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Unitary circuits subject to repeated projective measurements can undergo an entanglement phase
transition (EPT) as a function of the measurement rate. This transition is generally understood in terms of a
competition between the scrambling effects of unitary dynamics and the disentangling effects of
measurements. We find that, surprisingly, EPTs are possible even in the absence of scrambling unitary
dynamics, where they are best understood as arising from measurements alone. This finding motivates us to
introduce measurement-only models, in which the “scrambling” and “unscrambling” effects driving the
EPT are fundamentally intertwined and cannot be attributed to physically distinct processes. These models
represent a novel form of an EPT, conceptually distinct from that in hybrid unitary-projective circuits. We
explore the entanglement phase diagrams, critical points, and quantum code properties of some of these
measurement-only models. We find that the principle driving the EPTs in these models is frustration, or
mutual incompatibility, of the measurements. Surprisingly, an entangling (volume-law) phase is the generic
outcome when measuring sufficiently long but still local (≳3-body) operators. We identify a class of
exceptions to this behavior (“bipartite ensembles”) which cannot sustain an entangling phase but display
dual area-law phases, possibly with different kinds of quantum order, separated by self-dual critical points.
Finally, we introduce a measure of information spreading in dynamics with measurements and use it to
demonstrate the emergence of a statistical light cone, despite the nonlocality inherent to quantum
measurements.
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I. INTRODUCTION

The study of out-of-equilibrium quantum dynamics is an
exciting research frontier that has seen many important
developments in recent years, especially in relation to the
dynamics of isolated many-body quantum systems [1–8].
Yet more recently, an increased focus on the study of many-
body dynamics in open systems has emerged, largely
motivated by the advent of “noisy, intermediate-scale
quantum” (NISQ) devices [9]. While an ideal quantum
computer (or simulator) is a closed unitarily evolving
system, any realistic implementation will have both con-
trolled operations and unintended interactions with its
environment, leading to nonunitary, open-system dynamics.

The study of nonequilibrium—and possibly nonunitary—
dynamics is a large departure from the usual domain of
many-body physics and requires the development of new
tools and paradigms. Ideas from quantum information
theory are playing a pivotal role in the development of this
new toolkit: In particular, (i) random circuits have emerged
as a versatile tool for the study of many-body dynamics in
various contexts [10–24] and (ii) universality in the dynam-
ics of quantum entanglement has emerged as a novel and
incisive paradigm for characterizing many-body systems
ranging fromelectrons in solids to cold atomic gases to black
holes [10,25–36].
The study of entanglement dynamics has led to the

discovery of novel entanglement phase transitions
(EPTs), characterized by singular changes in the rate of
entanglement growth and/or the entanglement properties
of steady states of nonequilibrium many-body systems.
A paradigmatic example of an EPT is the many-body
localization (MBL) phase transition between a localized
phase with logarithmic in time entanglement growth and a
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thermalizing phase with algebraic in time entanglement
growth [26,27,37]. More recently, a second qualitatively
distinct EPT was found in the entanglement dynamics of
open quantum systems modeled by circuits of random
unitary gates interleaved with local projective measure-
ments [38–40]. These works focus on entanglement
dynamics along single quantum trajectories [41,42], so
that each projective measurement locally collapses the
system’s wave function and a system initialized in a pure
state always remains in a pure state (of decreasing norm). It
is found that individual quantum trajectories exhibit a phase
transition as a function of the measurement rate, separating
a “disentangling” phase (where the entanglement entropy S
obeys an area law) from an “entangling” phase (where S
obeys a volume law).
Despite years of sustained effort, the nature and exist-

ence of the MBL EPT remains an active and hotly debated
area of study [43–55]. Likewise, the discovery of the
unitary-projective EPT was initially a surprising result.
While the existence of the area-law phase was expected (as
frequent strong measurements entangle the system to an
environment, monogamy [56] prevents different parts of
the system from becoming entangled with each other), a
robust volume-law phase was not. Its existence conflicts
with the intuition that quantum coherence is a delicate
resource, unstable to the decohering effects of an environ-
ment. Moreover, while entanglement takes a long time
to locally build up and propagate, it can seemingly be
destroyed globally by a single measurement. A very useful
perspective on the transition, which clarifies how these
issues are sidestepped, is achieved by thinking in terms of
quantum information scrambling [57–59]: Chaotic unitary
dynamics tends to hide quantum information in highly
nonlocal correlations that are inaccessible to local mea-
surements; i.e., it forms good quantum error correcting
codes (QECCs) [22,60]. Local measurements then do not
learn much about the state of the system.
In light of this perspective, it is natural to ask just how

scrambling the unitary evolution must be to protect a
volume-law phase. A physically relevant case where this
question may be probed is for MBL systems, where both
information scrambling and entanglement dynamics are
logarithmically slow in time [26,27,37]. One might expect
such a slow scrambling to be unable to compete with
measurements performed at a finite rate, leading generi-
cally to an area-law phase. Surprisingly, we find that this
expectation is not true, even in models where the unitary
dynamics is strictly nonscrambling (rather than slowly
scrambling)—i.e., the combination of nonscrambling unitary
gates and strictly local (single-site) “unscrambling” mea-
surements can somehow still furnish avolume-lawphase.We
show how these nonscrambling models can equivalently be
described as measurement-only dynamics, where the unitary
gates are discarded altogether, at the expense of introducing
multisite (but still local) measurements.

With this motivation, the present work adds a third novel
member to the set of known transitions in entanglement
dynamics; by studying measurement-only nonunitary cir-
cuits, we find EPTs that are qualitatively distinct from both
the MBL transition and the hybrid-unitary projective
measurement transition. Such measurement-only dynamics
are characterized by the ensemble of operators that one is
allowed to measure on the system. By varying the meas-
urement ensemble, we are able to obtain and characterize
rich dynamical phase diagrams and phase transitions in the
steady-state entanglement properties. This paper investi-
gates the properties of this type of dynamics and the nature
of the associated QECCs and entanglement transitions. A
summary of our results follows.

A. Summary of results

(i) We introduce a class of measurement-only models
(MOMs), where the dynamics entirely consist of
projective measurements of a predetermined set of
local operators, and find that these models generi-
cally support both entangling and disentangling
phases. These models enrich the study of many-
body dynamics in nonunitary settings in various
ways, including:
(a) Showing that entanglement transitions are pos-

sible in hybrid unitary-projective circuits even
when the unitary dynamics, absent measure-
ments, is not scrambling.—This fact shows that
measurements can have an active role in the
formation of the quantum code that supports the
entangling phase.

(b) Introducing a novel EPT separating volume- and
area-law entangled phases in MOMs.—This
transition is distinct from both the MBL EPT
and the hybrid unitary-projective EPTand adds a
conceptually new member to the set of known
EPTs. In MOMs, the scrambling and unscram-
bling effects are fundamentally intertwined,
being produced by the same physical phenome-
non (measurement); thus, unlike the unitary-
projective case, where the balance between
scrambling and unscrambling is naturally con-
trolled by the measurement rate p, here we find
that the operative property is the “frustration” of
the measurement ensemble. In particular, we
find that an entangling phase is the generic
outcome when sufficiently long, sufficiently
random operators are measured on the system.

(c) Identifying a generic obstruction to the forma-
tion of an entangling phase.—We introduce an
infinite class of models (those with “bipartite
frustration graphs”) that cannot support a
volume-law phase but rather exhibit distinct
area-law phases separated by a critical point
pinned by a duality. These models include and
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vastly generalize a critical point in free-fermion
measurement dynamics that has been previously
identified [39]. More generally, the area-law
phases in these bipartite models can host distinct
varieties of quantum order dictated by the sym-
metries and topology of the operator ensembles.

(ii) We study the properties of the novel QECCs formed
in the entangling phase, as well as the time-depen-
dent code properties at criticality. We find that the
latter obey a scaling prediction from conformal field
theory, lending support to the existence of a stat-
istical-mechanical description of the critical point.

(iii) We introduce a new probe of locality and informa-
tion spreading in dynamics with measurement,
which enables us to show ballistic information
spreading with a finite velocity in this type of
dynamics. This is surprising in light of the nonlocal,
EPR-like behavior of entanglement under projective
measurement: The light cone we identity is a
statistical, emergent property of the dynamics. This
new probe is a nontrivial advance, because “stan-
dard” measures for information spreading, such as
out-of-time ordered commutators, do not readily
generalize to the nonunitary setting.

B. Relation to previous work

The MOMs we introduce add a new member to the
family of known phase transitions in the dynamics of
quantum entanglement, joining the MBL phase transition
and the entanglement transition in hybrid unitary-projective
circuits. The MBL transition has served as a guiding and
paradigmatic example for over a decade; there, individual
eigenstates of a closed (isolated) system exhibit a sharp
change in their entanglement properties as a function of
disorder. Hybrid unitary-projective circuits have come to
the fore much more recently and broadened the scope of
entanglement transitions to the domain of open systems. It
is interesting to note the connection of the latter to quantum
error correction thresholds that are studied extensively in
quantum information science; for example, the founda-
tional work on fault-tolerant quantum computation with
physical locality constraints [61] is a precursor of the
contemporary work on entanglement transitions in hybrid
circuits. The common focus is on “coherent” dynamics
interspersed by “incoherent” processes (noise or measure-
ment). Our work falls outside of this paradigm, by
introducing conceptually distinct models that cannot be
viewed through the above lens of coherent-vs-incoherent
processes.
We note that recent works, some simultaneous with ours,

also consider measurement-only dynamics in free-fermion
models which host transitions between distinct area-law
phases [39,62–64]. Our work substantially broadens the
scope beyond free fermions and generically finds both
volume- and area-law entangled phases, with a novel

transition driven by the frustration of measurement ensem-
bles. The existence of the volume-law phase is an a priori
surprising outcome in models without scrambling unitary
dynamics.
Finally, we remark on connections between this work

and other topics in quantum information theory involving
measurements. While it is known that measurements
possess the same computational power as quantum gates
[65], this resource-theoretic equivalence relies on specific
protocols or structured sequences of measurements. The
dynamics we study, on the contrary, feature spatiotempor-
ally random sequences of measurements. It is crucial to
distinguish the possibility of certain outcomes as a matter
of principle, in specifically tailored circuits, from their
realization in a stochastic setting—an important distinction
in quantum information science, especially in the theory of
fault tolerance [61]. We also remark on the distinction
between measurement-only dynamics and measurement-
based quantum computing (MBQC) [66]: in MBQC, one is
handed an entangled resource state and, by performing
measurements in a specific sequence, obtains the (classical)
answer to a predefined computational problem, at the
expense of destroying the resource state. In contrast to
MBQC, the measurement-only dynamics we study do not
rely on initial resources, are spatiotemporally random, and
can produce highly entangled states as their output.

