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The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid
ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott
insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to
be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered
magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model
gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law
upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various
sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or
from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies).
We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and
that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study
the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-
reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector
transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the
low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of
true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also
account for the scaling behavior in the high-field limit observed in H3LiIr2O6.
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I. INTRODUCTION

Various types of disorder in quantum spin liquids (QSLs)
have recently attracted a lot of attention from both
experimental and theoretical points of view [1–15].
There are three main reasons for this interest. First, some
level of disorder in various forms of dislocations, vacancies,
impurities, and bond disorder is inevitable in real materials.
Second, disorder can significantly affect the low-energy
properties of these systems. In particular, if the system is
close to a QSL state, quenched disorder on top of the
quantum-disordered strongly correlated spin state of a QSL

can give rise to diverse and often puzzling behaviors
[8,12,13,16]. Namely, sometimes disorder is detrimental
to the QSL state since it either localizes the resonating spin
singlets or induces competing glassy states instead of
entangled ones [17–20]. However, in some other cases,
e.g., in classical spin-ice materials, certain forms of dis-
order can instead enhance the quantum dynamics of spins
throughout the system and generate a QSL with long-range
entanglement [6,16,21]. Third, given that the properties of
QSLs are difficult to detect directly because such states lack
any local order parameter, much additional information can
be obtained by studying the distinctive responses to local
perturbations, such as static defects, dislocations, and
magnetic or nonmagnetic impurities. In particular, these
perturbations may nucleate exotic excitations characteristic
of the spin liquid under consideration [1,2].
Of specific interest is the role of disorder in the materials

that have been suggested to be potential candidates [22–26]
to realize the Kitaev QSL [27]. In a flurry of recent
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experiments on the honeycomb ruthenium chloride α-RuCl3,
it was shown that both bond disorder and stacking disorder
are not negligible [28–32]. Perhaps disorder also plays a
crucial role for a potential proximity of Ag3LiIr2O6 to a
Kitaev QSL state [33]. However, perhaps the most remark-
able and intriguing consequences of disorder have been
observed in a presumptive quantum spin-liquid state of the
hydrogen intercalated iridate H3LiIr2O6 [8]: (i) The specific
heat displays a low-temperature divergence ofC=T ∝ T−1=2,
(ii) only a small fraction of the total magnetic entropy is
released at these low temperatures, and (iii) there is a
nonvanishing contribution down to the lowest temperature
in the NMR rate 1=T1 and an almost flat Knight shift. All of
these observations signal the presence of abundant low-
energy density of states (DOS) related to magnetic excita-
tions. However, despite the presence of dominant Kitaev
exchange, this phenomenology is at odds with the thermo-
dynamics of the pure Kitaev QSL [34–36], which has a
vanishing specific heat C=T ∝ T and a significant release of
half of its total entropy at low T.
Motivated by these experimental findings, some of us

have recently considered a minimal model of a bond-
disordered Kitaev QSL [11] that can account for these
salient experimental observations in H3LiIr2O6 [8].
However, in order to recover the low-temperature scaling
of the specific heat, the Kitaev-like model of Ref. [11]
assumed a somewhat ad hoc form of binary bond disorder
and invoked a random-flux background even at very low
temperatures.
In this work, we show that a finite density of vacancies in

the Kitaev model induces a pileup of the low-energy DOS
NðEÞ, and a low-temperature divergence of the specific
heat C=T. These results are consistent with an algebraic
divergence with an exponent around ν ∼ 1=2 over a broad
range of low energies or temperatures. As a finite density of
static, randomly located vacancies is always present in the
two-dimensional limit of layered materials, i.e., similar to
the case of graphene [37–41], our simple model provides a
natural explanation for the experimental observations in
H3LiIr2O6 [8].
We also carefully treat the flux background and show

that the energy of a random-vacancy configuration is
minimized when a flux is bound to each vacancy.
Hence, we resolve the problem of a random-flux back-
ground since now the flux configuration is determined by
the vacancy distribution. Finally, we show numerically that
the vacancy effect for the low-energy DOS is robust with
respect to the addition of bond randomness or a random-
flux background. However, in the presence of the three-spin
interactions which imitate the physics of a magnetic field,
the ground state turns into the zero-flux sector and the
vacancy-induced low-energy states are gapped out, result-
ing in a suppression of C=T similar to the observation
in H3LiIr2O6.

II. THE MODEL

The extended Kitaev honeycomb model is defined in
terms of localized spin-1=2 degrees of freedom that are
coupled in a bond-anisotropic manner on the honeycomb
lattice [27]. The spin Hamiltonian reads

H ¼ −
X
hiji

Jhijiα σ̂
α
i σ̂

α
j − κ

X
⟪ik⟫

σ̂αi σ̂
β
j σ̂

γ
k; ð1Þ

where σ̂αi denotes Pauli spin operators with α ¼ x, y, z, and
hijiα labels the nearest-neighbor sites i and j along an α-
type bond. The second term is the three-spin interaction
with strength κ ∼ ðhxhyhz=J2Þ that imitates an external
magnetic field and breaks time-reversal symmetry while
preserving the exact solvability [27]. By rewriting each spin
operator in terms of four Majorana fermions σ̂αi ¼ ib̂αi ĉi,
and defining the link operators ûij ¼ ib̂αi b̂

α
j , the

Hamiltonian takes the form

H ¼ i
X
hiji

Jhijiα ûhijiα ĉiĉj þ iκ
X
⟪ik⟫

ûhijiα ûhkjiβ ĉiĉk: ð2Þ

The solvability of the Kitaev model relies on the extensive
number of conserved fluxes defined on each hexagonal
plaquette Ŵp ¼ σ̂x1σ̂

y
2σ̂

z
3σ̂

x
4σ̂

y
5σ̂

z
6 ¼

Q
hiji∈p ûhijiα , which can

block diagonalize the Hamiltonian (1) into flux sectors
since fluxes commute with each other ½Ŵp; Ŵp0 � ¼ 0 and
with the Hamiltonian ½Ŵp;H� ¼ 0. Both the flux operators
Ŵp and the link operators ûhijiα have eigenvalues�1. Once
the link variable is specified for each bond, the physically
relevant flux sector is determined, and the Hamiltonian can
be solved exactly as a tight-binding model of Majorana
fermions. For the pure Kitaev model (κ ¼ 0), it has been
proven that the ground-state sector is zero-flux [42]; i.e., the
fluxes have eigenvalues Wp ¼ þ1 for all plaquettes.
Since the honeycomb lattice is bipartite, each unit cell

contains two sublattice sites labeled as A and B. Thus, for a
system with N unit cells, there are 2N lattice sites and N
hexagonal plaquettes. Under periodic boundary conditions
(PBCs), the fluxes can be excited only in pairs since
flipping one link variable in the zero-flux sector results in
Wp ¼ −1 on both sides of that link. As a result, there exists
a global constraint for the fluxes

