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The estimation of multiple parameters in quantum metrology is important for a vast array of applications
in quantum information processing. However, the unattainability of fundamental precision bounds
for incompatible observables greatly diminishes the applicability of estimation theory in many practical
implementations. The Holevo Cramér-Rao bound (HCRB) provides the most fundamental, simultaneously
attainable bound for multiparameter estimation problems. A general closed form for the HCRB is not
known given that it requires a complex optimization over multiple variables. In this work, we develop an
analytic approach to solving the HCRB for two parameters. Our analysis reveals the role of the HCRB and
its interplay with alternative bounds in estimation theory. For more parameters, we generate a lower bound
to the HCRB. Our work greatly reduces the complexity of determining the HCRB to solving a set of linear
equations that even numerically permits a quadratic speedup over previous state-of-the-art approaches. We
apply our results to compare the performance of different probe states in magnetic field sensing and
characterize the performance of state tomography on the code space of noisy bosonic error-correcting
codes. The sensitivity of state tomography on noisy binomial code states can be improved by tuning two
coding parameters that relate to the number of correctable phase and amplitude damping errors. Our work
provides fundamental insights and makes significant progress toward the estimation of multiple
incompatible observables.
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I. INTRODUCTION

Physical quantities such as time, phase, and entangle-
ment cannot be measured directly but instead must be
inferred through indirect measurements. An important
category of such indirect measurements is parameter
estimation. Quantum metrology describes the quantum
mechanical framework that handles this estimation pro-
cedure. By recasting the problem as a statistical inference
problem, parameter estimation can be associated with
fundamental precision bounds. The key question in quan-
tum metrology is what the fundamental precision bound is
and how we can achieve it. Early applications of estimation
theory focused on single-parameter estimation such as
phase measurements [1–3]. The ultimate precision bound
for a single parameter is the quantum Cramér-Rao lower

bound (QCRB), which was proved by Helstrom and
Holevo [4–6]. Multiparameter quantum metrology extends
the single-parameter case [7–9] and is of fundamental
importance in understanding a variety of practical appli-
cations, such as Hamiltonian tomography [10], field
sensing [11–13] and imaging [14–18], and distributed
sensing [19–22]. A central problem is to determine the
optimal measurement strategies that saturate the QCRB
[23]. To achieve this determination, one must assume
locally unbiased estimators [24], which is reasonable given
large amounts of prior information [25,26] and with many
independent repetitions of the experiment [27]. Several
reviews on the topic highlight recent progress in the
field [28–30].
Each individual parameter we wish to estimate has an

optimal measurement observable. However, when we wish
to estimate two or more parameters simultaneously, the
corresponding optimal observables may be incompatible.
In this case, we cannot achieve the optimal precision for
each parameter individually. In this case, the QCRB matrix
bound is generally not simultaneously saturable for all
parameters [31–33]. This constraint motivates the search
for tighter bounds that can be realized for practical
applications of multiparameter estimation theory. The
Holevo Cramér Rao bound (HCRB) encapsulates the
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difficulties associated with incompatible observables [6]. It
represents the best precision attainable with collective
measurements on an asymptotically large number of
identical copies of a quantum state [34–37].
Despite its importance, the HCRB has seen limited use in

quantummetrology so far. There are several reasons for this
limited use. First, the HCRB is difficult to evaluate given
that it is defined through a complex optimization over a set
of observables. Second, implementing collective measure-
ments is generally a difficult task. Nevertheless, applica-
tions of the HCRB in metrological tasks do exist. Suzuki
finds closed form results for parameter estimation with
qubits [38] and explores connections between different
types of metrological bounds in the special case of two-
parameter estimation theory. For pure states [7] and
displacement estimation with Gaussian states [6], it is
shown that the HCRB is attained by single-copy measure-
ments. The HCRB is also used as a tool to define the
precision of state estimation for finite-dimensional quan-
tum systems [37]. Bradshaw, Assad, and Lam calculate the
HCRB for a joint parameter estimation of a displacement
operation on a pure two-mode squeezed probe [39].
Arguably, the HCRB is most relevant in multiparameter

estimation. An increasing number of true multiparameter
estimation protocols is being explored [40–43], and,
therefore, the need for general, attainable bounds on
multiparameter quantum estimation is urgent. Recently,
Albarelli, Friel, and Datta have investigated the numerical
tractability of calculating the HCRB for the simultaneous
estimation of multiple parameters [44]. For finite-dimen-
sional systems, they recast the evaluation of the HCRB as a
semidefinite program, which is an optimization problem
that can be efficiently implemented. To date, no general
analytic expression for the HCRB is known.
In this paper, we find that it is possible to recast the

HCRB as a quadratic program with linear constraints,
thereby providing tight bounds for multiparameter estima-
tion problems. We develop an analytical approach to
solving the two-parameter HCRB and provide expressions
on when the analytical solution is tight. Our analytical
solution for the optimal observables that can saturate the
HCRB allows one to establish analytically the minimum
penalty due to the incompatibility of the observables.
Specifically, we generalize attainability constraints for
simultaneous multiparameter estimation problems where
the commonly used Cramér-Rao bounds cannot be satu-
rated due to incompatibility. The analytic two-parameter
HCRB can be considered a generalized quantum uncer-
tainty relation [45]. For more than two parameters, our
method does not provide tight bounds but still outperforms
the QCRB.

A. Summary of results

The HCRB is defined as a constrained minimization
problem over measurement observables. By recasting the

definition as a quadratic program with linear constraints,
we find exact solutions to this minimization and determine
the optimal observables. Our method to solve this mini-
mization relies on the notion of duality in optimization
theory, where the primal problem is transformed to its
dual problem. Through the duality gap, we are able to
quantify the minimum penalty of estimating incompatible
observables.
In this article, we introduce three new algorithms that

derive bounds to the HCRB for two and more param-
eters. First, we determine upper and lower bounds to the
HCRB for two-parameter estimation problems that are
not always tight. This algorithm leads to simple analytic
expressions that are straightforwardly determined for
probe states with full rank. The salient feature of this
framework, from which the simplification is inherited, is
that only the boundary values for the Lagrange dual
variables are considered. Second, this method is extended
to determine upper and lower bounds to the HCRB for
more than two parameters. Finally, we return to the two-
parameter HCRB to develop tight bounds. For this
algorithm, we lift the constraint on the values for the
Lagrange dual variables to explore the full generality
permitted by our method. Our analysis for this explora-
tion shows that the HCRB is a general solution to a
Sylvester equation in the measurement observables and
recovers the standard Lyapunov symmetric logarithmic
derivative QCRB solution when the weak commutativity
criterion is violated. This algorithm can be implemented
numerically using a Bartels-Stewart algorithm for linear
equation solvers and offers a quadratic speedup in run
time over state-of-the-art semidefinite programming
approaches.
Table I provides a high-level summary of these algo-

rithms, along with any assumptions made. Our results
provide a significant extension of the capabilities of
previous approaches and clarify the role of the HCRB in
the estimation of incompatible observables.

B. Outline of paper

We begin in Sec. II by providing an overview of
multiparameter quantum estimation. In Sec. III, we intro-
duce the four new algorithms for analytic and numerical
results to the HCRB for two parameters and an arbitrary
number of parameters. We detail connections between
alternative precision bounds and significantly extend the
capabilities of previous approaches in the literature.
Section IV discusses applications of our results to magne-
tometry and explores how bosonic quantum codes can
bestow resilience of parameter estimates against noise
beyond practical control. These applications demonstrate
the strengths of our results and extend deep connections
between quantum metrology and quantum error-correcting
codes. Finally, conclusions and interesting extensions to
our results are provided in Sec. V.
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II. MULTIPARAMETER QUANTUM ESTIMATION

Quantum estimation theory provides fundamental
bounds to the estimation precision of physical parameters
and the optimal measurements that saturate these limits
[23]. We are interested in estimating multiple parameters
simultaneously. The prototypical scheme requires that the
vector of parameters θ ¼ ðθ1;…; θdÞ⊤ ∈ Rd be imprinted
on a quantum state ρðθÞ. Denoting HD as the set of all
Hermitian matrices in the Hilbert space of dimensionD, we
can see that ρðθÞ is a positive semidefinite matrix in HD
with unit trace. We define measurement operators via a
positive operator valued measure (POVM):

Π ¼
�
Πω ≥ 0;ω ∈ Ωj

X
ω∈Ω

Πω ¼ 1D

�
; ð1Þ

where 1D denotes the identity operator and Ω is the set of
measurement outcomes. The outcomes of such a measure-
ment can be used in a function called the estimator θ̌, which
gives an estimate of the parameters. A general estimation
scheme requires access to multiple identical copies of the
quantum probe state. A separable measurement can be
individually applied to each copy of the state to obtain
estimates of each parameter separately, whereas a collective
measurement can be applied jointly on all copies of the
state to acquire a simultaneous estimate of all parameters.
The ultimate precision bound is the one that is asymptoti-
cally achieved by a sequence of the best collective
measurements as the number of copies tends to infinity
[9,34–36,46–50].
The performance of the estimator θ̌ under any measure-

ment can be quantified in terms of its mean square error
(MSE) matrix:

ΣθðΠ; θ̌Þ ¼
X
ω∈ΩN

pðωjθÞ½θ̌ðωÞ − θ�½θ̌ðωÞ − θ�⊤; ð2Þ

where the probability of measurement outcomes is pro-
vided by Born’s rule pðωjθÞ ¼ Tr½ρðθÞΠω� and N is the
number of independently repeated measurements. The set
of estimators are said to be locally unbiased if for all ω ∈ ΩX

ω∈ΩN

½θ̌jðωÞ − θj�pðωjθÞ ¼ 0;

X
ω∈ΩN

θ̌jðωÞ∂kpðωjθÞ ¼ δjk; ð3Þ

where ∂k ≡ ∂=∂θk. Under these conditions, the MSE
matrix is equivalent to the covariance matrix of parameter
estimates and is lower bounded through generalizations of
the Cramér-Rao bound from classical statistics:

ΣθðΠ; θ̌Þ ≥ F½ρðθÞ;Π�−1; ð4Þ
where F is the classical Fisher information matrix [5,6].
The Fisher information characterizes the MSE matrix
for the best classical data manipulation given a mea-
surement strategy in the asymptotic limit [27]. A well-
known quantum generalization includes the symmetric
logarithmic derivative (SLD) Lj ∈ HN , which is implicitly
defined through 2∂jρ ¼ fLj; ρg and generates the real
symmetric quantum Fisher information matrix (QFIM)
IS

jk ¼ Re½Tr½ρLjLk�� [4,51]. This matrix is referred to as
the SLD QFIM. Notice that, for ease of notation, we drop
the explicit dependence of the state on the vector of
parameters θ. Similarly, the right logarithmic derivative
(RLD) Rj ∈ HN , defined through ∂jρ ¼ ρRj, induces the
complex Hermitian RLD QFIM IR

jk ¼ Tr½ρRjRk� [52,53].

TABLE I. Algorithms and bounds to the HCRB for two and more parameters. Bounds are analytic, numerical, or a hybrid of analytical
and numerical, as indicated in the first column. There is a trade-off between the assumptions taken for each algorithm and its complexity.
Here, D is the dimension of the probe state, and ϵ a measure of how close the HCRB bound is to optimal. The final row provides
comparative details for the SDP approach in Ref. [44].

Nature of HCRB bound Assumptions Algorithm details

Algorithm 1: analytic
two-parameter bound

Full-rank ρ, linearly independent ρ1 and ρ2,
and analytic form for Q matrix

Provides upper U and lower L bounds,
need not be tight

Algorithms 2 and 3: hybrid
multiparameter bound

Full-rank ρ and analytic form for Q matrix Provides upper U and lower L bounds,
need not be tight

Algorithm 4: hybrid
two-parameter bound

Full-rank ρ, spectral decomposition of ρ.
Full rankness of intermediate. Q matrix is

full rank and takes at most τ time to compute.

Analytic bounds for u ∈ ½0; 1�. Tight bounds
certifiably attained by numerically varying u to
maximize Lu. Computes in O½polylogð1=ϵÞτD0�.

