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Controlling an evolving population is an important task in modern molecular genetics, including
directed evolution for improving the activity of molecules and enzymes, in breeding experiments in animals
and in plants, and in devising public health strategies to suppress evolving pathogens. An optimal
intervention to direct evolution should be designed by considering its impact over an entire stochastic
evolutionary trajectory that follows. As a result, a seemingly suboptimal intervention at a given time can be
globally optimal as it can open opportunities for desirable actions in the future. Here, we propose a
feedback control formalism to devise globally optimal artificial selection protocol to direct the evolution of
molecular phenotypes. We show that artificial selection should be designed to counter evolutionary trade-
offs among multivariate phenotypes to avoid undesirable outcomes in one phenotype by imposing selection
on another. Control by artificial selection is challenged by our ability to predict molecular evolution. We
develop an information theoretical framework and show that molecular timescales for evolution under
natural selection can inform how to monitor a population in order to acquire sufficient predictive
information for an effective intervention with artificial selection. Our formalism opens a new avenue for
devising artificial selection methods for directed evolution of molecular functions.
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I. INTRODUCTION

The concept of feedback control in molecular evolution
was first advocated by Darwin and Wallace as a way of
describing natural selection [1]. Wallace hypothesized that
similar to the centrifugal governor of the steam engine, the
action of natural selection is like a controller that balances
organismic traits, such that weak feet are often accompa-
nied with powerful wings [1]. Such evolutionary trade-offs
are ubiquitous in natural fitness landscapes. For example,
experiments on a protein transport system have shown that
the fitness landscape for the underlying biochemical

network is tuned to exploit optimal control with feedback
throughout evolution [2]. However, it remains to be
determined whether these structures are solely reflective
of biochemical constraints or have emerged as incidences
of fitness landscapes that could accommodate for long-term
evolutionary survival.
Evolution as a feedback control is also reflected in the

inheritance strategies and phenotypic response of popula-
tions to time-varying environments. A prominent example
of such adaptation is observed in bacteria where cells
use phenotypic switches to produce slowly replicating
bacteria with tolerance and persistence against antibiotics.
Populations use this Lamarckian-type phenotypic response
[3] to hedge their bets against fluctuating environments
[4,5]—an optimal response that can be viewed as an
evolutionary feedback control [6].
Another approach to evolutionary control is through

external interventions with artificial selection to direct
populations to acquire a desired trait. Figure 1 demonstrates
artificial selection with a feedback control to breed “pink
cows,” which are otherwise not favored by natural selec-
tion. Such selective breeding has long been used to
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domesticate animals or to improve agricultural yield in
crops and became the basis for Mendelian genetics [7].
Another important avenue for artificial selection is to

characterize intervention protocols against rapidly evolving
pathogens, for example, to counter emergence of drug
resistance in bacteria, escape of viral populations from
immune challenge, or progression of evolving cancer
tumors [8,9]. As such, control strategies have been sug-
gested to direct intrapatient somatic evolution of antibody
secreting B cells to elicit potent broadly neutralizing
antibodies against HIV [10–13]. Finding such control
strategy involves optimization of the immunization cock-
tail, and the schedule for immunization, to direct somatic
evolution of antibodies toward an outcome with high
potency and breadth.
Artificial selection also plays a significant role in

improving molecular functions through experimental
directed evolution. Importantly, directed evolution in the
lab is currently being employed to improve the activity
and selectivity of molecules and enzymes [14–16], often
desirable in industry or for pharmaceutical purposes. For
example, experimental techniques like morbidostat have
been designed to directly measure the growth rate of
evolving microbial populations and accordingly tune the
strength of selection induced by antibiotics in order to
achieve continuous drug-induced inhibition in an exper-
imental setup [17,18]. More recently, control protocols,
such as proportional-integral-derivative (PID) control [19],
have been experimentally implemented in high-throughput
continuous directed evolution of proteins to automatically
tune artificial selection based on the state of the population
and optimize function [20–22]. Implementing optimal
control in these automated and continuous directed evolu-
tion experiments will have significant impact in efficiently
synthesizing molecules with desired function.
Designing any artificial selection protocol is limited by

our ability to predict the outcome of evolution, which is
often challenging due to a multitude of stochastic forces at

play, such as mutations, reproductive stochasticity (genetic
drift), and environmental fluctuations [23,24]. In contrast to
strongly divergent evolution at the genetic level, there is
growing experimental evidence for convergent predictable
evolution at the phenotypic level [17,25,26], including for
complex molecular phenotypes like RNA polymerase func-
tion [27]. We will exploit this evolutionary predictability and
focus on designing artificial selection for molecular pheno-
types, which are key links between genotypic information,
organismic functions, and evolutionary fitness [23].
Fitness and large-scale organismic traits are often

encoded by a number of covarying molecular phenotypes,
linked through genetic interactions; pigmentation patterns
on the wings or body of fruit flies are among such
multidimensional traits, impacted by the expression level
of many interacting genes. A central issue in designing
artificial selection for multivariate phenotypes is to avoid
the undesirable (side) effects of selection, which can arise
due to evolutionary trade-offs, e.g., between thermal
stability and function of a protein [28,29]. Evolutionary
interventions on multivariate phenotypes should be
designed by assuming their impact over an entire evolu-
tionary trajectory that follows. As a result, a locally optimal
action at a given time point may be suboptimal once
considering all the actions that are required to follow in
order to direct the correlated evolution of the phenotypes
toward their targets; see Fig. 1(b).
Finding a globally optimal protocol to direct a stochastic

evolution is a topic of control theory, known for its impact
in engineering, economics, and other fields [30]. Here, we
introduce a formalism based on optimal control to devise
a population-level artificial selection strategy and drive the
stochastic evolution of multivariate molecular phenotypes
toward a desired target. Importantly, we develop a frame-
work to quantify how uncertainty and lack of evoluti-
onary predictability can limit the efficacy of such artificial
selection. By relating evolutionary predictability with
control under artificial selection, we characterize how to
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FIG. 1. Artificial selection as an optimal stochastic adaptive control strategy. (a) Artificial selection is an external intervention to select
for a desired trait (i.e., pinkness of cows) in a population, which is otherwise not favored by natural selection. Artificial selection should
be viewed as an optimal feedback control, whereby monitoring a stochastically evolving population informs the intervention protocol to
optimally bias breeding and reproduction over generations. (b) The schematic graph shows different paths with indicated costs for a
system to evolve from a start to a target state. Bellman’s principle of optimality states that at each step an optimal decision is made,
assuming that the following steps are also determined optimally. Although the first step (full line) of the blue path is more costly
compared to the others (dotted lines), its cumulative cost is minimum, and hence, it should be chosen as the optimal path. This decision
can be made best recursively, known algorithmically as dynamic programming.
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best monitor a population and acquire a sufficient pre-
dictive information in order to optimally intervene with
its evolution.

II. RESULTS

A. Model of multivariate phenotypic evolution
under optimal artificial selection

Molecular phenotypes are often polymorphic due to
genetic variation in their encoding sequence within a
population. Here, we primarily focus on phenotypes that
are encoded by a relatively large number of genetic loci
and, hence, are approximately normally distributed within a
population—this Gaussian approximation, however, can be
relaxed as discussed in Ref. [31]. In the case of normally
distributed k-dimensional phenotypes, we characterize
the population’s phenotype statistics by the average x ¼
½x1; x2;…; xk�⊤ and a symmetric covariance matrix K,
where the diagonal elements KiiðxÞ indicate the variance
of the ith phenotype and the off-diagonal entries KijðxÞ
indicate the covariance between different phenotypes. A
nondiagonal covariance matrix reflects existence of
mutational trade-offs between molecular phenotypes, for
example, between the thermal stability and the catalytic
activity of an enzyme or function of a protein [28,29], or
between the affinity and the breadth (cross-reactivity) of an
antibody [32,33].
The primary evolutionary forces that shape the compo-

sition of phenotypes within a population are selection,
mutations, and genetic drift. Molecular phenotypes are
often encoded in confined genomic regions of about a few
100 bps, and hence, are not strongly impacted by recombi-
nation, even in sexually reproducing populations. The
impact of the evolutionary forces on phenotypes can be
directly projected from the evolutionary dynamics in the
high-dimensional space of the encoding genotypes [34,35].
For Gaussian distributed phenotypes, the change in mean
phenotype dx over a short time interval dt simplifies to a
stochastic process [36],

dx ¼ K ·∇Fdtþ 1

N
Σ · dW; ð1Þ

where F is the adaptive potential and ∇F is the corre-
sponding adaptive force, reflecting the combined impact of
natural selection and mutations during evolution. dW is a
differential that reflects the stochastic effect of genetic drift
by a multidimensional Wiener noise process [37]. The
amplitude of the noise is proportional to Σ, which is the
square root of the covariance matrix (i.e., Σ⊤Σ≡ K), scaled
by the effective population size N that adjusts the overall
strength of the noise (see the Appendix A for details).
The stochastic evolution of the mean phenotype in

Eq. (1) defines an ensemble of evolutionary trajectories.
We can characterize the statistics of these evolutionary

paths by the dynamics of the underlying conditional
probability density Pðx0; t0jx; tÞ for a population to have
a mean phenotype x0 at time t0, given its state x at an earlier
time t < t0. The dynamics of this probability density
follows a high-dimensional Fokker-Planck equation [34]:

∂
∂t Pðx

0; t0jx; tÞ ¼
�
1

2
TrK∇xx −∇ðK ·∇FÞ

�
Pðx0; t0jx; tÞ:

ð2Þ

Here, we measured time in units of effective population
size (t → t=N), which is the coalescence time in neutrality
[38], and introduced the rescaled adaptive potential
NF → F. Moreover, we introduced the compact notation,
TrK∇xx ≡P

ij Kijð∂=∂xiÞð∂=∂xjÞ.
Similar to the mean phenotype, the covariance matrixK is

a time-dependent variable, impacted by evolution. However,
fluctuations of covariance are much faster compared to the
mean phenotype [31,34]. Moreover, even in the presence of
moderately strong selection pressure, the phenotypic covari-
ance depends only weakly on the strength of selection and
is primarily determined by the supply of mutations in a
population [34,35]. Therefore, we assume that the pheno-
typic covariance matrix remains approximately constant over
time and equal to its stationary ensemble-averaged estimate
throughout evolution (Appendix A).

