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The Lie-Trotter formula, together with its higher-order generalizations, provides a direct approach to
decomposing the exponential of a sum of operators. Despite significant effort, the error scaling of such
product formulas remains poorly understood. We develop a theory of Trotter error that overcomes the
limitations of prior approaches based on truncating the Baker-Campbell-Hausdorff expansion. Our analysis
directly exploits the commutativity of operator summands, producing tighter error bounds for both real-
and imaginary-time evolutions. Whereas previous work achieves similar goals for systems with geometric
locality or Lie-algebraic structure, our approach holds, in general. We give a host of improved algorithms
for digital quantum simulation and quantum Monte Carlo methods, including simulations of second-
quantized plane-wave electronic structure, k-local Hamiltonians, rapidly decaying power-law interactions,
clustered Hamiltonians, the transverse field Ising model, and quantum ferromagnets, nearly matching or
even outperforming the best previous results. We obtain further speedups using the fact that product
formulas can preserve the locality of the simulated system. Specifically, we show that local observables can
be simulated with complexity independent of the system size for power-law interacting systems, which
implies a Lieb-Robinson bound as a by-product. Our analysis reproduces known tight bounds for first- and
second-order formulas. Our higher-order bound overestimates the complexity of simulating a one-
dimensional Heisenberg model with an even-odd ordering of terms by only a factor of 5, and it is close to
tight for power-law interactions and other orderings of terms. This result suggests that our theory can

accurately characterize Trotter error in terms of both asymptotic scaling and constant prefactor.

DOI: 10.1103/PhysRevX.11.011020

I. INTRODUCTION

Product formulas provide a convenient approach to
decomposing the evolution of a sum of operators. The Lie
product formula was introduced in the study of Lie groups in
the late 1800s; later developments considered more general
operators and higher-order approximations. Originally stud-
ied in the context of pure mathematics, product formulas
have found numerous applications in other areas, such as
applied mathematics (under the name “splitting method”
or “symplectic integrators”), physics (under the name
“Trotterization”), and theoretical computer science.
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This paper considers the application of product formulas
to simulating quantum systems. It has been known for over
two decades that these formulas are useful for digital
quantum simulation and quantum Monte Carlo methods.
However, their error scaling is poorly understood, and
existing bounds can be several orders of magnitude larger
than those observed in practice, even for simulating
relatively small systems.

We develop a theory of Trotter error that directly exploits
the commutativity of operator summands to give tighter
bounds. Whereas previous work achieves similar goals for
systems with geometric locality or Lie-algebraic structure,
our theory has no such restrictions. We present a host of
examples in which product formulas can nearly match or even
outperform state-of-the-art simulation results. We accompany
our analysis with numerical calculation, which suggests that
the bounds also have nearly tight constant prefactors.

We hope this work will motivate further studies of the
product-formula approach, which has been deemphasized
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in recent years in favor of more advanced simulation
algorithms that are easier to analyze but harder to imple-
ment. Indeed, despite the sophistication of these “post-
Trotter methods” and their optimality in certain general
models, our work shows that they can be provably out-
performed by product formulas for simulating many
quantum systems.

A. Simulating quantum systems by product formulas

Simulating the dynamics of quantum systems is one of
the most promising applications of digital quantum com-
puters. Classical computers apparently require exponential
time to simulate typical quantum dynamics. This intrac-
tability led Feynman [1] and others to propose the idea of
quantum computers. In 1996, Lloyd gave the first explicit
quantum algorithm for simulating k-local Hamiltonians [2].
Subsequent work considered the broader class of sparse
Hamiltonians [3—8] and developed techniques for simulat-
ing particular physical systems [9-15], with potential
applications to developing new pharmaceuticals, catalysts,
and materials. The study of quantum simulation has also
inspired the design of various quantum algorithms for other
problems [16-20].

Lloyd’s approach to quantum simulation is based on
product formulas. Specifically, let H = Zl;:le}' be a
k-local Hamiltonian [i.e., each H, acts nontrivially on
k= O(1) qubits]. Assuming H is time independent,
evolution under H for time ¢ is described by the unitary
operation e~ When ¢ is small, this evolution can be
well approximated by the Lie-Trotter formula &,(¢) =
e~iHr ... o=itHi = where each e~y can be efficiently
implemented on a quantum computer. To simulate for a
longer time, we may divide the evolution into r Trotter
steps and simulate each step with Trotter error of at most
€/ r. We choose the Trotter number r to be sufficiently large
so that the entire simulation achieves an error of at most €.
The Lie-Trotter formula only provides a first-order approxi-
mation to the evolution, but higher-order approximations
are also known from the work of Suzuki and others [21,22].
While many previous works focused on the performance of
specific formulas, the theory we develop holds for any
formula; we use the term “product formula” to emphasize
this generality. A quantum simulation algorithm using
product formulas does not require ancilla qubits, making
this approach advantageous for near-term experimental
demonstration.

Recent studies have provided alternative simulation
algorithms beyond the product-formula approach (some-
times called “post-Trotter methods™). Some of these algo-
rithms have logarithmic dependence on the allowed error
[5-7,23-25], an exponential improvement over product
formulas. However, this dependence generally does not
lead to an exponential reduction in time complexity for
practical applications of quantum simulation. In practice,
the simulation accuracy is often chosen to be constant.

Then, the error dependence only enters as a constant
prefactor, which may not significantly affect the overall
gate complexity. The reduction in complexity is more
significant when quantum simulation is used as a sub-
routine in another quantum algorithm (such as phase
estimation) since this may require high-precision simula-
tion to ensure reliable behavior. However, this logarithmic
error dependence typically replaces a factor that scales
polynomially with time or the system size by another that
scales logarithmically, giving only a polynomial reduction
in the complexity. Furthermore, the constant-factor over-
head and extra space requirements of post-Trotter methods
may make them uncompetitive with the product-formula
approach in practice.

Product formulas and their generalizations [26—-29] can
perform significantly better when the operator summands
commute or nearly commute—a unique feature that does
not seem to hold for other quantum simulation algorithms
[5-7,23-25,30]. This effect has been observed numerically
in previous studies of quantum simulations of condensed
matter systems [31] and quantum chemistry [32-34]. An
intuitive explanation of this phenomenon comes from
truncating the Baker-Campbell-Hausdorff (BCH) expan-
sion. However, the intuition that the lowest-order terms of
the BCH expansion are dominant is surprisingly difficult to
justify (and sometimes is not even valid [9,35]). Thus,
previous work established loose Trotter error bounds,
sometimes suggesting poor performance. Our results rig-
orously demonstrate that for many systems, such arguments
do not accurately reflect the true performance of product
formulas.

Product-formula decompositions directly translate terms
of the Hamiltonian into elementary simulation steps,
making them well suited to preserve certain properties
such as the locality of the simulated system. We show that
this property can be used to further reduce the simulation
cost when the goal is to simulate local observables as
opposed to the full dynamics [36,37].

Besides digital quantum simulation, product formulas
can also be applied to quantum Monte Carlo methods, in
which the goal is to classically compute certain properties
of the Hamiltonian, such as the partition function, the free
energy, or the ground energy. Our results can also be
applied to improve the efficiency of previous applications
of quantum Monte Carlo methods for systems such as the
transverse field Ising model [38] and quantum ferromag-
nets [39].

B. Previous analyses of Trotter error

We now briefly summarize prior approaches to analyzing
Trotter error for simulating quantum systems, and we
discuss their limitations.

The original work of Lloyd [2] analyzes product for-
mulas by truncating the Taylor expansion (or the BCH
expansion). Recall that the Lie-Trotter formula &(¢)
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provides a first-order approximation to the evolution, so
81(t) = e + O(#*). To better analyze the Trotter error,
Lloyd dropped all higher-order terms in the Taylor expan-
sion and focused only on the terms of lowest order, 2. This
approach is intuitive and has been employed by subsequent
works to give a rough estimation of Trotter error. The
drawback of this analysis is that it implicitly assumes that
the high-order terms are dominated by the lowest-order
term. However, this case does not necessarily hold for many
systems, such as nearest-neighbor lattice Hamiltonians [35]
and chemical Hamiltonians [9], when the time step ¢
is fixed.

This issue was addressed in the seminal work of Berry,
Ahokas, Cleve, and Sanders by using a tail bound of the
Taylor expansion [4]. This approach gave, for the first time,
a concrete bound on the Trotter error for high-order Suzuki
formulas. For a Hamiltonian H = )"} | H, containing T’
summands, their bound scales with I'max, ||H, ||, although
it is not hard to improve this [26] to ZLI |H,|| [28,40].
Regardless of which scaling to use, this worst-case analysis
does not exploit the commutativity of Hamiltonian sum-
mands, and the rseulting complexity is worse than many
post-Trotter methods.

Error bounds that exploit the commutativity of sum-
mands are known for low-order formulas, such as the Lie-
Trotter formula [40,41] and the second-order Suzuki
formula [9,40,42,43]. These bounds are tight in the sense
that they match the lowest-order term of the BCH expan-
sion up to an application of the triangle inequality.
However, it is unclear whether they can be generalized,
say, to the fourth- or the sixth-order case, which are still
reasonably simple and can provide a significant advantage
in practice [31].

Instead, previous works made compromises to obtain
improved analyses of higher-order formulas. Somma gave
an improved bound by representing the Trotter error as an
infinite series of nested commutators [44]. This approach is
advantageous when the simulated system has an underlying
Lie-algebraic structure with small structure factors, such as
for a quantum harmonic oscillator and certain nonquadratic
potentials. However, this approach reduces to the worst-
case analysis of Berry, Ahokas, Cleve, and Sanders for
other systems.

An alternative approach of Thalhammer represented the
error of a pth-order product formula using commutators of
order up to g for g > p [45], with the (g + 1)st-order
remainder further bounded by some tail bound. This
analysis was bottlenecked by the use of a tail bound.
The special case where ¢ = p + 1 was studied in Ref. [31],
and the result was applied to estimate the quantum resource
for simulating a one-dimensional Heisenberg model, which
only offers a modest improvement over the worst-case
analysis.

In recent work [35], Childs and Su gave a Trotter error
bound in which only the lowest-order error appears,

avoiding manipulation of infinite series or use of tail
bounds. As an immediate application, they showed that
product formulas can nearly optimally simulate lattice
systems with geometrically local interactions, justifying
an earlier claim of Jordan, Lee, and Preskill [13] in the
context of simulating quantum field theory.

Their improvement is based on a representation of the
Trotter error introduced by Descombes and Thalhammer
[42], which streamlines the previous analysis [45]. In this
approach, the Trotter error is represented using commuta-
tors nested with conjugations of matrix exponentials. For
Hamiltonians with nearest-neighbor interactions, Ref. [35]
gave an argument based on locality to cancel the majority
of the Trotter error. However, this approach reduces to the
worst-case scenario for systems lacking geometric locality.
In contrast, our representation of the Trotter error does not
have this restriction and results in speedups for simulating
even strongly long-range interacting systems (see Table I).

For other related studies of Trotter error in the context of
numerical analysis, we refer the reader to Refs. [45-50] and
the references therein.

C. Trotter error with commutator scaling

We give a new bound on the Trotter error that depends on
nested commutators of the operator summands. This bound
is formally stated in Sec. III D and previewed here.

Theorem: Trotter error with commutator scaling.
Let H = 25:1 H, be an operator consisting of I' sum-
mands, and let > 0. Let §(¢) be a pth-order Y-stage

product formula as in Sec. IIC. Define &.omm =
;1,}/2 ..... Ypr1=1 ||[Hy,,+| T [Hyz’ HyJ o ]H’ where |||| is

the spectral norm. Then, the additive error /() and the
multiplicative error . (t), defined, respectively, by §(z) =
e + o/ (1) and S(t) = ™™ (I + M (1)), can be asymptoti-
cally bounded sa

1L (1)) ()| = OGgommt? T 2o 71y (1)

Furthermore, if the H, are anti-Hermitian, corresponding to
physical Hamiltonians, we have

1/ (O] 1 (@) = O(@commt”).- (2)

We emphasize that this theorem does not follow from
truncating the BCH series. Although the (p + 1)st-order
term of the BCH series is also a linear combination of
nested commutators similar to &.ymm, such a term can be
dominated by a higher-order term when ¢ is fixed, as is
the case for nearest-neighbor lattice systems (see
Supplementary Sec. I of Ref. [35]) and quantum chemistry
(see Appendix B of Ref. [9]). Truncating the BCH series
ignores significant, potentially dominant error contribu-
tions and thus does not accurately characterize the
Trotter error.
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TABLE L. Comparison of our results and the best previous results for simulating quantum dynamics, simulating local observables, and
quantum Monte Carlo simulation.

Application System Best previous result New result
Simulating quantum dynamics Electronic structure @(nzt) (interaction picture) pn2to() fl4o(1)

k-local Hamiltonians
1/x* (@ < d)
1/x% (d < a < 2d)
1/x* (@ > 2d)
Clustered Hamiltonians

1/x*(a > 2d)

Transverse field Ising model
Quantum ferromagnets

Simulating local observables

Monte Carlo simulation

O((nr)+24/(e=d)) (Lieb-Robinson bound)

O(n*||H||,1) (qubitization)
O(n*=%/1t) (qubitization)
O(nt) (qubitization)

k|| H|| | H | o
p3—a/d+o(1) fl+o(1)
p2+o(1) fl+o(1)
(nt)l+d/(afd)+o(l)

2O(h§r2¢rc(g)/e) 20(,[;;(1),1+U(1)L.L.(g)/fu<|))

f1+d(a=d/a=2d)|[1+(d/a=d)]+o(1)

O(n59j21€_9) O(n45j14€—2 + n38j21€—9)
@(n“s(l +ﬂ46)/€25) @(n92(1 +ﬁ46)/€25)

The above expression for our asymptotic error bound is
succinct and easy to evaluate. In Sec. IV, we compute @.m
for various examples, including the second-quantized
electronic-structure Hamiltonians, k-local Hamiltonians,
rapidly decaying power-law interactions, and clustered
Hamiltonians. We further study the tightness of the
prefactor of our bound in Sec. V and give a numerical
implementation for one-dimensional Heisenberg models
with either nearest-neighbor interactions or power-law
interactions.

Although the definition of a specific product formula
depends on the ordering of operator summands, our
asymptotic bound does not. As an immediate consequence,
the asymptotic speedups we obtain in Sec. IVA hold
irrespective of how we order the operator summands in
the simulation. For the special case of nearest-neighbor
lattice models, this answers a previous question of Ref. [35]
regarding the “ordering robustness” of higher-order for-
mulas. However, the ordering becomes important if our
goal is to simulate local observables or to get error bounds
with tight constant prefactors, as we further discuss in
Secs. IV B and Sec. V, respectively.

As mentioned in Sec. I B, prior Trotter error analyses
typically produce loose bounds and are only effective in
special cases. Our approach overcomes those limitations in
the following respects:

(i) Our bound only contains a finite number of error

terms, in contrast to the bound in Ref. [44].

(i) Our bound involves pure nested commutators
without conjugations of matrix exponentials or
using tail bounds, overcoming the drawbacks of
Refs. [35,45,47].

(iii) Our bound reduces to the worst-case analysis of
Ref. [4] by further bounding terms with the triangle
inequality.

(iv) For Hamiltonians with two summands, our bound
encompasses the tight analyses [9,40-43] of the
Lie-Trotter formula and the second-order Suzuki
formula as special cases.

D. Overview of results

The commutator scaling of the Trotter error uncovers a
host of examples where product formulas can nearly match
or even outperform the state-of-the-art results in digital
quantum simulation. These examples include (i) a simu-
lation of second-quantized plane-wave electronic structure
with n spin orbitals for time ¢ with gate complexity
n?to)g+o(l) " whereas the state-of-the-art approach per-
forms simulation in the interaction picture [25] with
cost O(n?t) and likely large overhead; (ii) a simulation
of n-qubit k-local Hamiltonians H with complexity

n||| H]|l, ||H||9" £1+() that almost scales with the induced
I-norm |||H|||, [51], implying an improved simulation of d-
dimensional power-law interactions that decay with dis-
tance x as 1/x* for a < 2d, whereas the fastest previous
approach uses the qubitization algorithm [24] with cost
O(n*||H||,1); (iii) a simulation of d-dimensional power-law
interactions 1/x* (for fixed a > 2d) with gate complexity
(nt)!+d/(a=d)+o(l)  whereas the best previous algorithm
decomposes the evolution based on Lieb-Robinson bounds
[52] with cost O((nt)'*2%/(@=4)); and (iv) a hybrid simu-
lation of clustered Hamiltonians of interaction strength
hg and contraction complexity cc(g) with runtime
200" " Wee(g) /)

20(yrec(9)/e) [53]. We discuss these examples in more
detail in Sec. IVA.

We show in Sec. IV B that these gate complexities can be
further improved when the goal is to simulate local
observables instead of the full dynamics. We illustrate this
for d-dimensional lattice systems with 1/x* interactions
(a > 2d). Lieb-Robinson bounds for power-law inter-
actions [52] suggest that the evolution of a local observable
is mostly confined inside a light cone induced by the
interactions. Simulating such an evolution by simulating
the dynamics of the entire system appears redundant,
especially when the system size is large. We realize this
intuition and show, without using Lieb-Robinson bounds,

improving the previous result of
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that the gate count for simulating the evolution of a local
observable scales as ¢! +d(a=d)/(a=2d)]|[1+d/(a=d)]+o(1) " ywhjch
is independent of the system size n and smaller than
simulating the dynamics of the entire system when n =
Q(tdle=d)/(a=2d)) " The scaling also reduces to ¢4+l —
proportional to the space-time volume inside a linear light
cone—in the limit @ — oo, which corresponds to nearest-
neighbor interactions.

Our bound can also be applied to improve the perfor-
mance of quantum Monte Carlo simulation. In this case, we
are limited to the use of the second-order Suzuki formula,
and because of imaginary-time evolution, the Trotter
number scales at least linearly with the system size.
Nevertheless, we are able to improve several existing
classical simulations using our bound, without modifying
the original algorithms. This improvement includes (i) a
simulation of an n-qubit transverse field Ising model with
maximum interaction strength j and precision ¢ with runtime

O(n® j14e=2 + 38 j21e79), tightening the previous result of
O(n*°j*'¢™) [38]; and (ii) a simulation of ferromagnetic
quantum spin systems for (imaginary) time $ and accuracy €
with runtime O(n?2(1 + *)/e*®), improving the previous
complexity of O(n''3(1 4 *)/e>5) [39]. These applica-
tions are further discussed in Sec. IV C. Table I compares our
results against the best previous ones for simulating quan-
tum dynamics, simulating local observables, and quantum
Monte Carlo simulation.

Given the numerous applications our bound provides in
the asymptotic regime, we ask whether it has a favorable
constant prefactor as well. This consideration is relevant to
the practical performance of product formulas, especially
for near-term quantum simulation experiments. For a two-
term Hamiltonian, we show that our bound reduces to the
known analyses of the Lie-Trotter formula [40,41] and the
second-order Suzuki formula [9,42,43]. We then bootstrap
the result to analyze Hamiltonians with an arbitrary number
of summands (Sec. VA). The resulting bound matches the
lowest-order term of the BCH expansion up to an appli-
cation of the triangle inequality, and our analysis is thus
provably tight for these low-order formulas.