C. Structure of the paper

The paper is organized as follows. In Sec. II, we consider
the question of entanglement transitions with nonscram-
bling, MBL-inspired unitary circuits and projective mea-
surements. This setting motivates the introduction of
MOMs, which we define in more generality in Sec. III.
In Sec. IV, we show numerical results for the entanglement
phase diagrams in several MOMs and draw a general lesson
on their phenomenology, including their critical properties
in Sec. IV C. In Sec. V, we introduce a class of models—
those with “bipartite frustration graphs”—which present an
obstruction to the existence of a volume-law phase. Instead,
such models can host distinct area-law phases, possibly
characterized by different types of quantum order and
separated by novel phase transitions. The remainder of the
paper focuses on different properties of the volume-law
phase and of critical points in the previously introduced
MOMs: Sec. VI discusses their properties as quantum error
correcting codes, while Sec. VII focuses on their locality
and causality structure. We conclude by summarizing our
results and pointing to open questions and future directions
in Sec. VIII.

II. MOTIVATION: “MEASUREMENT-ENABLED
ENTANGLEMENT” IN l-BIT CIRCUITS

An appealing interpretation of the entanglement phase
transitions in unitary-projective dynamics is based on the
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competition between the scrambling effect of unitary
dynamics and the unscrambling effect of local measure-
ments. Measurements tend to degrade locally accessible
quantum information into classical bits, while chaotic
unitary dynamics tends to scramble, i.e., hide quantum
information in nonlocal degrees of freedom, where it
cannot be accessed by local projective measurements. It
is thus tempting to conjecture that the phase of the system is
decided by which process happens faster—the information
hiding due to the unitary dynamics or the readout induced
by the measurements. Such a scenario yields a critical
measurement rate pc, below which the system’s steady
state has volume-law entanglement. This scenario also
suggests that, by tuning the scrambling rate to zero, one
should be able to push pc down to zero. As we will now
see, this is not the case.

A. Removing scrambling: l-bit models

To test the above scenario, we consider what happens
when the unitary dynamics does not scramble at a finite
rate. The many-body localized phase provides an example.
Here, entanglement is known to grow only logarithmically
in time upon quenching from an unentangled product state
[26,27,37]. Despite the slow growth, the entanglement
entropy at late times typically saturates to a volume law
with a subthermal entropy density [27,37]. Slow scram-
bling can be explained using the l-bit representation of a
fully MBL Hamiltonian [67–69]:

HMBL ¼
X
i

hiτ
z
i þ

X
k≥2

X
i1<���<ik

Ji1;…;ikτ
z
i1
…τzik ; ð1Þ

where the τzi operators are local integrals of motion
(l bits) [70] and the exponentially decaying couplings,
Ji;…;j < e−ji−jj=ξ, cause a logarithmic growth of entangle-
ment in quenches from generic product states due to slow
dephasing between different l-bit basis states.
We now ask whether interspersing the above dynamics

with local projective measurements yields an entanglement
transition. To address this question further, we focus on an
even less entangling model of unitary dynamics: In Eq. (1),
we allow only two-body couplings out to a finite distance n.
This cutoff gets rid of global scrambling altogether,
capping the amount of entanglement to an OðnÞ size-
independent (hence, area-law) value upon starting from a
nonentangled initial product state. Moreover, to facilitate
numerical simulations, we consider a toy Clifford circuit l-
bit model with two gates: the two-qubit controlled-Z gate
CZij ¼ e−iðπ=4ÞðZi−1ÞðZj−1Þ (i < j < iþ n) and the single-
qubit phase-gate Pi ¼ e−iðπ=4ÞZi . The system is subject to a
layer of unitaries:

Ul-bit ¼
Y
i

Pai
i

Y
i<j<iþn

CZ
bij
ij ; ð2Þ

with ai; bij ∈ f0; 1g chosen randomly with probability 1=2
(notice all the gates commute, so there is no need to specify
the order in which they act). Then, for each site, we either
measure X, measure Z, or do not perform any measure-
ment, with probabilities px, pz, and 1 − px − pz, respec-
tively. The whole process is iterated until a steady-state
distribution of entanglement is reached. This setup is
illustrated in Fig. 1.
Notice that Z measurements create disentangled l bits

which commute with the unitary dynamics; the only way a
measured l bit can again become entangled with the rest of
the system is by being measured in the X direction first.
Hence, the dynamics with px ¼ 0 and pz > 0 trivially leads
to a product state as soon as every site is measured once.
Measuring in the X basis, thus breaking the conservation
law, is necessary to obtain any nontrivial steady state.
Surprisingly, we find that the above model (which, to

reiterate, has area-law entanglement at both px ¼ 0 and
px ¼ 1) admits a volume-law phase. Figure 2(a) shows the
phase boundary in the px, pz plane for the model with
range n ¼ 4. For 0 < px ≲ 0.7, the model is in a volume-
law phase which is robust to the insertion of sufficiently
infrequent Z measurements. A similar picture holds for all
n > 3, with an increasingly robust volume-law phase; see
Fig. 2(b). (The data include fractional values of n; see the
Appendix A for a definition of the associated circuit).
Considering now measurements in the X basis only
(pz ¼ 0), we find that the model with n ¼ 3 is area law
for any px. A volume-law phase is found for n≳ 3.05—
though precise determination of the critical n requires
taking px → 0þ, which is subtle. We revisit this point
from a different perspective in Sec. IV and Appendix A.
A few comments are in order. First, this result shows that

an interpretation of entanglement transitions in unitary-
projective circuits based on the competition between the
rates of measurement and unitary scrambling is incomplete:
Entanglement transitions are possible even with a scram-
bling rate of zero. Second, the result does not follow trivially
from the fact that the X measurements break the conserva-
tion laws in the unitary part of the circuit (½Ul-bit; Zi� ¼ 0).
While clearly necessary, this condition is insufficient—e.g.,

FIG. 1. Schematic of the l-bit circuit with projective measure-
ments. This circuit has n ¼ 3: CZ gates are allowed between
qubits i, j with ji − jj < 3, i.e., nearest and next-nearest neigh-
bors. All allowed gates happen with probability 1=2 in each layer.
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the models discussed above with n ≤ 3 remain area law
despite the integrals of motion being broken by measure-
ments. Finally, it is remarkable that the interplay of two
ingredients that are separately incapable of creating much or
any entanglement (the finite-range l-bit gates and single-site
measurements) can nonetheless yield a volume-law phase.
This measurement-enabled entanglement necessitates a new
framework. In the rest of the article, we advance the proposal
that such a framework relies on measurements alone.

B. Removing unitary gates: Measurement-only models

Let us take a Pauli string O and denote the projective
measurement of O by μO:

μOðjψiÞ ¼
ðI þ sOÞjψi
kðI þ sOÞjψik ;

where s ∈ fþ1;−1g is picked randomly according to the
usual Born probability, ProbðsÞ ¼ 1

2
ð1þ shψ jOjψiÞ. It is

clear from the above definition that the following holds for
any unitary U and state jψi:

μOðUjψiÞ ¼ UμU†OUðjψiÞ; ð3Þ

so that a unitary evolution U followed by a measurement of
the operatorO is equivalent to first measuring the (typically
longer) Heisenberg evolved operator U†OU followed by
the unitary evolution U. A consequence of this fact, unique
to nonscrambling circuits, is that the unitary-projective
dynamics can be temporally separated into a unitary
part and a projective part that are both local. This result
holds because sliding a layer of l-bit gates [Eq. (2)] past an
X measurement according to Eq. (3) yields an operator with
finite support. Specifically, since CZ†

ijXiCZij ¼ XiZj and

P†
i XiPi ¼ Yi [as sketched in Fig. 3(a)], we have

U†
l-bitXiUl-bit ¼ Xið−iZiÞai

Y
ji−jj<n
j≠i

ðZjÞbij ; ð4Þ

which is a Pauli string of length at most 2n − 1, charac-
terized by an X or Y operator surrounded by finite “tails” of
I or Z operators on both sides [the exponents ai; bij ∈ Z2

are as in Eq. (2)]. Notice that even when conjugating by
several layers of Ul-bit, the operator cannot grow any longer
than this length—the only effect of multiple layers is to
change the values of ai and bij, thus looping through 22n−1

Pauli strings of maximum length 2n − 1. After taking all

(a)

(b)

FIG. 2. Entanglement phase diagram of the l-bit unitary-
projective dynamics as a function of range n and probabilities
px, pz of projective measurements in the X and Z basis. The black
dots represent crossings in the tripartite mutual information (see
Sec. IV C) obtained from numerical stabilizer simulations of
systems of L ≤ 512 qubits evolved for time T ¼ 4L, averaged
over at least 100 random realizations. (a) Fixed range n ¼ 4. For
0 < px ≲ 0.7, there is a volume-law phase robust to the intro-
duction of sufficiently infrequent Z measurements. (b) Measure-
ments in the X basis only (pz ¼ 0). Avolume-law phase exists for
range n ≳ 3.05 (see Appendix A for the continuation of the
models to fractional range n). The px ¼ 0 line is always area law,
regardless of n.

(a)

(b)

(c)

FIG. 3. (a) Rules for taking CZ and P gates past single-site X
measurements [Eq. (3)]. (b) The l-bit circuit from Fig. 1 after
taking all the gates past the measurements. Each single-site X
measurement develops tails of Z operators on either side of
maximum length n − 1 (2 in this case) due to conjugation by CZ
gates. (c) Sketch of general measurement-only dynamics. Multi-
site Pauli measurements (ellipses) are equivalent to single-site
measurements conjugated by a unitary gate U.
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the unitary layers to the end of time, t ¼ T, we are left with
a circuit consisting purely of local multisite measurements
drawn from some finite ensemble of Pauli strings, as in
Eq. (4), followed by a final layer of unitaries [see Fig. 3(b)
for an example with T ¼ 2 layers]. This final layer, despite
being the composition of T layers, is in fact equivalent
to a single layer having atoti ¼ P

T
t¼1 aiðtÞ and btotij ¼P

T
t¼1 bijðtÞ modulo 2 (which are still uniformly distributed

binary numbers). This layer can change the entanglement
about any given bond by at most n − 1 bits, which cannot
change the entanglement phase (area law to volume law or
vice versa). It can thus be safely discarded for our purposes,
which leaves us with a circuit consisting exclusively of
local measurements of multisite Pauli strings.
It follows that the entanglement transition in l-bit

unitary-projective circuits discussed earlier can actually
be understood as the result of projective measurements
alone. While this type of quantum dynamics, known as
measurement-induced dynamics, has been considered in
the context of quantum information processing and met-
rology [71–73], its entanglement properties are largely
unexplored. As we see above, entanglement phase tran-
sitions are possible in this type of dynamics. From this
result, it follows that measurements can play both sides in
the competition underlying entanglement transitions—at
the same time degrading quantum information to classical
bits and hiding quantum information from local, accessible
degrees of freedom into nonlocal, inaccessible ones.
This behavior has the potential to either increase or
decrease the complexity of the state.
We emphasize that, while the measurement of a multisite

Pauli string can be viewed as a composition of unitary
evolution and measurement of a single-site Pauli operator,
these models are not the same as the unitary-projective
circuit models studied previously [38,39]. To wit, the
unitary gates before and after the single-site measurement
are perfectly correlated, being adjoints of each other
[Fig. 3(c)]; they would not induce scrambling in the
absence of the intervening measurement.
In the following, we introduce a broader class of MOMs,

including and generalizing the l-bit model discussed above,
and study their entanglement properties.

