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The Lie-Trotter formula, together with its higher-order generalizations, provides a direct approach to
decomposing the exponential of a sum of operators. Despite significant effort, the error scaling of such
product formulas remains poorly understood. We develop a theory of Trotter error that overcomes the
limitations of prior approaches based on truncating the Baker-Campbell-Hausdorff expansion. Our analysis
directly exploits the commutativity of operator summands, producing tighter error bounds for both real-
and imaginary-time evolutions. Whereas previous work achieves similar goals for systems with geometric
locality or Lie-algebraic structure, our approach holds, in general. We give a host of improved algorithms
for digital quantum simulation and quantum Monte Carlo methods, including simulations of second-
quantized plane-wave electronic structure, k-local Hamiltonians, rapidly decaying power-law interactions,
clustered Hamiltonians, the transverse field Ising model, and quantum ferromagnets, nearly matching or
even outperforming the best previous results. We obtain further speedups using the fact that product
formulas can preserve the locality of the simulated system. Specifically, we show that local observables can
be simulated with complexity independent of the system size for power-law interacting systems, which
implies a Lieb-Robinson bound as a by-product. Our analysis reproduces known tight bounds for first- and
second-order formulas. Our higher-order bound overestimates the complexity of simulating a one-
dimensional Heisenberg model with an even-odd ordering of terms by only a factor of 5, and it is close to
tight for power-law interactions and other orderings of terms. This result suggests that our theory can
accurately characterize Trotter error in terms of both asymptotic scaling and constant prefactor.
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I. INTRODUCTION

Product formulas provide a convenient approach to
decomposing the evolution of a sum of operators. The Lie
product formulawas introduced in the study of Lie groups in
the late 1800s; later developments considered more general
operators and higher-order approximations. Originally stud-
ied in the context of pure mathematics, product formulas
have found numerous applications in other areas, such as
applied mathematics (under the name “splitting method”
or “symplectic integrators”), physics (under the name
“Trotterization”), and theoretical computer science.

This paper considers the application of product formulas
to simulating quantum systems. It has been known for over
two decades that these formulas are useful for digital
quantum simulation and quantum Monte Carlo methods.
However, their error scaling is poorly understood, and
existing bounds can be several orders of magnitude larger
than those observed in practice, even for simulating
relatively small systems.
We develop a theory of Trotter error that directly exploits

the commutativity of operator summands to give tighter
bounds. Whereas previous work achieves similar goals for
systems with geometric locality or Lie-algebraic structure,
our theory has no such restrictions. We present a host of
examples inwhich product formulas can nearlymatch or even
outperformstate-of-the-art simulation results.We accompany
our analysis with numerical calculation, which suggests that
the bounds also have nearly tight constant prefactors.
We hope this work will motivate further studies of the

product-formula approach, which has been deemphasized
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in recent years in favor of more advanced simulation
algorithms that are easier to analyze but harder to imple-
ment. Indeed, despite the sophistication of these “post-
Trotter methods” and their optimality in certain general
models, our work shows that they can be provably out-
performed by product formulas for simulating many
quantum systems.

A. Simulating quantum systems by product formulas

Simulating the dynamics of quantum systems is one of
the most promising applications of digital quantum com-
puters. Classical computers apparently require exponential
time to simulate typical quantum dynamics. This intrac-
tability led Feynman [1] and others to propose the idea of
quantum computers. In 1996, Lloyd gave the first explicit
quantum algorithm for simulating k-local Hamiltonians [2].
Subsequent work considered the broader class of sparse
Hamiltonians [3–8] and developed techniques for simulat-
ing particular physical systems [9–15], with potential
applications to developing new pharmaceuticals, catalysts,
and materials. The study of quantum simulation has also
inspired the design of various quantum algorithms for other
problems [16–20].
Lloyd’s approach to quantum simulation is based on

product formulas. Specifically, let H ¼ PΓ
γ¼1Hγ be a

k-local Hamiltonian [i.e., each Hγ acts nontrivially on
k ¼ Oð1Þ qubits]. Assuming H is time independent,
evolution under H for time t is described by the unitary
operation e−itH. When t is small, this evolution can be
well approximated by the Lie-Trotter formula S1ðtÞ ¼
e−itHΓ � � � e−itH1 , where each e−itHγ can be efficiently
implemented on a quantum computer. To simulate for a
longer time, we may divide the evolution into r Trotter
steps and simulate each step with Trotter error of at most
ϵ=r. We choose the Trotter number r to be sufficiently large
so that the entire simulation achieves an error of at most ϵ.
The Lie-Trotter formula only provides a first-order approxi-
mation to the evolution, but higher-order approximations
are also known from the work of Suzuki and others [21,22].
While many previous works focused on the performance of
specific formulas, the theory we develop holds for any
formula; we use the term “product formula” to emphasize
this generality. A quantum simulation algorithm using
product formulas does not require ancilla qubits, making
this approach advantageous for near-term experimental
demonstration.
Recent studies have provided alternative simulation

algorithms beyond the product-formula approach (some-
times called “post-Trotter methods”). Some of these algo-
rithms have logarithmic dependence on the allowed error
[5–7,23–25], an exponential improvement over product
formulas. However, this dependence generally does not
lead to an exponential reduction in time complexity for
practical applications of quantum simulation. In practice,
the simulation accuracy is often chosen to be constant.

Then, the error dependence only enters as a constant
prefactor, which may not significantly affect the overall
gate complexity. The reduction in complexity is more
significant when quantum simulation is used as a sub-
routine in another quantum algorithm (such as phase
estimation) since this may require high-precision simula-
tion to ensure reliable behavior. However, this logarithmic
error dependence typically replaces a factor that scales
polynomially with time or the system size by another that
scales logarithmically, giving only a polynomial reduction
in the complexity. Furthermore, the constant-factor over-
head and extra space requirements of post-Trotter methods
may make them uncompetitive with the product-formula
approach in practice.
Product formulas and their generalizations [26–29] can

perform significantly better when the operator summands
commute or nearly commute—a unique feature that does
not seem to hold for other quantum simulation algorithms
[5–7,23–25,30]. This effect has been observed numerically
in previous studies of quantum simulations of condensed
matter systems [31] and quantum chemistry [32–34]. An
intuitive explanation of this phenomenon comes from
truncating the Baker-Campbell-Hausdorff (BCH) expan-
sion. However, the intuition that the lowest-order terms of
the BCH expansion are dominant is surprisingly difficult to
justify (and sometimes is not even valid [9,35]). Thus,
previous work established loose Trotter error bounds,
sometimes suggesting poor performance. Our results rig-
orously demonstrate that for many systems, such arguments
do not accurately reflect the true performance of product
formulas.
Product-formula decompositions directly translate terms

of the Hamiltonian into elementary simulation steps,
making them well suited to preserve certain properties
such as the locality of the simulated system. We show that
this property can be used to further reduce the simulation
cost when the goal is to simulate local observables as
opposed to the full dynamics [36,37].
Besides digital quantum simulation, product formulas

can also be applied to quantum Monte Carlo methods, in
which the goal is to classically compute certain properties
of the Hamiltonian, such as the partition function, the free
energy, or the ground energy. Our results can also be
applied to improve the efficiency of previous applications
of quantum Monte Carlo methods for systems such as the
transverse field Ising model [38] and quantum ferromag-
nets [39].

B. Previous analyses of Trotter error

We now briefly summarize prior approaches to analyzing
Trotter error for simulating quantum systems, and we
discuss their limitations.
The original work of Lloyd [2] analyzes product for-

mulas by truncating the Taylor expansion (or the BCH
expansion). Recall that the Lie-Trotter formula S1ðtÞ
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provides a first-order approximation to the evolution, so
S1ðtÞ ¼ e−itH þOðt2Þ. To better analyze the Trotter error,
Lloyd dropped all higher-order terms in the Taylor expan-
sion and focused only on the terms of lowest order, t2. This
approach is intuitive and has been employed by subsequent
works to give a rough estimation of Trotter error. The
drawback of this analysis is that it implicitly assumes that
the high-order terms are dominated by the lowest-order
term. However, this case does not necessarily hold for many
systems, such as nearest-neighbor lattice Hamiltonians [35]
and chemical Hamiltonians [9], when the time step t
is fixed.
This issue was addressed in the seminal work of Berry,

Ahokas, Cleve, and Sanders by using a tail bound of the
Taylor expansion [4]. This approach gave, for the first time,
a concrete bound on the Trotter error for high-order Suzuki
formulas. For a Hamiltonian H ¼ PΓ

γ¼1Hγ containing Γ
summands, their bound scales with ΓmaxγkHγk, although
it is not hard to improve this [26] to

PΓ
γ¼1 kHγk [28,40].

Regardless of which scaling to use, this worst-case analysis
does not exploit the commutativity of Hamiltonian sum-
mands, and the rseulting complexity is worse than many
post-Trotter methods.
Error bounds that exploit the commutativity of sum-

mands are known for low-order formulas, such as the Lie-
Trotter formula [40,41] and the second-order Suzuki
formula [9,40,42,43]. These bounds are tight in the sense
that they match the lowest-order term of the BCH expan-
sion up to an application of the triangle inequality.
However, it is unclear whether they can be generalized,
say, to the fourth- or the sixth-order case, which are still
reasonably simple and can provide a significant advantage
in practice [31].
Instead, previous works made compromises to obtain

improved analyses of higher-order formulas. Somma gave
an improved bound by representing the Trotter error as an
infinite series of nested commutators [44]. This approach is
advantageous when the simulated system has an underlying
Lie-algebraic structure with small structure factors, such as
for a quantum harmonic oscillator and certain nonquadratic
potentials. However, this approach reduces to the worst-
case analysis of Berry, Ahokas, Cleve, and Sanders for
other systems.
An alternative approach of Thalhammer represented the

error of a pth-order product formula using commutators of
order up to q for q ≥ p [45], with the (qþ 1)st-order
remainder further bounded by some tail bound. This
analysis was bottlenecked by the use of a tail bound.
The special case where q ¼ pþ 1was studied in Ref. [31],
and the result was applied to estimate the quantum resource
for simulating a one-dimensional Heisenberg model, which
only offers a modest improvement over the worst-case
analysis.
In recent work [35], Childs and Su gave a Trotter error

bound in which only the lowest-order error appears,

avoiding manipulation of infinite series or use of tail
bounds. As an immediate application, they showed that
product formulas can nearly optimally simulate lattice
systems with geometrically local interactions, justifying
an earlier claim of Jordan, Lee, and Preskill [13] in the
context of simulating quantum field theory.
Their improvement is based on a representation of the

Trotter error introduced by Descombes and Thalhammer
[42], which streamlines the previous analysis [45]. In this
approach, the Trotter error is represented using commuta-
tors nested with conjugations of matrix exponentials. For
Hamiltonians with nearest-neighbor interactions, Ref. [35]
gave an argument based on locality to cancel the majority
of the Trotter error. However, this approach reduces to the
worst-case scenario for systems lacking geometric locality.
In contrast, our representation of the Trotter error does not
have this restriction and results in speedups for simulating
even strongly long-range interacting systems (see Table I).
For other related studies of Trotter error in the context of

numerical analysis, we refer the reader to Refs. [45–50] and
the references therein.

C. Trotter error with commutator scaling

We give a new bound on the Trotter error that depends on
nested commutators of the operator summands. This bound
is formally stated in Sec. III D and previewed here.
Theorem: Trotter error with commutator scaling.

Let H ¼ PΓ
γ¼1 Hγ be an operator consisting of Γ sum-

mands, and let t ≥ 0. Let SðtÞ be a pth-order ϒ-stage
product formula as in Sec. II C. Define α̃comm ¼PΓ

γ1;γ2;…;γpþ1¼1 k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k, where k·k is

the spectral norm. Then, the additive error AðtÞ and the
multiplicative error MðtÞ, defined, respectively, by SðtÞ ¼
etH þAðtÞ and SðtÞ ¼ etHðI þMðtÞÞ, can be asymptoti-
cally bounded sa

kAðtÞk; kMðtÞk ¼ Oðα̃commtpþ1e4tϒ
P

Γ
γ¼1

kHγkÞ: ð1Þ

Furthermore, if theHγ are anti-Hermitian, corresponding to
physical Hamiltonians, we have

kAðtÞk; kMðtÞk ¼ Oðα̃commtpþ1Þ: ð2Þ
We emphasize that this theorem does not follow from

truncating the BCH series. Although the (pþ 1)st-order
term of the BCH series is also a linear combination of
nested commutators similar to α̃comm, such a term can be
dominated by a higher-order term when t is fixed, as is
the case for nearest-neighbor lattice systems (see
Supplementary Sec. I of Ref. [35]) and quantum chemistry
(see Appendix B of Ref. [9]). Truncating the BCH series
ignores significant, potentially dominant error contribu-
tions and thus does not accurately characterize the
Trotter error.
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The above expression for our asymptotic error bound is
succinct and easy to evaluate. In Sec. IV, we compute α̃comm
for various examples, including the second-quantized
electronic-structure Hamiltonians, k-local Hamiltonians,
rapidly decaying power-law interactions, and clustered
Hamiltonians. We further study the tightness of the
prefactor of our bound in Sec. V and give a numerical
implementation for one-dimensional Heisenberg models
with either nearest-neighbor interactions or power-law
interactions.
Although the definition of a specific product formula

depends on the ordering of operator summands, our
asymptotic bound does not. As an immediate consequence,
the asymptotic speedups we obtain in Sec. IVA hold
irrespective of how we order the operator summands in
the simulation. For the special case of nearest-neighbor
lattice models, this answers a previous question of Ref. [35]
regarding the “ordering robustness” of higher-order for-
mulas. However, the ordering becomes important if our
goal is to simulate local observables or to get error bounds
with tight constant prefactors, as we further discuss in
Secs. IV B and Sec. V, respectively.
As mentioned in Sec. I B, prior Trotter error analyses

typically produce loose bounds and are only effective in
special cases. Our approach overcomes those limitations in
the following respects:

(i) Our bound only contains a finite number of error
terms, in contrast to the bound in Ref. [44].

(ii) Our bound involves pure nested commutators
without conjugations of matrix exponentials or
using tail bounds, overcoming the drawbacks of
Refs. [35,45,47].

(iii) Our bound reduces to the worst-case analysis of
Ref. [4] by further bounding terms with the triangle
inequality.

(iv) For Hamiltonians with two summands, our bound
encompasses the tight analyses [9,40–43] of the
Lie-Trotter formula and the second-order Suzuki
formula as special cases.

D. Overview of results

The commutator scaling of the Trotter error uncovers a
host of examples where product formulas can nearly match
or even outperform the state-of-the-art results in digital
quantum simulation. These examples include (i) a simu-
lation of second-quantized plane-wave electronic structure
with n spin orbitals for time t with gate complexity
n2þoð1Þt1þoð1Þ, whereas the state-of-the-art approach per-
forms simulation in the interaction picture [25] with
cost Õðn2tÞ and likely large overhead; (ii) a simulation
of n-qubit k-local Hamiltonians H with complexity

nkjkHjk1kHkoð1Þ1 t1þoð1Þ that almost scales with the induced
1-norm jkHjk1 [51], implying an improved simulation of d-
dimensional power-law interactions that decay with dis-
tance x as 1=xα for α ≤ 2d, whereas the fastest previous
approach uses the qubitization algorithm [24] with cost
ÕðnkkHk1tÞ; (iii) a simulation of d-dimensional power-law
interactions 1=xα (for fixed α > 2d) with gate complexity
ðntÞ1þd=ðα−dÞþoð1Þ, whereas the best previous algorithm
decomposes the evolution based on Lieb-Robinson bounds
[52] with cost ÕððntÞ1þ2d=ðα−dÞÞ; and (iv) a hybrid simu-
lation of clustered Hamiltonians of interaction strength
hB and contraction complexity ccðgÞ with runtime

2Oðhoð1ÞB t1þoð1ÞccðgÞ=ϵoð1ÞÞ, improving the previous result of
2Oðh2Bt2ccðgÞ=ϵÞ [53]. We discuss these examples in more
detail in Sec. IVA.
We show in Sec. IV B that these gate complexities can be

further improved when the goal is to simulate local
observables instead of the full dynamics. We illustrate this
for d-dimensional lattice systems with 1=xα interactions
(α > 2d). Lieb-Robinson bounds for power-law inter-
actions [52] suggest that the evolution of a local observable
is mostly confined inside a light cone induced by the
interactions. Simulating such an evolution by simulating
the dynamics of the entire system appears redundant,
especially when the system size is large. We realize this
intuition and show, without using Lieb-Robinson bounds,

TABLE I. Comparison of our results and the best previous results for simulating quantum dynamics, simulating local observables, and
quantum Monte Carlo simulation.

Application System Best previous result New result

Simulating quantum dynamics Electronic structure Õðn2tÞ (interaction picture) n2þoð1Þt1þoð1Þ

k-local Hamiltonians ÕðnkkHk1tÞ (qubitization) nkjkHjk1kHkoð1Þ1 t1þoð1Þ

1=xα (α < d) Õðn4−α=dtÞ (qubitization) n3−α=dþoð1Þt1þoð1Þ
1=xα (d ≤ α ≤ 2d) Õðn3tÞ (qubitization) n2þoð1Þt1þoð1Þ
1=xα (α > 2d) ÕððntÞ1þ2d=ðα−dÞÞ (Lieb-Robinson bound) ðntÞ1þd=ðα−dÞþoð1Þ

Clustered Hamiltonians 2Oðh2Bt2ccðgÞ=ϵÞ 2Oðhoð1ÞB t1þoð1ÞccðgÞ=ϵoð1ÞÞ

Simulating local observables 1=xαðα > 2dÞ … t½1þdðα−d=α−2dÞ�½1þðd=α−dÞ�þoð1Þ

Monte Carlo simulation Transverse field Ising model Õðn59j21ϵ−9Þ Õðn45j14ϵ−2 þ n38j21ϵ−9Þ
Quantum ferromagnets Õðn115ð1þ β46Þ=ϵ25Þ Õðn92ð1þ β46Þ=ϵ25Þ
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that the gate count for simulating the evolution of a local
observable scales as t½1þdðα−dÞ=ðα−2dÞ�½1þd=ðα−dÞ�þoð1Þ, which
is independent of the system size n and smaller than
simulating the dynamics of the entire system when n ¼
Ωðtdðα−dÞ=ðα−2dÞÞ. The scaling also reduces to tdþ1þoð1Þ—
proportional to the space-time volume inside a linear light
cone—in the limit α → ∞, which corresponds to nearest-
neighbor interactions.
Our bound can also be applied to improve the perfor-

mance of quantumMonte Carlo simulation. In this case, we
are limited to the use of the second-order Suzuki formula,
and because of imaginary-time evolution, the Trotter
number scales at least linearly with the system size.
Nevertheless, we are able to improve several existing
classical simulations using our bound, without modifying
the original algorithms. This improvement includes (i) a
simulation of an n-qubit transverse field Ising model with
maximum interaction strength j and precision ϵwith runtime
Õðn45j14ϵ−2 þ n38j21ϵ−9Þ, tightening the previous result of
Õðn59j21ϵ−9Þ [38]; and (ii) a simulation of ferromagnetic
quantum spin systems for (imaginary) time β and accuracy ϵ
with runtime Õðn92ð1þ β46Þ=ϵ25Þ, improving the previous
complexity of Õðn115ð1þ β46Þ=ϵ25Þ [39]. These applica-
tions are further discussed in Sec. IV C. Table I compares our
results against the best previous ones for simulating quan-
tum dynamics, simulating local observables, and quantum
Monte Carlo simulation.
Given the numerous applications our bound provides in

the asymptotic regime, we ask whether it has a favorable
constant prefactor as well. This consideration is relevant to
the practical performance of product formulas, especially
for near-term quantum simulation experiments. For a two-
term Hamiltonian, we show that our bound reduces to the
known analyses of the Lie-Trotter formula [40,41] and the
second-order Suzuki formula [9,42,43]. We then bootstrap
the result to analyze Hamiltonians with an arbitrary number
of summands (Sec. VA). The resulting bound matches the
lowest-order term of the BCH expansion up to an appli-
cation of the triangle inequality, and our analysis is thus
provably tight for these low-order formulas.
We further numerically implement our bound for a one-

dimensional Heisenberg model with a random magnetic
field. This model can be simulated to understand condensed
matter phenomena, but even a simulation of modest size
seems to be infeasible for current classical computers.
Childs et al. compared different quantum simulation
algorithms for this model [31] and observed that product
formulas have the best empirical performance, although
their provable bounds were off by orders of magnitude even
for systems of modest size, making it hard to identify with
confidence the most efficient approach for near-term
simulation. Reference [35] claimed an improved fourth-
order bound that is off by a factor of about 17. Here, we
give a tight bound that overestimates by only a factor of
about 5. We also give a nearly tight Trotter error bound for

power-law interactions. We describe the numerical imple-
mentation of our bound in detail in Sec. V B.
Underpinning these improvements is a theory we

develop concerning the types, order conditions, and rep-
resentations of the Trotter error. We illustrate these con-
cepts in Sec. III Awith the simple example of the first-order
Lie-Trotter formula.
Let H ¼ PΓ

γ¼1 Hγ be a sum of operators, and let SðtÞ be
a product formula corresponding to this decomposition. We
say that AðtÞ, MðtÞ, and EðtÞ are the additive, multipli-
cative, and exponentiated Trotter error if

SðtÞ ¼ etH þAðtÞ; ð3Þ

SðtÞ ¼ etHðI þMðtÞÞ; ð4Þ

SðtÞ ¼ T exp

�Z
t

0

dτðH þ EðτÞÞ
�
; ð5Þ

respectively, where T exp denotes the time-ordered matrix
exponential. For applications in digital quantum simula-
tion, these three types of Trotter error are equivalent to each
other. However, the multiplicative type and the exponen-
tiated type are more versatile for analyzing quantum
Monte Carlo simulation. We give a constructive definition
of these error types and discuss how they are related in
Sec. III B.
A pth-order product formula SðtÞ can approximate the

ideal evolution to pth order, in the sense that
SðtÞ ¼ etH þOðtpþ1Þ. Motivated by this approximation,
we say that an operator-valued function FðtÞ satisfies the
pth-order condition if FðtÞ ¼ Oðtpþ1Þ. In Sec. III C, we
give order conditions for the Trotter error and its various
derived operators. One significance of order conditions is
that they can be used to cancel low-order terms. In
particular, if FðtÞ satisfies the pth-order condition, then
all terms with order at most p vanish in the Taylor series.
This result can be verified by brute-force differentiation
when FðtÞ is explicitly given, but applying the correct
order condition avoids such a cumbersome calculation.
We then consider representations of the Trotter error in

Sec. III D. Our representation only involves finitely many
error terms, each of which is given by a nested commutator
of operator summands. As mentioned earlier, these features
overcome the drawbacks of previous representations and
motivate a host of new applications. In deriving our
representation, we work in a general setting where operator
summands are not necessarily anti-Hermitian, so our
analysis simultaneously handles real-time evolutions for
digital quantum simulation and imaginary-time evolutions
for quantum Monte Carlo simulation.
Sec. II gives a summary of background material that is

necessary for understanding our Trotter error theory and its
applications. Sec. VI concludes the paper with a brief
discussion of the results and some open questions.
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II. PRELIMINARIES

In this section, we summarize the preliminaries that we
use in subsequent sections of the paper. Specifically, we
introduce notation and terminology in Sec. II A, including
various notions of norms and common asymptotic nota-
tions. In Sec. II B, we discuss time-ordered evolutions and
the properties that are relevant to our analysis. We then
define general product formulas in Sec. II C and prove a
Trotter error bound with 1-norm scaling. Readers who are
familiar with these preliminaries may skip ahead to Sec. III
for the main result of our paper.

A. Notation and terminology

Unless otherwise noted, we use lowercase Latin letters to
represent scalars, such as the evolution time t, the system
size n, and the order of a product formula p. We also use the
Greek alphabet to denote scalars, especially when we want
to write a summation like

PΓ
γ¼1. We use uppercase Latin

letters, such as A, to denote operators. Throughout the
paper, we assume that the underlying Hilbert space is finite
dimensional, and operators can be represented by complex
square matrices. We expect that some of our analyses can
be generalized to spaces with infinite dimensions, but we
restrict ourselves to the finite-dimensional setting since this
is most relevant for applications to digital quantum sim-
ulation and quantum Monte Carlo simulation. We use
scripted uppercase letters, such as FðtÞ, to denote oper-
ator-valued functions.
We organize scalars to form vectors hγ and tensors

hγ1;…;γk . We use standard norms for tensors, including the
1-norm khk1 ≔

P
γ1;…;γk jhγ1;…;γk j, the Euclidean norm (or

2-norm) khk2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

γ1;…;γk jhγ1;…;γk j2
q

, and the ∞-norm

khk∞ ≔ maxγ1;…;γk jhγ1;…;γk j. In case there is ambiguity,

we use h⃗ to emphasize the fact that h is a vector (or a tensor,
more generally).
For an operator A, we use kAk to denote its spectral

norm—the largest singular value of A. The spectral norm is
also known as the operator norm. It is a matrix norm that
satisfies the scaling property kaAk ¼ jajkAk, the submul-
tiplicative property kABk ≤ kAkkBk, and the triangle
inequality kAþ Bk ≤ kAk þ kBk. If A is unitary, then
kAk ¼ 1. We further use Aγ1;…;γk to denote a tensor
where each elementary object is an operator. We define
a norm of Aγ1;…;γk by taking the spectral norm of each
elementary operator and evaluating the corresponding norm
of the resulting tensor. For example, we have kAk1 ≔P

γ1;…;γk kAγ1;…;γkk and kAk∞ ≔ maxγ1;…;γk kAγ1;…;γkk.
For a tensor Aγ1;…;γk, we define

jkAjk1 ≔ max
j

max
γj

X
γ1 ;…;γj−1 ;
γjþ1 ;…;γk

kAγ1;…;γkk: ð6Þ

We call jkAjk1 the induced 1-norm of A since it can be seen
as a generalization of the induced 1-norm maxγ2

P
γ1
jaγ1;γ2 j

of a matrix aγ1;γ2 [54]. A quantum simulation algorithm
with induced 1-norm scaling runs faster than a 1-norm
scaled algorithm because

jkAjk1 ≤ kAk1: ð7Þ

In fact, as we will see in Sec. IVA, the gap between these
two norms can be significant for many realistic systems.
We also use adAB to denote the commutator ½A;B�. Using

a standard Lie-algebraic identity, we have eABe−A ¼ eadAB.
Let f; g∶R → R be functions of real variables. We write

f ¼ OðgÞ if there exist c; t0 > 0 such that jfðτÞj ≤ cjgðτÞj
whenever jτj ≤ t0. Note that we consider the limit when the
variable τ approaches zero as opposed to infinity, which is
different from the usual setting of algorithmic analysis. For
that purpose, we write f ¼ OðgÞ if there exist c; t1 > 0
such that jfðτÞj ≤ cjgðτÞj for all jτj ≥ t1. When there is no
ambiguity, we will use f ¼ OðgÞ to also represent the case
where jfðτÞj ≤ cjgðτÞj holds for all τ ∈ R. We then extend
the definition of O to functions of positive integers and
multivariate functions. For example, we use fðn; t; 1=ϵÞ ¼
OððntÞ2=ϵÞ to mean that jfðn; t; 1=ϵÞj ≤ cðnjtjÞ2=ϵ for
some c, n0, t0, ϵ0 > 0 and all jtj ≥ t0, 0 < ϵ < ϵ0, and
integers n ≥ n0. If FðτÞ is an operator-valued function, we
first compute its spectral norm and analyze the asymptotic
scaling of kFðτÞk. We write f ¼ ΩðgÞ if g ¼ OðfÞ, and
f ¼ ΘðgÞ if both f ¼ OðgÞ and f ¼ ΩðgÞ. We use Õ to
suppress logarithmic factors in the asymptotic expression
and oð1Þ to represent a positive number that approaches
zero as some parameter grows.
Finally, we use

Q⃖
,
QΓ

γ¼1 to denote a product where the

elements have increasing indices from right to left and
Q⃗

,Q
1
γ¼Γ vice versa. Under this convention,

YΓ
γ¼1

Aγ ¼
Y⃖
γ

Aγ ¼ AΓ � � �A2A1; ð8Þ

Y1
γ¼Γ

Aγ ¼
Y⃗
γ

Aγ ¼ A1A2 � � �AΓ: ð9Þ

We let a summation be zero if its lower limit exceeds its
upper limit.