We further numerically implement our bound for a one-
dimensional Heisenberg model with a random magnetic
field. This model can be simulated to understand condensed
matter phenomena, but even a simulation of modest size
seems to be infeasible for current classical computers.
Childs et al. compared different quantum simulation
algorithms for this model [31] and observed that product
formulas have the best empirical performance, although
their provable bounds were off by orders of magnitude even
for systems of modest size, making it hard to identify with
confidence the most efficient approach for near-term
simulation. Reference [35] claimed an improved fourth-
order bound that is off by a factor of about 17. Here, we
give a tight bound that overestimates by only a factor of
about 5. We also give a nearly tight Trotter error bound for

power-law interactions. We describe the numerical imple-
mentation of our bound in detail in Sec. V B.

Underpinning these improvements is a theory we
develop concerning the types, order conditions, and rep-
resentations of the Trotter error. We illustrate these con-
cepts in Sec. III A with the simple example of the first-order
Lie-Trotter formula.

Let H = )| H, be asum of operators, and let & () be
a product formula corresponding to this decomposition. We
say that &/(r), 4 (t), and &(¢) are the additive, multipli-
cative, and exponentiated Trotter error if

S(1) = e + dl(1), (3)

S(t) = e (I + (1)), (4)

S(1) = Texp( /O ’dT(H+5(T))>, (s)

respectively, where 7 exp denotes the time-ordered matrix
exponential. For applications in digital quantum simula-
tion, these three types of Trotter error are equivalent to each
other. However, the multiplicative type and the exponen-
tiated type are more versatile for analyzing quantum
Monte Carlo simulation. We give a constructive definition
of these error types and discuss how they are related in
Sec. 111 B.

A pth-order product formula §'(¢) can approximate the
ideal evolution to pth order, in the sense that
S(t) = e 4+ O("*1). Motivated by this approximation,
we say that an operator-valued function & (¢) satisfies the
pth-order condition if F(¢) = O(t"*!). In Sec. III C, we
give order conditions for the Trotter error and its various
derived operators. One significance of order conditions is
that they can be used to cancel low-order terms. In
particular, if & (r) satisfies the pth-order condition, then
all terms with order at most p vanish in the Taylor series.
This result can be verified by brute-force differentiation
when F (1) is explicitly given, but applying the correct
order condition avoids such a cumbersome calculation.

We then consider representations of the Trotter error in
Sec. III D. Our representation only involves finitely many
error terms, each of which is given by a nested commutator
of operator summands. As mentioned earlier, these features
overcome the drawbacks of previous representations and
motivate a host of new applications. In deriving our
representation, we work in a general setting where operator
summands are not necessarily anti-Hermitian, so our
analysis simultaneously handles real-time evolutions for
digital quantum simulation and imaginary-time evolutions
for quantum Monte Carlo simulation.

Sec. II gives a summary of background material that is
necessary for understanding our Trotter error theory and its
applications. Sec. VI concludes the paper with a brief
discussion of the results and some open questions.
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II. PRELIMINARIES

In this section, we summarize the preliminaries that we
use in subsequent sections of the paper. Specifically, we
introduce notation and terminology in Sec. Il A, including
various notions of norms and common asymptotic nota-
tions. In Sec. II B, we discuss time-ordered evolutions and
the properties that are relevant to our analysis. We then
define general product formulas in Sec. Il C and prove a
Trotter error bound with 1-norm scaling. Readers who are
familiar with these preliminaries may skip ahead to Sec. III
for the main result of our paper.

A. Notation and terminology

Unless otherwise noted, we use lowercase Latin letters to
represent scalars, such as the evolution time ¢, the system
size n, and the order of a product formula p. We also use the
Greek alphabet to denote scalars, especially when we want
to write a summation like 5:1- We use uppercase Latin
letters, such as A, to denote operators. Throughout the
paper, we assume that the underlying Hilbert space is finite
dimensional, and operators can be represented by complex
square matrices. We expect that some of our analyses can
be generalized to spaces with infinite dimensions, but we
restrict ourselves to the finite-dimensional setting since this
is most relevant for applications to digital quantum sim-
ulation and quantum Monte Carlo simulation. We use
scripted uppercase letters, such as (), to denote oper-
ator-valued functions.

We organize scalars to form vectors h, and tensors
hy, .. .- We use standard norms for tensors, including the
L-norm ||Af|; =3, . |, | the Euclidean norm (or

2-norm) [|hlly = /53, Ih

[l oo = max,,

sy % and the oco-norm

,,,,, ve|hy, |- In case there is ambiguity,

we use /1 to emphasize the fact that £ is a vector (or a tensor,
more generally).

For an operator A, we use ||A|| to denote its spectral
norm—the largest singular value of A. The spectral norm is
also known as the operator norm. It is a matrix norm that
satisfies the scaling property ||aA|| = |a|||Al|, the submul-
tiplicative property ||[AB]|| < ||A||||B|, and the triangle
inequality ||A + B|| < ||A|| +||B||- If A is unitary, then
|Al = 1. We further use A, , to denote a tensor
where each elementary object is an operator. We define
a norm of A, . by taking the spectral norm of each
elementary operator and evaluating the corresponding norm
of the resulting tensor. For example, we have ||A]; :=

Do Ayl and Al = max,, o (14, -
For a tensor A, . we define
Al = maxmax > |4y, I (6)

Tt -1
Vj1oeTk

We call [||Al||, the induced 1-norm of A since it can be seen
as a generalization of the induced 1-norm max,, >, |a,, ,,|
of a matrix a, ,, [54]. A quantum simulation algorithm
with induced 1-norm scaling runs faster than a 1-norm
scaled algorithm because

Al < (Al (7)

In fact, as we will see in Sec. IV A, the gap between these
two norms can be significant for many realistic systems.

We also use ady B to denote the commutator [A, B]. Using
a standard Lie-algebraic identity, we have eABe™ = ¢4 B,

Let f, g:R — R be functions of real variables. We write
f = O(g) if there exist ¢, f, > 0 such that |f(7)| < ¢|g(7)]
whenever |7| < #,. Note that we consider the limit when the
variable 7 approaches zero as opposed to infinity, which is
different from the usual setting of algorithmic analysis. For
that purpose, we write f = O(g) if there exist c¢,#; > 0
such that |f(7)| < ¢|g(r)]| for all |z| > #;. When there is no
ambiguity, we will use f = O(g) to also represent the case
where |f(7)] < c|g(z)| holds for all z € R. We then extend
the definition of O to functions of positive integers and
multivariate functions. For example, we use f(n,t,1/¢) =
O((nt)?/€) to mean that |f(n,t,1/€)| < c(n|t|)*/e for
some ¢, ng, ty, € >0 and all |7| > 15, 0 <€ < ¢, and
integers n > ng. If % () is an operator-valued function, we
first compute its spectral norm and analyze the asymptotic
scaling of ||F(7)||. We write f = Q(g) if g = O(f), and
f =0(g) if both f = O(g) and f = Q(g). We use O to
suppress logarithmic factors in the asymptotic expression
and o(1) to represent a positive number that approaches
ZEro as some parameter grows.

Finally, we use [[, [[}_, to denote a product where the

elements have increasing indices from right to left and [,
H;:r vice versa. Under this convention,

We let a summation be zero if its lower limit exceeds its
upper limit.

B. Time-ordered evolutions

Let H(r) be an operator-valued function defined for
0 <7 <t. We say that %(z) is the time-ordered evolution
generated by Z(z) if %(0)=1 and (d/dr)%(7) =
F(7)%(z) for 0 <7 < t. In the case where #(7) is anti-
Hermitian, the function % () represents the evolution of a
quantum system under Hamiltonian i#'(z). We do not
impose any restrictions on the Hermiticity of %(z) in the
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development of our theory, so our analysis can be applied to
not only real-time but also imaginary-time evolutions.
Throughout this paper, we assume that operator-valued
functions are continuous, which guarantees the existence
and uniqueness of their generated evolutions (see p. 12 of
Ref. [55]). We then formally represent the time-ordered
evolution %(r) by 7T exp([ide#(r)), where T exp
denotes the time-ordered exponential. In the special
case where #'(r) =H is constant, the generated
evolution is given by an ordinary matrix exponen-
tial 7 exp( [jdr (7)) = .

In a similar way, we define the time-ordered evolution
T exp(f{> dr% (1)) on an arbitrary interval t; <7 < 1,. Its
determinant satisfies (see p. 9 of Ref. [55])

det (T exp (/lz dr%’(ﬂ)) _ ej;f deTr(7 (7)) £0,
f

so the inverse operator 7 exp~!( > dt(z)) exists; we
denote it by 7 exp( ;! dz%(z)). We have thus defined
T exp( f{* dr (z)) for every pair of #, and #, in the domain
of () [56]. In the Appendix A, we list a few identities of
time-ordered exponentials that are useful in our analysis.

C. Product formulas

Let H = Z;zl H, be a time-independent operator con-
sisting of I summands so that the evolution generated by H

is etzle " Product formulas provide a convenient way of
decomposing such an evolution into a product of expo-
nentials of individual H,. Examples of product formulas
include the first-order Lie-Trotter formula

Sy (1) = eflr ... ¢! (10)

and higher-order Suzuki formulas [21] defined recursively
via

QU/DH: . (t/DHr (/2 Hr .. o(t/2)H

S (Ut Sapa (1 =4uy ) 1) 85, 5 (uyt),  (11)

$,(1)
(1)

where u; == 1/(4 —4!/®*1)) Tt is a challenge in practice
to find the formula with the best performance for simulating
a specific physical system [31]. However, we address a
different question, developing a theory of Trotter error that
holds for a general product formula. For in-depth studies of
these formulas, especially in the context of numerical
analysis, we refer the reader to Refs. [45-50] and the
references therein.

Specifically, we consider a product formula of the form

(«S}(t) = H H e Hay(r) , (12)

v=1 y=1

where the coefficients a, ) are real numbers. The param-
eter Y denotes the number of stages of the formula; for the
Suzuki formula &, (t), we have T =2 x 5¥-1. The per-
mutation 7, controls the ordering of operator summands
within stage v of the formula. For Suzuki’s constructions,
we alternately reverse the ordering of summands between
neighboring stages, but other formulas may use general
permutations. Throughout this paper, we fix Y, z, and
assume that the coefficients ay, ;) are uniformly bounded by
1 in absolute value. We then consider the performance of
the product formula with respect to the input operator
summands H, (for y =1,...,T") and the evolution time 7.

Product formulas provide a good approximation to the
ideal evolution when the time ¢ is small. Specifically, a pth-
order formula &(r) satisfies

S(t) = e™ + o(¢PH). (13)

This asymptotic analysis gives the correct error scaling with
respect to 1; however, the dependence on the H, is ignored,
so it does not provide a full characterization of the Trotter
error. This issue was addressed in the work of Berry,
Ahokas, Cleve, and Sanders [4], who gave a concrete error
bound for product formulas with dependence on both ¢ and
H,. Their original bound depends on the oco-norm
I'max, ||H,||, although it is not hard to improve this to
the 1-norm scaling >7_, ||H, .

Lemma 1: (Trotter error with 1-norm scaling). Let H =

}f:l H, be an operator consisting of I' summands and

1>0. Let 8(tr) =[[L, [T)=, e"“n"= be a pth-order
product formula. Then,

||os’<r>—efH||=O((;||Hy||r)”“e“25l“”r). (14)

Furthermore, if H, are anti-Hermitian,

151 - ] = 0((2 i) ) a9

We provide a proof of Lemma 1 in Appendix B. For real-
time evolutions, this lemma improves a multiplicative

factor of e’TZ;' 171 over the best previous analysis
[see Eq. (13) in Ref. [28] ].

The above bound on the Trotter error works well for
small ¢. To simulate anti-Hermitian H, for a large time,
we divide the evolution into r steps and apply the
product formula within each step. The overall simulation
has error

1 IIHyIIt)”“>
. (16)

rp

187 (1/r) = ] = O((
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To simulate with accuracy e, it suffices to choose

o LA DR
of ) (17)

el/p

We therefore arrive at the following corollary

Corollary 2: (Trotter number with 1-norm scaling) Let
H = Z;zl H, be an operator consisting of I" summands
with H, anti-Hermitian and 7 > 0. Let §(¢) be a pth-order
product formula. Then, we have ||S7(t/r) — e'®|| = O(e)
provided

_ O(( -1 ||Hy||t)'+'/”)_ (18)

el/p

Note that the above analysis only uses information
about the norms of the summands. In the extreme case
where all H , commute, the Trotter error becomes zero, but
the above bound can be arbitrarily large. This contradiction
suggests that the analysis can be significantly improved by
leveraging information about commutation of the H,.
Unfortunately, despite extensive efforts, dramatic improve-
ments to the Trotter error bound are only known for certain
low-order formulas [9,40-43] and special systems [35,44].

To explain the limitations of prior approaches, it is
instructive to examine a general bound developed by
Descombes and Thalhammer [42,45],

[S() = ]| < @pat?™ 4+ agtt + ag . (19)

where H = Z;Z h H}, is a sum of anti-Hermitian operators,
&(t) is a pth-order formula, ¢ > p is a positive integer, and
t > 0, suggesting a choice of

1/p 1+1/p 1/(g=1) 141/ (¢q-1)
allit a t 4
_ ptl e
rmax{(’)( i/ ),...,O( ) >,

1/q 1+1/q
allt
O( q+€1/q )} (20)

to simulate with accuracy e. Here, all the leading coefficients
Apits - dyg depend on nested commutators of H. /s but a g+1
is determined by commutators interlaced with matrix
exponentials, which is technically challenging to evaluate
except for geometrically local systems. Consequently, a
bound on a,, | must be used, resulting in a I-norm scaling
similar to that of Lemma 1 and a loose Trotter error estimate
for simulating general quantum systems.

We develop a theory of Trotter error that directly exploits
the commutativity of operator summands. The resulting
bound naturally reduces to the previous bounds for low-
order formulas and special systems, but our analysis
uncovers a host of new speedups for product formulas
that were previously unknown. The central concepts of this

theory are the types, order conditions, and representations
of the Trotter error, which we explain in Sec. IIL.

III. THEORY

We now develop a theory for analyzing the Trotter error.
We explain the core ideas of this theory in Sec. III A using
the simple example of the first-order Lie-Trotter formula.
We then discuss the analysis of a general formula.
In particular, we study various types of Trotter error in
Sec. IIIB and compute their order conditions in
Sec. III C. We then derive explicit representations of the
Trotter error in Sec. III D, establishing the commutator
scaling of the Trotter error in Theorem 6. We focus on the
asymptotic error scaling here and discuss potential appli-
cations and constant-prefactor improvements of our results
in Secs. IV and Sec. V, respectively.

A. Example of the Lie-Trotter formula

In this section, we use the example of the first-order Lie-
Trotter formula to illustrate the general theory we develop
for analyzing the Trotter error. For simplicity, consider an
operator H =A + B with two summands. The ideal
evolution generated by H is given by e = ¢A+8) To
decompose this evolution, we may use the Lie-Trotter
formula &(¢) = e'Be'. This formula is first-order accu-
rate, so we have &, (t) = e’ 4+ O(1?).

A key observation here is that the error of a product
formula can have various types. Specifically, we consider
three types of Trotter error: additive error, multiplicative
error, and error that appears in the exponent. Note that

S1(r) satisfies the differential equation (d/dr)S(r) =

HS (1) + [e'B,Ale”® with the initial condition
81(0)=1. By the variation-of-parameters formula
(Lemma A.1),

t
Si(t) = e —l—/ drel=H[e™B Ale™, (21)
0

so we get the additive error &, (1) = [ dze"=H ™8 A]e™
of the Lie-Trotter formula. For error with the exponentiated
type, we differentiate &(r) to get (d/dn&(r) =
(B + e™5A)S | (t). Applying the fundamental theorem of
time-ordered evolution (Lemma A.3), we have

Sy () = T exp ( /O "de(B + efadBA)>, (22)

so & (r) =e™sA—A is the error of the Lie-Trotter
formula that appears in the exponent. To obtain the
multiplicative error, we switch to the interaction picture
using Lemma A.2:
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t
S$1(t) = ™M T exp </ dre™du (e7ads A —A)),
0

so M, (1) =T exp([i dre™™d (e™dA - A)) =1 is the
multiplicative Trotter error.

These three types of Trotter error are equivalent for
analyzing the complexity of digital quantum simulation
(Sec. IVA) and simulating local observables (Sec. IV B),
whereas the multiplicative error and the exponentiated error
are more versatile when applied to quantum Monte Carlo
simulation (Sec. IV C). We compute the error operators for
a general product formula in Sec. III B.

Since product formulas provide a good approximation to
the ideal evolution for small ¢, we expect all three error
operators o/, (t), £(t), and .#,(t) to converge to zero in
the limit # — 0. The rates of convergence are what we call
order conditions. More precisely,

d,(t) = /tdfe("T)H[eTB,A]eTA = 0(#),
0
E (1) =e™A—-A=0(1),

ﬂxo:7em</ﬁwwmme—A0-1
0

= 0(#?).

For the Lie-Trotter formula, these conditions can be
verified by direct calculation, although such an approach
becomes inefficient, in general. Instead, we describe an
indirect approach in Sec. III C to compute order conditions
for a general product formula.

Finally, we consider representations of the Trotter
error that leverage the commutativity of operator sum-
mands. We discuss how to represent .#,(t) in detail,
although it is straightforward to extend the analysis to
g/, (t) and &,(t) as well. To this end, we first consider the
term e~" ™5 A, which contains two layers of conjuga-
tions of matrix exponentials. We apply the fundamental
theorem of calculus to the first layer of conjugation and
obtain

T
e A = A+ / dr,e™5ad,A. (23)
0

Substituting into the expression of .#, (1), we get

M (t)=T exp </tdr/fd72e_”‘dﬁeTﬁadBadBA) -1, (24)
0 0

which implies, through Corollary A.5, that ||.Z,(1)|| =
O(||[B,A]||*) when A, B are anti-Hermitian and ¢ > 0.
In the above derivation, it is important that we only expand
the first layer of conjugation of exponentials, that we
apply the fundamental theorem of calculus only once,
and that we can cancel the terms e "#Ae™ in pairs. The
validity of such an approach, in general, is guaranteed by
the appropriate order condition, which we explain in detail
in Sec. III D.

B. Error types

In this section, we discuss error types of a general
product formula. In particular, we give explicit expressions
for three different types of Trotter error: the additive error,
the multiplicative error, and error that appears in the
exponent of a time-ordered exponential (the “exponenti-
ated” error). These types are equivalent for analyzing the
complexity of simulating quantum dynamics and local
observables, but the latter two types are more versatile for
quantum Monte Carlo simulation.

Let H = 25:1 H, be an operator with I' summands.
The ideal evolution under H for time ¢ is given by

el = etzle " which we approximate by a general
product formula §(z) = []L, [T}, e“wnfmi. For con-
venience, we use the lexicographic order on a pair of tuples
(v,7) and (v',7’), defined as follows: We write (v,y) >
(,y) if v>v, or if v=v" and y>y'. We have
(0,7)>(0".7') if both (v,y) = (v'.7') and (v,7) # (v'.7')
hold. Notations (v,7) < (v/,y') and (v,y) < (v/,y’) are
defined in a similar way, except that we reverse the
directions of all the inequalities.