Numerical two-parameter
bound using Eq. (37)

Full-rank ρ Computes in O½polylogð1=ϵÞD2.376� time using
Bartels-Stewart algorithm or O½polylogð1=ϵÞD3�

time using Gaussian elimination

SDP numerical algorithm Arbitrary ρ, ρ1, and ρ2 Computes in O½polylogð1=ϵÞD2×2.376� time,
or O½polylogð1=ϵÞD6�

time using Gaussian elimination
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There is a fundamental trade-off on how well each
parameter in θ can be simultaneously estimated. Hence,
a meaningful multiparameter estimation protocol mini-
mizes the weighted sum of parameter estimate variances.
For this estimation, a size d positive definite square weight
matrix W is chosen to define the weighted mean square
error (WMSE) Tr½WΣθ�. Holevo proves an equivalence
between a matrix inequality and its corresponding scalar
inequality, which allows the WMSE to be optimally
minimized. In particular, for any real symmetric V and
W and Hermitian M, the inequality V ≥ M implies that
Tr½WV�≥Tr½Re½WM��þTrj ffiffiffiffiffi

W
p

Im½M� ffiffiffiffiffi
W

p j (Lemma 6.6.1
in Ref. [6]), where Re½·� and Im½·� denote the real and
imaginary part, respectively, of each matrix element and
Trj · j denotes the sum of the absolute values of the
eigenvalues of a matrix [54]. Since the sum of the absolute
values of the eigenvalues of a matrix is, in fact, the sum of
the singular values of a matrix, the function Trj · j is
equivalent to the more commonly used trace norm k · k1.
Given that the covariance matrix is always real and
symmetric, we identify the matrix V with Σθ. Hence, we
can write the WMSE as

Tr½WΣθ� ≥ Tr½WRe½M�� þ k
ffiffiffiffiffi
W

p
Im½M�

ffiffiffiffiffi
W

p
k1: ð5Þ

Notice that the scalar cost function in Eq. (5) appropriately
assigns individual priority weights to different parameters.
For a given weight matrix and Hermitian matrix M, we
want to minimize the scalar WMSE to derive better
parameter estimates.
Now, we identify M with the inverse of the family of

definitions for the quantum Fisher information matrices to
generate different lower bounds on the scalar WMSE cost
function. Specifically, the matrices IS and IR generate
the following scalar cost functions on the SLD QCRB and
RLD QCRB:

CSðθÞ ¼ Tr½W½IS�−1�; ð6Þ

CRðθÞ ¼ Tr½WRe½IR�−1� þ k
ffiffiffiffiffi
W

p
Im½IR�−1

ffiffiffiffiffi
W

p
k1; ð7Þ

respectively. Nagaoka investigates in detail the relationship
between these bounds [55]. The central problem in quan-
tum estimation theory is the minimization of these scalar
bounds over the family of probability of distributions
defined by quantum measurements.
The SLD and RLD QCRB do not always provide the

best bounds to parameter estimates. For example, the
attainability of the SLD QCRB does not generally hold
for multiple parameter estimations [8]. Intuitively, any
incompatibility among the parameters θ prohibits the simu-
ltaneous optimal estimation of all parameters. Corres-
pondingly, the RLD QCRB is not always attainable, since
the optimal estimators derived from the RLD may not
correspond to physical POVMs [56].

The problem with saturability of the multiparameter
bound is noted by Holevo, who provides the most general
quantum extension to the classical Cramér-Rao bound,
called the Holevo Cramér-Rao bound (HCRB). Speci-
fically, if a vector of Hermitian observables X ¼
ðX1;…; XdÞ satisfies the locally unbiased conditions
Tr½ρXj� ¼ 0 and Tr½∂jρXk� ¼ δjk, its covariance matrix
ZðXÞ with matrix elements ½ZðXÞ�jk ¼ Tr½ρXjXk� satisfies
the inequalities [5,6]

ZðXÞ ≥ ½IS�−1 and ZðXÞ ≥ ½IR�−1: ð8Þ

From this result, it is clear that identifyingM in Eq. (5) with
the Hermitian matrix ZðXÞ, such that

Tr½WΣθ�≥Tr½WRe½ZðXÞ��þk
ffiffiffiffiffi
W

p
Im½ZðXÞ�

ffiffiffiffiffi
W

p
k1; ð9Þ

we have a tighter bound on the scalar WMSE than either
of the bounds in Eq. (6) or Eq. (7). By optimizing the
objective function in Eq. (9) subject to appropriate unbias-
edness constraints on X, we obtain the tightest bound on the
WMSE. This optimization defines the HCRBCHðθÞ, which
explicitly is the minimum of the following minimization
problem [55]:

minmize
X1;…;Xd

Tr½WReZðXÞ� þ k
ffiffiffiffiffi
W

p
Im½ZðXÞ�

ffiffiffiffiffi
W

p
k1;

subject to Tr½ρXj� ¼ 0

Tr½∂jρXk� ¼ δjk: ð10Þ

The HCRB is the best asymptotically attainable precision
with global, unbiased measurements of a set of parameters.
By minimizing over only the first term in the objective
function of Eq. (10), we obtain the SLD QCRB [55]

CSðθÞ ¼ Tr½W½IS�−1� ¼ min
X1;…;Xd

Tr½WReZ�: ð11Þ

This result shows that the HCRB is a tighter bound than the
SLD QCRB, since the second term in Eq. (10) is non-
negative [33]. In fact, the HCRB is more informative than
both the scalar SLD and RLD QCRBs, satisfies the
inequality [57]

Tr½WΣθ� ≥ CHðθÞ ≥ max fCSðθÞ; CRðθÞg; ð12Þ

and gives the best asymptotically attainable precision with
global, unbiased measurements of a set of parameters.
Specifically, Helstrom [5] and Holevo [57] demonstrate
that CHðθÞ is attainable if the locally unbiased equality
constraints in Eq. (3) are satisfied.
We note that the HCRB is not defined explicitly in terms

of a closed form for a given statistical model. This
constraint is in contrast to the classical case, where the
Fisher information can be readily determined from a given
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statistical model. Recent efforts focus on determining upper
bounds to the HCRB [58–60]. Specifically, the HCRB is
upper bounded by a quantity that is twice the SLD QCRB,
such that [58]

max fCSðθÞ; CRðθÞg ≤ CHðθÞ ≤ 2CSðθÞ: ð13Þ

In this paper, we provide an analytic solution to the HCRB
and provide conditions on when it is tight.
The HCRB is the best asymptotically achievable bound

under the conditions stated inRefs. [34–36,50]. Both inequal-
ities in Eq. (12) can be tight [61]. For instance, consider the
skew-symmetric matrix ImfTr½LjLkρðθÞ�g. When

ImfTr½LjLkρðθÞ�g ¼ 0; ð14Þ

we have CHðθÞ ¼ CSðθÞ [8]. This condition is referred to
as the weak commutativity criterion [62], and when it is
fulfilled theQCRB is a good proxy for theHCRB. In the next
section, we show howwe can use methods from optimization
theory to address the minimization over several Hermitian
operators in the case where the weak commutativity criterion
is not fulfilled.

III. HOLEVO CRAMÉR-RAO BOUND

In this section, we present algorithms to calculate bounds
on the Holevo Cramér-Rao bound CH. We first derive
simple analytic upper and lower bounds for CH for two
parameters in Sec. III A. We show how these bounds are
generated by studying the optimization problem using
the method of Lagrange multipliers. This method has the
advantage of reducing the complexity involved in evalu-
ating bounds on CH to that of solving two sets of linear
equations. In Sec. III B, we focus on deriving lower bounds
on CH for more than two parameters. At the expense of
additional analysis, our formalism can be extended to also
provide tight analytic solutions to the HCRB. We demon-
strate this extension in Sec. III C, where we provide a
complete exposition of analytic bounds on the two-param-
eter HCRB and provide conditions for when the bounds
are tight.

A. Simple bounds in the two-parameter setting

We first consider the HCRB for two parameters θ ¼
ðθ1; θ2Þ⊤. To obtain simple analytic bounds to the HCRB,
we must define the weight matrix W for the scalar bound.
For simplicity, we use the identity weight matrix and
determine upper and lower bounds to the two-parameter
HCRB using optimization theory [63]. Wewant to solve the
minimization in Eq. (10), which is convex but not quad-
ratic. Hence, we first manipulate Eq. (10) into a quadratic
form in the variables X1 and X2. Then, such an optimization
problem can be studied analytically using the method of
Lagrange multipliers.

Choosing Y ¼ X1 þ iX2, Eq. (10) can be written as an
optimization program (see Appendix B):

minimize
Y;t

t;

subject to Tr½YρY†�≤ t; Tr½Y†ρY�≤ t;

Tr½ρY�¼0; Tr½∂1ρY�¼1; Tr½∂2ρY�¼ i: ð15Þ

Note that, by considering both the real and imaginary parts
of the above equality constraints, the actual number of real-
valued equality constraints is six, which is consistent with
the number of equality constraints corresponding to the
minimization in Eq. (10). Here, Y is optimized over all
complex matrices of dimension D and is, in general, not a
Hermitian matrix. By mapping Y and t into a real vector x,
we cast this optimization program into the standard form of

min
x
ffðxÞ∶ciðxÞ ≤ 0; hiðxÞ ¼ 0g; ð16Þ

where fðxÞ is a real linear objective function, while hiðxÞ
and ciðxÞ are the corresponding equality and inequality
constraint functions, respectively, that must also be real.
Equation (15) is a convex program, since its equality
constraints are linear and its inequality constraints are
quadratic and convex. To check whether we can use
optimality conditions from optimization theory, we check
whether Slater’s constraint qualification holds, which
amounts to checking that all the inequality constraints in
Eq. (15) can strictly hold. Since t can be arbitrarily large,
this result indeed is the case. The optimality conditions for
a continuous optimization program are best stated in terms
of the Lagrangian of Eq. (15), given by

Lðx; λ; zÞ ¼ fðxÞ þ
X2
i¼1

λiciðxÞ þ
X6
i¼1

zihiðxÞ; ð17Þ

where the coefficients λi ≥ 0 and zi ∈ R are Lagrange
multipliers for the inequality and equality constraints,
respectively. Since Eq. (16) is a convex program and
Slater’s constraint qualification holds, the first-order
Karush-Kuhn-Tucker (KKT) conditions of stationarity,
primal and dual feasibility, and complementary slackness
are necessary and sufficient [63] to determine the optimal-
ity of Eq. (15).
For our problem, we have dual variables λ ¼ ðλ1; λ2Þ ¼

ðu; vÞ⊤ and z ¼ ðz1;…; z6Þ⊤, which are vectors of
Lagrange multipliers. The primal variables are Y and t,
and the Lagrangian is given by

LðY; t; u; v; zÞ ¼ tð1 − u − vÞ − b⊤zþ uTr½YρY†�
þ vTr½Y†ρY� þ Tr½AY� þ Tr½A†Y†�: ð18Þ

Here, b ¼ ð0; 1; 0; 0; 0; 1Þ⊤ is a column vector that
encodes the equality constraints in Eq. (15), constructed
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in Appendix B 2. The operator A is a linear superposition of
ρ and its derivatives:

A ¼ z1A1 þ � � � þ z6A6; ð19Þ

where

A1 ¼
1

2
ρ; A4 ¼ −iA1;

A2 ¼
1

2
∂1ρ; A5 ¼ −iA2;

A3 ¼
1

2
∂2ρ; A6 ¼ −iA3: ð20Þ

Because of the duality principle in optimization theory [63],
we may equivalently view the optimization by considering
the Lagrange dual function gðλ; zÞ ¼ infxLðx; λ; zÞ of
Eq. (17). Since the Lagrangian L is quadratic in x, the
Lagrange dual can be found analytically by an unconstrained
minimization of the Lagrangian with respect to x for fixed
values of the dual variables λ and z [63]. Because of the
structure of the Lagrangian in Eq. (18), the Lagrange dual is
never unbounded from below whenever uþ v ¼ 1. Hence,
maximizing the Lagrange dual function corresponds to an
unconstrained maximization problem. Since the Lagrange
dual is also a quadratic function in terms of its dual variables
z, it can be easily maximized exactly with respect to z.
Note that ourLagrange dual is not a quadratic functionwith

respect to λ ¼ ðu; vÞ. To boundCH, it suffices to evaluate the
Lagrangian for feasible values of ðu; vÞ that satisfy uþv¼ 1.
Two such values are the boundary values ðu; vÞ ¼ fð0; 1Þ;
ð1; 0Þg, for which the Lagrangian in Eq. (18) is greatly
simplified. For each case, we first determine the stationary
point of the resulting Lagrangian with respect to Y, where Y
has an implicit dependence on z, and then perform a
maximization over z. By evaluating the primal and dual
objective functions, we obtain simple analytic two-sided
bounds for CH. Specifically, an analytic lower bound L to
the HCRB is determined through finding z ∈ R6 that solves

2ReðQjÞzþ b ¼ 0; j ¼ 1; 2; ð21Þ

where Qj has the matrix elements

½Q1�ik ¼ Tr½A†
i ρ

−1Ak� and ½Q2�ik ¼ Tr½Aiρ
−1A†

k�: ð22Þ

Details for this situation are delegated to Appendix B. The
matrices ReðQjÞ are full rank when the derivatives ∂1ρ and
∂2ρ are linearly independent.Armedwith these dual variables
z, we collect the result of this optimization in the following
theorem.
Theorem 1.—Let ∂1ρ and ∂2ρ be linearly independent.

With Qj defined in Eq. (22) and the matrices A1;…; A6

given in Eq. (20), the HCRB CH for two parameters
satisfies the inequality

max
j¼1;2

fljg ¼ L ≤ CH ≤ U ¼ min
j¼1;2

fmaxflj; mjgg;

where

lj ¼
1

4
b⊤ReðQjÞ−1b; ð23Þ

mj ¼
X6
a;b¼1

Tr½ρ−2AaρA
†
b�za;jzb;j; ð24Þ

and

za;j ¼ −
1

2
f½ReðQjÞ−1�a2 þ ½ReðQjÞ−1�a6g: ð25Þ

For a detailed proof of this theorem, consult
Appendixes B 2–B 5. Theorem 1 gives a simple procedure
for finding analytic upper and lower bounds to two-
parameter HCRB. Notice that the complexity of determining
these bounds is commensurate with linear equation solvers
that are used in determining the Lagrange dual variables.