B. Time-ordered evolutions

Let HðτÞ be an operator-valued function defined for
0 ≤ τ ≤ t. We say that UðτÞ is the time-ordered evolution
generated by HðτÞ if Uð0Þ ¼ I and ðd=dτÞUðτÞ ¼
HðτÞUðτÞ for 0 ≤ τ ≤ t. In the case where HðτÞ is anti-
Hermitian, the function UðτÞ represents the evolution of a
quantum system under Hamiltonian iHðτÞ. We do not
impose any restrictions on the Hermiticity of HðτÞ in the
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development of our theory, so our analysis can be applied to
not only real-time but also imaginary-time evolutions.
Throughout this paper, we assume that operator-valued
functions are continuous, which guarantees the existence
and uniqueness of their generated evolutions (see p. 12 of
Ref. [55]). We then formally represent the time-ordered
evolution UðtÞ by T expðR t

0 dτHðτÞÞ, where T exp
denotes the time-ordered exponential. In the special
case where HðτÞ ¼ H is constant, the generated
evolution is given by an ordinary matrix exponen-
tial T expðR t

0 dτHðτÞÞ ¼ etH.
In a similar way, we define the time-ordered evolution

T expðR t2
t1 dτHðτÞÞ on an arbitrary interval t1 ≤ τ ≤ t2. Its

determinant satisfies (see p. 9 of Ref. [55])

det

�
T exp

�Z
t2

t1

dτHðτÞ
��

¼ e
R

t2
t1

dτTrðHðτÞÞ ≠ 0;

so the inverse operator T exp−1ðR t2
t1 dτHðτÞÞ exists; we

denote it by T expðR t1
t2 dτHðτÞÞ. We have thus defined

T expðR t2
t1 dτHðτÞÞ for every pair of t1 and t2 in the domain

ofHðτÞ [56]. In the Appendix A, we list a few identities of
time-ordered exponentials that are useful in our analysis.

C. Product formulas

Let H ¼ PΓ
γ¼1 Hγ be a time-independent operator con-

sisting of Γ summands so that the evolution generated byH

is et
P

Γ
γ¼1

Hγ . Product formulas provide a convenient way of
decomposing such an evolution into a product of expo-
nentials of individual Hγ . Examples of product formulas
include the first-order Lie-Trotter formula

S1ðtÞ ≔ etHΓ � � � etH1 ð10Þ

and higher-order Suzuki formulas [21] defined recursively
via

S2ðtÞ≔eðt=2ÞH1 ���eðt=2ÞHΓeðt=2ÞHΓ ���eðt=2ÞH1 ;

S2kðtÞ≔S2
2k−2ðuktÞS2k−2ðð1−4ukÞtÞS2

2k−2ðuktÞ; ð11Þ

where uk ≔ 1=ð4 − 41=ð2k−1ÞÞ. It is a challenge in practice
to find the formula with the best performance for simulating
a specific physical system [31]. However, we address a
different question, developing a theory of Trotter error that
holds for a general product formula. For in-depth studies of
these formulas, especially in the context of numerical
analysis, we refer the reader to Refs. [45–50] and the
references therein.
Specifically, we consider a product formula of the form

SðtÞ ≔
Yϒ
υ¼1

YΓ
γ¼1

etaðυ;γÞHπυðγÞ ; ð12Þ

where the coefficients aðυ;γÞ are real numbers. The param-
eter ϒ denotes the number of stages of the formula; for the
Suzuki formula S2kðtÞ, we have ϒ ¼ 2 × 5k−1. The per-
mutation πυ controls the ordering of operator summands
within stage υ of the formula. For Suzuki’s constructions,
we alternately reverse the ordering of summands between
neighboring stages, but other formulas may use general
permutations. Throughout this paper, we fix ϒ, πυ and
assume that the coefficients aðυ;γÞ are uniformly bounded by
1 in absolute value. We then consider the performance of
the product formula with respect to the input operator
summands Hγ (for γ ¼ 1;…;Γ) and the evolution time t.
Product formulas provide a good approximation to the

ideal evolution when the time t is small. Specifically, a pth-
order formula SðtÞ satisfies

SðtÞ ¼ etH þOðtpþ1Þ: ð13Þ

This asymptotic analysis gives the correct error scaling with
respect to t; however, the dependence on the Hγ is ignored,
so it does not provide a full characterization of the Trotter
error. This issue was addressed in the work of Berry,
Ahokas, Cleve, and Sanders [4], who gave a concrete error
bound for product formulas with dependence on both t and
Hγ . Their original bound depends on the ∞-norm
Γmaxγ kHγk, although it is not hard to improve this to
the 1-norm scaling

PΓ
γ¼1 kHγk.

Lemma 1: (Trotter error with 1-norm scaling). Let H ¼PΓ
γ¼1Hγ be an operator consisting of Γ summands and

t ≥ 0. Let SðtÞ ¼ Q
ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ be a pth-order
product formula. Then,

kSðtÞ−etHk¼O
��XΓ

γ¼1

kHγkt
�

pþ1

etϒ
P

Γ
γ¼1

kHγk
�
: ð14Þ

Furthermore, if Hγ are anti-Hermitian,

kSðtÞ − etHk ¼ O
��XΓ

γ¼1

kHγkt
�

pþ1
�
: ð15Þ

We provide a proof of Lemma 1 in Appendix B. For real-
time evolutions, this lemma improves a multiplicative

factor of etϒ
P

Γ
γ¼1

kHγk over the best previous analysis
[see Eq. (13) in Ref. [28] ].
The above bound on the Trotter error works well for

small t. To simulate anti-Hermitian Hγ for a large time,
we divide the evolution into r steps and apply the
product formula within each step. The overall simulation
has error

kSrðt=rÞ − etHk ¼ O
�ðPΓ

γ¼1 kHγktÞpþ1

rp

�
: ð16Þ
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To simulate with accuracy ϵ, it suffices to choose

r ¼ O
�ðPΓ

γ¼1 kHγktÞ1þ1=p

ϵ1=p

�
: ð17Þ

We therefore arrive at the following corollary
Corollary 2: (Trotter number with 1-norm scaling) Let

H ¼ PΓ
γ¼1 Hγ be an operator consisting of Γ summands

with Hγ anti-Hermitian and t ≥ 0. Let SðtÞ be a pth-order
product formula. Then, we have kSrðt=rÞ − etHk ¼ OðϵÞ
provided

r ¼ O
�ðPΓ

γ¼1 kHγktÞ1þ1=p

ϵ1=p

�
: ð18Þ

Note that the above analysis only uses information
about the norms of the summands. In the extreme case
where all Hγ commute, the Trotter error becomes zero, but
the above bound can be arbitrarily large. This contradiction
suggests that the analysis can be significantly improved by
leveraging information about commutation of the Hγ .
Unfortunately, despite extensive efforts, dramatic improve-
ments to the Trotter error bound are only known for certain
low-order formulas [9,40–43] and special systems [35,44].
To explain the limitations of prior approaches, it is

instructive to examine a general bound developed by
Descombes and Thalhammer [42,45],

kSðtÞ − etHk ≤ apþ1tpþ1 þ � � � þ aqtq þ aqþ1tqþ1; ð19Þ

where H ¼ PΓ
γ¼1 Hγ is a sum of anti-Hermitian operators,

SðtÞ is a pth-order formula, q ≥ p is a positive integer, and
t ≥ 0, suggesting a choice of

r ¼ max

�
O
�
a1=ppþ1t

1þ1=p

ϵ1=p

�
;…;O

�
a1=ðq−1Þq t1þ1=ðq−1Þ

ϵ1=ðq−1Þ

�
;

O
�
a1=qqþ1t

1þ1=q

ϵ1=q

��
ð20Þ

to simulatewith accuracy ϵ. Here, all the leading coefficients
apþ1;…; aq depend on nested commutators ofHγ, but aqþ1

is determined by commutators interlaced with matrix
exponentials, which is technically challenging to evaluate
except for geometrically local systems. Consequently, a
bound on aqþ1 must be used, resulting in a 1-norm scaling
similar to that of Lemma 1 and a loose Trotter error estimate
for simulating general quantum systems.
We develop a theory of Trotter error that directly exploits

the commutativity of operator summands. The resulting
bound naturally reduces to the previous bounds for low-
order formulas and special systems, but our analysis
uncovers a host of new speedups for product formulas
that were previously unknown. The central concepts of this

theory are the types, order conditions, and representations
of the Trotter error, which we explain in Sec. III.

III. THEORY

We now develop a theory for analyzing the Trotter error.
We explain the core ideas of this theory in Sec. III A using
the simple example of the first-order Lie-Trotter formula.
We then discuss the analysis of a general formula.
In particular, we study various types of Trotter error in
Sec. III B and compute their order conditions in
Sec. III C. We then derive explicit representations of the
Trotter error in Sec. III D, establishing the commutator
scaling of the Trotter error in Theorem 6. We focus on the
asymptotic error scaling here and discuss potential appli-
cations and constant-prefactor improvements of our results
in Secs. IV and Sec. V, respectively.

A. Example of the Lie-Trotter formula

In this section, we use the example of the first-order Lie-
Trotter formula to illustrate the general theory we develop
for analyzing the Trotter error. For simplicity, consider an
operator H ¼ Aþ B with two summands. The ideal
evolution generated by H is given by etH ¼ etðAþBÞ. To
decompose this evolution, we may use the Lie-Trotter
formula S1ðtÞ ¼ etBetA. This formula is first-order accu-
rate, so we have S1ðtÞ ¼ etH þOðt2Þ.
A key observation here is that the error of a product

formula can have various types. Specifically, we consider
three types of Trotter error: additive error, multiplicative
error, and error that appears in the exponent. Note that
S1ðtÞ satisfies the differential equation ðd=dtÞS1ðtÞ ¼
HS1ðtÞ þ ½etB; A�etA with the initial condition
S1ð0Þ ¼ I. By the variation-of-parameters formula
(Lemma A.1),

S1ðtÞ ¼ etH þ
Z

t

0

dτeðt−τÞH½eτB; A�eτA; ð21Þ

so we get the additive errorA1ðtÞ ¼
R
t
0 dτe

ðt−τÞH½eτB; A�eτA
of the Lie-Trotter formula. For error with the exponentiated
type, we differentiate S1ðtÞ to get ðd=dtÞS1ðtÞ ¼
ðBþ etadBAÞS1ðtÞ. Applying the fundamental theorem of
time-ordered evolution (Lemma A.3), we have

S1ðtÞ ¼ T exp

�Z
t

0

dτðBþ eτadBAÞ
�
; ð22Þ

so E1ðτÞ ¼ eτadBA − A is the error of the Lie-Trotter
formula that appears in the exponent. To obtain the
multiplicative error, we switch to the interaction picture
using Lemma A.2:
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S1ðtÞ ¼ etHT exp

�Z
t

0

dτe−τadHðeτadBA − AÞ
�
;

so M1ðtÞ ¼ T expðR t
0 dτe

−τadHðeτadBA − AÞÞ − I is the
multiplicative Trotter error.
These three types of Trotter error are equivalent for

analyzing the complexity of digital quantum simulation
(Sec. IVA) and simulating local observables (Sec. IV B),
whereas the multiplicative error and the exponentiated error
are more versatile when applied to quantum Monte Carlo
simulation (Sec. IV C). We compute the error operators for
a general product formula in Sec. III B.
Since product formulas provide a good approximation to

the ideal evolution for small t, we expect all three error
operators A1ðtÞ, E1ðtÞ, and M1ðtÞ to converge to zero in
the limit t → 0. The rates of convergence are what we call
order conditions. More precisely,

A1ðtÞ ¼
Z

t

0

dτ eðt−τÞH½eτB; A�eτA ¼ Oðt2Þ;

E1ðtÞ ¼ etadBA − A ¼ OðtÞ;

M1ðtÞ ¼ T exp

�Z
t

0

dτe−τadHðeτadBA − AÞ
�
− I

¼ Oðt2Þ:

For the Lie-Trotter formula, these conditions can be
verified by direct calculation, although such an approach
becomes inefficient, in general. Instead, we describe an
indirect approach in Sec. III C to compute order conditions
for a general product formula.
Finally, we consider representations of the Trotter

error that leverage the commutativity of operator sum-
mands. We discuss how to represent M1ðtÞ in detail,
although it is straightforward to extend the analysis to
A1ðtÞ and E1ðtÞ as well. To this end, we first consider the
term e−τadHeτadBA, which contains two layers of conjuga-
tions of matrix exponentials. We apply the fundamental
theorem of calculus to the first layer of conjugation and
obtain

eτadBA ¼ Aþ
Z

τ

0

dτ2eτ2adBadBA: ð23Þ

Substituting into the expression of M1ðtÞ, we get

M1ðtÞ¼T exp

�Z
t

0

dτ
Z

τ

0

dτ2e−τadHeτ2adBadBA
�
−I; ð24Þ

which implies, through Corollary A.5, that kM1ðtÞk ¼
Oðk½B;A�kt2Þ when A, B are anti-Hermitian and t ≥ 0.
In the above derivation, it is important that we only expand
the first layer of conjugation of exponentials, that we
apply the fundamental theorem of calculus only once,
and that we can cancel the terms e−τHAeτH in pairs. The
validity of such an approach, in general, is guaranteed by
the appropriate order condition, which we explain in detail
in Sec. III D.

B. Error types

In this section, we discuss error types of a general
product formula. In particular, we give explicit expressions
for three different types of Trotter error: the additive error,
the multiplicative error, and error that appears in the
exponent of a time-ordered exponential (the “exponenti-
ated” error). These types are equivalent for analyzing the
complexity of simulating quantum dynamics and local
observables, but the latter two types are more versatile for
quantum Monte Carlo simulation.
Let H ¼ PΓ

γ¼1 Hγ be an operator with Γ summands.
The ideal evolution under H for time t is given by

etH ¼ et
P

Γ
γ¼1

Hγ , which we approximate by a general
product formula SðtÞ ¼ Q

ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ . For con-
venience, we use the lexicographic order on a pair of tuples
ðυ; γÞ and ðυ0; γ0Þ, defined as follows: We write ðυ; γÞ ≽
ðυ0; γ0Þ if υ > υ0, or if υ ¼ υ0 and γ ≥ γ0. We have
ðυ; γÞ≻ðυ0; γ0Þ if both ðυ; γÞ ≽ ðυ0; γ0Þ and ðυ; γÞ ≠ ðυ0; γ0Þ
hold. Notations ðυ; γÞ ≼ ðυ0; γ0Þ and ðυ; γÞ ≺ ðυ0; γ0Þ are
defined in a similar way, except that we reverse the
directions of all the inequalities.
For the additive Trotter error, we seek an operator-

valued function AðtÞ such that SðtÞ ¼ etH þAðtÞ. This
can be achieved by constructing the differential equation
ðd=dtÞSðtÞ ¼ HSðtÞ þRðtÞ with initial condition
Sð0Þ ¼ I, followed by the use of the variation-of-param-
eters formula (Lemma A.1). For the exponentiated type of
Trotter error, we aim to construct an operator-valued
function EðtÞ such that SðtÞ ¼ T expðR t

0 dτðH þ EðτÞÞÞ.
We find EðtÞ by differentiating the product formula SðtÞ
and applying the fundamental theorem of time-ordered
evolution (Lemma A.3). Finally, we obtain the multipli-
cative error by switching to the interaction picture using
Lemma A.2. The derivation follows from a similar analysis
as in Sec. III A and is detailed in Appendix C.
Theorem 3: (Types of Trotter error). Let H ¼ PΓ

γ¼1Hγ

be an operator with Γ summands. The evolution under H

for time t ∈ R is given by etH ¼ et
P

Γ
γ¼1

Hγ, which
we decompose using the product formula SðtÞ ¼Q

ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ . Then, the following state-
ments holds:
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(1) Trotter error can be expressed in the additive form
SðtÞ ¼ etH þ R

t
0 dτe

ðt−τÞHSðτÞT ðτÞ, where

T ðτÞ ¼
X
ðυ;γÞ

Y→
ðυ0 ;γ0Þ
≺ðυ;γÞ

e
−τaðυ0 ;γ0ÞadHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ

−
Y→
ðυ0;γ0Þ

e
−τaðυ0 ;γ0ÞadHπ

υ0 ðγ
0ÞH: ð25Þ

(2) Trotter error can be expressed in the exponentiated
form SðtÞ ¼ T expðR t

0 dτðH þ EðτÞÞÞ, where

EðτÞ¼
X
ðυ;γÞ

Y←
ðυ0 ;γ0Þ
≻ðυ;γÞ

e
τaðυ0 ;γ0ÞadHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ−H: ð26Þ

(3) Trotter error can be expressed in the multiplicative
form SðtÞ ¼ etHðI þMðtÞÞ, where

MðtÞ ¼ T exp

�Z
t

0

dτ e−τadHEðτÞ
�
− I; ð27Þ

with EðτÞ as above.
Note that the error operators T ðτÞ and EðτÞ both

consist of conjugations of matrix exponentials of the form
eτAs � � � eτA2eτA1Be−τA1e−τA2 � � � e−τAs . To bound the Trotter
error, it thus suffices to analyze such conjugations of matrix
exponentials. The previous work of Somma [44] expanded
them into infinite series of nested commutators, which is
favorable for systems with appropriate Lie-algebraic struc-
tures. An alternative approach of Childs and Su [35]
represented them as commutators nested with conjugations
of matrix exponentials, which provides a tight analysis
for geometrically local systems. Unfortunately, both
approaches can be loose, in general. Instead, we apply
order conditions (Sec. III C) and derive a new representa-
tion of the Trotter error (Sec. III D) that provides a tight
analysis for general systems.

C. Order conditions

In this section, we study the order conditions of the
Trotter error. By order condition, we mean the rate at which
a continuous operator-valued function FðτÞ, defined for
τ ∈ R, approaches zero in the limit τ → 0. Formally, we
write FðτÞ ¼ OðτpÞ with non-negative integer p if there
exist constants c, t0 > 0, independent of τ, such that
kFðτÞk ≤ cjτjp whenever jτj ≤ t0.
Order conditions arise naturally in the analysis of the

Trotter error [21,57–59]. Indeed, a pth-order product
formula SðtÞ has a Taylor expansion that agrees with
the ideal evolution etH up to order tp, which implies the
order condition SðtÞ ¼ etH þOðtpþ1Þ by definition. Our
approach is to use this relation in the reverse direction:
Given a smooth operator-valued function FðτÞ satisfying

the order condition FðτÞ ¼ OðτpÞ, we conclude that FðτÞ
has a Taylor expansion where terms with order τp−1 or
lower vanish. We make this argument more precise in
Appendix D.
We can determine the order condition of an operator-

valued function through either direct calculation or indirect
derivation. To illustrate this, we consider decomposing
etH ¼ etðAþBÞ using the first-order Lie-Trotter formula
S1ðtÞ ¼ etBetA. We see from Sec. III A that this decom-
position has the additive Trotter error

A1ðtÞ ¼
Z

t

0

dτ eðt−τÞHðS0
1ðτÞ −HS1ðτÞÞ

¼
Z

t

0

dτ eðt−τÞH½eτB; A�eτA: ð28Þ

We know that A1ðtÞ has the order condition A1ðtÞ ¼
Oðt2Þ, which follows directly from the fact that
A1ð0Þ ¼ A0

1ð0Þ ¼ 0. On the other hand, an indirect
argument would proceed as follows. We use the known
order condition S1ðtÞ ¼ etH þOðt2Þ to conclude that
S0

1ðτÞ −HS1ðτÞ ¼ OðτÞ. Multiplying the matrix exponen-
tial eðt−τÞH ¼ Oð1Þ does not change the order condition, so
we still have eðt−τÞHðS0

1ðτÞ −HS1ðτÞÞ ¼ OðτÞ. A final
integration of

R
t
0 dτ then gives the desired condition

A1ðtÞ ¼ Oðt2Þ.
Although we obtain the same order condition through

two different analyses, the direct approach becomes ineffi-
cient for analyzing the Trotter error of a general high-order
product formula. Instead, we use an indirect analysis to
prove the following theorem on the order conditions of the
Trotter error (see Appendix D for proof details).
Theorem 4: (Order conditions of Trotter error). Let H

be an operator, and let SðτÞ, T ðτÞ, EðτÞ, and MðτÞ be
infinitely differentiable operator-valued functions defined
for τ ∈ R, such that

SðtÞ ¼ etH þ
Z

t

0

dτ eðt−τÞHSðτÞT ðτÞ;

¼ T exp

�Z
t

0

dτðH þ EðτÞÞ
�
;

¼ etHðI þMðtÞÞ: ð29Þ

For any non-negative integer p, the following conditions
are equivalent:
(1) SðtÞ ¼ etH þOðtpþ1Þ,
(2) T ðτÞ ¼ OðτpÞ,
(3) EðτÞ ¼ OðτpÞ, and
(4) MðtÞ ¼ Oðtpþ1Þ.
In Sec. III D, we apply these conditions to cancel low-

order Trotter error terms and represent higher-order ones as
nested commutators of operator summands.
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D. Error representations

For a product formula with a certain error type and order
condition, we now represent its error in terms of nested
commutators of the operator summands. In particular, we
give upper bounds on the additive and the multiplicative
errors of pth-order product formulas in Theorem 6.
Consider an operator H ¼ PΓ

γ¼1Hγ with Γ summands.

The ideal evolution generated by H is etH ¼ et
P

Γ
γ¼1

Hγ ,
which we decompose using a pth-order product formula
SðtÞ ¼ Q

ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ . We know from Theorem 3
that the Trotter error can be expressed in the additive
form SðtÞ ¼ etH þ R

t
0 dτe

ðt−τÞHSðτÞT ðτÞ, the multi-
plicative form SðtÞ ¼ etHðI þMðtÞÞ, where MðtÞ ¼
T expðR t

0 dτe
−τHEðτÞeτHÞ − I, and the exponentiated form

SðtÞ ¼ T expðR t
0 dτðH þ EðτÞÞÞ. Furthermore, both T ðτÞ

and EðτÞ consist of conjugations of matrix exponentials and
have order condition T ðτÞ; EðτÞ ∈ OðτpÞ (Theorem 4).
We first consider the representation of a single con-

jugation of matrix exponentials,

eτAS � � � eτA2eτA1Be−τA1e−τA2 � � � e−τAs ; ð30Þ

where A1; A2;…; As; B are operators and τ ∈ R. Our goal is
to expand this conjugation into a finite series in the time
variable τ. We only keep track of those terms with order
OðτpÞ because terms corresponding to 1; τ;…; τp−1 will
vanish in the final representation of the Trotter error due to
the order condition. As mentioned before, such a con-
jugation was previously analyzed based on a naive appli-
cation of Taylor’s theorem [35] and an infinite-series
expansion [44]. However, those results do not represent
the Trotter error as a finite number of commutators of
operator summands, and they only apply to special systems
such as those with geometrical locality or suitable Lie-
algebraic structure. Our new representation overcomes
these limitations.
Theorem 5: (Commutator expansion of a conjugation

of matrix exponentials) Let A1; A2;…; As and B be oper-
ators. Then, the conjugation eτAs ���eτA2eτA1Be−τA1e−τA2 ���
e−τAs ðτ ∈ RÞ has the expansion

eτAs � � � eτA2eτA1Be−τA1e−τA2 � � � e−τAs

¼ C0 þ C1τ þ � � � þ Cp−1τ
p−1 þ CðτÞ: ð31Þ

Here, C0;…; Cp−1 are operators independent of τ. The
operator-valued function CðτÞ is given by

CðτÞ≔
Xs

k¼1

X
q1þ���þqk¼p

qk≠0

eτadAs � � �eτadAkþ1

·
Z

τ

0

dτ2e
τ2adAk adqkAk

� � � adq1A1
B
ðτ − τ2Þqk−1τq1þ���þqk−1

ðqk − 1Þ!qk−1! � � �q1!
:

Furthermore, we have the spectral-norm bound

kCðτÞk ≤ αcommðAs;…; A1; BÞ
jτjp
p!

e2jτj
P

s
k¼1

kAkk

for general operators and

kCðτÞk ≤ αcommðAs;…; A1; BÞ
jτjp
p!

ð32Þ

when Ak (k ¼ 1;…; s) are anti-Hermitian, where

αcommðAs;…; A1; BÞ

≔
X

q1þ���þqs¼p

�
p

q1 � � � qs

�
kadqsAs

� � � adq1A1
ðBÞk: ð33Þ

Proof.—We begin with the innermost layer eτadA1B.
Applying Taylor’s theorem to order p − 1 with the integral
form of the remainder, we have

eτadA1B ¼ Bþ τadA1
Bþ � � � þ τp−1

ðp − 1Þ! ad
p−1
A1

B

þ
Z

τ

0

dτ2
τp−12

ðp − 1Þ! e
ðτ−τ2ÞadA1 adpA1

B: ð34Þ

By the multiplication rule and the integration rule of
Proposition D.3, the last term has order

Z
τ

0

dτ2
τp−12

ðp − 1Þ! e
ðτ−τ2ÞadA1 adpA1

B ¼ OðτpÞ: ð35Þ

This term cannot be canceled by the order condition, and
we keep it in our expansion. The remaining terms corre-
sponding to 1; τ;…; τp−1 are substituted back to the
original conjugation of matrix exponentials.
We now consider the next layer of conjugation. We apply

Taylor’s theorem to the operators eτadA2B, eτadA2 adA1
B;…;

eτadA2 adp−1A1
B to order p − 1; p − 2;…; 0, respectively,

obtaining

eτadA2 adq1A1
B¼ adq1A1

Bþ���þ τp−2

ðp−2Þ!ad
p−1−q1
A2

adq1A1
B

þ
Z

τ

0

dτ2
τp−1−q12

ðp−1−q1Þ!
eðτ−τ2ÞadA2 adp−q1A2

adq1A1
B;

ð36Þ

for q1 ¼ 0; 1;…; p − 1. Combined with the result from the
first layer, the Taylor remainders in the above equation have
order
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Z
τ

0

dτ2
τp−12

ðp − 1 − q1Þ!q1!
eðτ−τ2ÞadA2 adp−q1A2

adq1A1
B ¼ OðτpÞ; ð37Þ

for all q1. We keep these terms in our expansion and substitute the remaining ones back to the original conjugation of matrix
exponentials.
We repeat this analysis for all the remaining layers of the conjugation of matrix exponentials. In doing so, we keep track

of those terms with order OðτpÞ, obtaining

eτAs � � � eτA2eτA1Be−τA1e−τA2 � � � e−τAs ¼ C0 þ C1τ þ � � � þ Cp−1τ
p−1

þ
Xs
k¼1

X
q1þ���þqk¼p

qk≠0

eτadAs � � � eτadAkþ1 ·
Z

τ

0

dτ2
ðτ − τ2Þqk−1τq1þ���þqk−1

ðqk − 1Þ!qk−1! � � � q1!