B. Artificial selection to optimally direct evolution

Natural selection in Eq. (1) drives populations toward an
optimum, which is a function of the organism’s environ-
mental and physiological constraints. Artificial selection
aims to relax or tighten some of the natural constraints
to drive evolution toward an alternative desired state x�.
In general, we can formulate evolution subject to artificial
selection as

dx ¼ (K ·∇F þ uðx; tÞ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aðx;tÞ

dtþ Σ · dW; ð3Þ

where uðx; tÞ is a time- and phenotype-dependent vector,
which determines the impact of artificial selection and
Aðx; tÞ is the total force incurred by natural and artificial
selection on the phenotypes.
Our goal is to find an optimal protocol for artificial

selection uðx; tÞ in order to reach the target x� by a desired
time tf, while minimizing the cost function,

Ωðx;u; tÞ ¼ Vðx; tÞ þ 1

2
u⊤Bu; ð4Þ

over an entire evolutionary trajectory. Here, Vðx; tÞ≡
Vðjxt − x�jÞ is the cost for deviation of the phenotype
state xt at time t from the desired target x�, and B is a
matrix that characterizes the cost for imposing artificial
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selection u≡ uðx; tÞ and intervening with natural evolu-
tion of each phenotype. To solve the optimal control
problem (i.e., to characterize an optimal artificial selection
strategy), we define the cost-to-go function,

Jðx;tÞ¼min
u

�
Qðx;tfÞþ

Z
tf

t
ds

�
VðxsÞþ

1

2
u⊤
s Bus

��
evol

;

ð5Þ

where the angular brackets h·i indicate expectation over
stochastic evolutionary histories from time t until the target
time tf. Here, Qðx; tfÞ≡Qðjxtf − x�jÞ characterizes the
cost of deviation from the target at the end of the evolu-
tionary process tf, which could be chosen to be different
from the path cost VðxÞ.
An optimal artificial selection protocol should be

designed by considering its impact over an entire stochastic
evolutionary trajectory that follows. As a result, a seem-
ingly suboptimal intervention at a given time can be
globally optimal as it can open opportunities for more
desirable actions in the future; see schematic Fig. 1(b). An
optimal artificial selection protocol at each time point
u�ðx; tÞ assumes that the selection strategies implemented
in the future are also optimal. This criterion is known as
Bellman’s “principle of optimality” [39], and allows us
to express the optimal control problem in a recursive
form, known as dynamic programming in computer science
[39] (Appendix B). As a result, we can formulate a
dynamical equation for the cost-to-go function, known
as the Hamilton-Jacobi-Bellman (HJB) equation [40],

−
∂Jðx; tÞ

∂t ¼ min
u

�
Ωðxt;utÞ þ AðxtÞ ·∇J þ 1

2
TrK∇xxJ

�
;

ð6Þ

with the boundary condition Jðx; tfÞ ¼ Qðx; tfÞ at the end
of the process (Appendix B). Importantly, the HJB equa-
tion (6) indicates that the cost to go Jðx; tÞ is a potential
function based on which the optimal artificial selection can
be evaluated:

u�ðx; tÞ ¼ −B−1 ·∇Jðx; tÞ: ð7Þ

In other words, the cost-to-go function characterizes a time-
and phenotype-dependent artificial fitness landscape that
determines the strength of artificial selection u�ðx; tÞ.
The solution to the HJB equation (6) for the cost-to-go

function Jðx; tÞ and the artificial selection u�ðx; tÞ can be
complex time- and state-dependent functions, described
by nonlinear evolutionary operators (Appendix B). Here,
we consider a class of control problems, known as “path
integral control” [41–43], where the cost matrix B for
artificial intervention with evolution is inversely propor-
tional to the phenotypic covariance K, i.e., B ¼ λK−1,

where λ is a constant that determines the overall cost of
artificial selection. This assumption implies that imposing
artificial selection on highly conserved phenotypes is more
costly than on variable phenotypes. This is intuitive as
conserved phenotypes are often essential for viability of an
organism and it is best to design a control cost function
that limits the access to such phenotypes through artificial
selection.
The path integral control assumption results in a sig-

nificant mathematical simplification for the dynamics of
the cost-to-go function Jðx; tÞ and makes the inference
of optimal artificial selection more tractable; see
Appendixes B and C. We can characterize the evolution
of the conditional distribution Puðx0; t0jx; tÞ for a popula-
tion under optimal artificial selection u�ðx; tÞ to be in the
phenotypic state x0 at time t0, given its state x at time t, by

∂
∂t Puðx0; t0jx; tÞ

¼
�
1

2N
TrK∇xx −∇ðK∇FÞ − 1

λ
Vðx; tÞ

�
Puðx0; t0jx; tÞ;

ð8Þ

with the initial condition Puðx0; tjx; tÞ ¼ δðx − x0Þ
(Appendix B). This conditional probability density can
be used directly to compute the cost-to-go function Jðx; tÞ,
and consequently the optimal control u�, as discussed in
detail in Appendix B. Interestingly, the evolution of the
optimally controlled conditional distribution Puðx0; t0jx; tÞ
resembles the natural evolutionary dynamics [Eq. (2)
with u ¼ 0] with an extra annihilation term Vðx; tÞ=λ;
see Appendix B and Ref. [42]. Therefore, artificial selec-
tion acts as an importance sampling protocol over each
selection cycle (e.g., each generation) that removes (anni-
hilates) individuals from the population with a rate propor-
tional to their distance from the evolutionary target
∼Vðjxt − x�jÞ=λ; see Fig. 2(a). Specifically, at each time
point, this protocol generates a phenotypic distribution
consistent with the evolutionary process under optimal
artificial selection in Eq. (3) [Figs. 2(b) and 2(c)], without
an explicit knowledge of the selection protocol u�ðx; tÞ.
This result is highly practical for complex evolutionary
processes, for which an analytical description of the
optimal control protocol is inaccessible.
Although cost-to-go function Jðx; tÞ and optimal control

u�ðx; tÞ are well-known concepts in the field of control
theory, their connections to relevant evolutionary measures
are far less explored. For evolutionary processes, the scaled
cost-to-go-function Jðx; tÞ=λ can be interpreted as a time-
and phenotype-dependent fitness landscape associated with
artificial selection Fartðx; tÞ; see Eq. (7). Throughout an
artificial selection process, populations evolve in an effec-
tive landscape F̂ðx; tÞ ¼ FðxÞ þ Fartðx; tÞ, which is the
superposition of the natural fitness landscape FðxÞ and the

ARMITA NOURMOHAMMAD and CEYHUN EKSIN PHYS. REV. X 11, 011044 (2021)

011044-4



artificial fitness landscape Fartðx; tÞ. The overall scaling
of the control cost λ determines the impact of artificial
selection on evolution relative to natural selection, and
when the control cost is small (i.e., λ ≪ 1), artificial
selection can dominate the course of evolution.

C. Artificial selection for multivariate phenotypes
under stabilizing selection

Most of our analyses are applicable to general fitness and
mutation (i.e., adaptive) landscapes (Appendixes B and C).
However, we characterize in detail the features of artificial
selection to direct evolution on high-dimensional quadratic
adaptive landscapes (F ¼ −x⊤ · C · x), in which C is the
adaptive pressure and x is the shifted phenotype vector
centered around the optimum under natural selection that
the population approaches in stationary state [44]; see
Appendix A. In addition, we assume a quadratic form
for the cost function throughout the evolutionary process,
Vðx; tÞ ¼ 1

2
ðxt − x�Þ⊤Gðxt − x�Þ, and also at the end

point, Qðx; tfÞ ¼ 1
2
ðxtf − x�Þ⊤G̃ðxtf − x�Þ.

Characterizing an artificial selection protocol under such
quadratic constraints falls within the class of standard
stochastic control problems, known as linear-quadratic-
Gaussian (LQG) control [30]. However, we will present our
analyses based on the path integral control approach in
Eq. (8), which is generalizable beyond LQG and can be
applied to arbitrary cost functions and fitness landscapes
(see Appendixes C and D for detailed derivation).
Let us imagine that our criterion is to drive evolution

toward the optimum x� by time tf, which implies that the
path cost is zero G ¼ 0 but the end point cost is nonzero
G̃ > 0; see Appendixes C and D for the general scenario
including the case with G > 0. As time approaches the end

point, populations transition from evolving in their natural
landscape FðxÞ to the artificially induced fitness landscape
Fartðx; tfÞ; see Fig. S1 in Supplemental Material [45] and
Fig. 3(c) herein. Moreover, toward the end point, the fitness
peak and the strength of selection approach their final
values, determined by the target and the cost functions in
Eq. (B3), in an exponentially rapid manner (Appendix D
and Fig. S2 [45]). Interestingly, at the end point, the optimal
artificial selection keeps the population close to the target
with a strength,

u�ðτ → 0Þ ¼ −
1

λ
KG̃ðx − x�Þ; ð9Þ

which resembles the breeder’s equation [46] for artificial
selection with a heritability factor, h2 ¼ KG̃=λ; see
Appendix C for derivations and the general scenario
including the case with G > 0.
One of the main issues in designing breeding experi-

ments in plants and animals is the undesirable (side) effects
of artificial selection on covarying phenotypes, primarily
due to evolutionary trade-offs [47], e.g., between sturdiness
and flavor of vegetables like tomatoes [48]. Similarly,
trade-offs among covarying molecular phenotypes (e.g.,
function versus thermal stability of a protein) could lead to
undesirable outcomes for artificial selection at the molecu-
lar level.
To demonstrate the consequences of phenotypic cova-

riation, let us consider a simple example for artificial
selection on two covarying phenotypes (x, y); the general
solution to this problem in high dimensions is discussed in
Appendix C. We aim to drive the phenotype x toward the
target x� > 0 by artificial selection while keeping the
phenotype y at its stationary state value y� ¼ 0. An optimal
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FIG. 2. Artificial selection with stochastic optimal annihilation. (a) Phenotypic trajectories starting from three distinct initial states
(open circles) are shown for evolution under natural selection in a 1D quadratic adaptive landscape FðxÞ ¼ −cx2, where x is the
phenotype centered around its optimum under natural selection. The trajectories are annihilated († and low opacity lines) with a rate
proportional to the cost of their deviation from target throughout evolution (dotted line), Vðjx − x�jÞ=λ [Eq. (8)]. At each time point, the
survived trajectories characterize the ensemble of evolutionary states for evolution under optimal artificial selection to reach the target at
x� ¼ 1. Control is designed under the assumption of infinite horizon. (b) The probability density function (PDF) shows the distribution
of phenotypes for populations evolving subject to the annihilation protocol in (A). Populations start from an uncontrolled and natural
state (blue distribution), and as a result of control annihilation, their distributions move toward the desired target at x� ¼ 1 (colors).
(c) The expected control strategy u�ðtÞ ¼ −ð1=λÞkgðx − x�Þ (orange) and the cost of control Vðjx − x�jÞ þ 1

