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The identification of universal properties from minimally processed data sets is one goal of machine
learning techniques applied to statistical physics. Here, we study how the minimum number of variables
needed to accurately describe the important features of a data set—the intrinsic dimension (Id)—behaves in
the vicinity of phase transitions. We employ state-of-the-art nearest-neighbors-based Id estimators to
compute the Id of raw Monte Carlo thermal configurations across different phase transitions: first-order,
second-order, and Berezinskii-Kosterlitz-Thouless. For all the considered cases, we find that the Id
uniquely characterizes the transition regime. The finite-size analysis of the Id allows us to not only identify
critical points with an accuracy comparable to methods that rely on a priori identification of order
parameters but also to determine the corresponding (critical) exponent ν in the case of continuous
transitions. For the case of topological transitions, this analysis overcomes the reported limitations affecting
other unsupervised learning methods. Our work reveals how raw data sets display unique signatures of
universal behavior in the absence of any dimensional reduction scheme and suggest direct parallelism
between conventional order parameters in real space and the intrinsic dimension in the data space.
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I. INTRODUCTION

The growing field of machine learning (ML) is rapidly
expanding our capabilities of analyzing and describing
high-dimensional data sets [1–4]. With the increasing
understanding of these methods, the community is becom-
ing convinced that their outstanding performance is mostly
due to the fact that this “high dimensionality” is applicable
only to the embedding space, while the data sets lie in a
manifold that can be twisted and topologically complex
but whose intrinsic dimension Id is typically much smaller
than the large number of coordinates of the system [5,6]
[see Fig. 1(a)]. The determination of this Id is an active
field of research [5,7,8] in unsupervised learning (UL),
i.e., the branch of machine learning that aims to uncover
the internal structure of a data set without the need for
any label.
Recently, ML ideas have encountered fruitful applica-

tions in the context of statistical physics [9–11]. Such
applications have ranged from the determination of

physical properties [12–20] to the formulation of novel
classes of variational ansätze [21–24]. These applications
focused on analyzing and exploiting the results of dimen-
sional reduction and using a variety of tools to analyze (or
employ) the final representation (or truncation) obtained in
this way. In various contexts, results obtained via these
methods are, remarkably, already competitive with more
traditional approaches [9].
Here, we pursue an alternative approach: Our main

purpose is to show that, from a ML perspective, physically
relevant and universal information can be gathered by
analyzing the very same embedding procedure that carries
out the dimensional reduction, rather than focusing on its
final result. In particular, we show how the intrinsic
dimension corresponding to the partition function of
statistical mechanics models displays universal scaling
behavior in the vicinity of phase transitions, and how it
behaves as an order parameter for a corresponding struc-
tural transition in data space. In contrast to previous works
[12,25–31], our approach focuses on data mining the data
set as a whole; thus, it does not focus on any kind of
projection. At the technical level, we employ a cutting-edge
nearest-neighbor estimator of the Id, which is suitably
designed to deal with nonlinear data sets, i.e., data sets
lying on nonlinear manifolds [8].
In order to access the complex data structure at phase

boundaries, we numerically study instances of first-order,
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second-order (conformal), and Berezinskii-Kosterlitz-
Thouless (BKT) transitions in two-dimensional (2D)
classical spin systems. In all cases, Id displays a universal
scaling behavior corresponding to the transition properties
of the underlying lattice model. (i) For first-order transi-
tions, Id peaks at the critical point due to the coexistence
of different orders, and the finite-size corrections of the
transition temperature are dictated by trivial scaling expo-
nents. (ii) For both second-order and topological transi-
tions, we observe universal scaling collapse, with transition
temperature and critical exponents determined to the
percent level. (iii) Most importantly, we provide compelling
evidence that the Id is an ideal tool to underpin topological

transitions in an unsupervised fashion: As an example, we
extract the critical temperature of the 2D XY model with
1% confidence even at modest system sizes.
We then develop a theoretical framework in support of

the fact that Id has characteristic features at transition
points, which are governed by scaling theory. First, we
show how several instances of the data set, in particular, the
distribution of distances between sampled configurations,
already reveal striking features about critical behavior for
all classes of phase transitions. The basic idea is that the
data space naturally clusters configurations characterized
by similar physical properties (e.g., magnetization and
winding number). The fact that the intrinsic dimension

(a)

(b) (c)

FIG. 1. (a) Schematics of the intrinsic dimension Id. The important content of a data set typically lies within a manifold whose Id is
much lower than the number of coordinates. In the example, despite the fact that the synthetic data set (Klein’s bottle-shaped data set) is
embedded in a three-dimensional space, it can be effectively described by a twisted manifold whose Id ¼ 2. The key ingredients to
compute the Id are the first- and the second-nearest-neighbor distances, r1 and r2, of each point of the data set. The computation of the Id
is based on the fitting of the empirical, cumulative distribution function (CDF) of the ratio μ ¼ r2=r1, PðμÞ [see text and Eq. (2)].
(b) Low- and high-temperature data sets of a three-site model in configuration space. The points represent the three-site XY model

configurations: θ⃗ ¼ ðθ1; θ2; θ3Þ. The high- and zero-temperature cases show simple data structures: For T ¼ 100, Id is equal to the
number of spins, while for T ¼ 0, Id ¼ 1. (c) Intrinsic dimension in the vicinity of a phase transition. The Id in the intermediate-
temperature regime, representative of phase transitions in larger systems, is considerably more complex. The temperature dependence of
Id can be used to locate and characterize critical points. As an example, we show the universal data collapse of the Id at the Berezinskii-
Kosterlitz-Thouless transition described by the 2D XY model.
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has strong features at the phase transition then follows from
its “local” nature (related to changes of scale in configu-
ration space, as we specify below). Then, we discuss how,
for the type of data sets we are interested in, the intrinsic
dimension can be connected directly to a set of arbitrary
many-body correlation functions, which, following the
finite-size scaling hypothesis, justifies its scaling behavior
in the vicinity of transition points. We then check a pos-
teriori the validity of some of the assumptions at the basis
of this framework.
Before diving into the main part of our paper, we

provide a simplified picture that qualitatively captures
how the intrinsic dimension is connected to the physical
information obtained by sampling a partition function
via Monte Carlo (MC) methods. The basic intuition
behind the Id of data sets generated in the low- and
high-temperature regimes of a simple three-site XY model
is shown in Fig. 1(b). At low temperature [left graphic of
Fig. 1(b)], most of the spin configurations sampled during
the Markov chain correspond to fully ferromagnetic spin
arrangements [see the cartoon of Figs. 1(b) and 1(c),
respectively]. In the limiting case T ¼ 0, the ground states
are given by XY ferromagnetic configurations, i.e.,
θ1 ¼ θ2 ¼ θ3, and the data set is described by a manifold
that lies in a line (Id ¼ 1). In contrast, in the high-
temperature regime, the data set is described by a manifold
with Id ¼ 3: Each new Monte Carlo configuration corre-
sponds to an arbitrary arrangement of the three spins, so the
structure of the data set is that of a homogeneously
occupied three-dimensional space. This simple example
demonstrates how transitions in parameter space are
accompanied by structural transitions in data space.
Because of its collective origin, the transition region
requires the computation of Id in very-high-dimensional
data space: In Fig. 1(c), we show a sample of our results,
illustrating the scaling collapse of the intrinsic dimension
corresponding to the 2D XY model in the vicinity of its
BKT transition point.