For the additive Trotter error, we seek an operator-
valued function /() such that §(¢) = e’ + (t). This
can be achieved by constructing the differential equation
(d/dr)S(t) = HS(t) + R(r) with initial condition
$(0) = 1, followed by the use of the variation-of-param-
eters formula (Lemma A.1). For the exponentiated type of
Trotter error, we aim to construct an operator-valued
function &(¢) such that &(r) = 7T exp( [ dr(H + &(7))).
We find £(¢) by differentiating the product formula &§'(r)
and applying the fundamental theorem of time-ordered
evolution (Lemma A.3). Finally, we obtain the multipli-
cative error by switching to the interaction picture using
Lemma A.2. The derivation follows from a similar analysis
as in Sec. Il A and is detailed in Appendix C.

Theorem 3: (Types of Trotter error). Let H = 25:1 H,
be an operator with I' summands. The evolution under H

. . . tH IZF H .
for time r€ R is given by e =e 4177, which
we decompose using the product formula &(z) =
[Lo [T, e“nf=0.  Then, the following state-
ments holds:
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(1) Trotter error can be expressed in the additive form
S(t) = e + [idre =1 $(7)T (7), where

Z H ¢ ey (agHz, )

) )
<(v 7)
— —7a . y/>adH

-II e . (25)

v'.7)

(2) Trotter error can be expressed in the exponentiated
form §(t) = 7 exp(J¢ de(H + £(z))), where

a0y adH "
Z H (@@ Haz, ) —H. (26)

) (')
=(v.y)

(3) Trotter error can be expressed in the multiplicative
form &(t) = e (I + (1)), where

(1) = T exp < A "de e—fadﬂf:(f)) ~1 (27

with £(r) as above.

Note that the error operators 7 (r) and &(z) both
consist of conjugations of matrix exponentials of the form
e ... et Bem™1e7™2 ... ¢~ To bound the Trotter
error, it thus suffices to analyze such conjugations of matrix
exponentials. The previous work of Somma [44] expanded
them into infinite series of nested commutators, which is
favorable for systems with appropriate Lie-algebraic struc-
tures. An alternative approach of Childs and Su [35]
represented them as commutators nested with conjugations
of matrix exponentials, which provides a tight analysis
for geometrically local systems. Unfortunately, both
approaches can be loose, in general. Instead, we apply
order conditions (Sec. III C) and derive a new representa-
tion of the Trotter error (Sec. III D) that provides a tight
analysis for general systems.

C. Order conditions

In this section, we study the order conditions of the
Trotter error. By order condition, we mean the rate at which
a continuous operator-valued function % (z), defined for
7 € R, approaches zero in the limit 7 — 0. Formally, we
write % (7) = O(z”) with non-negative integer p if there
exist constants ¢, fy > 0, independent of 7, such that
|F ()] < c|z|” whenever |z| < t,.

Order conditions arise naturally in the analysis of the
Trotter error [21,57-59]. Indeed, a pth-order product
formula &(r) has a Taylor expansion that agrees with
the ideal evolution ¢! up to order ¢”, which implies the
order condition §(t) = e + O(¢P*!) by definition. Our
approach is to use this relation in the reverse direction:
Given a smooth operator-valued function & (z) satisfying

the order condition % (z) = O(z?), we conclude that F ()
has a Taylor expansion where terms with order 7”~! or
lower vanish. We make this argument more precise in
Appendix D.

We can determine the order condition of an operator-
valued function through either direct calculation or indirect
derivation. To illustrate this, we consider decomposing
e = ¢"4+B) ysing the first-order Lie-Trotter formula
S1(t) = e'Be™. We see from Sec. Il A that this decom-
position has the additive Trotter error

= [(areton(si(0) - 181 (6)
0

= /tdre(’_T)H[eTB,A}e’A. (28)
0

We know that &/,(¢) has the order condition of,(z) =
O(#*), which follows directly from the fact that
2,(0) = &1(0) =0. On the other hand, an indirect
argument would proceed as follows. We use the known
order condition &,(7) = e + O(r*) to conclude that
8" (r) — HS(r) = O(z). Multiplying the matrix exponen-
tial e~ = O(1) does not change the order condition, so
we still have e~ (8" (1) — HS (7)) = O(z). A final
integration of [!dr then gives the desired condition
(1) = 0(r).

Although we obtain the same order condition through
two different analyses, the direct approach becomes ineffi-
cient for analyzing the Trotter error of a general high-order
product formula. Instead, we use an indirect analysis to
prove the following theorem on the order conditions of the
Trotter error (see Appendix D for proof details).

Theorem 4: (Order conditions of Trotter error). Let H
be an operator, and let §(z), 7 (z), £(r), and () be
infinitely differentiable operator-valued functions defined
for = € R, such that

S(t) = e + /0th =" 9 (2)T (1),
= Texp(Atdr(H—l—S(r))),
= eI+ (1)) (29)

For any non-negative integer p, the following conditions
are equivalent:
(1) S(1) =™+ o),

(2) T(z) = 0O(zP),
3) &(r) = O(z?), and
@ (1) = 0@

In Sec. II D, we apply these conditions to cancel low-
order Trotter error terms and represent higher-order ones as
nested commutators of operator summands.
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D. Error representations

For a product formula with a certain error type and order
condition, we now represent its error in terms of nested
commutators of the operator summands. In particular, we
give upper bounds on the additive and the multiplicative
errors of pth-order product formulas in Theorem 6.

Consider an operator H = ZLI H, with I" summands.

The ideal evolution generated by H is e = eth:lH’
which we decompose using a pth-order product formula
$(1) = [To= [T}-, e“en'=». We know from Theorem 3
that the Trotter error can be expressed in the additive
form  8(1) = e + [Ideel ™" S$(7)T (z), the multi-
plicative form &(r) = e (I + (1)), where (1) =
T exp( [t dre ™ E(t)e™) — 1, and the exponentiated form
8(t) = T exp( i dr(H + &(t))). Furthermore, both 7 (7)
and &(7) consist of conjugations of matrix exponentials and
have order condition 7 (z),£(7) € O(z?) (Theorem 4).

We first consider the representation of a single con-
jugation of matrix exponentials,

eTA& . eTA2 erA]Be—rAle—rA2 .. e—rAS’ (30)

where A, A,, ..., A,, B are operators and 7 € R. Our goal is
to expand this conjugation into a finite series in the time
variable 7. We only keep track of those terms with order
O(zP) because terms corresponding to 1,7, ...,77~! will
vanish in the final representation of the Trotter error due to
the order condition. As mentioned before, such a con-
jugation was previously analyzed based on a naive appli-
cation of Taylor’s theorem [35] and an infinite-series
expansion [44]. However, those results do not represent
the Trotter error as a finite number of commutators of
operator summands, and they only apply to special systems
such as those with geometrical locality or suitable Lie-
algebraic structure. Our new representation overcomes
these limitations.

Theorem 5: (Commutator expansion of a conjugation
of matrix exponentials) Let A;,A,,...,A, and B be oper-
ators. Then, the conjugation e™s-..e2¢™1 Be™1¢7™2...

™™ (r € R) has the expansion
e‘rAl‘ . e‘[AZ eTA]Be—TAl e—‘rAz .. e_TAx
=Cy+Cit+--+Cp 7P +C(r).  (31)

Here, Cy,...,C,_, are operators independent of z. The
operator-valued function C(z) is given by

C(z) = i Z erda ..o

k=1 a1+-+ag=p
9#0

rady

(t— »[2>qk_11q1+"‘+qk—l

(Qk_l)!Qk—I!"'QI! '

T
- [ drye™ad? ... ad?' B
o 2 Ax A

Furthermore, we have the spectral-norm bound

CE < teomm (A o Ar, B 2 S0
p

for general operators and

IC(D)]| < acomm(As. -

when A, (k =1, ..., s) are anti-Hermitian, where

acomm(Aw ---vAlvB>

SO D GR [RTC TS

ateta=p

Proof—We begin with the innermost layer ™% B.
Applying Taylor’s theorem to order p — 1 with the integral
form of the remainder, we have

T Tp_l -1
eadA.B:B+TadA]B+---+(p_ 1)!adﬁl B
’ Tp_l (r—15)ady p
+ ; dr, - e rady B. (34)

By the multiplication rule and the integration rule of
Proposition D.3, the last term has order

/dfz(p—l

This term cannot be canceled by the order condition, and
we keep it in our expansion. The remaining terms corre-
sponding to 1,7,..., 7P~ are substituted back to the
original conjugation of matrix exponentials.

We now consider the next layer of conjugation. We apply
Taylor’s theorem to the operators e™¥2B, ¢™n ady B, ...,
e, adﬁl_lB to order p—1,p—2,...,0, respectively,
obtaining

elTm2)ady adle = 0(11’). (35)

p=2

(p=2)!

p—1l-q,
dz
+ gt

forg, =0,1,..., p — 1. Combined with the result from the
first layer, the Taylor remainders in the above equation have
order

eTadAZadZ']BI adZ|lB+...+ adzz—l—madil‘llB

(T 7,)ady =41 5491
2ady "'ady| B

(36)
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dr elF2)ady g dh N ad? B = O(2P),
/ *p-1-a)la! —l—ql)q AT

(37)

for all ¢;. We keep these terms in our expansion and substitute the remaining ones back to the original conjugation of matrix

exponentials.

We repeat this analysis for all the remaining layers of the conjugation of matrix exponentials. In doing so, we keep track

of those terms with order O(z”), obtaining

eTAx “ee eTAZ eTAlBe_TAl e_TAZ P

s

+ g g Tad/\x .. TadAk+1
k=1 q|+ +q/{ P

RPLEL N adzk ..
k

for some operators Cy, Cy, ...,
representation of the Trotter error.

e =Co+Cir+ -

C -1 Because of the order condition, the terms of order 1,7, ..., 77~

+ Cp_lTp_l
T_T2>qk qu]+ Q-1

1) Q1! qr!

/ dT2

adf B (38)

will vanish in our final

We now bound the spectral norm of those terms with order O(z”). By the triangle inequality, we have an upper bound of

s 7| — @1 | 7| q1+FGp-
Sy [Men
0 (g = D'qe ! ¢

k=1 a1t-ta=p
q#0

S

> 2

[ ——
qx#0

>

i, =

= Qcomm (As >

This bound holds for arbitrary operators Aj,A,, ..., A,.
When these operators are anti-Hermitian, we can tighten
the above analysis by evaluating the spectral norm of a
matrix exponential as 1. We have therefore arrived at the
theorem. L]

We apply Theorem 5 to expand every conjugation of
matrix exponentials of the error operators 7 (z) and £(z)
into a finite series in 7. After taking the linear combination,
we obtain

7(z)
&(7)

=To+T T4
—Ey+Ejt+---

+ Tyt + T, (1),

FE, 7 4 E,(r).  (40)

The operator-valued functions 7 ,(z) and £, () have order
condition O(z”), whereas T, ..., T,_; and E, ..., E,,_; are
independent of z. By Lemma D.1 and the order condition
7T (7),E(z) € O(?), we have

ad/q-\ll (B) ||€2M ZLI llAl

q!

< p >|T| Haqu . 'adZ]] (B)Hele‘Zj:‘ Al
g1+ qr/) P!

( p ) |T| ||adq‘ .. 'adf\l] (B)Hez‘fl > oAl
91" 9qs
p

AL B LIETED SNy
p!

(39)
|
TO - - Tp—l - EO - - Ep—l - O, (41)
or equivalently,
T(7) = 7, (7), E(r) = &y (7). (42)

We then bound the spectral norm of 7 ,(7) and £,,(7) using
Theorem 5. This argument establishes the commutator
scaling of the Trotter error. We state the result below and
leave the calculation details to Appendix E.

Theorem 6: (Trotter error with commutator scaling).
Let H= 25:1 H, be an operator consisting of I" sum—
mands and r>0. Let &(r)=[[L [,
be a pth-order product formula. Define &.opmm =

gm ..... —— ||[H7p+],~ [H,,.H,]-]||. Then, the addi-

tive Trotter error and the multiplicative Trotter error,
defined, respectively, by §(¢) = e + /(t) and S(t) =
e (I + (1)), can be asymptotically bounded as

el 0 Hry(r)
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1L ()|, [ 4(2) ]| = Oareommt? '™ 2 11y (43)

Furthermore, if H, are anti-Hermitian,
[ @], |2 (1)]| = O(Gcommt™*").- (44)

Corollary 7. (Trotter number with commutator scaling)
Let H= 25:1 H, be an operator consisting of I' sum-
mands with H, anti-Hermitian and 7> 0. Let §(f) =

e, H£:1 e"“onfln be a pth-order product formula.

Define Acomm = 51-72 ,,,,, ypH:l||[H]/p+1’”'[HJ/Q’HJH]'”]”'

Then, we have ||$"(¢/r) — e'|| = O(e), provided that

~1/p _1+1/p
rzo(ia“’"‘”‘t ) (45)

el/p

For any 6 > 0, we can choose p sufficiently large
so that 1/p <é. For this choice of p, we have

r = O(&ymmt' T°/€?). Therefore, the Trotter number scales

~o(1 . . .
asr = ag(gm)mt““"(l) if we simulate with constant accuracy.

To obtain the asymptotic complexity of the product-
formula algorithm, it thus suffices to compute the quantity
acomm = ZYIJ,Z"'”}//H»] ||[H7p+1 T [H}’z’ H}’l] o } H’ which
can often be done by induction. We illustrate this process
by presenting a host of applications of our bound to
simulating quantum dynamics (Sec. IVA), local observ-
ables (Sec. IV B), and quantum Monte Carlo methods
(Sec. IVC).

Note that we did not evaluate the constant prefactor of
our bound in Theorem 6. Indeed, our proof involves
inequality zooming that suffices to establish the correct
asymptotic scaling but is likely loose in practice. For
practical implementation, it is better to use Theorem 5,
which gives a concrete expression for the error operator. A
general methodology to obtain error bounds with small
constant factors is described in Appendix M. In Sec. VA,
we show that our bound reduces to previous bounds for the
Lie-Trotter formula [40,41] and the second-order Suzuki
formula [9,42,43,46], which are known to be tight up
to an application of the triangle inequality. We further
provide numerical evidence in Sec. V B suggesting that our
bound has a small prefactor for higher-order formulas
as well.

IV. APPLICATIONS

Our main result (Theorem 6) on the commutator
scaling of the Trotter error uncovers a host of speedups
of the product-formula approach. In this section, we
provide improved product-formula algorithms for digital
quantum simulation (Sec. IV A), simulating local observ-
ables (Sec. IV B), and quantum Monte Carlo methods
(Sec. IV C). We show that these results can nearly match or

even outperform the best previous results for simulating
quantum systems.

A. Applications to digital quantum simulation

We now present applications of our bound to digital
quantum simulation, including simulations of second-
quantized electronic structure, k-local Hamiltonians, rapi-
dly decaying long-range and quasilocal interactions, and
clustered Hamiltonians. Throughout this section, we let H
be Hermitian and ¢ > 0 be non-negative, and we consider
the real-time evolution e~"#.

Second-quantized electronic structure. Simulating elec-
tronic-structure Hamiltonians is one of the most widely
studied applications of digital quantum simulation. An
efficient solution of this problem could help design and
engineer new pharmaceuticals, catalysts, and materials
[11]. Recent studies have focused on solving this problem
using more advanced simulation algorithms. Here, we
demonstrate the power of product formulas for simulating
electronic-structure Hamiltonians.

We consider the second-quantized representation of the
electronic-structure problem. In the plane-wave dual basis,
the electronic-structure Hamiltonian has the form [see
Eq. (8) of Ref. [11]]

1
H= EZK% cos|k, - rk_j]A}Ak

J.kw
T
4r Cl COS[KU : (;l - rj)] N
. K2 i
Js.v#0 v
U
2n cos(k, - 7]
+= Y —5 NN, (46)
w J#k Ky
v#0
v

where j, k range over all n orbitals and w is the volume of
the computational cell. Following the assumptions of
Refs. [11,25], we consider the constant density case where
n/w = O(1). Here, k, = 2zv/w'/3 are n vectors of plane-
wave frequencies, where v are three-dimensional vectors of
integers with elements in [—n'/3, n'/3], r; are the positions
of electrons, ¢, are nuclear charges such that
> 18] = O(n), and 7, are the nuclear coordinates. The

operators A; and A, are electronic creation and annihilation

operators, and N; = A;A j are the number operators. The
potential terms U and V are already diagonalized in the
plane-wave dual basis. To further diagonalize the kinetic
term 7, we may switch to the plane-wave basis, which is
accomplished by the fermionic fast Fourier transform
(FFFT) [see Eq. (10) in Ref. [11]]. We have
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1
H = FFFT' (E szNv> FFFT+ U +V. (47)
14

—_——
T

To simulate the dynamics of such a Hamiltonian for time
t, the current fastest algorithms are qubitization [24,60]
with O(n’t) gate complexity and a small prefactor, and the
interaction-picture algorithm [25] with complexity O(n?7)
and a large prefactor. We show that higher-order product
formulas can perform the same simulation with gate
complexity n2to(Mgl+e(l) For the special case of the
second-order Suzuki formula, this confirms a recent obser-
vation of Kivlichan et al. from numerical calculation [43].

Using the plane-wave basis for the kinetic operator and
the plane-wave dual basis for the potential operators, we
find that all terms in 7 and U + V commute with each
=i and
e into a product of elementary matrix exponentials
without introducing additional error, giving the product
formula

other, respectively. Then, we can decompose e
—it(U+V)

—l‘ta(y‘z)T —ita(T.l)(U+V) - —ila(l_z)T —ita(]vl)(U+V)

e e e e

— FFFT e~ TFFFTe 4. (U+V)
.+ FFFT' e~"402TFFFTe 1400 (U+V), (48)

For practical implementation, we need to further exponen-
tiate spin operators using a fermionic encoding, such as the
Jordan-Wigner encoding. However, these implementation
details do not affect the analysis of the Trotter error and will
thus be ignored in our discussion. The fermionic fast
Fourier transform and the exponentiation of 7, U, and V
can all be implemented using the Jordan-Wigner encoding
with complexity O(n) [25,61].

We compute the norm of [H, .---[H,,.H, | |, H, €
{T,U,V} by induction. We show in Appendix F that

&comm: Z ||[Hy,,+1""[H}/z’H}'l]"']”

VisV2s--s Vp+1

= OmrH). (49)

Theorem 6 and Corollary 7 then imply that a Trotter
number of r = O((nt)'*1/? /e!/7) suffices to simulate with
accuracy €. Choosing p sufficiently large, letting e be
constant, and implementing each Trotter step as in
Refs. [25,61], we have the gate complexity

n2+0(1)tl+()(1) (50)

for simulating plane-wave electronic structure in the second
quantization.

k-local Hamiltonians. A Hamiltonian is k-local if it can
be expressed as a linear combination of terms, each of

which acts nontrivially on at most k = O(1) qubits. Such
Hamiltonians, especially 2-local ones, are ubiquitous in
physics. The first explicit quantum simulation algorithm by
Lloyd was specifically developed for simulating k-local
Hamiltonians [2], and later work provided more advanced
approaches based on the linear-combination-of-unitary
technique [5-7,23-25]. Here, we give an improved
product-formula algorithm that can be advantageous over
previous simulation methods.