FIG. 1. Pseudocode to determine simple bounds to the two-
parameter HCRB and its associated optimal measurement ob-
servables X1 and X2. Note that this algorithm depends only on the
state ρ and its two derivatives ∂1ρ and ∂2ρ.
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This procedure makes these bounds readily accessible for
general two-parameter applications. Figure 1 shows the
pseudocode for this procedure.
Next, we establish how to construct the observables that

saturate these bounds. Specifically, there are two choices
for Y that minimize the Lagrangian in Eq. (18), corre-
sponding to the two choices for ðu; vÞ:

ðu; vÞ ¼ ð1; 0Þ∶ Y ¼ −A†ρ−1; ð26Þ

ðu; vÞ ¼ ð0; 1Þ∶ Y ¼ −ρ−1A†; ð27Þ

that correspond to the choice Q1 and Q2, respectively.
Then, using Eq. (19) and the optimized values for z, we
construct the analytic form for the observables X1 and X2.
Since the matricesQj, j ∈ f1; 2g, are only six-dimensional
matrices, determining ReðQjÞ is easy, and, hence, it is
straightforward to find analytic bounds to the two-param-
eter HCRB. The procedure is shown algorithmically
in Fig. 1.
Finally, we note that if our lower bound to CH is strictly

larger than CS, then we know that the skew-symmetric
matrix ImfTr½LjLkρðθÞ�g cannot be equal to zero, and the
weak commutativity criterion does not hold.

B. Lower bound in the multiparameter setting

For more than two parameters, we can also use the
method of Lagrange multipliers to bound the HCRB.
However, this method is considerably more involved than
the two-parameter case. In the two-parameter case, we
could obtain a simple quadratic expression for ReTr½Z� þ
kImZk1 that appears in the objective function of Eq. (10).

However, for the corresponding generalization to more
parameters, ReTr½Z� þ kImZk1 is no longer a quadratic
form in the variables Xj. For example, for three parameters,
Z takes the form

ZðXÞ ¼

0
B@

Tr½ρX2
1� Tr½ρX1X2� Tr½ρX1X3�

Tr½ρX2X1� Tr½ρX2
2� Tr½ρX2X3�

Tr½ρX3X1� Tr½ρX3X2� Tr½ρX2
3�

1
CA: ð28Þ

The trace norm of ImZ is related to the eigenvalues of ImZ,
and the eigenvalues of a 3 × 3 matrix involve a cubic
equation. This relation renders evaluating the trace norm
incompatible with our methodology. To address this
incompatibility, we obtain a lower bound to kImZk1 that
allows ReTr½Z� þ kImZk1 to be written as a quadratic form.
As shown in Appendix C, this form yields an optimization
problem whose optimal value is a lower bound to the
HCRB and which is given by

minft∶Tr½ρXj� ¼ 0;Tr½∂jρXk� ¼ δjk; Vα ≤ tg; ð29Þ

where the minimization is performed over t and the
Hermitian matrices X1;…; Xd, with j; k ¼ f1;…; dg,
and the inequality constraint Vα is a function of a binary
string α such that

Vα ¼
1

2

Xd
j¼1

Tr½½Xj þ ð−1Þαj iXjþ1�ρ½Xj þ ð−1Þαj iXjþ1�†�;

ð30Þ

with Xdþ1 ¼ X1. The inequality constraints Vα arise from
the structure of our lower bound on the trace norm of
ImZ (see Appendix C). By substituting Yj ¼

P
d
k¼1 SjkXj,

where

S ¼

8>><
>>:

P
j∈Zd

ðjjihjj þ ijjihj ⊕ 1jÞ d ≠ 0 ðmod 4Þ
P
j∈Zd

ðjjihjj þ ð−1Þδj;d ijjihj ⊕ 1jÞ otherwise;

ð31Þ

we can write the matrices Xj in terms of the matrices Yj, as
before. We next interpret the Yj as arbitrary complex
matrices of size n and impose Hermiticity conditions for
the corresponding Xj matrices.
The Lagrangian of such an optimization problem is a

function of the complex matrices fY1;…; Ydg and also a
function of its Lagrange multipliers. Its Lagrange multi-
pliers are given by the non-negative multipliers v ∈ R2d for
the inequality constraints, z ∈ Rdðdþ1Þ for the equality
constraints, and Hermitian multipliers ξ1;…; ξd for the
Hermitian constraints. Most importantly, the inequality

FIG. 2. Pseudocode to generate the Lagrange dual functions
defined in Eq. (33).
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constraints can be satisfied strictly, so Slater’s constraint
qualification holds, and we can use the KKT to determine
the optimality conditions for Eq. (30). We minimize the
Lagrangian constructed from the optimization problem in
Eq. (29). Since the Lagrangian is a convex quadratic form
in the variables Y1;…; Yd, it can be minimized exactly.
When this minimization is done, we obtain the Lagrange
dual function, which depends only on the Lagrange multi-
pliers v, z, and ξ1;…; ξd. The Lagrange dual function
always gives a lower bound for the primal optimization
problem.
While the Lagrange dual is quadratic in z and ξ1;…; ξd,

it is not quadratic in v. By minimizing the Lagrangian over t
and using the KKT conditions, we conclude as before that
the sum of the components in v is 1. We obtain a lower
bound for the Lagrange dual by maximizing over a discrete
set of feasible Lagrange multipliers v, which corresponds to
the tightness of the constraints Vα ≤ t. Thus, we create a
quadratic optimization problem for three or more param-
eters that leads to a lower bound on CH. However, there is
no guarantee that this lower bound is tight.
Next, we study the Lagrange dual function. By carefully

choosing v, the Lagrangian is quadratic in fY1;…; Ydg and
can be minimized individually for each Yj. The coefficients
for Yj in the Lagrangian are given by Γj, where

Γj ¼
Xd
k¼1

Tk;j

�Xd
l¼0

Zl;kρl þ iξk

�
; ð32Þ

where ρ0 ¼ ρ, ρj ¼ ∂jρ for j ¼ f1;…; dg, and Tk;j are
matrix elements that relate the Yj to the Xk. Specifically, T
is the matrix inverse of S. Then, the optimal value for the
Lagrange multipliers can be obtained by maximizing the
Lagrange dual functions

gα ¼ −
Xd
j¼1

zj;j −
Xd
j¼1

δ0;ᾱjTr½Γjρ
−1Γ†

j � þ δ1;ᾱjTr½Γ†
jρ

−1Γj�
2

ð33Þ

with respect to the scalar variables zj;k and the Hermitian
variables ξj, where ᾱ ¼ α when d is not a multiple of 4,
and when d is a multiple of 4, then ᾱ differs from α by
simply flipping the last bit. Our lower bound to CH in the
multiparameter setting is then given by the following
theorem.
Theorem 2.—Let d ≥ 3, z ∈ Rdðdþ1Þ, and ξ1;…; ξd are

Hermitian matrices. Then,

CH ≥ max
α∈f0;1gd

max
z;ξ1;…;ξd

gα;

where gα is given by Eq. (33).
This optimization problem can be solved exactly using a

single step of Newton’s method. It requires the input state ρ

and its derivatives ∂jρ. The algorithm to implement this
lower bound is illustrated in Fig. 3.

C. Tight two-parameter bounds

Notice that, for Theorem 1, we constrained the values of
the Lagrange multiplier u to two values. This constraint
does not provide the most general case, and, as a result, the
analysis can generate observables that are not always
optimal. That is, the corresponding upper and lower bounds
are not always tight. By lifting this restriction, we expand
the analysis to explore the full generality of our formalism
to generate tight bounds to the estimation of incompatible
observables. As we observe in this section, this expansion
is necessary to develop an intuition into multiparameter
quantum estimation that is captured by the construction of
the HCRB. To achieve this expansion, we revisit the two-
parameter scenario. Specifically, for fixed u, we minimize
the Lagrangian and find the optimal observables that attain
these stationary points. In doing so, for every feasible value
of u, we obtain an upper and lower bound on the HCRB.
Since the lower bound is a concave and smooth function,

FIG. 3. Pseudocode to generate a lower bound to the HCRB for
multiple parameters. The pseudocode to generate the Lagrange
dual functions is shown in Fig. 2
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then optimization theory guarantees a solution to both the
HCRB and the observables that attain it.
Recall the Lagrangian in Eq. (18), which for uþ v ¼ 1

becomes

LðY; u; zÞ ¼ −b⊤zþ uTr½YρY†� þ ð1 − uÞTr½Y†ρY�
þ Tr½AY� þ Tr½A†Y†�: ð34Þ

As we show in Appendix D, this Lagrangian is minimized
when Y is chosen such that

uYρþ ð1 − uÞρY ¼ −A†: ð35Þ

Notice that Y, and hence the optimal observables, is the
solution to a Sylvester equation. When ImZ ¼ 0, we
know that the observables X1 and X2 commute and the
weak commutativity criterion is preserved. Then, Eq. (35)
reduces to solving a Lyapunov equation, where Y generates
the well-explored SLD. This case corresponds to

jTr½ρX1X2� − Tr½ρX2X1�j ¼ 0; ð36Þ

for the optimal X1 and X2, which recovers the weak
commutativity condition. In this way, the solution to Y
in Eq. (35) provides the most general definition to quantum
logarithmic derivatives for multiple incompatible para-
meters θ. From our definition of A, it defines exactly
how the optimal observables depend on dynamics in both
parameters.
Similar to analytic solutions to the SLD, given the

spectral decomposition of the state ρ ¼ P
j pjjejihejj,

we can analytically solve Eq. (35) to obtain the Y that
minimizes the Lagrangian:

Y ¼ −
X
j;k

½upk þ ð1 − uÞpj�−1hejjA†jekijejihekj: ð37Þ

By taking the trace, it is clear to see that Y has a zero
expectation value. This result recovers the unbiasedness
condition on the observables as required. Using Y ¼
X1 þ iX2 and the definition for Y in Eq. (37), we can
write an analytic solution for the observables that satu-
rate the HCRB in terms of the optimal Lagrange multi-
pliers z. Specifically, defining the statistical admixture
ϱðsÞ ¼ P

2
l¼0 zlþsρl, then in the eigenbasis of ρ, we have

½X1�jk ¼
iðpj − pkÞð1 − 2uÞ½ϱð4Þ�jk − ðpj þ pkÞ½ϱð1Þ�jk

4½upk þ ð1 − uÞpj�½upj þ ð1 − uÞpk�
;

ð38Þ

½X2�jk ¼ −
iðpj − pkÞð1 − 2uÞ½ϱð1Þ�jk þ ðpj þ pkÞ½ϱð4Þ�jk

4½upk þ ð1 − uÞpj�½upj þ ð1 − uÞpk�
;

ð39Þ

with ½ϱðsÞ�jk ¼ hejjϱðsÞjeki. The Hermiticity of the state and
its derivatives guarantees the Hermiticity of these observ-
ables such that ½Xl�jk ¼ ½Xl��kj. Equations (38) and (39)
show exactly how each observable depends on the dynam-
ics of each parameter.
With access to the spectral decomposition of ρ, we can

also find analytic expressions to the HCRB. The master
algorithm in Fig. 4 concisely clarifies this procedure.

FIG. 4. Master algorithm to generate the analytic form of the
two-parameter HCRB.
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With this procedure, Theorem 3 concretely demonstrates
how to construct tight bounds on the HCRB and is central
to our result.
Theorem 3.—Let Q1, Q2, and Q3 be matrices defined in

the master algorithm in Fig. 4, and let b ¼ ð0; 1; 0; 0; 0; 1Þ⊤
be a column vector. Let 0 < u < 1 and Q ¼ uReQ1þ
ð1 − uÞReQ2 þ ReQ3 be a negative definite matrix.
Then, when Q is full rank for all 0 < u < 1, the HCRB
is bounded through Lu ≤ CH ≤ Uu, where

Lu ¼ −
1

4
b⊤Q−1b; ð40Þ

Uu ¼
1

4
max fb⊤Q−1Q1Q−1b;b⊤Q−1Q2Q−1bg ð41Þ

with equality on both sides attained at the stationary point of
the lower bound with respect to uwhen ðd=duÞðb⊤Q−1bÞ ¼
½b⊤Q−1ðdQ=duÞQ−1b� ¼ 0.
We refer the reader to Appendix D for a complete

proof of this theorem. For applications where the spectral
decomposition of the state is not known, the Sylvester
equation (37) can be efficiently solved numerically using a
variant of the Bartels-Stewart algorithm [64].
Before concluding, we clarify an important subtlety. Our

analysis assumes that the probe state is fixed. However,
there are multiparameter sensing applications that permit
full control over the probe states used. In this case, it is
possible to extend our formalism to determine the optimal
probe state. To see how, note that the HCRB is a biconvex
function of the probe state ρ and the observable X. We have
already determined the optimal observable corresponding
to a chosen state: CH;ρðXÞ ¼ CHðρ; XÞ. Conversely, fixing
X amounts to solving a convex problem in ρ to determine
the optimal state corresponding to the choice in X:
CH;XðρÞ ¼ CHðρ; XÞ. Based on this relation, we can imple-
ment an efficient iterative biconvex program that alter-
natively updates the state and optimal observables by fixing
one and solving the corresponding convex optimization
problem [65].