II. INTRINSIC DIMENSION

Before addressing the analysis of concrete statistical
mechanics models, we present here a self-contained dis-
cussion on the intrinsic dimension and its state-of-the-art
estimators. This section is propaedeutic to the critical
identification of the best estimator to be used in our
applications below.
The Id is a concept that arises from the observation that,

in natural data sets, the correlations between the input
variables induce a structure, modifying the dimensionality
of the manifold in which the data lie. In order to visualize
this concept, one can imagine a data set with the Cartesian
coordinates of points extracted from a circle. Although
there are two input coordinates, they are strongly corre-
lated, and the manifold in which the points lie has a Id ¼ 1.
Therefore, in simple cases like this, or the one shown in

Fig. 1(b), it roughly corresponds to the minimum number
of variables needed to describe a data set [7,8].
Information about the Id is important to determine if

dimensional reduction of high-dimensional data sets results
in information loss or not. Moreover, it can be used as a UL
approach to characterize a system. Here, we mention a few
examples: In biological physics, the Id can be used to
determine the number of independent directions a protein
can have during a sequence evolution [32]; in image
analysis, to distinguish between different kinds of image
structures [33]; in astrophysics, to estimate the amount of
information available in spectropolarimetric data [34]; in
theoretical machine learning, to understand the properties
of deep neural networks [35]; and in ecology, to character-
ize the minimum number of independent axes of variation
that adequately describes the functional variation among
plants [36].
Different approaches have been developed to estimate

the Id; see Ref. [7] for a review. For example, dimensional
reduction techniques—such as principal component analy-
sis (PCA) [37], multidimensional scaling [38], Isomap
[39], locally linear embedding [40], autoencoders [41],
t-distributed stochastic neighbor embedding (t-SNE) [42],
or uniform manifold approximation and projection
(UMAP) [43] to mention a few—search for a lower-
dimensional space to project the data set by minimizing
a projection error. The dimension of the identified subspace
is viewed as an estimation of Id. However, identifying this
dimension is far from trivial. For instance, in the PCA case,
one should take into consideration the spectrum of the
eigenvalues of the covariance matrix and either look for a
gap or choose ad hoc a cutoff parameter. It is worth saying
that, for PCA, this strategy will not work if the manifold of
lower dimensionality is curved. Furthermore, some of the
above-mentioned methods, like t-SNE, are focused on
visualization and assume that the dimension of the projec-
tion space is lower than the Id. These projection algorithms
aim to alleviate the problems that this dimension mismatch
causes in the visualization and, therefore, are not well
suited for Id detection.
A closely related quantity is the fractal dimension [44],

whose estimation relies on the scaling of the number of
neighbors with the distance from a given point. This
approach is largely employed in the study of percolation
transitions [45], but it suffers from serious limitations when
the density distribution of points is not uniform.
These limitations lead to the development of nearest-

neighbor methods, in which it is assumed that nearest-
neighborhood points can be considered as uniformly drawn
from small enough Id-dimensional hyperspheres (not all
the data set) [5,7]. Indeed, the avoidance of any projection
step and the relaxing on the condition of data uniformity
(from the full data set to a small neighborhood around
each point) are key features for obtaining good results in
highly nonuniform, nonlinear data sets, even in really high
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dimensions (a regime at which all the purely geometrical
methods present a bias due to the curse of dimensionality).
The two nearest-neighbor (two-NN) method employed

in this work belongs to this type of methods, with the
particularity that by focusing only on the first two nearest
neighbors [see Fig. 1(a)], the size of the Id-dimensional
hyperspheres at which the density is assumed to be constant
is reduced to its minimum expression. The method is rooted
in computing the distribution functions of neighborhood
distances, which are functions of Id. More specifically, for
each point x⃗ in the data set, we consider its first and second
nearest-neighbor distances r1ðx⃗Þ and r2ðx⃗Þ, respectively.
Under the condition that the data set is locally uniform in
the range of second nearest neighbor, it has been shown in
Ref. [8] that the distribution function of μ ¼ r2ðx⃗Þ=r1ðx⃗Þ is

fðμÞ ¼ Idμ−Id−1; ð1Þ

or, in terms of the cumulative distribution, PðμÞ,

Id ¼ −
ln ½1 − PðμÞ�

lnðμÞ ; ð2Þ

which can be used to obtain Id by fitting S ¼
fðlnðμÞ;− ln ½1 − PempðμÞ�g with a straight line passing
through the origin. The function Pemp defines the empirical
cumulate and is computed by sorting the values of μ in
ascending order (see the Appendix A for more details).
In Fig. 1(a), the steps for computing the Id in a highly
nonlinear manifold with complex topology (in this
case, a Klein’s bottle-shaped data set) are summarized:
(1) Compute the distance from the first and second
neighbors, (2) compute for each point μ and its empirical
cumulate, and (3) fit S to a straight line.
We stress that this method is not free of drawbacks. As

mentioned above, since it is a purely geometrical method, it
is affected by the curse of dimensionality because the
number of points needed to have an accurate measurement
of the Id grows exponentially with the Id. Moreover, Eq. (2)
was derived assuming a continuous real support. Therefore,
applying it to data sets with a different support implies
some degree of approximation that can fail in some limiting
cases. For instance, this failure occurs when two or more
configurations have the same coordinates. However, as we
detail below, these drawbacks do not affect the results
obtained in this work; in particular, these limitations do not
kick in when investigating transitions, even when configu-
ration spaces are composed of discrete variables such as
Ising spins. These limitations only affect data sets corre-
sponding to either very small system sizes or phases at
extremely low temperatures where, during the MC sam-
pling, configurations may be repeated, as the accessible
configuration space is very limited.

III. MODELS

Our approach focuses on the high-dimensional data sets
associated with the equilibrium configuration states of a
partition function. Such states are sampled with Markov
chain Monte Carlo simulations from the thermal weight
ρðEÞ ∼ e−Eðx⃗Þ=T , where Eðx⃗Þ is the energy of an indepen-
dent configuration x⃗ and T is the temperature. We employ
Wolff’s cluster algorithm [46,47], and for each data set, we
consider Nr configurations.
We consider partition-function data sets of several

models in the vicinity of various types of phase transitions
[48,49]. The first example is the well-known Ising model in
two dimensions:

Eðs⃗Þ ¼ −
X
hi;ji

sisj; ð3Þ

where the spin degrees of freedom are si ¼ �1, and hi; ji
are the nearest-neighboring bonds of a square lattice, with
Ns ¼ L × L spins and periodic boundary condition. The
Ising configuration states are defined as

s⃗ ¼ ðs1; s2;…; sNs
Þ: ð4Þ

This model describes a second-order phase transition
characterized by the breaking of Z2 symmetry at the critical
temperature Tc ¼ 2= lnð1þ ffiffiffi

2
p Þ. In the vicinity of Tc, the

spin correlation length diverges as ξ ∼ ðT − TcÞ−ν, where
the critical exponent is ν ¼ 1.
We also consider the first- and second-order phase

transitions described by the q-state Potts model (qPM),

Eðσ⃗Þ ¼ −
X
hi;ji

δσi;σj ; ð5Þ

where the spin σi ¼ 0; 1; 2;…; q − 1, and δσi;σj is the delta
function. In particular, the q ¼ 2 Potts model can be
mapped into the Ising model. The Potts configuration
states are defined by

σ⃗ ¼ ðσ1; σ2;…; σNs
Þ: ð6Þ

The qPM is characterized by a discrete Zq symmetry that is
broken at the critical temperature Tc ¼ 1= lnð1þ ffiffiffi

q
p Þ.