We consider a k-local Hamiltonian acting on n qubits,

H= ) Hj - (51)

acts nontrivially only on qubits
;, has support {y, ..., j }, denoting

where each H;
Jis s Ji- Wesay Hj,

.....

S(Hj,....j) = {jts i} (52)

We may assume that the summands are unitaries up to
scaling and can be implemented with constant cost;
otherwise, we expand them further with respect to the
Pauli operators. The fastest previous approach to simulating
a general k-local Hamiltonian is the qubitization algorithm
by Low and Chuang [24], which has gate complexity
O(n*||H||y1) where ||H|[, =32, [1H;, ..l

To compare with the product-formula algorithm, we
need to analyze the nested commutators [Hr,,w
---[H,,.H,]---], where each H, is some local operator
H; ;. Inorder for this commutator to be nonzero, every
operator must have support that overlaps with the support
of operators from the inner layers. Using this idea, we
estimate that

&comm = Z |HH7,,+1""[HyyHy]]“']H
V15Y25eees Vp+1

= O(IIHNIT A1) (53)

where |||H|||, is the induced one-norm defined in Eq. (6).
Theorem 6 and Corollary 7 then imply that a Trotter

number of r = O(||H||,||H||\/"#+1/7 /e'/P) suffices to
simulate with accuracy e. Choosing p sufficiently large,
letting € be constant, and implementing each Trotter step
with @(n*) gates, we have the total gate complexity

o(1 o
||H| | | e em (54)

for simulating a k-local Hamiltonian H. See Appendix G
for more details.

We know from Sec. IIA that the norm inequality
IlH||; < ||H||; always holds. In fact, the gap between
these two norms can be significant for many k-local
Hamiltonians. As an example, we consider n-qubit

power-law interactions H = Z?,fe A H;,; with exponent
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a [52], where A C R? is a d-dimensional square lattice, H;j

is an operator supported on two sites 7; € A, and

1 ifi=]
|H5ll <4 -, = (55)
o i

Examples of such systems include those that interact via the
Coulomb interactions (a = 1), the dipole-dipole inter-
actions (a = 3), and the van der Waals interactions
(a = 6). It is straightforward to upper bound the induced
1-norm,

O(n'=%4) for0<a<d
1HZ][[, = § O(logn)  fora=d (56)
o(1) for a > d,
whereas the 1-norm scales like
O(n*>4)  for0<a<d
|H|l, = ¢ O(nlogn) fora=d (57)
O(n) for a > d.

Thus, the product-formula algorithm has gate complexity

forO0<a<d

58
for a > d, (58)

n3—%+o(l)t1+0(l)
Ja = { p2+o(l) fl+o(1)
which has better n dependence than the qubitization
approach [24]. We give further calculation details in
Appendix H.

Rapidly decaying power-law and quasilocal interactions.
We now consider d-dimensional power-law interactions
1/x* with exponent @ > 2d and interactions that decay
exponentially with distance. Although these Hamiltonians
can be simulated using algorithms for k-local Hamiltonians,
more efficient methods exist that exploit the locality of the
systems [52]. We show that product formulas can also
leverage locality to provide an even faster simulation.

We first consider an n-qubit d-dimensional power-law
Hamiltonian H = >, ..x H; > with exponent a > 2d. Such
a Hamiltonian represents a rapidly decaying long-range
system that becomes nearest-neighbor interacting in the
limit @ — co0. For a > 2d, the state-of-the-art simulation
algorithm decomposes the evolution based on the Lieb-
Robinson bound with gate complexity O((nr)'*+24/(@=d))
[52]. We give an improved approach using product for-
mulas which has gate complexity (nz)!*4/(a=d)+o(1),

The idea of our approach is to simulate a truncated
Hamiltonian H = ZH!—]” <¢ H77 by taking only the terms
H; where |7 = 7|, is not more than ¢, a parameter that we

ije

determme later. The resulting A is a 2-local Hamiltonian with
I-norm || H||, = O(n) and induced 1-norm |||H|||, = O(1).

Theorem 6 and Corollary 7 then imply that a Trotter number
of r = O(n"/P11+1/P /€!/P) suffices to simulate with accu-
racy e. Choosing p sufficiently large, letting ¢ be constant,
and implementing each Trotter step with O(n£?) gates, we
have the total gate complexity #¢(nt)'+°(!) for simulating A.
We know from Corollary A.5 that the approximation of
exp(—iHt) by exp(—iHt) has error
le= — =) = O(||H — H]|l1). (59)
where |[H — H|| = O(n/¢*?) for all @ > 2d. To make this
at most O(e), we choose the cutoff # = @((nt/e)'/ (@),
Note that we require nt>¢ and ¢ <en®?2 so that
n'/¢ > ¢ > 1. This choice implies the gate complexity

(nt)l-‘rd/(a—d)—‘ro(l)’ (60)

which is better than the state-of-the-art algorithm based on
Lieb-Robinson bounds [52]. We leave the calculation
details to Appendix H.

We also consider interactions that decay exponentially
with the distance x as e™#*:

|zl < e, (61)

where > 0 is a constant. Although such interactions
are technically long range, their fast decay makes them
quasilocal for most applications in physics. Our approach
to simulating such a quasilocal system is similar to that for
the rapidly decaying power-law Hamiltonian, except we
choose the cutoff # = ®(log(nt/¢)), giving a product-
formula algorithm with gate complexity

(nt)t o), (62)

See Appendix H for further details.

Our result for quasilocal systems is asymptotically the
same as a recent result for nearest-neighbor Hamiltonians
[35]. For rapidly decaying power-law systems, we repro-
duce the nearest-neighbor case [35] in the limit & — 0.

Clustered Hamiltonians. We now consider the applica-
tion of our theory to simulating clustered Hamiltonians
[53]. Such systems appear naturally in the study of classical
fragmentation methods and quantum mechanics or molecu-
lar mechanics methods for simulating large molecules.
Peng, Harrow, Ozols, and Wu recently proposed a hybrid
simulator for clustered Hamiltonians [53]. Here, we show
that the performance of their simulator can be significantly
improved using our Trotter error bound.

Let H be a Hamiltonian acting on n qubits. Following the
same setting as in Ref. [53], we assume that each term in H
acts on at most two qubits with spectral norm of at most
one, and each qubit is interacted with at most a constant
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number d’ of other qubits. We further assume that the qubits
are grouped into multiple parties and write

H=A+B=Y H"+Y H, (63)
i 1

where terms in A act on qubits within a single party,
terms in B act between two different parties, and
1EM), 1HP < 1 for all L.

The key step in the approach of Peng et al. is to group the
terms within each party in A and simulate the resulting
Hamiltonian. This step is accomplished by applying
product formulas to the decomposition

H=A+Y HY. (64)
1

Using the first-order Lie-Trotter formula, Ref. [53] chooses

the Trotter number
har?
r=0 (L) (65)
€

to ensure that the error of the decomposition is at most €,

where hg = Y, ||[H 52) || is the interaction strength. Here, we
use Theorem 6 and Corollary 7 to show that it suffices
to take

d/(1+p/2)hg/17)tl+(l/p) hllg/]’tH»l/p
"= 0( (177 ) = O( o7 ) (66)

using a pth-order product formula

. . @) . ; )
S(t)= emitarA He—zta(mH, .. ‘e_”a‘AHE_lm("’)Hl . (67)
l [

This analysis improves the analysis of Ref. [53] for the
first-order formula and extends the result to higher-order
cases. Details can be found in Appendix L.

The hybrid simulator of Ref. [53] has runtime 20(rec(g))
where r is the Trotter number and cc(g) is the contraction
complexity of the interaction graph g between the
parties. Our improved choice of r thus provides a dramatic
improvement.

B. Applications to simulating local observables

In this section, we consider quantum simulation of local
observables. Our goal is to simulate the time evolution
d(t) = e™Ae~"™ of an observable A, where the support
S(A) can be enclosed in a d-ball of constant radius x, on a
d-dimensional lattice A C R4, Throughout this section, we
consider power-law interactions with exponent @ > 2d, and
we assume ¢ > 0.

Although a local observable can be simulated by
simulating the full dynamics as in Sec. IVA, this is not
the most efficient approach. Instead, we use product
formulas to give an algorithm whose gate complexity is
independent of the system size for a short-time evolution;
this complexity is much smaller than the cost of full
simulation. As a by-product, we prove a Lieb-Robinson-
type bound for power-law Hamiltonians that nearly
matches a recent bound of Tran et al. [52].

Locality of time-evolved observables. Our approach is to
approximate the evolution /(t) = e Ae=" of the local
observable A by e/ Ae~iHi where H,, is a Hamiltonian
supported within a light cone originating from A at time 0.
Although this approximation can be achieved using Lieb-
Robinson bounds [52], we give a direct construction using
product formulas.

Without loss of generality, we assume that the
Hamiltonian H is supported on an infinite lattice [62].
The idea behind our approach is as follows. We first
truncate the original Hamiltonian to obtain H . We
group the terms of H ., into d-dimensional shells based
on their distance to the observable and use a product
formula &, (f) to approximate the evolution. Unlike in
Sec. IVA, we choose a specific ordering of the summands
so that the majority of the terms in &yyn.(f) can be
commuted through the observable to cancel their counter-

parts in & (7). We define the reduced product formula
Sreduce (7) as in Fig. 1 by collecting all the remaining terms
in & yunc (¢). This approach gives an accurate approximation
to a short-time evolution. For larger times, we divide the
evolution into r Trotter steps and apply the above approxi-
mation within each step. We reverse this procedure within
the light cone to obtain & (¢), which simulates the desired
Hamiltonian H,.. See Fig. 2 for a step-by-step illustration of
this approach.

Time

[
L Al
AMAANNANNANNNNNNNNNNNNNNNNNNNNN

MANNNNNN
— > > —> Sites
AB AB; F ABy

FIG. 1. Demonstration of the second-order product formula for
simulating the evolution of an observable B supported on
S(B) = ABy. Each rectangle represents a unitary supported on
the sites covered by the width of the rectangle. The evolution
unitary e~ is decomposed using the second-order product
formula into T = 2 stages. Each stage is a sequence of I' =3
matrix exponentials generated by Hamiltonian terms supported
on parts of the system. Some of these unitaries (red shaded
rectangles) can subsequently be commuted through B in the
expression e (1) BS uune (1) to cancel out with their Hermitian
conjugate. As a result, the time-evolved version of B can be
effectively described by the remaining unitaries (light-gray
rectangles).
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FIG. 2. Construction of the Hamiltonian H,. within the light
cone such that e/ Ae~"H x ¢ific Ae~H1e | Each rectangle repre-
sents a unitary supported on the sites covered by the width of the
rectangle. Specifically, the rectangle in the top panel represents
the evolution e~ that we want to decompose. We divide the
evolution into r steps. Within each step, we truncate the
Hamiltonian to H,,. and decompose its evolution using a
product formula &' ,,.. We commute certain matrix exponentials
in &y (represented by red shaded rectangles) through the
observable to cancel their counterpart, obtaining & .quc. in the
second panel. We reverse this procedure within the light cone to
construct &), in the third panel, which approximates e~ as
illustrated in the bottom panel.

We consider a general observable B, and we assume that
S(B)—the support of B—is a d-dimensional ball of radius
yo centered on the origin. We analyze B as opposed to the
original observable A so that our argument not only applies
to the first Trotter step but also to later steps where A is
evolved and its support is expanded. We denote by

dist(i, S(B)) = inf;eS(B)\|?—j\|2 the distance between i

and S(B), by B, := {i € A:dist(i, S(B)) < y} a ball of
radius y 4y, centered on S(B), and by AB,, =
B,\B(,-1)s the shell containing sites between distance
(y = 1)¢ and y¢ from S(B), where ¢ > 1 is a parameter to
be chosen later and y € N is a non-negative integer—with
the convention that B_, = @ so that ABy = By = S(B).
We illustrate the sets B,, and AB,, for several values of y
in Fig. 1.

Starting from the power-law Hamiltonian H =
Z?‘,}e A H;.’;, we group terms based on their distance to

the observable B and define H; =

;.;‘EBK ij’

H, = Hi;+ Hy;. (68)

f.feAB,, 75_“@- )¢

jeaB,,
fory=2,....,'=1, and Hr = Z;ng(H)f
stant I" to be chosen later. In this construction, all H, with

even y commute, and all H, with odd y commute. We
consider the truncated Hamiltonian

H;.} with con-

r
Hiyne = ZH;/ (69)
y=1

instead of H, which incurs a truncation error of

—itH _ p=itHune

— O(I1H = Hyuellt) = O(

€ = |le

(y() + Ff)d_lt
fa—d—l

See Appendix J for details of the proof.
Next, we simulate the evolution e~"Hwne using the pth-
order product formula [see Eq. (12) and Fig. 1]:

T

Stunc(t) = H H e~ 1w r, ) (70)

v=1 y=1
where we put additional constraints on the permutation z,:

7,(1,2,3,4,5,6,...)

{(2,4,6,...,1,3,5,...)
-1 (1,3.5....,2.4.6,..)

if v i1s odd

L (71)
if v is even.
Such a permutation can be realized using Suzuki’s
original construction [21] and taking into account that
[HZk’ H2k/] =0and [H2k+17 H2k/+1] = 0 for all k, K. Using
Theorem 6, we show in Appendix J that the error of
approximating e~ Hwne by &0 (2) is
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€ = ||e—itH[mm - CS>trunc(t)||

=0 X My [ )
— O((yp +T2)-1£0+1), (72)

Note that the Hamiltonian terms H, (for y > 2) commute
with B. Therefore, the exponentials in &, (¢) correspond-
ing to these terms can be commuted through B to cancel
with their counterpart in Syue(2)’. By choosing the
constant ' = Y + 1, we have
|

|| llHBe—ltH CST

reduce

( )B‘"S)reduce(t)H < ||eilHBe—i;H _

+ ||°S)t+runc( )BStrunc(t)
<2|Bl|(e1 +€) +0

itleunc Be_itHLrunc |

(Strunc( )Bé)trunc( ) (\S)Zeduce( )B‘greduce(t) ’ (73)
where

4

reduce H e lld a (74)

v=1 y=1

We call &equee(?) the reduced product formula. This
formula approximates the evolution e~*# of local observ-
able B with error

+ ” elth‘mBe_”H"um - ‘“S):rrunc< )Béjtrunc(t) ||
reduce ( )Bcsjreduce (t) ”

1
= O(HB”t(yO =+ Ff)d_l <fa—d—1 + fﬂJ)),

The above decomposition is accurate for a short-time
evolution. For larger times, we divide the simulation into r
Trotter steps and apply this decomposition within each
step. We analyze the error in a similar way as above, except
that B is defined by applying the reduced product formula
to the observable A. Since the spectral norm is invariant
under unitary transformations, we have || B||=||A||=0O(1).
Another difference is that the support of the observable is
expanded by I'Z after each Trotter step; i.e., we set y, to be
Xg, Xg +I'Z,..., and x + rI'Z. Using the triangle inequal-
ity, we bound the error of the reduced product formula by

1 tP
d—1
O(l(X() + rFf) (f{l—d—l + fr—p)> (75)

We now apply the above procedure in the reverse
direction but only to Hamiltonian terms within the light
cone, incurring a truncation error of at most €; and a Trotter
error of at most €,. This method replaces & oquee(?) by
S'e(1), the product formula that simulates the Hamiltonian
H,. whose terms have distance of at most rI'Z to the local
observable A. See Fig. 2 for a step-by-step illustration of
this approach. We analyze the error in a similar way as
above, establishing the following result on evolving local
observables.

Proposition 8: (Product-formula decomposition of
evolutions of local observables). Let ACR? be a
d-dimensional square lattice. Let H be a power-law
Hamiltonian (55) with exponent o > 2d, and let A be an
observable with support enclosed in a d-dimensional ball of
constant radius x,. Construct the Hamiltonian H,. as above
using pth-order Y-stage product formulas & unc(?),
S reduce (1), and &'.(¢). Then, the support of H,. has radius

|
Xo + rI'? and

e Ae=itH — gitHic Ag=itHic||

1 tP
— d—-1
= O(t(XO + I’Ff) <Lﬂ(l—d—] +fr—p>>, (76)

where the positive integer £ is a parameterand ' =T + 1
is constant.

Gate complexity of simulating local observables. We
now analyze the gate complexity of simulating local
observables using the decomposition in Proposition 8.
Assuming the support &'(A) has constant radius x, =
O(1) and T'=O(1), we simplify the error bound in
Eq. (76) to

et Ae=itH — itHic A g=itHic|
1 ‘P

= O(l(n”)d‘l <fa_d_l + r”)) (77)

To minimize the error, we choose the cutoff

£ = 0O((r/t)?/(@=9) > 1, which is larger than 1 provided
r > t (and recall that we assume a > 2d, so, in particular,
a > d). With this choice of #, the error becomes

t PW*jd) [WL{;“—"

d-1 - _ -
o <tr (;) ) - O( p(a—Zd)—(a—d)(d—])) .
r a—d

We then choose an appropriate Trotter number r as detailed
in Appendix J and find that

Ja = I+ (145 +o(1) (78)
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suffices to simulate a local observable with constant
accuracy. The gate count is independent of the system
size and thus less than the cost of simulating the
full dynamics (58) when the system size is
n = Q(td@=4)/(¢=2d)) "However, in contrast to the simula-
tion of e~ where the asymptotic error scaling is robust
against the reordering of Hamiltonian terms, we obtain a
smaller error for simulating </(¢z) by defining product
formulas with a special ordering that preserves the locality
of the simulated system.

Additionally, in the limit @ — oo, which corresponds to
nearest-neighbor interactions, we have the gate count

Ooo = l‘d+1+0(1). (79)

This result has a clear physical intuition: It is (nearly)
proportional to the space-time volume ¢**! inside a linear
light cone generated by the evolution.

Lieb-Robinson-type bound for power-law Hamiltonians.
The Lieb-Robinson bounds—first derived for nearest-
neighbor interactions [63] and subsequently generalized
to power-law systems [52,64—70]—have found numerous
applications in physics, including designing new algo-
rithms for quantum simulations [52,71]. They bound the
speed at which a local disturbance spreads in quantum
systems. Here, we show that the decomposition of
Proposition 9 constructed using product formulas also
implies a Lieb-Robinson-type bound for power-law
Hamiltonians.

The subject of the Lieb-Robinson bounds is usually the
commutator norm

Clt.p) = [ A, B

, (80)

where A, B are two operators whose supports have distance

dist(S(4). S(B)) = inf [i=jll,=p. (81)

ies(A).jeS(B)
and e " is the time evolution unitary generated
by a power-law Hamiltonian H. Our above discussion
shows that e™Ae~" is approximately e/fcAeitHi,
which is supported on a ball of radius x = O(r¢) =
O(r(r/t)P/@=4)) centered on S(A). By choosing r =
O(pla=d/la=dtp)gp/la=d+p)) o that x <p, we make
e Ae~ie commute with B, and therefore C(t,p) is
small. More precisely,

pla=2d)+a—d

I a—d
(1, r) = O\ —zrmawn
r a—d
t_(p:i()[(:;@ t(l—d +o(1)
=0 Ha2d-@=A@=1) | — g—2dto(l)
p a—d+p p

Note that we have implicitly assumed that
pla=d)/(a=d+p)yp/(a=d+p) > | g0 that we can choose r > 1.
The bound implies a light cone ¢ > p(@=24)/(a=d)+o(1) "which
can be made arbitrarily close to the light cone tZ
pla=2d)/(a=d) of the recent bound in Ref. [52] for all values
of d [72].

