL�

¼ Tr

�
Lhd − 1j

�
1̄þ

XM
k¼1

Ũ½k�

�
ρ0

�
1̄þ

XM
k¼1

Ũ†
½k�

�
jd − 1iL

�

¼ Tr½Lhd − 1j1̄ρ01̄jd − 1iL� þ
XM
k¼1

Tr½Lhd − 1jŨ½k�ρ0Ũ
†
½k�jd − 1iL�; ðC11Þ

where we use the assumption that the initial state ρ0 is diagonal with respect to the joint eigenbasis of the orthogonal
projectors Π̃½k�, which is the case here because the ladder and all machines qubits are initially thermal with respect to either
the cold or hot bath.
For the first term in PtopðtÞ, we then have

Tr½Lhd − 1j1̄ρ01̄jd − 1iL� ¼ Tr½Lhd − 1j1̄ρ0jd − 1iL� ¼ Tr

�
Lhd − 1j

�
1 − 1L ⊗

XM
k¼1

Π̃½k�

�
ρ0jd − 1iL

�

¼ Lhd − 1jτLðβCÞjd − 1iL
�
1 −

XM
k¼1

Tr½Π̃½k�TrLðρ0Þ�
�
: ðC12Þ

Here, we further have

Tr½Π̃½k�TrLðρ0Þ� ¼ Tr

��
⊗
k−1
i¼1

1MðiÞ ⊗ Π̄MðkÞ ⊗
M

j¼kþ1
ΠMðjÞ

�
⊗
M

l¼1
τMðlÞ

�
¼ Tr½Π̄MðkÞτMðkÞ � Π

M

j¼kþ1
Tr½ΠMðjÞτMðjÞ �

¼ Tr½Π̄MðkÞτMðkÞ � Π
M

j¼kþ1
ð1 − Tr½Π̄MðjÞτMðjÞ �Þ; ðC13Þ

where we can use Eq. (C3) to calculate

Tr½Π̄MðjÞτMðjÞ � ¼
XN−1

n¼0

hnMðjÞ jτMðjÞ jnMðjÞ i ¼
XN−1

n¼0

Yn
i¼1

h1C0HjτMi
j
j1C0Hi

YN−1

l¼nþ1

h0C1HjτMl
j
j0C1Hi

¼
XN−1

n¼0

h1jτCj1inh0jτHj0inh0jτCj0id−n−1h1jτHj1id−n−1 ¼
1

Zd−1
C Zd−1

H

Xd−1
n¼0

ðZC − 1ÞnðZH − 1Þd−n−1

¼ ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

: ðC14Þ

Inserting Eqs. (C14) and (C13) into Eq. (C12) and evaluating the sum over k, we obtain

Tr½Lhd − 1j1̄ρ01̄jd − 1iL� ¼ Lhd − 1jτLðβCÞjd − 1iL
�
1 −

ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

�
M
: ðC15Þ

Turning to the second term of PtopðtÞ in Eq. (C11), we express the individual terms in the sum over k as

Tr½Lhd − 1jŨ½k�ρ0Ũ
†
½k�jd − 1iL� ¼ Tr½Lhd − 1jΠ̄MðkÞUMðkÞLτL ⊗ τMðkÞU

†
MðkÞLΠ̄MðkÞ jd − 1iL�

YM
j¼kþ1

Tr½ΠMðjÞτMðjÞ �: ðC16Þ

Then, we note that we can write

Π̄MðkÞUMðkÞL ¼ Π̄MðkÞ ⊗ 1L þ
X∞
q¼1

ð−itÞq
q!

JqMðkÞL ¼
XN−1

m;n¼0

jmMðkÞ ; nLihmMðkÞ ; nLj þ
X∞
q¼1

ð−itÞq
q!

JqMðkÞL

¼
Xd−1
m;n¼0
m≠n

jmMðkÞ ; nLihmMðkÞ ; nLj þ
Xd−1
n¼0

jnMðkÞ ; nLihnMðkÞ ; nLj þ
X∞
q¼1

ð−itÞq
q!