Importantly, this class of models displays a second-order
phase transition for q ≤ 4 and a first-order one for q > 4.
We examine both of these regimes: the second-order
transition described by the q ¼ 3 PM (with correlation
length critical exponent ν ¼ 4=5) and the first-order tran-
sition described by the q ¼ 8 PM [50,51].
Finally, as a representative of the BKT universality class,

we investigate the two-dimensional XY model [52–54]
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Eðθ⃗Þ ¼ −
X
hi;ji

S⃗iS⃗j; ð7Þ

where S⃗i ¼ ( cosðθiÞ; sinðθiÞ), with cosðθiÞ and sinðθiÞ
being the projection of the spin at site i in the x and y
directions, respectively, and θi ∈ ½0; 2π½. The XY configu-
rations are defined as

θ⃗ ¼ ½cosðθ1Þ; sinðθ1Þ;…; cosðθNs
Þ; sinðθNs

Þ�: ð8Þ

This model is characterized by a continuous Uð1Þ sym-
metry, and it describes a phase transition between a
high-temperature phase with exponentially decaying spin
correlations and a low-temperature quasiordered phase
characterized by power-law decaying correlations. The
BKT critical temperature TBKT is not known exactly;
state-of-the-art estimations based on the analysis of
the spin stiffness of lattices of order Oð106Þ spins give
TBKT ¼ 0.8935ð1Þ [55].
The detection of the BKT critical point is hindered by the

fact that it cannot be characterized by conventional local
order parameters, as in the examples discussed previously,
and because of the exponential growth of the correlation
length near TBKT. Hence, the BKT transition represents a
key challenge for any UL method.

A. How to characterize partition
functions as data sets

Before proceeding to the discussion of the results, we
point out some important aspects of the Ising, Potts, and XY
data sets [see Eqs. (4), (6), and (8), respectively]. First, a
crucial step to obtain the Id [cf. Eq. (2)] is to consider a

proper metric; the distance rðx⃗i; x⃗jÞ between two configu-

ration states x⃗i and x⃗j must be non-negative, equal to zero
only for identical configurations, and symmetric, and, it
must also satisfy the triangular inequality.
For the XY data sets, the distance is defined as the

Euclidean distance:

rðθ⃗i; θ⃗jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
XNs

k¼1

�
1 − S⃗ikS⃗

j
k

�vuut : ð9Þ

This distance properly takes into account the periodicity of
the configuration states in the interval θi ∈ ½0; 2π½.
For both Ising and Potts configuration states, we con-

sider the Hamming distance; i.e., rðs⃗i; s⃗jÞ [or rðσ⃗i; σ⃗jÞ]
is given by the number of positions in the state vectors

(s⃗i and s⃗j) for which the corresponding coordinates are
different. The choice of the Hamming distance is motivated
by the fact that the energy difference between two spins in
the model of interest is given by a delta function.

As mentioned in the previous section, the two-NN
method fails when two or more sampled configurations
of the data set have identical coordinates. This issue
typically occurs in the discrete-variable Ising and Potts
data sets, when the total number of independent configu-
ration states, Nc, is smaller or of the same order of the
number of configurations used in the data set, Nr. For
instance, for both Ising and Potts data sets, identical
ferromagnetic configurations are sampled in most of the
Monte Carlo steps when T ≪ Tc. However, in the regime
that we focus on here (i.e., T close to Tc and L > 10), as
Nc ≫ Nr, this issue is irrelevant, which we have explicitly
checked in our data sets.
Finally, we mention that data sets generated by the XY

configuration states typically lie in nonlinear manifolds,
which can be noted by the fact that linear-dimension-
reduction methods, such as PCA, fail to describe XY data
sets; see Ref. [29]. In fact, even for the simple data set
shown in Fig. 1(b), linear PCA fails in estimating the true Id
of the system when the proper distance between the
configurations is taken into account; see Appendix A.
This feature of the XY data sets reveals the necessity of
using state-of-the-art Id estimators (such as the two-NN
method considered here) that properly takes into account
nonlinearities.

IV. RESULTS

A. Second-order phase transitions

We start our discussion by considering second-order
phase transitions (2PTs) described by the Ising and the
three-state Potts models (3PMs); see Fig. 2. We consider
data sets formed by Nr ¼ 5 × 104 configuration states.
Overall, far from the transition, Id is an increasing function
of T. For low T, the computation of Id is affected by the
discreteness of the Potts (Ising) configurations, which
reflects on the larger error bars. However, this issue is
mitigated close to the critical point Tc. Remarkably, Id
exhibits a nonmonotonic behavior in the vicinity of the
critical point [see Figs. 2(a1) and 2(b1)], which can be used
to locate and characterize the transition point itself.
As conventionally done in the analyses of physical

observables, e.g., magnetic susceptibility and heat capacity,
we now consider a finite-size scaling (FSS) theory for Id.
First, based on the FSS hypothesis and postulating that Id
behaves as an order parameter for the transition, one has
Id ¼ Lζfðξ=LÞ, where the correlation length diverges as
ξ ∼ ðT − TcÞ−ν, ν is a critical exponent, and ζ is a scaling
exponent associated with the divergence of Id at Tc.
Figures 2(a2) and 2(b2) show the universal data collapse
for the Ising and 3PM models, respectively. The values
obtained for Tc and ν have a discrepancy with exact results
of less than 0.5% and 4%, respectively. For the Ising
model, we obtain Tc ¼ 2.283ð2Þ, ν ¼ 1.02ð2Þ, and ζ ¼
0.410ð5Þ, while for the 3PM model, we get Tc¼0.996ð2Þ,
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ν ¼ 0.805ð5Þ, and ζ ¼ 0.420ð2Þ. See Appendix C, for a
discussion about the details of the data-collapse procedure.
Furthermore, we consider the size scaling of the shift of

the local minimum of IdðTÞ [i.e., the temperature T�ðLÞ],

T�ðLÞ − Tc ∼
1

L1=ν : ð10Þ

We note that T�ðLÞ is reminiscent of the universal scaling
behavior of singular features of physical observables close
to Tc (e.g., the peak of the magnetic susceptibility) [56]. In
order to compute Tc, we employ the following procedure:
(i) We obtain T�ðLÞ by fitting the results in an interval close
to T�ðLÞwith a cubic function; the fitting is performed with
a jackknife procedure, which allows us to establish an error
bar for T�ðLÞ. (ii) We then consider the aforementioned
FSS to compute Tc; the fitting is performed by considering
different sets of points. This method provides a coherent
error propagation for Tc. We obtain Tc ¼ 2.2784ð2Þ for the
Ising model and 0.9970(3) for the three-state Potts model.
Their discrepancies with the exact values are, respectively,
of order 0.4% and 0.2%.
The results of this analysis confirm the validity of our

original assumption, that is, that the intrinsic dimension is a
valid order parameter describing the transition in data space
as a structural transition. We remark that this is validated in
two steps—first, via the quality of the scaling collapse and,

second, by the scaling of the transition temperature
obtained by analysis a single feature of the Id dependence
with respect to the temperature. These steps represent two
fundamental tests that any valid order parameter must
satisfy at the transition points.