III. MEASUREMENT-ONLY DYNAMICS

A. Setup

We define measurement-only dynamics by introducing
an “ensemble” E ¼ ðPα; fOαgÞ, consisting of a set of Pauli
stringsOα and a probability distribution Pα over fOαg. Any
such ensemble E induces a random dynamics in the
following way: At each time step, an Oα is picked
according to Pα and measured at a random location in
the system; doing so updates the state according to the
“wave function collapse” jψ tþ1i ¼ μOα

ðjψ tiÞ; starting from
an initially disentangled product state, this step is iterated

until a steady-state distribution of the entanglement over the
so-generated ensemble of states is achieved.
In principle, a 1D system of L qubits has 4L Pauli strings,

each of which could be drawn with independent proba-
bilities. However, in order to sensibly define phases of
matter, we impose the additional requirement of locality:
We restrict our ensemble to Pauli strings supported in an
interval of length r (the “range” of the ensemble), which
does not scale with system size, and specify a probability
distribution Pα over all ð4r − 1Þ nonidentity Pauli strings α
in this range. While not essential, it is convenient to further
assume statistical translation invariance, i.e., that a given
Pauli string Oα is measured with equal probability any-
where in the system [74]. In addition, we rescale time as
t≡m=L, where m is the number of measurements that
have been performed. With this convention, each site is on
average subject toOð1Þmeasurements per unit time and the
thermodynamic limit is well defined.
We can view Eq. (4) as one such ensemble: It has range

r ¼ 2n − 1 (maximum length of Pauli strings) and contains
22n−1 distinct operators. However, the underlying unitary-
projective dynamics builds in correlations between the
probabilities Pα for consecutive measurements, which goes
beyond the scope of models defined above. Dropping such
correlations and taking Pα to be uniform defines a MOM,
analyzed in detail in Appendix A, which is closely related
to the p → 0þ limit of the unitary-projective circuit with
measurement rate p.

B. Measurements in the stabilizer formalism

We briefly summarize the update rules for measuring
Pauli strings on stabilizer states, as they help in building
intuition about measurement-only dynamics. A more
thorough review is offered in Appendix B.
A stabilizer state is a state of the form

ρ ¼ 1

2S

YL−S
i¼1

I þ gi
2

; ð5Þ

where the fgig are commuting Pauli strings called the
stabilizer generators. If S ¼ 0, the state is pure, ρ ¼ jψihψ j,
with jψi the unique simultaneous þ1 eigenvector of all the
gi’s; S > 0 represents a mixed state.
Measuring a Pauli string O on a state like Eq. (5) can

have several qualitatively different outcomes (discussed in
detail in Appendix B). The entropy of a mixed state [Eq. (5)
with S > 0] changes as follows: IfO is a “logical operator,”
i.e., commutes with all gi’s but does not belong to the
stabilizer group, it gets added as a new generator and the
entropy decreases, S ↦ S − 1; otherwise, O is either a
stabilizer or an “error” (i.e., anticommutes with at least one
gi), and the entropy is unchanged. In all cases, O itself
becomes a stabilizer after the measurement is performed
(possibly up to a sign), and the other stabilizer generators
may have to be updated to ensure commutation with O.
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C. Simple limits

To gain some intuition about measurement-only stabi-
lizer dynamics, we begin by considering two extreme
limits: (i) the ensemble of L single-site Zi operators and
(ii) the ensemble of ð4L − 1Þ global Pauli strings other than
the global identity, with operators picked from a uniform
distribution in both cases. The former has range r ¼ 1 and
only one speciesOα ¼ Z; the latter has range r ¼ L (which
violates the assumption of locality) and ð4L − 1Þ distinct
species corresponding to all possible nonidentity Pauli
strings.
It is convenient to adopt the dynamical purification

perspective [58] to analyze these two cases. In the puri-
fication framework, phases are defined based on the ability
of the dynamics to purify an initially mixed state and are
closely associated to the entanglement phases in pure-state
dynamics. We thus start from a maximally mixed state
ρ ∝ I, measure strings from the ensemble, and decide
whether the state purifies in logðLÞ time (“pure phase,”
equivalent to the area-law entanglement phase) or remains
mixed out to exponentially long times (“mixed phase,”
equivalent to the volume-law entanglement phase).
In case (i), the system trivially reaches a pure product

state in the Zi computational basis as soon as every site has
been measured once, which takes OðL lnLÞ measurements
or OðlnLÞ time, and thus belongs to the pure, or area-law,
phase. Unsurprisingly, single-site measurements can only
disentangle.
In case (ii), the first measurement (starting with the

identity state) always adds one stabilizer generator g1 to the
(initially empty) list and, thus, removes one bit of entropy.
The second measurement is equally likely to commute or
anticommute with g1: It thus takes two attempts, on
average, to add a second generator g2. Adding g3 to the
generators takes on average four attempts, and so on—the
purification time scales exponentially with L, and thus
the dynamics belongs to the mixed phase. This result is also
not surprising, as the strings are completely nonlocal or all
to all.
What is not clear from these simple examples is whether

it is possible to achieve a volume-law phase by measuring
short Pauli strings (of finite range r≳ 1). In this case, the
first OðL=rÞ measurements are likely to commute (simply
because the measured strings are unlikely to overlap),
adding stabilizer generators and partially purifying the
initial state. However, past this point, measurements may
begin to frequently anticommute with the existing stabilizer
generators, and a volume-law phase where the system
purifies exponentially slowly may occur. Whether this
process happens in practice is not obvious: While it is
known that arbitrary highly entangled states can be pro-
duced via measurements only (because general multisite
measurements are universal for quantum computation
[65]), this result relies on very special protocols (e.g., gate
teleportation [75] or entanglement swapping [76]). It is not

immediately obvious whether a stable volume-law
entangled phase can be generated by measurements placed
randomly in space and time. This situation is reminiscent of
the entanglement transition in unitary-projective circuits:
While it is immediately clear in that case that both volume-
and area-law entangled states can be constructed (e.g., in
the trivial limits of measurement probabilities p ¼ 0 and
p ¼ 1), it is not obvious, and is indeed a surprising result,
that these extreme limits should extend to phases separated
by a sharp transition at some critical value 0 < pc < 1.
In the present case of measurement-only dynamics, how

to interpolate between the limits considered above is not as
clear: There is no unique knob to tune (like the measure-
ment probability p in unitary-projective circuits) but rather
a huge, multidimensional landscape of possible measure-
ment ensembles; with trivial exceptions like the ones
examined above, these ensembles are not straightforwardly
sorted from “more entangling” to “more disentangling.”
Understanding this measurement-only dynamics in some
generality thus requires a new organizing principle. In the
following, we propose and explore a potential organizing
principle: the degree of frustration of the measurement
ensemble.

D. Measurement frustration

As we just discussed, fully commuting ensembles of
measurements invariably “localize” the wave function in a
simultaneous eigenstate, which is area-law entangled if the
measurements are local. Some level of noncommutativity
among measurements is thus necessary to produce an
entangling phase. Noncommuting observables cannot, by
definition, be known at the same time; the wave function
thus cannot satisfy all the measurements in the ensemble at
once. We refer to this inability to satisfy noncommuting
measurements as frustration [77]. It is tempting to con-
jecture that a suitably defined degree of frustration (a
function of the Oα and Pα) could predict the entanglement
phase of a given ensemble (without resorting to explicit
simulation of finite-size dynamics).
To this end, it is helpful to introduce the frustration

graph of an ensemble of Pauli measurements [77–80]. This
object is a graph whose vertices represent all the operators
in the ensemble fOα;ig, where i refers to the spatial location
of the operator and where two vertices are connected by an
edge if and only if the corresponding operators anticom-
mute. For local dynamics with operators of a finite range,
the frustration graph has a quasi-1D structure, having
length L and width equal to the number of operator species,
with a periodic unit cell (due to translation invariance); see
examples in Figs. 6(a) and 8.
The adjacency matrix of this graph defines a four-index

object (two species indices α, β and two position indices i,
j), Γα;β

i;j ¼ 0 if Oα;i and Oβ;j commute, 1 if they anticom-
mute. Translation invariance implies that Γ depends only on
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the displacement l≡ i − j between operators. In the
following, we refer to Γαβ

l as the frustration tensor.
The frustration graph (or tensor) captures crucial infor-

mation about the dynamics; in particular, as we show in
Appendix C, the information therein (plus any algebraic
dependence between operators in the ensemble) is suffi-
cient to simulate the dynamics and, thus, determine the
entanglement phase. Graph-theoretic properties or invari-
ants may place constraints on the existence of an entangling
phase in a given ensemble. We return to this point in Sec. V,
where we discuss a result in this spirit on bipartite graphs.

IV. PHENOMENOLOGY

In this section, we investigate the generic phenomenol-
ogy of MOMs with the help of numerical simulations. The
goal is twofold: to gain insight into the physical mechanism
driving the EPT and to quantitatively investigate its critical
properties and compare them to those of unitary-projective
circuits. To these ends, it is helpful to focus on sufficiently
“generic” models that exhibit all the phases while also
offering simple handles to tune between them. We intro-
duce one such class of models in Sec. IVA and present
results on their phase diagrams and EPTs in Secs. IV B
and IV C, respectively.

A. Models: Factorizable ensembles

Measurement-only dynamics as introduced in Sec. III,
even under assumptions of locality and statistical trans-
lation invariance, produces a wide parameter space of
models—a hypothetical entanglement phase diagram on
range-r MOMs would be ð4r − 1Þ-dimensional, which is
prohibitive already for r ¼ 2. At the same time, most of
these dimensions are likely unimportant, and it is crucial to
find ways to describe generic measurement ensembles with
few parameters. We do so by introducing factorizable
ensembles: sets of Pauli strings (of a fixed length r) made
from an underlying probability distribution over single-site
Pauli matrices:

Oα ¼⊗
r

n¼1
σαn ⇒ Pα ¼

Yr
n¼1

qαn ; ð6Þ

where α is a string of Pauli matrix labels αn ∈ f0; X; Y; Zg
and q is a probability distribution over the four single-site
Pauli matrices. This structure reduces the space of models
from Oð4rÞ dimensions to just three dimensions—the
single-site qX, qY , and qZ probabilities, which live in a
tetrahedron, 0 ≤ qα ≤ 1 and 0 ≤ qX þ qY þ qZ ≤ 1.
Dropping the identity (which tends to increase commuta-
tivity, thus likely pushing the dynamics toward area-law
entanglement) further reduces the phase diagram to the
triangle qX þ qY þ qZ ¼ 1. The average probability of
anticommutation between two measurements is controlled
by the vector of probabilities q ¼ ðqX; qY; qZÞ. More
precisely, as shown in Appendix C, the level of

anticommutation is controlled by the distance from the
center of the triangular phase diagram, δq≡ kq − q0k, with
q0 ¼ ð1; 1; 1Þ=3 the center (all nonidentity Pauli matrices
equally likely). Large δq means less anticommutation, with
the corners of the triangle (δq ¼ ffiffiffiffiffiffiffiffi

2=3
p

≃ 0.82) corre-
sponding to fully commuting measurements.