· eτ2adAk adqkAk
� � � adq1A1

B ð38Þ

for some operators C0; C1;…; Cp−1. Because of the order condition, the terms of order 1; τ;…; τp−1 will vanish in our final
representation of the Trotter error.
We now bound the spectral norm of those terms with orderOðτpÞ. By the triangle inequality, we have an upper bound of

Xs
k¼1

X
q1þ���þqk¼p

qk≠0

Z jτj

0

dτ2
ðjτj − τ2Þqk−1jτjq1þ���þqk−1

ðqk − 1Þ!qk−1! � � � q1!
kadqkAk

� � � adq1A1
ðBÞke2jτj

P
s
l¼1

kAlk

¼
Xs
k¼1

X
q1þ���þqk¼p

qk≠0

�
p

q1 � � �qk

� jτjp
p!

kadqkAk
� � � adq1A1

ðBÞke2jτj
P

s
l¼1

kAlk

¼
X

q1þ���þqs¼p

�
p

q1 � � � qs

� jτjp
p!

kadqsAs
� � � adq1A1

ðBÞke2jτj
P

s
l¼1

kAlk

¼ αcommðAs;…; A1; BÞ
jτjp
p!

e2jτj
P

s
l¼1

kAlk: ð39Þ

This bound holds for arbitrary operators A1; A2;…; As.
When these operators are anti-Hermitian, we can tighten
the above analysis by evaluating the spectral norm of a
matrix exponential as 1. We have therefore arrived at the
theorem. ▪
We apply Theorem 5 to expand every conjugation of

matrix exponentials of the error operators T ðτÞ and EðτÞ
into a finite series in τ. After taking the linear combination,
we obtain

T ðτÞ ¼ T0 þ T1τ þ � � � þ Tp−1τ
p−1 þ T pðτÞ;

EðτÞ ¼ E0 þ E1τ þ � � � þ Ep−1τ
p−1 þ EpðτÞ: ð40Þ

The operator-valued functions T pðτÞ and EpðτÞ have order
conditionOðτpÞ, whereas T0;…; Tp−1 and E0;…; Ep−1 are
independent of τ. By Lemma D.1 and the order condition
T ðτÞ; EðτÞ ∈ OðτpÞ, we have

T0 ¼ � � � ¼ Tp−1 ¼ E0 ¼ � � � ¼ Ep−1 ¼ 0; ð41Þ

or equivalently,

T ðτÞ ¼ T pðτÞ; EðτÞ ¼ EpðτÞ: ð42Þ

We then bound the spectral norm of T pðτÞ and EpðτÞ using
Theorem 5. This argument establishes the commutator
scaling of the Trotter error. We state the result below and
leave the calculation details to Appendix E.
Theorem 6: (Trotter error with commutator scaling).

Let H ¼ PΓ
γ¼1 Hγ be an operator consisting of Γ sum-

mands and t ≥ 0. Let SðtÞ ¼ Q
ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ

be a pth-order product formula. Define α̃comm ¼PΓ
γ1;γ2;…;γpþ1¼1 k½Hγpþ1

; � � � ½Hγ2 ; Hγ1 � � � ��k. Then, the addi-

tive Trotter error and the multiplicative Trotter error,
defined, respectively, by SðtÞ ¼ etH þAðtÞ and SðtÞ ¼
etHðI þMðtÞÞ, can be asymptotically bounded as
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kAðtÞk; kMðtÞk ¼ Oðα̃commtpþ1e4tϒ
P

Γ
γ¼1

kHγkÞ: ð43Þ

Furthermore, if Hγ are anti-Hermitian,

kAðtÞk; kMðtÞk ¼ Oðα̃commtpþ1Þ: ð44Þ

Corollary 7. (Trotter number with commutator scaling)
Let H ¼ PΓ

γ¼1 Hγ be an operator consisting of Γ sum-
mands with Hγ anti-Hermitian and t ≥ 0. Let SðtÞ ¼Q

ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ be a pth-order product formula.
Define α̃comm¼PΓ

γ1;γ2;…;γpþ1¼1k½Hγpþ1
; � � � ½Hγ2 ;Hγ1 � � � ��k.

Then, we have kSrðt=rÞ − etHk ¼ OðϵÞ, provided that

r ¼ O
�
α̃1=pcommt1þ1=p

ϵ1=p

�
: ð45Þ

For any δ > 0, we can choose p sufficiently large
so that 1=p < δ. For this choice of p, we have
r ¼ Oðα̃δcommt1þδ=ϵδÞ. Therefore, the Trotter number scales

as r ¼ α̃oð1Þcommt1þoð1Þ if we simulate with constant accuracy.
To obtain the asymptotic complexity of the product-
formula algorithm, it thus suffices to compute the quantity
α̃comm ¼ P

γ1;γ2;…;γpþ1
k½Hγpþ1

; � � � ½Hγ2 ; Hγ1 � � � ��k, which
can often be done by induction. We illustrate this process
by presenting a host of applications of our bound to
simulating quantum dynamics (Sec. IVA), local observ-
ables (Sec. IV B), and quantum Monte Carlo methods
(Sec. IV C).
Note that we did not evaluate the constant prefactor of

our bound in Theorem 6. Indeed, our proof involves
inequality zooming that suffices to establish the correct
asymptotic scaling but is likely loose in practice. For
practical implementation, it is better to use Theorem 5,
which gives a concrete expression for the error operator. A
general methodology to obtain error bounds with small
constant factors is described in Appendix M. In Sec. VA,
we show that our bound reduces to previous bounds for the
Lie-Trotter formula [40,41] and the second-order Suzuki
formula [9,42,43,46], which are known to be tight up
to an application of the triangle inequality. We further
provide numerical evidence in Sec. V B suggesting that our
bound has a small prefactor for higher-order formulas
as well.

IV. APPLICATIONS

Our main result (Theorem 6) on the commutator
scaling of the Trotter error uncovers a host of speedups
of the product-formula approach. In this section, we
provide improved product-formula algorithms for digital
quantum simulation (Sec. IVA), simulating local observ-
ables (Sec. IV B), and quantum Monte Carlo methods
(Sec. IV C). We show that these results can nearly match or

even outperform the best previous results for simulating
quantum systems.

A. Applications to digital quantum simulation

We now present applications of our bound to digital
quantum simulation, including simulations of second-
quantized electronic structure, k-local Hamiltonians, rapi-
dly decaying long-range and quasilocal interactions, and
clustered Hamiltonians. Throughout this section, we let H
be Hermitian and t ≥ 0 be non-negative, and we consider
the real-time evolution e−itH.
Second-quantized electronic structure. Simulating elec-

tronic-structure Hamiltonians is one of the most widely
studied applications of digital quantum simulation. An
efficient solution of this problem could help design and
engineer new pharmaceuticals, catalysts, and materials
[11]. Recent studies have focused on solving this problem
using more advanced simulation algorithms. Here, we
demonstrate the power of product formulas for simulating
electronic-structure Hamiltonians.
We consider the second-quantized representation of the

electronic-structure problem. In the plane-wave dual basis,
the electronic-structure Hamiltonian has the form [see
Eq. (8) of Ref. [11] ]

H ¼ 1

2n

X
j;k;ν

κ2ν cos½κν · rk−j�A†
jAk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

−
4π

ω

X
j;ι;ν≠0

ζι cos½κν · ðr̃ι − rjÞ�
κ2ν

Nj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

þ 2π

ω

X
j≠k
ν≠0

cos½κν · rj−k�
κ2ν

NjNk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

; ð46Þ

where j, k range over all n orbitals and ω is the volume of
the computational cell. Following the assumptions of
Refs. [11,25], we consider the constant density case where
n=ω ¼ Oð1Þ. Here, κν ¼ 2πν=ω1=3 are n vectors of plane-
wave frequencies, where ν are three-dimensional vectors of
integers with elements in ½−n1=3; n1=3�, rj are the positions
of electrons, ζι are nuclear charges such thatP

ι jζιj ¼ OðnÞ, and r̃ι are the nuclear coordinates. The
operators A†

j and Ak are electronic creation and annihilation

operators, and Nj ¼ A†
jAj are the number operators. The

potential terms U and V are already diagonalized in the
plane-wave dual basis. To further diagonalize the kinetic
term T, we may switch to the plane-wave basis, which is
accomplished by the fermionic fast Fourier transform
(FFFT) [see Eq. (10) in Ref. [11] ]. We have
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H ¼ FFFT†
�
1

2

X
ν

κ2νNν

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

T̃

FFFTþU þ V: ð47Þ

To simulate the dynamics of such a Hamiltonian for time
t, the current fastest algorithms are qubitization [24,60]
with Õðn3tÞ gate complexity and a small prefactor, and the
interaction-picture algorithm [25] with complexity Õðn2tÞ
and a large prefactor. We show that higher-order product
formulas can perform the same simulation with gate
complexity n2þoð1Þt1þoð1Þ. For the special case of the
second-order Suzuki formula, this confirms a recent obser-
vation of Kivlichan et al. from numerical calculation [43].
Using the plane-wave basis for the kinetic operator and

the plane-wave dual basis for the potential operators, we
find that all terms in T̃ and U þ V commute with each
other, respectively. Then, we can decompose e−itT̃ and
e−itðUþVÞ into a product of elementary matrix exponentials
without introducing additional error, giving the product
formula

e−itaðϒ;2ÞTe−itaðϒ;1ÞðUþVÞ � � � e−itað1;2ÞTe−itað1;1ÞðUþVÞ

¼ FFFT†e−itaðϒ;2ÞT̃FFFTe−itaðϒ;1ÞðUþVÞ

� � � FFFT†e−itað1;2ÞT̃FFFTe−itað1;1ÞðUþVÞ: ð48Þ

For practical implementation, we need to further exponen-
tiate spin operators using a fermionic encoding, such as the
Jordan-Wigner encoding. However, these implementation
details do not affect the analysis of the Trotter error and will
thus be ignored in our discussion. The fermionic fast
Fourier transform and the exponentiation of T̃, U, and V
can all be implemented using the Jordan-Wigner encoding
with complexity ÕðnÞ [25,61].
We compute the norm of ½Hγpþ1

; � � � ½Hγ2 ; Hγ1 � � � ��, Hγ ∈
fT;U; Vg by induction. We show in Appendix F that

α̃comm ¼
X

γ1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k

¼ Oðnpþ1Þ: ð49Þ

Theorem 6 and Corollary 7 then imply that a Trotter
number of r ¼ OððntÞ1þ1=p=ϵ1=pÞ suffices to simulate with
accuracy ϵ. Choosing p sufficiently large, letting ϵ be
constant, and implementing each Trotter step as in
Refs. [25,61], we have the gate complexity

n2þoð1Þt1þoð1Þ ð50Þ

for simulating plane-wave electronic structure in the second
quantization.
k-local Hamiltonians. A Hamiltonian is k-local if it can

be expressed as a linear combination of terms, each of

which acts nontrivially on at most k ¼ Oð1Þ qubits. Such
Hamiltonians, especially 2-local ones, are ubiquitous in
physics. The first explicit quantum simulation algorithm by
Lloyd was specifically developed for simulating k-local
Hamiltonians [2], and later work provided more advanced
approaches based on the linear-combination-of-unitary
technique [5–7,23–25]. Here, we give an improved
product-formula algorithm that can be advantageous over
previous simulation methods.
We consider a k-local Hamiltonian acting on n qubits,

H ¼
X

j1;…;jk

Hj1;…;jk ; ð51Þ

where each Hj1;…;jk acts nontrivially only on qubits
j1;…; jk. We sayHj1;…;jk has support fj1;…; jkg, denoting

SðHj1;…;jkÞ ≔ fj1;…; jkg: ð52Þ

We may assume that the summands are unitaries up to
scaling and can be implemented with constant cost;
otherwise, we expand them further with respect to the
Pauli operators. The fastest previous approach to simulating
a general k-local Hamiltonian is the qubitization algorithm
by Low and Chuang [24], which has gate complexity
ÕðnkkHk1tÞ where kHk1 ¼

P
j1;…;jk kHj1;…;jkk.

To compare with the product-formula algorithm, we
need to analyze the nested commutators ½Hγpþ1

;
� � � ½Hγ2 ; Hγ1 � � � ��, where each Hγ is some local operator
Hj1;…;jk . In order for this commutator to be nonzero, every
operator must have support that overlaps with the support
of operators from the inner layers. Using this idea, we
estimate that

α̃comm ¼
X

γ1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k

¼ OðjkHjkp1kHk1Þ; ð53Þ

where jkHjk1 is the induced one-norm defined in Eq. (6).
Theorem 6 and Corollary 7 then imply that a Trotter
number of r ¼ OðjkHjk1kHk1=p1 t1þ1=p=ϵ1=pÞ suffices to
simulate with accuracy ϵ. Choosing p sufficiently large,
letting ϵ be constant, and implementing each Trotter step
with ΘðnkÞ gates, we have the total gate complexity

nkjkHjk1kHkoð1Þ1 t1þoð1Þ ð54Þ

for simulating a k-local Hamiltonian H. See Appendix G
for more details.
We know from Sec. II A that the norm inequality

jkHjk1 ≤ kHk1 always holds. In fact, the gap between
these two norms can be significant for many k-local
Hamiltonians. As an example, we consider n-qubit
power-law interactions H ¼ P⃗

i;j⃗∈ΛH ⃗i;j⃗ with exponent
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α [52], whereΛ ⊆ Rd is a d-dimensional square lattice,H ⃗i;j⃗

is an operator supported on two sites ⃗i; j⃗ ∈ Λ, and

kH ⃗i;j⃗k ≤

(
1 if ⃗i ¼ j⃗

1

k⃗i−j⃗kα2
if ⃗i ≠ j⃗:

ð55Þ

Examples of such systems include those that interact via the
Coulomb interactions (α ¼ 1), the dipole-dipole inter-
actions (α ¼ 3), and the van der Waals interactions
(α ¼ 6). It is straightforward to upper bound the induced
1-norm,

jkHjk1 ¼
8<
:

Oðn1−α=dÞ for 0 ≤ α < d

OðlognÞ for α ¼ d

Oð1Þ for α > d;

ð56Þ

whereas the 1-norm scales like

kHk1 ¼
8<
:

Oðn2−α=dÞ for 0 ≤ α < d

Oðn log nÞ for α ¼ d

OðnÞ for α > d:

ð57Þ

Thus, the product-formula algorithm has gate complexity

gα ¼
�
n3−

α
dþoð1Þt1þoð1Þ for 0 ≤ α < d

n2þoð1Þt1þoð1Þ for α ≥ d;
ð58Þ

which has better n dependence than the qubitization
approach [24]. We give further calculation details in
Appendix H.
Rapidly decaying power-law and quasilocal interactions.

We now consider d-dimensional power-law interactions
1=xα with exponent α > 2d and interactions that decay
exponentially with distance. Although these Hamiltonians
can be simulated using algorithms for k-local Hamiltonians,
more efficient methods exist that exploit the locality of the
systems [52]. We show that product formulas can also
leverage locality to provide an even faster simulation.
We first consider an n-qubit d-dimensional power-law

Hamiltonian H ¼ P
i;j∈Λ H ⃗i;j⃗ with exponent α > 2d. Such

a Hamiltonian represents a rapidly decaying long-range
system that becomes nearest-neighbor interacting in the
limit α → ∞. For α > 2d, the state-of-the-art simulation
algorithm decomposes the evolution based on the Lieb-
Robinson bound with gate complexity ÕððntÞ1þ2d=ðα−dÞÞ
[52]. We give an improved approach using product for-
mulas which has gate complexity ðntÞ1þd=ðα−dÞþoð1Þ.
The idea of our approach is to simulate a truncated

Hamiltonian H̃ ¼ P
k⃗i−j⃗k2≤lH ⃗i;j⃗ by taking only the terms

H ⃗i;j⃗ where k⃗i − j⃗k2 is not more than l, a parameter that we

determine later. The resulting H̃ is a 2-localHamiltonianwith
1-norm kH̃k1 ¼ OðnÞ and induced 1-norm jjjH̃jjj1 ¼ Oð1Þ.

Theorem 6 and Corollary 7 then imply that a Trotter number
of r ¼ Oðn1=pt1þ1=p=ϵ1=pÞ suffices to simulate with accu-
racy ϵ. Choosing p sufficiently large, letting ϵ be constant,
and implementing each Trotter step with OðnldÞ gates, we
have the total gate complexity ldðntÞ1þoð1Þ for simulating H̃.
We know from Corollary A.5 that the approximation of

expð−iHtÞ by expð−iH̃tÞ has error

ke−itH − e−itH̃k ¼ OðkH − H̃ktÞ; ð59Þ

where kH − H̃k ¼ Oðn=lα−dÞ for all α > 2d. To make this
at most OðϵÞ, we choose the cutoff l ¼ Θððnt=ϵÞ1=ðα−dÞÞ.
Note that we require nt ≥ ϵ and t ≤ ϵnα=d−2 so that
n1=d ≥ l ≥ 1. This choice implies the gate complexity

ðntÞ1þd=ðα−dÞþoð1Þ; ð60Þ

which is better than the state-of-the-art algorithm based on
Lieb-Robinson bounds [52]. We leave the calculation
details to Appendix H.
We also consider interactions that decay exponentially

with the distance x as e−βx:

kH ⃗i;j⃗k ≤ e−βk⃗i−j⃗k2 ; ð61Þ

where β > 0 is a constant. Although such interactions
are technically long range, their fast decay makes them
quasilocal for most applications in physics. Our approach
to simulating such a quasilocal system is similar to that for
the rapidly decaying power-law Hamiltonian, except we
choose the cutoff l ¼ Θðlogðnt=ϵÞÞ, giving a product-
formula algorithm with gate complexity

ðntÞ1þoð1Þ: ð62Þ

See Appendix H for further details.
Our result for quasilocal systems is asymptotically the

same as a recent result for nearest-neighbor Hamiltonians
[35]. For rapidly decaying power-law systems, we repro-
duce the nearest-neighbor case [35] in the limit α → ∞.
Clustered Hamiltonians. We now consider the applica-

tion of our theory to simulating clustered Hamiltonians
[53]. Such systems appear naturally in the study of classical
fragmentation methods and quantum mechanics or molecu-
lar mechanics methods for simulating large molecules.
Peng, Harrow, Ozols, and Wu recently proposed a hybrid
simulator for clustered Hamiltonians [53]. Here, we show
that the performance of their simulator can be significantly
improved using our Trotter error bound.
LetH be a Hamiltonian acting on n qubits. Following the

same setting as in Ref. [53], we assume that each term in H
acts on at most two qubits with spectral norm of at most
one, and each qubit is interacted with at most a constant
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number d0 of other qubits. We further assume that the qubits
are grouped into multiple parties and write

H ¼ Aþ B ¼
X
l

Hð1Þ
l þ

X
l

Hð2Þ
l ; ð63Þ

where terms in A act on qubits within a single party,
terms in B act between two different parties, and

kHð1Þ
l k; kHð2Þ

l k ≤ 1 for all l.
The key step in the approach of Peng et al. is to group the

terms within each party in A and simulate the resulting
Hamiltonian. This step is accomplished by applying
product formulas to the decomposition

H ¼ Aþ
X
l

Hð2Þ
l : ð64Þ

Using the first-order Lie-Trotter formula, Ref. [53] chooses
the Trotter number

r ¼ O
�
h2Bt

2

ϵ

�
ð65Þ

to ensure that the error of the decomposition is at most ϵ,

where hB ¼ P
l kHð2Þ

l k is the interaction strength. Here, we
use Theorem 6 and Corollary 7 to show that it suffices
to take

r ¼ O
�
d0ð1þp=2Þhð1=pÞB t1þð1=pÞ

ϵð1=pÞ

�
¼ O

�
h1=pB t1þ1=p

ϵ1=p

�
ð66Þ

using a pth-order product formula

SðtÞ¼e−itaϒA
Y
l

e−itaðϒ;lÞH
ð2Þ
l � ��e−ita1A

Y
l

e−itað1;lÞH
ð2Þ
l : ð67Þ

This analysis improves the analysis of Ref. [53] for the
first-order formula and extends the result to higher-order
cases. Details can be found in Appendix I.
The hybrid simulator of Ref. [53] has runtime 2Oðr·ccðgÞÞ,

where r is the Trotter number and ccðgÞ is the contraction
complexity of the interaction graph g between the
parties. Our improved choice of r thus provides a dramatic
improvement.

B. Applications to simulating local observables

In this section, we consider quantum simulation of local
observables. Our goal is to simulate the time evolution
AðtÞ ≔ eitHAe−itH of an observable A, where the support
SðAÞ can be enclosed in a d-ball of constant radius x0 on a
d-dimensional lattice Λ ⊆ Rd. Throughout this section, we
consider power-law interactions with exponent α > 2d, and
we assume t ≥ 0.

Although a local observable can be simulated by
simulating the full dynamics as in Sec. IVA, this is not
the most efficient approach. Instead, we use product
formulas to give an algorithm whose gate complexity is
independent of the system size for a short-time evolution;
this complexity is much smaller than the cost of full
simulation. As a by-product, we prove a Lieb-Robinson-
type bound for power-law Hamiltonians that nearly
matches a recent bound of Tran et al. [52].
Locality of time-evolved observables. Our approach is to

approximate the evolution AðtÞ ¼ eitHAe−itH of the local
observable A by eitHlcAe−itHlc, where Hlc is a Hamiltonian
supported within a light cone originating from A at time 0.
Although this approximation can be achieved using Lieb-
Robinson bounds [52], we give a direct construction using
product formulas.
Without loss of generality, we assume that the

Hamiltonian H is supported on an infinite lattice [62].
The idea behind our approach is as follows. We first
truncate the original Hamiltonian to obtain Htrunc. We
group the terms of Htrunc into d-dimensional shells based
on their distance to the observable and use a product
formula StruncðtÞ to approximate the evolution. Unlike in
Sec. IVA, we choose a specific ordering of the summands
so that the majority of the terms in StruncðtÞ can be
commuted through the observable to cancel their counter-
parts in S†

truncðtÞ. We define the reduced product formula
SreduceðtÞ as in Fig. 1 by collecting all the remaining terms
in StruncðtÞ. This approach gives an accurate approximation
to a short-time evolution. For larger times, we divide the
evolution into r Trotter steps and apply the above approxi-
mation within each step. We reverse this procedure within
the light cone to obtain SlcðtÞ, which simulates the desired
HamiltonianHlc. See Fig. 2 for a step-by-step illustration of
this approach.

FIG. 1. Demonstration of the second-order product formula for
simulating the evolution of an observable B supported on
SðBÞ ¼ ΔB0. Each rectangle represents a unitary supported on
the sites covered by the width of the rectangle. The evolution
unitary e−itH is decomposed using the second-order product
formula into ϒ ¼ 2 stages. Each stage is a sequence of Γ ¼ 3
matrix exponentials generated by Hamiltonian terms supported
on parts of the system. Some of these unitaries (red shaded
rectangles) can subsequently be commuted through B in the
expression S†

truncðtÞBStruncðtÞ to cancel out with their Hermitian
conjugate. As a result, the time-evolved version of B can be
effectively described by the remaining unitaries (light-gray
rectangles).
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We consider a general observable B, and we assume that
SðBÞ—the support of B—is a d-dimensional ball of radius
y0 centered on the origin. We analyze B as opposed to the
original observable A so that our argument not only applies
to the first Trotter step but also to later steps where A is
evolved and its support is expanded. We denote by

distð⃗i;SðBÞÞ ≔ inf j⃗∈SðBÞk⃗i − j⃗k2 the distance between ⃗i

and SðBÞ, by By ≔ f⃗i ∈ Λ∶distð⃗i;SðBÞÞ ≤ yg a ball of
radius yþ y0 centered on SðBÞ, and by ΔBγl ¼
BγlnBðγ−1Þl the shell containing sites between distance
ðγ − 1Þl and γl from SðBÞ, where l ≥ 1 is a parameter to
be chosen later and γ ∈ N is a non-negative integer—with
the convention that B−l ¼ ∅ so that ΔB0 ¼ B0 ¼ SðBÞ.
We illustrate the sets Bγl and ΔBγl for several values of γ
in Fig. 1.
Starting from the power-law Hamiltonian H ¼P⃗
i;j⃗∈ΛH ⃗i;j⃗, we group terms based on their distance to

the observable B and define H1 ¼
P⃗

i;j⃗∈Bl
H ⃗i;j⃗,

Hγ ¼
X

⃗i;j⃗∈ΔBγl

H ⃗i;j⃗ þ
X

⃗i∈ΔBðγ−1Þl
j⃗∈ΔBγl

H ⃗i;j⃗; ð68Þ

for γ ¼ 2;…;Γ − 1, and HΓ ¼ P⃗
i;j⃗∉BðΓ−2Þl

H ⃗i;j⃗ with con-

stant Γ to be chosen later. In this construction, all Hγ with
even γ commute, and all Hγ with odd γ commute. We
consider the truncated Hamiltonian

Htrunc ¼
XΓ
γ¼1

Hγ ð69Þ

instead of H, which incurs a truncation error of

ϵ1 ≔ ke−itH − e−itHtrunck

¼ OðkH −HtruncktÞ ¼ O
�ðy0 þ ΓlÞd−1t

lα−d−1

�
:

See Appendix J for details of the proof.
Next, we simulate the evolution e−itHtrunc using the pth-

order product formula [see Eq. (12) and Fig. 1]:

StruncðtÞ ¼
Yϒ
υ¼1

YΓ
γ¼1

e−itaðυ;γÞHπυðγÞ ; ð70Þ

where we put additional constraints on the permutation πν:

πυð1; 2; 3; 4; 5; 6;…Þ

¼
� ð2; 4; 6;…; 1; 3; 5;…Þ if υ is odd

ð1; 3; 5;…; 2; 4; 6;…Þ if υ is even:
ð71Þ

Such a permutation can be realized using Suzuki’s
original construction [21] and taking into account that
½H2k; H2k0 � ¼ 0 and ½H2kþ1; H2k0þ1� ¼ 0 for all k, k0. Using
Theorem 6, we show in Appendix J that the error of
approximating e−itHtrunc by StruncðtÞ is

FIG. 2. Construction of the Hamiltonian Hlc within the light
cone such that eitHAe−itH ≈ eitHlcAe−itHlc . Each rectangle repre-
sents a unitary supported on the sites covered by the width of the
rectangle. Specifically, the rectangle in the top panel represents
the evolution e−itH that we want to decompose. We divide the
evolution into r steps. Within each step, we truncate the
Hamiltonian to Htrunc and decompose its evolution using a
product formula Strunc. We commute certain matrix exponentials
in Strunc (represented by red shaded rectangles) through the
observable to cancel their counterpart, obtaining Sreduce in the
second panel. We reverse this procedure within the light cone to
construct Slc in the third panel, which approximates e−itHlc as
illustrated in the bottom panel.
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ϵ2 ¼ ke−itHtrunc −StruncðtÞk

¼ O
� XΓ

γ1;…;γpþ1¼1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��ktpþ1

�

¼ Oððy0 þ ΓlÞd−1ltpþ1Þ: ð72Þ

Note that the Hamiltonian termsHγ (for γ ≥ 2) commute
with B. Therefore, the exponentials inStruncðtÞ correspond-
ing to these terms can be commuted through B to cancel
with their counterpart in StruncðtÞ†. By choosing the
constant Γ ¼ ϒþ 1, we have