B. BKT phase transition

Unsupervised learning of phase transitions associated
with symmetry breaking, as discussed in the previous
section, can also be performed with other unsupervised
methods, such as the PCA [12,27,57] and variational
autoencoder (VAE) [25]. For example, the critical temper-
ature of the Ising model can be obtained with an accuracy
similar to the ones obtained here. Furthermore, the latent
parameters of the VAE can be used to learn the local order
parameter associated with both discrete and continuous
symmetry-breaking transitions [25]. These methods are
based on a dimension reduction and thus differ in a
fundamental way from our unsupervised approach, which
is based solely on the analysis of the Id. As we discuss in
this section, our approach can be extended to transitions
that are characterized by nonlocal order parameters, such as
the topological BKT phase transition, which are treated on
the same footing as second-order transitions.
The difficulties in learning the BKT transition from

raw XY configurations occur in both supervised [58] and

(a) (b) (c)

(d) (e) (f)

FIG. 2. Second-order phase transition. (a)–(c) Ising model. (d)–(f) q ¼ 3 Potts model. (a,d) Id as a function of T. Error bars are
standard deviations associated with a distribution of n realizations of Id (we typically consider n ≥ 5). (b,e) Data collapse of Id based on
the finite-size scaling discussed in the main text. The best data collapse of the results gives Tc ¼ 2.283ð2Þ, ν ¼ 1.02ð2Þ, and
ζ ¼ 0.410ð5Þ for the case of the Ising model, and Tc ¼ 0.996ð2Þ, ν ¼ 0.805ð5Þ, and ζ ¼ 0.420ð2Þ for the case of the Potts model. (c,f)
finite-size scaling of the minimum temperature T� (see text); the horizontal line is the exact result for Tc. The extrapolation returns
Tc ¼ 2.2784ð2Þ and Tc ¼ 0.9970ð3Þ for the Ising and Potts cases, respectively.
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unsupervised [27] ML approaches. Recent progress based
on diffusion maps [29,59] or topological data analysis [60]
have been made to solve this problem, typically consider-
ing problem-specific insights (such as the structure of
topological excitations). These approaches have shown
how considerable qualitative insight can be gathered on
the nature of the BKT transition. However, it is presently
unclear if the raw data structure corresponding to topo-
logical transitions can exhibit universal features and, if so,
whether unsupervised approaches can be used to detect the
critical temperature with an accuracy that is comparable to
conventional methods (that typically rely on the a priori
knowledge of the order parameter).
In Fig. 3(a), we show the temperature dependence of Id

in the transition region. The intrinsic dimension clearly
distinguishes the low-T regime, characterized by bound
vortex-antivortex pairs, from the unbinding high-T regime.
In the vicinity of the BKT critical point TBKT, the behavior
of Id resembles the one observed for the second-order
phase transitions; i.e., Id exhibits a local minimum at T�ðLÞ
(observed for L > 30), which is a signature of the BKT
transition. Note that the minimum is clearly visible already
for lattices of order L ¼ 50; at these sizes, the spin stiffness
instead features a very smooth behavior, as considerably
larger systems are required to appreciate a qualitative jump
in the latter.

We consider the conventional FSS for the BKT tran-
sition, IdðT; LÞ ¼ LζfðξðTÞ=LÞ, where the singular value
of the correlation length diverges exponentially, i.e.,
ξ ∼ exp ða= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − Tc
p Þ. In Fig. 1(c), we show the universal

data collapse for different values of L, where a, TBKT, and ζ
are treated as free parameters in the collapse procedure;
see Appendix C. The value obtained, TBKT ¼ 0.92ð1Þ,
is in good agreement with estimations of TBKT obtained
in Ref. [56].
A more accurate estimation of TBKT is based on the

finite-size scaling of T�ðLÞ. This approach relies on the
computation of T�ðLÞ, which is performed with the same
procedure described in the previous section, and the finite-
size scaling ansatz [56]:

T�ðLÞ − TBKT ∼
1

ln2 L
: ð11Þ

As discussed before, this procedure allows us to establish
an error bar for the calculated TBKT. We obtain TBKT ¼
0.909� 0.015, which is compatible, within error bars, with
Ref. [55], where simulations with up to Oð106Þ spins were
carried out. For comparison, the best alternative method
[29] utilizing unsupervised learning techniques reported
relative errors of the order of 5%.
Conventionally, TBKT is obtained with the aid of the so-

called Nelson-Kosterlitz universal jump of the spin wave
stiffness [61], which allows us to determine the finite-site
critical temperature T�

BKTðLÞ. The FSS [Eq. (11)] is then
used to determine the BKT critical point at the thermody-
namic limit. Remarkably, here we observe that the intrinsic
dimensions of raw XY data sets exhibit a clear signature of
the finite-site TBKT, even for the moderate system sizes we
have considered.

C. First-order phase transitions

Finally, we consider an example of a first-order phase
transition (1PT): the eight-state Potts model (8PM). As is
typical of 1PT, the system exhibits a finite-size correlation
length at Tc, ξ8 ¼ 23.9 [62]. For L > ξ8, the transition can
be described by trivial and generic critical exponents, e.g.,
ν ¼ 1=d, with d being the system dimension [51,63,64].
Furthermore, the finite-size shift of the critical temperature,
TcðLÞ—conventionally detected, for example, by the
maximum value of the magnetic susceptibility—scales
as TcðLÞ − Tc ∼ 1=Ld.
Figure 4 shows that Id also exhibits a clear signature of

the 1PT, featured by a peak at Tc for L ≫ ξ8. For L ≈ ξ8,
the temperature dependence of Id resembles the one
observed for 2PTs in Fig. 2; i.e., Id exhibits a local
minimum at a temperature T�. Interesting, the FSS of T�
is in agreement with first-order transitions [see Fig. 4(b)]
[63,64]; the discrepancy of the calculated Tc ¼ 0.7448ð1Þ
from the exact value is less the 0.05%.

(a) (b)

FIG.3. Berezinskii-Kosterlitz-Thouless transition. Panel (a) shows
the temperature dependence of Id for different values of L. The
dashed line indicates the value of the BKT critical temperature
obtained in Ref. [55] using conventional methods, TBKT ¼
0.8935ð1Þ. For each point, we harvested approximated ten instances
of the data set and averaged the resulting estimates for the Id. The
error bars are the standard deviation of such results. The scaling
collapse obtained with these data sets is depicted in Fig. 1(c).
Panel (b) shows the finite-size scaling of T� based on Eq. (11).
Fitting the results for L ¼ 80, 90, 100, and 110, we obtain
TBKT ¼ 0.909� 0.015. In the text, we discuss how we obtain the
local minimum of Id, T�. We compute the Id of manifolds with
Nr ¼ 5 × 104 configurations.
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V. DISCUSSION