2
Bu2 (blue) are shown as a

function of time, as populations are driven from their natural state toward the target state. Time is measured in units of the characteristic
time for natural evolution (1=2kc). Parameters are k ¼ 0.4, c ¼ 1, λ ¼ 0.01, g ¼ 4.
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artificial selection protocol defines an effective two-dimen-
sional quadratic fitness landscape that biases the evolu-
tionary trajectories toward the target state [Fig. 3(a)]. As a
result, the phenotype distributions at the end of the process
become significantly distinct from the expectation under
natural selection, and remain strongly restricted around
their target values; see Fig. 3(b).
The peak of this fitness landscape (i.e., the effective

optimum) changes from the natural state (0,0) to the target
state ðx�; y�Þ by the end of the selection process; see
Fig. 3(c) and Fig. S3 [45]. The fitness peak moves
monotonically along the x phenotype from the natural
optimum 0 toward the target x�, irrespective of the
correlation ρxy between the two phenotypes; see Fig. 3(c).
However, the dynamics of the fitness peak along the y
phenotype is generally nonmonotonic and strongly depen-
dent on the phenotypic correlation ρxy. An increase in x
drives the positively (negatively) correlated y toward higher
(lower) values. Therefore, in the beginning of the process,
the optimal artificial selection protocol sets the fitness peak
for the y phenotype at an opposite direction to counter-
balance the effect of evolutionary forces due to phenotypic
covariation. As the end point approaches, artificial selection
becomes significantly strong with an effective fitness
optimum set at the target for each phenotype x� and y�
[Eq. (9)]. Therefore, the optimum y value should return to
its target state (y� ¼ 0), resulting a nonmonotonic behavior
in the dynamics of the fitness peak along the y pheno-
type; see Fig. 3(c). Moreover, the strength of selection
changes over time and becomes stronger toward the target

phenotypes at the end point [heat maps in Fig. 3(c) and
Fig. S4 [45] ].
The optimal artificial selection protocol in Fig. 3 is

sensitive to the structure of the phenotypic covariance
matrix K [Eq. (9) and Appendix E]. Importantly, disregard-
ing the phenotypic covariance in designing a control
protocol would result in an increase in the associated cost
and failure to reach the desired phenotype targets, as
the controller misjudges the response of the covarying
phenotypes to the designed interventions (Fig. S2 [45] and
Appendix E).
The optimal artificial selection protocol requires an

accurate description of the evolutionary dynamics, which
may not be available in certain scenarios. In such settings,
we can devise a naive but intuitive control strategy that
is informed by the structure of the optimal control. For
instance, an optimal controller with quadratic cost on a
quadratic adaptive landscape (LQG) is proportional to the
difference between the phenotypic state and the target
(xt − x�) with a prefactor (i.e., a relative strength) that
exponentially increases as the time approaches the end
point (Appendix D and Fig. S2 [45]). Using the general
structure of this optimal strategy, we can devise propor-
tional controllers with exponentially growing weights even
when the accurate model for the underlying dynamics is not
available (Appendix E). The protocol inspired by the
optimal control outperforms a completely naive propor-
tional controller that only intervenes with the evolutionary
dynamics as the deviation of the population from the target
passes a threshold but does not tune its relative strength as
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FIG. 3. Artificial selection on covarying phenotypes. (a) Trajectories for evolution under natural (orange) and artificial (blue) selection
are shown for a 2D phenotype ðx; yÞ, in a quadratic landscape. Parameters are cx ¼ 2, cy ¼ 4, cxy ¼ 0; x� ¼ 1.2, y� ¼ 0; kx ¼ 0.02;
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compared to the phenotypic distribution under natural selection (orange). Evolutionary parameters are the same as in (a). (c) The
dynamics of the effective fitness peak is shown over time (colors) for 2D covarying phenotypes with correlations ρxy indicated by the
shape of the markers. From left to right, panels show increasing end point cost of deviation from the target along the x phenotype,
gx ¼ 1, 2, 3, with gy ¼ 2. Heat maps show the effective fitness landscapes associated with a specific fitness peak (indicated by the dotted
arrows) for anticorrelated phenotypes at three different time points. The direction and length of the red arrows in each heat map indicate
the direction and the strength of selection pressure toward the effective optimum. Parameters are x� ¼ 3, y� ¼ 0; cx ¼ cy ¼ 5, cxy ¼ 0;
kx ¼ ky ¼ 0.02; λ ¼ 0.1.
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time approaches the end point; see Fig. S5 [45] and
Appendix E. However, it should be noted that the parameters
of the exponential-proportional controller (e.g., the expo-
nential weights) should be tuned to achieve the desired target
states which may be time-consuming in practice. Moreover,
tuning these weights according to certain objectives, e.g.,
achieving the desired phenotype traits, may have undesirable
consequences such as high variability or large cost of control
(Fig. S5 [45] and Appendix E).

D. Artificial selection with intermittent monitoring

Imposing artificial selection based on continuous feed-
back from the state of the population (Fig. 1) requires
complete monitoring and the possibility of continuous
evolutionary intervention—a criterion that is often not
met in real conditions. In general, discrete selection
protocols based on limited information can be inefficient
for devising evolutionary feedback control [8,49]. Here, we
develop a principled approach to characterize the limits of
discrete optimal interventions based on the evolutionary
response of the population to artificial selection. We
consider a simple scenario where in a stationary state we
aim to keep a population at the target phenotype x�, using
discrete monitoring and interventions at time points
(i ¼ 1;…;M) with a time separation τ≡ tiþ1 − ti. We
define a stationary cost-to-go function,

Jðx; tm; τÞ

¼min
u

lim
M→∞

1

ðM −mÞτ
�XM

i¼m

u⊤
i Bui þ

Z
tM

ti

VðxtÞdt
�

evol

;

ð10Þ

where the division by the total timeMτ assures that the cost
to go remains finite. To further simplify, we only consider
one-dimensional phenotype xwith intrapopulation variance
k, the cost of deviation VðxÞ ¼ gðx − x�Þ2=2 from target x�,
and the cost of intervention βu2=2 with artificial selection
u. However, our analyses can be easily generalized to
multivariate phenotypes.
In the stationary state and in the regime of small

perturbations (gk=λ ≪ 1), the optimal artificial selection
protocol u� should be a variant of the case with full
information with a strength of selection ατ dependent on
the time window τ, u�τ ¼ −kατðx − x�Þ; see Appendix F. We
can characterize the optimal strength of artificial selection ατ
by minimizing the cost-to-go function in Eq. (10),

ατ ¼ α0

�ð1 − e−2τÞ þ 8cðx�Þ2ð1 − e−τÞ
2τ(1þ 4cðx�Þ2)

�
þO½ðkγ=λÞ2�;

ð11Þ

where α0 ¼ g=λ is the optimal selection strength under
continuous monitoring. Here, time τ is measured in units of

the characteristic time for evolution under natural selection,
i.e., ð2kcÞ−1.
The partially informed artificial selection ατ depends on

most of the evolutionary parameters similar to selection
with complete monitoring α0. Importantly, the ratio ατ=α0
depends only weakly on the strength of natural selection c
[Fig. 4(a), top] and the target for artificial selection x�
[Fig. 4(a), bottom] and it is insensitive to the phenotypic
diversity k and the parameter λ [Eq. (11)].
However, the optimal artificial selection ατ strongly

depends on the time interval τ and it decays as the time
interval τ broadens [Fig. 4(a)]. This decay is linear and
relatively slow up to the characteristic time for evolution
under natural selection ð2kcÞ−1. This is the timescale over
which an intermittent artificial selection can still contain the
population around the desired target x�. If interventions are
separated further in time (i.e., τ ≫ 1), the optimal selection
strength decays rapidly as ∼τ−1. Imposing a strong artificial
selection in this regime is highly ineffective as populations
can easily drift away from the target and toward their
natural state within each time interval, and any artificial
selection would only contribute to the intervention cost ∼u2
without offering any benefits.