C. Applications to quantum Monte Carlo simulation

We now apply our result to improving the performance
of quantum Monte Carlo simulation. Here, the goal is to
approximate certain properties of the Hamiltonian, such as
the partition function, rather than simulating the full
dynamics. We consider two specific systems: the transverse
field Ising model of Ref. [38] and the ferromagnetic
quantum spin systems of Ref. [39]. For both simulations,
the ideal evolution is decomposed using the second-order
Suzuki formula, and we show that such a decomposition
can be made more efficient using our tightened analysis.

Transverse field Ising model. Consider the n-qubit
transverse field Ising model H = —A — B, where

A= > juZZ.  B=> hX. (82)

1<u<wv<n 1<u<n

Here, X, and Z,, are Pauli operators acting on the uth qubit,
and j,, >0 and h, >0 are non-negative coefficients.
Define j := max{j,,,h,} to be the maximum norm of
the interactions. Our goal is to approximate the partition
function

Z =Tr(e ), (83)

up to a multiplicative error 0 < ¢ < 1.

Reference [38] solves this problem with an efficient
classical algorithm. A key step in their algorithm is a
decomposition of the evolution operator using the second-
order Suzuki formula, so

Z'=Tr[(eePer )] S (1+e)Tr(e ) = (1+¢€)2. (84)

However, their original analysis does not exploit the
commutativity relation between A and B, and it can be
improved by the techniques developed here.

Note that this is different from the usual setting of digital
quantum simulation. As the matrix exponentials in the
product formula are no longer unitary, we introduce an
additional multiplicative factor when we apply Theorem 6.
In addition, we need to estimate the multiplicative error of
the Trotter decomposition as opposed to the additive error
analyzed earlier for digital quantum simulation.

Let A and B be Hermitian matrices, and consider the
evolution e/*8) with > 0. Our goal is to choose r
sufficiently large so that we can approximate the eigen-
values as
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(e e e)) m Ay (e ATP), (85)

up to a small multiplicative error, where 4;(-) denotes the
ith smallest eigenvalue. We define

U := e/A+B), (86)

V = e efBeﬁA’ (87)
W =T exp </r dr e~7das <e§adAB -B
0

. A A
+ Eiad“‘ €mdB E - E) ) . (88)

Then, both U and V are positive-semidefinite operators, and
we know from Theorem 3 that V = UW. In Appendix K 1,
we show that if r is a power of 2,

Ai(V") < 4(U7) (89)
where
W[ < exp i||ac123|| +3 ||ad All ) e4lal+181)
N 2472
(90)

Equation (89) says that the eigenvalues of V" are upper
bounded by the eigenvalues of U” multiplied by a factor of
[[W]|". To ensure that the factor is close to 1, we require

£, 28
r 2 maxq 4¢([lAll + [|B]). \/5- ladiBll. /= [ladpAll ..
(O1)

in addition to being a power of 2. The first condition in
Eq. (91) is so that e*/"UAIHIBI) < ¢ < 4, while the last two
conditions make sure that both (#*/24r%)||ad3B|| and
(£*/4r)||ad3A|| are bounded by €/8. Therefore, we have
[[W]| < e, which implies

= Zﬂi(V’) < Zli(U’)e

(1+ G)Zﬂi(U’) =(1+¢)Z, (92)

assuming € < 1. Following similar arguments, we can show
that this choice of r also gives a lower bound of Z" with
Z' > (1 —¢)Z. Therefore, we have approximated the par-
tition function up to a multiplicative error e.

We now specialize our result to the transverse field Ising
Hamiltonian with # = 1. We find that

1A[l =
[ad3 B|| =

O(n?)).

O,

1B]] = O(nj),
ladZA| = O@?j%).  (93)

which implies
r=0(n%j + n3? 2 1/?). (94)

Using Ref. [38] (p. 17), this analysis gives a fully poly-
nomial randomized approximation scheme (FPRAS) with
running time

O(n'r14e2) = O(n* M2 + n¥21¢7%),  (95)
improving over the previous complexity of
O(n59J21€—9) (96)

Quantum ferromagnets. We now apply our technique to
improve the Monte Carlo simulation of ferromagnetic
quantum spin systems [39]. Such systems are described
by the n-qubit Hamiltonian

n
(=buX Xy + cVu¥o) + Y d(I+Z,),

1<u<wv<n u=1

H =

where 0<b,, <1, -b,, <c,, <b,,, and -1 <d,, < 1.
It will be convenient to rewrite these Hamiltonians
using the coefficients p,, = (b,, — c4)/2 and g, =

(buv + Cuv)/z as

H= Z pm}(_XuXv_Yqu)

1<u<wv<n

+ > qu(=XX, +Y,Y,) +Zd (I +Z.).

1<u<wv<n u=1

Since |¢,,| < b,, < 1, we have p,,, q,, € [0, 1].
Our goal is to approximate the partition function

Z(B.H) = Tr[e~], 97)

for f > 0. Following the setting of Ref. [39], we restrict
ourselves to the n-qubit matchgate set

1
{fu<eﬂ>,guv<z>,hw<r>|u,v om0 << 2},
(98)

where
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1+2 0 0 ¢
fet’ 0 0 1 00
et ) £ = .
f(e™) 0 1 g(1) o 0 1 0
t 0 0 1
1 0 0 0
0 1+ +t 0
h(t) = , 99
(1) 0 t 1 0 (%9)
L0 0 0 1

and the subscripts u, v indicate the qubits on which the
gates act nontrivially. The motivations for using these gates
can be found in Ref. [39], and we do not repeat them here.
These gates approximately implement the exponential of
the Hamiltonian terms in the sense that

fu(e:tt) _ ej:%(1+Zu)’ (100)
g’“;([) — e—%(—XuX,+Y“Yv)+O(f2)’ (101)
h’”)(l‘) = e_%(_xuxl_yuyl)+0(12). (102)

We divide the evolution into r steps and apply the
second-order Suzuki formula within each step to further
decompose e~#/"H into the elementary gates [Eq. (98)].
Here, we have two sources of error: the Trotter error and the
error from using the gate set in Eq. (98). In the following
analysis, we assume

r>2p (103)
so that we can implement the product formula using gates
from Eq. (98) with parameters

1 p 1 B 1 B 1
Py il - ? — 104
F<—du<z 0<Tqu <5, 0<7p, <5 (104)

In Appendix K 2, we use the interaction picture (Lemma
A.2) to show that

Hfu(e }> 11 guv< qm>

1<u<n 1<u<wv<n
H huv( put) H huv( puv)
1<u<wv<n I<u<wv<n
_b
H guv< Qub> H f =e ’HU, (105)
1<u<wv<n 1<u<n

where the operator U has spectral norm bounded by

2 41121 12;12;
B />, (106)

Jull < exp( Lenh
A

for some constant ¢ > 0. Roughly speaking, Eq. (105)
approximates the exponential e~*/")# by the gates in the
gate set (98) up to a multiplicative factor U.

The remaining analysis proceeds in a similar way as that
of the transverse field Ising model. We find that each
eigenvalue of

[Hﬁ(ei ) 11 gw< LLw)

1<u<n I<u<wv<n
L ma(Zon) TT h(2o)
I<u<wv<n 1<u<wv<n
——d
[T oo (Zan) TL ()]
1<u<wv<n 1<u<n

approximates the corresponding eigenvalue of the ideal
evolution e™”# with a multiplicative factor

2 2 2 ’72 ]n2
||U||’Sexp< g ﬂ : ”>. (107)
r 2
We first set
r> 24n°p (108)
so that
232 43
, R 2en'p
|U|| <exp< + ;" . (109)
We then choose
8 232 2 2133/2
r > max nﬂ’ \/Enﬂ (110)
€ el/?

to ensure that the multiplicative error is at most €. From
Eqgs. (103), (108), and (110),

—o(I),
€

which gives the total gate complexity (see Supplementary
p. 11 in Ref. [39])

(111)

j=2n%r = O(%) (112)

The result of Theorem 2 in Ref. [39] gave a Monte Carlo
simulation algorithm for the ferromagnetic quantum spin
systems. To improve that result, we also need to estimate
the error of partial sequence of the product formula as in
Ref. [39] [Eq. (13)]. This estimation can be done in a
similar way to our above analysis. The resulting random-
ized approximation scheme has runtime
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23 92 46
(] A (o (1+ %)
(’)(62> :(9(625 , (113)
which improves the runtime of the original Bravyi-Gosset
algorithm

625 (114)

_ /pl1s 46
V. ERROR BOUNDS WITH
SMALL PREFACTORS

We now derive Trotter error bounds with small prefac-
tors. These bounds complement the above asymptotic
analysis and can be used to optimize near-term implemen-
tations of quantum simulation. In Sec. VA, we show that
our analysis reproduces previous tight error bounds for the
first- and second-order formulas [41,42,46]. We then give
numerical evidence in Sec. V B, showing that our higher-
order bounds are close to tight for certain nearest-neighbor
interactions and power-law Hamiltonians. Throughout this
section, we let H be Hermitian and let r € R, and we
decompose the real-time evolution e~/,

A. First- and second-order error bounds

We derive error bounds for the first-order Lie-Trotter
formula and second-order Suzuki formula following the
work of Refs. [40,43]. In this work, we first analyze the
Trotter error of decomposing the evolution of a two-term
Hamiltonian. We then bootstrap the result to analyze
general Hamiltonians with an arbitrary number of operator
summands. The resulting bounds are nearly tight because
they match the lowest-order term of the BCH expansion up
to an application of the triangle inequality [9,40—43].

Let H = A + B be a two-term Hamiltonian. The evolu-
tion under H for time ¢ > 0 is given by e~ = ¢~il(A+5),
which we decompose using the first-order Lie-Trotter
formula & () = e~"Be~"A. We first construct the differ-
ential equation

d
—&(t)=
S8
with initial condition &(0) = I. Using the variation-of-
parameters formula (Lemma A.1),

—iHS | () + e B (e (iA) —iA)e™ A, (115)

(5’ :—ltH+/dTlet1]

. e_”-] lTladlf (IA) lA) —it|A (116)

Using Theorem 4 or by direct calculation, we find the order
condition 13 (iA) — iA = O(t;), which implies

eifladB(iA) —iA = / l dr, eiTZadBadiB(iA)~
0

Altogether, we have the representation

. t T .
Si(t) = et +/ dr, / dr, e~ilt-m)H
0

. e‘”'Be”ZadBadi (lA) —it|A (1 17)
and the error bound for ¢ > 0,
. 2
|81 (1) — ™| < 5 1B, AJl. (118)

We bootstrap this bound to analyze a general Hamiltonian
H ="} H,. By the triangle inequality,

r
[[e - D
r=1
r 71 ri—1
. r R i r .
< g e llZn:nHHVZl |g_”HVz —e ZZZVZZHH’Z He_llH72
ri=1 r2=1 r2=1

. T
tH, -y H72

Vz 71+ V e -1 " —e 72=r1

i

Thus, we obtain the following proposition.
Proposition 9: (Tight error bound for the first-order
Lie-Trotter formula). Let H = ZLI H, be a Hamiltonian

consisting of I' summands and 7>0. Let &(¢) =

r
-
the additive Trotter error can be bounded as

[ Z H,.H, ]H (120)

72=71+1

[ ]

V2= }/1+1

(119)

| €7y be the first-order Lie-Trotter formula. Then,

r

—thH < r Z

71—1

[81(2) =

A generalization of this analysis gives an error bound for
the second-order Suzuki formula with a small prefactor (see
Appendix L for a proof).

Proposition 10: (Tight error bound for the second-order
Suzuki formula). Let H =)', H, be a Hamiltonian

consisting of I' summands and ¢>0. Let &,(z) =
Hgl/ el (t/2)H, HF el (1/2)H be the
Suzuki formula. Then, the additive Trotter error can be
bounded as

second-order

[82(1) — e
<] 2, e 2 e
24Z { ﬁ’[ i Hn””- (121)

72:}’1+1

011020-22



THEORY OF TROTTER ERROR WITH COMMUTATOR SCALING

PHYS. REV. X 11, 011020 (2021)

B. Higher-order error bounds

We now consider error bounds for higher-order product
formulas. Compared to the first- and second-order cases,
these formulas are harder to analyze due to their more
complicated definitions. Nevertheless, higher-order formu-
las have better asymptotic scaling and can be surprisingly
efficient even for simulating small systems, as observed
in Ref. [31].

We have analyzed the error of higher-order product
formulas in Sec. III. That analysis is sufficient to establish
the commutator scaling in Theorem 6, but the resulting
bounds have large prefactors. Here, we propose heuristic
strategies to tighten the analysis and numerically bench-
mark our bounds for nearest-neighbor and power-law
Hamiltonians. Our heuristics are specified in Appendix M.

Although we do not have a rigorous proof of the
tightness of our higher-order bounds, numerical evidence
suggests that they are close to tight for various systems. We
first consider simulating a one-dimensional Heisenberg
model with a random magnetic field

n—
H:
J

—

;- Zi1 + hZ)), (122)

1

where fj = (X i Yj,Zj) is the vector of Pauli operators
acting on the jth qubit and the coefficients /; € [-1, 1] are
chosen uniformly at random. This system can be simulated
to understand the transition between the many-body local-
ized phase and the thermalized phase in condensed matter
physics, although a classical simulation is only feasible
when the system size is small [74].

We classify the summands of the Hamiltonian into two

groups and set

!

,i
Ol
ki

(Zojot - Zoj + Mayjoi Z5j1),
1

A= (123)

J

R
B:

(izj : i2j+1 + hy;Z5;). (124)

j=1

Here, all the summands in A (and B) commute with each
other, so we can further decompose exponentials like
e~"aA (and e~"B) without introducing error, giving a
product formula with summands ordered in an even-odd
pattern [35]. We also consider grouping Hamiltonian
summands as

n—1 n—1
HIZZXij-J—h szzyijH,
=1 =1

n—1

Hy =) (ZiZjs1 +hiZ)),
J=1

(125)

which we call the X-Y-Z ordering [31]. Similar to the even-odd
ordering, the summands in H;, H,, and H; commute with
each other, respectively, so the corresponding exponentials
can also be decomposed without error. Note that our asymp-
totic bounds in Theorem 6 and Corollary 7 hold irrespective of
the ordering of Hamiltonian summands, but the prefactors
will depend on the choice of ordering. Our choice here
maximizes the commutativity of the Hamiltonian.

Up to a difference on the boundary condition, Ref. [31]
estimates the resource requirements of simulating the
Heisenberg model using various quantum algorithms.
They find that product formulas, especially the fourth-
order and the sixth-order formulas, can outperform more
recent quantum algorithms for simulating small instances
of Eq. (122), although their best Trotter error bound is loose
by several orders of magnitude. This looseness is alleviated
in Ref. [35], which gives a fourth-order bound that over-
estimates the gate complexity by about a factor of 17. For a
fair comparison, we numerically implement our approach
to analyze the fourth-order formula &,(7) as well; see
Appendix M for detailed derivations.

For the even-odd ordering, we need to compute all the
nested commutators of A and B. We do this by fixing one
term fzj_l . izj + hyj_1Z,j_; of A in the innermost layer
and simplifying all the outer terms using geometrical
locality. We then apply the triangle inequality to analyze
the summation of terms over j = 1,...,|[n/2]. We use a
similar approach to analyze the X-Y-Z ordering, thus
computing our error bounds for small 7. To simulate for
a longer time, we divide the evolution into r Trotter steps
and apply our bounds within each step. We seek the
smallest Trotter number r for which the estimated error
is at most some desired e. This number can be efficiently
computed using a binary search as described in Ref. [31].

We compare our improved analysis with the best
previous bounds [31,35] for simulating the Heisenberg
model (122). Specifically, we consider the so-called ana-
lytic bound (see Proposition F.4 in Ref. [31], which applies
to both the even-odd and the X-Y-Z ordering. The commu-
tator bound of Theorem F.11 of Ref. [31] offers a slight
improvement over the analytic bound; however, its numeri-
cal implementation requires extensive classical computa-
tions, so we only compare the existing result for the X-Y-Z
ordering. Likewise, we compare the locality-based bound
of Supplementary Material IV B in Ref. [35] only for the
even-odd case, although it can exploit the geometrical
locality of the X-Y-Z ordering as well.

To understand how tight our bounds are, we also include
the empirical Trotter number by directly computing the
error ||(S4(¢/r))" — e || for n =4, ...,12 and extrapo-
lating the results to larger systems. We choose the evolution
time ¢ = n and set the simulation accuracy € = 107 as in
Refs. [31,35]. For each system size, we generate five
instances of Hamiltonians with random coefficients. Our
results are plotted in Fig. 3.

011020-23



CHILDS, SU, TRAN, WIEBE, and ZHU

PHYS. REV. X 11, 011020 (2021)

107
E Even-odd
108 [| ®Analytic [31]

0 E| mLocality [37]
| mOur bound

107 ; m Empirical

3 r= O(nz.m)

= 105;

10! !

n

FIG. 3.

10°E
H x-v-z

108 [| ™ Analytic [31]

0 E| ®Commutator [31]
F| ®mOur bound

107 E m Empirical

10°
= 10°
10*
10°

10? £

10! .

Comparison of r for the Heisenberg model using the analytic bound (see Proposition F.4 in Ref. [31]), the commutator bound

(see Theorem F.11 in Ref. [31]), locality-based bound (see Supplementary Material IV B in Ref. [35]), and our new bounds, Proposition
M.1 and Proposition M.2. Error bars are omitted as they are negligibly small on the plot. Straight lines show power-law fits to the data.
Note that the exponent for the empirical data is based on brute-force simulations of small systems and thus may not precisely capture the

true asymptotic scaling due to finite-size effects.

We find that the asymptotic scaling of our new bounds
matches that of the empirical result up to finite-size effects,
and the prefactors are significantly tightened. Atn = 10, the
Trotter number predicted by our bounds is loose only by a
factor of 5.1 for the even-odd ordering of terms and 7.2 for
the X-Y-Z ordering. In comparison, the commutator bound of
Ref. [31] only exploits the commutativity of the lowest-order
term of the BCH series and is bottlenecked by the use of tail
bounds. The previous bound [35] based on geometrical
locality is also uncompetitive since it cannot directly
leverage the nested commutators of the Hamiltonian terms.

In addition to nearest-neighbor interactions, we also
consider the simulation of a one-dimensional Heisenberg
with power-law interactions:

where /; are again chosen randomly in [—1, 1] and @ > 0 is
a constant. Similarly to the case of nearest-neighbor
interactions, we use the fourth-order product formula with
X-Y-Z ordering,

j=1 k—j+1

n—1 n 1
e Zkz ke
J Jj+1

H3:ZZ< k|aZZk+h > (127)

j=1 k=j+1

and compare the empirical Trotter number against that
predicted by the best previous bound (Lemma 1) and our
new bound for simulating (126) for time ¢t = n with accuracy
€ = 1073. We consider different values of @, ranging from
a =0 (strong power-law interactions) to a =4 (rapidly
decaying power-law interactions). We note that for a > 2,
we simulate the evolution using the truncation algorithm
[with the asymptotic gate complexity given by Eq. (60)],
whereas for @ < 2, we simply simulate the entire Hamiltonian
[with the asymptotic gate complexity in Eq. (58)].