So far, our results support the fact that, in the vicinity of a
phase transition, the intrinsic dimension displays universal
behavior at first-order, second-order, and BKT transitions,
and works as an order parameter signaling a transition
between different data structures in configuration space.
Within this framework, the position of the transition is
always identified with the scaling of the minimum of the
intrinsic dimension.
In continuous phase transitions, the collective behavior is

captured by only a handful of parameters, which suggests
that the amount of information required to describe the
system is parametrically simpler at the critical point when
compared to its vicinity, as the latter region requires
additional information on the operators required to perturb
away from criticality. This emergent simplicity may have
several consequences at the data structure level. The most
direct consequence is that one expects a simplified data
structure to be described by a minimum of the intrinsic
dimension at the transition point, which is exactly what we
have observed at both second-order and BKT transitions.
We note that this expectation is not related to the number
of states sampled by the partition function (this number is,
in our case, fixed by Nr, and configurations are never
repeated). The discussion of how our results change with
Nr is reported in Appendix B.
For first-order transitions, the above reasoning is not

applicable as it relies on universal behavior and, thus, the
existence of a continuum limit. In these cases, one expects
that the data space in the vicinity of the transition point will
feature two separate regions, each of them composed of
states representing the two phases meeting at Tc. Exactly at
the transition point, one expects an abrupt change in the
data structure: Indeed, the MC sampling will access a large
number of configurations corresponding to both phases

(in analogy to metastability) and thus display a sharp
increase [see Fig. 4(a)].
The arguments above serve as a qualitative guideline

behind the basic picture we put forward: The simplified
field theory description applicable at transition points
reflects directly into the data structure of the problem.
We now provide a data-driven discussion in support of this
picture, specifically emphasizing the connection between
the data set and correlations in the system via the (generic)
definition of distance that we employ. For the sake of
concreteness, we first elaborate on the presence of distinc-
tive features in the vicinity of Tc and then make the
connection to universal scaling.

A. Why the Id exhibits a singular behavior
in the vicinity of Tc

The Id is a scale-dependent quantity [7], which can be
intuitively understood by looking at the example depicted
in Fig. 5, where an approximately one-dimensional object
appears as two dimensional when looking at a different
scale by zooming in. The scale of the data set, as estimated
with the two-NNmodel, is fixed byNr for a given T since it
fixes the actual meaning of the first and second nearest
neighbors [8]; here, we always consider Nr ¼ 5 × 104. In
the following, we will show how changes in the scale of the
data (configuration) space appear when there is a phase
transition, leading to the emergence of features in the Id.
A first test is to check that these changes in the scale

effectively occur. To this end, we analyze the statistics of r1
and r2. For example, the distribution function of the first
neighbor distances, fðr1Þ, changes for both Ising and BKT
critical points; see Figs. 6(a1) and 6(b1). The position of
the peak of fðr1Þ sharply decreases as one crosses the
transition, and the variance associated with fðr1Þ, Δr1, has

FIG. 5. Scale dependence of Id. The data set shown presents an
Id ¼ 1 or Id ¼ 2 depending on the scale that is considered.

(a) (b)

FIG. 4. First-order phase transition. Panel (a) shows Id as a
function of T for the eight-state Potts model. Panel (b) shows the
finite-size scaling of T�, where d ¼ 2 (see text).
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a peak close to the transition; see Figs. 6(a2) and 6(b2).
Interestingly, our results indicate that the quantity Δr1 also
exhibits universal scaling behavior at Ising and BKT
critical points. Moreover, the results for both the Ising
and XY data sets are qualitatively the same, highlighting the
fact that data-wise, symmetry-breaking, and topological
transitions are treated on the same footing. However, it is
important to stress that, contrary to what happens in the
case of Id, the peak in Δr1 is not expected to present
features when the data sets are not homogeneous in density
since the relevant distances will also be affected due to
these inhomogeneities (see Ref. [8] for a further discussion
on why the two-NN method is only mildly affected by this
problem). In this sense, the intrinsic dimension, being
solely sensitive to changes of scale and not local density
features, provides a considerably more reliable probe for
phase transitions.
In order to understand the underlying cause of this

change of scale, we first focus on discrete symmetry-
breaking transitions. In those cases, PCA provides an
understanding of the data structure emerging at critical
points [12,27]. For instance, the Ising data set features
clusters characterized by configurations with positive,þM,
and negative, −M, total magnetization for T < Tc. In
contrast, a single cluster is formed for T > Tc; see
Figs. 7(a1) and 7(a2). This clustering structure allows us
to understand the connectivity between neighboring con-
figurations in the Ising data set. For T > Tc, the magneti-
zation of neighbors is completely random. In contrast,
configurations connect to first and second neighbors with
the same magnetization sign for T < Tc; see Fig. 8(a).

Equivalent reasoning based on PCA is applicable to the
Potts data sets.
To illustrate how the locality (and the connectivity

between neighboring configurations) affects the behavior
of the Id, we consider two estimates of the Id provided by
PCA. In the first case, we employ all the configurations of
the Ising data set, Id;PCA (global), while, in the second,
we consider just configurations with M > 0, Id;PCA (local);

FIG. 7. Id obtained with PCA. Panels (a1) and (a2) show the
projection of the Ising data set in the two leading principal
components for T=Tc ≈ 0.94 and T=Tc ≈ 1.10, respectively.
Configurations with total magnetization M > 0 are represented
by the blue points, while ones with M ≤ 0 are shown by the red
points. Panel (b) shows the PCA estimation of the Id considering
the full Ising data set (global Id) and the data set generated by
configurations with total magnetization M > 0 (“local” Id). For
all the results, L ¼ 60.

(a) (b)

FIG. 8. Connectivity between neighboring points. Panel
(a) shows the fraction of points in the Ising data set whose first
two nearest neighbors have the same magnetization sign. Sim-
ilarly, in panel (b), we show the fraction of points in the XY data
set whose first two nearest neighbors have the same winding
number (see text).

(a) (b)

FIG. 6. Statistics of first nearest-neighbor distances, r1. In
panels (a1) and (b1), we show the kernel density estimation of the
probability density function of r1 for the Ising and XY data sets,
respectively. All the results have L ¼ 80. Panels (b1) and (b2)
show the temperature dependence of the variance associated with
the distribution functions from panel (a) for different system
sizes. Results for the second nearest-neighbor distances, r2, are
qualitatively the same.

UNSUPERVISED LEARNING UNIVERSAL CRITICAL BEHAVIOR … PHYS. REV. X 11, 011040 (2021)

011040-9



see Appendix A for more details. The latter quantity
provides a local estimate (within the range scale of a single
cluster) for T < Tc, which is analogous to the local
measure of the Id provided by the two-NN method. As
shown in Fig. 7(b), the global Id;PCA sharply goes to 1
below Tc, while the local Id;PCA exhibits the same non-
monotonic behavior close to Tc that we observe in Fig. 2.
This result highlights that the locality of the Id is the crucial
element to understand its nonmonotonic behavior close
to Tc.
The connectivity between neighboring configurations is

also related to the physical properties of the BKT transition.
In this case, the most suitable quantity to characterize
configurations and the corresponding clustering structure in
phase space is the winding number w (see Appendix D), as
excitations have topological (global) nature [29]. Above the
BKT transition, vortex-antivortex pairs are unbounded.
Therefore, the MC simulation samples configurations with
different w. By contrast, in the quasi-long-range-order
regime (T < TBKT), most of the configurations have
w ¼ ð0; 0Þ. This feature of the BKT transition affects the
connectivity between neighboring configurations. In par-
ticular, the fraction of configurations whose first two
neighbors are connected to points with the same w, Fw,
is negligible for T > TBKT, but it is equal to 1 in the
topological phase, which is illustrated in Fig. 8(b). Thus,
for T < TBKT, the Id is a property of the manifold
exclusively formed by configurations connected to neigh-
bors with the same winding number.
In a nutshell, the underlying cause for the sensitivity of

the Id to phase transitions is that both the symmetry-
breaking and topological transitions affect the neighboring
configurations’ connectivity. The key aspect is that nearest-
neighbor configurations have identical physical properties
(order parameter and winding number) when the system
is in the ordered phases (symmetry-broken or quasi-long-
range-order types). By contrast, in the disordered phase, the
first and second neighbors’ physical properties are entirely
random. At the data structure level, the phase transition
represents a change of scale between those regimes.