B. Entanglement phases

We now discuss the phases of the factorizable ensembles
for different spatial ranges.

1. Range r = 3

We begin by considering ensembles with range r ¼ 3,
which include all 27 three-body operators of the form σa ⊗
σb ⊗ σc with a; b; c ∈ fX; Y; Zg, picked with probability
qaqbqc, and measured at a random location in the system
(on three consecutive sites). By simulating this model
numerically with the stabilizer method, we find that a
large part of parameter space belongs to a volume-law
entangled phase; see Fig. 4(a). Interestingly, the phase
boundary is approximately circular: volume law for δq <
δqc and area law for δq > δqc, with δqc ≃ 0.52. As we
noted earlier, δq controls the anticommutation probability;
therefore, this circular phase boundary separates more
frustrated models (interior, volume-law) from less frus-
trated models (exterior, area-law). This fact suggests that
measurement frustration is indeed the mechanism support-
ing the volume-law phase and driving the EPT in these
models.

2. Range r > 3

As the range r is increased, the volume-law phase takes
up a progressively larger fraction of the phase diagram (not

(a) (b)

FIG. 4. Phase diagrams of factorizable ensembles with
q ¼ ð0; qX; qY; qZÞ (Pauli strings without identities) for ranges
r ¼ 3 (a) and r ¼ 2 (b). The starred point in (a) is the phase
transition studied in Fig. 5. The þ symbols are numerical
estimates of the phase boundary, obtained from finite-size
crossings of the tripartite mutual information I3 [Eq. (8)] in
(a) and from the finite-size scaling of half-cut entanglement
entropy in (b). Data are obtained from stabilizer numerical
simulations of systems of up to L ¼ 512 qubits, averaged over
between 102 and 104 realizations depending on L. Only the
wedge qX > qY > qZ is simulated, with the rest of the phase
diagram obtained by symmetry.
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shown); the corners remain trivially area law for arbitrarily
large r, but the extent of the area-law parameter space
shrinks. Focusing on the qX þ qY ¼ 1 (qZ ¼ 0) side for
simplicity, we find from numerical simulations of 3 ≤ r ≤
20 that the critical value qX;c obeys

r ≃
k

2qX;cð1 − qX;cÞ
≡ k

2=3 − δq2
; ð7Þ

with k ≃ 1.16. Thus, the critical contour approaches the
corners of the triangle (δq ¼ ffiffiffiffiffiffiffiffi

2=3
p

) with increasing r:
Longer strings generically lead to a volume-law phase,
unless they are fine-tuned to be highly commuting. More
specifically, taking r → ∞ and qX → 0 concurrently along
the critical line [Eq. (7)], the probability of sampling the
uniform string made entirely of the majority Pauli species
(in this case, Y⊗r) is qrY ≃ ½1 − ðk=2rÞ�r → e−k=2 ≃ 0.56.
Thus, at criticality a finite fraction of the measurements (in
fact, a majority) are of the form Y⊗r. These operators are
mutually commuting and define the stabilizers of a QECC,
fAj ¼ Yj…Yjþrg. This fact points to a qualitative picture
for the area-law phase: Measurements in the ensemble
break up into a code (the fA ¼ Y⊗rg operators in this case)
and “errors” (all the other operators); frequent measure-
ments of the QECC stabilizers fAjg constantly remove the
errors before they have a chance to spread and build up any
entanglement beyond an area law.

3. Range r = 2

We treat the r ¼ 2 case separately, because it displays
qualitatively different phenomenology: We find no sign of a
volume-law phase; instead, we see evidence of a critical
phase in a circular region around the center of parameter
space, as shown in Fig. 4(b). The sides of the phase
diagram, e.g., qZ ¼ 0, map to free fermions [81,82]:
The Pauli string species fX0X1; X0Y1; Y0X1; Y0Y1g are
equivalent, under Jordan-Wigner transformation, to
fiγ1γ2; iγ1γ3; iγ0γ2; iγ0γ3g, where γ2j and γ2jþ1 are the
two Majorana fermion operators on site j. Consistent with
the fact that free-fermion dynamics with measurement
cannot sustain a volume-law entangled phase [83], we find
that the edges of the phase diagram are entirely in the
area-law phase. For this model, we also see no critical
points between area-law phases, unlike other free-fermion
measurement-only models [62–64,82]. The interior of the
phase diagram consists of a nine-operator ensemble
fðX=Y=ZÞ0ðX=Y=ZÞ1g which does not map to free fer-
mions. Numerically, we find that the area-law phase
identified at the boundary extends in the interior [see
Fig. 4(b)]; however, while we can conclusively rule out
a volume-law phase anywhere in the interior, the system
appears to enter a critical phase as q approaches the center
of the triangle q0 ¼ ð1; 1; 1Þ=3. In this phase, we find that
the entanglement entropy diverges logarithmically with

system size, S ∼ K lnl. Though area-to-critical phase
boundaries are hard to locate accurately, we find a phase
boundary consistent with δq ¼ kq − q0k ≃ 0.36. Inside
this circular contour, the half-cut entropy SðL=2Þ shows
no sign of saturation for sizes up to L ¼ 512, and the
purification dynamics is consistent with a CFT (we present
results on this behavior in the context of quantum code
properties in Sec. VI).

C. Critical properties

Having established the existence of entanglement phases
in these models, it is interesting to ask whether the
entanglement transitions are the same as those found in
unitary-projective circuits [38,84,85]. To address this ques-
tion numerically, we use the tripartite mutual information

I3ðA; B;CÞ ¼ SA þ SB þ SC þ SA∪B∪C

− SA∪B − SB∪C − SC∪A ð8Þ

evaluated for three consecutive intervals A, B, and C of
length L=4. I3 as defined above vanishes in area-law
entangled states, has an extensive (negative) value in the
volume-law phase, and is finite at critical points, which
makes it particularly useful in estimating the location of
critical points [58], as it gives rise to crossings with very
limited finite-size drift (the entanglement entropy, on the
other hand, has a logarithmic drift at criticality which
makes finite-size scaling harder). The single-parameter
scaling ansatz

I3ðq; LÞ ∼ F½ðq − qcÞL1=ν�; ð9Þ

where q parametrizes the measurement ensemble, can be
used to estimate the correlation length critical exponent ν.
We consider the r ¼ 3 factorizable models and focus for

simplicity on the qZ ¼ 0 line, where this model has an area-
to-volume critical point [shown by the star in Fig. 4(a)] at
qX;c ¼ 0.274ð2Þ. We note that this model, consisting of
Pauli strings fXXX;XXY;…; YYYg, has two independent
“integrals of motion,” or symmetries. These are global Pauli
strings which commute with all measurements [86]:Q

j Z3jZ3jþ1 and
Q

j Z3jþ1Z3jþ2. These operators contrib-
ute two bits of positive tripartite mutual information I3.
This contribution offsets the value of I3 in the area-law
phase to I3 ¼ 2, as seen in Fig. 5(a). In the vicinity of the
critical point, the scaling ansatz Eq. (9) yields a correlation
length exponent ν ¼ 1.1ð1Þ, although substantial correc-
tions to the finite-size scaling remain visible on the volume-
law side, as shown in Fig. 5(b). These corrections are due to
the low entropy density of the volume-law phase in this
model. Additionally, we find that the entanglement entropy
at the critical point obeys SðlÞ ≃ K lnl with K ¼ 1.0ð1Þ.
We also study the local order parameter introduced in

Ref. [84], i.e., the long-time limit of the entanglement
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SRðtÞ≡ S½ρRðtÞ� of a reference qubit R initialized in a Bell-
pair state with a qubit at position x in the system. In the
area-law (pure) phase SR vanishes as the reference is
quickly disentangled, while in the volume-law (mixed)
phase entanglement persists for exponentially long times.
At criticality, SR vanishes parametrically slowly in system
size, SRðtÞ ∼Gðt=LzÞ for some function G. We find a
dynamical exponent z ¼ 1, consistent with the transition
being described by a CFT, in agreement with previous
studies on the transition in unitary-projective circuits.
More specific evidence of a CFT description for one of
these critical models (the r ¼ 2 factorizable MOM) is
presented in Sec. VI, where we study time-dependent
QECC properties.
Additionally, in Appendix A, we examine in a similar

way a different family of MOMs, based on the l-bit unitary-
projective circuit from Sec. II. There too we find an area-to-
volume critical point with a correlation length critical
exponent ν ¼ 1.1ð1Þ and dynamical exponent z ¼ 1. The
coefficient of the logarithmic divergence in the entropy
is K ¼ 0.8ð1Þ.
The critical properties of these two examples are

compatible, pointing to the possibility of a unique univer-
sality class for measurement-only entanglement transitions
in 1D. Additionally, the correlation length exponent found

here [ν ¼ 1.1ð1Þ] is lower than the one found for the EPT in
hybrid Clifford circuits [58] [ν ¼ 1.28ð2Þ], suggesting that
the MOM universality class may be distinct from the
Clifford unitary-projective one. However, the limited res-
olution on critical exponents and the large variety of other
models we have not studied mean that these results should
be viewed as only a preliminary investigation of these
critical points and that more thorough investigations are
needed to settle this issue.

V. BIPARTITE ENSEMBLES AND
QUANTUM ORDER

The results of Sec. IV show that a volume-law phase is
the generic outcome for “long enough” and “random
enough” Pauli strings—but making these qualifiers more
specific remains challenging. In light of these consider-
ations, rather than focusing on what enables a volume-law
phase, one can take the opposite view of searching for
obstructions to this generic outcome. In this section, we
discuss a class of models, characterized by a special
algebraic property—bipartition of the frustration graph—
that present one such obstruction and give rise to qualita-
tively different phenomenology, including the possibility of
steady states characterized by different types of quantum
order. Whether other exceptions such as this one exist is an
interesting question for future research.