JqMðkÞL

¼
XN−1

m;n¼0
m≠n

jmMðkÞ ; nLihmMðkÞ ; nLj þ
Xd−1
n¼0

jnMðkÞ ; nLihnMðkÞ ; nLje
−iJMðkÞLt; ðC17Þ
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where we separate the terms corresponding to projectors onto the kernel and support of the operator JMðkÞL in the second
step. With this result, we can simplify the first factor appearing on the right-hand side of Eq. (C16) to

Tr½Lhd−1jΠ̄MðkÞUMðkÞLτL ⊗ τMðkÞU
†
MðkÞLΠ̄MðkÞ jd−1iL�

¼
Xd−2
n¼0

hnMðkÞ ;d−1LjτL ⊗ τMðkÞ jnMðkÞ ;d−1LiþTr

�
Lhd−1j

�Xd−1
n¼0

jnMðkÞ ;nLihnMðkÞ ;nLje
−iJMðkÞLt

�
ðτL ⊗ τMðkÞ Þ

×

�
e
iJMðkÞLt

Xd−1
n0¼0

jn0MðkÞ ;n
0
Lihn0MðkÞ ;n

0
Lj
�
jd−1iL

�

¼ Lhd−1jτLðβCÞjd−1iL
Xd−2
n¼0

hnMðkÞ jτMðkÞ jnMðkÞ iþ
Xd−1
n¼0

hnMðkÞ ;nLjτMðkÞ ⊗ τLjnMðkÞ ;nLijhN−1MðkÞ ;d−1Lje−iJMðkÞLtjnMðkÞ ;nLij2

¼ Lhd−1jτLðβCÞjd−1iL
Xd−2
n¼0

ðZC−1ÞnðZH−1Þd−n−1
Zd−1

C Zd−1
H

þ
Xd−1
n¼0

LhnjτLðβCÞjniL
ðZC−1ÞnðZH−1Þd−n−1

Zd−1
C Zd−1

H
jhd−1MðkÞ ;d−1Lje−iJMðkÞLtjnMðkÞ ;nLij2: ðC18Þ

Reinserting the first term appearing in the last step of Eq. (C18) back into Eq. (C16) and evaluating the sum over k in
Eq. (C11), we obtain another [i.e., in addition to that in Eq. (C15)] time-independent contribution to the top-level
probability, given by

Lhd − 1jτLðβCÞjd − 1iL
XM
k¼1

�
1 −

ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

�
M−k Xd−2

n¼0

ðZC − 1ÞnðZH − 1Þd−n−1
Zd−1

C Zd−1
H

¼ Lhd − 1jτLðβCÞjd − 1iL
�
1 −

ðZC − 1Þd−1ðZH − ZCÞ
ðZH − 1Þd − ðZC − 1Þd

��
1 −

�
1 −

ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

�
M
�
: ðC19Þ

For the second term appearing in the last step of Eq. (C18), we note that, since JMðkÞL corresponds to the spin-j
representation (with j ¼ d − 1=2) of the generator of rotations around the y axis on the subspace spanned by the vectors

jnMðkÞ ; nLi for n ¼ 0; 1;…; d − 1, the matrix elements hd − 1MðkÞ ; d − 1Lje−iJMðkÞLtjnMðkÞ ; nLi coincide with the elements of

the Wigner (small) d matrix djμ;mðβÞ ≔ hj; μje−iβJy jj; mi for μ ¼ j, m ¼ n − j, and β ¼ 2gt; see, e.g., Ref. [35] or [36]. In
particular, Eq. (B7) in Ref. [35] lets us write

jhd − 1MðkÞ ; d − 1Lje−iJMðkÞLtjnMðkÞ ; nLij2 ¼
�
d − 1

n

�
cos2nðgtÞsin2ðd−n−1ÞðgtÞ: ðC20Þ

The prefactors of these sinusoidal contributions are then obtained by combining the second term in the last step of Eq. (C18)
with Eq. (C16) and evaluating the sum over k in Eq. (C11), which yields

LhnjτLðβCÞjniL
ðZC − 1ÞnðZH − 1Þd−n−1

Zd−1
C Zd−1

H

XM
k¼1

�
1 −

ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

�
M−k

¼ LhnjτLðβCÞjniL
ðZC − 1ÞnðZH − 1Þd−n−1ðZH − ZCÞ

ðZH − 1Þd − ðZC − 1Þd
�
1 −

�
1 −

ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

�
M
�
: ðC21Þ

Finally, we can collect Eqs. (C20) and (C21) and combine them with the time-independent terms in PtopðtÞ to arrive at
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PtopðtÞ ¼
Xd−2
n¼0