Q
p Wp ¼ 1, such that the

number of independent fluxes is reduced by one. Since 2
additional flux degrees of freedom are introduced by the
toric topology, the total number of different flux sectors is
then 2Nþ1.
With this decomposition, the spin degrees of freedom in

the original Hamiltonian are now fractionalized into itin-
erant Majorana fermions and static Z2 gauge fluxes. In a
given flux sector, the gauge can be fixed and all link
variables can be specified, leading to a Hamiltonian of
noninteracting Majorana matter fermions,
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H ¼ i
2

�
cA cB

��
F M

−MT −D

��
cA
cB

�
; ð3Þ

where the hopping amplitudes between sites on sublattice A
and sublattice B are Mij ¼ Jαûhijiα , while the entries in the
diagonal blocks F and −D contain hopping amplitudes
between sites on the same sublattice. Two adjacent
Majorana fermions from the same unit cell can be com-
bined into a complex matter fermion,

f̂ ¼ ðĉA þ iĉBÞ=2;
f̂† ¼ ðĉA − iĉBÞ=2; ð4Þ

such that the Hamiltonian can be written in a Bogoliubov–
de Gennes form and diagonalized in the standard way,

H ¼ 1

2

�
f f†

��
h̃ Δ

Δ† −h̃T

��
f†

f

�

¼
X
n

ϵn

�
a†nan −

1

2

�
; ð5Þ

where h̃ ¼ ðM þMTÞ þ iðF −DÞ and Δ ¼ ðMT −MÞþ
iðF þDÞ. Therefore, for a given flux configuration, the
fermionic ground-state energy reads E0ðfuijgÞ¼−1

2

P
n ϵn,

and the global density of states is given by

NðEÞ ¼
X
n

δðE − ϵnÞ: ð6Þ

III. KITAEV MODEL WITH RANDOM
VACANCIES

A. Vacancies, quasivacancies, and fluxes

A vacancy is usually a simple absence of an atom at a
given site. However, in the present work, we use this term
more generally since it can also correspond to a non-
magnetic impurity or a magnetic moment that is weakly
connected to its neighbors due to extremely strong but
relatively rare bond randomness. To distinguish it from the
simple absence of an atom (which we call a true vacancy),
we refer to the latter type of defect as a quasivacancy.
In order to introduce randomly distributed vacancies into

the Kitaev honeycomb model (2), we first consider the
time-reversal symmetric case at κ ¼ 0. In this case, the
second term in Eq. (2) is absent, while the first term can be
written as

H ¼ i
X
hiji
i;j∈P

Jhijiα ûhijiα ĉiĉj þ i
X
hkli

k∈V ;l∈P

J0hkliα ûhkliα ĉkĉl; ð7Þ

where P denotes the subset of normal lattice sites, and V
denotes the subset of vacancy sites. We consider a
compensated case with equal numbers of vacancies on

the two sublattices of the honeycomb lattice. By taking the
limit of J0α ≪ Jα, sites belonging to V behave as quasiva-
cancies. For such a quasivacancy, a Majorana fermion ĉ
remains on the vacancy site, but its nearest-neighbor
hopping amplitudes are removed in the limit of J0α → 0.
Therefore, the way we diagonalize the pure Kitaev
Hamiltonian remains valid, even though the number of
flux degrees of freedom is effectively reduced.
For each vacancy with J0α → 0, there are three hexagonal

plaquettes around the vacancy site, resulting in 23 ¼ 8
distinct flux sectors labeled by W1;2;3 ¼ �1. However, the
Majorana Hamiltonian in each flux sector is completely
determined by Wv ¼ W1W2W3 ¼ �1, which corresponds
to a large vacancy plaquette merged from the three
individual plaquettes around the vacancy. Since the remain-
ing 2 degrees of freedom do not affect the Majorana DOS
and can even be partially “gauged away” in the case of true
vacancies [43], we ignore them in the rest of this work
and characterize the vacancy with a single vacancy flux
Ŵv ¼ Ŵ1Ŵ2Ŵ3. Consequently, for a system with Nv
isolated vacancies, the number of flux degrees of freedom
is effectively reduced by 2Nv. With periodic boundaries,
the global constraint for the fluxes then becomesQ

p Wh;p
Q

q Wv;q ¼ 1, where Wh correspond to bulk
hexagonal plaquettes. Since there are two physically
distinct flux operators Ŵh and Ŵv, introducing a flux pair
falls into one of three situations: both fluxes on hexagonal
plaquettes, both fluxes on vacancy plaquettes, and one flux
on each kind of plaquette. We show that, in order to
minimize the total energy, fluxes must be bound to the
vacancy plaquettes.

B. Quasilocalized eigenmodes and flux binding

When considering vacancies in the Kitaev model, many
results are completely analogous to those in graphene
[37–41]. For example, it was found for both systems that
introducing a vacancy leads to a zero-energy eigenmode
with a quasilocalized wave function on the other sublattice
around the vacancy site [1,2,37,38].
Indeed, if we consider only the nearest-neighbor cou-

plings and ignore the possible flux excitations in the Kitaev
model, then there is a one-to-one mapping between the
Majorana hopping in the Kitaev model and the fermionic
hopping in graphene [see Fig. 1(b)].
It was shown by Willans et al. through analytical

calculations that a single vacancy binds a flux in the
gapped phase of the Kitaev model (Jx, Jy ≪ Jz) [1,2].
In the gapless phase (including the isotropic point
Jx ¼ Jy ¼ Jz), the flux-binding effect can be verified
numerically. Practically, we consider two vacancies, one
on an A-sublattice site and the other on a B-sublattice site
[see Fig. 1(a)], which are separated by a distance approx-
imately L=2, where L is the linear dimension of the system,
and then calculate the energy difference between the
bound-flux [Fig. 1(c)] and the zero-flux sectors [Fig. 1(a)]:
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Ebind ¼
Ebound − Ezero

2
: ð8Þ

In Fig. 2(a), different system sizes up to L ¼ 120 are
considered and, by extrapolation, we show that the flux-
binding energy converges to Ebind ¼ −0.0268J, which is
consistent with the previous result [1]. In the same way, we
also calculate the binding energies for nonzero J0 and show
[see Fig. 2(b)] that the flux-binding effect remains for
J0=J < 0.0544, which can be compared to another previous
result with a slightly different setup [4]. The flux-binding
effect for nonzero J0 indicates that we can extend the
quasivacancy picture to a bond-disordered model where the
vacancy sites are not truly removed or replaced by non-
magnetic ions, but the coupling strengths are strongly
suppressed by structural disorder.
Note that, in this setting, the boundary conditions play a

crucial role in the flux-binding effect. For open boundary
conditions, it is possible to create a single flux on each
vacancy plaquette so that the energy is minimized.
However, for periodic boundary conditions, the fluxes
must be created in pairs. For a system with only one
vacancy, there exists only one vacancy plaquette to bind the
flux, and thus, the other flux must be bound to a hexagonal
plaquette. This arrangement results in a higher total energy
since the flux excitation energy on a hexagonal plaquette is
0.1536J [27], which cannot be fully compensated by Ebind.
Therefore, the ground-state sector is still zero-flux. In
contrast, when the system contains an even number of
isolated vacancies, it is possible to bind fluxes to all
vacancy plaquettes, as we describe in the following.