IV. APPLICATIONS

Quantum metrology has applications in both spin and
bosonic systems. We demonstrate the broad applicability of
our results by showing how our bounds work in each of the
two settings. First, for spin systems, one natural problem to
consider is that of estimating the different components of a
magnetic field. When the total magnetic field is known,
there are only two independent components of a magnetic
field to estimate, and such a problem can be tackled directly
using our analytical approach for two-parameter estima-
tion. In particular, our simple approach using the algorithm
in Fig. 1 already gives interesting insights into the problem
of quantum magnetometry on various types of noisy
probe states.

Second, for bosonic systems, a key obstacle in determin-
ing the ultimate precision limits on parameter estimation is
the infinite dimension of such systems. We show that, using
our analytical approach, this obstacle can be overcome.
Specifically, we use our tight analytical bounds (Fig. 4) to
calculate the precision bounds on estimating the incom-
patible components of a logical Bloch vector of a pure
bosonic code state when mixed with a thermal state.

A. Magnetometry

We use our simple two-parameter bounds to consider
magnetic field sensing, which has important technological
applications in navigation, position tracking, and imaging
[66]. We apply our method of finding the HCRB to the
estimation of a magnetic field B ¼ ðBx; By; BzÞ in three
dimensions. Quantum magnetometry is an important appli-
cation of quantum metrology and is essential for detecting
defects and realising compact magnetic resonance imaging
scanners [67]. Estimating each component individually
allows us to attain the quantum limit [23], and this result
is demonstrated in several studies [68,69]. However, in
many practical applications, knowledge of multiple param-
eters is required simultaneously, and we must consider joint
estimation strategies.
The three parameters of interest θ ¼ ðθ1; θ2; θ3Þ⊤ appear

in the single spin Hamiltonian ĤjðθÞ ¼ θ · Sj, where Sj is
the spin operator for the jth spin. Local depolarizing noise,
described by the single spin completely positive trace-
preserving map

Dg½ρ� ¼ ð1 − gÞρþ g
12
2
; ð42Þ

provides a general description for a noisy environment,
where g denotes the depolarization magnitude and takes
values between 0 and 1. The parameters θ are imprinted on
the probe state via the unitary evolution Û ¼ exp½−iĤjðθÞ�.
For our example, we assume that the magnetic field in the z
direction is known, and we therefore wish to estimate the
two parameters Bx and By. We choose an identity weight
matrix to equally prioritize each parameter into a weighted
scalar mean square error. We consider three families of
n-spin probe states, namely, the traditional Greenberger-
Horne-Zeilinger (GHZ) states for single-parameter estima-
tion, the modified 3D GHZ states introduced by Baumgratz
and Datta [13], and the GNU states introduced by Ouyang
in the context of quantum error correction [70].
First, the 3D GHZ state can be written as

jψ3DGHZ
n i ¼ 1

N

X3
j¼1

ðjϕþ
j i⊗n þ jϕ−

j i⊗nÞ; ð43Þ

where n is the total number of spins,N is the normalization
constant of the state, and jϕ�

j i are the eigenvectors
corresponding to the �1 eigenvectors of the jth spin
matrix. The evolved state then becomes
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ρðθÞ ¼ ÛðθÞD⊗n
g ½jψ3DGHZ

n ihψ3DGHZ
n j�ÛðθÞ†: ð44Þ

We illustrate how the upper bound to the HCRB and the
QCRB changes with the number of probe qubits n for
different depolarizing channel strengths g in Fig. 5. We
observe that the upper bound to the HCRB is indeed tighter
than the QCRB. Both variance bounds increase with an
increasing depolarizing probability of the depolarizing
channel, as expected. The 3D GHZ state attains the
Heisenberg precision scaling for the noiseless case.
Second, we consider the class of GNU states that are

robust to a constant amount of erasure and dephasing [71]:

jφ1i ¼
1

2

X2
j¼0

ffiffiffiffiffiffiffiffiffiffi�
2

j

�s
jDn

Gji: ð45Þ

Here, for every w ¼ 0;…; n, the Dicke state jDn
wi is a

uniform superposition over all computation basis states
jx1i ⊗ � � � ⊗ jxni with Hamming weight w. Since n ¼ 2G,
where G is related to the number of bit-flip errors that can
be corrected, we present results for the GNU states for
which n is even. These are shown in Fig. 6 and compared
with traditional GHZ states and 3D GHZ states. The
traditional GHZ states give a worse estimation for a larger
qubit number at a constant depolarization rate, as is well
known. The GNU states perform similarly to the 3D GHZ
states.
Finally, we use our formalism to determine the optimal

n-qubit observables X1 and X2 that attain the HCRB using
the 3D GHZ states. Unlike the single-qubit estimation case,
analytic solutions to these observables are challenging, and
the dimension of Xj scales as 2n. Instead, we numerically
determine their structure, shown in Fig. 7. We plot the real

and imaginary parts of the matrices X1 and X2, and the
Hermiticity of the observables is clearly observed.

B. Bosonic quantum codes

Our formalism for the HCRB allows performance
characterization of fault-tolerant quantum codes in the

FIG. 5. Estimation precision of two directional components of a
magnetic field Bx and By with an increasing number of spins in a
depolarizing environment parameterized by g, using modified 3D
GHZ states. The corresponding Hamiltonian is

P
n
j¼1 ĤjðθÞ and

has no interaction terms. With the identity weight matrix, the
dashed lower lines illustrate the QCRB and the solid lines the
upper bound U to the HCRB as given by Theorem 1.

FIG. 6. Using Theorem 1, we depict two-sided bounds on the
HCRB for estimating the elements of a magnetic field in a
depolarizing channel. All plots with depolarizing strength
g ¼ 0.3. This plot compares the performance of 3D GHZ states
with n-qubit GHZ states and the permutation-invariant GNU
states. We observe an interesting crossover point between the
tightest bound generated by the n-qubit GHZ states and 3D GHZ
states, with an increasing number of qubits. The GNU states are
defined over the even number of qubit numbers generates the
lowest Holevo bound for a small number of qubits.

(a) (b)

(c) (d)

FIG. 7. Using Algorithm 1, we obtain a heat map for the
measurement observables X1 and X2 for the depolarized five-
qubit 3D GHZ state, under a depolarizing strength g ¼ 0.3. We
plot the real and imaginary parts separately. The Hermiticity of
these observables is clearly illustrated. (a) ReðX1Þ (b) lmðX1Þ
(c) ReðX2Þ (d) lmðX2Þ.
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context of quantum metrology. In this section, we apply our
master algorithm in Fig. 4 to explore how bosonic error-
correcting codes can improve characterization of logically
encoded states in the presence of noise.
Susceptible quantum information can be safeguarded

from decoherence by storing it in quantum error-correcting
codes (QECCs), which in the case of continuous variable
(bosonic) quantum systems are subspaces of infinite-
dimensional Hilbert space. The working principle of
QECCs is to project states with errors with high probability
onto correctible subspaces labeled by the error syndromes
and dynamically evolve the projected state back to the
original code space. When these codes are well chosen,
they can correct against errors that are introduced in
physically realistic noise models. While bosonic codes
on multiple modes that correct against displacement errors
[72,73] and photon loss [74–77] exist, a key attraction of
bosonic codes is that they can be used even on a single
mode. For example, to protect codes against photon loss
and phase errors on a single mode, one can use codes
gapped in the Fock basis [78,79] or a single-mode
Gottesman-Kitaev-Preskill code for displacement errors
[72]. For a complete exposition of fault-tolerant quantum
computing and error-correcting codes, the reader is directed
to Refs. [80–82].
We focus on bosonic codes, which, unlike two-level

systems, have infinite energy levels per mode. We define
a logically encoded state that is parameterized by the
coordinates θ ¼ ðx;ϕÞ⊤ with x ¼ cosðθ=2Þ. We evaluate
the HCRB for this bivariate estimation scheme by using
Theorem 3 to evaluate upper and lower bounds to the
HCRB for fixed u. We then tune the parameters of the
binomial codes to effect improvements to estimates of θ.
We consider binomial codes that protect code words against
number-shift and phase errors. In particular, we analyze the
ultimate limits of estimating the complex coefficients of a
pure binomial code state in the presence of thermal noise.
The logical code words for the binomial code are

supported on a bounded number of Fock states through

j0Li ¼
X
j≥0

j even

2−½ðn−1Þ=2�
ffiffiffiffiffiffiffiffiffiffi�
n
j

�s
jGji; ð46Þ

j1Li ¼
X
j≥0
j odd

2−½ðn−1Þ=2�
ffiffiffiffiffiffiffiffiffiffi�
n
j

�s
jGji; ð47Þ

where G; n ∈ R are related to the number of correctable
number-shift and phase errors, respectively [83]. From
Eq (7) in Ref. [78], one requires G ≥ Gbin þ Lbin þ 1 to
correct Gbin gain and Lbin loss errors and n − 1 ≥
maxfLbin; Gbin; 2Dbing to correct Dbin phase errors. For
fixedG and n, we construct the logical state ρL ¼ jψLihψLj
with

jψLi ¼ xj0Li þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
eiϕj1Li; ð48Þ

where x ∈ ½−1; 1� and ϕ ∈ R. In the noisy scheme, we
thermalize this logical pure state through ρ ¼ λthρth þ
ð1 − λthÞρL, where

ρth ¼
1

1 − e−β
X∞
k¼0

e−kβjkihkj ð49Þ

is a thermal state with temperature β. Since ∂jρ ¼
ð1 − λthÞ∂jρL, j ¼ fx;ϕg, and ρL is supported only on
the Fock states j0i; jGi;…; jGni, the state derivatives ∂jρ
are supported only on the Fock states j0i; jGi;…; jGni.
Using this property, we can determine that, in the calcu-
lation of the HCRB, we need to consider only the
evaluation of ρ on the support of the Fock states
j0i; jGi;…; jGni. Denoting such a state as τ, we can write

τ ¼
Xn
j;k¼0

jjihkjhGjjρjGki ð50Þ

and observe that it has spectral decomposition

τ ¼
Xn
k¼0

tkjτkihτkj with jτki ¼
Xn
j¼0

τk;jjji: ð51Þ

The key implication is that τ is now an effective size (nþ 1)
matrix and, unlike ρ, does not have infinite dimensions.
Now define

jTki ¼
Xn
j¼0

τk;jjGji: ð52Þ

From the form of our noise model, τ is a full-rank matrix,
because it is a convex combination of a positive definite
matrix and a positive semidefinite matrix. The positive
definite matrix arises from a truncation of the thermal state
on the Fock states j0i; jGi;…; jGni, and the positive
semidefinite matrix arises from ρL. Since τ is a full-rank
matrix, it follows that the spectral decomposition of ρ is

ρ¼
Xn
k¼0

tkjTkihTkj þ λth
Xn−1
k¼0

Xg−1
j¼1

e−βðGkþjÞ

1− e−β
jGkþ jihGkþ jj

þ λth
X∞

k¼Gnþ1

e−βk

1− e−β
jkihkj: ð53Þ

From the above spectral decomposition of ρ, it is clear that
only the first summation term contributes to the state
derivatives. This contribution makes the effective dimen-
sion of the problem equal to the dimension of τ instead
of that of ρ. Because of this reduction in the effective
dimensionality of the problem, we can efficiently use
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Algorithm 4 to evaluate upper and lower bounds to the
HCRB for fixed u to benchmark parameter estimates for θ.
By optimizing over u, we find exact values of the HCRB.

In Fig. 8, we illustrate how the HCRB changes with
different values of the noise parameters λth and β and
the code parameters G and n. Figure 8(a) shows that
increasing the thermalization increases the scalar MSE. We
also note that the value for x that minimizes the MSE is
insensitive to the amount of thermalization in the state.
Notice also that the effect of binomial codes in this
application is limited at high thermalization, where the
state has a lot of thermal noise. The binomial codes are
able to protect against errors resulting on the state due to
low temperatures. To see this protection, we observe the
behavior of the HCRB in the region where it is minimized
with respect to x. In Fig. 8(b), we illustrate the behavior of
the HCRB within x ¼ ½0.68; 0.84� for different values ofG.
Notice that increasing the number of correctable amplitude
damping errors by increasing the value of G improves
the precision of the simultaneous estimate for x and ϕ. In
Fig. 8(c), we illustrate a similar improvement by increasing
n, which is related to the number of correctable phase
errors. This result demonstrates that the error-correcting
codes can be used to improve simultaneous parameter
estimates in the low error regime.
It is worth noting the performance of the simple bounds

in Theorem 1 for this application. For the specific choice
of parameters u ¼ 0, x ¼ −0.8, ϕ ¼ 0.7, n ¼ 5, G ¼ 3,
λth ¼ 0.2, and β ¼ 0.1, we get the exact HCRB. In general,
Theorem 1 returns nontight bounds to the HCRB for alter-
native values in the parameter space. This result illustrates
that if the tightness of bounds is crucial, then one should
apply Theorem 3.