LhnjτLðβCÞjniLðZC − 1ÞnðZH − 1Þd−n−1fðM; d; βC; βHÞ
�
d − 1

n

�
cos2nðgtÞsin2ðd−n−1ÞðgtÞ

þ Lhd − 1jτLðβCÞjd − 1iL
�
1 − ½1 − cos2ðd−1ÞðgtÞ�ðZC − 1Þd−1fðM; d; βC; βHÞ

�
; ðC22Þ

where the coefficient fðM; d; βC; βHÞ is given by

fðM; d; βC; βHÞ ¼
ZH − ZC

ðZH − 1Þd − ðZC − 1Þd
�
1 −

�
1 −

ðZH − 1Þd − ðZC − 1Þd
Zd−1

H Zd−1
C ðZH − ZCÞ

�
M
�
: ðC23Þ

The expression in Eq. (C22) holds for arbitrary temper-
atures TC and TH > TC and includes the desired term
proportional to sin2ðd−1ÞðgtÞ in the sum for n ¼ 0. In
particular, this term is the only term in PtopðtÞ that remains
when taking the limit TC → 0, in which case ZC → 1,

Lhd − 1jτLðβCÞjd − 1iL → 0, and Lh0jτLðβCÞj0iL ¼ 1, and
we have

lim
TC→0

PtopðtÞ ¼
�
1 −

�
1 −

�
ZH − 1

ZH
Þd−1

�
M
�
sin2ðd−1ÞðgtÞ;

ðC24Þ

as stated in Eq. (15) of the main text.
To see that small deviations from the ideal case where

TC ¼ 0 still allow for PtopðtÞ to be close to the correspond-
ing value of the ideal case, i.e., to show the stability of our
approach to ATPC, we analyze the behavior of PtopðtÞ in
the limits M → ∞ and d → ∞ at finite temperatures. To
this end, we first inspect Eq. (C23) and note that the term
that is potentiated byM is smaller than 1. To see this result,
we first write

ðZH−1Þd− ðZC−1Þd
Zd−1

H Zd−1
C ðZH−ZCÞ

¼ ðZH −1Þd− ðZC−1Þd
Zd

HZ
d
C

ZHZC

ZH−ZC
¼ xd−yd

x−y
; ðC25Þ

where we define x ≔ ðZH − 1=ZHZCÞ and y ≔
ðZC − 1=ZHZCÞ with the property 0 ≤ y < x ≤ 1

2
. The

expression on the right-hand side of Eq. (C25) is smaller
than or equal to 1 if x − xd ≥ y − yd, which is the case
if x − xd is monotonically increasing on the interval
½0; 1

2
�. Inspecting the derivative, we have ð∂=∂xÞðx − xdÞ ¼

1 − dxd−1 ≥ 0 since dxd−1 ≤ d=2d−1 ≤ 1 for d ≥ 2.
Consequently, we have ðxd − yd=x − yÞ ≤ 1 and
limM→∞½1 − ðxd − yd=x − yÞ�M ¼ 0. Therefore, we see that

lim
M→∞

fðM; d; βC; βHÞ ¼
ZH − ZC

ðZH − 1Þd − ðZC − 1Þd : ðC26Þ

Since we know that PtopðtÞ must lie in [0, 1], showing that
the first term of Eq. (C22) (n ¼ 0) remains close to 1 when
M and N go to infinity is sufficient to show that our
approach is stable with respect to deviations from TH → ∞
and TC → 0, i.e.,

lim
M→∞

lim
d→∞ Lh0jτLðβCÞj0iLðZH − 1Þd−1fðM; d; βC; βHÞ

�
d − 1

0

�
sin2ðd−1ÞðgtÞ

¼ lim
d→∞

1

ZL
ðZH − 1Þd−1 ZH − ZC

ðZH − 1Þd − ðZC − 1Þd sin
2ðd−1ÞðgtÞ ¼ lim

d→∞

1

ZL

ZH − ZC

ZH − 1

1

1 − ðZC−1
ZH−1

Þd sin
2ðd−1ÞðgtÞ

¼
� ZH−ZC

ZLðZH−1Þ ; if t ¼ π
2g ;