C. Bound-flux sector

In order to minimize the total energy of a random-
vacancy configuration, fluxes must be introduced and
bound to each vacancy plaquette. The most unbiased
approach is to apply a Markov chain Monte Carlo simu-
lation that samples the flux configurations at low

FIG. 1. (a) A pair of quasivacancies introduced on different sublattices. The blue dashed lines represent reduced couplings J0 → 0,
while the red circles depict the real-space wave functions of the resulting quasivacancy modes. (b) The real-space wave functions of the
zero-energy quasilocalized modes introduced by the vacancies. (c) Bound-flux sector. By flipping a string of link variables from u ¼ þ1
(thin gray lines) to u ¼ −1 (thick black lines), a pair of fluxes can be attached to each pair of vacancies in order to minimize the energy of
the system. Note that, for J0 → 0, the 3 flux degrees of freedom around the vacancy site effectively merge into 1.

FIG. 2. Binding energy of a flux to a vacancy calculated by
Eq. (8). (a)The flux-binding energyconverges toEbind ¼ −0.0268J
in the thermodynamic limit by extrapolation. System sizes are
classified byLmod3 since they have different rates of convergence.
The binding energies are calculated for finite-size systems up to
L ¼ 120 with J0 ¼ 0. (b) The J0 dependence of the flux-binding
energy. By interpolation, the critical value of J0 is estimated as
0.0544J, which sets the upper limit of the flux-binding effect.
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temperatures [34,35]. However, this approach is not easily
realized for large systems with disorder since the tight-
binding Hamiltonian (2L2 × 2L2 matrix) must be diagon-
alized for each update. It also cannot be performed at low
enough temperatures at which the effect of the vacancies is
especially pronounced, and where the upturn in the specific
heat (C=T) was observed in Ref. [8]. Indeed, this upturn
was not obtained in the recent Monte Carlo study [15], in
which vacancies and bond randomness were considered.
Instead, the low-temperature peak associated with flux
degrees of freedom was observed to be suppressed and
shifted to lower temperatures [15].
Thus, here we discuss how to generate the low-energy

bound-flux sector in which each vacancy has a flux
attached to it. Note that when two or more vacancies are
connected to each other, and thus the discussion in Sec. III
A is no longer valid, our approach may not provide the
actual ground-state flux sector. However, in the dilute limit,
most vacancies are isolated, and the ground state is well
approximated with the bound-flux sector.
In all our calculations, we use periodic boundary con-

ditions because open boundaries lead to additional zero-
energy eigenmodes and make it difficult to examine the
direct consequences of adding vacancies into a finite-size
system. As we discussed in the previous subsection, the
consequence of PBC is that fluxes always appear in pairs.
When a link variable uij is flipped, two fluxes are
introduced on adjoining hexagons. Therefore, when we
flip a link variable on the edge of a vacancy plaquette, one
flux emerges on this vacancy plaquette, and the other one
emerges on a neighboring hexagonal plaquette. The former
flux changes the energy by ΔEv ¼ Ebind < 0, while the
latter changes the energy by ΔEf > 0.
Numerical studies of the single-vacancy effect show that

the energy decrease of a flux binding to a vacancy cannot
compensate the energy increase by the other flux [2].
Indeed, at the isotropic point ΔEv converges to −0.0268J,
while ΔEf converges to 0.1536J. In contrast, for a system
with two isolated vacancies, it is possible to generate a flux
pair on hexagonal plaquettes and then propagate the two
single fluxes individually until they bind to the vacancies,
lowering the total energy by approximately 2jΔEvj com-
pared to the zero-flux case [see Fig. 3(b)].
However, finding the ground-state flux configuration for

more than two vacancies in terms of link variables is a
nontrivial task because fluxes may create or annihilate
during the flipping of link variables. Instead, we propose an
algorithm that generates a vacancy configuration along
with the bound fluxes. First, we randomly choose a position
on the lattice and place a vacancy pair. The pair contains
one vacancy on an A-sublattice site and the other one on a
nearby B-sublattice site, as shown in Fig. 3(a). One shared
link of the two vacancy plaquettes is flipped such that each
plaquette binds a flux. Second, we randomly move one
vacancy in the directions of the two primitive vectors.

When a vacancy migrates, the link variables are flipped
along the same path, keeping the flux bound to the vacancy
plaquette [Fig. 3(b)]. Thus, instead of propagating fluxes to
minimize the energy of a given vacancy configuration, as is
shown in Fig. 1(c), we propagate composites of one
vacancy and one flux to generate a random configuration
of vacancies with bound fluxes.
Note that this method does not give the ground-state flux

sector for all vacancy configurations. When two or more
vacancies are connected after migration, the binding fluxes
may annihilate each other such that no flux binds to the
merged vacancy plaquette. Nevertheless, this method
works relatively well for a low density of vacancies since
connected vacancies are then rare. In the following sec-
tions, we denote the finite-flux sector generated by this
method as the bound-flux sector.

D. Time-reversal symmetry-broken case (κ ≠ 0)

The effective three-spin interaction term in Eq. (1) breaks
time-reversal symmetry and changes the energetics of the
model by simultaneously gapping out the fermionic spec-
trum and introducing localized zero-energy Majorana
modes in the presence of isolated fluxes [27]. Here we

FIG. 3. The recipe for creating vacancies with bound fluxes.
(a) Randomly place one pair of vacancies on the lattice. Flip one
shared link variable (thick black line) such that two fluxes are
created and attached to the two vacancy plaquettes. (b) Randomly
move one of the vacancies in the pair, and flip a string of link
variables along the path, such that the fluxes are always bound to
the vacancies. After the migration, place another pair of vacancies
with fluxes and repeat the same process.
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test the disorder-averaged total energy of the system in the
bound-flux and zero-flux sectors for various κ. By compar-
ing the energies of the two flux sectors, a ground-state
transition from the bound-flux to the zero-flux sector is
observed. This transition is shown in Fig. 4, where we plot
the difference between the two energies, each obtained by
averaging over 4000 disordered samples with 2% quasi-
vacancies at J0 ¼ 0.01. While the bound-flux sector is
lower in energy for 0 ≤ κ < 0.1, the zero-flux sector
becomes energetically favorable for κ ≥ 0.1.