V. CONCLUSIONS AND DISCUSSIONS

Quantum metrology promises practical near-term quan-
tum technologies. Experimental developments in sensing
are demonstrating early theoretical results and advance-
ments in estimation theory. On the theoretical front, one
prominent limitation that remains is the estimation of

multiple noncompatible observables. Specifically, the opti-
mal strategy to define the fundamental limits to precision
estimates and their attainability is not known. Efforts to
estimate multiple noncompatible observables have largely
been focused on approaching the fundamental QCRB. This
focus has led to efforts to devise nontrivial measurement
schemes that approach the QCRB. An alternative approach
is to focus on the tighter HCRB, which is physically
attainable. However, the HCRB is difficult to evaluate,
since it involves a difficult optimization over two observ-
ables. This difficulty has limited its application in quantum
estimation theory.
In this paper, we have made significant progress in

analytically solving the HCRB for two-parameter estima-
tion problems and providing bounds for a larger number of
parameters. In the two-parameter case, we reduce the
complexity of the optimization procedure to that of solving
a set of linear equations, which can be easily solved using
most numerical software packages. We also provide ana-
lytic expressions for the optimal POVMs. Our results
readily apply to a large range of physical applications.
This range will provide deeper insight into the role of
quantum measurements in quantum sensing and help
continue the drive of realizing quantum technologies.
We illustrate an application of our results by considering

the estimation of a magnetic field using noisy multiqubit
probe states [71,84]. A recent numerical study by Albarelli,
Friel, and Datta demonstrates the necessity of using the
HCRB over the QCRB, based on a violation of the weak
commutation condition [44]. Here, we provide further
insight into the role that the HCRB plays in quantum
estimation theory. We provide conditions for when this
bound is tighter than the SLD QCRB (or the Helstrom
bound) and provide the corresponding optimal measure-
ment observables.
A second application of our results explores how bosonic

quantum error correction codes can improve noise resil-
ience of parameter estimates. Bosonic codes are interesting
because of their potential in reducing the number of
physical systems required while having some robustness
against errors. However, the infinite dimensionality of

(a) (b) (c)

FIG. 8. Variation of HCRB with thermalization and binomial code parameters. For the plot in (a), we take n ¼ 2, β ¼ 0.01, andG ¼ 1.
In (b), we see the effect of noise by varying the number of correctable amplitude damping errors of the binomial code, using n ¼ 2,
λth ¼ 0.01, and β ¼ 1. In (c), we illustrate the effect of increasing the correctable phase errors of the binomial code on the HCRB using
λth ¼ 0.01, β ¼ 1, and G ¼ 1. (a) Thermalisation effect. (b) Amplitude damping error parameter, G. (c) Phase error parameter,n.
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bosonic systems renders a brute force numerical approach
to determining the HCRB intractable. Instead, through our
analytical approach, we reduce this problem to a finite-
dimensional problem and, thereby, evaluate the correspond-
ing precision bounds efficiently.
There are several clear extensions of our work that can

be readily addressed. The first would be to use the analytic
expressions that we derive to provide further insight into
more protocols in estimation theory. We hope that this
insight will help to drive the wave for experimental vali-
dation. A second line of work would consider an extension
of the Holevo bound to parameters with arbitrary choice of
weight matrices. In this work, we have considered unit
weight matrices, which was motivated through placing
equal importance to each parameter. A more general weight
matrix would provide a more general bound. A final line of
work would consider the optimal implementation of the
general measurements that were derived in this work. This
extension would provide an immediate access to the tighter
HCRB through experimental implementation.
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APPENDIX A: MATRIX CALCULUS

We prove some elementary facts about matrix calculus
that we use repeatedly in our analysis of the turning points
of the Lagrangian functions that occur throughout the
manuscript.
We begin by defining some notations. Since a complex

matrix of size n is a map from Cn to Cn, we use LðCnÞ to
denote the set of all complex matrices of size n. Here, the
notation LðCnÞ reflects the fact that a matrix is a linear
mapping that is an automorphism on Cn. At times, we are
interested in matrices that are also Hermitian, which means
that they are equal to their complex conjugates. In this
scenario, we use Hn to denote the set of all complex
matrices that are also Hermitian. Clearly, for instance, Hn is
a strict subset of LðCnÞ.
Now let f∶LðCnÞ → C denote a function that maps a

complex matrix to a complex scalar. If fðYÞ is differ-
entiable at Y in the direction H, we use

∇Y;HfðYÞ ¼ lim
h→0

fðY þ hHÞ − fðYÞ
h

ðA1Þ

to denote the Fréchet derivative of fðYÞ in the direction H.
In the above formula, h is a real infinitesimal parameter.

Properties of these Fréchet derivatives continue to be an
active area of research [85], and they have also been
recently used in quantum information theory [86].
In this paper, we are interested in matrix functions that

are either linear or quadratic in the matrix variable Y. This
interest leads us to analyze the Fréchet derivatives given by
the following lemma.
Lemma 4.—Let Y;H ∈ LðCnÞ. Then,

∇Y;HTr½AY� ¼ Tr½AH�; ðA2Þ

∇Y;HTr½AY†� ¼ Tr½AH†�; ðA3Þ

∇Y;HTr½YAY†� ¼ Tr½AY†H þ YAH†�; ðA4Þ

∇Y;HTr½Y†AY� ¼ Tr½Y†AH þ AYH†�: ðA5Þ

Proof.—The proof of the above results from direct
application of the definition of the Fréchet derivative for
the first two equations. For the last two equations, we also
use the cyclic property of the trace. ▪
We are often faced with the unconstrained minimisation

of a quadratic form, and we show in the following lemma
what the optimal solution to these optimization problems is.
Lemma 5.—Let A ∈ LðCnÞ and let ρ be a full-rank

matrix in Hn. Then,

min
Y∈LðCnÞ

ðTr½YρY†� þ Tr½AY� þ Tr½A†Y†�Þ ¼ −Tr½A†ρ−1A�;

ðA6Þ

min
Y∈LðCnÞ

ðTr½Y†ρY� þ Tr½AY� þ Tr½A†Y†�Þ ¼ −Tr½Aρ−1A†�;

ðA7Þ

with the minimum achieved by setting Y ¼ −A†ρ−1 and
Y ¼ −ρ−1A†, respectively.
Proof.—We first prove Eqs. (A6) and (A7). The corre-

sponding objective functions that are to be minimized are
convex and differentiable, so it suffices to find when their
Fréchet derivatives are equal to zero for any direction H.
For this task, we use Lemma 4, from which we find that we
must have ρY† þ A ¼ 0 and Y†ρþ A ¼ 0, respectively.
Making use of the fact that ρ is invertible whenever it
has full rank, we multiply both sides of the equations and
find that the optimal Y’s are given by Y ¼ −A†ρ−1 and
Y ¼ −ρ−1A†, respectively. Substituting this result back into
the objective functions gives the result. ▪

APPENDIX B: SIMPLE TWO-PARAMETER
BOUNDS TO THE HCRB

We explicitly derive the HCRB for the two-parameter
case. In the two-parameter setting, the HCRB with a weight
matrix W is given by the optimization problem
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minimize
X1;X2

Tr½WReZ� þ kWImZk1;

subject to Tr½ρXj� ¼ 0;

Tr½∂jρXk� ¼ δjk; ðB1Þ

where Xj are constrained to be Hermitian matrices in HN

and Z is a matrix given by

Z ¼
�

Tr½ρX2
1� Tr½ρX1X2�

Tr½ρX2X1� Tr½ρX2
2�

�
: ðB2Þ

Note thatW is always taken to be a positive definite matrix.
For simplicity, we consider only the scenario where W is
the identity matrix.

1. Reformulation of the optimization problem

The optimization problem (10) can be solved analyti-
cally primarily from our ability to rewrite the objec-
tive function as a quadratic function in the optimization
variables X1 and X2. The method of Lagrange multi-
pliers when applied to problems with quadratic objective
functions and linear equality constraints is well known to
be exactly solvable, for example, in theory of portfolio
optimization in finance [87]. A similar argument allows us
to solve Eq. (10) using this method.
We begin by showing why the objective function is

quadratic. To see this, we first note that the diagonal terms
of Z are positive numbers, because X1 and X2 are Hermitian
and Xð·ÞX† is a completely positive map. Second, the
positivity of the diagonal entries of Z implies that

ReTr½Z� ¼ Tr½Z� ¼ Tr½X1ρX
†
1� þ Tr½X2ρX

†
2�:

Third, the positivity of the diagonal entries of Z implies that
the trace norm of ImZ can be explicitly evaluated, because
the diagonal entries of ImZ must be zero. Since X1, X2, and
ρ are Hermitian matrices, it follows that

ImZ ¼ 1

2i

�
0 w

−w 0

�
;

where w ¼ Tr½ρX1X2� − Tr½X2X1ρ� is an imaginary num-
ber. The eigenvalues of ImZ are, therefore, �w=2, which
implies that the trace norm of ImZ is maxfiw;−iwg. From
this result, we get

ReTr½Z� þ iw ¼ Tr½ðX1 þ iX2ÞρðX1 þ iX2Þ†�; ðB3Þ

ReTr½Z� − iw ¼ Tr½ðX1 − iX2ÞρðX1 − iX2Þ†�: ðB4Þ

Now let us make the substitution Y ¼ X1 þ iX2. In
this scenario, we can rewrite the equality constraints in
Eq. (B1) as

Tr½ρY� ¼ 0;

Tr½∂1ρY� ¼ 1;

Tr½∂2ρY� ¼ i: ðB5Þ

Hence, the optimization problem (10) can be written as

minimize
Y;t

t;

subject to Tr½YρY†� ≤ t;

Tr½Y†ρY� ≤ t;

Tr½ρY� ¼ 0;

Tr½∂1ρY� ¼ 1;

Tr½∂2ρY� ¼ i: ðB6Þ

Note that the optimization problem (B6) is a linear
optimization problem with convex quadratic and linear
constraints. When the equality constraints are satisfied, the
quadratic terms in the inequality constraints are non-
negative, and, by setting t to be arbitrarily large, we can
see that the inequality constraints in Eq. (B6) can always be
strictly satisfied. Since Eq. (B6) is also a convex optimi-
zation problem because of its linear objective function and
convex constraint functions, the Slater constraint qualifi-
cation holds with respect to Eq. (B6). This result implies
that the first-order KKT condition suffices to determine the
optimality of Eq. (B6).

2. Analyzing the Lagrangian

The KKT conditions are stated in terms of the
Lagrangian of Eq. (B6). The column vector of Lagrange
multipliers corresponding to the equality constraints is

z ¼ ðz1; z2; z3; z4; z5; z6Þ: ðB7Þ

The Lagrangian of Eq. (B6) is

LðY; t; u; v; zÞ ¼ tþ uTr½YρY†� − utþ vTr½Y†ρY� − vt

þ z1ReTr½ρY� þ z4ImTr½ρY�
þ z2ðReTr½∂1ρY� − 1Þ þ z5ImTr½∂1ρY�
þ z3ReTr½∂2ρY� þ z6ðImTr½∂2ρY� − 1Þ;

ðB8Þ

where u and v are non-negative Lagrange multipliers
corresponding to the inequality constraints.
There are four types of KKT conditions. First is the

stationarity of the derivative of the Lagrangian with res-
pect to the primal variables. Second is complementary
slackness, which states that the product of the constraint
functions [88] and their corresponding Lagrange multi-
pliers is always zero. Third is the feasibility of the primal
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variables, and fourth is feasibility of the dual variables. If
these KKT optimality conditions hold, then we can obtain
the optimal solution and value of the corresponding
optimization problem.
Now we use the fact that

ReTr½ρY� ¼ Tr½ρY� þ Tr½ρY†�
2

; ðB9Þ

ImTr½ρY� ¼ Tr½ρY� − Tr½ρY†�
2i

; ðB10Þ

ReTr½∂jρY� ¼
Tr½∂jρY� þ Tr½∂jρY†�

2
; ðB11Þ

ImTr½∂jρY� ¼
Tr½∂jρY� − Tr½∂jρY†�

2i
: ðB12Þ

Using this fact, it follows that

LðY; t; u; v; zÞ ¼ tð1 − u − vÞ − b⊤zþ uTr½YρY†�
þ vTr½Y†ρY� þ Tr½AY� þ Tr½A†Y†�;

ðB13Þ
where b is the column vector (0,1,0,0,0,1) and

A ¼ z1A1 þ z2A2 þ z3A3 þ z4A4 þ z5A5 þ z6A6; ðB14Þ

where

A1 ¼
ρ

2
; A2 ¼

∂1ρ

2
; A3 ¼

∂2ρ

2
; ðB15Þ

and fA4; A5; A6g ¼ −ifA1; A2; A3g.
Before we proceed to derive the Lagrange dual function,

we note the following.
(1) We prove that the optimal t must be strictly positive

from the positive definiteness of ρ. From the positive
definiteness of ρ, t is equal to zero if and only if Y is
0, but this result would violate the feasibility
constraints. Hence, t cannot be equal to zero.

(2) The stationarity KKT condition requires that the
derivative of Lagrangian in Eq. (B8) be zero with
respect to t. From this requirement, we observe that
the optimal dual variables must satisfy uþ v ¼ 1.