E. Information cost for artificial selection

Artificial selection is an evolutionary drive that shifts the
equilibrium state of the population under natural selection
to a new state around the target. As a result, the phenotypic
histories xt0;…;tf over the period of ðt0;…; tfÞ are sta-
tistically distinct for evolution under natural and artificial
selection [Fig. 3(a)]. This deviation can be quantified by
the Kullback-Leibler distance DKL(PuðxÞjjPðxÞ) between
the distribution of histories under artificial selection
PuðxÞ≡ Puðxt0;…;tfÞ and under natural selection PðxÞ.
In the stationary state, the Kullback-Leibler distance
quantifies the impact of artificial selection on evolution
and can be interpreted as the amount of work W

tf
t0 ðuÞ done

by external forces [50] (i.e., the artificial selection) to shift
the population from its natural equilibrium to the artificial
equilibrium,

W
tf
t0 ðuÞ ¼ DKL(PuðxÞjjPðxÞ)

¼
Z

dx
tf
t0PuðxÞ log

�
PuðxÞ
PðxÞ

�
: ð12Þ

The cumulative work is related to the cost of artificial
selection, and for the case of path integral control, it is
equivalent to the cumulative cost of control W

tf
t0 ðuÞ ¼

h1
2

R
u⊤K−1udti ¼ 1

2λ h
R
u⊤Budti, where the angular

brackets h·i denote expectation over the ensemble of
evolutionary histories under artificial selection; see
Refs. [51,52] and Appendix G. The power (i.e., work
per unit time), associated with intermittent artificial
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selection, can be expressed as the amount of work per
time interval τ:

powerðτÞ ¼ lim
M→∞

1

Mτ

XM
i¼1

WðtiÞ ¼
1

2τ
hu⊤

τ K−1uτi: ð13Þ

The expected work, and hence the power, depend on the
time interval τ through various factors. Work depends
quadratically on the strength of artificial selection ατ and
on the expected population’s deviation from the target
hðxτ − x�Þ2i. On the one hand, the optimal strength of
artificial selection ατ decays with increasing the time
interval; see Fig. 4(a) and Eq. (11). On the other hand,
as the time interval broadens, populations deviate from the
target toward their natural state, resulting in an increase in
the expected work by artificial selection. Moreover, since
interventions are done once per cycle, the power has an
overall scaling with the inverse of the cycle interval ∼τ−1.
These factors together result in a reduction of the expected
power associated with artificial selection as the time
interval widens; see Fig. 4(b).
Power depends strongly on the parameters of natural

evolution including the strength of natural selection (c)
and the phenotypic diversity within a population (k); see
Fig. 4(b). This is due to the fact that steering evolution
under strong natural selection (i.e., with large k and c) is
more difficult and would require a larger power by artificial
selection. However, the dependence of power on the
evolutionary parameters (k, c) remains approximately
separated from its dependence on the time interval τ.

Thus, power rescaled by its expectation at the characteristic
time τ ¼ 1 shows a universal time-decaying behavior,
independent of the evolutionary parameters [Fig. 4(b)].

F. Predictive information as a limit
for efficient artificial selection

Artificial selection can only be effective to the extent that
an intervention is predictive of the state of the population
in the future. The mutual information between artificial
selection and the future state of the population quantifies
the amount of predictive information [53] by artificial
selection, or alternatively, the memory of the population
from the selection intervention. We characterize the pre-
dictive information Iτ as a time-averaged mutual informa-
tion Iðxt; x0Þ between an intervention (at time t ¼ 0) and
the state of the population at a later time tð0 < t < τÞ,
during each intervention cycle in the stationary state,

I τ ¼
1

τ

Z
τ

0

dtIðxt; x0Þ

¼ 1

τ

Z
dt

Z
dx0dxtPðxt; x0Þ log

�
Pðxtjx0Þ
PðxtÞ

�
: ð14Þ

The predictive mutual information monotonically
decreases as the time interval τ increases and the population
evolves away from the selection target; see Fig. 4(c).
Predictive information in Eq. (14) quantifies the impact

of artificial selection on the future of a population. The
information theoretical measure of power in Eq. (13),
on the other hand, quantifies how the optimal artificial
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FIG. 4. Artificial selection with limited information. (a) Relative strength of artificial selection ατ=α0 [Eq. (11)] is shown as a
function of the time interval for monitoring and intervention τ, measured in units of the characteristic time for evolution under
natural selection (1=2kc). The selection ratio is shown for various strengths of natural selection c (top, with x� ¼ 1) and for various
targets of artificial selection x� (bottom, with c ¼ 1). (b) Power [Eq. (13)] is shown as a function of the time interval τ for a range of
parameters for the phenotypic diversity k (full line) and the strength of natural selection c (dotted line). The inset shows a collapse
plot for power scaled with the expectation at the characteristic time for natural selection powerðτÞ=powerðτ ¼ 1Þ. (c) Predictive
mutual information IðτÞ [Eq. (14)] is shown to decay with the time interval τ for a wide range of parameters (k, c). Inset shows an
enlargement of a narrower range for the time interval τ < 1. (d) Predictive information [Eq. (14)] is shown as a function of the scaled
power for optimized artificial selection for a range of τ values [Eq. (13)]. Each curve sets an information bound for artificial
selection for a given set of evolutionary parameters (k, c). A nonoptimal selection intervention should lie below the information
curve, shown by the gray shaded area as the accessible region associated with the dark blue curve. Color code in (c) and (d) is similar
to (b). Other parameters are λ ¼ 0.6, x� ¼ 3, g ¼ 2.
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selection protocol distinguishes a population’s past evolu-
tionary history from the expectation under natural selec-
tion. The efficacy of any intervention (i.e., power) is tightly
bounded by the impact it may have on the state of the
population in the future (i.e., predictive information); see
Fig. 4(d). Any nonoptimal artificial selection effort should
lie below this bound and within the accessible region of the
information-power plane [Fig. 4(d)].
Phenotypic diversity k characterizes the rate at which a

population evolves away from the target and toward its
natural state during an intervention interval [Eq. (1)]. As a
result, the information bound for artificial selection is
tighter in more diverse populations, which can rapidly
evolve away from the target and toward their natural state
during each time interval τ.
As interventions become more frequent, predictive

mutual information increases but more slowly than the
amount of power necessary to induce an effective artificial
selection [Fig. 4(d)]. Importantly, the gain in predictive
information becomes much less efficient for time intervals
shorter than the characteristic time of natural selection
(τ ≪ 1).
We postulate that trading power with information pro-

vides a guideline for scheduling of control interventions
of stochastic processes in general, and for evolutionary
control, in particular. The characteristic time for evolution
under natural selection is a powerful gauge for scheduling
the interventions. Importantly, setting the time interval
within the range of the characteristic evolutionary time
τ ∼ 1 could provide a sufficient power-to-information ratio
for an optimal artificial selection protocol. However, as
information becomes less predictive or the inferred selec-
tion protocol becomes suboptimal, it would be necessary to
monitor and intervene more frequently.
Predictive information quantifies how the state of the

system in the past is informative of its future, whereas
the control power measures the cost associated with an
intervention due to its impact on the future state of the
system. The connection between predictive information
and control in the context of directed evolution relates the
past and the future of an evolutionary process, subject to
external interventions. Indeed, predictive information sets
the limit for an effective control in general stochastic
processes, but the interpretation of power and predictive
information would be specific to the problem in hand.

III. DISCUSSION

An optimal intervention should be designed by consid-
ering its impact over an entire evolutionary trajectory that
follows. Here, we infer an artificial selection strategy as an
optimal control with feedback to drive multivariate molecu-
lar phenotypes toward a desired target. This selection
protocol is optimal over the defined time course and
may seem suboptimal on short timescales as it drives
one phenotype away from its target while driving another

toward the target to overcome trade-offs [Fig. 3(c)].
Monitoring and feedback from the state of a population
are key for imposing an effective artificial selection
strategy. We show that the schedule for monitoring should
be informed by the molecular timescales of evolution under
natural selection, which set the rate at which a population
loses memory of artificial interventions by evolving toward
its favorable state under natural selection.
Being able to control evolution could have significant

applications in designing novel molecular functions or
in suppressing the emergence of undesirable resistant
strains of pathogens or cancers. Interventions that select
for desired phenotypes have become possible in molecular
engineering [22,54,55], in targeted immune-based thera-
pies against evolving pathogens [56], and in immunogen
design for optimal vaccination protocols against rapidly
evolving viruses like HIV [10–13].
One class of experiments for artificial selection uses

targeted mutations that are inferred to be beneficial, using
machine learning techniques to characterize genotype-
phenotype maps [57]. Another class of experiments relies
on implementing feedback control to tune artificial selec-
tion during continuous evolution of molecules and proteins,
to direct them toward a desired target [17,18,20–22]. For
example, implementing proportional-integral-derivative
control [19], which is known for its role in cruise control
during driving, has shown significant improvements for
molecular optimization by directed continuous evolution
[22]. PID control is simple to implement in practice and it is
relatively robust to errors, as its proportional term corrects
for spontaneous error, the integrator reduces the impact of
long run error, and derivative term would suppress over-
shooting by anticipating the impact of control [30]. Still, PID
is far from optimal and requires fine-tuning of control
parameters for the system, which is often tedious and subject
to uncertainty. Therefore, implementing a more principled
optimal control approach for molecular evolution, such as
the path integral control introduced here, can further
optimize the continuous directed evolution experiments.
The efficacy of these actions is limited by our ability

to monitor and predict the evolutionary dynamics in
response to interventions. Evolution is shaped by a
multitude of stochastic effects, including the stochasticity
in the rise of novel beneficial mutations and fluctuations in
the environment, which at best raise skepticism about
predicting evolution [23,24]. However, evolutionary pre-
dictability is not an absolute concept and it depends
strongly on the time window and the molecular features
that we are interested in. For example, despite a rapid
evolutionary turnover in the influenza virus, a number of
studies have successfully forecasted the dominant circu-
lating strains for a one year period [58,59]. Similarly,
phenotypic convergence across parallel evolving popula-
tions has been reported as an evidence for phenotypic
predictability, despite a wide genotypic divergence
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[17,25–27]. Therefore, to exploit the evolutionary pre-
dictability for the purpose of control, it is essential to
identify the relevant degrees of freedom (e.g., phenotypes
versus genotypes) that confer predictive information and
to characterize the evolutionary timescales over which our
observations from a population can inform our interven-
tions to drive the future evolution.
We focus on modeling control of molecular phenotypes.