A. Absence of volume-law phase

We consider ensembles with only two species of
Pauli strings, A and B, whose intraspecies commutation
relations are trivial: ½Ai; Aj� ¼ ½Bi; Bj� ¼ 0. This condition
means the frustration graph is bipartite; i.e., A-type vertices
are connected only to B-type vertices, and vice versa
[Fig. 6(a)]. Physically, this situation can describe two
quantum error correcting codes whose stabilizers are fAig
and fBig, respectively. These are mutually incompatible—
stabilizers for the A code are interpreted as errors by the B
code and vice versa. Both types of operators are measured
concurrently with rates proportional to the probabilities PA
and PB. The phase diagram is thus one dimensional, para-
metrized by the bias Δ¼PA−PB∈ ½−1;1�.
To characterize this phase diagram, it is helpful to use the

frustration tensor Γαβ
l introduced in Sec. III D. The only

nontrivial sector in the frustration tensor is ΓAB
l ¼ΓBA

−l≡ γl.
A spatial reflection l ↦ −l implements a species duality
transformation ðA;BÞ ↦ ðB;AÞ, Δ ↦ −Δ. Since spatial
reflection cannot change the entanglement phase, the phase
diagram must be symmetric about Δ ¼ 0. The extrema
Δ ¼ �1 are fully unfrustrated—only one operator species
is measured, and the system is in the simultaneous
eigenstate of all fAig (or fBig) operators, which is area-
law entangled as long as these are local.
The question, then, is what the interior of the phase

diagram −1 < Δ < 1 looks like. Possibilities include (i) an

(a)

(b)

FIG. 5. Entanglement transition in the factorizable ensemble
q ¼ ð0; qX; 1 − qX; 0Þ with range r ¼ 3. Data obtained from
numerical simulations with the stabilizer method, averaged over
102 to 104 realizations of the random dynamics (depending on L).
(a) Tripartite mutual information I3 as a function of qX . The
value I3 ¼ 2 on the area-law side is due to the presence of two
integrals of motion (bits of global entanglement). Different sizes
64 ≤ L ≤ 512 show a crossing at qX ¼ qX;c ¼ 0.274ð2Þ (inset).
(b) Scaling collapse of the data with exponent ν ¼ 1.1.
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intervening volume-law phase in an interval jΔj < Δc,
(ii) an extended critical region, and (iii) a single critical
point at Δ ¼ 0.
Numerical simulations of all bipartite graphs with range

r ≤ 6 in one dimension show that the answer is always (iii):
a single, isolated critical point at Δ ¼ 0, surrounded by
area-law phases; see Fig. 6(b). Before addressing the
critical points, we emphasize that this answer means the
absence of volume-law phases in these models, in sharp
contrast with the general phenomenology discussed in
Sec. IV. Weakly perturbing the models to break the
bipartition generally opens up a volume-law phase near
the critical point.
Based on this numerical evidence, we conjecture

that bipartition of the frustration graph poses a general
obstruction to the existence of volume-law phases. This
conjecture is further corroborated by recent results on two-
dimensional MOMs [87]. The purification dynamics of an
initially fully mixed state in these bipartite MOMs can
always be expressed in a gauge where each stabilizer
generator is either a product of A operators only or of B

operators only, with no mixing. This structure corresponds
to two classical error-correcting codes. It is possible that a
QECC with this structure may be too weak to sustain a
mixed phase; proving this possibility would be an interest-
ing goal for future work.
An intuitive picture for these critical points goes as

follows. At maximum bias Δ ¼ 1 (PB ¼ 0), the dynamics
is fully unfrustrated and projects the state into the A code
space (with area-law entanglement). As infrequent B
measurements are introduced (0 < Δ < 1), small patches
of B code (i.e., intervals in space where Bxjψi ¼ jψi) are
constantly created and destroyed over a background of A
code and are prevented from spreading beyond a finite
length scale by the frequent A measurements. The same,
with A ↔ B, is true at Δ < 0. At Δ ¼ 0, however, neither
code dominates, and the formation of long stabilizers
becomes possible.
In Fig. 6(c), we show the stabilizer length distribution

PðlÞ in the “clipped gauge” [38] for various bipartite
models at the critical point Δ ¼ 0; all of them exhibit a
power-law tail PðlÞ ∼ Kl−2. The coefficient K is found to
increase with the range r of the bipartite ensembles. This
coefficient is related to the entropy via SðlÞ ∼ ðK=2Þ lnðlÞ
(one bit of entropy is carried by two stabilizers straddling a
boundary, hence the factor of 1

2
). The different values of K

suggest that these critical points are described by different
critical theories. If so, this class of models would introduce
a wide class of novel entanglement critical points whose
position is exactly known and fixed by a duality (A ↔ B),
unlike, e.g., hybrid circuits where pc must be determined
numerically. This class could be a useful setting for future
studies of the underlying critical theory.

B. Ordered area-law phases

This class of critical points in bipartite MOMs is also
particularly interesting when viewed as a dynamical phase
transition between different species of area-law states with
distinct patterns of quantum order; e.g., the A (B) operators
may be the stabilizers of a trivial (topological) phase. This
view is similar in spirit to transitions between different
MBL phases with characteristically different l bits [88].
Exactly solvable models with extensively many local
commuting projectors often describe renormalization group
fixed points for different phases (or l-bit representations of
MBL phases); the eigenstates of such models are also
simultaneous eigenstates of all the local projectors and can
display nontrivial quantum order. Drawing the A and B
operators from the sets of projectors characterizing two
different phases can yield late-time steady states with
different patterns of order [89]. For example, fAi ¼ Xig
and fBi ¼ Zi−1XiZiþ1g correspond to the trivial and
symmetry-protected-topological paramagnet, respectively.
Likewise, we could pick one or both of A and B to be the
stabilizers of a topological code such as the toric code, in
which case the steady states in the area-law phase would

(a)

(b)

(c)

FIG. 6. (a) Example of a frustration graph for a bipartite
ensemble, fX; ZZZg. Vertices represent operators, and edges
represent anticommutation. (b) General phase diagram of 1D
bipartite ensembles: As a function of Δ ¼ PA − PB, there are two
area-law phases separated by a self-dual critical point at Δ ¼ 0.
(c) Probability distribution of stabilizer length PðlÞ in several
bipartite ensembles at the Δ ¼ 0 critical point in a system of
L ¼ 512 qubits (data aggregated from 103 runs for each ensem-
ble). A power-law tail PðlÞ ∼ l−2, corresponding to logarithmic
entanglement, is seen in all models.
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display nontrivial (and nonlocal) order characteristic
of the topological phase. In 1D, any choice of bipartite
frustration graph, ΓAB

l ≡ γl (realized, e.g., by fAi ¼ Xig,
fBi ¼

Q
l Z

γl
iþlg), yields a trivial phase and a phase

with up to r − 1 distinct Z2 symmetries, whose operators
are encoded in the kernel (over Z2) of the banded matrix
Mij ≡ γi−j.
Furthermore, the frustration graph can reveal equivalen-

ces between seemingly different transitions. For example,
Ref. [39] considers a free-fermion MOM where operators
are drawn from the sets fZiZiþ1g; fXig. This model is a
bipartite MOM with a transition between a trivial area-law
phase and one with Z2 order that is understood as loop
percolation. The frustration graph reveals that the ensemble
fAi ¼ Xig and fBi ¼ Zi−1XiZiþ1g later studied in
Ref. [62] is actually equivalent to two decoupled copies
of the fAi ¼ Xig and fBi ¼ Zi−1Zig ensemble (Fig. 7).
This equivalence implies the two models have identical
purification phase diagrams and critical exponents, and the
coefficients K in S ∼ K lnðlÞ for the two models at
criticality are related by a factor of 2. The equivalence
between these two examples is simple to establish using our
frustration graph formalism and hints at the predictive
powers of this formalism in classifying the phase structure
of MOMs. Additional examples of equivalence between
MOMs are discussed in Appendix C 2.
We conclude this section by noting that a bipartition in

the frustration graph need not be between operator species
(as defined above). The ensembles fA ¼ X⊗r; B ¼ Y⊗r;
C ¼ Z⊗rg, for example, exhibit strikingly different behav-
ior depending on whether r is even or odd—a volume-law
phase is possible for odd r (r > 1) but not for even r, which
is area law or at most critical (depending on the proba-
bilities PA;B;C). As we see, the odd-r behavior (which
admits a volume-law phase) is the generic one. The reason
for the anomalous behavior at even r is that the frustration
graph is bipartite spatially: All strings starting on even sites
fA2j; B2j; C2jg commute among themselves; the same holds

for those starting on odd sites, fA2jþ1; B2jþ1; C2jþ1g; see
Fig. 8(a). This equivalence is not true for odd r, where, e.g.,
A0, B0, and C0 anticommute pairwise and, thus, form a
triangular subgraph; see Fig. 8(b).

VI. QUANTUM CODE PROPERTIES

The measurement-only dynamics induced by an ensem-
ble of observables fOαg in the volume-law phase generates
a random quantum code that protects information against
the operators fOαg themselves. In this section, we examine
the properties of these dynamically generated quantum
error correcting codes [57,58,90].
A stabilizer quantum error correcting code is conven-

tionally labeled by a triplet of integers ½½n; k; d��, where n is
the number of physical qubits, k is the number of encoded
logical qubits, and d is the code distance. The ratio R ¼
k=n is also known as the code rate. The code distance d is
the minimum weight (number of nonidentity sites) of an
undetectable logical error—an operator E that commutes
with the stabilizer group but does not belong to it.
Intuitively, larger d means that more errors can be cor-
rected. For a family of ½½n; k; d�� codes to have a finite error
correction threshold, the distance has to diverge in the
thermodynamic limit n → ∞. There is generally a trade-off
between code rate and distance, manifested, e.g., in the
“quantum Singleton bound” [91], ðk=nÞ þ 2ðd − 1=nÞ ≤ 1.
In the present case, we have n ¼ L (number of physical

qubits), while k is the entropy of the steady state of the
measurement-only dynamics. The computation of d is
thought to be exponentially hard in L, in general. Here,

FIG. 7. The frustration graph for the fX; ZXZg MOM (top)
splits into two disconnected subgraphs that correspond to the
fX; ZZg MOM (bottom). The two models have identical puri-
fication phase diagrams and critical properties, up to a factor of 2
in the entanglement entropy.