IV. DENSITY OF STATES AND SPECIFIC HEAT

In this section, we discuss how the presence of vacancies
results in a low-temperature divergence in the specific heat
C=T, which might be related to the recent experimental
observation by Kitagawa et al. on the Kitaev spin-liquid
candidate H3LiIr2O6 [8]. We consider both the case of true
vacancies with J0 ¼ 0 and the case of quasivacancies
with J0 > 0.
At finite temperatures, both itinerant Majorana fermions

and fluxes contribute to the specific heat and 1
2
kB ln 2 in the

thermal entropy [34,35]. However, in H3LiIr2O6, it is
reported that the low-energy excitations release only
1%–2% of kB ln 2 entropy at 5 K, implying that the flux
degrees of freedom might be frozen. Therefore, we assume
that the temperature dependence of the specific heat is
solely due to the thermal occupation of itinerant Majorana
fermions in static flux sectors,

CðTÞ ¼
Z

ENðEÞ ∂nFðE; TÞ∂T dE

¼
X
n

�
ϵn
T

�
2 eϵn=T

ðeϵn=T þ 1Þ2 ; ð9Þ

where nFðE; TÞ ¼ ðeE=T þ 1Þ−1 is the Fermi function, and
we use the definition of the density of states in Eq. (6) to
reach the final expression.
As before, we first consider the time-reversal symmetric

case with κ ¼ 0 in Secs. IVA and IV B, and then discuss
the effect of a finite κ in Sec. IV C.

A. True vacancies

We introduce a certain amount of vacancies into the
Majorana problem, as described by Eq. (7), at the isotropic
point (Jx ¼ Jy ¼ Jz ≡ J ¼ 1) and see how the fermionic
specific heat and density of states are affected. The vacancy
concentration nv is defined as the number of vacancies (Nv)
divided by the number of lattice sites (2L2). Half of the
vacancies are on the A sublattice and the other half are on
the B sublattice. For example, in a system with L ¼ 20 and
nv ¼ 2%, we randomly put eight vacancies on A sites and
eight vacancies on B sites. When generating the random-
vacancy configurations, we avoid removing the same site
twice or more. Thus, for a given concentration, each
disorder realization contains the same amount of vacancies.
In the remainder of the paper, the results are presented for
systems with linear dimension between L ¼ 20 and L ¼ 40

on a torus, and all the data are averaged over 103 to 104

disorder realizations.
First, we demonstrate the pileup of low-energy states in a

system with 2% true vacancies. The density of states in the
bound-flux sector averaged over 4000 realizations
(L ¼ 40) is shown in Fig. 5. Since the low concentration

FIG. 4. Ground-state transition between the bound-flux and the
zero-flux sectors. Below (above) κ ¼ 0.10, the bound-flux sector
has lower (higher) energy than the zero-flux sector. The results are
averaged over 4000 disordered samples (L ¼ 40) with 2%
quasivacancies (J0 ¼ 0.01).

FIG. 5. Density of states in the bound-flux sector with 2% true
vacancies (J0 ¼ 0). The density of states is first calculated for
each L ¼ 40 realization by Eq. (6) and then averaged over 4000
disordered realizations. The red dashed line shows the analytical
density of states of the pure Kitaev honeycomb model without
fluxes and vacancies. The spectral weight is transferred toward
the low-energy region from the high-energy region near the van
Hove singularity. The inset shows the data in base-10 logarithmic
scales and demonstrates the NðEÞ ∼ E−1=2 behavior at low
energies.
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of vacancies acts like a weak disorder on top of the Kitaev
spin liquid, the overall behavior of the density of states is
similar to the analytical result for the pure Kitaev model in
the zero-flux sector, except for the low-energy region. Note
that the states at exactly zero energy are removed from the
density of states, so that the pileup in the low-energy region
is exclusively from states with small but nonzero energies.
The upturn is clearly seen in the log-log plot (inset of
Fig. 5), and it fits well to a power-law form NðEÞ ∼ E−ν

with ν ∼ 1=2.
Next, the fermionic specific heat (9) is calculated from

the density of states and shown in Fig. 6. As expected, the
pileup of low-energy states approximated by the power law
NðEÞ ∼ E−ν brings about a similar behavior in the specific
heat C=T ∝ T−ν with an exponent close to 1=2. This
power-law behavior is consistent with what has been found
in the Kitaev spin-liquid candidate H3LiIr2O6 [8], where

the authors mentioned that a small amount of magnetic
impurities or vacancies in the material may be responsible
for the magnetization and specific heat results. Thus, even
without the presence of bond randomness [11], the low-
energy fermionic states produced by the vacancies in the
ground-state flux sector can give rise to a similar power-law
behavior.
Here a comment is in order. As we discuss above, the

vacancy fluxes on the merged plaquettes have a smaller
thermal excitation energy (Δv ∼ 0.0268J) than the single
plaquette fluxes (Δf ∼ 0.1536J). Thus, they can be excited
at very low temperatures, contributing to the low-temper-
ature specific heat. However, as can be easily seen in the
independent-flux approximation (see the Appendix), at low
enough temperatures the fluxes do not contribute, and the
pure upturn from the vacancy-induced low-energy modes is
revealed. Thus, the experimental upturn observed in
Ref. [8] cannot be explained solely from the contribution
of vacancy fluxes, since that upturn sustains for about 2
orders of magnitude in the temperature.
In Fig. 6(b), the size dependence of this power-law

upturn is presented. Because of the gapless nature of the
Kitaev spin liquid at the isotropic point, the finite-size
effects are considerable at low temperatures. We find that
L ¼ 40 is a reasonable choice in practice such that the finite
energy of the vacancy states can be extended to the scale of
10−3. In the rest of this paper except Sec. V, systems with
L ¼ 40 are used for all calculations.
In addition to the bound-flux sector, we also consider the

zero-flux and random-flux sectors for the same set of
random-vacancy configurations. The corresponding den-
sities of states and fermionic specific heats are presented in
Fig. 7 for various vacancy concentrations. The pileup of
vacancy-induced states (Fig. 7, upper row) and the corre-
sponding upturn in the specific heat [Figs. 6(a) and 7, lower
row] appear in all the flux sectors, indicating that the effect
of vacancies plays a major role in the low-energy region. In
addition, we also see that the upturn power is slightly
dependent on the vacancy concentration. In the bound-flux
and zero-flux sectors, densities of states with different nv
start splitting below a characteristic energy scale, which is
similar to the tight-binding model of graphene with
compensated vacancies [40].