B. Why Id exhibit universal scaling behavior

Based on the fact that Id shows a characteristic minimum
feature in the vicinity of phase transitions at TcðLÞ, we now
provide an argument in support of universal scaling of the
latter temperature against the system size. The key aspect of
our argument is that the distances r1 and r2 are related with
many-body correlation functions in the system, computed
at equilibrium.
We analyze the curve lnð1 − PiÞ versus ln μi close to the

origin. From Eq. (2), the slope of this curve is proportional
to Id. The curve starts at the origin; we assume that its slope
can be correctly determined by sampling the first point of
the curve several times (e.g., by sampling several indepen-
dent Markov chains); this seems very well satisfied based

on our earlier numerical observations (fluctuations and
deviations from linear behavior typically appear only for
very large values of μ). Within this assumption, one obtains
the following estimate for Id:

Id ¼ −
lnð1 − 1=NrÞ

ln½r2ð1Þ� − ln½r1ð1Þ�
: ð12Þ

At the end of this section, we give an alternative justifi-
cation for such a scaling behavior. From now on, we
specifically consider the Euclidian distance function [see
Eq. (9)]; using the Hamming distance will not affect the
substance of our reasoning, but it will change some of the
details.
For the sake of simplicity, we can assume that the

reference configuration i ¼ 1 corresponds to the lowest
energy state. This second assumption relies on the fact that
such a state is the one that has a higher probability of being
sampled at any temperature, and, at least at sufficiently low
temperatures, it is very likely to be the state with the lowest
value of μ, as low-lying excitations typically differ from
the lowest energy states by a low amount of spin flips
(representative of spin waves), when compared to the
average distance between states. Within this approxima-
tion, we can fix the coordinates of the reference configu-
ration: sj ¼ s ∀ j for the Ising data set and θj ¼ θ ∀ j for
the XY data set.
We now proceed by analyzing the denominator of

Eq. (12). We define

α0f ¼
XNs

j¼1

S0Sj;f; ð13Þ

where S0 represents the coordinates of the reference
configuration; see Fig. 9(c). Thus, the distance between
two configurations reads

rfð1Þ ¼
ffiffiffiffiffiffiffiffi
2Ns

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α0f
Ns

r
: ð14Þ

We then get

ln½r2ð1Þ� − ln½r1ð1Þ� ¼
lnð1 − α01

Ns
Þ − lnð1 − α02

Ns
Þ

2
: ð15Þ

For T ≫ Tc, the coordinates of neighboring configurations
are expected to be completely random compared to S0.
Thus, it is reasonable to expect that α0f ≪ Ns (we will
come back to this point below). By analyzing the transition
from the disordered phase, we can expand the logarithms
up to second order in α0f=Ns and get

ln½r2ð1Þ� − ln½r1ð1Þ� ¼ F 2 þ F 4 þ � � � ; ð16Þ
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where the function Fp contains all p-spin correlation
functions, Sj1;fSj2;f…Sjp;f, taken over the single states 1
and 2. In principle, one should also retain other orders; in
fact, the difference of the two distances depends parametri-
cally on arbitrary-body correlation functions.
Now, we make a third assumption—that the correlations

contained in Fp can be replaced by the corresponding
thermal averages. The rationale behind this is that, based
on our first assumption above, we are actually considering
the states that have the highest weight in the partition
function—so the ones that contribute the most to the
computation of the correlation function. Here, temperature
plays a clear physical role: Higher temperatures let us
sample states that are (on average) at a larger distance from
the lowest-energy state when compare to lower temper-
atures. One can reformulate the above as follows. For any

given Markov chain, we have a given F ðkÞ
p , which depends

on correlations on a single pair of configurations. Then,
averaging over the various Markov chains gives us an
averaged value that depends on the average of correlations
over the various configurations. This last formulation is
closer to the numerical recipe that we utilize to estimate Id,
where, in fact, we obtain the latter from averaging the Id
resulting from several distinct simulations.

Now, since we are dealing with thermal averages, we can
recall the finite-size scaling hypothesis. This hypothesis
tells us that, if a quantity develops a singular behavior
at the transition point (not necessarily a divergence), the
temperature corresponding to such a feature, Tfeat, will be
shifted according to FSS theory as (for second-order phase
transitions)

ðTfeat − TÞ ∝ 1

Lν : ð17Þ

Thus, we are in a position to make a statement: If any of the
arbitrary-body correlation functions contained in the def-
inition of our distance displays singular behavior at the
transition point, they will dictate the scaling of the position
of the minimum of Id according to FSS and reveal the
critical exponent ν (or, in the case of BKT, they will be
consistent with the logarithmic scaling expected there). The
behavior of all other correlations is not expected to affect
this scaling behavior at all, as they do not display any
nonsingular feature, by definition.
We note that our reasoning and the validity of its

assumptions can be a posteriori verified by noticing that
we imply that features in the distribution of the distances r1
will also be related to critical behavior. In particular, we
consider the pivotal assumption that the correlation con-
tained in Eq. (14) can be replaced by the corresponding
thermal averages, and we compare the predictions for rfð1Þ
with our numerical results [65]. Figure 9 shows this
comparison for both the Ising and XY models. (i) In the
disordered phases, α0;f ≪ 1 because of the exponential
decay of the correlations, and thus rf ≈

ffiffiffiffiffiffiffiffi
2Ns

p
. (ii) On the

other hand, in the symmetry-broken phases, α0;f ≈OðNsÞ,
given the long-range nature of the correlations, which
implies that rf ≪ 1. (iii) Finally, in the XY model’s critical
phase, the temperature dependence of the correlations is
given by S0 · Sj;f ∼ jjj−T=2π (where |j| represents the spatial
distance from a reference site). By computing the corre-
sponding α0;f, one can obtain the temperature dependence
of rf. The numerical results display very good agreement
with our predictions; see Figs. 9(a) and 9(b). It is worth
noting that, while our argument justifies critical scaling
for TcðLÞ and does not justify the full collapse scaling
observed for Id, it is still directly informative about both
critical temperature and the critical exponent ν.
Before ending the section, we present a different

approach to determining the dependence between Id and
the smallest value of μ as per Eq. (2). An alternative way to
qualitatively estimate Id from data distributed according
to Eq. (1) is to apply the maximum likelihood criterion.
Utilizing the commonly used log-likelihood function
lk ¼ log½fðμkÞ�, one obtains that, for data sets where
Id ≫ 1, one has ID ≃ Nr= lnðμ1Þ. The scaling with Nr is
different with respect to Eq. (12), which is not unexpected
due to the fact that (1) we are considering sampling a few

(a)

(c)

(b)

FIG. 9. Correlation functions and distance between neighbor-
ing configurations. Temperature dependence of the smallest r2
(this distance is representative of the lowest value of μ, see text)
for the (a) Ising and (b) XY models. The lines (solid and dashed)
represent the predictions for r2 based on Eq. (14) and the
corresponding expressions of the asymptotic formula for the
correlation functions in the high- and low-temperature regimes
(see text). Panel (c) illustrates the basic assumption behind
Eq. (14); i.e., correlations between configurations are equivalent
to correlation functions (see text).
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configurations in the previous approximation and (2) maxi-
mum likelihood does not necessarily capture the correct
scaling with the number of points in the set (as one may
expect, many of those do not contribute to the determi-
nation of the minimum). Nevertheless, this difference is
irrelevant for the sake of our argument above, as we are not
immediately interested in the Nr scaling. What is important
is that the maximum likelihood method returns exactly the
same functional dependence on μ1, thus providing a data-
driven justification of the first assumption presented above.