(a)

(b)

FIG. 8. Frustration graphs of the fA ¼ X⊗r; B ¼ Y⊗r; C ¼
Z⊗rg ensembles with (a) r ¼ 3 and (b) r ¼ 4, for a finite system.
Each vertex represents one operator; edges connect anticommut-
ing operators. For odd r, the graph decomposes into two identical,
disconnected subgraphs—(a) shows only one of them. For even r,
the graph is connected but bipartite [as indicated by the color
scheme in (b)], and there is no volume-law phase despite the
higher connectivity of the graph.
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we consider a related quantity that can be computed in time
polyðLÞ for stabilizer states: the contiguous code distance,
defined as [58,92]

lx ¼ minfjAxj∶ ∃ E supported in Axg; ð10Þ

where Ax is a contiguous interval of the chain containing
site x and E is a logical operator, as defined above. This
quantity satisfies d ≤ lx: If there exists a logical operator
supported in Ax, then its weight is at most jAxj ¼ lx. A
related quantity that is used in a no-go theorem for self-
correcting memories in two dimensions is the linear code
distance [92] lmin ¼ minx lx. In the following, we consider
the averaged contiguous distance [58] hli≡ ð1=LÞPx lx,
since the dynamics generating the code is (statistically)
invariant under spatial translations; results for lmin are
qualitatively similar. We define the contiguous code dis-
tance of pure stabilizer states (i.e., an ½½n; 0�� code) as zero.
Thus, hli, with this convention, equals the probability that
the system is in a mixed state (and, thus, defines a code)
times the averaged contiguous distance of those realiza-
tions. For simplicity in the following, we use “distance” to
mean “averaged contiguous code distance,” and we use the
notation hli to denote averaging over both space and
realizations of the dynamics.
As we mentioned earlier, a MOM with measurement

ensemble E ¼ fOαg in the mixed phase generates a
quantum code that must necessarily detect all elements
of E as errors (up to exponentially rare events). To see why,
let us imagine that an operator Oα;i ∈ E has a finite
probability p of being an undetectable logical error for a
steady-state code ρ; measuring such an operator would
partially purify the state, giving an expected change in
entropy δSðρÞ ≤ −pPα=L over the following time step; but
since ρ is a steady-state code, its entropy must decay
exponentially slowly, and, hence, p must be exponentially
small in L. Typical steady-state codes can thus detect all
elements of E as errors. Given this fact, a natural question to
ask is how “specialized” these codes are, i.e., whether they
can also detect arbitrary errors (up to some distance)
beyond those in the ensemble E that defines the dynamics.
To gain some insight into this problem, we consider an

MBL-inspired MOM (see Appendix A), with the addition
of single-site Z measurements. From the phase diagram of
the related hybrid circuit model (Fig. 2), we know that a
volume-law phase is possible at sufficiently low pz. The
steady-state code necessarily detects single-qubit Z errors
at pz > 0 (within the mixed phase), as we discuss above.
Does this fact remain true for pz ¼ 0? In other words, does
the code become vulnerable to single-qubit Z errors if these
are not explicitly injected in the dynamics? To address this
question, we simulate the l-bit MOM with range n ¼ 4 and
variable pz: With probability pz we measure a single-site Z;
otherwise, we measure (with uniform probability) one of
the 22n−1 Pauli strings in Eq. (A1). We find no singular

change in either hki or hli as pz is turned on, as shown in
Fig. 9. The only effect of pz is to move the dynamics closer
to the transition (and eventually into the area-law phase),
which as expected increases the distance hli at the expense
of the rate hki=L. This increase happens smoothly in pz.
The behavior of hli in this model is similar to that observed
in hybrid circuits [58,93], with a subextensive scaling hli ∼
La (0 < a < 1) deep in the mixed phase, an extensive
scaling near the critical point, and a drop to zero in the pure
phase (the latter is due to the vanishing probability of the
state remaining mixed and defining a code: We have set
l ¼ 0 for pure states).
We conclude this section by moving from the volume-

law phase to critical points, where the system eventually
purifies and, thus, does not form a quantum code in the
steady state. However, the parametrically long timescale
for purification allows us to probe the time-dependent
code properties of the mixed state as it gradually purifies.
To be concrete, we consider the r ¼ 2 factorizable MOM in
Fig. 4(b) at the central point, q0 ¼ 1

3
ð1; 1; 1Þ; i.e., we

measure the nine Pauli strings σa ⊗ σb, a; b ∈ fX; Y; Zg,
with equal probability. This model is in the middle of a
critical phase. In Figs. 10(a) and 10(b), we show the decay
of the average number of encoded qubits hki. We find that
hki depends on time only through the ratio t=L, in agree-
ment with the dynamical exponent z ¼ 1. The decay is
consistent with hki ∼ L=t at early times (t≲ L) and then
crosses over to exponential, hki ∼ e−ct=L. This behavior is
indicated as evidence of an underlying (1þ 1)-dimensional
CFT: It corresponds to a one-parameter dependence on the

(a)

(b)

FIG. 9. Quantum code properties of the l-bit ensemble (Ap-
pendix A) with range n ¼ 4 and varying probability of Z
measurements pz (data taken at time t ¼ 4L), averaged over at
least 100 realizations. (a) Contiguous code distance, computed as
described in the text. The scaling is subextensive deep in the
mixed phase and extensive near criticality. Inset: Scaling collapse
with pz;c ¼ 0.15 and ν ¼ 1.1. (b) Code rate. Both the rate and the
distance evolve smoothly from the pz ¼ 0 point.
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“cross ratio” η computed from the end points of the
entanglement cuts [94]. The behavior of the distance hli
during the dynamics is also interesting [see Fig. 10(c)]. We
start from hli ¼ 1 at t ¼ 0 (as all Pauli strings, including
single-site ones, are logical operators for the fully mixed
state). Then, as hki decays, the distance increases. This
behavior lasts until t ≃ L and hki ≃ 1 (one logical qubit left
in the system), where the distance is extensive. After that,
0 ≤ hki < 1 essentially represents the probability that the
state is mixed. Consequently, the distance decays
as hli ∼ Lhki ∼ Le−ct=L.

VII. LOCALITY AND INFORMATION SPREADING

The effect of local measurements on entangled states is
famously described as a “spooky action at a distance”
[95,96]. In these models, where the entirety of the dynam-
ics is made up of measurements on entangled states, there is
good reason to expect spooky surprises. For instance,
unlike local unitary circuits which have a strict light cone,
local projective measurements allow for the creation of
arbitrary-range entanglement on an Oð1Þ timescale, using
two layers of local measurements acting on a product
state. One can see this result as follows [76]: Start from a
Z-product state on a chain of length L, with stabilizer
generators fgi ¼ Zi∶i ¼ 1;…; Lg. Measure the two-site
operators X1X2; X2X3;…; XL−1XL (all commuting and,

thus, measurable at the same time). This measurement
creates one bit of mutual information between sites ð1; LÞ,
represented by the stabilizer g ¼ Z1…ZL. Then, measuring
operators Z2;…; ZL−1 (again all commuting) leaves sites
ð1; LÞ in a Bell-pair state. While fine-tuned (and, thus,
unlikely to occur if the measurements are placed randomly
in spacetime), this example shows that there is, in general,
no strict light cone for the production of entanglement or
correlations in this type of dynamics [94]. Any emergent
light cone must be statistical in nature—i.e., must reflect
the fact that histories that produce entanglement outside the
putative light cone are possible but rare.
The propagation of information in quantum systems is

described by the spreading of local operators evolved in the
Heisenberg picture [7,12,13,97]. In the presence of mea-
surements, the Heisenberg picture is problematic, since the
Born probabilities needed to choose projectors must be
computed on a state [98]. Nevertheless, one can still ask
how information spreads across the system. In what
follows, we propose a diagnostic for information spreading
and verify the emergence of a statistical light cone.
For concreteness, we focus on Clifford circuits in what

follows, but the ideas are straightforward to generalize.
Consider entangling a reference qubit R at time t ¼ 0 to the
center of a 1D chain of odd length L ¼ 2lþ 1 (with qubits
numbered by −l ≤ n ≤ l) and subsequently running the
measurement-only dynamics on the system. Initially,R is in
a Bell-pair state with qubit n ¼ 0. After time t, R may or
may not be entangled with the system. The entanglement
between R and the system has previously been studied as an
order parameter for the volume-law phase [84]: In the
volume-law phase, R stays entangled with finite probability
out to very long times. Crucially, if one assumes that there
is a light cone, R is entangled only with some interval of the
system, ½−x; x�. The size of this subsystem is what captures
information spreading in this setting. One can estimate this
size by calculating the mutual information between R and
segments centered at the point of initial entanglement,
½−x; x�, for variable x. This procedure defines a function on
spacetime:

fðx; tÞ ¼ IðR∶½−x; x�Þjt; ð11Þ

which quantifies howmuch information about the operators
initially entangled with R (X0 and Z0 at t ¼ 0) can be
recovered by looking only at the region ½−x; x� at time t.
Equal-value contours of fðx; tÞ thus capture the spread of
these operators.
At the initial time, we have fðx; 0Þ ¼ 2 for all x: All

segments ½−x; x� include the central qubit (x ¼ 0 is defined
as containing the central qubit only). At late times,
fðL=2; tÞ is equal to the local order parameter SRðtÞ
introduced in Ref. [84], which has a finite value in the
volume-law phase. More precisely, in the volume-
law phase, we expect fðx; t ≫ LÞ to approach zero for

(a)

(c)

(b)

FIG. 10. Quantum code properties of a critical MOM [the r ¼ 2

factorizable model in Fig. 4(b) at the q ¼ 1
3
ð1; 1; 1Þ point],

averaged over 103 realizations of the dynamics. (a),(b) Average
number of encoded qubits, hki, as a function of time starting from
the fully mixed state. hki depends only on t=L (dynamical
exponent z ¼ 1) and decays as L=t at early times (a) and
exponentially at late times (b). (c) Average contiguous distance
hli as a function of hki (time progresses right to left). The
distance peaks (and becomes extensive) when hki ≃ 1.
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x < l=2 and a finite constant for x > l=2 (where
L ¼ 2lþ 1). This expectation is because information
hidden in a random state of L qubits is recoverable with
high probability from any subsystem of more than L=2
qubits (a result that follows from the quantum channel
capacity of the erasure channel [22,103]). At intermediate
times, we expect f to develop a “hole” near x ¼ 0 which
progressively expands until eventually saturating to half the
system. This expectation is borne out by numerics on the
factorizable ensembles (Sec. IVA) with q ¼ ð1; 1; 1Þ=3 and
ranges r ¼ 3 and 5, which are in the volume-law phase.
The information spreading is found to be ballistic (see
Fig. 11) with a “butterfly velocity” vB that increases with r.
The final saturation value of fðx; t ≫ LÞ for x > l=2 is
2SRðtÞ, (twice) the total entanglement between system
and reference, which is the order parameter for the
volume-law phase and is a function of the model param-
eters, decreasing to zero as the transition to the area-law
phase is approached.
Outside the volume-law phase, fðx; tÞ decays in time for

all values of x. It is nonetheless possible to define a
normalized f̃ðx; tÞ≡ fðx; tÞ=2SRðtÞ, where again 2SRðtÞ ¼
fðL=2; tÞ is the mutual information between the reference

R and the whole system, and analyze the information
spreading in the same way as for the volume-law phase
(though in practice this definition makes the data consid-
erably noisier). Figure 11 includes data for the same
ensemble with range r ¼ 2, which is critical. While the
data are much noisier in this case (due to the majority of
realizations becoming disentangled over short times and
contributing no signal), the spread of information is still
bounded by a finite velocity. The infinite entanglement
velocity identified in Ref. [94] for measurement-induced
critical points is not seen through this diagnostic. While
nonlocal creation of entanglement through processes such
as the “entanglement swapping” outlined above are likely
happening, they seem to be statistically irrelevant to the
dynamics of the encoded quantum information. For stabi-
lizer circuits, the conditional trajectories where the refer-
ence qubit does not purify necessarily undergo purely
unitary evolution, despite the nonunitary measurements.
Our results shown here indicate that this effective time-
local random unitary evolution may also have a spatially
local description throughout the phase diagram.
The application of this diagnostic to other models (both

measurement-only and hybrid) is left for future work.