S†
truncðtÞBStruncðtÞ ¼ S†

reduceðtÞBSreduceðtÞ; ð73Þ

where

SreduceðtÞ ¼
Yϒ
υ¼1

Yυ
γ¼1

e
−itaðυ;π−1υ ðγÞÞHγ : ð74Þ

We call SreduceðtÞ the reduced product formula. This
formula approximates the evolution e−itH of local observ-
able B with error

keitHBe−itH −S†
reduceðtÞBSreduceðtÞk ≤ keitHBe−itH − eitHtruncBe−itHtrunck þ keitHtruncBe−itHtrunc −S†

truncðtÞBStruncðtÞk
þ kS†

truncðtÞBStruncðtÞ −S†
reduceðtÞBSreduceðtÞk

≤ 2kBkðϵ1 þ ϵ2Þ þ 0

¼ O
�
kBktðy0 þ ΓlÞd−1

�
1

lα−d−1 þ ltp
��

:

The above decomposition is accurate for a short-time
evolution. For larger times, we divide the simulation into r
Trotter steps and apply this decomposition within each
step. We analyze the error in a similar way as above, except
that B is defined by applying the reduced product formula
to the observable A. Since the spectral norm is invariant
under unitary transformations, we have kBk¼kAk¼Oð1Þ.
Another difference is that the support of the observable is
expanded by Γl after each Trotter step; i.e., we set y0 to be
x0, x0 þ Γl,…, and x0 þ rΓl. Using the triangle inequal-
ity, we bound the error of the reduced product formula by

O
�
tðx0 þ rΓlÞd−1

�
1

lα−d−1 þ l
tp

rp

��
: ð75Þ

We now apply the above procedure in the reverse
direction but only to Hamiltonian terms within the light
cone, incurring a truncation error of at most ϵ1 and a Trotter
error of at most ϵ2. This method replaces SreduceðtÞ by
SlcðtÞ, the product formula that simulates the Hamiltonian
Hlc whose terms have distance of at most rΓl to the local
observable A. See Fig. 2 for a step-by-step illustration of
this approach. We analyze the error in a similar way as
above, establishing the following result on evolving local
observables.
Proposition 8: (Product-formula decomposition of

evolutions of local observables). Let Λ ⊆ Rd be a
d-dimensional square lattice. Let H be a power-law
Hamiltonian (55) with exponent α > 2d, and let A be an
observable with support enclosed in a d-dimensional ball of
constant radius x0. Construct the Hamiltonian Hlc as above
using pth-order ϒ-stage product formulas StruncðtÞ,
SreduceðtÞ, and SlcðtÞ. Then, the support of Hlc has radius

x0 þ rΓl and

keitHAe−itH − eitHlcAe−itHlck

¼ O
�
tðx0 þ rΓlÞd−1

�
1

lα−d−1 þ l
tp

rp

��
; ð76Þ

where the positive integer l is a parameter and Γ ¼ ϒþ 1
is constant.
Gate complexity of simulating local observables. We

now analyze the gate complexity of simulating local
observables using the decomposition in Proposition 8.
Assuming the support SðAÞ has constant radius x0 ¼
Oð1Þ and Γ ¼ Oð1Þ, we simplify the error bound in
Eq. (76) to

keitHAe−itH − eitHlcAe−itHlck

¼ O
�
tðrlÞd−1

�
1

lα−d−1 þ
ltp

rp

��
: ð77Þ

To minimize the error, we choose the cutoff
l ¼ Θððr=tÞp=ðα−dÞÞ ≥ 1, which is larger than 1 provided
r ≥ t (and recall that we assume α > 2d, so, in particular,
α > d). With this choice of l, the error becomes

O
�
trd−1

�
t
r

�pðα−2dÞ
α−d

�
¼ O

�
t
pðα−2dÞþα−d

α−d

r
pðα−2dÞ−ðα−dÞðd−1Þ

α−d

�
:

We then choose an appropriate Trotter number r as detailed
in Appendix J and find that

gα ¼ tð1þd α−d
α−2dÞð1þ d

α−dÞþoð1Þ ð78Þ
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suffices to simulate a local observable with constant
accuracy. The gate count is independent of the system
size and thus less than the cost of simulating the
full dynamics (58) when the system size is
n ¼ Ωðtdðα−dÞ=ðα−2dÞÞ. However, in contrast to the simula-
tion of e−itH where the asymptotic error scaling is robust
against the reordering of Hamiltonian terms, we obtain a
smaller error for simulating AðtÞ by defining product
formulas with a special ordering that preserves the locality
of the simulated system.
Additionally, in the limit α → ∞, which corresponds to

nearest-neighbor interactions, we have the gate count

g∞ ¼ tdþ1þoð1Þ: ð79Þ

This result has a clear physical intuition: It is (nearly)
proportional to the space-time volume tdþ1 inside a linear
light cone generated by the evolution.
Lieb-Robinson-type bound for power-law Hamiltonians.

The Lieb-Robinson bounds—first derived for nearest-
neighbor interactions [63] and subsequently generalized
to power-law systems [52,64–70]—have found numerous
applications in physics, including designing new algo-
rithms for quantum simulations [52,71]. They bound the
speed at which a local disturbance spreads in quantum
systems. Here, we show that the decomposition of
Proposition 9 constructed using product formulas also
implies a Lieb-Robinson-type bound for power-law
Hamiltonians.
The subject of the Lieb-Robinson bounds is usually the

commutator norm

Cðt; ρÞ ¼ k½eitHAe−itH; B�k; ð80Þ

where A, B are two operators whose supports have distance

distðSðAÞ;SðBÞÞ ¼ inf
⃗i∈SðAÞ;j⃗∈SðBÞ

k⃗i − j⃗k2 ¼ ρ; ð81Þ

and e−itH is the time evolution unitary generated
by a power-law Hamiltonian H. Our above discussion
shows that eitHAe−itH is approximately eitHlcAe−itHlc,
which is supported on a ball of radius x ¼ OðrlÞ ¼
Oðrðr=tÞp=ðα−dÞÞ centered on SðAÞ. By choosing r ¼
Θðρðα−dÞ=ðα−dþpÞtp=ðα−dþpÞÞ so that x < ρ, we make
eitHlcAe−itHlc commute with B, and therefore Cðt; ρÞ is
small. More precisely,

Cðt; rÞ ¼ O
�

t
pðα−2dÞþα−d

α−d

r
pðα−2dÞ−ðα−dÞðd−1Þ

α−d

�

¼ O
�

t
ðpþ1Þðα−dÞ

α−dþp

ρ
pðα−2dÞ−ðα−dÞðd−1Þ

α−dþp

�
¼ tα−dþoð1Þ

ρα−2dþoð1Þ :

Note that we have implicitly assumed that
ρðα−dÞ=ðα−dþpÞtp=ðα−dþpÞ ≥ 1 so that we can choose r ≥ 1.
The bound implies a light cone t≳ ρðα−2dÞ=ðα−dÞþoð1Þ, which
can be made arbitrarily close to the light cone t≳
ρðα−2dÞ=ðα−dÞ of the recent bound in Ref. [52] for all values
of d [72].

C. Applications to quantum Monte Carlo simulation

We now apply our result to improving the performance
of quantum Monte Carlo simulation. Here, the goal is to
approximate certain properties of the Hamiltonian, such as
the partition function, rather than simulating the full
dynamics. We consider two specific systems: the transverse
field Ising model of Ref. [38] and the ferromagnetic
quantum spin systems of Ref. [39]. For both simulations,
the ideal evolution is decomposed using the second-order
Suzuki formula, and we show that such a decomposition
can be made more efficient using our tightened analysis.
Transverse field Ising model. Consider the n-qubit

transverse field Ising model H ¼ −A − B, where

A ¼
X

1≤u<v≤n
ju;vZuZv; B ¼

X
1≤u≤n

huXu: ð82Þ

Here, Xu and Zu are Pauli operators acting on the uth qubit,
and ju;v ≥ 0 and hu ≥ 0 are non-negative coefficients.
Define j ≔ maxfju;v; hug to be the maximum norm of
the interactions. Our goal is to approximate the partition
function

Z ¼ Trðe−HÞ; ð83Þ

up to a multiplicative error 0 < ϵ < 1.
Reference [38] solves this problem with an efficient

classical algorithm. A key step in their algorithm is a
decomposition of the evolution operator using the second-
order Suzuki formula, so

Z0 ¼Tr½ðe 1
2rAe

1
rBe

1
2rAÞr�⪅ ð1þ ϵÞTrðe−HÞ¼ ð1þ ϵÞZ: ð84Þ

However, their original analysis does not exploit the
commutativity relation between A and B, and it can be
improved by the techniques developed here.
Note that this is different from the usual setting of digital

quantum simulation. As the matrix exponentials in the
product formula are no longer unitary, we introduce an
additional multiplicative factor when we apply Theorem 6.
In addition, we need to estimate the multiplicative error of
the Trotter decomposition as opposed to the additive error
analyzed earlier for digital quantum simulation.
Let A and B be Hermitian matrices, and consider the

evolution etðAþBÞ with t ≥ 0. Our goal is to choose r
sufficiently large so that we can approximate the eigen-
values as
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λiððe t
2rAe

t
rBe

t
2rAÞrÞ ≈ λiðetðAþBÞÞ; ð85Þ

up to a small multiplicative error, where λið·Þ denotes the
ith smallest eigenvalue. We define

U ≔ e
t
rðAþBÞ; ð86Þ

V ≔ e
t
2rAe

t
rBe

t
2rA; ð87Þ

W ≔ T exp

�Z t
r

0

dτ e−τadAþB

�
e

τ
2
adAB − B

þ e
τ
2
adAeτadB

A
2
−
A
2

��
: ð88Þ

Then, bothU and V are positive-semidefinite operators, and
we know from Theorem 3 that V ¼ UW. In Appendix K 1,
we show that if r is a power of 2,

λiðVrÞ ≤ λiðUrÞkWkr; ð89Þ

where

kWkr ≤ exp

��
t3

24r2
kad2ABk þ

t3

4r2
kad2BAk

�
e4

t
rðkAkþkBkÞ

�
:

ð90Þ

Equation (89) says that the eigenvalues of Vr are upper
bounded by the eigenvalues of Ur multiplied by a factor of
kWkr. To ensure that the factor is close to 1, we require

r ≥ max

�
4tðkAk þ kBkÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t3

3ϵ
kad2ABk

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t3

ϵ
kad2BAk

r �
;

ð91Þ

in addition to being a power of 2. The first condition in
Eq. (91) is so that e4ðt=rÞðkAkþkBkÞ ≤ e < 4, while the last two
conditions make sure that both ðt3=24r2Þkad2ABk and
ðt3=4r2Þkad2BAk are bounded by ϵ=8. Therefore, we have
kWrk ≤ eϵ, which implies

Z0 ¼
X
i

λiðVrÞ ≤
X
i

λiðUrÞeϵ

≈ ð1þ ϵÞ
X
i

λiðUrÞ ¼ ð1þ ϵÞZ; ð92Þ

assuming ϵ ≪ 1. Following similar arguments, we can show
that this choice of r also gives a lower bound of Z0 with
Z0 ≥ ð1 − ϵÞZ. Therefore, we have approximated the par-
tition function up to a multiplicative error ϵ.
We now specialize our result to the transverse field Ising

Hamiltonian with t ¼ 1. We find that

kAk ¼ Oðn2jÞ; kBk ¼ OðnjÞ;
kad2ABk ¼ Oðn3j3Þ; kad2BAk ¼ Oðn2j3Þ; ð93Þ

which implies

r ¼ Oðn2jþ n3=2j3=2ϵ−1=2Þ: ð94Þ

Using Ref. [38] (p. 17), this analysis gives a fully poly-
nomial randomized approximation scheme (FPRAS) with
running time

Õðn17r14ϵ−2Þ ¼ Õðn45j14ϵ−2 þ n38j21ϵ−9Þ; ð95Þ

improving over the previous complexity of

Õðn59j21ϵ−9Þ: ð96Þ

Quantum ferromagnets. We now apply our technique to
improve the Monte Carlo simulation of ferromagnetic
quantum spin systems [39]. Such systems are described
by the n-qubit Hamiltonian

H ¼
X

1≤u<v≤n
ð−buvXuXv þ cuvYuYvÞ þ

Xn
u¼1

duðI þ ZuÞ;

where 0 ≤ buv ≤ 1, −buv ≤ cuv ≤ buv, and −1 ≤ duv ≤ 1.
It will be convenient to rewrite these Hamiltonians
using the coefficients puv ¼ ðbuv − cuvÞ=2 and quv ¼
ðbuv þ cuvÞ=2 as

H ¼
X

1≤u<v≤n
puvð−XuXv − YuYvÞ

þ
X

1≤u<v≤n
quvð−XuXv þ YuYvÞ þ

Xn
u¼1

duðI þ ZuÞ:

Since jcuvj ≤ buv ≤ 1, we have puv; quv ∈ ½0; 1�.
Our goal is to approximate the partition function

Zðβ; HÞ ¼ Tr½e−βH�; ð97Þ

for β > 0. Following the setting of Ref. [39], we restrict
ourselves to the n-qubit matchgate set

�
fuðe�tÞ; guvðtÞ; huvðtÞju; v ¼ 1;…; n; u ≠ v;0 < t <

1

2

�
;

ð98Þ

where
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fðe�tÞ ¼
�
e�t 0

0 1

	
; gðtÞ ¼

2
6664
1þ t2 0 0 t

0 1 0 0

0 0 1 0

t 0 0 1

3
7775;

hðtÞ ¼

2
6664
1 0 0 0

0 1þ t2 t 0

0 t 1 0

0 0 0 1

3
7775; ð99Þ

and the subscripts u, v indicate the qubits on which the
gates act nontrivially. The motivations for using these gates
can be found in Ref. [39], and we do not repeat them here.
These gates approximately implement the exponential of
the Hamiltonian terms in the sense that

fuðe�tÞ ¼ e�t
2
ðIþZuÞ; ð100Þ

guvðtÞ ¼ e−
t
2
ð−XuXvþYuYvÞþOðt2Þ; ð101Þ

huvðtÞ ¼ e−
t
2
ð−XuXv−YuYvÞþOðt2Þ: ð102Þ

We divide the evolution into r steps and apply the
second-order Suzuki formula within each step to further
decompose e−ðβ=rÞH into the elementary gates [Eq. (98)].
Here, we have two sources of error: the Trotter error and the
error from using the gate set in Eq. (98). In the following
analysis, we assume

r > 2β ð103Þ

so that we can implement the product formula using gates
from Eq. (98) with parameters

−
1

2
<−

β

r
du <

1

2
; 0<

β

r
quv <

1

2
; 0<

β

r
puv <

1

2
: ð104Þ

In Appendix K 2, we use the interaction picture (Lemma
A.2) to show that

Y
1≤u≤n

fu

�
e−

β
rdu

� Y
1≤u<v≤n

guv

�
β

r
quv

�

⋅
Y

1≤u<v≤n
huv

�
β

r
puv

� Y
1≤u<v≤n

huv

�
β

r
puv

�

⋅
Y

1≤u<v≤n
guv

�
β

r
quv

� Y
1≤u≤n

fuðe−
β
rduÞ ¼ e−

β
rHU; ð105Þ

where the operator U has spectral norm bounded by

kUk ≤ exp

�
2n2β2

r2
e
4n2β
r þ cn4β3

r3
e
12n2β

r

�
; ð106Þ

for some constant c > 0. Roughly speaking, Eq. (105)
approximates the exponential e−ðβ=rÞH by the gates in the
gate set (98) up to a multiplicative factor U.
The remaining analysis proceeds in a similar way as that

of the transverse field Ising model. We find that each
eigenvalue of� Y

1≤u≤n
fu


e−

β
rdu
� Y
1≤u<v≤n

guv

�
β

r
quv

�

⋅
Y

1≤u<v≤n
huv

�
β

r
puv

� Y
1≤u<v≤n

huv

�
β

r
puv

�

⋅
Y

1≤u<v≤n
guv

�
β

r
quv

� Y
1≤u≤n

fu


e−

β
rdu
�	r

approximates the corresponding eigenvalue of the ideal
evolution e−βH with a multiplicative factor

kUkr ≤ exp

�
2n2β2

r
e
4n2β
r þ cn4β3

r2
e
12n2β

r

�
: ð107Þ

We first set

r ≥ 24n2β ð108Þ

so that

kUkr ≤ exp

�
4n2β2

r
þ 2cn4β3

r2

�
: ð109Þ

We then choose

r ≥ max

�
8n2β2

ϵ
;
2

ffiffiffi
c

p
n2β3=2

ϵ1=2

�
ð110Þ

to ensure that the multiplicative error is at most ϵ. From
Eqs. (103), (108), and (110),

r ¼ O
�
n2⌈β⌉2

ϵ

�
; ð111Þ

which gives the total gate complexity (see Supplementary
p. 11 in Ref. [39])

j ≔ 2n2r ¼ O
�ð1þ β2Þn4

ϵ

�
: ð112Þ

The result of Theorem 2 in Ref. [39] gave a Monte Carlo
simulation algorithm for the ferromagnetic quantum spin
systems. To improve that result, we also need to estimate
the error of partial sequence of the product formula as in
Ref. [39] [Eq. (13)]. This estimation can be done in a
similar way to our above analysis. The resulting random-
ized approximation scheme has runtime
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Õ
�
j23

ϵ2

�
¼ Õ

�
n92ð1þ β46Þ

ϵ25

�
; ð113Þ

which improves the runtime of the original Bravyi-Gosset
algorithm

Õ
�
n115ð1þ β46Þ

ϵ25

�
: ð114Þ

V. ERROR BOUNDS WITH
SMALL PREFACTORS

We now derive Trotter error bounds with small prefac-
tors. These bounds complement the above asymptotic
analysis and can be used to optimize near-term implemen-
tations of quantum simulation. In Sec. VA, we show that
our analysis reproduces previous tight error bounds for the
first- and second-order formulas [41,42,46]. We then give
numerical evidence in Sec. V B, showing that our higher-
order bounds are close to tight for certain nearest-neighbor
interactions and power-law Hamiltonians. Throughout this
section, we let H be Hermitian and let t ∈ R, and we
decompose the real-time evolution e−itH.

A. First- and second-order error bounds

We derive error bounds for the first-order Lie-Trotter
formula and second-order Suzuki formula following the
work of Refs. [40,43]. In this work, we first analyze the
Trotter error of decomposing the evolution of a two-term
Hamiltonian. We then bootstrap the result to analyze
general Hamiltonians with an arbitrary number of operator
summands. The resulting bounds are nearly tight because
they match the lowest-order term of the BCH expansion up
to an application of the triangle inequality [9,40–43].
Let H ¼ Aþ B be a two-term Hamiltonian. The evolu-

tion under H for time t ≥ 0 is given by e−itH ¼ e−itðAþBÞ,
which we decompose using the first-order Lie-Trotter
formula S1ðtÞ ¼ e−itBe−itA. We first construct the differ-
ential equation

d
dt
S1ðtÞ¼−iHS1ðtÞþe−itBðeitadBðiAÞ−iAÞe−itA; ð115Þ

with initial condition S1ð0Þ ¼ I. Using the variation-of-
parameters formula (Lemma A.1),

S1ðtÞ ¼ e−itH þ
Z

t

0

dτ1 e−iðt−τ1ÞH

· e−iτ1Bðeiτ1adBðiAÞ − iAÞe−iτ1A: ð116Þ

Using Theorem 4 or by direct calculation, we find the order
condition eiτ1adBðiAÞ − iA ¼ Oðτ1Þ, which implies

eiτ1adBðiAÞ − iA ¼
Z

τ1

0

dτ2 eiτ2adBadiBðiAÞ:

Altogether, we have the representation

S1ðtÞ ¼ e−itH þ
Z

t

0

dτ1

Z
τ1

0

dτ2 e−iðt−τ1ÞH

· e−iτ1Beiτ2adBadiBðiAÞe−iτ1A; ð117Þ
and the error bound for t ≥ 0,

kS1ðtÞ − e−itHk ≤
t2

2
k½B;A�k: ð118Þ

We bootstrap this bound to analyze a general Hamiltonian
H ¼ PΓ

γ Hγ . By the triangle inequality,

����YΓ
γ¼1

e−itHγ −e−it
P

Γ
γ¼1

Hγ

����
≤
XΓ
γ1¼1

����e−itPΓ
γ2¼γ1þ1

Hγ2
Yγ1
γ2¼1

e−itHγ2 −e
−it
P

Γ
γ2¼γ1

Hγ2
Yγ1−1
γ2¼1

e−itHγ2

����
¼
XΓ
γ1¼1

����e−itPΓ
γ2¼γ1þ

Hγ2e−itHγ1 −e
−it
P

Γ
γ2¼γ1

Hγ2

����
≤
t2

2

XΓ
γ1¼1

����
� XΓ
γ2¼γ1þ1

Hγ2 ;Hγ1

	����: ð119Þ

Thus, we obtain the following proposition.
Proposition 9: (Tight error bound for the first-order

Lie-Trotter formula). Let H ¼ PΓ
γ¼1Hγ be a Hamiltonian

consisting of Γ summands and t ≥ 0. Let S1ðtÞ ¼QΓ
γ¼1 e

−itHγ be the first-order Lie-Trotter formula. Then,
the additive Trotter error can be bounded as

kS1ðtÞ − e−itHk ≤
t2

2

XΓ
γ1¼1

����
� XΓ
γ2¼γ1þ1

Hγ2 ; Hγ1

	����: ð120Þ

A generalization of this analysis gives an error bound for
the second-order Suzuki formula with a small prefactor (see
Appendix L for a proof).
Proposition 10: (Tight error bound for the second-order

Suzuki formula). Let H ¼ PΓ
γ¼1 Hγ be a Hamiltonian

consisting of Γ summands and t ≥ 0. Let S2ðtÞ ¼Q
1
γ¼Γ e

−iðt=2ÞHγ
QΓ

γ¼1 e
−iðt=2ÞHγ be the second-order

Suzuki formula. Then, the additive Trotter error can be
bounded as

kS2ðtÞ − e−itHk

≤
t3

12

XΓ
γ1¼1

����
� XΓ
γ3¼γ1þ1

Hγ3 ;

� XΓ
γ2¼γ1þ1

Hγ2 ; Hγ1

		����
þ t3

24

XΓ
γ1¼1

����
�
Hγ1 ;

�
Hγ1 ;

XΓ
γ2¼γ1þ1

Hγ2

		����: ð121Þ
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B. Higher-order error bounds

We now consider error bounds for higher-order product
formulas. Compared to the first- and second-order cases,
these formulas are harder to analyze due to their more
complicated definitions. Nevertheless, higher-order formu-
las have better asymptotic scaling and can be surprisingly
efficient even for simulating small systems, as observed
in Ref. [31].
We have analyzed the error of higher-order product

formulas in Sec. III. That analysis is sufficient to establish
the commutator scaling in Theorem 6, but the resulting
bounds have large prefactors. Here, we propose heuristic
strategies to tighten the analysis and numerically bench-
mark our bounds for nearest-neighbor and power-law
Hamiltonians. Our heuristics are specified in Appendix M.
Although we do not have a rigorous proof of the

tightness of our higher-order bounds, numerical evidence
suggests that they are close to tight for various systems. We
first consider simulating a one-dimensional Heisenberg
model with a random magnetic field

H ¼
Xn−1
j¼1

ðΣ⃗j · Σ⃗jþ1 þ hjZjÞ; ð122Þ

where Σ⃗j ≔ ðXj; Yj; ZjÞ is the vector of Pauli operators
acting on the jth qubit and the coefficients hj ∈ ½−1; 1� are
chosen uniformly at random. This system can be simulated
to understand the transition between the many-body local-
ized phase and the thermalized phase in condensed matter
physics, although a classical simulation is only feasible
when the system size is small [74].
We classify the summands of the Hamiltonian into two

groups and set

A ¼
Xbn2c
j¼1

ðΣ⃗2j−1 · Σ⃗2j þ h2j−1Z2j−1Þ; ð123Þ

B ¼
X⌈n2⌉−1
j¼1

ðΣ⃗2j · Σ⃗2jþ1 þ h2jZ2jÞ: ð124Þ

Here, all the summands in A (and B) commute with each
other, so we can further decompose exponentials like
e−itakA (and e−itbkB) without introducing error, giving a
product formula with summands ordered in an even-odd
pattern [35]. We also consider grouping Hamiltonian
summands as

H1 ¼
Xn−1
j¼1

XjXjþ1; H2 ¼
Xn−1
j¼1

YjYjþ1;

H3 ¼
Xn−1
j¼1

ðZjZjþ1 þ hjZjÞ; ð125Þ

whichwe call theX-Y-Zordering [31]. Similar to the even-odd
ordering, the summands in H1, H2, and H3 commute with
each other, respectively, so the corresponding exponentials
can also be decomposed without error. Note that our asymp-
totic bounds inTheorem6 andCorollary7 hold irrespective of
the ordering of Hamiltonian summands, but the prefactors
will depend on the choice of ordering. Our choice here
maximizes the commutativity of the Hamiltonian.
Up to a difference on the boundary condition, Ref. [31]

estimates the resource requirements of simulating the
Heisenberg model using various quantum algorithms.
They find that product formulas, especially the fourth-
order and the sixth-order formulas, can outperform more
recent quantum algorithms for simulating small instances
of Eq. (122), although their best Trotter error bound is loose
by several orders of magnitude. This looseness is alleviated
in Ref. [35], which gives a fourth-order bound that over-
estimates the gate complexity by about a factor of 17. For a
fair comparison, we numerically implement our approach
to analyze the fourth-order formula S4ðtÞ as well; see
Appendix M for detailed derivations.
For the even-odd ordering, we need to compute all the

nested commutators of A and B. We do this by fixing one
term Σ⃗2j−1 ⋅ Σ⃗2j þ h2j−1Z2j−1 of A in the innermost layer
and simplifying all the outer terms using geometrical
locality. We then apply the triangle inequality to analyze
the summation of terms over j ¼ 1;…; bn=2c. We use a
similar approach to analyze the X-Y-Z ordering, thus
computing our error bounds for small t. To simulate for
a longer time, we divide the evolution into r Trotter steps
and apply our bounds within each step. We seek the
smallest Trotter number r for which the estimated error
is at most some desired ϵ. This number can be efficiently
computed using a binary search as described in Ref. [31].
We compare our improved analysis with the best

previous bounds [31,35] for simulating the Heisenberg
model (122). Specifically, we consider the so-called ana-
lytic bound (see Proposition F.4 in Ref. [31], which applies
to both the even-odd and the X-Y-Z ordering. The commu-
tator bound of Theorem F.11 of Ref. [31] offers a slight
improvement over the analytic bound; however, its numeri-
cal implementation requires extensive classical computa-
tions, so we only compare the existing result for the X-Y-Z
ordering. Likewise, we compare the locality-based bound
of Supplementary Material IV B in Ref. [35] only for the
even-odd case, although it can exploit the geometrical
locality of the X-Y-Z ordering as well.
To understand how tight our bounds are, we also include

the empirical Trotter number by directly computing the
error kðS4ðt=rÞÞr − e−itHk for n ¼ 4;…; 12 and extrapo-
lating the results to larger systems. We choose the evolution
time t ¼ n and set the simulation accuracy ϵ ¼ 10−3 as in
Refs. [31,35]. For each system size, we generate five
instances of Hamiltonians with random coefficients. Our
results are plotted in Fig. 3.
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We find that the asymptotic scaling of our new bounds
matches that of the empirical result up to finite-size effects,
and the prefactors are significantly tightened. At n ¼ 10, the
Trotter number predicted by our bounds is loose only by a
factor of 5.1 for the even-odd ordering of terms and 7.2 for
theX-Y-Zordering. In comparison, the commutator boundof
Ref. [31] only exploits the commutativity of the lowest-order
term of the BCH series and is bottlenecked by the use of tail
bounds. The previous bound [35] based on geometrical
locality is also uncompetitive since it cannot directly
leverage the nested commutators of the Hamiltonian terms.
In addition to nearest-neighbor interactions, we also

consider the simulation of a one-dimensional Heisenberg
with power-law interactions:

H ¼
Xn−1
j¼1

Xn
k¼jþ1

1

jj − kjα Σ⃗j ⋅ Σ⃗k þ
Xn−1
j¼1

hjZj; ð126Þ

where hj are again chosen randomly in ½−1; 1� and α ≥ 0 is
a constant. Similarly to the case of nearest-neighbor
interactions, we use the fourth-order product formula with
X-Y-Z ordering,

H1 ¼
Xn−1
j¼1

Xn
k¼jþ1

1

jj − kjα XjXk;

H2 ¼
Xn−1
j¼1

Xn
k¼jþ1

1

jj − kjα YjYk;

H3 ¼
Xn−1
j¼1

Xn
k¼jþ1

�
1

jj − kjα ZjZk þ hjZj

�
; ð127Þ

and compare the empirical Trotter number against that
predicted by the best previous bound (Lemma 1) and our
new bound for simulating (126) for time t ¼ nwith accuracy
ϵ ¼ 10−3. We consider different values of α, ranging from
α ¼ 0 (strong power-law interactions) to α ¼ 4 (rapidly
decaying power-law interactions). We note that for α > 2,
we simulate the evolution using the truncation algorithm
[with the asymptotic gate complexity given by Eq. (60)],
whereas forα ≤ 2, we simply simulate the entireHamiltonian
[with the asymptotic gate complexity in Eq. (58)].
At n ¼ 10, the empirical Trotter numbers are 552� 45

(α ¼ 0) and 129� 6 (α ¼ 4), where the standard deviation
is obtained by averaging over five instances of the random
field hj. Meanwhile, our bound gives 5609� 3 (α ¼ 0) and
885� 32 (α ¼ 4)—about 10.2 and 6.9 times looser com-
pared to the empirical values, respectively. Our bound for
power-law interactions with small α performs slightly
worse than for the nearest-neighbor interactions, partly
due to the fact that the triangle inequality is invoked more
often for the power-law interactions.
We note that the number of interaction terms in a long-

range interacting Hamiltonian scales as n2, making it
difficult to compute our bound exactly at large n. Instead,
we further upper bound the norm of the nested commutator
using triangle inequalities and estimate this upper bound
using a counting argument similarly to Eq. (58). In Fig. 4, we
plot the empirical Trotter numbers against this counting
bound for different values of n at α ¼ 0 and α ¼ 4. The
figure shows that even our counting bound is tighter than the
previous estimates at both values of α. We leave a thorough
study of the efficient numerical implementation of our
bound as a subject for future work.
In addition, we plot in Fig. 5 the scaling exponents of the

Trotter numbers as functions of n at different values of

FIG. 3. Comparison of r for the Heisenberg model using the analytic bound (see Proposition F.4 in Ref. [31]), the commutator bound
(see Theorem F.11 in Ref. [31]), locality-based bound (see Supplementary Material IV B in Ref. [35]), and our new bounds, Proposition
M.1 and Proposition M.2. Error bars are omitted as they are negligibly small on the plot. Straight lines show power-law fits to the data.
Note that the exponent for the empirical data is based on brute-force simulations of small systems and thus may not precisely capture the
true asymptotic scaling due to finite-size effects.
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α ∈ ½0; 4�. While the scaling exponent of the analytic bound
in Ref. [31] is loose and independent of α, our bound
appears to correctly capture the scaling of Trotter number at
all values of α. In particular, it shows that the scaling
exponent decreases with α—indicating fewer resources
needed to simulate faster decaying interactions—and

approaches the value for simulating nearest-neighbor inter-
actions at large α.

VI. DISCUSSION

We have developed a general theory of Trotter error and
identified a host of applications to simulating quantum
dynamics, local observables, and quantum Monte Carlo
methods. We work with arbitrary finite-dimensional oper-
ators as opposed to anti-Hermitian ones, which makes our
theory applicable to both real- and imaginary-time evolu-
tions. We consider Trotter error of various types, including
additive error, multiplicative error, and error that appears in
the exponent. For each type, we apply the correct order
condition to cancel lower-order terms and represent higher-
order ones as explicit nested commutators. The list of
applications presented herein is not intended to be exhaus-
tive, and we believe our techniques can uncover more
speedups of the product-formula algorithm that were
previously unknown.
Compared to the analysis of other simulation algorithms

such as the truncated Taylor-series algorithm [23] and the
qubitization approach [24], the derivation of our Trotter
error theory is considerably more involved. However, the
resulting error bounds are succinct and easy to evaluate.
Theorem 6 shows that the Trotter error incurred by
decomposing the evolution generated by H ¼ PΓ

γ¼1Hγ

depends asymptotically on the quantity α̃comm ¼P
γ1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k, which can be

computed by induction as for the second-quantized plane-
wave electronic-structure, k-local Hamiltonians, rapidly
decaying interacted systems, clustered Hamiltonians, the
transverse field Ising model, and quantum ferromagnetic
spin systems. We further show how to improve the analysis
to find error bounds with small constant prefactors.
Numerical simulation suggests that our higher-order error
bounds are close to tight for systems with nearest-neighbor

FIG. 4. Comparison of r for the power-law Heisenberg model using the analytic bound (see Proposition F.4 of Ref. [31]), 1-norm
bound (Lemma 1), a bound from counting argument (58), and our bound (Proposition M.2). Error bars are omitted as they are negligibly
small on the plot. Straight lines show power-law fits to the data. Note that the exponent for the empirical data is based on brute-force
simulations of small systems and thus may not precisely capture the true asymptotic scaling due to finite-size effects.

FIG. 5. Comparison of the empirical scaling exponents of the
Trotter numbers (purple squares) against our bound (green
squares) as functions of the system size at different values of
the power-law exponent α. The error bars of the empirical values
represent the standard deviation of the fitted exponents (see
Fig. 4) over five instances of the random field hj. The bound is
derived from the counting argument in Eq. (53) and therefore has
no standard deviation. We attribute the systematic difference
between our bound and the empirical values to the fact that we
only compute the empirical Trotter numbers up to n ¼ 11, which
may not capture the precise asymptotic scaling in the large-n
limit. We also include the scaling exponent of the analytic bound
in Ref. [31] (red dash-dotted line) as well as the theoretical
exponent in the limit α → ∞, i.e., nearest-neighbor interactions
(blue dashed line), for references.
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and power-law interactions, and we hope future work can
explore their tightness for other systems.
Our result shows that high-order product formulas can be

advantageous for simulating many physical systems.
Interestingly, we can often achieve this advantage without
using a formula of very large order. Ford-dimensional power-
law interactions with exponent α > 2d, we have shown that
thepth-order product-formula algorithm has gate complexity
OððntÞ1þd=ðα−dÞþ1=pÞ, whereas the state-of-the-art Lieb-
Robinson-based approach requires ÕððntÞ1þ2d=ðα−dÞÞ gates.
Product formulas can thus scale better if p ≥ ðα − dÞ=d,
which is small for various physical systems such as
the dipole-dipole interactions (α ¼ 3) and the van der
Waals interactions (α ¼ 6). For other systems such as
nearest-neighbor interactions and electronic-structure
Hamiltonians, product formulas do not exactly match the
state-of-the-art result in terms of the asymptotic scaling, but
they are still advantageous for simulating systems of small
sizes [31,43].
The complexity of the product-formula approach is

determined by both the Trotter number (or Trotter error)
and the cost per Trotter step. A naive implementation of each
Trotter step exponentiates all the terms in the Hamiltonian,
which has a cost that scales with the total number of terms.
However, this worst-case complexity can be avoided by
truncating the original Hamiltonian, as we have demon-
strated in the simulation of rapidly decaying power-law
Hamiltonians. Recent studies have proposed other tech-
niques for implementing Trotter steps [9,43,75,76]. Those
techniques can be applied in combination with our Trotter
error analysis to further speed up the product-formula
algorithm.
We have restricted our attention to the evolutions gen-

erated by time-independent operators. In the more general
case, we have an operator-valued function HðτÞ ¼PΓ

γ¼1HγðτÞ, and our goal is to simulate the time-ordered
evolution T expðR t

0 dτ
PΓ

γ¼1 HγðτÞÞ [5,23,25,57,77–79].
Under certain smoothness assumptions, Ref. [57] shows
that this evolution can be simulated using product formulas,
although the analysis there does not exploit the commuta-
tivity of operator summands.We believe our approach can be
extended to give improved analysis for time-dependent
Hamiltonian simulation, but we leave a detailed study for
future work.
Previous work considered several generalized product

formulas, such as ones based on the divide-and-conquer
construction [26], the randomized construction [27,29], and
the linear-combination-of-unitaries construction [28]. The
common underlying idea is to approximate the ideal
evolution to pth order using formulas of order qk, where
qk ≤ p. Our theory can be applied to represent the qkth-
order Trotter error in terms of nested commutators, thus
improving the previous analyses of Refs. [26–29]. This
approach leads to a better understanding of these

generalized formulas and justifies their potential utility
in quantum simulation.
Several other questions related to our theory deserve

further investigation. For example, the spectral-norm error
bound computed here would be overly pessimistic if we
simulate with a low-energy initial state. It would then be
beneficial to change the error metric to the Euclidean
distance to avoid the worst-case error propagation. Our
analysis has also assumed an operator decomposition H ¼PΓ

γ¼1Hγ given a prior, but one may instead seek an
alternative decomposition to maximize the commutativity
of operator summands. We focus on the error analysis
within each Trotter step and apply the triangle inequality
across different steps, which may be improved upon as
hinted in previous work [80,81]. Finally, we have consid-
ered an idealized setting, and we hope future work could
take the effect of noise into account [82].
Product formulas arguably provide the most straightfor-

ward approach to simulating quantum systems. This
approach is empirically advantageous and is often the
method of choice for near-term demonstration of quantum
simulation. Despite their experimental success, the error
scaling of product formulas was poorly understood, and
prior to our work, their advantage was only rigorously
analyzed for a restricted collection of systems. The theory
developed here represents progress toward a precise char-
acterization of the Trotter error, which we hope will bridge
the gap between theoretical investigation and experimental
realization of quantum simulation.
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APPENDIX A: IDENTITIES OF
TIME-ORDERED EVOLUTIONS

In this section, we discuss some useful identities of time-
ordered exponentials. Let HðτÞ be a continuous operator-
valued function defined for τ ∈ R. The time-ordered
exponential generated by HðτÞ satisfies the differentiation
rule (see p. 12 of Ref. [55])

∂
∂t2 T exp

�Z
t2

t1

dτHðτÞ
�

¼ Hðt2ÞT exp

�Z
t2

t1

dτHðτÞ
�
; ðA1Þ

∂
∂t1 T exp

�Z
t2

t1

dτHðτÞ
�

¼ −T exp

�Z
t2

t1

dτHðτÞ
�
Hðt1Þ; ðA2Þ

and the multiplicative property (see p. 11 of Ref. [55])

T exp

�Z
t3

t1

dτHðτÞ
�

¼ T exp

�Z
t3

t2

dτHðτÞ
�
T exp

�Z
t2

t1

dτHðτÞ
�
: ðA3Þ

By definition, the operator-valued function UðtÞ ¼
T expðR t

0 dτHðτÞÞ satisfies the differential equation
ðd=dτÞUðτÞ¼HðτÞUðτÞ with initial condition Uð0Þ¼I.
Generalizing this fact gives the following variation-of-
parameters formula:
Lemma A.1: (Variation-of-parameters formula—see

Theorem 4.9 in Ref. [83] and p. 17 in Ref. [55]). Let
HðτÞ, RðτÞ be continuous operator-valued functions
defined for τ ∈ R. Then, the first-order differential equation

d
dt

UðtÞ ¼ HðtÞUðtÞ þRðtÞ; Uð0Þ known; ðA4Þ

has a unique solution given by the variation-of-parameters
formula

UðtÞ ¼ T exp

�Z
t

0

dτHðτÞ
�
Uð0Þ

þ
Z

t

0

dτ1 T exp

�Z
t

τ1

dτ2Hðτ2Þ
�
Rðτ1Þ: ðA5Þ

Let HðτÞ ¼ AðτÞ þBðτÞ be a continuous operator-
valued function with two summands defined for
0 ≤ τ ≤ t. Then, the evolution under HðτÞ can be
seen as the evolution under the rotated operator
T exp−1ðR τ

0 dτ2Aðτ2ÞÞBðτÞT expðR τ
0 dτ2Aðτ2ÞÞ, followed

by another evolution under AðτÞ that rotates back to the

original frame [25]. This is known as the “interaction-
picture” representation in quantum mechanics and is
formally stated in the following lemma.
Lemma A.2: (Time-ordered evolution in the interaction

picture). Let HðτÞ ¼ AðτÞ þBðτÞ be an operator-valued
function defined for τ ∈ R with continuous summands
AðτÞ and BðτÞ. Then,

T exp

�Z
t

0

dτHðτÞ
�

¼ T exp

�Z
t

0

dτAðτÞ
�

× T exp

�Z
t

0

dτ1 T exp−1
�Z

τ1

0

dτ2Aðτ2Þ
�

×Bðτ1ÞT exp

�Z
τ1

0

dτ2 Aðτ2Þ
�	

: ðA6Þ

Proof.—A simple calculation shows that the right-hand
side of the above equation satisfies the differential equation

d
dt

UðtÞ ¼ HðtÞUðtÞ ðA7Þ

with initial condition Uð0Þ ¼ I. The lemma then follows,
as T expðR t

0 dτHðτÞÞ is the unique solution to this differ-
ential equation. ▪
For any continuous HðτÞ, the evolution

T expðR t
0 dτHðτÞÞ it generates is invertible and continu-

ously differentiable. Conversely, the following lemma
asserts that any operator-valued function that is invertible
and continuously differentiable is a time-ordered evolution
generated by some continuous function.
Lemma A.3: (Fundamental theorem of time-ordered

evolution—see p. 20 of Ref. [55]) The following statements
regarding an operator-valued function UðτÞ (τ ∈ R) are
equivalent:
(1) UðτÞ is invertible and continuously differentiable;
(2) UðτÞ ¼ T expðR τ

0 dτ1Hðτ1ÞÞUð0Þ for some con-
tinuous operator-valued function HðτÞ.

Furthermore, in the second statement, HðτÞ ¼
½ðd=dτÞUðτÞ�U−1ðτÞ is uniquely determined.
Finally, we bound the spectral norm of a time-ordered

evolution T expðR t2
t1 dτHðτÞÞ and the distance between two

evolutions.
Lemma A.4: [Spectral-norm bound for time-ordered

evolution—see p. 28 of Ref. [55] ] Let HðτÞ be a
continuous operator-valued function defined on R. Then,

(1) kT expðR t2
t1 dτHðτÞÞk ≤ e

j
R

t2
t1

dτkHðτÞkj
; and

(2) kT expðR t2
t1 dτHðτÞÞk¼1 if HðτÞ is anti-Hermitian.

Corollary A.5. [Distance bound for time-ordered
evolutions—Appendix B in Ref. [52] ] Let HðτÞ and
GðτÞ be continuous operator-valued functions defined on
R. Then,
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(1) kT expðR t2
t1 dτHðτÞÞ − T expðR t2

t1 dτGðτÞÞk ≤

jR t2
t1 dτkHðτÞ − GðτÞkjej

R
t2
t1

dτðkHðτÞkþkGðτÞkÞj
; and

(2) kT expðR t2
t1 dτHðτÞÞ − T expðR t2

t1 dτGðτÞÞk ≤
jR t2

t1 dτkHðτÞ − GðτÞkj if HðτÞ and GðτÞ are anti-
Hermitian.

APPENDIX B: TROTTER ERROR
WITH 1-NORM SCALING

In this section, we provide the proof for Lemma 1.
Proof.—Proof of Lemma 1. Since SðtÞ is a pth-order

formula, we know from Supplementary Lemma 1 in
Ref. [35] that Sð0Þ ¼ S0ð0Þ ¼ � � � ¼ SðpÞð0Þ ¼ 0. By
Taylor’s theorem,

SðtÞ − etH ¼ ðpþ 1Þ
Z

1

0

duð1 − uÞp tpþ1

ðpþ 1Þ!
· ðSðpþ1ÞðutÞ −Hpþ1eutHÞ; ðB1Þ

where

Sðpþ1ÞðutÞ ¼
X

qð1;1Þþ���þqðϒ;ΓÞ¼pþ1

�
pþ 1

qð1;1Þ � � � qðϒ;ΓÞ

�

·
Yϒ
υ¼1

YΓ
γ¼1

ðaðυ;γÞHπυðγÞÞqðυ;γÞeutaðυ;γÞHπυðγÞ : ðB2Þ

The spectral norms of Sðpþ1ÞðutÞ and Hpþ1eutH can be
bounded as

kSðpþ1ÞðutÞk ≤
X

qð1;1Þþ���þqðϒ;ΓÞ¼pþ1

�
pþ 1

qð1;1Þ � � � qðϒ;ΓÞ

�

·
Yϒ
υ¼1

YΓ
γ¼1

kHπυðγÞkqðυ;γÞetkHπυðγÞk

¼
�
ϒ
XΓ
γ¼1

kHγk
�

pþ1

etϒ
P

Γ
γ¼1

kHγk; ðB3Þ

kHpþ1eutHk ≤
�XΓ

γ¼1

kHγk
�

pþ1

et
P

Γ
γ¼1

kHγk: ðB4Þ

Applying these bounds to the Taylor expansion, we find
that

kSðtÞ − etHk ≤
tpþ1

ðpþ 1Þ!
��

ϒ
XΓ
γ¼1

kHγk
�

pþ1

etϒ
P

Γ
γ¼1

kHγk

þ
�XΓ

γ¼1

kHγk
�

pþ1

et
P

Γ
γ¼1

kHγk
	

ðB5Þ

¼O
��XΓ

γ¼1

kHγkt
�

pþ1

etϒ
P

Γ
γ¼1

kHγk
�
: ðB6Þ

The special case where Hγ are anti-Hermitian can be
proved in a similar way, except we directly evaluate the
spectral norm of a matrix exponential to 1. ▪

APPENDIX C: ERROR TYPES

In this Appendix, we consider different types of Trotter
error for a general product formula introduced in Sec. III B.
In particular, we will prove Theorem 3, which gives explicit
expressions for three types of Trotter error: the additive
error, the multiplicative error, and the error that appears in
the exponent of a time-ordered exponential. These types are
equivalent for analyzing the complexity of simulating
quantum dynamics and local observables, but the latter
two are more versatile for quantum Monte Carlo
simulation.
Let H ¼ PΓ

γ¼1 Hγ be an operator with Γ summands.

We decompose the evolution etH ¼ et
P

Γ
γ¼1

Hγ using a
general product formula SðtÞ ¼ Q

ϒ
υ¼1

QΓ
γ¼1 e

taðυ;γÞHπυðγÞ .
We impose the lexicographical order on the tuples ðυ; γÞ
as in Sec. III B so that

SðtÞ ¼
Y←
ðυ;γÞ

etaðυ;γÞHπυðγÞ : ðC1Þ

To compute the additive error, we construct the differ-
ential equation

d
dt

SðtÞ ¼ HSðtÞ þRðtÞ; ðC2Þ

with initial condition Sð0Þ ¼ I, where

RðtÞ ≔
X
ðυ;γÞ

Y←
ðυ0;γ0Þ≻ðυ;γÞ

e
taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ

·
Y←

ðυ0;γ0Þ≼ðυ;γÞ
e
taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ

−H
Y←
ðυ0;γ0Þ

e
taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ :

By the variation-of-parameters formula (Lemma A.1),
SðtÞ − etH ¼ R

t
0 dτ e

ðt−τÞHRðτÞ, so we obtain the additive
error

AðtÞ ≔
Z

t

0

dτ eðt−τÞHRðτÞ: ðC3Þ

This result suffices if our purpose is to only compute the
additive error operator. However, for the later discussion in
Appendix E, it is convenient to further rewrite

CHILDS, SU, TRAN, WIEBE, and ZHU PHYS. REV. X 11, 011020 (2021)

011020-28



AðtÞ ¼
Z

t

0

dτ eðt−τÞHSðτÞT ðτÞ; ðC4Þ

where

T ðτÞ ≔
X
ðυ;γÞ

Y→
ðυ0;γ0Þ≺ðυ;γÞ

e
−τaðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ

·
Y←

ðυ0;γ0Þ≺ðυ;γÞ
e
τaðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ

−
Y→
ðυ0;γ0Þ

e
−τaðυ0 ;γ0ÞHπ

υ0 ðγ
0ÞH

Y←
ðυ0;γ0Þ

e
τaðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ : ðC5Þ

Note that we have rewritten part of the error operator as a
linear combination of conjugation of matrix exponentials.
In Appendix E, we apply the correct order condition to
further represent it as nested commutators of the operator
summands Hγ .
For the exponentiated type of Trotter error, we aim to

construct an operator-valued function EðtÞ such that

SðtÞ ¼ T exp

�Z
t

0

dτðH þ EðτÞÞ
�
: ðC6Þ

To do this, we differentiate the product formula SðtÞ and
obtain

d
dt

SðtÞ ¼
X
ðυ;γÞ

Y←
ðυ0;γ0Þ≻ðυ;γÞ

e
taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ

·
Y←

ðυ0;γ0Þ≼ðυ;γÞ
e
taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ

¼ FðtÞSðtÞ; ðC7Þ

where

FðtÞ ≔
X
ðυ;γÞ

Y←
ðυ0;γ0Þ≻ðυ;γÞ

e
taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ

·
Y→

ðυ0;γ0Þ≻ðυ;γÞ
e
−taðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ : ðC8Þ

Applying the fundamental theorem of time-ordered evo-
lution (Lemma A.3), we have

SðtÞ ¼ T exp

�Z
t

0

dτFðτÞ
�
; ðC9Þ

which gives the exponentiated error

EðtÞ ≔ FðtÞ −H: ðC10Þ

From the exponentiated type of Trotter error, we can
obtain the multiplicative error by switching to the inter-
action picture. Specifically, we apply Lemma A.2 and get

SðtÞ ¼ T exp

�Z
t

0

dτðH þ EðτÞÞ
�

¼ etHT exp

�Z
t

0

dτ e−τHEðτÞeτH
�
: ðC11Þ

Then, the operator-valued function

MðtÞ ≔ T exp

�Z
t

0

dτ e−τHEðτÞeτH
�
− I ðC12Þ

is the multiplicative error of the product formula. We have
thus established Theorem 3.

APPENDIX D: ORDER CONDITIONS

In this Appendix, we continue the discussion in
Sec. III C about order conditions of the Trotter error. We
show how to use these conditions to cancel low-order terms
of the Taylor series. Toward the end of this section, we
establish Theorem 4, which gives order conditions for the
additive, multiplicative, and exponentiated Trotter error.
We apply these conditions to prove the main result on the
commutator scaling of the Trotter error.
Recall from Sec. III C that the order condition of an

operator-valued function FðτÞ represents the rate at which
FðτÞ approaches zero when τ → 0. Formally, given a
continuous operator-valued function FðτÞ defined on R,
we write FðτÞ ¼ OðτpÞ with non-negative integer p if
there exist constants c; t0 > 0, independent of τ, such that
kFðτÞk ≤ cjτjp whenever jτj ≤ t0. To verify this, it suffices
to check that the limit

lim
τ→0

kFðτÞk
jτjp ðD1Þ

exists.
As previously mentioned, our approach uses the order

condition FðτÞ ¼ OðτpÞ to argue that terms with order
1; τ;…; τp−1 vanish in the Taylor series of FðτÞ. This
argument is rigorized in Lemma 6 of Ref. [35], which we
restate and prove for completeness.
Lemma D.1: (Derivative condition). Any continuous

operator-valued function FðτÞ defined on R satisfies the
order condition

FðτÞ ¼ Oð1Þ: ðD2Þ
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Furthermore, ifFðτÞ has p continuous derivatives for some
positive integer p, then the following two conditions are
equivalent:
(1) FðτÞ ¼ OðτpÞ; and
(2) Fð0Þ ¼ F0ð0Þ ¼ � � � ¼ Fðp−1Þð0Þ ¼ 0.
Proof.—The continuity ofFðτÞ at τ ¼ 0 impliesFðτÞ¼

Oð1Þ by definition. Assume that FðτÞ, F0ðτÞ,..., FðpÞðτÞ
exist and are continuous. If Condition 2 holds, we have

lim
τ→0

kFðτÞk
jτjp ¼

����limτ→0

FðτÞ
τp

���� ¼ kFðpÞð0Þk
p!

ðD3Þ

by the L’Hôpital rule. This proves that Condition 1 holds.
Given Condition 1, we have, by definition, that

kFðτÞk ≤ cjτjp ðD4Þ

for some c; t0 > 0 and all jτj ≤ t0. Suppose, by contra-
diction, that Condition 2 is not true. Then, we let 0 ≤ j ≤
p − 1 be the first integer for which FðjÞð0Þ ≠ 0. We use
Taylor’s theorem to order j to get

FðτÞ ¼ FðjÞð0Þ τ
j

j!
þ
Z

τ

0

dτ2Fðjþ1Þðτ − τ2Þ
τj2
j!
; ðD5Þ

which implies

kFðτÞk ≥ kFðjÞð0Þk jτj
j

j!
− max

jτ2j≤jτj
kFðjþ1Þðτ2Þk

jτjjþ1

ðjþ 1Þ!
ðD6Þ

by the triangle inequality. We combine the above inequal-
ities and divide both sides by jτjj. Taking the limit τ → 0

gives the contradiction kFðjÞð0Þk ≤ 0. ▪
Lemma D.1 provides a direct approach to computing

order conditions for functions of real variables. This
approach works for simple examples such as the power
functions fðτÞ ¼ τp ¼ OðτpÞ. Another example that we
use in our analysis is the integration of a monomial, likeZ

τ

0

dτ1

Z
τ1

0

dτ2

Z
τ1

0

dτ3

Z
τ2

0

dτ4τ31τ2τ
4
3τ

5
4: ðD7Þ

As the following lemma shows, we can directly evaluate
such an integral and compute the order condition of the
resulting power function.
Lemma D.2: (Integration of a monomial). The integra-

tion of a monomial τp1

1 � � � τpγ
γ � � � τpΓ

Γ is evaluated asZ
τ

0

dτ1 � � �
Z

τ<γ

0

dτγ � � �
Z

τ<Γ

0

dτΓ τ
p1

1 � � � τpγ
γ � � � τpΓ

Γ

¼ ctp1þ���þpΓþΓ ¼ Oðtp1þ���þpΓþΓÞ; ðD8Þ

where τ<γ ∈ fτ; τ1;…; τγ−1g and c is a constant that
depends on non-negative integers p1;…; pΓ.
Proof.—We prove the lemma by induction on the value

of Γ. The claim trivially holds when Γ ¼ 1. Suppose that it
is true for Γ. For Γþ 1, we have

Z
τ

0

dτ1 � � �
Z

τ<Γþ1

0

dτΓþ1 τ
p1

1 � � � τpΓþ1

Γþ1

¼
Z

τ

0

dτ1 � � �
Z

τ<Γ

0

dτΓ
τq11 � � � τqΓΓ
pΓþ1 þ 1

; ðD9Þ

where q1 þ � � � þ qΓ ¼ p1 þ � � � þ pΓþ1 þ 1. The claim
then follows from the inductive hypothesis. ▪
For most of our analysis, however, a direct calculation of

order conditions is inefficient. In particular, a (2k)th-order
Suzuki formula contains 2 × 5k−1 matrix exponentials, and
a direct analysis becomes prohibitive when k is large.
Instead, we follow standard rules of order conditions to
compute them indirectly, some of which are summa-
rized below:
Proposition D.3: [Rules of order conditions] Let FðτÞ

and GðτÞ be operator-valued functions defined on R that
are infinitely differentiable. Let p and q be non-negative
integers. The following rules of order conditions hold:
(1) Addition: if FðτÞ ¼ OðτpÞ and GðτÞ ¼ OðτqÞ,

then FðτÞ þGðτÞ ¼ Oðτminðp;qÞÞ;
(2) Multiplication: ifFðτÞ ¼ OðτpÞ andGðτÞ ¼ OðτqÞ,

then FðτÞGðτÞ ¼ OðτpþqÞ;
(3) Differentiation: FðτÞ ¼ Oðτpþ1Þ if and only if

Fð0Þ ¼ 0 and F0ðτÞ ¼ OðτpÞ;
(4) Integration: FðτÞ ¼ OðτpÞ if and only ifR

t
0 dτFðτÞ ¼ Oðtpþ1Þ; and

(5) Exponentiation: FðτÞ ¼ GðτÞ þOðτpÞ if and only
if T expðR t

0dτFðτÞÞ¼T expðR t
0dτGðτÞÞþOðtpþ1Þ.