Phenotypic diversity within a population provides standing
variation that selection can act upon. To allow for a
continuous impact of artificial selection over many gen-
erations, we have limited our analyses to a regime of
moderate time- and phenotype-dependent artificial selec-
tion to sustain the phenotypic variability in a population.
However, it would be interesting to allow for stronger
artificial selection to significantly impact the standing
variation and the structure of the phenotypic covariance
within a population over time. Indeed, allowing a popu-
lation to rapidly collapse as it approaches a desired target is
a common strategy in evolutionary optimization algorithms
[60]—a strategy that could accelerate the design of new
functions with directed molecular evolution.
In this work, we assume a stochastic model for evolution

of multivariate molecular phenotypes, which has been
powerful in describing a range of biological systems,
including the evolution of gene expression levels [61].
Indeed, optimal control protocols are often designed by
assuming a specific model for the underlying dynamics.
However, in most biological systems, we lack a knowledge
of the details and the relevant parameters of the underlying
evolutionary process. Optimal control strategies can inform
ad hoc (albeit suboptimal) control approaches to drive
evolution toward the desired target (Fig. S5 [45] and
Appendix E). In addition, if one can at least approximately
design a control scenario that satisfies the criteria for
path integral control, an effective artificial selection pro-
tocol could be achieved through annihilation of evolu-
tionary trajectories with a rate proportional to the cost
of their deviation from the desired target (Fig. 2), and
without a detailed knowledge of the underlying dynamics.
Nonetheless, the ultimate goal is to simultaneously infer an
effective evolutionary model based on the accumulating
observations and to design an optimal intervention to
control the future evolution—an involved optimization
problem known as dual adaptive control [62].
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APPENDIX A: EVOLUTION OF MULTIVARIATE
MOLECULAR PHENOTYPES

In the case of normally distributed k-dimensional phe-
notypes, we characterize the population’s phenotype sta-
tistics by the average x ¼ ½x1; x2;…; xk�⊤ and a symmetric
covariance matrix K, where the diagonal elements KiiðxÞ
indicate the variance of the ith phenotype and the off-
diagonal entries KijðxÞ indicate the covariance between
different phenotypes. To model the evolution of such
multivariate phenotype, we consider the three primary
evolutionary forces: natural selection, mutations, and
genetic drift. The effect of selection on the mean phenotype
is proportional to the covariance between fitness and
phenotype within a population [63]. For Gaussian distrib-
uted phenotypes, the change in mean phenotype dx over a
short time interval dt simplifies to a stochastic process [36],

dx ¼ ðK ·∇F þ∇MÞdtþ 1

N
Σ · dW; ðA1Þ

where F and M are fitness and mutation potentials,
respectively. The gradient functions (denoted by ∇F and
∇M) determine the forces acting on the phenotypes by
selection and mutation, respectively [34]. dW is a differ-
ential that reflects the stochastic effect of genetic drift by a
multidimensional Wiener noise process [37]. The ampli-
tude of the noise is proportional to Σ, which is the square
root of the covariance matrix (i.e., Σ⊤Σ≡ K), scaled by the
effective population size N that adjusts the overall strength
of the noise. In other words, the fluctuations of the mean
phenotype across realizations of an evolutionary process is
proportional to the intrapopulation variance K and
inversely scales with the effective population size (i.e.,
the sample size) N.
The fitness potential F can be simply approximated by

the mean fitness of a population [34]. The mutational
potential M, however, can depend on the underlying
genotype-phenotype map. To characterize M, let us
assume a general map from a genotypic sequence with l
loci σ⃗ ¼ ðσ1; σ2;…; σlÞ and the encoded k-dimensional
phenotype E⃗ðσ⃗Þ:

Eα ¼
X
i

Jαi σi
|fflfflfflffl{zfflfflfflffl}

Eα
ð1Þ

þ
X
i≠j

Jαijσiσj

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Eα
ð2Þ

þ � � � þ Eα
ðrmaxÞ; ðA2Þ

where α ¼ 1;…; k refers to the α coordinate of the
k-dimensional phenotype E⃗ and the subscript r ¼
1; 2;…; rmax is the degree of genetic interaction. Without
a loss of generality we assume that genotypic loci are
biallelic with σi ∈ f−1; 1g indicating the state of locus i.
Mutations occur with a rate μ per site per generation,

resulting in a site flip: −1⇌1. Thus, the change in the α
component of the phenotype due to mutations follows
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ΔEα ¼
Xrmax

r¼1

ΔEα
ðrÞ

¼ −2μ
X
i1

Jαi1σi1 − 4μ
X
i1;i2

Jαi1i2σi1σi2 þ � � �

− 2rμ
X

i1;…;irmax

Jαi1…irmax
σi1 � � � σimax

þOðμ2Þ

¼ −2μ
X
r

rEα
ðrÞ þOðμ2Þ; ðA3Þ

where we assumed that the mutation rate per locus per
generation is small such that we can neglect terms of
order μ2 and higher. Similarly, the change in the mean α
phenotype xα ¼ Eα due to mutations up to Oðμ2Þ follows
Δxα ¼ −2μ

P
r rx

α
ðrÞ, where xα

ðrÞ ¼ Eα
ðrÞ is the intrapopu-

lation mean of the α component of the phenotype. In this
case, we can define a mutation potential,

M ¼ −K−1μ
Xk
α¼1

�Xrmax

r¼1

rxα
ðrÞ

�2

; ðA4Þ

such that the change in phenotype due to mutations follows

dx ¼ K · ∇M: ðA5Þ

If the magnitude of mutation rate per locus per gen-
eration μ is small such that double mutations are signifi-
cantly less likely than single mutations, a mutational
potential function can be defined for phenotypic evolution.
Dominance of double (or higher order) mutations results in
mutational curls [64,65] and, thus, a breakdown of potential
approximation.
Most of our analyses are applicable to general fitness and

mutation landscapes. However, we characterize in detail
the features of artificial selection to direct evolution on
quadratic fitness and mutation landscapes, where pheno-
types evolve by natural selection toward an evolutionary
optimum [44]. In this case, the impacts of selection and
mutation follow linear functions in the high-dimensional
phenotypic space, ∇F ¼ −2C0 · x, ∇M ¼ −2L · x, where
x denotes the shifted phenotype vector centered around its
stationary state and C0 and L are selection and mutation
matrices, respectively—L is a generalization of per-locus
mutation rate in high dimensions. The evolutionary model
in this case assumes a linear genotype-phenotype map [i.e.,
rmax ¼ 1 in Eq. (A2)] and a nonlinear quadratic phenotype-
fitness map, which resembles biophysical models of global
epistasis [61,66–71]. We can formulate the evolution of
mean phenotypes by

dx ¼ −2KCxdtþ ΣdW; ðA6Þ

where C≡ NðC0 þ K−1LÞ is the effective adaptive pres-
sure, scaled by the population size, which quantifies the

potential of a phenotype to accumulate mutations under
selection. The adaptive potential could in principle be
measured directly using lineage tracking evolution experi-
ments, in which impacts of a large number of adaptive
mutations can be simultaneously probed [72].
In this work, we use F as a shorthand for the adaptive

landscape under natural selection, whose gradient charac-
terizes the adaptive pressure, ∇F ¼ −2Cx, in Eq. (A6).
We have also rescaled time with the effective population
size (i.e., t → Nt), which is the coalescence time in
neutrality [38].
Similar to the mean, the covariance matrix K is a time-

dependent variable, impacted by evolution. However,
fluctuations of covariance are much faster compared to
the mean phenotype, and therefore, covariance can be
approximated by its stationary ensemble-averaged estimate
[31,34]. Moreover, even in the presence of moderately
strong selection pressure, the phenotypic covariance
depends only weakly on the strength of selection and is
primarily determined by the supply of mutations in a
population [34,35]. Therefore, we also assume that the
phenotypic covariance matrix remains approximately con-
stant over time, throughout evolution. With these approx-
imations, evolution of the mean phenotype can be
described as a stochastic process with a constant adaptive
pressure that approaches its stationary state over a charac-
teristic equilibration time ∼ð2KCÞ−1.
The stochastic evolution of the mean phenotype in

Eq. (A6) defines an ensemble of evolutionary trajectories.
We can characterize the statistics of these evolutionary
paths by the dynamics of the underlying conditional
probability density Pðx0; t0jx; tÞ for a population to have
a mean phenotype x0 at time t0, given its state x at an earlier
time t < t0. The dynamics of this probability density
follows a high-dimensional Fokker-Planck equation [34],

∂
∂tPðx

0; t0jx; tÞ ¼
�
1

2N
TrK∇xx −∇ðK ·∇FÞ

�
Pðx0; t0jx; tÞ;

ðA7Þ

where we introduced the compact notation TrK∇xx≡P
ij Kijð∂=∂xiÞð∂=∂xjÞ. As a result, the conditional dis-

tribution of phenotypes follows an Ornstein-Uhlenbeck
process, described by a time-dependent multivariate
Gaussian distribution.

APPENDIX B: HAMILTON-JACOBI-BELLMAN
EQUATION FOR OPTIMAL CONTROL

We define a general stochastic evolutionary process for a
population of size N with an evolutionary drive due to
natural selection and mutations Aðx; tÞ and an external
artificial selection uðx; tÞ:

dx ¼ ½AðxÞ þ uðx; tÞ�dtþ ΣðxÞdW: ðB1Þ
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Here, time t is measured in units of the coalescence time N
(i.e., the effective population size). dW is a differential
random walk due to an underlying Wiener process with an
amplitude Σ, which is the square root of the phenotypic
covariance matrix K: Σ⊤Σ≡ K. The stochastic evolution in
Eq. (B1) defines an ensemble of phenotypic trajectories, the
statistics of which can be characterized by a conditional
probability density Pðx; tjx0; t0Þ for a population to have a
phenotype x at time t, given its state x0 at a previous time
t0 < t. For a given artificial selection protocol uðx; tÞ, the
conditional probability density evolves according to a
Fokker-Planck equation [73],

∂
∂t Pðx; tjx

0; t0Þ ¼
�
1

2
TrK∇xx −∇x · (AðxÞ þ uðx; tÞ)

�

× Pðx; tjx0; t0Þ; ðB2Þ

where we have used the shorthand notation, ∇x · f ¼P
ið∂=∂xiÞf, and TrK∇xxf ¼ P

i;j Kijð∂2=∂xi∂xjÞf, as
operators that act on the function f in front of them.
The purpose of artificial selection is to minimize a cost

function,

Ωðx;u; tÞ ¼ Vðx; tÞ þ 1

2
u⊤Bu; ðB3Þ

where Vðx; tÞ≡ Vðjxt − x�jÞ is the cost for deviating from
the desired target x� during evolution and B is the cost for
intervening with natural evolution and applying artificial
selection u≡ uðx; tÞ.
We define the cost-to-go function Jðx; tÞ as the expected

value for the cumulative cost from time t to the end of the
process tf, subject to the evolutionary dynamics and under
an optimal control u�

t→tf :