B. Quasivacancies

In order to study the effect of quasivacancies introduced
in the Kitaev model, we compute the density of states for
the model (7) with different coupling strengths J0α ¼ J0 up
to 0.05 in the bound-flux [Fig. 8(a)], zero-flux [Fig. 8(b)],
and random-flux [Fig. 8(c)] sectors. Note that, based on the
energetic analysis shown in Fig. 2(b), the bound-flux sector
is lower in energy than the zero-flux and the random-flux
sectors for all vacancy couplings J0 ≤ 0.05.
In the limit of J0 → 0, the resonant peak around zero

energy is present in all three cases, indicating that the

FIG. 6. (a) Specific heat C=T for L ¼ 40 systems calculated
from the fermionic density of states [Eq. (9)]. Compared to the
pure Kitaev model without fluxes and vacancies, adding 2% true
vacancies (J0 ¼ 0) leads to a clear upturn in both the bound-flux
and the zero-flux sectors. The inset shows the data in logarithmic
scale. (b) The system-size dependence of C=T. The low-temper-
ature upturn becomes more robust for larger systems due to the
reduction of the finite-size effect. The curves are averaged over
4000–10 000 disorder realizations, depending on the system size.
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low-energy physics is governed by vacancies rather than
fluxes. In the bound-flux sector, a finite value of J0 leads to
a coupling of the quasivacancy mode to its surroundings
and results in a larger width of the zero-energy peak. In the
zero-flux sector, however, a tiny energy gap opens when
increasing the magnitude of J0. This phenomenon comes
from the hybridization of the two different zero-energy
modes corresponding to the same quasivacancy. When
switching on the coupling J0, the quasivacancy mode
[Fig. 1(a)] begins to hybridize with the zero-energy quasi-
localized mode [Fig. 1(b)], leading to a splitting of the
corresponding energy levels. The formation of this pseudo-
gap is also reported in site-diluted graphene [38]. The
hybridization picture of low-energymodeswill become even
more clear when we open a larger bulk gap by adding the
time-reversal symmetry-breaking term to the system.

C. Three-spin interaction

In the previous sections, we demonstrate how the
vacancy-induced low-energy states give rise to upturns
in both the fermionic DOS and the specific heat C=T,
similar to the experimental findings in H3LiIr2O6 [8]. Now
we turn our attention to the remaining question from the
experiment: How does this low-energy upturn get sup-
pressed in the presence of an external magnetic field? As
we discuss above, the three-spin interaction with strength
κ ∼ ðhxhyhz=J2Þ in Eq. (1) represents the leading-order
perturbation effect of the Zeeman term [27]. This inter-
action breaks time-reversal symmetry and introduces zero-
energy Majorana modes in the presence of fluxes.

Therefore, the presence of vacancies in conjunction with
the flux-binding effect provides a natural scenario for
creating Majorana zero modes at low temperatures.
By introducing the three-spin term into the pure Kitaev

honeycomb model, the gapless spin liquid becomes gapped
due to the next-nearest-neighbor hopping of Majorana
fermions. This effect is clearly seen in Fig. 10, where
the fermonic density of states is shown for different three-
spin couplings κ in both the bound-flux and the zero-flux
sectors for a 2% concentration of vacancies (recall that the
bound-flux sector is the ground-state flux sector only for
0 ≤ κ < 0.1). Figure 10 also clearly shows that there is a
pronounced difference between the two flux sectors in the
number of resonant peaks inside the bulk energy gap. In the
zero-flux sector, two broad peaks appear inside the energy
gap and move away from E ¼ 0 with increasing κ. In
contrast, one additional resonant peak is present around
E ¼ 0 in the bound-flux sector whose position is indepen-
dent of κ. Note that, due to its finite width, this central peak
contains a number of eigenmodes with small but nonzero
energy, resulting in measurable signatures in thermody-
namic quantities such as the specific heat at low temper-
atures. The presence or absence of this peak along with the
flux-sector transition shown in Fig. 4 plays a crucial role in
understanding the C=T results. A heuristic picture of the
eigenmode hybridization leading to different numbers of
peaks in the two flux sectors is discussed in Sec. V.
The localized nature of these vacancy-induced eigenm-

odes can be illustrated by the inverse participation ratio
(IPR). This quantity is defined as

FIG. 7. The low-energy density of states [Eq. (6)] and fermionic specific heat [Eq. (9)] with different concentrations of true vacancies
(J0 ¼ 0) in the (a) bound-flux, (b) zero-flux, and (c) random-flux sectors. All three cases show a clear upturn in both the density of states
and C=T. The results are averaged over 4000 disordered realizations of L ¼ 40.
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Pn ¼
X
i

jϕn;ij4; ð10Þ

where the index n labels the eigenmode wave function ϕn;i,
and the index i labels the lattice site. In Fig. 10, the IPR for
each eigenmode is shown by red dots. For a delocalized
mode, the IPR scales roughly as 1=N in a system with N
sites since the wave function is spread out uniformly over
the entire lattice. This behavior is precisely what we see for
the fermionic bulk modes. However, for the in-gap modes
introduced by the vacancies, the IPR is significantly larger
since the wave function is confined to a small portion of the
lattice. Similar to graphene, when κ ¼ 0, each vacancy
leads to a zero-energy eigenmode with a quasilocalized
wave function on the other sublattice around the vacancy

site. For a single vacancy, this wave function can be written
in an analytical form [37,38]:

Ψðx; yÞ ∼ eiK
0·r

xþ iy
þ eiK·r

x − iy
: ð11Þ

The wave vectors K and K0 denote the two different Dirac
points on the corner of the first Brillouin zone. While the
analytical form of the quasilocalized wave function is no
longer available for a finite density of vacancies, we can
still relate the enhanced values of the IPR for the in-gap
states in our numerical calculations to the 1=r decay of the
quasilocalized wave functions Ψðx; yÞ in the zero-flux
sector. In the presence of bound flux, the wave function
becomes more localized and deviates from 1=r. Moreover,
when applying the three-spin interaction, these vacancy-
induced modes turn into exponentially localized ones, as
shown in Fig. 9.
In Fig. 11, the temperature dependence of C=T is

presented for various values of κ. According to the flux-
sector transition shown in Fig. 4, the ground-state flux
sector is the bound-flux sector for κ < 0.1 and the zero-flux
sector for κ ≥ 0.1. As we discuss in the previous sections,
the upturn of the curve for κ ¼ 0 can be extended to very
low temperatures for large system sizes, and it is compa-
rable to the experimental result for H3LiIr2O6 without
magnetic field. For κ ¼ 0.08, a small number of localized
modes appear in the DOS [see Fig. 10(a)], giving rise to a
steeper upturn in C=T. Still, there is no suppression at the
lowest temperatures due to the presence of the central
resonant peak in the density of states. However, when κ
exceeds the critical value and the ground-state flux sector
becomes flux-free, C=T shows only a small upturn and is
then strongly suppressed. The small upturn comes from the

FIG. 8. Density of states [Eq. (6)] for various quasivacancy
coupling strengths J0 with a concentration nv ¼ 2% of quasiva-
cancies. The low-energy states induced by the quasivacancies are
accumulated around the Dirac point of the Majorana spectrum.
The zero-energy peak is suppressed for larger J0 due to the
stronger coupling to the bulk. For the zero-flux sector, a
pseudogap gradually forms by the hybridization of the quasiva-
cancy mode and the quasilocalized mode around the same
quasivacancy. The results are averaged over 4000 disordered
realizations of L ¼ 40.