(3) The KKT conditions require that the complementary
slackness conditions hold for the inequality con-
straints in Eq. (B6). This requirement means that

uðTr½YρY†� − tÞ ¼ 0;

vðTr½Y†ρY� − tÞ ¼ 0: ðB16Þ

If Tr½YρY†� ≠ Tr½Y†ρY�, exactly one of the con-
straints corresponding to u and v must be tight, and
complementary slackness implies that the optimal

ðu; vÞ must be either ðu; vÞ ¼ ð1; 0Þ or ðu; vÞ ¼
ð0; 1Þ. This situation corresponds to the scenario
where the QCRB is not equal to the HCRB. If
kImZk1 ¼ 0, ðu; vÞ ¼ ð1; 0Þ and ðu; vÞ ¼ ð0; 1Þ do
not necessarily optimize the value of the Lagrange
dual and, in general, provide a lower bound to the
Lagrange dual.
However, if Tr½YρY†� ¼ Tr½Y†ρY�, then the

Ansätze ðu; vÞ ¼ ð0; 1Þ and ðu; vÞ ¼ ð0; 1Þ will not
yield tight bounds, because complementary slack-
ness will not further constrain the optimal values of
u and v.

3. Deriving the Lagrange dual functions

When ðu; vÞ ¼ ð1; 0Þ, the Lagrangian evaluates to

LðY; t; 1; 0; zÞ ¼ −b⊤zþ Tr½YρY†� þ Tr½AY� þ Tr½A†Y†�;
ðB17Þ

where b ¼ ð0; 1; 0; 0; 0; 1Þ⊤. Since ρ is full rank, ρ is
invertible. Using Lemma 5, the above is minimized
with respect to Y when Y ¼ −A†ρ−1 with optimal value
−Tr½A†ρ−1A�. In this scenario, the Lagrange dual function
of Eq. (B6) evaluated with ðu; vÞ ¼ ð1; 0Þ is

gð1; 0; zÞ ¼ −Tr½A†ρ−1A� − b⊤z: ðB18Þ

Similarly, when ðu; vÞ ¼ ð0; 1Þ, the Lagrangian evaluates
to

LðY; t; 0; 1; zÞ ¼ −b⊤zþ Tr½Y†ρY� þ Tr½AY� þ Tr½A†Y†�
ðB19Þ

and is minimized when Y ¼ −ρ−1A† with an optimal
value of −Tr½Aρ−1A†�. In this scenario, the Lagrange dual
function of Eq. (B6) evaluated with ðu; vÞ ¼ ð0; 1Þ is

gð0; 1; zÞ ¼ −Tr½Aρ−1A†� − b⊤z: ðB20Þ

The Lagrange dual functions gð1; 0; zÞ and gð0; 1; zÞ can be
rewritten in terms of the matrices Q1 and Q2 where, in the
Dirac bra-ket notation, we have

Q1 ¼
X

j;k¼1;…;6

Tr½A†
jρ

−1Ak�jihkj;

Q2 ¼
X

j;k¼1;…;6

Tr½Ajρ
−1A†

k�jjihkj: ðB21Þ

Here, jji denotes a column vector, and hkj denotes a row
vector. The Lagrange dual function that we consider are,
thus,
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gð1; 0; zÞ ¼ −z⊤Q1z − b⊤z;
gð0; 1; zÞ ¼ −z⊤Q2z − b⊤z: ðB22Þ

4. Upper and lower bounds

Using the fact that the Lagrange dual functions (B22)
and the dual variables are real, lower bounds to the HCRB
are given by

max
j¼1;2

max
z∈R6

½−z⊤ReðQjÞz − b⊤z�; ðB23Þ

from which it follows that

2ReðQjÞzþ b ¼ 0

is the correct optimality condition to consider. Thus, when
ReðQjÞ is full rank, the lower bounds to the HCRB can be
written as

max
j¼1;2

lj; where lj ¼
1

4
b⊤ReðQjÞ−1b: ðB24Þ

Interestingly, when ρ is full rank, the matrices ReðQjÞ are
also full rank. We demonstrate this result in the next
subsection.
To obtain upper bounds to the HCRB, we appeal to the

form of the primal problem is closely related to Eq. (B6),
that has an objective function of

maxfTr½YρY†�;Tr½Y†ρY�g: ðB25Þ
The upper bounds are expressed in terms of the dual
variables that optimize Eq. (B23), which we can write as
z1 ¼ ðz1;1;…; z6;1Þ and z2 ¼ ðz1;2;…; z6;2Þ where

za;j ¼ −
1

2
f½ReðQjÞ−1�a2 þ ½ReðQjÞ−1�a6g ðB26Þ

and ½ReðQjÞ−1�ab denotes the matrix element in the ath row
and bth column of the inverse of ReðQjÞ.
Recall that, when ðu; vÞ ¼ ð1; 0Þ, the optimal solution to

Y in minimizing the Lagrangian is −A†ρ−1. By choosing
A ¼ A1z1;1 þ � � � þ A6z6;1, we find that the HCRB is thus
upper bounded by

P1 ¼ max fTr½A†ρ−1A�;Tr½ρ−2AρA†�g: ðB27Þ

Then,

P1 ¼ maxfl1; m1g; ðB28Þ

where

mj ¼
X6
a;b¼1

Tr½ρ−2AaρA
†
b�za;jzb;j: ðB29Þ

When ðu; vÞ ¼ ð0; 1Þ, the optimal solution to Y in mini-
mizing the Lagrangian is −ρ−1A†. In this case, the primal
objective function is equal to

P2 ¼ maxfl2; m2g: ðB30Þ

Hence, the HCRB is at most

min
j¼1;2

fmaxflj; mjgg: ðB31Þ

This concludes the proof of Theorem 1 for bounds on the
two-parameter HCRB.

5. Full rankness of Q

The analytic solution to the HCRB requires ReðQjÞ to
have full rank such that the solution can be determined.
In this subsection, we demonstrate that the full rankness
of the probe state ρ entails the full rankness of these
matrices. Since the regularity conditions of estimation
theory require the state to be full rank, our solution to
the HCRB always exists.
Notice that the matrices Qj defined in Eq. (B21) can be

written

Q1 ¼
�

H −iH
iH H

�
; Q2 ¼

�
H iH

−iH H

�
; ðB32Þ

where H is the Gram matrix defined as follows. We con-
sider the Hilbert-Schmidt inner product hX; Yi ¼ Tr½X†Y�.
We define the operators

B1 ¼ ρ−1=2A1 ¼ ρ−1=2ρ=2 ¼ ρ1=2=2; ðB33Þ

B2 ¼ ρ−1=2A2 ¼ ρ−1=2δ1ρ=2; ðB34Þ

B3 ¼ ρ−1=2A3 ¼ ρ−1=2δ2ρ=2: ðB35Þ

Then, we have that H is a Gram matrix with respect to this
set of operators:

Hi;j ¼ hBi; Bji: ðB36Þ

As a Gram matrix, it is positive semidefinite. Furthermore,
we know that H will be full rank if and only if the set
fB1; B2; B3g is linearly independent. We note that A1

cannot be written as a sum of A2 and A3 (since A1 has
nonzero trace, whereas A2 and A3 are traceless). Also by a
trace argument, if fA1; A2; A3g are linearly dependent, we
must have that A2 is proportional to A3. But if A2 and A3 are
proportional, then it is really a one-parameter problem and
not a two-parameter problem. Hence, fA1; A2; A3g are
linearly independent. If we assume ρ is full rank, then
fB1; B2; B3g ¼ ρ−1=2fA1; A2; A3g is also a linearly inde-
pendent set. So full rankness of ρ entails full rankness ofH.
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We are now interested in the real part of the Qj matrices,
looking for solutions of 2ReðQjÞzþ b ¼ 0. Considering
j ¼ 2,

ReðQ2Þ ¼
�
ReðHÞ −ImðHÞ
ImðHÞ ReðHÞ

�
: ðB37Þ

By performing elementary row operations by taking a
linear combination of rows, followed by elementary col-
umn operators by taking a linear combination of columns,
we get

ReðQ2Þ →
�

H iH

ImðHÞ ReðHÞ

�
→

�
H 0

ImðHÞ H�

�
;

ðB38Þ

where we use ReðHÞ þ iImðHÞ ¼ H. Since both rows are
linearly independent, ReðQjÞ is also always full rank.
Therefore, we have that if the state is full rank, then so
too is the matrix ReðQjÞ.

APPENDIX C: LOWER BOUND IN THE
MULTIPARAMETER SETTING

By restricting ourselves to the identity weight matrix,
recall that the HCRB is the optimal value of the following
optimization problem over the Hermitian matrices Xj in HN

given by

minimize
X1;…;Xd

Tr½ReZ� þ kImZk1;

subject to Tr½ρXj� ¼ 0

Tr½∂jρXk� ¼ δjk: ðC1Þ

For j; k ¼ f1;…; dg, let

wj;k ¼ Tr½ρXjXk� − Tr½ρXkXj�: ðC2Þ

1. Deriving a lower bound for the
objective function

In general, for a d-parameter estimation problem, we
have

Tr½ReZ� ¼
Xd
j¼1

Tr½XjρX
†
j �; ðC3Þ

ImZ ¼ 1

2i

X
1≤j<k≤d

wj;kðjjihkj − jkihjjÞ: ðC4Þ

Note that, since Z is a Hermitian matrix, ImZ is always a
skew-Hermitian matrix. For example, when d ¼ 3, we have

ImZ ¼ 1

2i

0
B@

0 w1;2 w1;3

−w1;2 0 w2;3

−w1;3 −w2;3 0

1
CA: ðC5Þ

Whenever d ≥ 3, the trace norm of ImZ fails to be a
quadratic form in the observables X1;…; Xd. Hence, the
objective function of the optimization problem (C1) fails to
be quadratic for us to apply the techniques in Appendix B 1.
We can, however, obtain lower bounds for the trace norm of
ImZ that do have a quadratic structure, namely, by exploiting
the following decomposition for the trace norm:

kImZk1 ¼ maxfTr½UImZ�∶Uis a unitary matrixg: ðC6Þ
Fortunately, it is possible to pick unitarymatricesU such that
Tr½UImZ� are quadratic in the observablesX1;…; Xd, which
we prove in the following subsection. We achieve this
possibility by constructing unitary matrices labeled by
binary vectors α ¼ ðα1;…; αdÞ given by

Uα ¼ jdih1jð−1Þαd þ
Xd−1
j¼1

jjihjþ 1jð−1Þαj : ðC7Þ

Using the unitary matrices in

U ¼ fUα∶α ∈ f0; 1gdg; ðC8Þ
we obtain the lower bound

kImZk1 ≥ maxfTr½UImZ�∶U ∈ Ug: ðC9Þ

2. Recasting the optimization problem

In this subsection, we prove the following lemma.
Lemma 6.—Let d be a positive integer, where d ≥ 2.

Now, given a binary vector α ¼ ðα1;…; αdÞ, let Uα be as
defined in Eq. (C7), and let us define

Vα ¼
1

2
Tr½½Xd þ ð−1Þα1iX1�ρ½Xd þ ð−1Þα1iX1�†�

þ 1

2

Xd−1
j¼1

Tr½½Xj þ ð−1Þαj iXjþ1�ρ½Xj þ ð−1Þαj iXjþ1�†�;

ðC10Þ
where X1;…; Xd are Hermitian matrices and ρ is a density
matrix. Let Z ¼ P

d
j;k¼1 Tr½ρXjXk�jjihkj. Then,

Tr½ReZ� þ Tr½UαImZ� ¼ Vα: ðC11Þ

Proof.—Rewriting Eq. (C4), we get

ImZ ¼ 1

2i

Xd
j;k¼1

wj;kjjihkj; ðC12Þ
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where wj;k is as defined in Eq. (C2). Using Eqs. (C3) and
(C12), we can find that

Tr½ReZ� þ Tr½UαImZ�

¼
Xd
j¼1

Tr½XjρX
†
j � þ

1

2i

Xd
j¼1

Xd
k¼1

Tr½wj;kUαjjihkj�: ðC13Þ

Now,

Tr½Uαjjihkj�
¼ Tr½ðjdih1jÞjjihkj�ð−1Þαd

þ
Xd−1
a¼1

Tr½ðjaihaþ 1jÞjjihkj�ð−1Þαa

¼ δj;1δk;dð−1Þαd þ
Xd−1
a¼1

δj;aþ1δk;að−1Þαa : ðC14Þ

Hence,

Xd
j;k¼1

wj;kTr½Uαjjihkj� ¼ w1;dð−1Þαd þ
Xd−1
a¼1

waþ1;að−1Þαa :

ðC15Þ

Now, note that, for any j; k ¼ 1;…; d, we have

wj;k

2i
¼ −i

2
ðTr½XkρXj� − Tr½XjρXk�Þ

¼ 1

2
fTr½XkρðiXjÞ†� þ Tr½ðiXjÞρX†

k�g: ðC16Þ

Hence, we get

1

2i

Xd
j¼1

Xd
k¼1

Tr½wj;kUαjjihkj�

¼ 1

2
fTr½XdρðiX1Þ†� þ Tr½ðiX1ÞρX†

d�gð−1Þαd

þ
Xd−1
k¼1

1

2
fTr½XkρðiXkþ1Þ†� þ Tr½ðiXkþ1Þ†ρX†

k�gð−1Þαk :