Proof.—We only prove the exponentiation rule, as the
other rules follow directly from Lemma D.1. Suppose
that T expðR t

0 dτFðτÞÞ ¼ T expðR t
0 dτGðτÞÞ þOðtpþ1Þ.

To prove FðτÞ ¼ GðτÞ þOðτpÞ, it suffices to show that
FðqÞð0Þ ¼ GðqÞð0Þ for q ¼ 0;…; p − 1.
We prove this by induction. By the differentiation rule,

we have

FðtÞT exp

�Z
t

0

dτFðτÞ
�

¼ GðtÞT exp
�Z

t

0

dτGðτÞ
�
þOðtpÞ; ðD10Þ

so Lemma D.1 implies Fð0Þ ¼ Gð0Þ. This proves the
claim in the base case. Now, assume thatFðlÞð0Þ ¼ GðlÞð0Þ
holds for l ¼ 0;…q, where q < p − 1. By Lemma D.1 and
the general Leibniz rule,
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Xqþ1

l¼0

�
qþ 1

l

�
Fqþ1−lð0ÞT expðlÞ

�Z
0

0

dτFðτÞ
�

¼
Xqþ1

l¼0

�
qþ 1

l

�
Gqþ1−lð0ÞT expðlÞ

�Z
0

0

dτGðτÞ
�
:

Lemma D.1 also implies T expðlÞðR 0
0 dτFðτÞÞ ¼

T expðlÞðR 0
0 dτGðτÞÞ for l ¼ 0;…; qþ 1. So, the above

equation simplifies to

Fðqþ1Þð0Þ ¼ Gðqþ1Þð0Þ: ðD11Þ

This completes the inductive step.
For the reverse direction, we want to prove

T expðR t
0 dτ FðτÞÞ ¼ T expðR t

0 dτ GðτÞÞ þ Oðtpþ1Þ,
assuming that FðτÞ ¼ GðτÞ þOðτpÞ. Equivalently,
we want to show that T expðqþ1ÞðR 0

0 dτFðτÞÞ ¼
T expðqþ1ÞðR 0

0 dτGðτÞÞ for q ¼ 0;…; p − 1, given that
FðqÞð0Þ ¼ GðqÞð0Þ. This equality can be proved by induc-
tion and by applying the Leibniz rule in a similar way as
above. Specifically, the base case follows from

T expð1Þ
�Z

0

0

dτFðτÞ
�

¼ Fð0Þ ¼ Gð0Þ

¼ T expð1Þ
�Z

0

0

dτGðτÞ
�
;

and the inductive step follows from

T expðqþ1Þ
�Z

0

0

dτFðτÞ
�

¼
Xq
l¼0

�
q

l

�
Fðq−lÞð0ÞT expðlÞ

�Z
0

0

dτFðτÞ
�

ðD12Þ

¼
Xq
l¼0

�
q

l

�
Gðq−lÞð0ÞT expðlÞ

�Z
0

0

dτGðτÞ
�

ðD13Þ

¼ T expðqþ1Þ
�Z

0

0

dτGðτÞ
�
: ðD14Þ

▪
We now compute order conditions for the additive,

multiplicative, and exponentiated Trotter error.
Proof.—Proof of Theorem 4 Suppose that T ðτÞ¼OðτpÞ.

We apply the multiplication rule of Proposition D.3 to get
eðt−τÞHSðτÞT ðτÞ ¼ OðτpÞ. A further application of the
integration rule gives SðtÞ−etH¼R

t
0dτe

ðt−τÞHSðτÞT ðτÞ¼
Oðtpþ1Þ.
Conversely, let SðtÞ ¼ etH þOðtpþ1Þ. This impliesR

t
0dτe

ðt−τÞHSðτÞT ðτÞ¼Oðtpþ1Þ. Applying the integration

rule and the multiplication rule gives SðτÞT ðτÞ ¼ OðτpÞ.
Note that SðtÞ ¼ etH þOðtpþ1Þ ¼ I þOðtÞ implies that
the operator-valued function SðtÞ is invertible for
sufficiently small t, and since ðd=dtÞS−1ðtÞ ¼
−S−1ðtÞS0ðtÞS−1ðtÞ, the inverse function S−1ðtÞ is infi-
nitely differentiable. Applying the multiplication rule gives
T ðτÞ ¼ OðτpÞ, which establishes the equivalence of
Conditions 1 and 2.
Note that SðtÞ ¼ etH þOðtpþ1Þ is equivalent to

T expðR t
0 dτðH þ EðτÞÞÞ ¼ etH þOðtpþ1Þ, which is fur-

ther equivalent to H þ EðτÞ ¼ H þOðτpÞ by the exponen-
tiation rule. Canceling H from both sides proves the
equivalence of Conditions 1 and 3.
Finally, note that SðtÞ¼etHðIþMðtÞÞ¼etHþOðtpþ1Þ

can be simplified to etHMðtÞ ¼ Oðtpþ1Þ. The equivalence
of Conditions 1 and 4 then follows from the multiplica-
tion rule. ▪

APPENDIX E: ERROR REPRESENTATIONS

We now prove Theorem 6, which establishes the
commutator scaling of the Trotter error. The proof is
sketched in Sec. III D and will be detailed here. For
simplicity, we only consider the additive error, although
the analysis can be easily adapted to handle the multipli-
cative error and the exponentiated error.
Let H ¼ PΓ

γ¼1Hγ be an operator that generates the

evolution etH¼et
P

Γ
γ¼1

Hγ . Let SðtÞ¼Q
ϒ
υ¼1

QΓ
γ¼1e

taðυ;γÞHπυðγÞ

be apth-order product formula as in Sec. II C.We know from
Theorem 3 that the Trotter error can be expressed in
an additive form as SðtÞ ¼ etH þ R

t
0 dτe

ðt−τÞHSðτÞT ðτÞ,
where

T ðτÞ ¼
X
ðυ;γÞ

Y→
ðυ0;γ0Þ≺ðυ;γÞ

e
−τaðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ ðaðυ;γÞHπυðγÞÞ

·
Y←

ðυ0;γ0Þ≺ðυ;γÞ
e
τaðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ

−
Y→
ðυ0;γ0Þ

e
−τaðυ0 ;γ0ÞHπ

υ0 ðγ
0ÞH

Y←
ðυ0;γ0Þ

e
τaðυ0 ;γ0ÞHπ

υ0 ðγ
0Þ :

Furthermore, Theorem 4 implies that the operator-valued
function T ðτÞ satisfies the order condition T ðτÞ ¼ OðτpÞ.
We now apply Theorem 5 to expand every conjugation

of matrix exponentials in T ðτÞ. In doing so, we only keep
track of terms of orderOðτpÞ, as those terms corresponding
to 1; τ;…; τp−1 will vanish due to the order condition. We
obtain
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kT ðτÞk ≤
X
ðυ;γÞ

αcommðfHπυ0 ðγ0Þ; ðυ0; γ0Þ ≺ ðυ; γÞg
















!
; HπυðγÞÞ

×
τp

p!
exp

�
2τ

X
ðυ0;γ0Þ≺ðυ;γÞ

kHπυ0 ðγ0Þk
�

þ αcommðfHπυ0 ðγ0Þg





!

; HÞ τ
p

p!
e
2τ
P

ðυ0 ;γ0Þ kHπ
υ0 ðγ

0Þk;

where ⃗f g denotes an ordered list where elements have
increasing indices from left to right. This is further
bounded by

kT ðτÞk ≤ 2
X
ðυ;γÞ

αcommðfHπυ0 ðγ0Þg





!

; HπυðγÞÞ

×
τp

p!
exp

�
2τ

X
ðυ0;γ0Þ

kHπυ0 ðγ0Þk
�

¼ 2ϒ
XΓ
γ¼1

αcommðfHπυ0 ðγ0Þg





!

; HγÞ

×
τp

p!
exp

�
2τϒ

XΓ
γ0¼1

kHγ0 k
�
:

After a final integration over τ, we have

kSðtÞ − etHk ≤
Z

t

0

dτkeðt−τÞHSðτÞT ðτÞk

≤ 2ϒ
XΓ
γ¼1

αcommðfHπυ0 ðγ0Þg





!

; HγÞ

×
tpþ1

ðpþ 1Þ! exp
�
4tϒ

XΓ
γ0¼1

kHγ0 k
�
:

This bound holds for arbitrary operators Hγ . If the operator
summands are anti-Hermitian, the bound can be further
tightened to

kSðtÞ − etHk

≤ 2ϒ
XΓ
γ¼1

αcommðfHπυ0 ðγ0Þg





!

; HγÞ
tpþ1

ðpþ 1Þ! : ðE1Þ

Note that our analysis depends on πυ0 , the ordering of
operator summands in stage υ0 of the product formula. In
the following, we prove an asymptotic bound that removes
this ordering constraint. The resulting bound is independent
of the definition of product formula and may thus be easier
to compute in practice. Our analysis here is not tight in
terms of the constant prefactor, but it is sufficient to
establish the commutator scaling in Theorem 6.

Recall from Theorem 5 that

αcommðfHπυ0 ðγ0Þg





!

; HγÞ

¼
X

qð1;1Þþ���þqðυ0 ;γ0Þ¼p

�
p

qð1;1Þ � � � qðυ0;γ0Þ

�

× kadqð1;1ÞHπ1ð1Þ
� � � adqðϒ;ΓÞ

HπϒðΓÞ ðHγÞk; ðE2Þ

which is upper bounded by p! timesP
qð1;1Þþ���þqðυ0 ;γ0Þ¼p kadqð1;1ÞHπ1ð1Þ

� � � adqðϒ;ΓÞ
HπϒðΓÞ ðHγÞk. Fixing the

value of γ, we claim thatX
qð1;1Þþ���þqðυ0 ;γ0Þ¼p

kadqð1;1ÞHπ1ð1Þ
� � � adqðϒ;ΓÞ

HπϒðΓÞ ðHγÞk

≤ ϒp
XΓ

γpþ1¼1

� � �
XΓ
γ2¼1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ� � � ��k:

This result can be seen as follows. Every nested commu-
tator on the left-hand side has p nesting layers and must
thus be of the form on the right. Conversely, we fix one
term k½Hγpþ1

; � � � ½Hγ2 ; Hγ� � � ��k from the right and bound
the number of times this term might appear on the left. Each
operator Hγ2 ;…; Hγpþ1

can appear in ϒ possible stages,
and hence there are ϒp possibilities in total. When the
stages are fixed, this will uniquely determine one term,
kadqð1;1ÞHπ1ð1Þ

� � � adqðϒ;ΓÞ
HπϒðΓÞ ðHγÞk, on the left. We have thus estab-

lished Theorem 6.

APPENDIX F: SIMULATING SECOND-
QUANTIZED ELECTRONIC STRUCTURE

In this section, we use product formulas to simulate the
second-quantized plane-wave electronic structure

H ¼ 1

2n

X
j;k;ν

κ2ν cos½κν · rk−j�A†
jAk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

−
4π

ω

X
j;ι;ν≠0

ζι cos½κν · ðr̃ι − rjÞ�
κ2ν

Nj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

þ 2π

ω

X
j≠k
ν≠0

cos½κν · rj−k�
κ2ν

NjNk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

; ðF1Þ

where j, k range over all n orbitals, ω is the volume of the
computational cell, and we consider the constant density
case where n=ω ¼ Oð1Þ. Here, κν ¼ 2πν=ω1=3 are n
vectors of the plane-wave frequencies, where ν are
three-dimensional vectors of integers with elements in
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½−n1=3; n1=3�, rj are the positions of electrons, ζι are nuclei
charges such that

P
ι jζιj ¼ OðnÞ, and r̃ι are the nuclear

coordinates. Note that A†
j and Ak are the creation and

annihilation operators, and Nj ¼ A†
jAj are the number

operators.
Following the analysis in Sec. IVA, we need to

bound the spectral norm of the nested commutators
½Hγpþ1

; � � � ½Hγ2 ; Hγ1 � � � ��, where Hγ ∈ fT;U; Vg. This
can be done by induction. In the base case, we need to
estimate the norm of the kinetic operator T and the potential
operators U and V. For readability, we use the abbreviated
representation

T ¼
X
j;k

tj;kA
†
jAk; U ¼

X
j

ujNj;

V ¼
X
j;k

vj;kNjNk: ðF2Þ

Since kA†
jk ¼ kAjk ¼ kNjk ¼ 1, we can apply the triangle

inequality and upper bound kTk, kUk, and kVk by the
vector 1-norm k⃗tk1, ku⃗k1, and kv⃗k1. We analyze this in
Proposition F.2.
Lemma F.1: (See Eqs. (F6) and (F13) in Ref. [11]). Let

an electronic-structure Hamiltonian be given as in Eq. (46).
The following asymptotic analyses hold:
(1)

X
ν≠0

1

κ2ν
¼ OðnÞ: ðF3Þ

(2) For any fixed j,X
ν

κ2ν cos½κν · rj� ¼ Oð1Þ: ðF4Þ

(3) X
ι

jζιj ¼ OðnÞ: ðF5Þ

Proposition F.2: Let an electronic-structure
Hamiltonian be given as in Eq. (46). We have the following
bounds on the vector 1-norm and ∞-norm of the coef-
ficients of the kinetic operator and the potential operators:

k⃗tk∞ ¼ O
�
1

n

�
; k⃗tk1 ¼ OðnÞ;

ku⃗k∞ ¼ OðnÞ; ku⃗k1 ¼ Oðn2Þ;
kv⃗k∞ ¼ Oð1Þ; kv⃗k1 ¼ Oðn2Þ: ðF6Þ

Proof.—The claims about the asymptotic scaling of
k⃗tk∞, ku⃗k∞, and kv⃗k∞ follow from Lemma F.1. We then

obtain the scaling of the vector 1-norm from the triangle
inequality. ▪
For the inductive step, we consider a general second-

quantized operator of the form

W ¼
X
j⃗;k⃗;⃗l

wj⃗;k⃗;⃗l� � � ðA†
jx
AkxÞ � � � ðNlyÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

at most q operators

; ðF7Þ

where j⃗, k⃗, and ⃗l denote vectors of orbitals, with total length
of at most q. We keep track of the number of A†

jx
Akx andNly

in each summand; the largest such number q is called the
“layer” of W. We compute the commutator between the
kinetic or potential operator and a general second-quantized
operator in Proposition F.4.
Lemma F.3: (Commutation rules of second-quantized

operators). The following commutation rules hold for
second-quantized operators:

½A†
jAk; A

†
l Am� ¼ δklA

†
jAm − δjmA

†
l Ak;

½A†
jAk; Nl� ¼ δklA

†
jAl − δjlA

†
l Ak;

½A†
jAk; NlNm� ¼ ðδklA†

jAl − δjlA
†
l AkÞNm

þ NlðδkmA†
jAm − δjmA

†
mAkÞ;

where δkl is the Kronecker-delta function.
Proof.—The first rule is proved by Eq. (1.8.14) in

Ref. [84]. The other rules follow from the definition of
the number operator Nl ¼ A†

l Al and the commutation
relation ½AB;C� ¼ A½B;C� þ ½A;C�B for any operators A,
B, and C. ▪
Proposition F.4: Let an electronic-structureHamiltonian

be given as in Eq. (46). The following statements hold for a
general second-quantized operator W with q layers:
(1) W̃ ¼ ½T;W� is an operator with q layers and

k ⃗w̃k1 ≤ 2qnk⃗tk∞kw⃗k1;
(2) W̃ ¼ ½U;W� is an operator with q layers and

k ⃗w̃k1 ≤ 2qku⃗k∞kw⃗k1; and
(3) W̃ ¼ ½V;W� is an operator with qþ 1 layers and

k ⃗w̃k1 ≤ 4qnkv⃗k∞kw⃗k1.
Proof.—For Statement 1, we have

W̃ ¼ ½T;W�

¼
�X

α;β

tα;βA
†
αAβ;

X
j⃗;k⃗;⃗l

wj⃗;k⃗;⃗l � � � ðA†
jx
AkxÞ � � � ðNlyÞ � � �

	

¼
X
α;β

X
j⃗;k⃗;⃗l

tα;βwj⃗;k⃗;⃗l½A†
αAβ; � � � ðA†

jx
AkxÞ � � � ðNlyÞ � � ��:

Performing the commutation sequentially, it suffices to
consider
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� � � ½A†
αAβ; A

†
jx
Akx � � � � ðNlyÞ � � �

� � � ðA†
jx
AkxÞ � � � ½A†

αAβ; Nly � � � � ðF8Þ

For fixed α, β, j⃗, k⃗, ⃗l, there are at most q such commutators.
For the first type of commutator, we have from Lemma

F.3 that

½A†
αAβ; A

†
jx
Akx � ¼ δβ;jxA

†
αAkx − δα;kxA

†
jx
Aβ: ðF9Þ

Without loss of generality, consider the first term; its
contribution to k ⃗w̃k1 is at mostX

α;β

X
j⃗;k⃗;⃗l

δβ;jx jtα;βwj⃗;k⃗;⃗lj ¼
X
α;j⃗;k⃗;⃗l

jtα;jxwj⃗;k⃗;⃗lj

≤ nk⃗tk∞kw⃗k1: ðF10Þ

Similarly, we use Lemma F.3 to analyze the second type of
commutator,

½A†
αAβ; Nly � ¼ δly;βA

†
αAβ − δly;αA

†
αAβ; ðF11Þ

and find its contribution to k ⃗w̃k1 asX
α;β

X
j⃗;k⃗;⃗l

δly;βjtα;βwj⃗;k⃗;⃗lj ¼
X
α;j⃗;k⃗;⃗l

jtα;lywj⃗;k⃗;⃗lj

≤ nk⃗tk∞kw⃗k1: ðF12Þ

For Statement 2, we have

W̃ ¼ ½U;W�

¼
�X

α

uαNα;
X
j⃗;k⃗;⃗l

wj⃗;k⃗;⃗l � � � ðA†
jx
AjxÞ � � � ðNlyÞ � � �

	

¼
X
α

X
j⃗;k⃗;⃗l

uαwj⃗;k⃗;⃗l½Nα; � � � ðA†
jx
AkxÞ � � � ðNlyÞ � � ��:

Performing the commutation sequentially, it suffices to
consider

� � � ½Nα; A
†
jx
Akx � � � � ðNlyÞ � � � ðF13Þ

For fixed α, j⃗, k⃗, ⃗l, there are at most q such commutators.
We use Lemma F.3 again to get

½Nα; A
†
jx
Akx � ¼ δα;jxA

†
jx
Akx − δα;kxA

†
jx
Akx

and find its contribution to k ⃗w̃k1 asX
α

X
j⃗;k⃗;⃗l

δα;jx juαwj⃗;k⃗;⃗lj ¼
X
j⃗;k⃗;⃗l

jujxwj⃗;k⃗;⃗lj ≤ ku⃗k∞kw⃗k1:

For Statement 3, we have

W̃ ¼ ½V;W�

¼
�X

α;β

vα;βNαNβ;
X
j⃗;k⃗;⃗l

wj⃗;k⃗;⃗l � � � ðA†
jx
AkxÞ � � � ðNlyÞ � � �

	

¼
X
α;β

X
j⃗;k⃗;⃗l

vα;βwj⃗;k⃗;⃗l½NαNβ; � � � ðA†
jx
AkxÞ � � � ðNlyÞ � � ��:

Performing the commutation sequentially, it suffices to
consider

� � � ½NαNβ; A
†
jx
Akx � � � � ðNlyÞ � � � ðF14Þ

For fixed α, β, j⃗, k⃗, ⃗l, there are at most q such commutators.
Using Lemma F.3, we have

½NαNβ; A
†
jx
Akx � ¼ ðδα;jxA†

jx
Akx − δα;kxA

†
jx
AkxÞNβ

þ Nαðδβ;jxA†
jx
Akx − δβ;kxA

†
jx
AkxÞ:

Without loss of generality, consider the first term; its
contribution to k ⃗w̃k1 is at mostX

α;β

X
j⃗;k⃗;⃗l

δα;jx jvα;βwj⃗;k⃗;⃗lj ¼
X
β;j⃗;k⃗;⃗l

jvjx;βwj⃗;k⃗;⃗lj

≤ nkv⃗k∞kw⃗k1: ðF15Þ

▪
Theorem F.5: [Product-formula simulation of second-

quantized plane-wave electronic structure] Let H ¼
T þ U þ V be a second-quantized plane-wave electronic-
structure Hamiltonian with n orbitals as in Eq. (46). Let
SðtÞ be a pth-order product formula as in Eq. (48). Then,
the Trotter error has the scaling

kSðtÞ − e−itHk ¼ OððntÞpþ1Þ: ðF16Þ

To simulate with accuracy ϵ, it thus suffices to choose a
Trotter number of

r ¼ O
�ðntÞ1þ1=p

ϵ1=p

�
: ðF17Þ

Choosing p sufficiently large, letting ϵ be constant, and
implementing each Trotter step as in Refs. [25,61], we have
the gate complexity

n2þoð1Þt1þoð1Þ: ðF18Þ

Proof.—We compute the scaling of the spectral norm of

W ¼ ½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��; ðF19Þ
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by induction, where Hγ ∈ fT;U; Vg. In the base case
where p ¼ 1, we have from Proposition F.2 and
Proposition F.4 that the coefficients of W have 1-norm
in Oðn2Þ, which implies kWk ¼ Oðn2Þ. For the inductive
step, suppose that W ¼ ½Hγpþ1

; � � � ½Hγ2 ; Hγ1 � � � �� is a sec-
ond-quantized operator whose coefficients have vector 1-
norm in OðnpÞ. Then, Proposition F.4 implies that ½T;W�,
½U;W�, and ½V;W� are second-quantized operators and their
coefficients have 1-norm in Oðnpþ1Þ. This proves that

α̃comm ¼
X

γ1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k

¼ Oðnpþ1Þ: ðF20Þ
The theorem then follows from Theorem 6 and
Corollary 7. ▪

APPENDIX G: SIMULATING k-LOCAL
HAMILTONIANS

In this section, we consider simulating k-local
Hamiltonians using product formulas.
Recall from Sec. IVA that a k-local Hamiltonian on n

qubits can be expressed as

H ¼
X

j1;…;jk

Hj1;…;jk ; ðG1Þ

where eachHj1;…;jk acts nontrivially only on qubits labeled
by j1;…; jk. Our goal is to analyze the nested commutators

XΓ
γ1;…;γpþ1¼1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k; ðG2Þ

where Γ ¼ nk and Hγj are local operatorsHj1;…;jk . We then
bound the Trotter error and the complexity of the product-
formula algorithm using Theorem 6 and Corollary 7.
We claim that the operator

Wγ1;…;γpþ1
≡ ½Hγpþ1

; � � � ½Hγ2 ; Hγ1 � � � �� ðG3Þ

is supported on at most kþ pðk − 1Þ qubits andPΓ
γ1;…;γpþ1¼1kWγ1;…;γpþ1

k¼OðjkHjkp1kHk1Þ, wherewe have
used the 1-norm kHk1¼

P
j1;…;jk kHj1;…;jkk and the induced

1-norm jkHjk1 ¼ maxlmaxjl
P

j1;…;jl−1;jlþ1;…;jk kHj1;…;jkk.
We prove this claim by induction on p. For p ¼ 1,
the commutator Wγ1;γ2 ¼ ½Hγ2 ; Hγ1 � takes the form
½Hj1;…;jk ; Hi1;…;ik �, which is nonzero only when there exist
l; m ¼ 1;…; k such that jl ¼ im. It then follows thatWγ1;γ2 is
supported on at most 2k − 1 qubits and that

X
j1 ;…;jk;
i1 ;…;ik

k½Hj1;…;jk ; Hi1;…;ik �k

≤ 2k2max
l

max
jl

X
j1 ;…;jl−1 ;
jlþ1;…;jk

kHj1;…;jkk
X
i1;…;ik

kHi1;…;ikk

¼ OðjkHjk1kHk1Þ; ðG4Þ

which proves the claim for p ¼ 1.
Suppose that the claim holds up to p − 1. Following a

similar argument, we have

XΓ
γ1;…;γpþ1¼1

kWγ1;…;γpþ1
k ¼

X
j1;…;jk

XΓ
γ1;…;γp¼1

k½Hj1;…;jk ; Wγ1;…;γp �k

≤ 2kðkþ ðp − 1Þðk − 1ÞÞ · max
l

max
jl

X
j1 ;…;jl−1 ;
jlþ1 ;…;jk

kHj1;…;jkk
XΓ

γ1;…;γp¼1

kWγ1;…;γpk

¼ 2kðkþ ðp − 1Þðk − 1ÞÞjkHjk1 ·OðjkHjkp−11 kHk1Þ
¼ OðjkHjkp1kHk1Þ:

Since the support of Hj1;…;jk and Wγ1;…;γp overlaps, the
operatorWγ1;…;γpþ1

acts nontrivially on at most kþpðk−1Þ
qubits. This completes the induction.
Theorem G.1: (Product-formula simulation of k-local

Hamiltonians). Let H be a k-local Hamiltonian on n qubits
as in Eq. (51). Let SðtÞ be a pth-order product formula.
Then, the Trotter error has the scaling

kSðtÞ − e−itHk ¼ OðjkHjkp1kHk1Þ: ðG5Þ

To simulate with accuracy ϵ, it thus suffices to choose a
Trotter number of

r ¼ O
�jkHjk1kHk1=p1 t1þ1=p

ϵ1=p

�
: ðG6Þ

Choosing p sufficiently large, letting ϵ be constant, and
implementing each Trotter step usingOðnkÞ gates, we have
the gate complexity
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nkjkHjk1kHkoð1Þ1 t1þoð1Þ: ðG7Þ