FIG. 9. The spatial dependence of wave-function amplitude of
vacancy-induced modes. The distance r is in the unit of
hexagonal lattice constant. The inset shows the 1=r dependence
for the zero-flux sector with κ ¼ 0, and the exponential decay for
both sectors under finite κ.
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in-gap resonant peak at E > 0, and the suppression is due
to the lack of lower-energy modes around E ¼ 0. Note that,
if a vacancy site is completely decoupled from the system,
the corresponding vacancy mode has exactly zero energy
and has no contribution to the specific heat. However, since
we consider the quasivacancy scenario that possibly results
from a bond disorder of Kitaev interactions, those quasi-
vacancy modes have finite couplings via J0 and κ and can
be hybridized with other localized modes to produce finite-
energy eigenmodes, thus leading to the low-temperature
upturn in C=T.
The quasivacancy picture and the corresponding C=T

results capture the experimental findings for C=T in the
Kitaev spin-liquid candidate H3LiIr2O6. In Fig. 4 of
Ref. [8], a peculiar scaling law is used for collapsing the
C=T data in a wide range of magnetic fields h:

C=T ∼ h−3=2T: ð12Þ

Since we consider only the leading-order three-spin inter-
action κ emerging from a perturbative treatment of the
magnetic field (rather than the magnetic field h itself), a
simple replacement of h with κ does not provide the correct
scaling law for our data. Nevertheless, it is possible to

assume a general power-law relation h ∼ κα and test the
following scaling behavior:

C=T ∼ ðκαÞ−3=2T: ð13Þ

We estimate the optimal α to be around 1.5 by collapsing
the curves with various κ below the temperature scale
T=κα ∼ 1.2, as shown in Fig. 11(b). Qualitatively, our
calculation of the low-temperature fermionic specific heat
is able to capture the specific heat scaling obtained
experimentally in Ref. [8].

D. Effect of dangling Majorana fermions

In the previous subsection, we consider the leading-order
effect of a magnetic field on quasivacancies, where the link
variables ûij ¼ ib̂αi b̂

α
j emanating from the quasivacancies

are well defined. However, for true vacancies, there are no
Majorana fermions on the vacancy sites, and the link
variables û are thus no longer well defined around the
vacancies. Consequently, the dangling Majorana fermions
b̂α on the neighboring sites lead to additional terms in the
Hamiltonian. Indeed, if we start from the bare Zeeman term
on a neighboring site j, the Majorana-fermion representa-
tion immediately gives

FIG. 10. Density of states [Eq. (6)] and inverse participation ratio (IPR) [Eq. (10)] for different three-spin couplings κ with fixed
J0 ¼ 0.01 and nv ¼ 2%. The IPR results are presented as weighted density of states

P
nPnδðE − ϵnÞ and are intensified by a factor of 2

in order to be comparable to the density of in-gap states. (a) Bound-flux sector: three broad peaks of in-gap states appear when a bulk gap
opens for κ > 0. (b) Zero-flux sector: only two broad peaks appear inside the gap. The crucial difference in the number of peaks comes
from the hybridization of localized states in the low-energy subspace and, in particular, from the presence of Majorana zero modes in the
bound-flux sector. The results are averaged over 4000 disordered realizations of L ¼ 40.
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δHj ¼ −hασ̂αj ¼ −ihαb̂αj ĉαj ; ð14Þ

where b̂α is a dangling Majorana fermion if the site j is
connected to the vacancy site by an α-type bond. The
Zeeman term can then be readily merged into the original
tight-binding Hamiltonian, as it is equivalent to a hopping
term between the dangling Majorana fermion b̂α and the
matter Majorana fermion ĉ on the same site. Note that this
term is a direct consequence of the magnetic field and is not
derived from perturbation theory. As such, it provides the
primary effect of a magnetic field in a system with true
vacancies.
Without loss of generality, this effect is demonstrated in

Fig. 12 for a magnetic field hz applied in the z direction.

Energetic considerations show that the zero-flux sector
becomes the ground-state flux sector for hz ≥ 0.4. Again,
the clear suppression in C=T can then be attributed to the
formation of an energy gap. Indeed, the dangling Majorana
fermions b̂z are gapped out through hz, which is similar to
the discussion on Fig. 8(b). Since the field strength hz

represents the actual magnetic field instead of the three-spin
coupling κ, we are able to see the scaling law C=T ∼
ðhzÞ−3=2T from the data collapse in the inset of Fig. 12(b).
Interestingly, even though we consider the effect of the
magnetic field only on the danglingMajorana fermions (but
not on the bulk system), the peculiar scaling behavior can
be reproduced in the high-field limit. More detailed results
on the contributions of true vacancies to the thermody-
namics and dynamical responses of the Kitaev model will
be reported elsewhere.

FIG. 11. Specific heat C=T calculated from the Majorana-
fermion spectrum in Fig. 10. (a) Temperature dependence of C=T
for various three-spin couplings κ. The green (blue) dashed
(solid) lines are calculated for the bound-flux (zero-flux) sector,
which is the ground-state flux sector for small (large) κ.
(b) Scaling plot of the curves with large values of κ for which
the ground-state flux sector is the zero-flux sector.