ðC17Þ

Now,

1

2
Tr½½Xd þ ð−1Þαd iX1�ρ½Xd þ ð−1Þαd iX1�†�

¼ 1

2
Tr½XdρX

†
d� þ

1

2
Tr½X1ρX

†
1�

þ 1

2
Tr½Xdρ½ð−1Þαd iX1�†� þ

1

2
Tr½½ð−1Þαd iX1�ρX†

d�;
ðC18Þ

and, similarly, for all a ¼ 1;…; d − 1, we have

1

2
Tr½½Xa þ ð−1Þαa iXaþ1�ρ½Xa þ ð−1Þαa iXaþ1�†�

¼ 1

2
Tr½XaρX

†
a� þ 1

2
Tr½Xaþ1ρX

†
aþ1�

þ 1

2
Tr½Xaρ½ð−1Þαa iXaþ1�†� þ

1

2
Tr½½ð−1Þαa iXaþ1�ρX†

a�:
ðC19Þ

From Eqs. (C13), (C17), (C18), and (C19), the lemma
follows. ▪
To see how this lemma works explicitly for the three-

parameter (d ¼ 3) scenario, note that

Tr½ReZ� þ i
2

X
ða;bÞ∈Ed;1

wa;b

¼ Tr½X1ρX
†
1� þ Tr½X2ρX

†
2� þ Tr½X3ρX

†
3�

þ i
2
ðTr½X2ρX

†
1� þ Tr½X3ρX

†
2� þ Tr½X1ρX

†
3�Þ

−
i
2
ðTr½X1ρX

†
2� þ Tr½X2ρX

†
3� þ Tr½X3ρX

†
1�Þ

¼ 1

2
Tr½ðX1 þ iX2ÞρðX1 þ iX2Þ†�

þ 1

2
Tr½ðX2 þ iX3ÞρðX2 þ iX3Þ†�

þ 1

2
Tr½ðX3 þ iX1ÞρðX3 þ iX1Þ†�: ðC20Þ

Then, we can rewrite Eq. (C1) as an optimization over
Hermitian matrices X1;…; Xd, where

minimize
X1;…;Xd

max
α∈f0;1gd

Vα;

subject to Tr½ρXj� ¼ 0

Tr½∂jρXk� ¼ δjk: ðC21Þ

We can rewrite with an introduction of an auxiliary variable
t ∈ R so that Eq. (C21) is equivalent to

minimize
X1;…;Xd;t

t;

subject to Tr½ρXj� ¼ 0

Tr½∂jρXk� ¼ δjk

Vα ≤ t

α ∈ f0; 1gd: ðC22Þ

This minimization problem can be numerically checked for
consistency with the optimization in Eq. (C1).
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3. Diagonalizing the quadratic forms

Now, note that the lower bound Vα that we have for the
objective function is a quadratic function of the optimi-
zation variables X1 þ ið−1Þα1X2;…; Xd−1 þ ið−1Þαd−1Xd;
Xd þ ið−1ÞαdX1, and these optimization variables depend
on the binary vector α. We can alternatively write Vα in
terms of optimization variables Y1;…; Yd that are inde-
pendent of α. We can quantify the linear dependence of the
variables Y1;…; Yd on the variables X1;…; Xd using the
following matrix equation:

Y ¼ SX; ðC23Þ

where

S¼

0
BB@
S1;11 � � � S1;d1

..

. ..
.

Sd;11 � � � Sd;d1

1
CCA; Y¼

0
BB@
Y1

..

.

Yd

1
CCA; X¼

0
BB@
X1

..

.

Xd

1
CCA;

ðC24Þ

and

S ¼

8>><
>>:

P
j∈Zd

ðjjihjj þ ijjihj ⊕ 1jÞ d ≠ 0 ðmod 4Þ
P
j∈Zd

½jjihjj þ ð−1Þδj;d ijjihj ⊕ 1j� otherwise:

ðC25Þ

When d is not a multiple of 4, Sj;j ¼ 1 and Sj;jþ1 ¼ i for all
j ¼ 1;…; d − 1, and Sd;d ¼ 1; Sd;1 ¼ i, and all other
matrix elements of S are zero. For instance, when d ¼ 3,
we have

S ¼

0
B@

1 i 0

0 1 i

i 0 1

1
CA; ðC26Þ

but when d ¼ 4 we have

S ¼

0
BBB@

1 i 0 0

0 1 i 0

0 0 1 i

−i 0 0 1

1
CCCA: ðC27Þ

Note that the only difference when d is a multiple of 4 is
that we flip the sign of the bottom-left matrix element.
Given such a set of Yj variables, it then follows that

Vα ¼
1

2

Xd
j¼1

ðδ0;ᾱjTr½YjρY
†
j � þ δ1;ᾱjTr½Y†

jρYj�Þ; ðC28Þ

where ᾱ ¼ α when d is not a multiple of 4, and when d is a
multiple of 4, then ᾱ differs from α by simply flipping the
last bit.
In the following proposition, we determine when the

matrix S is full rank.
Proposition 7.—Let d be a positive integer, and let S be a

matrix as defined in Eq. (C25). Then S has full rank.
Proof.—First, we consider the case when d is not a

multiple of 4. Since S is a circulant matrix, its eigenvectors
are the Fourier modes jϕki ¼

P
d−1
j¼0 ω

jkjji, where k ¼
0; 1;…; d − 1 and ω ¼ expð2πi=dÞ is a root of unity.
The only way to get Sjϕki ¼ 0 is to have ωk ¼ i for some
integer k, but this result is possible only if d divides 4. So if
d does not divide 4, we cannot have Sjϕki ¼ 0, which
implies that S does not have any zero eigenvalues. Hence, S
is full rank.
Next, we consider the case when d is a multiple of 4. The

first d − 1 rows of S form an upper triangular matrix and
are, therefore, linearly independent. We just need to show
that the last row is linearly independent from the rest. Let us
denote the jth row of S by sj, where j goes from 1 to d.
Consider an arbitrary sum of the first d − 1 rows of the form

v ¼
Xd−1
j¼1

cjsj: ðC29Þ

We wish to know if there exists a choice of constants cj
such that v ¼ sd where our definition of S (when d is a
multiple of 4) has

sd ¼ ð−i; 0;…; 0; 1Þ: ðC30Þ

By setting the jth element of v equal to the jth element of
sd, we obtain an equation for each j:

c1 ¼ −i; ðC31Þ

icj þ cjþ1 ¼ 0; ðC32Þ

icd−1 ¼ 1; ðC33Þ

with the middle line holding for all 1 ≤ j < d − 1. It is
simple to confirm that there does not exist a solution to this
set of equations. In particular, we have the recursive
equation cjþ1 ¼ ð−iÞcj with initial condition c1 ¼ ð−iÞ,
and this equation solves to cj ¼ ð−iÞj. This equation
entails cd−1 ¼ ð−iÞd−1 ¼ ið−1Þd ¼ i when d is a multiple
of 4. However, this result contradicts icd−1 ¼ 1, and so no
solution exists. Therefore, the last row S is linearly
independent from the rest, and the matrix is full rank. ▪
From the above proposition, we see that, whenever d is

not a multiple of 4, the matrix S is full rank, which implies
that T ¼ S−1 exists. In this scenario, we can write
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T ¼

0
BB@

T1;1 � � � T1;d

..

. ..
.

Td;1 � � � Td;d

1
CCA; ðC34Þ

and it follows that, for every k ¼ 1;…; d, we can express
the Hermitian observables X1;…; Xd as linear combina-
tions of the matrices Y1;…; Yd:

Xk ¼
Xd
l¼1

Tk;lYl: ðC35Þ

Recall that ρj ¼ ∂jρ for j ¼ 1;…; d. From Eq. (C35) and
the Hermiticity of Xk, we recast the equality constraints in
Eq. (C22) as

c0;kðYÞ ¼
1

2

Xd
l¼1

ðTk;lTr½ρYl� þ T�
k;lTr½ρY†

l�Þ ¼ 0; ðC36Þ

cj;kðYÞ ¼
1

2

Xd
l¼1

ðTk;lTr½ρjYl� þ T�
k;lTr½ρjY†

l�Þ − δj;k ¼ 0:

ðC37Þ

Since the variables Yl are non-Hermitian, in general, we
need to impose additional constraints, namely, the fact that
the corresponding Xk are Hermitian. The Hermiticity of Xk
implies from Eq. (C35) that

Xd
l¼1

ðTk;lYl − T�
k;lY

†
lÞ ¼ 0: ðC38Þ

The left side of Eq. (C38) is, in general, an anti-Hermitian
matrix, and, to make it Hermitian, we multiply both sides
by i to get

HkðYÞ ¼ i
Xd
l¼1

ðTk;lYl − T�
k;lY

†
lÞ ¼ 0: ðC39Þ

With all these constraints, we recast the optimization
problem (C22) as the following optimization problem:

minimize
Y1;…;Yd;t

t;

subject to c0;kðYÞ ¼ 0

cj;kðYÞ ¼ 0

1

2

Xd
l¼1

ðδ0;αlTr½YlρY
†
l� þ δ1;αlTr½Y†

lρYl�Þ ≤ t

HkðYÞ ¼ 0

α ∈ f0; 1gd:
ðC40Þ

4. Analysis on the Lagrangian

Here, we consider the constraints in Eq. (C40) over
j; k ¼ 1;…; d and α1;…;αd ¼ 0, 1, which gives us a total
of dðdþ 1Þ regular equality constraints, d matrix equality
constraints, and 2d regular inequality constraints. The
Lagrangian corresponding to Eq. (C40) can then bewritten as

Ld ¼ tþ
Xd
j¼0

Xd
k¼1

zj;kcj;kðYÞ þ
Xd
k¼1

Tr½ξkHkðYÞ�

þ 1

2

X
α∈f0;1gd

vα
Xd
l¼1

ðδ0;ᾱlTr½YlρY
†
l� þ δ1;ᾱlTr½Y†

lρYl�Þ

−
X

α∈f0;1gd
vαt: ðC41Þ

Here, theLagrangemultipliers zj;k are real numbers,while the
Lagrange multipliers vα are non-negative numbers. The
Lagrange multipliers ξk are Hermitian matrices in HN .
Note that the multiparameter Lagrangian is a quadratic form
in Y and, as such, can be minimized using Lemma 5. Before
we do so, we consider the minimization of the Lagrangian
with respect to the primal variable t.
If the Lagrangian multipliers vα do not all sum to one, by

picking t to approach either positive or negative infinity, the
Lagrangian Ld becomes unbounded. Hence, the optimal
multipliers vα must sum to one. By picking a discrete set of
values of vα where vα is equal to zero to all but one value of
α and maximizing the Lagrange dual function for each of
these cases, we can obtain our lower bound to the multi-
parameter HCRB.
Hence, without loss of generality, there is some value of

the binary vector α for which the effective Lagrangian that
we need to consider is

Ld;α ¼
Xd
j¼0

Xd
k¼1

zj;kcj;kðYÞ þ
Xd
k¼1

Tr½ξkHkðYÞ�

þ 1

2

Xd
l¼1

ðδ0;ᾱlTr½YlρY
†
l� þ δ1;ᾱlTr½Y†

lρYl�Þ: ðC42Þ

Now, define

Γl ¼
Xd
k¼1

Tk;l

�Xd
j¼0

zj;kρj þ iξk

�
: ðC43Þ

By rewriting the terms on the first line on the right side of
Eq. (C42), the effective Lagrangian becomes

Ld;α ¼ −
Xd
j¼1

zj;j þ
1

2

Xd
l¼1

ðTr½ΓlYl� þ Tr½Γ†
lY

†
l�

þ δ0;ᾱlTr½YlρY
†
l� þ δ1;ᾱlTr½Y†

lρYl�Þ: ðC44Þ
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Then, given that ρ is a Hermitian full-rank matrix, we can
use Lemma 5 to get the corresponding Lagrange dual to be

gα ¼ min
Y

Ld;α

¼ −
Xd
j¼1

zj;j −
Xd
l¼1

δ0;ᾱlTr½Γlρ
−1Γ†

l� þ δ1;ᾱlTr½Γ†
lρ

−1Γl�
2

:

ðC45Þ
Our lower bound to the HCRB is, thus,

max
α∈f0;1gd

maxfgα∶zj;k ∈ R; ξk ∈ HDg; ðC46Þ

where j ¼ f0;…; dg; k ¼ f1;…; dg. Any feasible value of
gα yields a lower bound to the HCRB.