APPENDIX H: SIMULATING POWER-LAW
INTERACTIONS

In this section, we analyze the performance of product
formulas for simulating power-law interactions (Sec. IVA).
Let Λ ⊆ Rd be an n-qubit d-dimensional square lattice. We
say that H is a power-law Hamiltonian on Λ with an
exponent α if it can be written as

H ¼
X
⃗i;j⃗∈Λ

H ⃗i;j⃗; ðH1Þ

where H ⃗i;j⃗ is an operator that acts nontrivially only on two

qubits, ⃗i; j⃗ ∈ Λ, and

kH ⃗i;j⃗k ≤
�
1 if ⃗i ¼ j⃗

1

k⃗i−j⃗kα2
if ⃗i ≠ j⃗;

ðH2Þ

where k⃗i − j⃗k2 is the Euclidean distance between ⃗i and j⃗ on
the lattice.
Our analysis uses the following lemma.
Lemma H.1: Given an n-qubit d-dimensional square

lattice Λ ⊆ Rd, it holds that

X
j⃗∈Λnf0⃗g

1

kj⃗kα2
¼

8<
:

Oðn1−α=dÞ for 0 ≤ α < d

Oðlog nÞ for α ¼ d

Oð1Þ for α > d:

ðH3Þ

Furthermore, for α > d and x > 0, we have

X
j⃗∈Λ;kj⃗k2≥x

1

kj⃗kα2
¼ O

�
1

xα−d

�
: ðH4Þ

Proof.—Reference [52] provides a detailed proof of the
lemma, which follows from rewriting the left-hand side of
Eq. (H3) as a Riemann sum of the d-dimensional integralR
kj⃗k2≥1 d

dj⃗=kj⃗k2. Evaluating the integral gives the right-
hand side of Eq. (H3). Similarly, Eq. (H4) follows from
evaluating the integral

R
kj⃗k2≥x d

dj⃗=kj⃗k2 ∝ ð1=xα−dÞ. ▪
Theorem H.2: (Product-formula simulation of power-

law interactions). Let Λ ⊆ Rd be an n-qubit d-dimensional
square lattice, and let H be a power-law Hamiltonian (55)
with exponent α. Let SðtÞ be a pth-order product formula.
Then, the Trotter error has the scaling

kSðtÞ−e−itHk¼
8<
:
Oðn1þðpþ1Þð1−α=dÞtpþ1Þ for 0≤ α<d

OðnðlognÞpþ1tpþ1Þ for α¼ d

Oðntpþ1Þ for α>d:

To simulate with accuracy ϵ, it thus suffices to choose a
Trotter number of

r ¼

8>><
>>:

Oðn1−α
dþ1

pð2−α
dÞt1þ

1
p=ϵ

1
pÞ for 0 ≤ α < d

Oðn1
pðlog nÞ1þ1

pt1þ
1
p=ϵ

1
pÞ for α ¼ d

Oðn1
pt1þ

1
p=ϵ

1
pÞ for α > d:

Choosing p sufficiently large, letting ϵ be constant, and
implementing each Trotter step usingOðn2Þ gates, we have
the gate complexity

gα ¼
�
n3−

α
dþoð1Þt1þoð1Þ for 0 ≤ α < d

n2þoð1Þt1þoð1Þ for α ≥ d:
ðH5Þ

Proof.—Given a power-law Hamiltonian H with expo-
nent α, we use Lemma H.1 to compute the scaling of its
induced 1-norm,

jkHjk1 ≤ 1þmax
⃗i

X
j⃗≠⃗i

1

k⃗i − j⃗kα2
ðH6Þ

¼
8<
:

Oðn1−α=dÞ for 0 ≤ α < d

Oðlog nÞ for α ¼ d

Oð1Þ for α > d;

ðH7Þ

and 1-norm

kHk1 ≤
X
⃗i

�
1þ

X
j⃗≠⃗i

1

k⃗i − j⃗kα2

�
ðH8Þ

¼
8<
:

Oðn2−α=dÞ for 0 ≤ α < d

Oðn log nÞ for α ¼ d

OðnÞ for α > d:

ðH9Þ

The claim then follows from Theorem G.1. ▪
As mentioned in Sec. IVA, the performance of product

formulas can be further improved for rapidly decaying
power-law interactions (Theorem H.3) and quasilocal
interactions (Theorem H.4).
Theorem H.3: (Product-formula simulation of rapidly

decaying power-law interactions). Let Λ ⊆ Rd be an n-
qubit d-dimensional square lattice, and let H be a power-
law Hamiltonian (55) with exponent α > d. Let SðtÞ be a
pth-order product formula for H̃, the truncated Hamiltonian
where summands acting on sites with distance larger than l
are removed. Then, the Trotter error has the scaling

kSðtÞ − e−itH̃k ¼ Oðntpþ1Þ: ðH10Þ
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To simulate with accuracy ϵ, it thus suffices to choose the
cutoff l ¼ Θððnt=ϵÞ1=ðα−dÞÞ and a Trotter number of

r ¼ Oðn1
pt1þ

1
p=ϵ

1
pÞ: ðH11Þ

Choosing p sufficiently large, letting ϵ be constant, and
implementing each Trotter step using OðnldÞ gates, we
have the gate complexity

gα ¼ ðntÞ1þ d
α−dþoð1Þ: ðH12Þ

Proof.—We use Lemma H.1 to bound the distance
between the original and the truncated Hamiltonian,

kH − H̃k ≤
X
⃗i

X
kj⃗−⃗ik2>l

1

k⃗i − j⃗kα2
¼ O

�
n

lα−d

�
: ðH13Þ

We choose a cutoff value l ¼ Θððnt=ϵÞ1=ðα−dÞÞ, and
Corollary A.5 implies that the truncation error is at most

ke−itH −e−itH̃k≤ kH− H̃kt¼O
�

nt
lα−d

�
¼OðϵÞ: ðH14Þ

The theorem is then proved in a similar way as
Theorem H.2. ▪
Theorem H.4: (Product-formula simulation of quasilo-

cal interactions). Let Λ ⊆ Rd be an n-qubit d-dimensional
square lattice, and let H be a quasilocal Hamiltonian (61)
with constant β > 0. Let SðtÞ be a pth-order product
formula for H̃, the truncated Hamiltonian where summands
acting on sites with distance larger than l are removed.
Then, the Trotter error has the scaling

kSðtÞ − e−itH̃k ¼ Oðntpþ1Þ: ðH15Þ

To simulate with accuracy ϵ, it thus suffices to choose the
cutoff l ¼ Θðlogðnt=ϵÞÞ and a Trotter number of

r ¼ O
�
n

1
pt1þ

1
p=ϵ

1
p

�
: ðH16Þ

Choosing p sufficiently large, letting ϵ be constant, and
implementing each Trotter step using OðnldÞ gates, we
have the gate complexity

gβ ¼ ðntÞ1þoð1Þ: ðH17Þ

Proof.—We choose l ¼ Θðlogðnt=ϵÞÞ so that the trun-
cation error is at most

ke−itH −e−itH̃k≤ kH− H̃kt
≤
X
i⃗

X
kj⃗−i⃗k2>l

e−βki⃗−j⃗k2 · t¼OðϵÞ: ðH18Þ

The remaining analysis proceeds in a similar way as in
Theorem H.3. ▪

APPENDIX I: SIMULATING CLUSTERED
HAMILTONIANS

We continue the analysis in Sec. IVA of the hybrid
algorithm for simulating clustered Hamiltonians [53]. An
essential step of this algorithm is to decompose the
Hamiltonian into parties using product formulas. We show
that our Trotter error bound implies a more efficient
decomposition and thereby gives a faster simulation of
clustered Hamiltonians.
LetH be an n-qubit Hamiltonian. Assume that each term

in H acts on at most two qubits with spectral norm at most
one, and each qubit is interacted with at most a constant
number d0 of qubits. We further group the qubits into
multiple parties and write

H ¼ Aþ B ¼
X
l

Hð1Þ
l þ

X
l

Hð2Þ
l ; ðI1Þ

for all l∶kHð1Þ
l k; kHð2Þ

l k ≤ 1, where terms in A act on qubits
within a single party and terms in B act between two
different parties.
The hybrid algorithm of Ref. [53] applies the first-order

Lie-Trotter formula to decompose the Hamiltonian

H ¼ AþP
l H

ð2Þ
l . Their analysis shows that a Trotter

number of

r ¼ O
�
h2Bt

2

ϵ

�
ðI2Þ

suffices to achieve error at most ϵ, where hB ¼ P
l kHð2Þ

l k
is the interaction strength. Here, we show that it suffices to
take

r ¼ O
�
d0

1þp
2 h

1
p

Bt
1þ1

p

ϵ
1
p

�
¼ O

�
h1=pB t1þ1=p

ϵ1=p

�
ðI3Þ

using a pth-order product formula. This method improves
the analysis of Ref. [53] for p ¼ 1 and extends their result
to higher-order cases.
In light of Theorem 6, we need to compute

X
γ1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k; ðI4Þ

where each Hγ is either Hð2Þ
l or A. Since ½A; A� ¼ 0 and

½Hγ; A� ¼ −½A;Hγ�, we may, without loss of generality,

assume that Hγ1 ¼ Hð2Þ
l1
, i.e.,
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X
γ1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k

¼
X

l1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; H

ð2Þ
l1
� � � ��k: ðI5Þ

We now replace each A by
P

l H
ð1Þ
l and apply the triangle

inequality to get

X
l1;γ2;…;γpþ1

k½Hγpþ1
; � � � ½Hγ2 ; H

ð2Þ
l1
� � � ��k

≤
X

l1;l2;…;lpþ1

k½Klpþ1
; � � � ½Kl2 ; H

ð2Þ
l1
� � � ��k; ðI6Þ

where each Kl is either Hð1Þ
l or Hð2Þ

l . Since each qubit
supports at most d0 terms and each term acts on at most two
qubits,

X
l1;l2;…;lpþ1

k½Klpþ1
; � � � ½Kl2 ; H

ð2Þ
l1
� � � ��k

¼ O
�
d0p � � � d02d0

X
l1

kHð2Þ
l1
k
�

¼ Oðd0ð1þpÞp
2 hBÞ:

We have thus established the following theorem.
Theorem I.1: (Product-formula decomposition of evo-

lutions of clustered Hamiltonians). Let H ¼ AþP
l H

ð2Þ
l

be a clustered Hamiltonian as in Eq. (64), where each qubit
is interacted with at most a constant number d0 of qubits and
the interaction strength is hB ¼ P

l kHð2Þ
l k. Let SðtÞ be a

pth-order product formula as in Eq. (67). Then, the Trotter
error has the scaling

kSðtÞ − e−itHk ¼ Oðd0ð1þpÞp
2 hBtpþ1Þ: ðI7Þ

To decompose with accuracy ϵ, it thus suffices to choose a
Trotter number of

r ¼ O
�
h1=pB t1þ1=p

ϵ1=p

�
: ðI8Þ

Choosing p sufficiently large, we have

r ¼ O
�
hoð1ÞB t1þoð1Þ

ϵoð1Þ

�
: ðI9Þ

The hybrid simulator of Ref. [53] has runtime 2Oðr·ccðgÞÞ,
where ccðgÞ is the contraction complexity of the interaction
graph g between the parties. Theorem I.1 thus gives a hybrid

simulatorwith complexity 2Oðhoð1ÞB t1þoð1ÞccðgÞ=ϵoð1ÞÞ, dramatically
improving the previous result of 2Oðh2Bt2ccðgÞ=ϵÞ [53].

APPENDIX J: SIMULATING LOCAL
OBSERVABLES

In this section, we analyze the performance of product
formulas for simulating local observables. Following
Sec. IV B, we consider a power-law Hamiltonian H ¼P⃗

i;j⃗∈Λ H ⃗i j⃗ on an n-qubit d-dimensional lattice Λ ⊆ Rd

with exponent α > 2d. Our goal is to simulate the time
evolution AðtÞ ¼ eitHAe−itH of a local observable A with
support SðAÞ enclosed in a d-dimensional ball of constant
radius x0.
As mentioned in Sec. IV B, our approach is to construct a

Hamiltonian Hlc whose support has radius independent of
the system size. To this end, we consider a general
observable B and assume that SðBÞ—the support of
B—is a d-dimensional ball of radius y0 centered on the
origin. We define

H1 ¼
X
⃗i;j⃗∈Bl

H ⃗i;j⃗; ðJ1Þ

Hγ ¼
X

⃗i;j⃗∈ΔBγl

H ⃗i;j⃗ þ
X

⃗i∈ΔBðγ−1Þl
j⃗∈ΔBγl

H ⃗i;j⃗

for γ ¼ 2;…;Γ − 1; ðJ2Þ

HΓ ¼
X

⃗i;j⃗∉BðΓ−2Þl

H ⃗i;j⃗; ðJ3Þ

where By ¼ f⃗i ∈ Λ∶inf j⃗∈SðBÞk⃗i − j⃗k2 ≤ yg is a ball of

radius yþ y0 centered on SðBÞ, ΔBγl ¼ BγlnBðγ−1Þl is
the shell containing sites between distance ðγ − 1Þl and γl
fromSðBÞ, and l, Γ are positive integers to be chosen later.
We then define the truncated Hamiltonian Htrunc ¼PΓ

γ¼1Hγ . We analyze the truncation error in the
lemma below.
Lemma J.1: Let Λ ⊆ Rd be a d-dimensional square

lattice of n qubits. Let H be a power-law Hamiltonian with
exponent α > d, and let B be an observable with support
enclosed in a d-dimensional ball of radius y0. Let Htrunc ¼PΓ

γ¼1Hγ be the truncated Hamiltonian as defined above.
Assuming Γ ¼ Oð1Þ, we have

kH −Htrunck ¼ O
�ðy0 þ ΓlÞd−1

lα−d−1

�
: ðJ4Þ

Proof.—We expand H −Htrunc as

H −Htrunc ¼
XΓ−2
γ¼0

X
⃗i∈ΔBγl

X
ν≥γþ2

X
j⃗∈ΔBνl

H ⃗i;j⃗: ðJ5Þ

Applying the triangle inequality, we have
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kH −Htrunck ≤
XΓ−2
γ¼0

X
⃗i∈ΔBγl

X
ν≥γþ2

X
j⃗∈ΔBνl

kH ⃗i;j⃗k ðJ6Þ

≤
XΓ−2
γ¼0

X
⃗i∈Bγl

X
j⃗∉Bðγþ1Þl

kH ⃗i;j⃗k ðJ7Þ

≤
XΓ−2
γ¼0

ðy0 þ ΓlÞd−1
lα−d−1 ¼ O

�ðy0 þ ΓlÞd−1
lα−d−1

�
; ðJ8Þ

where the third inequality follows from Lemma 9 of
Ref. [52] (see also the derivation of Eq. (A1) in
Ref. [52], with A and C being Bγl and the complement
of Bðγþ1Þl, respectively). The factor ðy0 þ ΓlÞd−1 estimates
the boundary area of Bγl. This establishes the claimed
scaling of the truncation error. ▪
Next, we simulate the evolution e−itHtrunc using the pth-

order product formula

StruncðtÞ ¼
Yϒ
υ¼1

YΓ
γ¼1

e−itaðυ;γÞHπυðγÞ ; ðJ9Þ

where we put additional constraints on the permutation
function πν:

πυð1; 2; 3; 4; 5; 6;…Þ

¼
� ð2; 4; 6;…; 1; 3; 5;…Þ if υ is odd

ð1; 3; 5;…; 2; 4; 6;…Þ if υ is even:
ðJ10Þ

By Theorem 6, the Trotter error of approximating e−itHtrunc

by StruncðtÞ depends on

XΓ
γ1;…;γpþ1¼1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k; ðJ11Þ

which we analyze in the following lemma.
Lemma J.2: Let Λ ⊆ Rd be a d-dimensional square

lattice of n qubits. Let H be a power-law Hamiltonian with
exponent α > d, and let B be an observable with support
enclosed in a d-dimensional ball of radius y0. Let Htrunc ¼PΓ

γ¼1Hγ be the truncated Hamiltonian as defined above.
Assuming Γ ¼ Oð1Þ, we have

XΓ
γ1;…;γpþ1¼1

k½Hγpþ1
; � � � ½Hγ2 ; Hγ1 � � � ��k

¼ Oððy0 þ ΓlÞd−1lÞ: ðJ12Þ

Proof.—For convenience, we define

S1 ¼ fð⃗i; j⃗Þ∶⃗i; j⃗ ∈ Blg; ðJ13Þ

Sγ ¼ fð⃗i; j⃗Þ∶⃗i ∈ ΔBðγ−1Þl ∪ ΔBγl; j⃗ ∈ ΔBγlg
for γ ¼ 2;…;Γ − 1; ðJ14Þ

SΓ ¼ fð⃗i; j⃗Þ∶⃗i; j⃗ ∉ BðΓ−2Þlg; ðJ15Þ

so that Hγ ¼
P

ð⃗i;j⃗Þ∈Sγ
H ⃗i;j⃗ for γ ¼ 1;…;Γ. Our goal is to

analyze

XΓ
γ1;…;γpþ1¼1

����
� X
ð⃗ipþ1;j⃗pþ1Þ∈Sγpþ1

H ⃗ipþ1;j⃗pþ1
;…

� X
ð⃗i2;j⃗2Þ∈Sγ2

H ⃗i2;j⃗2
;

X
ð⃗i1;j⃗1Þ∈Sγ1

H ⃗i1;j⃗1

	
� � �

	����:
Note that at least one of γ1, γ2 must be different from 1;Γ;
otherwise, ½Hγ1 ; Hγ2 � ¼ 0. Therefore, we may assume 1 <
γ1 < Γ without loss of generality and bound the norm of
commutators as

XΓ−1
γ1¼2

XΓ
γ2;…;γpþ1¼1

X
ð⃗i1 ;j⃗1Þ∈Sγ1 ;ð⃗i2 ;j⃗2Þ∈Sγ2 ;
…;ð⃗ipþ1 ;j⃗pþ1Þ∈Sγpþ1

k½H ⃗ipþ1;j⃗pþ1
; � � � ½H ⃗i2;j⃗2

; H ⃗i1;j⃗1
� � � ��k: ðJ16Þ

By a similar argument as in Theorem G.1 and Theorem
H.2, we find the upper bound

O
�XΓ−1

γ1¼2

X
ð⃗i1;j⃗1Þ∈Sγ1

jkHjkp1kH ⃗i1;j⃗1
k
�

¼ O
�XΓ−1

γ1¼2

X
j⃗1∈ΔBγ1l

jkHjkpþ1
1

�

¼ Oððy0 þ ΓlÞd−1lÞ; ðJ17Þ

where we use the fact that jkHjk1 ¼ Oð1Þ [Eq. (H6)] and
upper bound the volume of ΔBγ1l by Oððy0 þ ΓlÞd−1lÞ—
the product of its boundary area Oððy0 þ ΓlÞd−1Þ with its
thickness l. ▪
Using the fact that product formulas can preserve the

locality of the simulated system, we commute the matrix
exponentials in StruncðtÞ through B to cancel with their
counterpart in S†

truncðtÞ. By choosing Γ ¼ ϒþ 1, we have

S†
truncðtÞBStruncðtÞ ¼ S†

reduceðtÞBSreduceðtÞ;

where

SreduceðtÞ ¼
Yϒ
υ¼1

Yυ
γ¼1

e
−itaðυ;π−1υ ðγÞÞHγ ðJ18Þ
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is the reduced product formula of AðtÞ. This method gives
a decomposition of the evolution of local observable Bwith
error

keitHBe−itH −S†
reduceðtÞBSreduceðtÞk

¼ O
�
kBktðy0 þ ΓlÞd−1

�
1

lα−d−1 þ ltp
��

:

The remaining analysis proceeds in the same way as in
Sec. IV B. We have then proved Proposition 8.
Assuming x0 ¼ Oð1Þ and Γ ¼ ϒ ¼ Oð1Þ, we have

keitHAe−itH − eitHlcAe−itHlck

¼ O
�
tðrlÞd−1

�
1

lα−d−1 þ
ltp

rp

��
; ðJ19Þ

where Hlc is supported on a ball of radius x ¼
x0 þ rΓl ¼ OðrlÞ. To minimize the error, we choose
l ¼ Θððr=tÞðp=α−dÞÞ ≥ 1, which is possible if r ≥ t and
α > 2d. With this choice of l, the error becomes

keitHAe−itH − eitHlcAe−itHlck ¼ O
�

t
pðα−2dÞþα−d

α−d

r
pðα−2dÞ−ðα−dÞðd−1Þ

α−d

�
: ðJ20Þ

To ensure that the error is at most ϵ, we choose

r ¼ Θ
�
t

pðα−2dÞþα−d
pðα−2dÞ−ðα−dÞðd−1Þ

ϵ
α−d

pðα−2dÞ−ðα−dÞðd−1Þ

�
: ðJ21Þ

Note that r can be made to be greater than 1 for large times
if the exponent of t in the above equation is positive; i.e., we
require (assuming α > 2d)

α >
2d − dðd−1Þ

p

1 − d−1
p

⇔ p >
ðα − dÞðd − 1Þ

α − 2d
: ðJ22Þ

In addition, the choice of r above is also consistent with the
condition r ≥ t because

pðα − 2dÞ þ α − d
pðα − 2dÞ − ðα − dÞðd − 1Þ > 1: ðJ23Þ

Recall that e−itHlc is an evolution supported on a ball of
radius x ¼ OðrlÞ. Invoking Theorem H.3, we obtain the
gate count

gα ¼ O
�
ðxdtÞ1þ1

pþ d
α−d

�

¼ O
�
t
ðαðpþ1Þ−dÞðαðdpþpþ1Þ−ðdþ2Þdp−dÞ

pðα−dÞðαþd2−dðαþ2pþ1ÞþαpÞ

�
ðJ24Þ

for simulating local observable A with constant accuracy,
which simplifies to

gα ¼ t
αðαðdþ1Þ−ðdþ2ÞdÞ

ðα−dÞðα−2dÞ þoð1Þ

¼ tð1þd α−d
α−2dÞð1þ d

α−dÞþoð1Þ ðJ25Þ
in the large p limit. The remaining analysis proceeds as in
Sec. IV B.

APPENDIX K: QUANTUM MONTE
CARLO SIMULATION

In this section, we apply our Trotter error bound
to improve the performance of quantum Monte Carlo
simulation. This analysis is sketched in Sec. IV C and
detailed here.
We will use the following lemma.
Lemma K.1: (Relative perturbation of eigenvalues in

Theorem 2.1 of Ref. [85] and Theorem 5.4 of Ref. [86]).
Let matrix C be positive semidefinite, and let D be
nonsingular. Assume that the eigenvalues λiðCÞ and
λiðD†CDÞ are ordered nonincreasingly. Then,

λiðD†CDÞ ≤ λiðCÞkD†Dk: ðK1Þ

1. Transverse field Ising Hamiltonian

We first consider simulating an n-qubit transverse field
Ising Hamiltonian H ¼ −A − B [38], where

A ¼
X

1≤u<v≤n
ju;vZuZv; B ¼

X
1≤u≤n

huXu: ðK2Þ

Note that Xu and Zu are Pauli operators acting on the uth
qubit, and ju;v ≥ 0 and hu ≥ 0 are non-negative coeffi-
cients. Our goal is to approximate the partition function
Z ¼ Trðe−HÞ up to multiplicative error 0 < ϵ < 1.
Akey step in the algorithmofRef. [38] is to decompose the

evolution operator using the second-order Suzuki formula.
Note that all the summands in A (or B) commute with each
other, so no error is introduced when the evolution under A
(orB) is further decomposed into elementary exponentials. It
thus suffices to analyze the Trotter error of approximating
etðAþBÞ by ðeðt=2rÞAeðt=rÞBeðt=2rÞAÞr for time t > 0 and Trotter
number r. To this end, we define

U ≔ e
t
rðAþBÞ; ðK3Þ

V ≔ e
t
2rAe

t
rBe

t
2rA; ðK4Þ

W ≔ expT

�Z t
r

0

dτ e−τadAþB

�
e

τ
2
adAB − B

þ e
τ
2
adAeτadB

A
2
−
A
2

�	
; ðK5Þ

so Theorem 3 implies V ¼ UW.
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Our goal is to bound the difference between the
eigenvalues λiðVrÞ and λiðUrÞ, which can be done recur-
sively as follows. We first replace the rightmost V by UW
and the leftmost V byW†U. Invoking Lemma K.1, we have

λiðVrÞ ¼ λiðW†UVr−2UWÞ ≤ λiðUVr−2UÞkWk2:

By Theorem 1.3.22 of Ref. [54],

λiðUVr−2UÞ ¼ λiðVr
2
−1UUV

r
2
−1Þ: ðK6Þ

We now apply a similar procedure to obtain

λiðVr
2
−1UUV

r
2
−1Þ

¼ λiðW†UV
r
2
−2UUV

r
2
−2UWÞ

≤ λiðUV
r
2
−2UUV

r
2
−2UÞkWk2

¼ λiðVr
4
−1UUV

r
2
−2UUV

r
4
−1ÞkWk2

≤ λiðUV
r
4
−2UUV

r
2
−2UUV

r
4
−2UÞkWk4

¼ λiðVr
4
−1UUV

r
4
−2UUV

r
4
−2UUV

r
4
−1ÞkWk4

≤ λiðUV
r
4
−2UUV

r
4
−2UUV

r
4
−2UUV

r
4
−2UÞkWk6:

To ensure that this recursion is valid, we choose r to be a
power of 2. Since any positive integer is between 2m and
2mþ1 for some m ≥ 0, this choice only enlarges r by a
factor of at most 2. Overall, we have

λiðVrÞ ≤ λiðUrÞkWkr: ðK7Þ

To analyze the operator W, we further compute

e
τ
2
adAB − B

¼ τadA
2
Bþ

Z
τ

0

dτ2

Z
τ2

0

dτ3e
τ3
2
adAad2A

2

B; ðK8Þ

and

e
τ
2
adAeτadB

A
2
−
A
2

¼ e
τ
2
adA

�Z
τ

0

dτ2eτ2adBadB
A
2

�

¼ e
τ
2
adA

�
τadB

A
2
þ
Z

τ

0

dτ2

Z
τ2

0

dτ3eτ3adBad2B
A
2

�

¼ τadB
A
2
þ τ

Z
τ

0

dτ2e
τ2
2
adAad2B

A
2

þ
Z

τ

0

dτ2

Z
τ2

0

dτ3eτ3adBad2B
A
2
: ðK9Þ

By Lemma A.4, we have

kWk ≤ exp

�
e2

t
rkHkþt

rkAk t3

24r3
kad2ABk

þ e2
t
rkHkþt

rkAk t3

6r3
kad2BAk

þ e2
t
rkHkþ2trkBk t3

12r3
kad2BAk

�
: ðK10Þ

This bound is tighter than the previous result of Lemma of
Ref. [38] in that it exploits the commutativity of operator
summands. For the transverse field Ising model, this leads
to an asymptotic improvement on the performance of
Monte Carlo simulation. The remaining analysis proceeds
as in Sec. IV C.