Jðx; tÞ ¼ minut→tf

�
Qðx; tfÞ þ

Z
tf

t
Ωðxs;usÞds

�
: ðB4Þ

Here,Qðx; tfÞ≡Qðjxtf − x�jÞ is the cost of deviation from
the target at the end point tf, which in general can be
distinct from the path cost VðxtÞ. We can formulate a
recursive relation for the cost-to-go function Jðx; tÞ,

Jðx; tÞ ¼ minut→tf

�
QðxtfÞ þ

Z
tf

t
Ωðxs;usÞds

�

¼ lim
δt→0

minut→tf

�
QðxtfÞ þ

Z
tþδt

t
Ωðxs;usÞdsþ

Z
tf

tþδt
Ωðxs;usÞds

�

¼ lim
δt→0

minut→tf

�
Jðxtþδt; tþ δtÞ þ

Z
tþδt

t
Ωðxs;usÞds

�

¼ Jðxt; tÞ þminut→tf

�
Ωðxs;usÞδtþ

� ∂
∂t Jðxt; tÞ þ ðAðxtÞ þ uÞ⊤ð∇JÞ þ 1

2

X
ij

Kij
∂
∂xi

∂
∂xj J

�
δt
�
; ðB5Þ

where we used Ito calculus to expand the cost-to-go
function, Jðxtþδt; tþ δtÞ; see, e.g., Ref. [37]. By reordering
the terms in Eq. (B5), we arrive at the Hamilton-Jacobi-
Bellman equation:

−
∂
∂t Jðx; tÞ ¼ min

u

�
Ωðxt;utÞ þ ðAðxtÞ þ uÞ⊤ ·∇J

þ 1

2
TrK∇xxJ

�

¼ min
u

�
1

2
u⊤Buþ u⊤ ·∇J

�

þ VðxÞ þ AðxtÞ⊤ · ∇J þ 1

2
TrK∇xxJ: ðB6Þ

The functional form for the optimal artificial selection u�
follows by minimizing the right-hand side of Eq. (B6) with
respect to u:

u� ¼ −B−1∇J: ðB7Þ

Therefore, the time- and phenotype-dependent solution
for the cost-to-go function Jðx; tÞ determines the optimal
protocol for artificial selection u�ðx; tÞ. By substituting the
form of the optimal control u� in Eq. (B6), we arrive at a
nonlinear partial differential equation for the cost-to-go
function,

−
∂
∂t Jðx; tÞ ¼ −

1

2
ð∇JÞ⊤B−1∇J þ VðxÞ

þ AðxtÞ⊤ · ∇J þ 1

2
TrK∇xxJ; ðB8Þ

which should be solved with a boundary condition
Jðx; tfÞ ¼ Qðx; tfÞ at the end point. We introduce a new
variable Ψ ¼ exp½−J=λ� as the exponential of the cost-to-
go function. The dynamics of Ψ follows
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λ

Ψ
∂
∂tΨ¼ −

λ2

2Ψ2
ð∇ΨÞ⊤B−1∇ΨþVðxÞ− λ

Ψ
AðxtÞ⊤ · ð∇ΨÞ

−
λ

2
K
�
−1
Ψ2

ð∇ΨÞ⊤ ·∇Ψþ 1

Ψ
∇xxΨ

�
: ðB9Þ

The dynamics of Ψ linearizes if and only if there exists a
scalar λ that relates the control cost to the covariance matrix
such that B ¼ λK−1. This criterion is known as the path
integral control condition [41,42] by which we can map a
generally nonlinear control problem onto a linear stochastic
process. The path integral control condition implies that
the cost of artificial selection on each phenotype should
be inversely proportional to the phenotype’s fluctuations. In
other words, artificially tweaking with highly conserved
phenotypes should be more costly than with variable

phenotypes. In this case, the HJB equation for the trans-
formed cost-to-go function Ψ follows

∂
∂tΨ ¼ −AðxÞ⊤ ·∇Ψ −

1

2
TrK∇xxΨþ 1

λ
VðxÞΨ≡ −L†Ψ;

ðB10Þ

where L† is a linear operator acting on the function Ψ.
Equation (B10) has the form of a backward Fokker-Planck
equation with the boundary condition at the end point,
Ψðx; tfÞ ¼ exp½−Jðx; tfÞ=λ� ¼ exp½Qðx; tfÞ=λ�. We can
define a conjugate function Pu that evolves forward in
time according to the Hermitian conjugate of the operator
L†. This conjugate operator L can be characterized by
evaluating the inner product of the two functions,

hLPujΨi ¼ hPujL†Ψi ¼
Z

dxPuðx; tÞL†Ψðx; tÞ

¼
Z

dxPuðx; tÞ
�
AðxÞ⊤ ·∇Ψþ 1

2
TrK∇xxΨ −

1

λ
VðxÞΨ

�
Ψðx; tÞ

¼
Z

dx

�
−
1

λ
VðxÞPuðx; tÞ −∇AðxÞPu þ

1

2
TrK∇xxPu

�⊤
Ψðx; tÞ; ðB11Þ

where we performed integration by part and assumed that
the function Pu vanishes at the boundaries. This formu-
lation suggests a forward evolution by the operator L† for
the function Puðx0; t0jx; tÞ,

∂
∂t Puðx0; t0jx; tÞ

¼ LPuðx0; t0jx; tÞ

¼
�
1

2
TrK∇xx −∇AðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L0

−
1

λ
VðxÞ

�
Puðx0; t0jx; tÞ;

ðB12Þ

with a boundary condition at the initial time point
Pðx0; tjx; tÞ ¼ δðx − x0Þ. Importantly, the linear operator
L resembles the forward Fokker-Planck operator L0 for
evolution under natural selection [i.e., the dynamics in
Eq. (B2) with u ¼ 0] with an extra annihilation term
VðxÞ=λ. The evolutionary dynamics with the L0 operator
under natural selection conserves the probability density.
The annihilation term, on the other hand, eliminates the
evolutionary trajectories with a rate proportional to their
cost Vðx; tÞ=λ at each time point.
Since Ψ evolves backward in time according to L†

and Pu evolves forward in time according to L, their
inner product hPujΨi¼

R
dx0Puðx0;t0jx;tÞΨðx0;t0Þ remains

time invariant [74]. Therefore, the inner product of the two

functions at the initial and the final time points are equal,
which follows

hPuðtÞjΨðtÞi¼hPuðtfÞjΨðtfÞi→
Z

dx0Puðx0;tjx;tÞΨðx0;tÞ

¼
Z

dx0Puðx0;tfjx;tÞΨðx0;tfÞ

→Ψðx;tÞ¼
Z

dx0Puðx0;tfjx;tÞexp½−Qðx0;tfÞ=λ�;

ðB13Þ

where we substituted the boundary condition for Pu at the
initial time t and for Ψ at the finial time tf. Thus, the cost-
to-go function follows

Jðx; tÞ ¼ −λ logΨðx; tÞ

¼ −λ log
Z

dx0Puðx0; tfjx; tÞ exp½−Qðx0; tfÞ=λ�:

ðB14Þ

APPENDIX C: PATH INTEGRAL SOLUTION TO
STOCHASTIC ADAPTIVE CONTROL

Given the structure of the linear forward operator L
[Eq. (B12)], we can either exactly compute the conditional
function Puðx0; tfjx; tÞ or use approximation methods
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common for path integrals (e.g., the semiclassical method)
to evaluate cost-to-go function in Eq. (B14). To formulate
a path integral for Puðx0; tfjx; tÞ, we discretize the time
window ½t∶tf� into n small time slices of length ϵ
(t0; t1;…; tn), with nϵ ¼ tf − t. The conditional probability
Puðx0; tfjx; tÞ can be written as an integral over all
trajectories that start at the phenotypic state x at time
t0 ≡ t and end at x0 at time tn ≡ tf:

Puðx0; tfjx; tÞ ∼
Z Yn

i¼1

dxiPuðxi; tijxi−1; ti−1Þδðxn − x0Þ:

ðC1Þ

The short-time propagator Puðxi; tijxi−1; ti−1Þ follows a
simple Gaussian form [73],

Puðxi; tijxi−1; ti−1Þ ∼ exp

	
−
1

λ

�
(xi − xi−1 − ϵAðxiÞ)⊤

λK−1

2ϵ
(xi − xi−1 − ϵAðxiÞ)þ VðxiÞϵ

�


¼ exp

	
−
ϵ

λ

��
xi − xi−1

ϵ
− AðxiÞ

�⊤ B
2

�
xi − xi−1

ϵ
− AðxiÞ

�
þ VðxiÞ

�

; ðC2Þ

where we used K ¼ λB−1. We can express the cost-to-go function [Eq. (B14)] as a path integral,

e−Jðx;tÞ=λ ¼
Z

dx0Puðx0; tfjx; tÞ exp½−Qðx0; tfÞ=λ�

∼
Z Yn

i¼1

dxi exp

	
−
ϵ

λ

��
xi − xi−1

ϵ
− AðxiÞ

�⊤ B
2

�
xi − xi−1

ϵ
− AðxiÞ

�
þ VðxiÞ þ

QðxnÞ
ϵ

�


∼
Z

DðxÞ exp
�
−
1

λ

�
QðxðtfÞÞ þ

Z
tf

t
dt

��
dxðtÞ
dt

− AðxðtÞ; tÞ
�⊤ B

2

�
dxðtÞ
dt

− AðxðtÞ; tÞ
�
þ Vðx; tÞ

���

≡
Z

DðxÞ exp
�
−
1

λ
Spath(xðt → tfÞ)

�
; ðC3Þ

where Spath(xðt → tfÞ) is a corresponding action and
DðxÞ ∼Q

n
i¼1 dxi is the integral measure over all the

trajectories that start at x0 ¼ xð0Þ. Numerically, this
formulation provides a way to generate evolutionary
trajectories under artificial selection as an exponentially
weighted ensemble from trajectories under natural
selection [41,42]. Moreover, if λ is small, the integral is
dominated by the trajectories that are close to the most
likely (classical) trajectory x̂ðt → tfÞ, and the path integral
can be approximated using the semiclassical method; see
Ref. [41].