FIG. 11. Information spreading in measurement-only dynamics. Top: fðx; tÞ as defined in Eq. (11) (mutual information between a
reference initially entangled at x ¼ 0 and a region ½−x; x�) for factorizable ensembles q ¼ 1

3
ð0; 1; 1; 1Þ of range r ¼ 2 (critical), 3, and 5

(volume-law) for a system of L ¼ 255 qubits. There is a clear ballistic light cone in the volume-law phase. The light cone saturates to
half the system size. Bottom: The normalized quantity f̃ðx; tÞ ¼ fðx; tÞ=2SRðtÞ reveals that information spreading is bounded by a light
cone in the critical phase as well. The approximate location of the wave front is highlighted with a dashed line in the volume-law
examples. The butterfly velocity x ∼ vBt increases with increasing range r.
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VIII. DISCUSSION

In this work, we have introduced a new type of
entanglement phase transition, which arises in models
whose dynamics consists entirely of local projective
measurements. This transition is conceptually distinct from
the transition in hybrid unitary-projective circuits, as the
survival of the entangling phase is not due to the action of
scrambling unitary gates but rather by the measurements
themselves and, more specifically, by the frustration of
distinct types of measurements performed on the system.
In some cases (e.g., the truncated l-bit circuits we discuss

in Sec. II), these models can be equivalently viewed as
either hybrid circuits or measurement-only models; how-
ever, when viewed as hybrid circuits, these models are
extremely special, in that the entangling phase does not
exist at zero measurement rate. In other words, the unitary
part of the circuit is fully nonscrambling, and thus volume-
law entanglement is enabled by the measurements. This
result indicates that the conventional understanding of
entanglement transitions in hybrid circuits as a competition
between scrambling unitary dynamics (favoring a volume-
law phase) and projective measurement (favoring an area-
law phase) is incomplete; measurements can play a more
constructive role than previously thought. One particularly
striking consequence of this result is that entanglement
transitions are possible even in monitored MBL systems
(see Fig. 2).
The class of models we have introduced is defined by

many tunable parameters (as opposed to a single meas-
urement rate or probability), giving rise to rich, multidi-
mensional phase diagrams. We found that the generic
outcome for an ensemble of sufficiently long (≳3 sites),
sufficiently random measurements is an entangling phase.
Disentangling phases are possible for especially short or
commuting observables, as one may expect; however, we
have also uncovered more surprising exceptions. In Sec. V,
we showed that a special algebraic condition (bipartition of
the frustration graph) seemingly prevents the formation of
an entangling phase, even when measuring arbitrarily long
Pauli strings. These models exhibit an interesting phenom-
enology, with dual area-law phases separated by a self-dual
critical point, vastly generalizing a known example of this
phenomenology in free-fermion measurement-only models
[39]. In addition, the dual area-law phases in these models
may be characterized by different types of quantum order.
A distinctive aspect of dynamics involving projective

measurements is the possibility of infinite entanglement
velocity, or spooky action at a distance. In Sec. VII, we
have introduced a new probe of information spreading,
built from the mutual information between parts of the
system and an entangled reference qubit; surprisingly, both
in the volume-law phase and at criticality we have found
that entanglement spreads within a ballistic light cone,
suggesting the statistical emergence of locality.

The volume-law entangled phase in these models is a
potentially distinctive type of random quantum error
correcting code, as we discussed in Sec. VI. An ensemble
of measurements, implemented randomly, protects quan-
tum information from any future sequence of measure-
ments drawn randomly from that same ensemble, without
any other outside intervention. This scheme could be used
to design tailored quantum codes: Oftentimes in quantum
computing devices, noise is not uniformly random but has
biases and correlations; by selecting the measurement
ensemble to reflect the detailed properties of the noise, it
may be possible to tailor codes for the specific noise
configuration of the device [104].
Concrete connections between fault-tolerant quantum

computation and this family of measurement-only dynam-
ics arise in the context of topological quantum error
correcting codes [105]. Topological codes are one of the
leading candidates for realizing scalable quantum comput-
ing [106]. At a practical level, implementing a quantum
memory with such a code amounts to repeated rounds of
multisite, local Pauli measurements to detect errors
[107,108]. Recovery operations are typically implemented
after multiple rounds of measurements to avoid errors in
syndrome extraction, which results in a dþ 1-dimensional
quantum nonequilibrium problem similar to the type
studied here. In the ideal scenario, these measurements
are all commuting with each other, but a natural error model
is to allow for these measurements to become noncommut-
ing with some probability due to unitary gate errors that
occur during multisite measurements. The threshold analy-
sis of this model maps exactly to a MOM. As a result, some
of the insights obtained from studying measurement-only
dynamics in stochastic, unstructured settings may prove
useful in the threshold and decoding analysis of such
topological codes. More ambitiously, it may be that the
dynamics introduced here can be naturally realized in a
fault-tolerant manner in NISQ devices through small
changes to experimental setups designed to implement
topological quantum error correction.
Our work points to several interesting directions for

future research. The entanglement critical points we have
discovered raise many questions. The critical exponents for
the volume- to area-law transition appear different from
those that were previously found in generic unitary-
projective circuits, suggesting that these transitions might
belong to a different universality class; more intensive
numerical work needs to be done to settle this question. The
nature of the area-law to area-law critical points in bipartite
ensembles also remains unclear, and particularly whether
they can be mapped to percolation in a suitable loop model,
like in the free-fermion case [82]. Strikingly, the critical
points for these MOM phase transitions also appear to be
CFTs, despite no apparent spacetime symmetry. It would
be interesting to understand if this result is a consequence
of a mapping to classical statistical mechanical models,
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similar to the case of unitary-projective dynamics [109].
While the mapping to a statistical mechanics model remains
unclear for hybrid circuits in the Clifford case [93], adapting
the construction of Ref. [109] to study these transitions in the
Haar-random limit would be a natural extension.
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APPENDIX A: HYBRID l-BIT CIRCUIT
AS A MEASUREMENT-ONLY MODEL

Here, we define a MOM based on the unitary-projective
l-bit circuit introduced in Sec. II and discuss its phenom-
enology in detail.

1. Ensemble

The l-bit unitary-projective circuits discussed in
Sec. II, with pz ¼ 0 (i.e., measurements only along X)
naturally lead to measurement-only dynamics specified by
the ensemble

El-bit ¼
�
Oα ¼ X0

Yn−1
l¼1−n

Zαl
l

�
; ðA1Þ

where α ∈ f0; 1g2n−1 labels the operator species (we
omit phase factors for simplicity, writing XZ in lieu
of Y). All operators are characterized by a “central site”
that is either a Pauli X or Y (which corresponds to the
site where an X measurement is made in the hybrid
circuit, possibly followed by a phase gate) and tails on
both sides that are made exclusively of I or Z Pauli
matrices, with equal probability of 1=2 (which arise
from the CZ gates).
As written, the above ensembles have range r ¼ 2n − 1;

however, any two operators displaced by jlj ≥ n commute,
since in that case only their tails (made entirely of I and Z)
overlap. Thus, the effective range, as specified by the
connectivity of the frustration graph, is r̃ ¼ n.

2. Connection with l-bit circuit model

The original unitary-projective l-bit circuit has a meas-
urement rate p that (once translated to the measurement-
only language) tends to make the measurements more
commuting and, thus, drives the dynamics toward the area-
law phase. In the original circuit, if two measurements take
place in the same time slice within a distance n of each
other, they manifestly commute; this commutation must be
maintained even after getting rid of the CZ gates via the
“trick” in Eq. (3). This constraint means that, when
switching from the unitary-projective to the measure-
ment-only pictures, an amount of correlation (or memory)
is built into the measurements drawn from the ensemble:
For instance, after drawing XiZiþ1, one is more likely to
draw the commuting observable ZiXiþ1 than the anticom-
muting observable Xiþ1. In dropping such correlations, we
are implicitly taking a p → 0þ limit [and concurrently
rescaling time, since the unit of time in measurement-only
dynamics has on average Oð1Þ measurements per site, as
opposed to OðpÞ measurements per site per layer in the
unitary-projective circuit]. This limit makes the relation
between two models (unitary-projective and measurement-
only) a bit subtle. The p → 0þ limit (which more accu-
rately stands for pL ≪ 1, i.e., very low probability of
having two measurements next to each other in the same
layer of the original circuit) is meaningless when taking the
thermodynamic limit L → ∞ first. However, reintroducing
the correlations mentioned above can only push the
dynamics toward area law, so the measurement-only
dynamics provides a strict upper bound to the steady-state
entanglement of the hybrid circuit with any finite p.

3. Entanglement transition

As seen in Sec. II, the unitary-projective l-bit dynamics
admit a volume-law phase for integer n ≥ 4, while n ≤ 3 is
area-law independent of measurement rate p. To locate the
phase boundary, one must continue n to fractional values,
n ¼ n⋆ þ ϵ (n⋆ ∈ N, 0 ≤ ϵ < 1). In the hybrid l-bit circuit
of Sec. II, we do so by acting with CZ gates between qubits
i, j with probability

ProbðCZijÞ ¼

8>><
>>:

1=2 if ji − jj < n⋆;
ϵ=2 if ji − jj ¼ n⋆;
0 if ji − jj > n⋆:

ðA2Þ

Clearly, ϵ ¼ 0 and ϵ ¼ 1 yield the model with integer
n ¼ n⋆ and n ¼ n⋆ þ 1, respectively. The fractional values
of n used in Fig. 2(b) are defined in this way.
Taking the measurement rate p → 0þ in the above-

defined hybrid models always returns a MOM with integer
n, specifically the model in Eq. (A1) with n ¼ n⋆ þ 1:
Measurements become so infrequent that any allowed gate
CZij acts a large number of times in between consecutive
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measurements, and, thus, the corresponding exponent αl
(l ¼ i − j) in Eq. (A1) is equally likely to be 0 or 1. This
result is the reason why the phase boundary in the hybrid
circuit’s entanglement phase diagram (Fig. 2) approaches
n ¼ 3þ as p → 0þ: For all 0 < ϵ < 1, the hybrid circuits
with n ¼ 3þ ϵ map onto the same MOM with n ¼ 4.
The family of l-bit-inspired MOMs [Eq. (A1)] can be

independently continued to fractional n ¼ n⋆ þ ϵ by
defining

Oα ¼ X0

Yn⋆
l¼−n⋆

Zαl
l ; Pα ¼

1

N
ϵα−n⋆þαn⋆ ; ðA3Þ

where N is a probability normalization. In other words, Z
operators at the extreme points of the tail, l ¼ �n⋆, are less
frequent than those at other points by a factor of ϵ.
When sweeping n from 3 to 4 in the above models, we

encounter an entanglement transition surprisingly close to
n ¼ 3: The critical point is estimated at nc ¼ 3.020ð3Þ. We
emphasize that this critical point is incompatible with
n ¼ 3, where the dynamics unambiguously converges to
an area law. Nonetheless, proximity to this critical point
endows the n ¼ 3 l-bit model with a very long, though
finite, correlation length.
We repeat the analysis of Sec. IV C for this model. Here,

too, we find a continuous transition with logarithmic entan-
glement entropy, SðlÞ ¼ K lnl [K ¼ 0.8ð1Þ]; dynamical
exponent z ¼ 1; and (see Fig. 12) correlation length critical

exponent ν ¼ 1.1ð1Þ. The critical properties are thus con-
sistent with those of the model examined in Sec. IV C.