At n = 10, the empirical Trotter numbers are 552 4 45
(a =0) and 129 4+ 6 (a¢ = 4), where the standard deviation
is obtained by averaging over five instances of the random
field i;. Meanwhile, our bound gives 5609 + 3 (a = 0) and
885 £ 32 (a = 4)—about 10.2 and 6.9 times looser com-
pared to the empirical values, respectively. Our bound for
power-law interactions with small a performs slightly
worse than for the nearest-neighbor interactions, partly
due to the fact that the triangle inequality is invoked more
often for the power-law interactions.

We note that the number of interaction terms in a long-
range interacting Hamiltonian scales as n”, making it
difficult to compute our bound exactly at large n. Instead,
we further upper bound the norm of the nested commutator
using triangle inequalities and estimate this upper bound
using a counting argument similarly to Eq. (58). In Fig. 4, we
plot the empirical Trotter numbers against this counting
bound for different values of n at « = 0 and a = 4. The
figure shows that even our counting bound is tighter than the
previous estimates at both values of a. We leave a thorough
study of the efficient numerical implementation of our
bound as a subject for future work.

In addition, we plot in Fig. 5 the scaling exponents of the
Trotter numbers as functions of n at different values of
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FIG. 4. Comparison of r for the power-law Heisenberg model using the analytic bound (see Proposition F.4 of Ref. [31]), 1-norm
bound (Lemma 1), a bound from counting argument (58), and our bound (Proposition M.2). Error bars are omitted as they are negligibly
small on the plot. Straight lines show power-law fits to the data. Note that the exponent for the empirical data is based on brute-force
simulations of small systems and thus may not precisely capture the true asymptotic scaling due to finite-size effects.

4
.« 3.5 - -
) Power-law a =0
é 3+ =+=+ Analytic [31] L
& L ®  Our Bound
& i ®  Empirical
w25 - N 5
o § === o — 00 limit
2 iy
g o :
s mlEy [
m R
1 peeee == w1 | -i-i l-l g a-m --%
! ! !
0 1 2 3 4

[e%

FIG. 5. Comparison of the empirical scaling exponents of the
Trotter numbers (purple squares) against our bound (green
squares) as functions of the system size at different values of
the power-law exponent a. The error bars of the empirical values
represent the standard deviation of the fitted exponents (see
Fig. 4) over five instances of the random field /;. The bound is
derived from the counting argument in Eq. (53) and therefore has
no standard deviation. We attribute the systematic difference
between our bound and the empirical values to the fact that we
only compute the empirical Trotter numbers up to n = 11, which
may not capture the precise asymptotic scaling in the large-n
limit. We also include the scaling exponent of the analytic bound
in Ref. [31] (red dash-dotted line) as well as the theoretical
exponent in the limit @ — oo, i.e., nearest-neighbor interactions
(blue dashed line), for references.

a € [0,4]. While the scaling exponent of the analytic bound
in Ref. [31] is loose and independent of @, our bound
appears to correctly capture the scaling of Trotter number at
all values of a. In particular, it shows that the scaling
exponent decreases with a—indicating fewer resources
needed to simulate faster decaying interactions—and

approaches the value for simulating nearest-neighbor inter-
actions at large a.

VI. DISCUSSION

We have developed a general theory of Trotter error and
identified a host of applications to simulating quantum
dynamics, local observables, and quantum Monte Carlo
methods. We work with arbitrary finite-dimensional oper-
ators as opposed to anti-Hermitian ones, which makes our
theory applicable to both real- and imaginary-time evolu-
tions. We consider Trotter error of various types, including
additive error, multiplicative error, and error that appears in
the exponent. For each type, we apply the correct order
condition to cancel lower-order terms and represent higher-
order ones as explicit nested commutators. The list of
applications presented herein is not intended to be exhaus-
tive, and we believe our techniques can uncover more
speedups of the product-formula algorithm that were
previously unknown.

Compared to the analysis of other simulation algorithms
such as the truncated Taylor-series algorithm [23] and the
qubitization approach [24], the derivation of our Trotter
error theory is considerably more involved. However, the
resulting error bounds are succinct and easy to evaluate.
Theorem 6 shows that the Trotter error incurred by
decomposing the evolution generated by H = ij:] H,
depends asymptotically on the quantity @&.omm =
DD - \H,, .- [H, H,]-[, which can be
computed by induction as for the second-quantized plane-
wave electronic-structure, k-local Hamiltonians, rapidly
decaying interacted systems, clustered Hamiltonians, the
transverse field Ising model, and quantum ferromagnetic
spin systems. We further show how to improve the analysis
to find error bounds with small constant prefactors.
Numerical simulation suggests that our higher-order error
bounds are close to tight for systems with nearest-neighbor
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and power-law interactions, and we hope future work can
explore their tightness for other systems.

Our result shows that high-order product formulas can be
advantageous for simulating many physical systems.
Interestingly, we can often achieve this advantage without
using a formula of very large order. For d-dimensional power-
law interactions with exponent & > 2d, we have shown that
the pth-order product-formula algorithm has gate complexity
O((nt)'+d/(a=d)+1/p) " whereas the state-of-the-art Lieb-
Robinson-based approach requires O((nt)' 24/ (@) gates.
Product formulas can thus scale better if p > (a —d)/d,
which is small for various physical systems such as
the dipole-dipole interactions (o = 3) and the van der
Waals interactions (@ = 6). For other systems such as
nearest-neighbor interactions and electronic-structure
Hamiltonians, product formulas do not exactly match the
state-of-the-art result in terms of the asymptotic scaling, but
they are still advantageous for simulating systems of small
sizes [31,43].

The complexity of the product-formula approach is
determined by both the Trotter number (or Trotter error)
and the cost per Trotter step. A naive implementation of each
Trotter step exponentiates all the terms in the Hamiltonian,
which has a cost that scales with the total number of terms.
However, this worst-case complexity can be avoided by
truncating the original Hamiltonian, as we have demon-
strated in the simulation of rapidly decaying power-law
Hamiltonians. Recent studies have proposed other tech-
niques for implementing Trotter steps [9,43,75,76]. Those
techniques can be applied in combination with our Trotter
error analysis to further speed up the product-formula
algorithm.

We have restricted our attention to the evolutions gen-
erated by time-independent operators. In the more general
case, we have an operator-valued function H(7) =

5:1 H,(7), and our goal is to simulate the time-ordered
evolution 7 exp( [} dr 5:1 H, (7)) [5.23,25,57,77-79].
Under certain smoothness assumptions, Ref. [57] shows
that this evolution can be simulated using product formulas,
although the analysis there does not exploit the commuta-
tivity of operator summands. We believe our approach can be
extended to give improved analysis for time-dependent
Hamiltonian simulation, but we leave a detailed study for
future work.

Previous work considered several generalized product
formulas, such as ones based on the divide-and-conquer
construction [26], the randomized construction [27,29], and
the linear-combination-of-unitaries construction [28]. The
common underlying idea is to approximate the ideal
evolution to pth order using formulas of order g;, where
gy < p. Our theory can be applied to represent the ¢g,th-
order Trotter error in terms of nested commutators, thus
improving the previous analyses of Refs. [26-29]. This
approach leads to a better understanding of these

generalized formulas and justifies their potential utility
in quantum simulation.

Several other questions related to our theory deserve
further investigation. For example, the spectral-norm error
bound computed here would be overly pessimistic if we
simulate with a low-energy initial state. It would then be
beneficial to change the error metric to the Euclidean
distance to avoid the worst-case error propagation. Our
analysis has also assumed an operator decomposition H =

;:1 H, given a prior, but one may instead seek an
alternative decomposition to maximize the commutativity
of operator summands. We focus on the error analysis
within each Trotter step and apply the triangle inequality
across different steps, which may be improved upon as
hinted in previous work [80,81]. Finally, we have consid-
ered an idealized setting, and we hope future work could
take the effect of noise into account [82].

Product formulas arguably provide the most straightfor-
ward approach to simulating quantum systems. This
approach is empirically advantageous and is often the
method of choice for near-term demonstration of quantum
simulation. Despite their experimental success, the error
scaling of product formulas was poorly understood, and
prior to our work, their advantage was only rigorously
analyzed for a restricted collection of systems. The theory
developed here represents progress toward a precise char-
acterization of the Trotter error, which we hope will bridge
the gap between theoretical investigation and experimental
realization of quantum simulation.
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APPENDIX A: IDENTITIES OF
TIME-ORDERED EVOLUTIONS

In this section, we discuss some useful identities of time-
ordered exponentials. Let #'(7) be a continuous operator-
valued function defined for 7 € R. The time-ordered
exponential generated by #(7) satisfies the differentiation
rule (see p. 12 of Ref. [55])

O r P dew
8_t2 exp(/t1 T (r)>

— #(1,)T exp < [ " de 7/@)), (A1)

9 1 " dror
E)_tl exp</1 T (T))

— —Texp < / ® dr %’(1)) (1)), (A2)

and the multiplicative property (see p. 11 of Ref. [55])

T exp ( / . df%(r))
—Texp < / " dr%’(r))’]'exp ( / B df%(f)). (A3)

By definition, the operator-valued function %(¢) =
T exp([idr () satisfies the differential equation
(d/d7)%(7)=% ()% (r) with initial condition %(0)=1.
Generalizing this fact gives the following variation-of-
parameters formula:

Lemma A.1: (Variation-of-parameters formula—see
Theorem 4.9 in Ref. [83] and p. 17 in Ref. [55]). Let
(t), R(r) be continuous operator-valued functions
defined for r € R. Then, the first-order differential equation

—Ut) =F()U(t) + R(1),

4 %(0) known,

(A4)
has a unique solution given by the variation-of-parameters
formula

%(t) = T exp (Atd’[%(f))%(())
+ A’drl T exp (/t de, 7{@))%(11). (AS)

Let % (7) = o(r) + AB(zr) be a continuous operator-
valued function with two summands defined for
0 <7<t Then, the evolution under %(r) can be
seen as the evolution under the rotated operator
T exp™ ([T dr, o (1,))B(7)T exp( [f dryf(15)), followed
by another evolution under &/(7) that rotates back to the

original frame [25]. This is known as the “interaction-
picture” representation in quantum mechanics and is
formally stated in the following lemma.

Lemma A.2: (Time-ordered evolution in the interaction
picture). Let #(z) = 9/(r) + AB(r) be an operator-valued
function defined for r € R with continuous summands
() and B(r). Then,

Texp(/(jdr%(r))
_ TexpM’dm(r))
x T exp [Atdrl T exp-! (A dr, d(72)>

x B(1,)T exp <A de, ﬂ(12)>:|.

Proof-—A simple calculation shows that the right-hand
side of the above equation satisfies the differential equation

(A6)

d
J U0 = 7 (U (1)

(A7)
with initial condition % (0) = I. The lemma then follows,
as T exp( [} dr (7)) is the unique solution to this differ-
ential equation. [

For any continuous #(r), the evolution
T exp([¢ dz (7)) it generates is invertible and continu-
ously differentiable. Conversely, the following lemma
asserts that any operator-valued function that is invertible
and continuously differentiable is a time-ordered evolution
generated by some continuous function.

Lemma A.3: (Fundamental theorem of time-ordered
evolution—see p. 20 of Ref. [55]) The following statements
regarding an operator-valued function %(z) (r € R) are
equivalent:

(1) %(z) is invertible and continuously differentiable;

(2) U(z) = T exp([§de; % (7,))%(0) for some con-

tinuous operator-valued function (7).
Furthermore, in the second statement,
[(d/d7)%(7)]% " (z) is uniquely determined.

Finally, we bound the spectral norm of a time-ordered
evolution 7 exp( f{> dz97(r)) and the distance between two
evolutions.

Lemma A.4: [Spectral-norm bound for time-ordered
evolution—see p. 28 of Ref. [55]] Let #(z) be a
continuous operator-valued function defined on R. Then,

(1) ||T6Xp( ttlz dT%(T))“ < e‘j;f dl'”f%)(”f)m7 and

(2) || Texp([;2de (2))||=1 if #(z) is anti-Hermitian.

Corollary A.5. [Distance bound for time-ordered
evolutions—Appendix B in Ref. [52]] Let #(z) and
& (1) be continuous operator-valued functions defined on
R. Then,

VAGE
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(1) |17 exp([i7 ded (7)) — T exp(fi} dr¥(r))|| <
|f del|Z(z) — ()|l |f de(|Z (@) +1Z @I, and

(2) ||T exp(J df?/ (1)) — T exp([* de%(2))| <
|[i2 de||# (z) — €(2)]|| if #(z) and &(z) are anti-
Hermitian.

APPENDIX B: TROTTER ERROR
WITH 1-NORM SCALING

In this section, we provide the proof for Lemma 1.

Proof.—Proof of Lemma 1. Since &(z) is a pth-order
formula, we know from Supplementary Lemma 1 in
Ref. [35] that §(0)=&'(0)=---= &P (0)=0. By
Taylor’s theorem,

(.S)( ) tH ( 1) ld (1 ) t[]+1
1)—em =(p+ / u(l—u)? ———
0 (p+1)
. (é’(l’+l)(u[) _ Hp+leutH)’ (B])
where
Sr )= 3 ( ", )
o +rarr=p+1 N 4011 740
T
N1 T T He )2 e et (B2)

v=1y=1

The spectral norms of &+ (ur) and H?*'e"" can be

gt tqrn

H H H, |0 €M

v=1y=

p+l1 .
B (TZ IIHy||> o1 2 I
r=1

r p+1 r
||Hp+leutHH < (Z HH;/”) e’Zy:I HH7||. (B4)
y=1

ISPV ur)]| <
(B3)

Applying these bounds to the Taylor expansion, we find

that
<+1> KTZ IIHYH)”“eITE:I I,
* (yZFI ||HyII)PHefZ£] nH,}
=0 < (yzr; ||Hy‘|t> P+l ST ||H,||)  (86)

eIHH S

18(2) =

(BS)

The special case where H, are anti-Hermitian can be
proved in a similar way, except we directly evaluate the
spectral norm of a matrix exponential to 1. [

APPENDIX C: ERROR TYPES

In this Appendix, we consider different types of Trotter
error for a general product formula introduced in Sec. III B.
In particular, we will prove Theorem 3, which gives explicit
expressions for three types of Trotter error: the additive
error, the multiplicative error, and the error that appears in
the exponent of a time-ordered exponential. These types are
equivalent for analyzing the complexity of simulating
quantum dynamics and local observables, but the latter
two are more versatile for quantum Monte Carlo
simulation.

Let H= ) | H, be an operator with I" summands.

r
. ' H .
We decompose the evolution e = ¢' Zur=1"7 usmg a

general product formula §(z) = [T,_; [T},

We impose the lexicographical order on the tuples (v,7)
as in Sec. III B so that

Ia(” 7) ”U V)

(C1)

To compute the additive error, we construct the differ-
ential equation

E(«S’(t)

a4 =HS(1) + R(1),

(€2)

with initial condition &(0) = I, where

By the variation-of-parameters formula (Lemma A.1),
S(t) — e = [tdre=HR(7), so we obtain the additive

error
t

:/ dr e R (7).
0

This result suffices if our purpose is to only compute the
additive error operator. However, for the later discussion in
Appendix E, it is convenient to further rewrite

(C3)
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t
A1) = / dr (-1 § ()T (z). (C4)
0
where
= —ta, H !
T@=Y, [I """ (au)Hap)
(vr) (WY)=<(vr)
ﬁ e a0
(v'.y)=<(vy)
_ e T, g H o a0 (C5)

(v'y") v'y)

Note that we have rewritten part of the error operator as a
linear combination of conjugation of matrix exponentials.
In Appendix E, we apply the correct order condition to
further represent it as nested commutators of the operator
summands H,.

For the exponentiated type of Trotter error, we aim to
construct an operator-valued function £() such that

S(1) = T exp < A "de(H + 5@))) . (o)

To do this, we differentiate the product formula &(¢) and
obtain

d h tagy H” /
&S(ﬁ _ Z H e ') “/(V)(a(uﬁy)HﬂU(y))
(vr)

W'.r)=(vy)
=F(1)S(1), (C7)
where
o h ta oy Hﬂ %
Fny=) I """ (apHe)
(vy) (W'.)>(0.y)
= —ta<“/47/)H” %) (CS)

Applying the fundamental theorem of time-ordered evo-
lution (Lemma A.3), we have

S(f) = T exp (/Otdry(r))

which gives the exponentiated error

(©9)

(C10)

From the exponentiated type of Trotter error, we can
obtain the multiplicative error by switching to the inter-
action picture. Specifically, we apply Lemma A.2 and get

S(1) = T exp <A’ de(H + 5(:)))

= e’HTexp</tdre‘fH€(r)eTH).
0

Then, the operator-valued function

(C11)

M) =T exp ( /0 the_THE(T)eTH> 1 (C12)

is the multiplicative error of the product formula. We have
thus established Theorem 3.

APPENDIX D: ORDER CONDITIONS

In this Appendix, we continue the discussion in
Sec. III C about order conditions of the Trotter error. We
show how to use these conditions to cancel low-order terms
of the Taylor series. Toward the end of this section, we
establish Theorem 4, which gives order conditions for the
additive, multiplicative, and exponentiated Trotter error.
We apply these conditions to prove the main result on the
commutator scaling of the Trotter error.

Recall from Sec. III C that the order condition of an
operator-valued function & (7) represents the rate at which
F (1) approaches zero when 7 — 0. Formally, given a
continuous operator-valued function % (z) defined on R,
we write F(7) = O(z”) with non-negative integer p if
there exist constants c, #, > 0, independent of z, such that
|F (7)]| < c|z|” whenever |z] < f,. To verify this, it suffices
to check that the limit

NF @

=0 |T|p

(D1)

exists.

As previously mentioned, our approach uses the order
condition & (r) = O(z?) to argue that terms with order
1,7,...,777! vanish in the Taylor series of % (z). This
argument is rigorized in Lemma 6 of Ref. [35], which we
restate and prove for completeness.

Lemma D.1: (Derivative condition). Any continuous
operator-valued function & (z) defined on R satisfies the
order condition

(D2)
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Furthermore, if % (7) has p continuous derivatives for some
positive integer p, then the following two conditions are
equivalent:
(1) F(z) = O(z?); and
@) F(0) = F(0) =
Proof—The continuity of & (7) at 7 = 0 implies J( ) =
O(1) by definition. Assume that % (z), F'(7),..., FP)(z)
exist and are continuous. If Condition 2 holds, we have

-=FP=1(0) = 0.

F(7)

=0 TP

ECN

=0 ‘T|p -

_F0)]

p!