VI. CONCLUSIONS

We have shown that phase transitions can be learned
through a single property of raw data sets of configurations—
the intrinsic dimension—without any need to performdimen-
sional reduction. The key observation made here is that, in
analogy to physical observables, the intrinsic dimension
exhibits universal scaling behavior close to different classes
of transitions: first-order, second-order, and BKT types. This
observation indicates how the intrinsic dimension, in the
vicinity of critical points, behaves as an order parameter in
data space, showing how the latter undergoes a structural
transition that parallels the phase transition identified by
conventional order parameters.
At the practical level, we have shown that the finite-size

analysis of the intrinsic dimension allows us not just to
detect but also to characterize critical points in an unsu-
pervised manner. In particular, we have shown that the
intrinsic dimension allows one to estimate transition
temperatures and (critical) exponents of both first- and
second-order transitions with accuracies ranging from 1%
to 0.1% at very modest system sizes. In addition, the
method is equally applicable to topological transitions,
where we have demonstrated an accurate (with 1% con-
fidence) estimate of the location of the BKT topological
transition competitive with more traditional methods at the
same system sizes. This latter result suggests that the lack
of any dimensional reduction allows us to retain topological
information in the vicinity of the phase transition, which
may be lost otherwise [27,29].
A fundamental aspect of our approach is that it is based

on a Id-estimation method suitable to learn complex
manifolds, such as the twisted XY manifold emerging at
the BKT critical point. The results demonstrate the poten-
tial of state-of-the-art Id-estimator [8,66] methods to tackle
many-body problems, and they motivate an even stronger
methodological connection between data-mining tech-
niques and many-body physics. We also note that, in
comparison with previous applications in other fields
[32,35,67], the values of the intrinsic dimension reported
here are considerably larger. For future applications, like
combining our analysis with clustering methods that do not
rely on dimension reduction [68], it may be interesting
to develop novel estimators that focus on large values of
Id, potentially trading absolute accuracy with numerical

efficiency (in the spirit of Ref. [66]). Another interesting
question to address in the future is to assess the possibility
of data lying in submanifolds with different Id [69] and how
it affects our method. This scenario is plausible in cases
where phases coexist.
Some of the methods presented here may be applied to

quantum mechanical objects, such as quantum partition
functions, density matrices, and wave functions. It is an
open challenge to determine whether the data mining of
quantum objects can provide an informative perspective on
the latter, such as, e.g., accessing entanglement or other
more challenging forms of quantum correlations. Finally,
while we focus on configuration generated by Monte Carlo
sampling, our approach is equally applicable to experi-
mentally generated data; it may be interesting to apply it to
settings where raw data configurations are available, such
as, e.g., quantum gas microscope experiments [18,70,71].
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APPENDIX A: TWO-NN METHOD AND
COMPARISON WITH PCA

In this Appendix, we provide more details about the
two-NN method. As described in Ref. [8], the intrinsic
dimension Id can be obtained through the following steps:
(1) For each point i of the data set (i ¼ 1; 2;…; Nr),

compute its first- and second-nearest neighbors,
r1ðiÞ and r2ðiÞ, respectively.

(2) For each point i, compute the ratio μi ¼ r2ðiÞ=r1ðiÞ.
(3) The empirical cumulate is defined as PempðμÞ ¼

i=Nr, while the values of μi are sorted in ascending
order through a permutation, i.e., (μ1; μ2;…μNr

),
where μi < μj, for i < j.

(iv) Finally, the resulting S¼fðlnðμÞ;−ln ½1−PempðμÞ�g
are fitted with a straight line passing through the
origin. The slope of this line is equal to Id
[see Eq. (2)].

Figure 10 shows the plot of S for the basic three-site XY
example presented in Fig. 1(b). It is worth mentioning that,
while we depict the configurations θ⃗ ¼ ðθ1; θ2; θ3Þ for
clarity of illustration in Fig. 1(b), in our calculations,
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θ⃗ is defined as in Eq. (8). In this way, the distance

between two configurations θ⃗i and θ⃗j, rðθ⃗i; θ⃗jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
PNs

k¼1 ð1 − S⃗ikS⃗
j
kÞ

q
, properly takes into account the

periodicity of the variables θik. Another important technical
aspect is that the fit of S is unstable for larger values of μ.
As is considered in Ref. [8], we discard the 10% of points
characterized by the highest values of μ. Based on this
approach, we obtain Id ≈ 1 and Id ≈ 3 for the zero- and
high-temperature regimes, respectively, which is consistent
with the value expected from physically reasonable
assumptions [see Figs. 10(a1) and 10(a2)].
We also show some examples of the plot of S for data

sets generated in the vicinity of the critical points of the
Ising and 2D XY models; see Figs. 11(a) and 11(b),
respectively. In both cases, the points S are well fitted
by a straight line passing through the origin. We obtain
similar results for the other system sizes and values of T
considered in this work.
In contrast, simple linear-dimension-reduction methods,

such as PCA, fail to describe the Id of the XY data sets. To
illustrate this point, we employ linear PCA in the same
collection of configurations considered in the last para-
graph. As can be seen from Figs. 10(b1) and 10(b2), even
for this simple example, PCA fails to obtain the true Id; for
T ¼ 0, IPCAd ¼ 2, while for T ¼ 100, IPCAd ¼ 6. This failure
is related to the fact that the XY manifolds are curved [29].
However, PCA can describe the main features of the

Ising data set. Based on this, we consider the PCA

estimation of the Id in Fig. 7 of the main text. Here, we
give more details about the computation of Id;PCA.
First, we consider the eigenvalues of the covariance
matrix XTXwn ¼ λnwn (we use the same notation of
Ref. [27]). We then define the normalized eigenvalues,
λ̃n ¼ ðλn=

PNr
i λiÞ. The Id is defined by choosing an ad hoc

cutoff parameter for the integrated spectrum of the covari-
ance matrix, i.e.,

XId;PCA
n¼1

λ̃n ≈ f; ðA1Þ

where f represents a fraction of the eigenvalues of the
covariance matrix. In Fig. 7(c), we consider f ¼ 0.6. The
value of Id;PCA depends on f. However, we observe that
the qualitative behavior of the function Id;PCAðTÞ is not
affected by the value of f (as long as f ≥ 0.5). In particular,
for all the values of f that we consider (i.e., f ¼ 0.5, 0.6,
0.7, 0.8, and 0.9), the global Id;PCAðTÞ goes to 1 immedi-
ately below Tc, and the local Id;PCAðTÞ exhibit a non-
monotonic behavior.