0; otherwise:
ðC27Þ

The value of the expression in Eq. (C27) for t ¼ ðπ=2gÞ can further be written as

ZH − ZC

ZLðZH − 1Þ ¼
1þ e−βHEH − ð1þ e−βCECÞ
e−βHEH

P
d−1
n¼0 e

−nβCðEH−ECÞ ¼ 1 − eβHEH−βCEC

1þP∞
n¼1 e

−nβCðEH−ECÞ

¼ 1 − e−βCðEH−ECÞ − e−ðβCEC−βHEHÞ þ e−EHðβC−βHÞ: ðC28Þ

Recalling that EH > EC, we can see that the quantity in Eq. (C28) remains close to 1 for finite temperatures when
βC ≫ βH such that βHEH < βCEC and when kBTC ≪ ðEH − ECÞ, which are both in keeping with the assumptions made in
the main text.
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APPENDIX D: TICK PROBABILITY DENSITY

In this Appendix, we show how our derivation of the tick
probability results in an exponential decay. The derivation
should not be understood as a new result but rather as a
reminder and clarification. Treating the decay of the top
level as a random event, we can approximate its probability
of occurring in the time interval Δt by

ΔP ¼ ΓΔt; ðD1Þ

where Γ is given in terms of probability per unit time. In our
case here, we have that Γ corresponds to the top-level
population times the constant c, i.e., ΓðtÞ ¼ PtopðtÞc. Let us
denote the cumulative probability that no decay occurs until
time t as Pð0; tÞ. We can then approximate the probability
that no event occurs until tþ Δt as the probability of no
event happening until t times the probability that no event
happens in the interval Δt, i.e.,

Pð0; tþ ΔtÞ ¼ Pð0; tÞ½1 − ΓðtÞΔt�; ðD2Þ

which leads to

Pð0; tþ ΔtÞ − Pð0; tÞ
Δt

¼ −ΓðtÞPð0; tÞ: ðD3Þ

If we further let Δt → dt, we get that

dPð0; tÞ
dt

¼ −ΓðtÞPð0; tÞ ¼ −cPtopðtÞPð0; tÞ ðD4Þ

and, consequently,

Pð0; tÞ ¼ e−c
R

t

0
Ptopðt0Þdt0 : ðD5Þ

Given this expression for the cumulative probability that no
event occurs until time t, we can proceed to calculate the
probability density of a decay event occurring between time
t and tþ dt. To do so, we differentiate the cumulative
probability of having had a decay at time twith respect to t,
i.e., d½1 − Pð0; tÞ�=dt, which results in

PtickðtÞ ¼ cPtopðtÞe−c
R

Ptopðt0Þdt0 : ðD6Þ

APPENDIX E: NUMERICAL CALCULATION OF
ACCURACY AND RESOLUTION

In order to execute the numerical calculations of the
resolution and the accuracy efficiently, we need to simplify
the necessary integrals [defined in Eqs. (18) and (17)]. In
this Appendix, we present details on our approach to this
problem. For simplicity, we showcase the calculations for
TC → 0 and TH → ∞.
Assessing resolution and accuracy for a given set of

parameters d, M, c, and g breaks down to calculating the
first and second moments of the tick distribution, i.e.,

t̄ ¼
Z

∞

0

tPtickðtÞdt; t2 ¼
Z

∞

0

t2PtickðtÞdt; ðE1Þ

where

PtickðtÞ¼ c

�
1−

�
1−

�
ZH −1

ZH

�
d−1

�
M
�
sin2ðd−1ÞðgtÞexp[−c

�
1−

�
1−

�
ZH−1

ZH

�
d−1

�
M
�Z

t

0

dt0sin2ðd−1Þðgt0Þ]: ðE2Þ

In order to simplify the cumbersome expressions, we use the following notation. We denote the kth moment as

Ik ¼ c

�
1 −

�
1 −

�
ZH − 1

ZH

�
d−1

�
M
�Z

∞

0

dttksin2ðd−1ÞðgtÞ exp [ − c

�
1 −

�
1 −

�
ZH − 1

ZH

�
d−1

�
M
�Z

t

0

dt0sin2ðd−1Þðgt0Þ]:
ðE3Þ

The effective coupling is defined as

CM ≔ c

�
1 −

�
1 −

�
ZH − 1

ZH

�
d−1

�
M
�
: ðE4Þ

Furthermore, let

fðtÞ ¼ CM

Z
∞

0

dt0 sin2ðd−1Þðgt0Þ: ðE5Þ

This equation leads to a much simpler form for the different moments:

Ik ¼ CM

Z
∞

0

dttk sin2dðgtÞe−fðtÞ: ðE6Þ
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We can solve the integral in the term fðtÞ with a solution introduced by Wiener [37]:

Z
x

0

dx0sin2ðd−1Þðx0Þ ¼ 1

4d−1

��
2ðd − 1Þ
ðd − 1Þ

�
xþ

Xd−1
p¼1

ð−1Þp
p

�
2ðd − 1Þ
d − 1 − p

�
sinð2pxÞ

�
; ðE7Þ

where ðnmÞ ¼ n!
m!ðn−mÞ! is the binomial coefficient. Employing the solution, we get

fðtÞ ¼ CM

4d−1

��
2ðd − 1Þ
d − 1

�
tþ 1

g

Xd−1
p¼1

�
2ðd − 1Þ
d − 1 − p

�
sinð2pgtÞ

�
ðE8Þ

and, thus,

Ik ¼ CM

Z
∞

0

dttksin2ðd−1ÞðgtÞ exp
�
−

CM

4d−1

�
2ðd − 1Þ
d − 1

�
t

�
× exp

�
−

CM

4d−1g

Xd
p¼1

ð−1Þp
p

�
2ðd − 1Þ
d − 1 − p

�
sinð2pgtÞ

�
: ðE9Þ

By introducing a “cycle” counting variable q ¼ bgt=πc ∈0 and its residue Θq ¼ qt − qπ, Θqϵ½0; πÞ, i.e., substituting with
t ¼ ðqπ þ Θq=gÞ, we arrive at

Ik ¼
CM

g

X∞
q¼0

Z
π

0

dΘq

�
qπ þ Θq

g

�
k
sin2ðd−1ÞðΘqÞ × exp

�
−

CM

4d−1g

�
2ðd − 1Þ
d − 1

�
ðqπ þ ΘqÞ

�
ðE10Þ

×exp

�
−

CM

4d−1g

Xd−1
p¼1

ð−1Þp
p

�
2ðd − 1Þ
d − 1 − p

�
sinð2pΘqÞ

�
; ðE11Þ

where we use that sin2ðd−1Þðx� nπÞ ¼ sin2ðd−1ÞðxÞ for nϵZ as well as sin½2ðx� nπÞ� ¼ sinð2xÞ.
We are interested only in explicitly calculating the cases k ¼ 1 and k ¼ 2. Note that k appears only in the term

ðqπ þ Θq=gÞk and that ðqπ þ Θq=gÞ2 ¼ ð1=g2Þ½ðqπÞ2 þ 2qπΘq þ Θ2
q�, which allows us to define the function

EðΘqÞ ¼ exp

�
−

CM

4d−1g

�
2ðd − 1Þ
d − 1

�
Θq

�
× exp

�
−

CM

4d−1g

Xd−1
p¼1

ð−1Þp
p

�
2ðd − 1Þ
d − 1 − p

�
sinð2pΘqÞ

�
; ðE12Þ

such that

Ik ¼
CM

g

X∞
q¼0

exp

�
−

CM

4d−1g

�
2ðd − 1Þ
d − 1

�
qπ

�
×
Z

π

0

dΘq

�
qπ þ Θq

g

�
k
sin2ðd−1ÞðΘqÞEðΘqÞ: ðE13Þ

As a last step, we observe that EðΘqÞ does not depend on q directly but only throughΘq, so the only direct dependence on q
in the integral comes from the term ðqπ þ Θq=gÞk. This result leads us to define

Ĩj ≔
Z

π

0

dΘqΘ
j
q sin2ðd−1ÞðΘqÞEðΘqÞ; ðE14Þ

such that we can write the desired first and second moments of the tick distribution as