(D3)

by the L"Hopital rule. This proves that Condition 1 holds.
Given Condition 1, we have, by definition, that
[F (@) < cle|? (D4)

for some ¢,y > 0 and all |z] < #,. Suppose, by contra-
diction, that Condition 2 is not true. Then, we let 0 < j <

— 1 be the first integer for which %) (0) # 0. We use
Taylor s theorem to order j to get

N 4
F(r) = FU)(0) T—‘ + / dr, FUt (7 — 7,) %, (D5)
J: 0 J:
which implies
(4 o (i T|j T j+]
# @l 2 17O~ max 00 ) 17
JU o lml<h (j+ 1)
(D6)

by the triangle inequality. We combine the above inequal-
ities and divide both sides by |z|/. Taking the limit 7 — 0
gives the contradiction | F)(0) < 0. n

Lemma D.1 provides a direct approach to computing
order conditions for functions of real variables. This
approach works for simple examples such as the power
functions f(r) =7 = O(z”). Another example that we
use in our analysis is the integration of a monomial, like

T T T 2
/ dr, / dz, / drs / drﬂ?rzrg‘ri. (D7)
0 0 0 0

As the following lemma shows, we can directly evaluate
such an integral and compute the order condition of the
resulting power function.

Lemma D.2: (Integration of a monomial). The integra-
tion of a monomial 70" ---7}" - - "

-7 is evaluated as
T <7
/ dry--- dr, - / depelt ooz gfr

— C[Pl+ +PF+F tp1+ +pp+l“) (D8)

where 7_, € {r,7;....,7,;} and ¢ is a constant that
depends on non-negative integers p, ..., pr.

Proof-—We prove the lemma by induction on the value
of I'. The claim trivially holds when I = 1. Suppose that it
is true for I. For I" 4+ 1, we have

T T<r+1
P1 Prii
/ dr, / (o (/S A S
111 .
/ dTl / dTF
Pri1 +

where ¢y +---+qr=p1+ -+ pry1 + 1. The claim
then follows from the inductive hypothesis. [

For most of our analysis, however, a direct calculation of
order conditions is inefficient. In particular, a (2k)th-order
Suzuki formula contains 2 x 55! matrix exponentials, and
a direct analysis becomes prohibitive when k is large.
Instead, we follow standard rules of order conditions to
compute them indirectly, some of which are summa-
rized below:

Proposition D.3: [Rules of order conditions] Let & (z)
and €(7) be operator-valued functions defined on R that
are infinitely differentiable. Let p and ¢ be non-negative
integers. The following rules of order conditions hold:

(1) Addition: if #F(z) = O0(z”) and ¥€(r) = O(79),

then % (7) + €(z) = O(¢™(r-9));

(2) Multiplication: if () = O(z?) and & (7) = O(z9),

then (7)€ (1) = O(«F"9);
(3) Differentiation: % (7) = O(¢?*!') if and only if
F(0) =0 and F'(7) = O();

(4) Integration: #(r)=0O(z?) if and

vdtF(r) = O(¢P*1); and

(5) Exponentiation: F(z) = €(z) + O(z”) if and only

if Texp( [4deF (r))=Texp([idc&(r))+O("1).

Proof-—We only prove the exponentiation rule, as the
other rules follow directly from Lemma D.1. Suppose

(D9)

only if

that 7 exp([sdr F (7)) = T exp([s dr € (7)) + O(e"™).
To prove F(r) = €(z) + O(z"), it suffices to show that
F9(0) =29 (0) forg=0,....p— L

We prove this by induction. By the differentiation rule,
we have

F()T exp ( / ’dﬂ@))
=9(1) ’Texp(/ dc @ > +O0(r7),

so Lemma D.1 implies %(0) = €(0). This proves the
claim in the base case. Now, assume that () (0) = €()(0)
holds for / =0, ...q, where ¢ < p — 1. By Lemma D.1 and
the general Leibniz rule,

(D10)
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: )%H—I(O)Texpﬂ) ( /0 ’ dr%(r))
§;<Q+l>?“*%®7bmm(lmh?@0.

Lemma D.l also implies 7 exp([)drF (1)) =
T exp (J9dr©(7)) for I=0,...,q+ 1. So, the above
equation simplifies to
Flat1)(0) = glat)(0). (DI1)
This completes the inductive step.
For the reverse direction, we want to prove
T exp([¢ dr F(r)) = T exp([§ dr €(z)) + O(P*),
assuming that F(7) = €(r) + O(«"). Equivalently,

we want to show that 7 expl*V([0drF (1)) =
T expl*D([0dr@(r)) for ¢=0,...,p—1, given that
F9(0) = €(9(0). This equality can be proved by induc-
tion and by applying the Leibniz rule in a similar way as
above. Specifically, the base case follows from

T expt!) (/00 d19(7)> =%(0) = €(0)

= T explV </00dr ?(1)),

and the inductive step follows from

0d19(1)> (D12)
" de %)) (D13)

(D14)

u
We now compute order conditions for the additive,
multiplicative, and exponentiated Trotter error.
Proof—Proof of Theorem 4 Suppose that 7 (z) = O(z?).
We apply the multiplication rule of Proposition D.3 to get
=S (7)T (r) = O(z?). A further application of the
integration rule gives &(f)—e™ = [ldrel=1$(2)T (7)=
o(t*1).
Conversely, let &(t) = e + O(¢**1). This implies
Jidre =1 S (7)T (z)=0(t"*"). Applying the integration

rule and the multiplication rule gives §(7)7 (z) = O(zP).
Note that §(7) = e + O(tP*!) = I + O(r) implies that
the operator-valued function &(r) is invertible for
sufficiently small ¢, and since (d/df)S~!(r) =
—-871(1)S$"(t)8~!(¢), the inverse function &~!(¢) is infi-
nitely differentiable. Applying the multiplication rule gives
7 (z) = O(z?), which establishes the equivalence of
Conditions 1 and 2.

Note that &(t) = e + O(tP™') is equivalent to
T exp([ide(H + E(7))) = €™ + O(s*1), which is fur-
ther equivalent to H + £(t) = H + O(z") by the exponen-
tiation rule. Canceling H from both sides proves the
equivalence of Conditions 1 and 3.

Finally, note that &(¢)=e™(I+.(t))=e™ +O(tP+1)
can be simplified to e ./ (t) = O(t"*!). The equivalence
of Conditions 1 and 4 then follows from the multiplica-
tion rule. L]

APPENDIX E: ERROR REPRESENTATIONS

We now prove Theorem 6, which establishes the
commutator scaling of the Trotter error. The proof is
sketched in Sec. IIID and will be detailed here. For
simplicity, we only consider the additive error, although
the analysis can be easily adapted to handle the multipli-
cative error and the exponentiated error.

Let H = Z H, be an operator that generates the

evolution e =e Zr 7 Let S(0)=]T_ [T, e om0
be a pth-order product formula as in Sec. IIC We know from
Theorem 3 that the Trotter error can be expressed in
an additive form as S(t) = ¢’ + [l dreHS$(7)T (7),
where

—

—ta, nH /
T (7) :Z e T (a,  Hy ()
v.y) i, (r)
() (0'r")=(v.y) l
—
H em(v’»r’)HnV/ )
©'.r)=<(vy)
— «—
H P H e W a0
(', .7

Furthermore, Theorem 4 implies that the operator-valued
function 7 (7) satisfies the order condition 7 (7) = O(z?).

We now apply Theorem 5 to expand every conjugation
of matrix exponentials in 7 (). In doing so, we only keep
track of terms of order O(z?), as those terms corresponding
to 1,7, ...,77~" will vanish due to the order condition. We
obtain
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||T(T>|| < Zacomm({Hﬂv/(y')’ (Ulv 7/,
(v.7)

P
e T i)

7)< (v.y)

) < (D’ 7/)} Hﬂ,,(y))

17
//HH ’H
+ e ((Hoy ) H) ¢ 2o Wyl

where {q} denotes an ordered list where elements have
increasing indices from left to right. This is further
bounded by

—
||T(T) || < 2Zacomm ({Hﬂ“/ ") }v Hﬂ,,(y))
(v.r)

x—exp<zTZ|H,,, |)
P

W)

r
R
=27 Z acomm({Hﬂ“' (7/)}’ Hy)
y=1

x —exp (mrz |H, ||)

y'=1

After a final integration over z, we have
t
18() — ™| < / de|eH S ()T (7)||
0

r -
S ZT Z acomm({Hﬂ'u’ (7/) }’ H},)

r=1

x (p’p:) exp<4tTZ|H ||>

y'=1

This bound holds for arbitrary operators H,. If the operator
summands are anti-Hermitian, the bound can be further
tightened to

(1) = ™|
t[H‘l

—(p+ Ik (E1)

r
[N
<27 Z acomm({Hﬂl/(J’l) }’ Hy)

r=1

Note that our analysis depends on 7z, the ordering of
operator summands in stage v’ of the product formula. In
the following, we prove an asymptotic bound that removes
this ordering constraint. The resulting bound is independent
of the definition of product formula and may thus be easier
to compute in practice. Our analysis here is not tight in
terms of the constant prefactor, but it is sufficient to
establish the commutator scaling in Theorem 6.

Recall from Theorem 5 that

—

acomm({Hn,,/(}/)}v Hy)

- T

(o)
dont-Taw =p N 0 )

q(1,1) q(rr)
X ||adH”l(]) . adH”T(r) (Hy)||, (E2)
which  is upper bounded by p! times
a, s
D g+ Sy y=p | ad/" "-adH(:TF()” (H,)||. Fixing the
value of y, we clalm that
q(1,1) . q(r.r)
Z ladh - adi T )
g (CEOh
STP Z ZH 71)+1’. H}")’H] ]H
Yp+1= 1

This result can be seen as follows. Every nested commu-
tator on the left-hand side has p nesting layers and must
thus be of the form on the right. Conversely, we fix one
term [|[H, .---[H,,. H,]- ||| from the right and bound
the number of times this term might appear on the left. Each
operator H,,,....H,  can appear in T possible stages,
and hence there are Y7 possibilities in total. When the

stages are fixed, this will uniquely determine one term,

||ad?}”()]) : adi,“‘r()m (H,)]|, on the left. We have thus estab-
1 r

lished Theorem 6.

APPENDIX F: SIMULATING SECOND-
QUANTIZED ELECTRONIC STRUCTURE

In this section, we use product formulas to simulate the
second-quantized plane-wave electronic structure

H = —ZK cos|k; A Ak
]ky
T
4z ¢ coslk, - (F, — rj)] N
_E 2 J
Ji.v#0 v
U
2 cos|k, - ri_
_” [ u2 J k] N/‘Nk, (Fl)
® “ Ky :

V0

Vv

where j, k range over all n orbitals, @ is the volume of the
computational cell, and we consider the constant density
case where n/w = O(1). Here, «, =2av/w'? are n
vectors of the plane-wave frequencies, where v are
three-dimensional vectors of integers with elements in
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[—n'/3,n!/3], r; are the positions of electrons, ¢, are nuclei
charges such that >, [{,| = O(n), and 7, are the nuclear
coordinates. Note that A; and A; are the creation and
annihilation operators, and N; = A;A ;j are the number
operators.

Following the analysis in Sec. IVA, we need to
bound the spectral norm of the nested commutators
\H, .. [H,.H,] ], where H,€{T,U,V}. This
can be done by induction. In the base case, we need to
estimate the norm of the kinetic operator 7" and the potential
operators U and V. For readability, we use the abbreviated
representation

T=Y tjAlA. U= uN,
Jik J

V= Zvj’kNij. (FZ)

Since HAjH = ||A;]| = ||N;]| = 1, we can apply the triangle
inequality and upper bound ||T||, ||U], and ||V|| by the
vector 1-norm ||7|,, ||i||;, and ||Z]|;. We analyze this in
Proposition F.2.

Lemma F.1: (See Egs. (F6) and (F13) in Ref. [11]). Let
an electronic-structure Hamiltonian be given as in Eq. (46).
The following asymptotic analyses hold:

1>

ey
1
> =0 (F3)
V0 v
(2) For any fixed j,
> K2coslk, - ;] = O(1). (F4)
3
> l6l = 0O(n). (F5)
Proposition F.2: Let an electronic-structure

Hamiltonian be given as in Eq. (46). We have the following
bounds on the vector 1-norm and co-norm of the coef-
ficients of the kinetic operator and the potential operators:

e =0(;). Il =00
fill = O). il = 00,
ffla=00).  [7lh=06). (o

Proof—The claims about the asymptotic scaling of
17l o> 1|7l and ||7]|, follow from Lemma F.1. We then

obtain the scaling of the vector 1-norm from the triangle
inequality. m

For the inductive step, we consider a general second-
quantized operator of the form

W= ZW}/?.T o (A;XA/(X) e (le) SR (F7)

Jkl

at most g operators

where 7, I_é and  denote vectors of orbitals, with total length
of at most g. We keep track of the number of A};A Kk, and N;
in each summand; the largest such number ¢ is called the
“layer” of W. We compute the commutator between the
kinetic or potential operator and a general second-quantized
operator in Proposition F.4.

Lemma F.3: (Commutation rules of second-quantized
operators). The following commutation rules hold for
second-quantized operators:

[ATALAJA,] = 5yAlA,, — 8,,A] Ay
[AJAL N = 8ATA; — 5,A] Ay

[ATA. NN, = (3yAjA, - 5,A]AL)N,,

+ Ny(8mALA,, = 8mARAL).

where 0y, is the Kronecker-delta function.
Proof—The first rule is proved by Eq. (1.8.14) in
Ref. [84]. The other rules follow from the definition of
the number operator N; = A}LAZ and the commutation
relation [AB, C] = A[B, C] + [A, C]B for any operators A,
B, and C. =
Proposition F.4: Let an electronic-structure Hamiltonian
be given as in Eq. (46). The following statements hold for a
general second-quantized operator W with ¢ layers:
(1) W=[T,W] is an operator with ¢ layers and
[l < 2gn][7]o [[]],:

(2) W=[U,W] is an operator with ¢ layers and
[l < 2q|ill [l and

(3) W=[V,W] is an operator with ¢ + 1 layers and
W1 < 4qnl|o]| 1w

Proof—For Statement 1, we have

W =[T,W]
= [Zfa, JALA, ZW;JQJ' (AT AG) - (V)
ap Jkl
=D tapwipilAiAp - (A A - (V) -]
af §Ei

Performing the commutation sequentially, it suffices to
consider

011020-33



CHILDS, SU, TRAN, WIEBE, and ZHU

PHYS. REV. X 11, 011020 (2021)

[A Aﬁ,A Ak]
"(ALAkX)

(N
[AkAL N, ] - (F8)

For fixed a, f3, ; 1? 7 there are at most g such commutators.
For the first type of commutator, we have from Lemma
F.3 that

[AlAﬁ,A'J’fXAkX] =3y, AbAy — 5a,kxAj.xA,,. (F9)

Without loss of generality, consider the first term; its
contribution to |[W]|, is at most

DD s ltapwizil = D lajwizdl

ap Fkl ajkl

< [t ]l (F10)

Similarly, we use Lemma F.3 to analyze the second type of
commutator,

[AlAg Ny ] = 8, sALA; — 8 (AbAs.  (F11)
and find its contribution to |||, as
Z 251 /)’|ta/}Wj k. 1| - Z |tal W]k1|
ap ;ZT a]kl
< [t Wl (F12)
For Statement 2, we have
W= U W
[Z” Nwzw*m“'(ALAJX)'“(NI}V)“'
Y S o W) )]

a Rl

Performing the commutation sequentially, it suffices to
consider

.. [NmAj'XAkX] e

(Ny) - (F13)

For fixed a, j 1? 7 there are at most ¢ such commutators.
We use Lemma F.3 again to get

[N Al Ay ] =8, AT Ay =8, Al Ay

and find its contribution to |||, as

DD Ou luawizil = Zlu wirdl < Nl

g

@kl JkI

For Statement 3, we have

W=[V,W|
= {Z”a,ﬂNaNﬂvZW*igT "(A;XAkX)"'(NZ,,)"'
ap kI
=SS v NN (AL A - (V) ]
ap FET

Performing the commutation sequentially, it suffices to
consider

- [NgNg, AT AR ]+ (Ny,) -+ (F14)

For fixed a, 3, ; l? 7 there are at most g such commutators.
Using Lemma F.3, we have

[NoNp AT Ay ] = (8, AL A = 8,4 A} A N

+ Nal03,,A] Ar, = 81, AL Ar,).

Without loss of generality, consider the first term; its
contribution to ||W||, is at most

DY Sajlvapwizil = Dl pwing
7 T P
<[] ||l - (F15)
[ |

Theorem F.5: [Product-formula simulation of second-
quantized plane-wave electronic structure] Let H =
T + U + V be a second-quantized plane-wave electronic-
structure Hamiltonian with n orbitals as in Eq. (46). Let
S(t) be a pth-order product formula as in Eq. (48). Then,
the Trotter error has the scaling

1(2) = O((nt)?*h).

To simulate with accuracy e, it thus suffices to choose a
Trotter number of

1+1/
o)
€ /p

Choosing p sufficiently large, letting ¢ be constant, and
implementing each Trotter step as in Refs. [25,61], we have
the gate complexity

emitH|| =

(F16)

(F17)

n2+”(1)t1+”(1). (F18)

Proof.—We compute the scaling of the spectral norm of

W=I[H, .[H, H]-]

12’

(F19)

Yp+1?
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by induction, where H, € {T,U,V}. In the base case
where p =1, we have from Proposition F2 and
Proposition F.4 that the coefficients of W have 1-norm
in O(n?), which implies ||W|| = O(n?). For the inductive
step, suppose that W = [H, .---[H,, . H,] -] is a sec-
ond-quantized operator whose coefficients have vector 1-
norm in O(n?). Then, Proposition F.4 implies that [T, W],
[U, W], and [V, W] are second-quantized operators and their
coefficients have 1-norm in O(n”*!). This proves that

&comm: Z ”[Hy,,ﬂ" [Hyz’H] ]”
V1V20 Y ptl
= O(nP). (F20)
The theorem then follows from Theorem 6 and
Corollary 7. [
APPENDIX G: SIMULATING k-LOCAL
HAMILTONIANS
In this section, we consider simulating k-local

Hamiltonians using product formulas.
Recall from Sec. IVA that a k-local Hamiltonian on n
qubits can be expressed as

(G1)

where each H;  ; acts nontrivially only on qubits labeled
by ji, ..., ji- Our goal is to analyze the nested commutators

- [Hy 1y ]l

(G2)

S W= Y >

Viseens 7/7+l:1 Jioees Jk Viseens }’p_l

.- We then
bound the Trotter error and the complexity of the product—
formula algorithm using Theorem 6 and Corollary 7.

We claim that the operator

.....

where I' = n* and H 7, are local operators H j,

V1oV ptl = [H7p+1 > [H}’z’ H}’l] o }

(G3)

roetyn=tIWor o, [I=OUIHIT I H L), where we have
p+l P

used the I-norm ||H||,=>_; . [|H} . j |l andtheinduced
Inorm  [[[H |, = maxmax;, 325 0 T -
We prove this claim by induction on p. For p =1,
the commutator W, , =[H, H,] takes the form
H; ], which is nonzero only when there exist
[,m=1,..., ksuchthat j;, = i,,. Itthen follows that W, ., is

supported on at most 2k — 1 qubits and that

= O(ll =l [1#]]1), (G4)

which proves the claim for p = 1.
Suppose that the claim holds up to p — 1. Following a
similar argument, we have

r
<2k(k+(p-1)(k—=1))- max max SH; DD W,
Jpeedi-1 Visee?p=1
Jl10Tk
-1
O(IH 1T~ 1H][1)

=2k(k+ (p—1)(k—
= O(IHITIIEI],)-

Since the support of H and W, overlaps, the
operator W, . acts nontr1v1a11y on at most k+ p(k—1)

qubits. This completes the induction.