FIG. 12. Effect of dangling Majorana fermions for a 2%
concentration of true vacancies. The specific heat C=T is shown
for the bound-flux sector (a) and the zero-flux sector (b). The
magnetic field is applied along the z axis so that it couples the
dangling Majorana fermion b̂z to the rest of the system. The inset
of (b) shows the field scaling and the collapse of the curves for
higher fields.
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E. Effect of bond disorder

In order to address the peculiar low-energy behavior of
H3LiIr2O6, it was proposed that bond disorder [10,11] may
play a major role in generating the upturns found in both
C=T and the density of states. The physical origin of bond
randomness can be traced back to the random positions of
the protons between the honeycomb layers, leading to a
local distortion of the oxygen octahedral cage, a change in
the Ir—O—Ir bonding angle, and hence, the local variation
of Kitaev couplings along the Ir—Ir links [10,44,45]. Here,
we consider the combined effect of bond randomness and a
2% concentration of vacancies. A random coupling term is
added to the nearest-neighbor coupling on the normal
lattice sites [the first term in Eq. (7)]:

Jhijiα → Jhijiα þ δJhijiα : ð15Þ

In the Gaussian bond-disorder model, this replacement
is applied to all the bonds except the bonds emanating
from the vacancy sites, and δJ is assigned randomly from
a Gaussian distribution with mean value 0 and standard
deviation σJ ¼ 0.25. An additional constraint of

J þ δJ ≥ 0 is implemented to prevent couplings with
mixed signs which would correspond to random-flux
insertion [3]. On the other hand, in the binary disorder
case, the random coupling term is fixed to be δJ ¼ �0.8,
and only 25% of the bonds are randomly chosen to be
disordered. This implementation of binary disorder is
consistent with the previous work [11], apart from using
the random-flux sector. For both true vacancies and
quasivacancies in our system, the bound-flux sector has
lower energy than the zero-flux and random-flux sectors.
Thus, the results presented in Fig. 13 are all calculated for
the bound-flux sector.
For true vacancies, the additional bond randomness leads

only to a small change in the power-law exponent of the
specific heat C=T, implying that the primary cause of the
low-temperature upturn is the presence of vacancies.
However, a nonzero quasivacancy coupling in conjunction
with bond randomness can result in a more noticeable
change up to a power law C=T ∼ T−1, indicating that the
distinction between true vacancies and quasivacancies may
be of great importance when studying the Kitaev spin-
liquid materials.

V. HYBRIDIZATION OF LOW-ENERGY MODES

For a large enough three-spin interaction κ, we can see in
Fig. 10 that the number of broad peaks inside the energy gap
is not the same in the bound-flux sector as in the zero-flux
sector. The spectrumof those in-gap states can be understood
by considering the hybridization among the low-energy
localized modes introduced by the quasivacancies.
Let us first discuss the zero-flux sector. For κ ¼ 0, each

quasivacancy induces two quasilocalized modes around its
vacancy site. The first one is the fully localized vacancy
mode (v mode), which can couple to its neighbors through
the weak coupling J0 [Fig. 1(a)]. The second one is the
quasilocalized mode whose wave function is restricted to
the opposite sublattice and decays as 1=r with the distance
r from the vacancy site [Fig. 1(b)]. For κ ≠ 0, this
quasilocalized mode extends to both sublattices and
becomes properly localized with most of its wave function
distributed over the periphery of the vacancy plaquette (p
mode). For a large enough gap, the in-gap spectrum can
then be approximated with the hybridization of these
localized modes. For example, we can consider a simple
model with only two vacancies and four localized modes:

δHzero ≈ iμðcv;1c̃p;1 þ cv;2c̃p;2Þ þ iηðc̃p;1c̃p;2
þcv;1cv;2 þ cv;1c̃p;2 þ cv;2c̃p;1Þ þ H:c:; ð16Þ

where cv;i is the v-mode Majorana and c̃p;i is the p-mode
Majorana corresponding to the ith vacancy (i ¼ 1, 2). We
add the tilde on the p-mode Majorana to highlight that its
wave function is not confined to a single site. Two energy
scales μ and η are defined to represent the couplings

FIG. 13. Effect of bond disorder for a 2% concentration of
vacancies. For Gaussian disorder, a normal random distribution
of coupling strengths with standard deviation 0.25 is applied to all
bonds. For binary disorder, 25% of the bonds obtain additional
coupling strength δJ ¼ �0.8 so that the total strength becomes
either 0.2 or 1.8. All results are calculated in the bound-flux
sector averaged over 4000 disordered realizations of L ¼ 40.
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between localized modes around the same vacancy and
around different vacancies, respectively. Importantly, μ
increases linearly with both J0 and κ, while η decays
exponentially with the distance between the two vacancies.
Thus, for well-separated vacancies, the first energy scale is
much larger than the second one: μ ≫ η. The eigenspec-
trum of δHzero then consists of two doublets with energies
�μ and a small splitting approximately η within each
doublet [see Fig. 14(b)]. We verify this simple picture by
obtaining the exact energy levels of a single L ¼ 20 system
with only two random vacancies and confirming that the
resulting in-gap spectrum [see Fig. 14(a)] is consistent with
the one obtained from δHzero [see Fig. 14(b)]. For a finite
concentration of vacancies, there is further hybridization on
the scale of η which broadens the two peaks at �μ but
leaves the overall two-peak structure intact [see Fig. 10(b)].
On the other hand, for the bound-flux sector with finite

κ, one additional low-energy Majorana mode is introduced
by the flux on each vacancy plaquette (f mode). When the
fluxes are far apart from each other, these modes become
Majorana zero modes and can be interpreted as anyons
with non-Abelian statistics [27,46]. However, if the fluxes
are closer and interact with each other, these modes
hybridize and broaden into a miniband [47,48]. Thus,
in the simple two-vacancy model of the low-energy
subspace, we must consider the hybridization of six
localized modes:

δHbound ≈ iμ
X
a≠b

ðca;1cb;1 þ ca;2cb;2Þ þ iη
X
a

ðca;1ca;2Þ

þ iη
X
a≠b

ðca;1cb;2 þ ca;2cb;1Þ þ H:c:; ð17Þ

where the summations in a and b are over the three
distinct types of modes (v, p, f). As in the zero-flux
case, the larger energy scale μ represents the couplings
between modes around the same vacancy, while the
smaller energy scale η represents the couplings between
modes around different vacancies. The eigenspectrum of
δHbound has three doublets at energies 0 and �μ, which
explains the presence of the additional zero-energy peak
in the density of states [see Fig. 10(a)]. In general, the
number of resonant peaks inside the bulk gap corre-
sponds to the number of localized modes around each
vacancy.
The distinction between the bound-flux and the zero-

flux sectors in the presence or absence of the central
peak leads to very different low-temperature behaviors
in the fermionic specific heat. It also clearly dis-
tinguishes the vacancies in the Kitaev model from those
in graphene.
The hybridization picture of low-energy modes is remi-

niscent of previous studies of topological liquid nucleation
and thermal metal formation in the Kitaev honeycomb

N
(E
)

N
(E
)

N
(E
)

(a)

(c)

(b) (d) (e)

(f)

FIG. 14. Hybridization between the low-energy modes around two vacancies in the zero-flux sector (a)–(c) and the bound-flux sector
(d)–(f). The densities of states and the real-space wave functions of the low-energy modes are calculated for L ¼ 20 systems with
J0 ¼ 0.01 and κ ¼ 0.2. Note that in the density of states (a) and (d), each peak inside the gap (pointed by a red arrow) contains two
states with a very small energy-level split. This split corresponds to the energy scale η in the spectra of the simple model Hamiltonians
δHzero (16) and δHbound (17), which are shown in (b) and (e). In (c) and (f), we present pictures of the hybridization. The labels p, v,
and f refer to the peripheral mode (p mode), the vacancy mode (v mode), and the flux mode (f mode).
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model [49,50]. However, because of the small vacancy
concentration and, thus, large and random separation of
potential Majorana zero modes, our system is most prob-
ably a thermal insulator of the Anderson type.