APPENDIX B: DETAILS ON
STABILIZER DYNAMICS

Here, we review the stabilizer formalism for Pauli
measurements to complement the discussion in Sec. III B.
Let us consider a pure stabilizer state, as in Eq. (5) with
S ¼ 0. Under Clifford unitaries and Pauli measurements,
the list of stabilizer generators can be updated in poly-
nomial time with operations that amount to linear algebra
over Z2 [110]; here, we review the update rules.
Because all stabilizer generators must commute with one

another, ½gi; gj� ¼ 0 (as it is impossible for two anticom-
muting operators to share a þ1 eigenstate), three possibil-
ities arise when a Pauli string O is measured:
(1) O anticommutes with exactly one generator, say, g1.

The measurement outcome is σ ¼ �1 chosen ran-
domly; g1 is updated to g01 ¼ σO.

(2) O anticommutes with several generators, say,
fg1;…; gkg. This case can always be reduced to
the previous one by a gauge transformation, i.e.,
redefinition of the generators (for example, g0i ¼ gig1
for all 1 < i ≤ k, after which only g1 anticommutes
with O).

(3) O commutes with all generators fgig. In a pure state,
this fact guarantees that O is a stabilizer; i.e., it can
be written as a product of gi ’s (up to a sign). The
measurement outcome is deterministic, and the state
is unchanged by the measurement.

It can also be useful to adopt the “purification” point of
view [58], where one starts with a mixed stabilizer state
[Eq. (5) with S > 0] represented by an incomplete list of
generators fgi∶i ¼ 1;…; L − Sg, possibly an empty list fg
for the maximally mixed state ρ ¼ I=2L (S ¼ L). Based on
the time it takes the state to purify, one can define
purification phases: a mixed phase where the state remains
mixed for exponentially long times and a pure phase
where the state becomes pure in time OðlogLÞ. These
purification phases correspond to the entanglement phases
for pure states (mixed↔ volume-law, pure↔ area-law). In
this mixed-state scenario, cases 1 and 2 from the list above
play out in the same way, but case 3 must be subdi-
vided into
(3a) O commutes with all generators but is not part of

the stabilizer group (i.e., it is a logical operator).
The measurement outcome is σ ¼ �1, chosen at
random, and a new generator gL−Sþ1 ¼ σO is added
to the list. The state loses one bit of en-
tropy (S ↦ S − 1).

(3b) O commutes with all generators and is part of the
stabilizer group (up to a sign). The measurement
outcome is deterministic, and the state is unchanged
by the measurement.

(a)

(b)

FIG. 12. Entanglement transition in the l-bit MOM continued
to “fractional n” between 3 and 4. (a) Tripartite mutual informa-
tion I3 as a function of n. Different sizes 64 ≤ L ≤ 512 show a
crossing at n ¼ nc ¼ 3.020ð3Þ (inset). (b) Scaling collapse of the
data with exponent ν ¼ 1.1.
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APPENDIX C: DETAILS ON FRUSTRATION

In this Appendix, we discuss the frustration graph
and tensor, introduced in Sec. III D, in greater detail. In
Sec. C 1, we show that the frustration graph contains all the
information needed to simulate measurement-only purifi-
cation dynamics (provided operators in the ensemble are
algebraically independent). Using this fact, in Sec. C 2, we
discuss how the frustration graph can show that seemingly
different models have equivalent purification dynamics
and, thus, equivalent entanglement or purification phase
diagrams. Finally, in Sec. C 3, we discuss the frustration of
factorizable ensembles introduced in Sec. IVA.

1. Simulation of the dynamics

The stabilizer update rules reviewed in Appendix B do
not require specific knowledge of the operators Oα. Rather,
they depend only on their mutual anticommutation and
algebraic dependence properties. Given these data, one can
simulate the purification dynamics and determine the
purification phase diagram.
Consider measuring an operatorOα;n (species α, position

n). To update the stabilizer state, we must first test the
commutation between this operator and the existing gen-
erators fgig. This test requires only knowledge of the
frustration tensor Γαβ

l . Indeed, let us decompose each
generator as (up to a phase)

gi ¼
Y
α;n

Oviα;n
α;n ðC1Þ

for appropriate coefficients viα;n ∈ Z2, not necessarily
unique (such a decomposition is known, trivially, for the
initial maximally mixed state ρ ∝ I and can be consistently
updated without full knowledge of the Oα, as we show
next). It is convenient to introduce the “scalar commutator”
between Pauli strings A∘B ∈ Z2, A∘B ¼ 0 if A, B commute
and 1 otherwise. The operators Oα;n and gi commute if and
only if

Oα;n∘gi ¼
X
β;n0

Γα;β
n−n0v

i
β;n0 ≡ 0 mod 2: ðC2Þ

These bits determine which of the cases in Appendix B is
realized.
(1) If only g1 anticommutes with Oα;n, then we update

v1α0;n0 ↦ δα;α0δn;n0 (i.e., discard g1 and replace it
with Oα;n).

(2) Similar, but one must first redefine all the anticom-
muting generators g2;…; gk according to gi ↦ g0i ¼
g1gi, which is done as viα;n ↦ viα;n þ v1α;n (mod-
ulo 2).

Case 3 (no anticommutation) requires distinguishing
between 3(a) (measurement of a logical operator) and 3(b)
(measurement of a stabilizer), which cannot be done, in

general, without information about algebraic dependence
between the operators. If we assume that all operators in the
ensemble are independent (often the case with two operator
species), testing Oα;n’s algebraic dependence on the fgig is
equivalent to testing linear independence of the new Z2

vector vnewα0;n0 ≡ δα;α0δn;n0 on all existing Z2 vectors fvig,
which reduces to a linear algebra problem over Z2.
(3a) If vnew is linearly independent from the set

fvi∶i ¼ 1;…; L − Sg, it gets added as a new stabi-
lizer, vL−Sþ1 ≡ vnew.

(3b) Otherwise, nothing happens.
In conclusion, all the data needed to update the stabilizer

generators for a given measurement are contained in the
frustration tensor Γαβ

l and any algebraic dependence rela-
tions between ensemble operators. This information is
sufficient to simulate purification dynamics and thus decide
the purification phase. None of these tasks require explicit
knowledge of the fOα;ng operators.

2. Equivalence between ensembles

If two ensembles have frustration graphs that can be
transformed into one another by moving vertices around
without breaking or creating any edges, then there is a
mapping Oα;n ↔ O0

β;m between the operators in the two
ensembles which preserves all commutation relations. If the
probability distributions are invariant under this mapping as
well (always the case for the uniform distribution), then the
purification dynamics induced by the two ensembles are
equivalent.
Among the applications of these graph-theoretic ideas is

a method to determine whether an ensemble of Pauli strings
is equivalent to free-fermion measurements [77]. For free-
fermion ensembles, the frustration graph is a “line graph”:
There exists another graph whose vertices are Majorana
fermions and whose edges are the ensemble operators. The
property of being a line graph can be tested in timeOðLÞ in
the general case and in time OðrÞ for our local (range r),
translationally invariant models.
Aside from mappings to free fermions, graph equiva-

lence allows us to prove that seemingly distinct ensembles
belong to the same phase or even more detailed relations
between their steady-state entanglement entropy. As an
example, we show in Fig. 13 that the ensembles
E1 ¼ fX0X1X2; Z0Z1Z2g, E2 ¼ fX1; Z0Z1Z2g, and E3 ¼
fX0Z1; Z0Y1g (with the two species sampled uniformly in
all cases) are all in the same phase: The graph for E1 splits
into two subgraphs, each of which is equivalent to E2;
additionally, E2 and E3 are equivalent to each other.

3. Frustration of factorizable ensembles

Here, we discuss the frustration of factorizable ensem-
bles, Sec. IVA, and how it relates to the on-site probability
distribution of Pauli matrices, q ¼ ðqX; qY; qZÞ.
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These models have a large number of operators species,
3r, which makes the frustration graph itself large and not
useful. More useful information can be gleaned from the
averaged frustration tensor

Γ̄l ≡
X
α;β

PαPβΓ
αβ
l ; ðC3Þ

which captures the probability that two operators drawn at
random from the ensemble anticommute, as a function of
their spatial displacement l.
Let us start by considering a displacement of l ¼ r − 1,

i.e., Pauli strings overlapping on a single site. The prob-
ability that they anticommute is

Γ̄r−1 ¼ 2ðqXqY þ qYqZ þ qZqXÞ ¼ 2q · Rð111Þ
2π=3 q;

where Rð111Þ
θ is a rotation about the (111) axis in q space.

Decomposing q ¼ q0 þ δq, with q0 ¼ ð1; 1; 1Þ=3 and
δq · q0 ¼ 0 (fixed by the normalization of probabilities),
we obtain

Γ̄r−1 ¼ 2q20 þ 2δq2 cos
2π

3
¼ 2

3
− δq2:

Values of Γ̄l for l < r − 1 are found recursively: Γ̄r−k is
the probability that two strings overlapping on k sites

anticommute; splitting the overlapping region into two
intervals of length k − 1 and 1 gives

Γ̄r−k ¼ Γ̄r−1ð1 − Γ̄r−kþ1Þ þ Γ̄r−kþ1ð1 − Γ̄r−1Þ
¼ Γ̄r−kþ1ðδq2 − 1=3Þ þ ð2=3 − δq2Þ;

which can be turned into a geometric series for 1=2 − Γ̄r−k,
yielding

Γ̄l ¼ 1

2
−
1

2

�
2δq2 −

1

3

�
r−l

: ðC4Þ

This result shows that the average anticommutation prob-
abilities for these ensembles are fixed by the radial distance
δq from the center of parameter space. This result offers a
qualitative explanation for the approximately circular phase
boundaries in Fig. 4. At δq2 ¼ 2=3 (edges of the triangle),
we have Γ̄l ≡ 0, i.e., a fully unfrustrated ensemble, as
expected; decreasing δq increases anticommutation.
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