APPENDIX D: MINIMIZING THE LAGRANGIAN

In this Appendix, we extend our formalism to account
for arbitrary values of the Lagrange dual variable u. When
uþ v ¼ 1, we minimize the Lagrangian, which we recall
has the form

LðY; u; zÞ ¼ −b⊤zþ uTr½YρY†� þ ð1 − uÞTr½Y†ρY�
þ Tr½AY� þ Tr½A†Y†�; ðD1Þ

where

A ¼ ðz1ρþ z2ρ1 þ z3ρ2 − iz4ρ − iz5ρ1 − iz6ρ2Þ=2: ðD2Þ

Recall the notation ρj ¼ ∂jρ; j ∈ f1; 2g. The Fréchet
derivative of the Lagrangian in the matrix direction H is
given by

∇YðL; HÞ ¼ lim
h→0

LðY þ hH; u; zÞ − LðY; u; zÞ
h

: ðD3Þ

Lemma 8.—Let L be the Lagrangian as defined in
Eq. (D1) and A be as given in Eq. (D2). Suppose that

uYρþ ð1 − uÞρY þ A† ¼ 0: ðD4Þ

Then, ∇YðL;HÞ ¼ 0.
Proof.—Notice that

∇YðL;HÞ ¼ uðTr½HρY†� þTr½YρH†�Þ þ ð1− uÞðTr½H†ρY�
þTr½Y†ρH�Þ þTr½AH� þTr½A†H†�: ðD5Þ

Now, we use the cyclic property of the trace to write

∇YðL;HÞ ¼ uðTr½ρY†H� þTr½YρH†�Þ þ ð1− uÞðTr½ρYH†�
þTr½Y†ρH�Þ þTr½AH� þTr½A†H†�

¼ Tr½B†H� þTr½BH†�; ðD6Þ

where B ¼ uYρþ ð1 − uÞρY þ A† and B† ¼ uρY† þ
ð1 − uÞY†ρþ A. Since B ¼ 0 by the assumption of our
lemma, we must have B† ¼ 0, and it follows that
∇YðL; HÞ ¼ 0. ▪
Notice that Eq. (D4) is a Sylvester equation, and solving

it is a standard procedure, where a variant of the Bartels-
Stewart algorithm can apply. When ρ is a full-rank matrix,
we can solve this equation analytically. Let ρ have the
spectral decomposition ρ ¼ P

j pjjejihejj, where jeji are
normalized eigenvectors of ρ. In this case, Eq. (D4) is
equivalent to

u
X
j;k

hejjYjekijejihekjpk þ ð1 − uÞ
X
j;k

pjjejihekjhejjYjeki

þ
X
j;k

jejihekjhejjA†jeki ¼ 0: ðD7Þ

Simplifying this equation, we getX
j;k

hejjYjeki½upk þ ð1 − uÞpj�jejihekj

¼ −
X
j;k

jejihekjhejjA†jeki; ðD8Þ

from which it follows that

hejjYjeki ¼ −½upk þ ð1 − uÞpj�−1hejjA†jeki: ðD9Þ

The following lemma then follows.
Lemma 9.—The Y that minimizes the Lagrangian is

given by

Y ¼ −
X
j;k

½upk þ ð1 − uÞpj�−1hejjA†jekijejihekj: ðD10Þ

Crucially, we can write the Y that minimizes the
Lagrangian as a linear combination of the Lagrange multi-
pliers z.
Lemma 10.—The Y that minimizes the Lagrangian is

given by

Y ¼ z1γ1 þ z2γ2 þ z3γ3 þ iz4γ1 þ iz5γ2 þ iz6γ3; ðD11Þ

where the complex matrices

γ1 ¼ −1d=2; ðD12Þ

γ2 ¼ −
X
j;k

½upk þ ð1 − uÞpj�−1hejjρ1=2jekijejihekj;

ðD13Þ

γ3 ¼ −
X
j;k

½upk þ ð1 − uÞpj�−1hejjρ2=2jekijejihekj:

ðD14Þ
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Proof.—Recall the definition of A in Eq. (D2). Then, through Lemma 9, we find

Y ¼ −ðz1 þ iz4Þ
X
j;k

½upk þ ð1 − uÞpj�−1hejjρ=2jekijejihekj

− ðz2 þ iz5Þ
X
j;k

½upk þ ð1 − uÞpj�−1hejjρ1=2jekijejihekj

− ðz3 þ iz6Þ
X
j;k

½upk þ ð1 − uÞpj�−1hejjρ2=2jekijejihekj: ðD15Þ

Now, we can make the simplificationX
j;k

½upk þ ð1 − uÞpj�−1hejjρ=2jekijejihekj ¼
X
j

½upj þ ð1 − uÞpj�−1pj=2jejihejj ¼ 1d=2: ðD16Þ

Hence, the result follows. ▪
By substituting the optimal value of Y back into the Lagrangian, we find that the Lagrangian is a quadratic in z. Namely,

we have the following.
Lemma 11.—For fixed u such that 0 < u < 1, and where z ¼ ðz1;…; z6Þ ∈ R6, the Lagrange dual of our Lagrangian is

gðu; zÞ ¼ −b⊤zþ z⊤Qz; ðD17Þ

where

Q ¼ uReðQ1Þ þ ð1 − uÞReðQ2Þ þ ReðQ3Þ; ðD18Þ

Q1 ¼
�

G1 −iG1

iG1 G1

�
; Q2 ¼

�
G2 iG2

−iG2 G2

�
; Q3 ¼

1

2

�
G3 þ G�

3 iðG3 − G�
3Þ

−iðG3 − G�
3Þ G3 þ G�

3

�
; ðD19Þ

and

G1 ¼

0
B@

1=4 0 0

0 Tr½γ2ργ†2� Tr½γ2ργ†3�
0 Tr½γ3ργ†2� Tr½γ3ργ†3�

1
CA; G2 ¼

0
B@

1=4 0 0

0 Tr½γ†2ργ2� Tr½γ†2ργ3�
0 Tr½γ†3ργ2� Tr½γ†3ργ3�

1
CA; G3 ¼

0
B@

−1=2 0 0

0 Tr½ρ1γ2� Tr½ρ1γ3�
0 Tr½ρ2γ2� Tr½ρ2γ3�

1
CA:

ðD20Þ

Proof.—The Lagrange dual is given by substituting the optimal solution for Y in the Lagrangian minimization. Recall the
definition of the Lagrangian in Eq. (D1), and then the first term to evaluate is

Tr½YρY†� ¼ Tr½ðz1γ1 þ z2γ2 þ z3γ3 þ iz4γ1 þ iz5γ2 þ iz6γ3Þρðz1γ†1 þ z2γ
†
2 þ z3γ

†
3 − iz4γ

†
1 − iz5γ

†
2 − iz6γ

†
3Þ�; ðD21Þ

where we use the optimal solution for Y as given in Lemma 10. Writing this solution in matrix form, we have

Tr½YρY†� ¼ z⊤
�

G1 −iG1

iG1 G1

�
z ¼ z⊤Q1z; ðD22Þ

where z is the column vector of Lagrange multipliers and the block matrix

G1 ¼

0
B@

Tr½γ1ργ†1� Tr½γ1ργ†2� Tr½γ1ργ†3�
Tr½γ2ργ†1� Tr½γ2ργ†2� Tr½γ2ργ†3�
Tr½γ3ργ†1� Tr½γ3ργ†2� Tr½γ3ργ†3�

1
CA ¼

0
B@

1=4 0 0

0 Tr½γ2ργ†2� Tr½γ2ργ†3�
0 Tr½γ3ργ†2� Tr½γ3ργ†3�

1
CA: ðD23Þ

Here, we use the definitions for γj in Lemma 10 and the traceless property of the state derivatives ρ1 and ρ2:
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Tr½ργs� ¼ Tr½ργ†s � ¼
X
j

pj½ð1 − uÞpj þ upj�−1hejjρs−1=2jeji ¼
X
j

hejjρs−1jeji=2 ¼ 0; ðD24Þ

for s ∈ f2; 3g. Similarly, we determine the second term in the Lagrangian:

Tr½Y†ρY� ¼ Tr½ðz1γ†1 þ z2γ
†
2 þ z3γ

†
3 − iz4γ

†
1 − iz5γ

†
2 − iz6γ

†
3Þρðz1γ1 þ z2γ2 þ z3γ3 þ iz4γ1 þ iz5γ2 þ iz6γ3Þ�: ðD25Þ

In matrix form, this term can similarly be written as

Tr½Y†ρY� ¼ z⊤
�

G2 iG2

−iG2 G2

�
z ¼ z⊤Q2z; ðD26Þ

where

G2 ¼

0
B@

1=4 0 0

0 Tr½γ†2ργ2� Tr½γ†2ργ3�
0 Tr½γ†3ργ2� Tr½γ†3ργ3�

1
CA: ðD27Þ

Finally, we substitute the optimal solution for Y into the last two terms of the Lagrangian:

Tr½AY þ A†Y†� ¼ 1

2
Tr½ðz1ρþ z2ρ1 þ z3ρ2 − iz4ρ − iz5ρ1 − iz6ρ2Þðz1γ1 þ z2γ2 þ z3γ3 þ iz4γ1 þ iz5γ2 þ iz6γ3Þ

þðz1ρþ z2ρ1 þ z3ρ2 þ iz4ρþ iz5ρ1 þ iz6ρ2Þðz1γ†1 þ z2γ
†
2 þ z3γ

†
3 − iz4γ

†
1 − iz5γ

†
2 − iz6γ

†
3Þ�; ðD28Þ

where we use the Hermiticity of the state derivatives. Hence,

Tr½AY þ A†Y†� ¼ 1

2
z⊤

�
G3 iG3

−iG3 G3

�
zþ 1

2
z⊤

�
G4 −iG4

iG4 G4

�
z ¼ z⊤Q3z; ðD29Þ

where

G3 ¼

0
B@

−1=2 0 0

0 Tr½ρ1γ2� Tr½ρ1γ3�
0 Tr½ρ2γ2� Tr½ρ2γ3�

1
CA; G4 ¼

0
B@

−1=2 0 0

0 Tr½ρ1γ†2� Tr½ρ1γ†3�
0 Tr½ρ2γ†2� Tr½ρ2γ†3�

1
CA: ðD30Þ

Notice thatG4 ¼ G�
3. Since the Lagrange dual must be real,

and the dual variables u and z must be real, we can take the
real part of the matrices Q1, Q2 and Q3 to complete the
proof. ▪
Because our optimization problem is convex, we are

promised that LðY; u; zÞ will be a concave function in both
u and z. This promise implies that, for fixed u, LðY; u; zÞ is
concave in z, which implies that Q is negative definite.
From the stationary point of gðu; zÞ with respect to z, we
find that the optimal solution to z is given by the solution to
the linear equation

2Qz ¼ b: ðD31Þ

If Q is full rank, then we reach the optimal values for the
Lagrange multipliers:

z ¼ 1

2
Q−1b: ðD32Þ

Substituting this result into the solution for Y in Eq. (D11)
provides an Ansatz that can saturate the HCRB, which is
upper and lower bounded by

Uu ¼ max fz⊤Q1z; z⊤Q2zg;
Lu ¼ −b⊤zþ z⊤Qz; ðD33Þ

respectively. For fixed u, our Ansatz for Y gives a tight
bound when these two bounds are equivalent. If such a
solution exists, we can optimize over the dual variable u to
find the optimal value. This value can be determined
numerically for any application in O½polylogð1=ϵÞ� time,
where ϵ is the duality gap. Alternatively, we can find the
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optimal u by looking solely at the lower bound to the
HCRB:

Lu ¼ −
1

2
b⊤Q−1bþ 1

4
b⊤ðQ−1Þ⊤QQ−1b

¼ −
1

4
b⊤Q−1b; ðD34Þ

where we use Eq. (D32) and the fact that Q must be a
symmetric matrix. The function lu is continuous and
differentiable with respect to u. Also, duality theory of
convex optimization promises that Lu is concave in u.
Hence, in the scenario where the optimal u is not attained
for the values u ¼ f0; 1g, we have that Lu is optimized at
its stationary point dLu=du ¼ 0. The optimality condition
of our HCRB is, hence, reduced to finding the roots of the
stationary points of Lu. This concludes our proof of
Theorem 3 in the main body of the text for any two-
parameter estimation problem.

APPENDIX E: COMPLEXITY ANALYSIS FOR
LAGRANGE MINIMIZATION

For fixed u, our method to bound the HCRB requires
minimizing the Lagrangian. We find that this method
amounts to solving the Sylvester equation A† ¼ −½uYρþ
ð1 − uÞρY� for Y. For large dimensional systems, evaluating
the HCRB with concrete analytical results becomes
increasingly cumbersome. In this scenario, a numerical
approach can be used to handle the state diagonalization to
evaluate the HCRB. Here, we bound the complexity of our
formalism to evaluating the HCRB numerically.
For large dimensional systems, the Sylvester equation is

more efficiently solved by first vectorizing the equation to

vecðA†Þ ¼ −½1D ⊗ ð1 − uÞρþ uρ⊤ ⊗ 1D�vecðYÞ ðE1Þ

and then solving using any system of linear equations
solver. The Bartels-Stewart algorithm is an efficient and
robust numerical solver for the Sylvester matrix for large D
[64,89], which outperforms well-known primitive imple-
mentations of Gaussian elimination. The complexity of the
Bartels-Stewart algorithm scales as OðD3Þ.
To circumvent any time complexity involved, we must

have access to the basis that diagonalizes the state. In this
case, we solve the Sylvester equation analytically. For large
D, there are efficient numerical methods that can attain the
spectral decomposition of the state in subcubic time. For
example, with ρðθÞ ∈ HD, the matrix inversion operation
can be practically achieved using the Coppersmith-
Winograd algorithm, which scales as OðD2.376Þ [90].
As a point of comparison, semidefinite programming

(SDP) provides an alternative method to optimization tasks.
SDP programs can be applied to general problems and
admit polynomial-time solvers, which highlight the power
of this approach. The HCRB is recast as an SDP program in

Ref. [44]. For a consistent complexity comparison with our
method, we consider the nontrivial case where the state is
full rank. Hence, by observation of Eq. (11) in Ref. [44],
the variable X that is optimized has order D2 terms.
Furthermore, notice that, for each iteration of the SDP
algorithm, the first constraint requires knowledge of
the spectral decomposition of a matrix parameterized in
terms of X. Therefore, it is easy to observe that this brute
force SDP approach has a time complexity greater than
OðD2×2.376Þ. This result indicates at least a quadratic
speedup, which amounts to a significant improvement with
increasing D.
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