VI. CONCLUSION

In this work, we demonstrate that introducing a small
concentration of vacancies in the Kitaev spin liquid leads to
a pileup of low-energy modes which cause a distinctive
power-law divergence in the fermionic DOS. Since the
vacancies are known to bind the fluxes of the emergent Z2

gauge field, we propose an algorithm to construct the
appropriate bound-flux sector for each random-vacancy
configuration.
Dilute vacancies preserve most of the spin-liquid behav-

ior but lead to distinct changes in the low-energy physics.
First, vacancy-inducedMajorana modes are accumulated

in a low-energy peak of the density of states. The form of
this peak across a broad window at low energies is well
fitted by a power-law DOS of the form NðEÞ ∼ E−ν with
ν ∼ 1=2. Consequently, the power characteristic of the
“pure” Dirac dispersion is lost; i.e., this smoking gun of
a Z2 Dirac spin liquid is not robust to the inclusion of
disorder. We remark that our results do not preclude a
crossover to yet more intricate behavior at—possibly much
—lower energies, as has been discussed for graphene [41]
and for random singlet phases [51].
Second, the low-energy modes in question include the

quasivacancy modes and the quasilocalized modes familiar
from site-diluted graphene. However, the Kitaev spin liquid
has additional flux degrees of freedom which affect the
low-energy modes. Furthermore, the IPR results and the
real-space wave functions indicate that the vacancy-
induced modes are localized, especially in the presence
of an external field that breaks the time-reversal symmetry.
When a bulk gap is opened by such a field, these localized
modes survive in the gap, hybridize with each other, and
become disconnected from the bulk modes. In particular,
we are able to show that a simple hybridization picture can
largely account for the in-gap spectrum.
Third, a flux-sector transition from the bound-flux sector

to the zero-flux sector is found when increasing the strength
κ of the field. Unlike the bound-flux sector, the zero-flux
sector has no flux-induced modes that can form a band
around E ¼ 0, and the DOS is therefore gapped.
Our work is mainly motivated by the experimental

findings in the Kitaev spin-liquid candidate H3LiIr2O6

[8]. By demonstrating a robust vacancy-induced divergence
in the DOS, our work provides a basic explanation for the
specific heat results in H3LiIr2O6. In particular, the power-
law scaling NðEÞ ∼ E−ν leads to a C=T ∝ T−ν divergence,
and our numerical results with good fit for ν ∼ 1=2 are
consistent with the experiment. This implies that such a
functional form arises rather robustly for the energy
window under consideration.

This effective power-law exponent ν ∼ 1=2 of the site-
diluted system changes only weakly over a relatively large
energy (or temperature) window with respect to the
addition of bond or flux randomness. Hence, we argue
that vacancies play a major role in the low-energy physics
of the Kitaev spin liquid, which is somewhat surprising and
complementary to previous theories. In addition, the
vacancy-induced low-energy states are localized and prob-
ably thermally insulating, which can be potentially verified
in H3LiIr2O6 in thermal conductivity measurements.
In the future, it would be desirable to address thermally

activated fluxes, though the concurrence of thermal and
disorder averages is a potential challenge for numerics. In
addition, dynamical probes such as Raman or neutron
spectroscopy and magnetic susceptibility measurements
can be used for observing signatures of the vacancy-
induced low-energy modes both theoretically and exper-
imentally [52]. In the limit of extremely dilute vacancies in
a magnetic field, the Majorana zero modes bound to
vacancy-induced fluxes are far away from each other,
which points to the intriguing possibility to observe and
potentially even manipulate Majorana zero modes in a
magnetic material.
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APPENDIX: INDEPENDENT-FLUX
CONTRIBUTION TO THE SPECIFIC HEAT

Throughout this paper, we consider the site-diluted
Kitaev spin liquid in static flux backgrounds, such that
the specific heat or thermal entropy is contributed solely
from the free Majorana fermions. In principle, the frac-
tionalized flux degrees of freedom should contribute to the
other half of kB ln 2 thermal entropy, which is demonstrated
in the Monte Carlo results [35]. However, Monte Carlo
simulation with disorder is not feasible in systems that are
large enough to show the vacancy-induced low-energy
modes. Here, we estimate the flux contribution separately
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from the independent-flux approximation. In the pure
model without vacancies, there exists only one kind of
flux on the hexagonal plaquettes with the excitation energy
Δf ¼ 0.1536J. If we treat plaquette fluxes as independent
excitations, the contribution to the specific heat is nothing
but a Schottky anomaly with only one parameter Δf:

Cf ¼
1

2

�
Δf

T

�
2 eΔf=T

ðeΔf=T þ 1Þ2 ; ðA1Þ

where the prefactor 1=2 is added because fluxes contribute
only half of the total entropy per site in the system.
Next, we introduce the vacancy fluxes to the system. If

the vacancy concentration is nv, then the concentration of
normal fluxes becomes 1 − 3nv, since each vacancy pla-
quette is merged from three hexagons on the lattice.
Therefore, if all the fluxes are still independent, we can
estimate the flux contribution as

Cflux ¼ ð1 − 3nvÞCf þ nvCv; ðA2Þ

where Cv is the Schottky anomaly of vacancy fluxes with
Δv ¼ 0.0268J. In Fig. 15, we show the contribution to C=T
with three different concentrations nv ¼ 0%, 2%, and 20%.
The curve of 20% vacancies can be used to compare to the
Monte Carlo results in Ref. [15]. The high-temperature
Schottky peak refers to the normal flux excitation, and the
low-temperature peak refers to the vacancy flux excitation.
In Ref. [8], only 1%–2% of kB ln 2 thermal entropy is

observed at 5 K, which suggests that the normal flux might
be frozen, but we cannot completely exclude the possibility
that vacancy fluxes contribute to a part of the upturn in
C=T. However, note that in Ref. [8], the upturn is quite
robust for almost 2 orders of magnitude in temperature,
which makes it more likely to be explained by vacancy-
induced Majorana modes.
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