I1 ¼
CM

g2
X∞
q¼0

exp

�
−

CM

4d−1g

�
2ðd − 1Þ
d − 1

�
qπ

�
fqπĨ0 þ Ĩ1g ðE15Þ

and

I2 ¼
CM

g3
X∞
q¼0

exp

�
−

CM

4d−1g

�
2ðd − 1Þ
d − 1

�
qπ

�
fðqπÞ2Ĩ0 þ 2qπĨ1 þ Ĩ2g; ðE16Þ

respectively. In this way, only Ĩj needs to be calculated numerically for j ¼ f0; 1; 2g, which decreases the effective
computational costs enormously.
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APPENDIX F: HOW THE SHARPNESS OF PtopðtÞ
INFLUENCES ACCURACY AND RESOLUTION

The aim of this Appendix is to give further insight about
the behavior of clocks with changing ladder dimension d as
well as changing coupling constant g, in particular, with
respect to Figs. 4–6 in Sec. IV.
First, let us discuss the relationship between accuracy

and sharpness of PtopðtÞ. The intuition is that clockworks
that are capable of producing a very sharp temporal
probability distribution should have the potential to give
rise to highly accurate clocks, given a suitable irreversible
process for the tick production. Since the maximal ampli-
tude of PtopðtÞ is given by 1 − ½1 − ðZH − 1=ZHÞd−1�M (for
TC ¼ 0), increasingM leads to an amplitude of PtopðtÞ that
approaches 1 very quickly. Assuming that M is chosen
large enough so that the maximal amplitude is within a
desired distance to the value 1, the only parameter left that
influences the sharpness of the probability distribution is
the ladder dimension d. We can therefore use d as a proxy
for sharpness. We then proceed by numerically calculating
the accuracy in this situation for given values of c and g.
The results are shown in Fig. 7(a) and indicate that the
accuracy grows linearly with d. In this regime, the sharp-
ness therefore determines the accuracy up to a constant
factor. However, one should note that this linear relation-
ship holds only in a regime where the decay process
happens fast enough, i.e., assuming a sufficiently large
value of c (or small enough value of g). If PtopðtÞ is too
sharp compared to the timescale of the decay process,
increasing the ladder dimension leads to a reduction of the
accuracy [as seen in Figs. 7(a) and 4]. This result implies
that for a given combination of c and g there are certain
choices of d that lead to suboptimal clocks. Considering the
resolution as a function of d [Fig. 7(b)] in the limitM → ∞,
we do not observe an optimal configuration. The resolution
simply decreases with increasing d, indicating a trade-off
relation between accuracy and resolution in the regime

where the accuracy increases linearly with d. Thus, plotting
accuracy over resolution reveals the trade-off relation
depicted in Fig. 5. However, considering finite M, the
resolution reaches a point at which it starts dropping to zero
quickly. The reason for this drop can again be found in the
amplitude of PtopðtÞ, which goes to zero for large enough d
and fixed M. Thus, not only the accuracy (see Fig. 4) but
also the resolution is bounded from above by the corre-
sponding resolution obtained for M → ∞. There, c and g
determine this upper bound.
Furthermore, considering only the cases where M → ∞,

Fig. 8 shows that increasing g at fixed c shifts the point of
maximal accuracy to the right, i.e., toward higher reso-
lutions. Thus, the value of g determines the lowest
resolution at which (optimal) clocks can operate, i.e., the
maximal cycle time. However, this increase in resolution
comes at the cost of accuracy, as increasing g reduces the
maximally reachable accuracy.

(a) (b)

FIG. 7. (a) The accuracy is shown as a function of d for different values of g (and fixed c ¼ 10 s−1), where ½g� ¼ EC. The maximally
achievable accuracy increases with decreasing g. (b) The resolution is shown as a function d (at fixed g ¼ 1EC and c ¼ 1000 s−1). The
lines with solid dots show cases of finiteM. The line with orange circles illustrates the behavior for the caseM → ∞, which provides an
upper bound to the cases with finiteM. For finiteM, increasing d reduces the top-level population, eventually becoming so small that the
decay event is considerably more likely to skip the first peak of PtopðtÞ. This result leads to an additional reduction in resolution,
initiating a drop of the resolution eventually approaching 0 (with d).

FIG. 8. The trade-off between clock accuracy N and resolution
R for clockworks of various coupling constants g, where ½g� ¼ EC
and R is increased by decreasing d. Here, we consider only
cases of M → ∞ and c ¼ 25 s−1. Increasing g shifts the peak
toward the right, i.e., to higher resolutions, while decreasing the
maximum accuracy.
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