APPENDIX D: CONTROL
OF MOLECULAR PHENOTYPES

WITH QUADRATIC COST

In the case that the path cost is zero VðxÞ ¼ 0, the
artificially and naturally selected trajectories become
distinct only due to the contributions from the end point
cost at t ¼ tf. For the choice of a linear evolutionary
force, AðxÞ ¼ −2KCx, and a quadratic end point cost,
Qðx; tfÞ ¼ 1

2
ðxtf − x�Þ⊤G̃ðxtf − x�Þ, evolution follows an

Ornstein-Uhlenbeck process and the solution to Eq. (B12)
takes a Gaussian form (see, e.g., Ref. [37]),

Puðx; tÞ ¼
Z

dxtfP0ðxtf ; tfjx; tÞP0ðx; tÞ exp½−QðxtfÞ=λ�

∼
Z

dxtf exp

�
−1
2

(xtf − μðx; τÞ)⊤K−1
τ

× (xtf − μðx; τÞ)
�
P0ðx; tÞ exp½−QðxtfÞ=λ�;

ðD1Þ
where P0ðx; tÞ denotes the marginal phenotype distribution
in the uncontrolled process at time t and P0ðxtf ; tfjx; tÞ
indicates the conditional probability density in the uncon-
trolled process, which is a Gaussian distribution with a
time-dependent mean,

μðx; τÞ ¼ exp½−2KCτ�x; ðD2Þ

and a covariance matrix,

Kτ ¼
Z

tf

t
dt0 exp½−2KCðtf − t0Þ�K exp½−2CKðtf − t0Þ�;

ðD3Þ

with τ ¼ tf − t.
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In this case, the cost to go in Eq. (B14) can be evaluated by a Gaussian integral to marginalize over the end state xtf ,

exp½−J=λ� ∼
Z

dxtf exp

�
−1
2λ

(xtf − μðx; τÞ)⊤λK−1
τ × (xtf − μðx; τÞ)

�
exp

�
−1
2λ

ðxtf − x�Þ⊤G̃ðxtf − x�Þ
�

∼ exp

�
1

2λ
ðμðx; τÞ − x�Þ⊤ðG̃½λK−1

τ þ G̃�−1G̃ − G̃Þðμðx; τÞ − x�Þ
�
; ðD4Þ

resulting in an optimal artificial selection protocol:

u� ¼ −B−1∇J ¼ −
K
λ
∇J ¼ −

K
λ
½∇μðx; τÞ�⊤½G̃ − G̃½λK−1

τ þ G̃�−1G̃�ðμðx; τÞ − x�Þ

¼ −
K
λ
exp½−2CKτ�G̃

�
I −

Kτ

λ

�
I þ Kτ

λ
G̃

�
−1
G̃

�
ðe−2KCτx − x�Þ: ðD5Þ

When the goal is to drive the population toward a target
by an end point tf, the effective fitness F̂ðx; tÞ remains
close to the natural landscape for an extended period. As
time approaches the end point, populations transition from
evolving in their natural landscape FðxÞ to the artificially
induced fitness landscape Fartðx; tfÞ; see Fig. 3 herein and
Figs. S1 and S2 in Supplemental Material [45] for evolution
in one and two dimensions. Moreover, toward the end
point, the fitness peak and the strength of selection
approach their final values, determined by the target and
the cost functions in Eq. (B3), in an exponentially rapid
manner (Figs. S1 and S2 [45] and Fig. 3).
As the time approaches the end point (t → tf or τ → 0),

optimal artificial selection acts as a linear attractive force
(i.e., a stabilizing selection),

u�ðτ → 0Þ ¼ −1
λ
KG̃ · ðx − x�Þ þOðτÞ; ðD6Þ

tomaintain the population close to the phenotypic target, with
an effective strength of artificial stabilizing selection G̃=λ.

APPENDIX E: MODEL MISSPECIFICATION
AND ALTERNATIVE APPROACHES TO

ARTIFICIAL SELECTION

Devising an optimal control strategy relies on the
knowledge of system dynamics, which in some cases
may not be available with high precision. In such settings,
ad hoc selection protocols, guided by optimal control, can
be used to drive evolution toward a desired target. Here, we
consider such alternative (ad hoc) selection protocols and
compare their performance with the optimal artificial
selection strategy for the 2D covariate phenotypes, in terms
of total cost and performance variability.

(a) Control without the knowledge of phenotype corre-
lation. Optimal control on multivariate phenotypes
should be devised by considering the phenotypic
correlation, which could lead to nonmonotonic
artificial selection strategies in the course of evolu-
tion [Fig. 3(c)]. Here, we can quantify the impor-
tance of phenotypic covariance on devising optimal
artificial selection protocols. To do so, we assume
that the covariance matrix is misspecified and that
phenotypes evolve independently (i.e., assuming the
covariance matrix K is diagonal). The devised
protocol in this case does not take into account
the synergistic or antagonistic interactions between
the phenotypes and their response to interventions.
Therefore, as correlation between phenotypes in-
creases, the cost function [i.e., Qðx; tfÞþR tf
t ds½VðxsÞ þ 1

2
u⊤
s Bũs�] with the misspecified con-

trol protocol ũ soars (Fig. S2 [45]). It should be
noted that although phenotypic cost with the mis-
specified control protocol always exceeds the cost
under optimal control, its impact could still be
favorable over the uncontrolled system (Fig. S2
[45]), in certain parameter regimes.

(b) Ad hoc proportional artificial selection protocol on
multivariate phenotypes. We consider a naive (and
intuitive) approach to artificial selection. Specifically,
for 2D covariate phenotypes, the strategy is to inter-
vene with a proportional control (i.e., artificial selec-
tion in a quadratic landscape) as long as the
phenotypes are outside a specified neighborhood (with
range δ) of their targets, and to relax intervention once
phenotypes are close enough to their targets,

u ¼
8<
:

ux ¼ −κtðxt − x�Þ; uy ¼ 0 if jxt − x�j > δ

ux ¼ 0;uy ¼ −κtðyt − y�Þ if jxt − x�j < δ; jyt − y�j > δ

ux ¼ 0;uy ¼ 0 otherwise;

ðE1Þ

OPTIMAL EVOLUTIONARY CONTROL FOR ARTIFICIAL … PHYS. REV. X 11, 011044 (2021)

011044-15



where κt is the strength of artificial selection. In this strategy,
artificial selection is preferentially applied to phenotype “x”
and once x is close enough to its target, artificial inter-
ventions would select for phenotype “y.” In a sense, this
protocol presents an intuitive approach to a control problem
similar to the one considered in Fig. 3, in which phenotype x
is driven toward a target far from its natural state, while
keeping phenotype y close to its natural state.
We implement twoversions of Eq. (E1). In the first version,

we select κt to be equal to a constant κ > 0 over all times.We
denote this version as proportional control. In the second
version, we implement an exponentially increasing artificial
selection strength as evolution approaches the end timeT, i.e.,
κt ¼ κ exp−τþ1. We denote this protocol as proportional
control with exponential weights. We note that the choice
of exponentially increasing artificial selection strength
mimics the increase in control gains of optimal artificial
selection strategy as remaining time approaches, in accor-
dance with Eq. (D5). We tune the constants in both control
strategies such that the mean values of the ensemble of end
point values of phenotype x (hxTi) are approximately equal to
the mean ensemble value obtained from the optimal artificial
selection protocol, and close to the desired target x�.
We observe that the focal phenotype xt at the end point is

much more widely distributed under both versions of the
proportional control protocol [Eq. (E1)] compared to the
optimal protocol (Fig. S5A [45]). Similarly, both proportional
control strategies obtain similar yT values near the target
y� ¼ 0, with a higher ensemble variability than the one
obtained using the optimal artificial selection strategy
(Fig. S5A [45]). The variability in end point values tends
to be higher in proportional control with exponential weights
compared to the rest of the protocols. We also note that the
peak magnitude of the artificial selection is much smaller for
the optimal control compared to the proportional control
protocols; see Fig. S6 for a comparison of controlmagnitudes
between the optimal strategy and the proportional control
strategy with exponential weights [45].
When we compare the costs of control, the proportional

control strategy with exponential weights has an order of
magnitude smaller cost than the proportional control with a
constant weight (Fig. S5B [45]). This is expected because the
earlier control actions incur control costs but their effects are
overwritten by the uncontrolled selection dynamics. In
addition, the proportional control with exponential weights
is on average preferred over doing nothing in terms of the total
cost. Still, the accumulated cost for the proportional control
strategy with exponential weights is at least an order of
magnitude higher than the costs incurred under the optimal
strategy (Fig. S5B [45]).
In summary, while the ad hoc control strategies can be

tuned to drive evolution toward a desired phenotypic target on
average, they would suffer from an increased variability
across evolutionary realizations and an elevated cost of
control.