APPENDIX B: SCALING OF Id WITH THE
NUMBER OF CONFIGURATIONS

In this section, we discuss the scaling of the Id with the
number of configurations, Nr, considered in the data set;
for all the results shown in the main text, Nr ¼ 5 × 104.
The first important aspect to consider is that the two-NN is
a scale-dependent method. In other words, the estimation of
the Id is performed on a length scale that is related to the
first- and second-neighbor distances of each point. Thus, by
varying Nr, one is probing a different neighborhood size,
i.e., estimating Id at different scales [8].
To illustrate how this change in scale affects the Id of the

thermal data sets considered here, we first consider the
three-site XY model in Fig. 12(a). For T ¼ 1, the Id
converges to three as expected for the high-temperature
regime of this model. In the low-temperature regime,
T ≈ 10−6; however, IdðNrÞ exhibits a plateau at Id ¼ 1

(a1) (a2)

(a) Two-NN

(b) PCA

(b1) (b2)

FIG. 10. Three-site XY model. Panels (a1) and (a2) show
results of the two-NN method: fitting of the data points S for (a1)
T ¼ 0 and (a2) T ¼ 100. The data set has Nr ¼ 103 configura-
tions. We obtain (a1) Id ¼ 1 and (a2) Id ¼ 3. Panels (b1) and (b2)
show results of the PCA method: normalized eigenvalues of the
covariance matrix, λ̃n, obtained from the raw XY configurations.
Here, we use the same notation as Ref. [27]. For n > IPCAd ,
λ̃n → 0. PCA predicts (b1) IPCAd ¼ 2 and (b2) IPCAd ¼ 6, which is
not in agreement with the exact results (see text).

(a) Ising  (b) 2D XY  

FIG. 11. Results of the two-NN method: fitting of the data
points S for (a) Ising and (b) 2D XY thermal data sets generated
close to the critical point [in panel (a), T ≈ 2.2, while in panel (b),
T ≈ 0.89]; in both cases, we consider L ¼ 40, and the data set
has Nr ¼ 104 configurations. We obtain Id ≈ 47 and Id ≈ 120,
respectively.
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for Nr ∈ ½100; 103½. As illustrated in Fig. 1(b), this simple
data set is well described by a one-dimensional manifold.
This plateau in IdðNrÞ is a signature of this soft direction
[8]. Nevertheless, by further increasing Nr, the Id increases
(Id → 3 in this case), as an effect of the decrease of the
scale in which Id is estimated. In this scalar regime, the
number of soft directions cannot be determined. We stress
that the computation of the Id of the high-dimensional data
sets considered here is always performed in this regime. In
this case, the Id exhibit an exponential scaling with Nr, as
exemplified in Fig. 12(b).

We now discuss how the temperature dependence of Id is
affected by the change in Nr. Figures 13(a1) and 13(b1)
show IdðTÞ for different values of Nr for the Potts and
2D XY data sets, respectively. Despite the change of the
absolute value of Id with Nr, the qualitative behavior of
IdðTÞ is not modified. Most importantly, we observe that
the position of the local minimum at T� does not shift with
Nr for Nr > 104. Furthermore, as expected, the scaling of
Id with Nr is exponential [see Figs. 13(a2) and 13(b2)], at
least in the vicinity of the phase transition. Similar results
are obtained for other system sizes and for the Ising model.
Summing up, our results indicate that, as long as Nr > 104,
the universal scaling behavior exhibited by the Id is not
affected by the scale at which the Id is measured.

APPENDIX C: DATA COLLAPSE

In this section, we discuss the finite-size analysis
employed for the estimates of the critical temperature
and exponents presented in Sec. IV. Our procedure is a
standard search of the minimal least-square difference
fit between our data and an appropriately chosen scaling
function hypothesis. Let us first focus on the second-order
phase transitions, concerning the Ising and three-state Potts
models. The method is divided into four steps.
(1) First we choose a suitable mesh for the parameter

ranges for Tc, ν, and α.
(2) From our data, we compute the scaling vari-

ables xdatðTc; νÞ ¼ ðT − TcÞL1=ν and ydatðαÞ ¼
IdðTÞL−α for a different R-range of system sizes
fL1; L2;…; LRg.

(iii) We choose a parametric functional hypothesis
fðx; fagÞ.

(iv) For each ½xdatðTc; νÞ; ydatðαÞ�, we compute the
best fit of the hypothesis function fa⋆g through
the Levenberg-Marquardt algorithm. We store the
residuals as

ϵðTc; ν; αÞ ¼
jjfðxdatðTc; νÞ; fa⋆gÞ − ydatðαÞjj

jjydatðαÞjj
:

ðC1Þ

The optimal set of parameters for each set fL1; L2;…; LRg
is located in the minimum ϵðTc; ν;αÞ. In order to keep a low
bias on the hypothesis function fðx; fagÞ, we choose
various k-degree polynomials Qkðx; a0; a1;…; akÞ. Thus,
we obtain a set of optimal fT⋆

cg, fν⋆g, and fα⋆g for each
choice of degree k and each set of system sizes fLkg. Our
estimates and errors for the critical temperature and critical
exponents are then estimated as the average and standard
deviation of these sets, respectively.
The analysis for the BKT transition (the XY model) is

performed in a similar fashion. The only difference is the
choice of scaling variable, which, for this case, is

(a) (c)

(b) (d)

FIG. 13. Temperature dependence of the Id for different values
of Nr for the (a) 2D XY model and (b) three-state Potts model; in
both cases, L ¼ 60. For each point, we harvest approximately ten
instances of the data set and average the resulting estimates for
the Id. The error bars are the standard deviation of such results.
The scaling of Id with Nr for certain values of T for: (c) the 2D
XY model, (d) the three-state Potts model.

(a) 3-site XY (b) 2D XY

FIG. 12. Scaling of the Id with the number of configurations in
the data set. In panel (a), we show the results for the three-site XY
model, while in panel (b), we show results for the 2D XY model
with L ¼ 10.
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xdatðTc; aÞ ¼ L exp
�
−

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tc

p
�
: ðC2Þ

For the Ising, three-state Potts, and XY models, we
select polynomials of degrees k ∈ f5; 6; 7; 8g and differ-
ent sets of system sizes among the L ≥ 70 ones. For the
XY model, we perform the data collapse within the
range T ¼ ½0.91; 1.10� and use a bin of ΔT ≈ 0.005.
Our estimations for the XY model are Tc ¼ 0.92ð1Þ,
a ¼ 1.4ð1Þ, and ζ ¼ 0.40ð1Þ.
We visualize the resulting residuals for both the Ising

and the XY models; see Figs. 14 and 15, respectively.
Since the parameter space is 3D, for convenience, we plot
the projected directions along with the optimal critical
parameters.

APPENDIX D: DEFINITION OF THE
WINDING NUMBER

We now discuss the definition of the winding number
mentioned in Fig. 8(b) of the main text. We consider a
closed path along the x and y directions of the square lattice
and define

wx ¼
1

2π

XLx

i¼1

Δθði;y¼1Þ ðD1Þ

and

wy ¼
1

2π

XLy

i¼1

Δθðx¼1;iÞ; ðD2Þ

where the angle difference is Δθðx¼1;iÞ ¼ θðiþ1;y¼1Þ −
θði;y¼1Þ; Δθ is rescaled into the range ð−π; π�. We compute
the w ¼ ðwx; wyÞ for each configuration of the data set. We
then define the total number of configurations whose first
two nearest neighbors have the same w, Nw. Figure 8(b)
shows the fraction of those points, Fw ¼ Nw=Nr, as a
function of T.
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