2. Ferrormagnetic spin systems

In this section, we consider simulating partition func-
tions of ferromagnetic quantum spin systems,

H ¼
X

1≤u<v≤n
puvð−XuXv − YuYvÞ

þ
X

1≤u<v≤n
quvð−XuXv þ YuYvÞ þ

Xn
u¼1

duðI þ ZuÞ;

ðK11Þ

where puv; quv ∈ ½0; 1�. Our goal is to approximate the
partition function Zðβ;HÞ¼Tr½e−βH� for β > 0. Following
Ref. [39], we restrict ourselves to the n-qubit (nonunitary)
gate set�

fuðe�tÞ; guvðtÞ; huvðtÞju; v ¼ 1;…; n;

u ≠ v; 0 < t <
1

2

�
; ðK12Þ

where

fðe�tÞ ¼
�
e�t 0

0 1

	
; gðtÞ ¼

2
6664
1þ t2 0 0 t

0 1 0 0

0 0 1 0

t 0 0 1

3
7775;

hðtÞ ¼

2
6664
1 0 0 0

0 1þ t2 t 0

0 t 1 0

0 0 0 1

3
7775 ðK13Þ

and the subscripts u, v indicate the qubits on which the gates
act nontrivially. These gates approximate the exponentials of
terms of the original Hamiltonian. Specifically, we represent
the gates as
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fuðe�tÞ ¼ e�t
2
Fu ; guvðtÞ ¼ e−

t
2
G̃uvðtÞ;

huvðtÞ ¼ e−
t
2
H̃uvðtÞ; ðK14Þ

where 0 < t < 1=2 and

Fi¼ðIþZuÞ; G̃uvðtÞ¼ð−XuXvþYuYvÞ−
2

t
GuvðtÞ;

H̃uvðtÞ¼ð−XuXv−YuYvÞ−
2

t
HuvðtÞ: ðK15Þ

By Proposition 1 of Ref. [39], we have kGuvðtÞk ≤ t2

and kHuvðtÞk ≤ t2.
We divide the evolution into r steps. We choose r > 2β

so that we can implement the product formula using gates
from Eq. (98) with parameters

−
1

2
< −

β

r
du <

1

2
; 0 <

β

r
quv <

1

2
; 0 <

β

r
puv <

1

2
:

ðK16Þ

Consider the gate sequence

Y
1≤u≤n

fuðe−
β
rduÞ

Y
1≤u<v≤n

guv

�
β

r
quv

� Y
1≤u<v≤n

huv

�
β

r
puv

�
·

Y
1≤u<v≤n

huv

�
β

r
puv

� Y
1≤u<v≤n

guv

�
β

r
quv

� Y
1≤u≤n

fuðe−
β
rduÞ

¼
Y

1≤u≤n
e−

β
2rduFu

Y
1≤u<v≤n

e−
β
2rquvG̃uvðβrquvÞ

Y
1≤u<v≤n

e−
β
2rpuvH̃uvðβrpuvÞ ·

Y
1≤u<v≤n

e−
β
2rpuvH̃uvðβrpuvÞ

Y
1≤u<v≤n

e−
β
2rquvG̃uvðβrquvÞ

Y
1≤u≤n

e−
β
2rduFu

¼ exp
�
−
β

r

� X
1≤u<v≤n

puvH̃uv

�
β

r
puv

�
þ

X
1≤u<v≤n

quvG̃uv

�
β

r
quv

�
þ
Xn
u¼1

duFu

��
·W; ðK17Þ

which implements the second-order Suzuki formula, where we have applied Theorem 3 in the last line. Since

kFuk ≤ 2;

����G̃uv

�
β

r
quv

����� ≤ 2þ 2
β

r
quv ≤ 3;

����H̃uv

�
β

r
puv

����� ≤ 2þ 2
β

r
puv ≤ 3; ðK18Þ

the perturbed Hamiltonian satisfies

X
1≤u<v≤n

puv

����H̃uv

�
β

r
puv

�����þ
X

1≤u<v≤n
quv

����G̃uv

�
β

r
quv

�����þ
Xn
u¼1

jdujkFuk ≤
�
n

2

�
3þ

�
n

2

�
3þ 2n ≤ 3n2: ðK19Þ

We also need to bound nested commutators of Hamiltonian
terms with two layers of nesting. This analysis is similar to
that for the transverse field Ising model; the resulting
scaling is Oðn4Þ. By Theorem 6, there exists a constant
c > 0 such that

kWk ≤ exp
�
cn4β3

r3
e
12n2β

r

�
: ðK20Þ

To proceed, we apply Lemma A.2 to switch to the
interaction picture, giving

exp

�
−
β

r

� X
1≤u<v≤n

puvH̃uv

�
β

r
puv

�

þ
X

1≤u<v≤n
quvG̃uv

�
β

r
quv

�
þ
Xn
u¼1

duFu

��

¼ e−
β
rHV; ðK21Þ

where

V ¼ expT

�
−
Z β

r

0

dτeτH
� X

1≤u<v≤n
puvH̃uv

�
β

r
puv

�

þ
X

1≤u<v≤n
quvG̃uv

�
β

r
quv

�
þ
Xn
u¼1

duFu −H

�
e−τH

�
:

From Eq. (K15),���� X
1≤u<v≤n

puvH̃uv

�
β

r
puv

�
þ

X
1≤u<v≤n

quvG̃uv

�
β

r
quv

�

þ
Xn
u¼1

duFu −H

���� ¼
���� X
1≤u<v≤n

puv
2r
βpuv

Huv

�
β

r
puv

�

þ
X

1≤u<v≤n
quv

2r
βquv

Guv

�
β

r
quv

�����
≤
�
n

2

�
2
β

r
puv þ

�
n

2

�
2
β

r
quv ¼ 2n2

β

r
;

whereas the original Hamiltonian has spectral norm
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kHk ≤
X

1≤u<v≤n
puvk−XuXv − YuYvk

þ
X

1≤u<v≤n
quvk−XuXv þ YuYvk

þ
Xn
u¼1

jdujkI þ Zuk ðK22Þ

≤
�
n

2

�
· 2þ

�
n

2

�
· 2þ n · 2 ¼ 2n2: ðK23Þ

Thus, Lemma A.4 implies

kVk ≤ exp

�
2n2β2

r2
e
4n2β
r

�
: ðK24Þ

Altogether, we obtain

Y
1≤u≤n

fu

�
e−

β
rdu

� Y
1≤u<v≤n

guv

�
β

r
quv

�

·
Y

1≤u<v≤n
huv

�
β

r
puv

� Y
1≤u<v≤n

huv

�
β

r
puv

�

·
Y

1≤u<v≤n
guv

�
β

r
quv

� Y
1≤u≤n

fu

�
e−

β
rdu

�

¼ e−
β
rHU; ðK25Þ

where the operator U ¼ VW has spectral norm bounded by

kUk ¼ kVWk ≤ exp

�
2n2β2

r2
e
4n2β
r þ cn4β3

r3
e
12n2β

r

�
ðK26Þ

for some constant c > 0. The remaining analysis continues
as in Sec. IV C. Similar to the case of the transverse field
Ising model, our Trotter error bound gives improved
quantum Monte Carlo simulation of the ferromagnetic
quantum spin systems.

APPENDIX L: SECOND-ORDER ERROR BOUND
WITH SMALL PREFACTOR

In this section, we prove the tight error bound for the
second-order Suzuki formula in Proposition 10.

For the two-term case, our goal is to decompose the
evolution e−itH ¼ e−itðAþBÞ using the product formula
S2ðtÞ ¼ e−iðt=2ÞAe−itBe−iðt=2ÞA. Using the variation-of-
parameters formula (Lemma A.1), we have

S2ðtÞ ¼ e−itH þ
Z

t

0

dτ1e−iðt−τ1ÞHe−i
τ1
2
A

· T 2ðτ1Þe−τ1Be−i
τ1
2
A; ðL1Þ

where

T 2ðτ1Þ ¼ e−iτ1B
�
−i

A
2

�
eiτ1B þ i

A
2

þ ei
τ1
2
AðiBÞe−iτ12A − iB: ðL2Þ

By Theorem 4 or a direct calculation, we find the order
condition T 2ðτ1Þ ¼ Oðτ21Þ, which implies

T 2ðτ1Þ ¼
Z

τ1

0

dτ2

Z
τ2

0

dτ3

�
e−iτ3adBad2−iB

�
−i

A
2

�

þ ei
τ3
2
adAad2

iA
2

ðiBÞ
	
: ðL3Þ

Altogether, we have the representation

S2ðtÞ ¼ e−itH þ
Z

t

0

dτ1

Z
τ1

0

dτ2

Z
τ2

0

dτ3e−iðt−τ1ÞH

· e−i
τ1
2
A

�
e−iτ3adBad2−iB

�
−i

A
2

�

þ ei
τ3
2
adAad2

iA
2

ðiBÞ
	
e−τ1Be−i

τ1
2
A; ðL4Þ

and the error bound for t ≥ 0,

kS2ðtÞ−e−itHk≤ t3

12
k½B; ½B;A��kþ t3

24
k½A; ½A;B��k: ðL5Þ

For a general Hamiltonian H ¼ PΓ
γ¼1Hγ , we apply the

triangle inequality to get

����Y1
γ¼Γ

e−i
t
2
Hγ

YΓ
γ¼1

e−i
t
2
Hγ −e−it

P
Γ
γ¼1

Hγ

����≤XΓ
γ1¼1

���� Y1
γ2¼γ1

e−i
t
2
Hγ2e

−it
P

Γ
γ2¼γ1þ1

Hγ2
Yγ1
γ2¼1

e−i
t
2
Hγ2 −

Y1
γ2¼γ1−1

e−i
t
2
Hγ2e

−it
P

Γ
γ2¼γ1

Hγ2
Yγ1−1
γ2¼1

e−i
t
2
Hγ2

����
¼
XΓ
γ1¼1

����e−it2Hγ1e
−it
P

Γ
γ2¼γ1þ

Hγ2e−i
t
2
Hγ1 −e

−it
P

Γ
γ2¼γ1

Hγ2

����
≤
t3

12

XΓ
γ1¼1

����
� XΓ
γ3¼γ1þ1

Hγ3 ;

� XΓ
γ2¼γ1þ1

Hγ2 ;Hγ1

		����þ t3

24

XΓ
γ1¼1

����
�
Hγ1 ;

�
Hγ1 ;

XΓ
γ2¼γ1þ1

Hγ2

		����: ðL6Þ
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This completes the proof of Proposition 10.

APPENDIX M: HIGHER-ORDER ERROR
BOUNDS WITH SMALL PREFACTORS

We have shown in Sec. VA that our analysis reproduces
known tight error bounds for first- and second-order for-
mulas. In this section, we give heuristic strategies to derive
higher-order Trotter error bounds with small prefactors. We
illustrate this for the fourth-order formula, which is advanta-
geous for simulating small-size systems [31] but does not
have a tight error analysis.We further benchmark our bounds
in Sec. V B by numerically simulating systems with nearest-
neighbor and power-law interactions. Throughout this sec-
tion, we assumeH is Hermitian, t ∈ R, and consider the real-
time evolution e−itH.
We first consider a Hamiltonian H ¼ Aþ B consisting

of two summands. This Hamiltonian models systems with
nearest-neighbor interactions where summands are grouped
in an even-odd pattern [Eq. (124)]. The ideal evolution
under H for time t is e−itH, which we decompose using the
fourth-order product formula S4ðtÞ. Recall from Eq. (11)
that S4ðtÞ is defined by

S2ðtÞ ≔ e−i
t
2
Ae−itBe−i

t
2
A;

S4ðtÞ ≔ ½S2ðu2tÞ�2S2ðð1 − 4u2ÞtÞ½S2ðu2tÞ�2; ðM1Þ
with u2 ≔ 1=ð4 − 41=3Þ. Expanding this definition, we
obtain

S4ðtÞ ¼ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4A

· e−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A;

where

a1 ≔ a6 ≔
u2
2
;

b1 ≔ a2 ≔ b2 ≔ b4 ≔ a5 ≔ b5 ≔ u2;

a3 ≔ a4 ≔
1 − 3u2

2
;

b3 ≔ 1 − 4u2: ðM2Þ
Without loss of generality, we analyze the additive

Trotter error of S4ðtÞ. In Sec. III B, we gave an analysis
that works for a general product formula, and we improve
that here to obtain an error bound for S4ðtÞ with a small
prefactor.

To this end, we compute

d
dt

S4ðtÞ − ð−iHÞS4ðtÞ ¼ ½e−ita6A;−ib5B�e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

þ ½e−ita6Ae−itb5B;−ia5A�e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A þ � � �
þ ½e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2A;−ib1B�e−itb1Be−ita1A
þ ½e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1B;−ia1A�e−ita1A: ðM3Þ

Performing the commutation sequentially, we have

d
dt

S4ðtÞ − ð−iHÞS4ðtÞ ¼ ½e−ita6A;−ib5B�e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

þ e−ita6A½e−itb5B;−ia5A�e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A þ � � �
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2B½e−ita2A;−ib1B�e−itb1Be−ita1A
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3B½e−ita3A;−ib1B�e−itb2Be−ita2Ae−itb1Be−ita1A
þ e−ita6Ae−itb5Be−ita5Ae−itb4B½e−ita4A;−ib1B�e−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A
þ e−ita6Ae−itb5B½e−ita5A;−ib1B�e−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A
þ ½e−ita6A;−ib1B�e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2A½e−itb1B;−ia1A�e−ita1A
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3A½e−itb2B;−ia1A�e−ita2Ae−itb1Be−ita1A
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4A½e−itb3B;−ia1A�e−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A
þ e−ita6Ae−itb5Be−ita5A½e−itb4B;−ia1A�e−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A
þ e−ita6A½e−itb5B;−ia1A�e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A: ðM4Þ
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We further define

c1 ≔ a1; d1 ≔ b1;

c2 ≔ a1 þ a2; d2 ≔ b1 þ b2;

c3 ≔ a1 þ a2 þ a3; d3 ≔ b1 þ b2 þ b3;

c4 ≔ a1 þ a2 þ a3 þ a4; d4 ≔ b1 þ b2 þ b3 þ b4;

c5 ≔ a1 þ a2 þ a3 þ a4 þ a5; d5 ≔ b1 þ b2 þ b3 þ b4 þ b5; ðM5Þ
so that

d
dt

S4ðtÞ − ð−iHÞS4ðtÞ ¼ ½e−ita6A;−id5B�e−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A

þ e−ita6A½e−itb5B;−ic5A�e−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A þ � � �
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2B½e−ita2A;−id1B�e−itb1Be−ita1A
þ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4Ae−itb3Be−ita3Ae−itb2Be−ita2A½e−itb1B;−ic1A�e−ita1A: ðM6Þ

In Sec. III B and Appendix C, we factor out the operator-
valued function S4ðtÞ from the left-hand side of the above
equation as

d
dt

S4ðtÞ − ð−iHÞS4ðtÞ ¼ S4ðtÞT ðtÞ: ðM7Þ

This approach suffices to establish the asymptotic bound in
Theorem 6 and Corollary 7. However, the resulting function
T ðtÞ contains unitary conjugations with a large number of
conjugating layers, which defeats the goal of establishing
tight error bounds. We improve this by simultaneously
factoring outS4;leftðtÞ from the left-hand side of the equation
and S4;rightðtÞ from the right-hand side, obtaining

d
dt

S4ðtÞ − ð−iHÞS4ðtÞ ¼ S4;leftðtÞT 4ðtÞS4;rightðtÞ; ðM8Þ

where

SleftðtÞ ≔ e−ita6Ae−itb5Be−ita5Ae−itb4Be−ita4A;

SrightðtÞ ≔ e−itb3Be−ita3Ae−itb2Be−ita2Ae−itb1Be−ita1A: ðM9Þ

It then remains to analyze T 4ðtÞ.
To this end, we use the fact that

½etX; Y� ¼ etX
Z

t

0

dτ e−τX½X; Y�eτX

¼
Z

t

0

dτ eτX½X; Y�e−τXetX; ðM10Þ

for any t ∈ R and operators X, Y. We then have from
Lemma A.1 that

S4ðtÞ¼e−itHþ
Z

t

0

dτ1e−iðt−τ1ÞHS4;leftðτ1ÞT 4ðτ1ÞS4;rightðτ1Þ;

where

T 4ðτ1Þ ¼
Z

τ1

0

dτ2eiτ1a4Aeiτ1b4Beiτ1a5Aeiτ1b5Beiτ2a6A½−ia6A;−id5B�e−iτ2a6Ae−iτ1b5Be−iτ1a5Ae−iτ1b4Be−iτ1a4A

þ
Z

τ1

0

dτ2eiτ1a4Aeiτ1b4Beiτ1a5Aeiτ2b5B½−ib5B;−ic5A�e−iτ2b5Be−iτ1a5Ae−iτ1b4Be−iτ1a4A

þ
Z

τ1

0

dτ2eiτ1a4Aeiτ1b4Beiτ2a5A½−ia5A;−id4B�e−iτ2a5Ae−iτ1b4Be−iτ1a4A

þ
Z

τ1

0

dτ2eiτ1a4Aeiτ2b4B½−ib4B;−ic4A�e−iτ2b4Be−iτ1a4A þ
Z

τ1

0

dτ2eiτ2a4A½−ia4A;−id3B�e−iτ2a4A

þ
Z

τ1

0

dτ2e−iτ2b3B½−ib3B;−ic3A�eiτ2b3B þ
Z

τ1

0

dτ2e−iτ1b3Be−iτ2a3A½−ia3A;−id2B�eiτ2a3Aeiτ1b3B
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þ
Z

τ1

0

dτ2e−iτ1b3Be−iτ1a3Ae−iτ2b2B½−ib2B;−ic2A�eiτ2b2Beiτ1a3Aeiτ1b3B

þ
Z

τ1

0

dτ2e−iτ1b3Be−iτ1a3Ae−iτ1b2Be−iτ2a2A½−ia2A;−id1B�eiτ2a2Aeiτ1b2Beiτ1a3Aeiτ1b3B

þ
Z

τ1

0

dτ2e−iτ1b3Be−iτ1a3Ae−iτ1b2Be−iτ1a2Ae−iτ2b1B½−ib1B;−ic1A�eiτ2b1Beiτ1a2Aeiτ1b2Beiτ1a3Aeiτ1b3B: ðM11Þ

The operator-valued function T 4ðτ1Þ has the order condition T 4ðτ1Þ ¼ Oðτ41Þ, which follows from Proposition D.3 and
the fact that S4ðtÞ ¼ e−itH þOðt5Þ. For terms in T 4ðτ1Þ, we compute the Taylor expansion of each layer of unitary
conjugation as in Sec. III D. In light of Lemma D.2, we expand the time variables τ1 and τ2 to third order, as the double
integral

R
t
0 dτ

R τ1
0 dτ2 already exists. We then apply the triangle inequality to bound the spectral norm of a linear

combination of nested commutators of A and B with four nesting layers. Since ½A; A� ¼ ½B; B� ¼ 0 and ½A;B� ¼ ½B;A�, the
bound only contains 25=4 ¼ 8 nonzero terms.
Altogether, we obtain

kS4ðtÞ − e−itHk ≤ t5ð0.0047k½A; ½A; ½A; ½B; A����k þ 0.0057k½A; ½A; ½B; ½B;A����k
þ 0.0046k½A; ½B; ½A; ½B;A����k þ 0.0074k½A; ½B; ½B; ½B; A����k
þ 0.0097k½B; ½A; ½A; ½B;A����k þ 0.0097k½B; ½A; ½B; ½B; A����k
þ 0.0173k½B; ½B; ½A; ½B;A����k þ 0.0284k½B; ½B; ½B; ½B;A����kÞ; ðM12Þ

assuming t ≥ 0.

TABLE II. Coefficients of the fourth-order Trotter error bound [Eq. (M14)] for Hamiltonians with three summands.

Commutator Coefficient Commutator Coefficient Commutator Coefficient

k½H1; ½H1; ½H1; ½H2; H1����k 0.0047 k½H1; ½H1; ½H1; ½H3; H1����k 0.0047 k½H1; ½H1; ½H1; ½H3; H2����k 0.0043
k½H1; ½H1; ½H2; ½H2; H1����k 0.0057 k½H1; ½H1; ½H2; ½H3; H1����k 0.0057 k½H1; ½H1; ½H2; ½H3; H2����k 0.0057
k½H1; ½H1; ½H3; ½H2; H1����k 0.0057 k½H1; ½H1; ½H3; ½H3; H1����k 0.0057 k½H1; ½H1; ½H3; ½H3; H2����k 0.0057
k½H1; ½H2; ½H1; ½H2; H1����k 0.0046 k½H1; ½H2; ½H1; ½H3; H1����k 0.0046 k½H1; ½H2; ½H1; ½H3; H2����k 0.0035
k½H1; ½H2; ½H2; ½H2; H1����k 0.0074 k½H1; ½H2; ½H2; ½H3; H1����k 0.0070 k½H1; ½H2; ½H2; ½H3; H2����k 0.0062
k½H1; ½H2; ½H3; ½H2; H1����k 0.0082 k½H1; ½H2; ½H3; ½H3; H1����k 0.0082 k½H1; ½H2; ½H3; ½H3; H2����k 0.0082
k½H1; ½H3; ½H1; ½H2; H1����k 0.0046 k½H1; ½H3; ½H1; ½H3; H1����k 0.0046 k½H1; ½H3; ½H1; ½H3; H2����k 0.0035
k½H1; ½H3; ½H2; ½H2; H1����k 0.0070 k½H1; ½H3; ½H2; ½H3; H1����k 0.0058 k½H1; ½H3; ½H2; ½H3; H2����k 0.0046
k½H1; ½H3; ½H3; ½H2; H1����k 0.0082 k½H1; ½H3; ½H3; ½H3; H1����k 0.0074 k½H1; ½H3; ½H3; ½H3; H2����k 0.0074
k½H2; ½H1; ½H1; ½H2; H1����k 0.0150 k½H2; ½H1; ½H1; ½H3; H1����k 0.0150 k½H2; ½H1; ½H1; ½H3; H2����k 0.0141
k½H2; ½H1; ½H2; ½H2; H1����k 0.0161 k½H2; ½H1; ½H2; ½H3; H1����k 0.0161 k½H2; ½H1; ½H2; ½H3; H2����k 0.0161
k½H2; ½H1; ½H3; ½H2; H1����k 0.0161 k½H2; ½H1; ½H3; ½H3; H1����k 0.0161 k½H2; ½H1; ½H3; ½H3; H2����k 0.0161
k½H2; ½H2; ½H1; ½H2; H1����k 0.0239 k½H2; ½H2; ½H1; ½H3; H1����k 0.0239 k½H2; ½H2; ½H1; ½H3; H2����k 0.0212
k½H2; ½H2; ½H2; ½H2; H1����k 0.0315 k½H2; ½H2; ½H2; ½H3; H1����k 0.0306 k½H2; ½H2; ½H2; ½H3; H2����k 0.0290
k½H2; ½H2; ½H3; ½H2; H1����k 0.0303 k½H2; ½H2; ½H3; ½H3; H1����k 0.0303 k½H2; ½H2; ½H3; ½H3; H2����k 0.0303
k½H2; ½H3; ½H1; ½H2; H1����k 0.0179 k½H2; ½H3; ½H1; ½H3; H1����k 0.0179 k½H2; ½H3; ½H1; ½H3; H2����k 0.0153
k½H2; ½H3; ½H2; ½H2; H1����k 0.0232 k½H2; ½H3; ½H2; ½H3; H1����k 0.0206 k½H2; ½H3; ½H2; ½H3; H2����k 0.0179
k½H2; ½H3; ½H3; ½H2; H1����k 0.0259 k½H2; ½H3; ½H3; ½H3; H1����k 0.0241 k½H2; ½H3; ½H3; ½H3; H2����k 0.0241
k½H3; ½H1; ½H1; ½H2; H1����k 0.0204 k½H3; ½H1; ½H1; ½H3; H1����k 0.0204 k½H3; ½H1; ½H1; ½H3; H2����k 0.0186
k½H3; ½H1; ½H2; ½H2; H1����k 0.0225 k½H3; ½H1; ½H2; ½H3; H1����k 0.0225 k½H3; ½H1; ½H2; ½H3; H2����k 0.0217
k½H3; ½H1; ½H3; ½H2; H1����k 0.0225 k½H3; ½H1; ½H3; ½H3; H1����k 0.0225 k½H3; ½H1; ½H3; ½H3; H2����k 0.0225
k½H3; ½H2; ½H1; ½H2; H1����k 0.0423 k½H3; ½H2; ½H1; ½H3; H1����k 0.0423 k½H3; ½H2; ½H1; ½H3; H2����k 0.0377
k½H3; ½H2; ½H2; ½H2; H1����k 0.0585 k½H3; ½H2; ½H2; ½H3; H1����k 0.0571 k½H3; ½H2; ½H2; ½H3; H2����k 0.0537
k½H3; ½H2; ½H3; ½H2; H1����k 0.0502 k½H3; ½H2; ½H3; ½H3; H1����k 0.0502 k½H3; ½H2; ½H3; ½H3; H2����k 0.0502
k½H3; ½H3; ½H1; ½H2; H1����k 0.0423 k½H3; ½H3; ½H1; ½H3; H1����k 0.0423 k½H3; ½H3; ½H1; ½H3; H2����k 0.0377
k½H3; ½H3; ½H2; ½H2; H1����k 0.0681 k½H3; ½H3; ½H2; ½H3; H1����k 0.0641 k½H3; ½H3; ½H2; ½H3; H2����k 0.0601
k½H3; ½H3; ½H3; ½H2; H1����k 0.0648 k½H3; ½H3; ½H3; ½H3; H1����k 0.0621 k½H3; ½H3; ½H3; ½H3; H2����k 0.0628
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Proposition M.1: (Trotter error bound for the fourth-order Suzuki formula with two summands). Let H ¼ Aþ B be a
Hamiltonian consisting of two summands and t ≥ 0. Let S4ðtÞ be the fourth-order Suzuki formula (11). Then,

kS4ðtÞ − e−itHk ≤ t5ð0.0047k½A; ½A; ½A; ½B; A����k þ 0.0057k½A; ½A; ½B; ½B;A����k
þ 0.0046k½A; ½B; ½A; ½B;A����k þ 0.0074k½A; ½B; ½B; ½B; A����k
þ 0.0097k½B; ½A; ½A; ½B;A����k þ 0.0097k½B; ½A; ½B; ½B; A����k
þ 0.0173k½B; ½B; ½A; ½B;A����k þ 0.0284k½B; ½B; ½B; ½B;A����kÞ: ðM13Þ

A generalization of this approach analyzes Hamiltonians with three summands, which is relevant for certain nearest-
neighbor and power-law systems where terms are ordered in an X-Y-Z pattern [Eq. (125)].
Proposition M.2: (Trotter error bound for the fourth-order Suzuki formula with three summands). Let H ¼ H1 þ

H2 þH3 be a Hamiltonian consisting of three summands and t ≥ 0. Let S4ðtÞ be the fourth-order Suzuki formula (11).
Then,

UkS4ðtÞ − e−itHk ≤ t5
X3

i;j;k;l;m¼1

ci;j;k;l;mk½Hi; ½Hj; ½Hk; ½Hl;Hm����k; ðM14Þ

where the coefficients ci;j;k;l;m are given by Table II.

Unlike the first- and second-order cases, we do not have
a rigorous proof of the tightness of these bounds. However,
our numerical result suggests that these bounds are close to
tight for one-dimensional Heisenberg models with nearest-
neighbor [Eq. (122)] and power-law [Eq. (126)] inter-
actions. We hope future work will shed light on the
tightness of our analysis through either theoretical justifi-
cation or numerical calculation.
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