APPENDIX F: ARTIFICIAL SELECTION WITH
INTERMITTENT MONITORING

Here, we assume that artificial selection is imposed in
discrete steps with time interval τ. Similar to the continuous
control, the cost function has two components: the cost of
control at the end of each intervention and the cumulative
cost of deviation from the optimum throughout each
interval. The stationary cost-to-go function follows

Jðx; tm; τÞ ¼ min
u

lim
M→∞

1

ðM −mÞτ

×

�XM
i¼m

u⊤
i Bui þ

Z
tM

ti

VðxtÞdt
�

evol

; ðF1Þ

where we have normalized the path cost by the interval τ to
assure that the cost to go remains finite.
To further simplify, we consider only one-dimensional

phenotype x with intrapopulation variance k, the cost of
deviation VðxÞ ¼ gðx − x�Þ2=2 from target x�, and the cost
of intervention βu2=2 with artificial selection u. In the
stationary state and in the regime of small interventions
ðgk=λ < 1Þ, we assume that the optimal artificial selection
protocol u� should be a variant of the case with full
information with a strength of selection ατ dependent on
the time window τ, u�τ ¼ −kατðx − x�Þ. Our goal is to
characterize the strength of optimal artificial selection ατ.
The total cost over an interval τ in the stationary state

follows

ΩτðxÞ ¼
β

2
hu2i þ 1

τ

�Z
tiþτ

t¼ti

VðxtÞdt
�

¼
�
β

2
k2α2τðxτ − x�Þ2 þ 1

2τ
γ

Z
τ

t¼0

ðxt − x�Þ2dt
�
:

ðF2Þ
We are interested in the regime of moderate to weak

interventions ðgk=λ < 1Þ, for which the linear response
theory can characterize the change in the state of the system
after each intervention. In this regime, evolution under
artificial selection can be approximated as a perturbation
from the dynamics under natural selection. The evolu-
tionary dynamics of the phenotype distribution is governed
by a time-dependent Fokker-Planck operator, Lðx; tÞ,

∂
∂t Pu;τðx; tÞ ¼ ½L0ðxÞ þ LuðxÞYðtÞ�Pu;τðx; tÞ; ðF3Þ

where Pu;τðx; tÞ is the full probability density under
intermittent artificial selection, which can be split into
the stationary solution under natural selection and the time-
dependent deviation due to artificial selection: Pu;τðx; tÞ ¼
P0ðxÞ þ Puðx; t; τÞ. L0ðxÞ is the Fokker-Planck operator
associated with evolution under natural selection [i.e., the
dynamics in Eq. (B2) with u ¼ 0], LuðxÞ ¼ ∂xkατðx − x�Þ
is the state-dependent operator associated with artificial
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selection, and YðtÞ ¼ limM→∞
P

M
i¼1 δðt − tiÞ characterizes

a time-dependent component due to artificial selection
interventions at the end of each time interval.
In the regime of linear response, where the impact of

artificial selection is small, the deviation hΔzi of an
expected value of an arbitrary function hzðxÞi from it
stationary state (i.e., under natural selection) follows (see,
e.g., Ref. [73])

hΔzðtÞi ¼
Z

zðxÞPuðx; tÞdx

≡
Z

∞

−∞
Rz;Lu

ðt − t0ÞYðt0Þdt0; ðF4Þ

where Rz;Lu
ðtÞ is the response function to artificial

selection Lu:

Rz;Lu
ðtÞ ¼

	R
zðxÞeL0ðxÞ·tLuðxÞP0ðxÞdx for t ≥ 0

0 for t < 0.

ðF5Þ
At end of each time interval, artificial selection imposes

a shock-type perturbation to the evolutionary process. The
immediate response of the population to this selection
pressure can be characterized by the instantaneous response
function [i.e., withYðt0Þ ¼ δðt − t0Þ], resulting in the change
in a given phenotypic statistics z (see, e.g., Ref. [73]),

hΔzðtÞi¼
Z

zðxÞLuðxÞP0ðxÞdx

¼ 1

Z

Z
dxzðxÞ ∂∂x

�
kατðx−x�Þexp

�
−

x2

2varst0

��

¼kατ

�
hzðxÞist0−

1

varst0
½hzðxÞx2ist0−x�hzðxÞxist0 �

�
;

ðF6Þ
where P0ðxÞ is the Gaussian stationary distribution for the
meanphenotype under natural selection, varst0 ¼ 1=4c is the

stationary ensemble variance for the mean phenotype under
natural selection, Z is the normalization factor for
the underlying stationary distribution, and h·ist0 indicates
expectation values under the stationary distribution.
At the beginning of each interval t ¼ 0, the deviation of

the mean phenotype from its expectation under natural
selection hxist0 ¼ 0 follows

hΔxi ¼ hxðt ¼ 0Þi ¼ kατx�: ðF7Þ
Similarly, the deviation in the second moment of the

phenotypic distribution from the expectation under natural
selection hx2ist0 ¼ varst0 follows

hΔx2i ¼ hx2ðt ¼ 0Þi − varst0

¼ ατ

�
varst0 −

1

varst0
hx4ist0

�

¼ −2kατvarst0 ¼ −kατ=2c: ðF8Þ
Thus, the phenotypic variance at the beginning of each

interval follows

varuðt ¼ 0Þ ¼ hx2ðt ¼ 0Þi − hxðt ¼ 0Þi2
¼ varst0 ½1 − 2kατ� − ½kατx��2: ðF9Þ

Following an intervention at time t ¼ 0, populations
evolve according to natural selection until the next inter-
vention. Therefore, the phenotype statistics during each
time interval (0 < t < τ) follow

hxðtÞi ¼ ατx�e−2kct; ðF10Þ
varðtÞ ¼ ½varst0ð1 − 4kcÞ − ðkατx�Þ2�e−4kct

þ varst0ð1 − e−4kctÞ
¼ varst0ð1 − 2kατe−4kctÞ − ðkατx�Þ2e−4kct: ðF11Þ

We can now evaluate the cumulative cost func-
tion [Eq. (F2)],

ΩτðxÞ ¼
β

2
hu2i þ 1

2τ
γ

�Z
τ

t¼0

ðxt − x�Þ2dt
�

¼
�
β

2
k2α2τðxτ − x�Þ2 þ 1

2τ
γ

Z
τ

t¼0

ðxt − x�Þ2dt
�

¼ β

2
k2α2τ ½ðhxτi − x�Þ2 þ varðτÞ� þ 1

2τ
γ

Z
τ

t¼0

½ðhxti − x�Þ2 þ σ2ðtÞ�dt

¼ β

2
k2α2τ ½varst0ð1 − 2kατe−4kcτÞ þ ðx�Þ2ð1 − 2kατe−2kcτÞ�

þ 1

2τ
γ

�
−ατ
2c

(ð1 − e−4kcτÞvarst0 þ 2ð1 − e−2kcτÞðx�Þ2)þ (varst0 þ ðx�Þ2)τ
�
; ðF12Þ
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where we have used the time-dependent expectation and
variance in Eqs. (F10) and (F11).
The optimal strength of artificial selection α�τ for inter-

mittent interventions can be characterized by minimizing
the cost function [Eq. (F12)] with respect to ατ,

α�τ ¼
γ

λ

�ð1 − e−τÞ(1þ 8cðx�Þ2 þ e−τ)
2τ(1þ 4cðx�Þ2)

�
þO½ðkγ=λÞ2�;

ðF13Þ

which in the limit of small separation time (τ → 0)
approaches the expectation under continuous monitoring
in the stationary state [Eq. (D6)], α�ðτ → 0Þ ¼ γ=λ.

APPENDIX G: WORK PERFORMED BY
ARTIFICIAL SELECTION

Artificial selection changes the distribution of pheno-
typic trajectories x

tf
t0 ≡ ðxt0 ;…;xtfÞ from P0ðxtf

t0 Þ in the
stationary state under natural selection to a configuration
closer to the desired target Puðxtf

t0 Þ. In analogy to thermo-
dynamics, we can associate a free energy to these distri-
butions, as F0 ¼ logP0ðxtf

t0 Þ and Fu ¼ logPuðxtf
t0 Þ [50].

The expected difference between the free energy of the

two phenotypic configurations can be interpreted as the
amount of work done by artificial selection, which corre-
sponds to the Kullback-Leibler distance between the two
distributions,

Wu ≡ hFui − hF0i ¼
Z

DxPuðxtf
t0 Þ log

�
Puðxtf

t0 Þ
P0ðxtf

t0 Þ

�

≡DKL(Puðxtf
t0 ÞjjP0ðxtf

t0 Þ); ðG1Þ

where Dx is the integral measure over all trajectories. The
estimate of work in Eq. (G1), however, should not be
interpreted as a physical work, but rather as an information
theoretical measure of discrimination between the two
phenotype distributions due to artificial selection.
The evolution of the distribution for phenotype trajecto-

ries Puðxtf
t0 Þ under a given artificial selection protocol u

tf
t0 is

Markovian [Eqs. (B1) and (B2)]. To characterize this
path probability density, we follow the path integral
formulation in Eq. (C1) and discretize the time window
½t0∶tf� into n small time slices of length ϵ, (t0; t1;…; tn),
with nϵ ¼ tf − t. The probability of a given trajectory

Puðxtf
t0 Þ can be written as a product of short-term propa-

gators (i.e., conditional probabilities) (see Ref. [73]),

Puðxtf
t0 Þ ¼ lim

ϵ→0

Ytf
s¼t0

(PuðxsþϵjxsÞ)

¼ lim
n→∞

Yn
i¼1

1

Zi
exp

�
−(xiþ1 − xi − ϵðAðxiÞ þ uðxiÞÞ)⊤

K−1

2ϵ
(xiþ1 − xi − ϵðAðxiÞ þ uðxiÞÞ)

�

∼ P0ðxtf
t0 Þ limn→∞

Yn
i¼1

eu
⊤ðxiÞK−1(xiþ1−xi−ϵAðxiÞ) × e−ðϵ=2ÞuðxiÞ⊤K−1uðxiÞ

¼ P0ðxtf
t0 Þ exp

�
−
Z

tf

t0

dt
1

2
u⊤ðx; tÞK−1uðx; tÞ þ

Z
tf

t0

u⊤ðx; tÞK−1(dxt − AðxtÞdt)
�
: ðG2Þ

The Kullback-Leibler distance between the two distributions follows

DKL(Puðxtf
t0 ÞkP0ðxtf

t0 Þ) ¼
Z

DxPuðxtf
t0 Þ
�
−
Z

tf

t0

dt

�
1

2
uTðx; tÞK−1uðx; tÞ

�
þ
Z

tf

t0

uTðx; tÞK−1ðdxt − AðxtÞdtÞ
�

¼
Z

tf

t0

dt
Z

DxPuðxtf
t0 Þ
�
1

2
uTðx; tÞK−1uðx; tÞ

�
≡

�
1

2
ðxtf

t0 ÞTK−1utf
t0

�
; ðG3Þ

where we have used dxt − AðxtÞdt ¼ uðxt; tÞdtþ dWt, with dWt as the stochastic differential measure for a multivariate
Wiener process (see Ref. [37]). Importantly, with the criteria of path integral control (i.e.,K−1 ¼ B=λ), the Kullback-Leibler
distance between the artificially and naturally selected phenotype distributions is equivalent to the cumulative cost of
intervention, divided by the overall cost of artificial selection λ,

DKL(Puðxtf
t0 ÞjjP0ðxtf

t0 Þ) ¼
1

2λ
hðutf

t0 Þ⊤Bu
tf
t0 i; ðG4Þ

which can intuitively be interpreted as the amount of work done by artificial selection.
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