Theorem G.1: (Product-formula simulation of k-local
Hamiltonians). Let H be a k-local Hamiltonian on n qubits
as in Eq. (51). Let §(¢) be a pth-order product formula.
Then, the Trotter error has the scaling

(1) =

el = O(IHIIT 1 ,)- (G5)

DA -

To simulate with accuracy e, it thus suffices to choose a
Trotter number of

iy (G6)

(|||H||| |H||'/le+1/">
Choosing p sufficiently large, letting ¢ be constant, and
implementing each Trotter step using O(n¥) gates, we have
the gate complexity
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[1+0 1)

AL (G7)

APPENDIX H: SIMULATING POWER-LAW
INTERACTIONS

In this section, we analyze the performance of product
formulas for simulating power-law interactions (Sec. IV A).
Let A C R? be an n-qubit d-dimensional square lattice. We
say that H is a power-law Hamiltonian on A with an
exponent « if it can be written as

H= ZH~~

lJGA

(H1)

where H;; is an operator that acts nontrivially only on two

qubits, 7,; € A, and

1
1 |_{ 1

lli=il2

-4

-

B (H2)

-
~.] =~
~ol o~

-

where ||i — J||, is the Euclidean distance between i and j on
the lattice.

Our analysis uses the following lemma.

Lemma H.1: Given an n-qubit d-dimensional square
lattice A C R¥, it holds that

O(n'=4) for0<a<d
O(logn) fora=d (H3)
jemoy 112 o(1) for a > d.
Furthermore, for ¢ > d and x > 0, we have
1 1
>, =.=0 <xa_d)- (H4)
en Gz 112

Proof—Reference [52] provides a detailed proof of the
lemma, which follows from rewriting the left-hand side of
Eq. (H3) as a Riemann sum of the d-dimensional integral
s d?j/||j|l,. Evaluating the integral gives the right-
hand side of Eq. (H3). Similarly, Eq. (H4) follows from
evaluating the integral [ . d/|ll, « (1/x%4). =

Theorem H.2: (Product-formula simulation of power-
law interactions). Let A C R¢ be an n-qubit d-dimensional
square lattice, and let H be a power-law Hamiltonian (55)
with exponent a. Let §(¢) be a pth-order product formula.
Then, the Trotter error has the scaling

O(nlJr(erl)(l—a/d)ﬂH»l) forO0<a<d

On(logn)?*17+1)
O(ntP+h)

—itH || = fora=d

|5(1)—e

fora>d.

To simulate with accuracy e, it thus suffices to choose a
Trotter number of

(’)(n]_%ﬁ(z_?)tl*%/e%) for0<a<d
r= (’)(n%(log n)Hl’tH%/e%) fora=d
(n;)tlﬂ/er') for a > d.

Choosing p sufficiently large, letting ¢ be constant, and
implementing each Trotter step using O(n?) gates, we have
the gate complexity

forO<a<d

(H5)
for a > d.

n3—’—;+o(l)tl+o(l)
Ya = { p2+o(1) fl+o(1)

Proof—Given a power-law Hamiltonian H with expo-
nent a, we use Lemma H.1 to compute the scaling of its
induced 1-norm,

IH||, <1 +maxzm (H6)
O(n'=*/4) for0<a<d
=4 O(logn) fora=d (H7)
o(1) for a > d,
and 1-norm
I <Y (1 Py ) (18)
=\ T Tls
On*4) for0<a<d
=4 O(nlogn) fora=4d (H9)
O(n) for a > d.
The claim then follows from Theorem G.1. u

As mentioned in Sec. IV A, the performance of product
formulas can be further improved for rapidly decaying
power-law interactions (Theorem H.3) and quasilocal
interactions (Theorem H.4).

Theorem H.3: (Product-formula simulation of rapidly
decaying power-law interactions). Let A C R be an n-
qubit d-dimensional square lattice, and let H be a power-
law Hamiltonian (55) with exponent @ > d. Let §(7) be a
pth-order product formula for A, the truncated Hamiltonian
where summands acting on sites with distance larger than ¢
are removed. Then, the Trotter error has the scaling
—itH” _ (’)(nt"“).

|$(1) —e (H10)
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To simulate with accuracy e, it thus suffices to choose the
cutoff # = @((nt/e)'/(*=9) and a Trotter number of
r = O(nit'"s /). (H11)

Choosing p sufficiently large, letting ¢ be constant, and
implementing each Trotter step using O(n#?) gates, we
have the gate complexity

Go = (nt)Faato), (H12)

Proof—We use Lemma H.1 to bound the distance
between the original and the truncated Hamiltonian,

lH-H<Y > |—J|| = (f:“’) (H13)

i |lj-ill>
We choose a cutoff value ¢ = O((nt/e)'/(*=?), and
Corollary A.5 implies that the truncation error is at most

nt

et e < 1~ =0 ( 2

) —0®e). (H14)

The theorem is then proved in a similar way as
Theorem H.2. =

Theorem H.4: (Product-formula simulation of quasilo-
cal interactions). Let A C R? be an n-qubit d-dimensional
square lattice, and let H be a quasilocal Hamiltonian (61)
with constant > 0. Let &(7) be a pth-order product
formula for &, the truncated Hamiltonian where summands
acting on sites with distance larger than # are removed.
Then, the Trotter error has the scaling

|8(1) — e

To simulate with accuracy e, it thus suffices to choose the
cutoff # = O(log(nt/¢€)) and a Trotter number of

1
r= (nﬁ 1+P/€I’>

Choosing p sufficiently large, letting ¢ be constant, and
implementing each Trotter step using O(n#?) gates, we
have the gate complexity

g = (m‘)H—o(l).

Proof—We choose ¢ = ©(log(nt/e€)) so that the trun-
cation error is at most

~itH || = O(ner ). (H15)

(H16)

(H17)

le™ — e~ <||H ~H|t

SZ Z e Pl .t = O(e).

i j=il>¢

(H18)

The remaining analysis proceeds in a similar way as in
Theorem H.3. [

APPENDIX I: SIMULATING CLUSTERED
HAMILTONIANS

We continue the analysis in Sec. IVA of the hybrid
algorithm for simulating clustered Hamiltonians [53]. An
essential step of this algorithm is to decompose the
Hamiltonian into parties using product formulas. We show
that our Trotter error bound implies a more efficient
decomposition and thereby gives a faster simulation of
clustered Hamiltonians.

Let H be an n-qubit Hamiltonian. Assume that each term
in H acts on at most two qubits with spectral norm at most
one, and each qubit is interacted with at most a constant
number d' of qubits. We further group the qubits into
multiple parties and write

H=A+B=Y H"+Y H. (1)
1 1

forall /: ||H§l) Il, ||H§2) | < 1, where terms in A act on qubits
within a single party and terms in B act between two
different parties.

The hybrid algorithm of Ref. [53] applies the first-order
Lie-Trotter formula to decompose the Hamiltonian

H=A+)>, HEZ). Their analysis shows that a Trotter
number of

0 <h2€t2> (12)

suffices to achieve error at most €, where g = >, ||H ||
is the interaction strength. Here, we show that it suffices to

take
d/—hp 1+1 h]/Ptl+l/p
oI oy
€r e'’r

using a pth-order product formula. This method improves
the analysis of Ref. [53] for p = 1 and extends their result
to higher-order cases.

In light of Theorem 6, we need to compute

> ..

V1572500 Vp+1

[Hy Hy, L= (14)

V2’

where each H, is either ng) or A. Since [A,A] =0 and
[HV,A] = —[A,Hy], we may, without loss of generality,
assume that H,

= Hglz), 1.€.,
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Y. H,, . [H H]

V1sV2s5ees Vp+1

= > H,, . H, HY]-l(15)

11725 Vp+1

We now replace each A by >, H ) and apply the triangle

inequality to get

S, Hy 1Y

11Y25e ¥ pat

Y K,

Il

IA

K, HD-l - (16)

where each K, is either H El) or H . Since each qubit
supports at most d’ terms and each term acts on at most two
qubits,

2
K HY|

1K,

pt+1’
L0y, II,H

<d/p dlzd/ZHH ||> l+pn )

We have thus established the following theorem.
Theorem I.1: (Product-formula decomposition of evo-
lutions of clustered Hamiltonians). Let H = A+ >, H E )
be a clustered Hamiltonian as in Eq. (64), where each qubit
is interacted with at most a constant number d’ of qubits and

the interaction strength is hg = >, ||H || Let $(¢) be a
pth-order product formula as in Eq. (67). Then, the Trotter
error has the scaling

|$(0) = e = 0@ F hgert). (1)
To decompose with accuracy e, it thus suffices to choose a
Trotter number of

h}g/]’tl+l/p
Choosing p sufficiently large, we have
o(1) 140(1)
hg 't
r=0(-2———). (19)
60(1)

The hybrid simulator of Ref. [53] has runtime 20(rec(g))
where cc(g) is the contraction complexity of the interaction
graph g between the parties. Theorem I.1 thus gives a hybrid
l+n ( ) /60

improving the previous result of 20" s’ec(9)/e) 53],

simulator with complexity 200"t ), dramatically

APPENDIX J: SIMULATING LOCAL
OBSERVABLES

In this section, we analyze the performance of product
formulas for simulating local observables. Following
Sec. IV B, we consider a power-law Hamiltonian H =
Z?‘je A H;; on an n-qubit d-dimensional lattice A C R?
with exponent a > 2d. Our goal is to simulate the time
evolution &/ (1) = e Ae™" of a local observable A with
support &(A) enclosed in a d-dimensional ball of constant
radius x.

As mentioned in Sec. [V B, our approach is to construct a
Hamiltonian H,. whose support has radius independent of
the system size. To this end, we consider a general
observable B and assume that &'(B)—the support of
B—is a d-dimensional ball of radius y, centered on the
origin. We define

Hy= Y Hi, (1)
;,7€Bf
S e Yy
zJeAByf [N
jGAByf
fory=2,....,I'—1, (J2)
Hy = H;;, (I3)
17eB )

where B, = {i € A:inf, Gesn ||l jll, <y} is a ball of
radius y + y, centered on oS’( ), AB,y = B,/ \B(,_1)s is
the shell containing sites between distance (y — 1)¢ and y#
from §(B), and Z, I are positive integers to be chosen later.
We then define the truncated Hamiltonian H ., =

511 H,. We analyze the truncation error in the
lemma below.

Lemma J.1: Let A CR? be a d-dimensional square
lattice of n qubits. Let H be a power-law Hamiltonian with
exponent @ > d, and let B be an observable with support
enclosed in a d-dimensional ball of radius y,. Let H . =
Zl;::l H, be the truncated Hamiltonian as defined above.
Assuming I' = O(1), we have

(vo + Ff)d_l>

fa—d—l (J4)

||H - Htrunc” = O<

Proof-—We expand H — H ;. as
-2

SN0 Hio (09

ieAB,, V2112 jeAB,,

._J

H - Htrunc =
4

i
o

Applying the triangle inequality, we have
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1=l <33 S S #5501 (6)

=0 feaB,, v2r*2jenB,,

< AZ > lIH (J7)
< )

ri Yo +L£)"! _O<(y0+Ff)d">’ 08)

7o d—1 I/ﬂa—d—l
r=0

where the third inequality follows from Lemma 9 of
Ref. [52] (see also the derivation of Eq. (Al) in
Ref. [52], with A and C being B,, and the complement
of B, 1)¢, respectively). The factor (y, + I'2)4"! estimates
the boundary area of B,,. This establishes the claimed
scaling of the truncation error. L]

Next, we simulate the evolution e~Hwne using the pth-
order product formula

trunc H H e (J 9)
v=1 y=1

where we put additional constraints on the permutation
function x,:

ﬂl}(laz’ 354, 5, 6, )
_{(2,4,6,...,1,3,5,...)
~l(1.3.5. ..,

2,4,6,...)
By Theorem 6, the Trotter error of approximating e~/ uwne
by Suunc(?) depends on

>l

if vis odd

. (J10)
if vis even.

[Hy,, Hy -]

72°

l, (J11)

which we analyze in the following lemma.

Lemma J.2: Let A CR? be a d-dimensional square
lattice of n qubits. Let H be a power-law Hamiltonian with
exponent @ > d, and let B be an observable with support
enclosed in a d-dimensional ball of radius y,. Let H .y, =

;:1 H, be the truncated Hamiltonian as defined above.
Assuming I' = O(1), we have

r
Z ||[H}’p+1’- [HYZ’H } ]H
Yoot pr1=1
= O((yo +I2)*'2). (J12)
Proof.-—For convenience, we define

§y - {(_' _)) ?E AB(},_l)f U AB},,;,]E AB},Lﬂ}
fory=2,....,'=1, (J14)
St ={(0.7):1.] & By}, (J15)
sothat H, =} 5 ¢ H;; fory =1,....T. Our goal is to
analyze
r
Z Z Hl?p+l~;p+1 v
Viseens yp+l=1

(ip+l~j;7+1)6§yl,+1

> Hig X H,}H’

(72~72)€572 (i s]l)e‘syl

Note that at least one of y;, y, must be different from 1,17
otherwise, [H, , H, ] = 0. Therefore, we may assume 1 <
71 < I' without loss of generality and bound the norm of

commutators as

SID DS
N1=272. Y p1=1 (i '7J)EJVJ (i2.72)€Syy
lipp 1 dp )€y, 4y
H [H7p+1~7;)+1 T [Hlﬁ'zjz’ H71»71] . ]H (Jl6)

By a similar argument as in Theorem G.1 and Theorem
H.2, we find the upper bound

(Z > A5 )

2( ]I)Es

=0(2 > )

YIZZjleAB”f

= O((yg +T)*1¢), (J17)

where we use the fact that |||H|||, = O(1) [Eq. (H6)] and
upper bound the volume of AB, , by O((yg + Ff)d—lf)_

the product of its boundary area O((y, + I'#)%!) with its
thickness . m

Using the fact that product formulas can preserve the
locality of the simulated system, we commute the matrix
exponentials in &y, (f) through B to cancel with their

counterpart in &}, (¢). By choosing I' = T + 1, we have

‘gjrunc (t>B“S)trunc ( ) <§)z-educe ( )Bcsjreduce (t) ’

where

T v

—ita o=l H
CS—)reduce(t) = H H e Lm0

v=1y=1

(118)
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is the reduced product formula of ¢/(r). This method gives
a decomposition of the evolution of local observable B with
error

€™ Be™ M — 8o ()BS reauce (1)

1
= O<||B||t(y0 =+ Ff)d_l <£a—d—l + ftp) > :

The remaining analysis proceeds in the same way as in
Sec. IV B. We have then proved Proposition 8.
Assuming xg = O(1) and ' =T = O(1), we have

| eitH Ae=itH — gitHic A e=itH |

- o(mmd—l <f_1d_1 + ’if)) (119)

where H,. is supported on a ball of radius x =
xg+ 1rT¢ = O(r£). To minimize the error, we choose
¢ = 0O((r/t)P/e=4)) > 1, which is possible if r >t and
a > 2d. With this choice of #, the error becomes

pla=2d)+a—d
. . . . t a—d
itH —itH itH, —itH, _
||e Ae — e ICAe le || = O <p((12(i)((1d)(dl)> . (JZO)
r a—d
To ensure that the error is at most ¢, we choose
pla=2d)+a—d
tp(a—Zd)—((z—d)(d—l)
r=0—m— .
ePa—2d)~(a-d)(d-1)
Note that r can be made to be greater than 1 for large times

if the exponent of # in the above equation is positive; i.e., we
require (assuming a > 2d)

(121)

2d - 40 (@—d)(d-1)
a> l—dfﬁ Sp>———— (J22)

In addition, the choice of r above is also consistent with the
condition r > t because

pla=2d)+a-d
pla—2d)— (a—d)(d-1)

> 1. (123)

Recall that e~ is an evolution supported on a ball of
radius x = O(r¢). Invoking Theorem H.3, we obtain the
gate count

g = 0 () 55

(a(p+1)—d)(a(dp+p+1)—(d+2)dp—d)
= Ot rle-aiatd-dat2pti)+ap)

(124)

for simulating local observable A with constant accuracy,
which simplifies to

ala(d+1)—(d+2)d)

gy =t a2 o)

HIHash) (15 +o(1)

(125)

in the large p limit. The remaining analysis proceeds as in
Sec. IV B.

APPENDIX K: QUANTUM MONTE
CARLO SIMULATION

In this section, we apply our Trotter error bound
to improve the performance of quantum Monte Carlo
simulation. This analysis is sketched in Sec. IV C and
detailed here.

We will use the following lemma.

Lemma K.1: (Relative perturbation of eigenvalues in
Theorem 2.1 of Ref. [85] and Theorem 5.4 of Ref. [86]).
Let matrix C be positive semidefinite, and let D be
nonsingular. Assume that the eigenvalues 4,(C) and
2;(DTCD) are ordered nonincreasingly. Then,

4;(DYCD) < 4(C)|ID'D. (K1)

1. Transverse field Ising Hamiltonian

We first consider simulating an n-qubit transverse field
Ising Hamiltonian H = —A — B [38], where

B= Y hX, (K2

1<u<n

A= " JuliZ,

1<u<wv<n

Note that X,, and Z, are Pauli operators acting on the uth
qubit, and j,, >0 and h, >0 are non-negative coeffi-
cients. Our goal is to approximate the partition function
Z =Tr(e™) up to multiplicative error 0 < e < 1.

A key step in the algorithm of Ref. [38] is to decompose the
evolution operator using the second-order Suzuki formula.
Note that all the summands in A (or B) commute with each
other, so no error is introduced when the evolution under A
(or B) is further decomposed into elementary exponentials. It
thus suffices to analyze the Trotter error of approximating
e'A+B) by (/24 (118 ¢(1/2r)A) for time ¢ > 0 and Trotter
number r. To this end, we define

U := efA+B), (K3)
V = e efBez_rrA, (K4)
W = expr [/ dr e~7dass (eiadAB -B
0
A A
fady pradg £ 7 K5
e e S 2)] : (K5)

so Theorem 3 implies V = UW.
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Our goal is to bound the difference between the
eigenvalues 4;(V") and 4,(U”"), which can be done recur-
sively as follows. We first replace the rightmost V by UW
and the leftmost V by whu. Invoking Lemma K.1, we have

(V") = 2,(WTUV=2UW) < 4,(UVT=20)|[|W|%.
By Theorem 1.3.22 of Ref. [54],

4 (UVT=2U) = 4, (VEluuvE). (K6)

We now apply a similar procedure to obtain

A-(V%—lUUV%—l)
{(Wiuvs2uuve2uw)
(UVE2UUVE2U) | W2
(Visluuva2uuve )| w))?
(UVrUUVrUUveRo) | W

(VEUUvEtuu vt oo v | w¢
UVi2UUV2UUVE2UUVEERU) |WJS.

—~ T~ =~ =

i

To ensure that this recursion is valid, we choose r to be a
power of 2. Since any positive integer is between 2 and
2+ for some m > 0, this choice only enlarges r by a
factor of at most 2. Overall, we have

(V) < 4(Un)|[W]I". (K7)
To analyze the operator W, we further compute
e B — B
= zadyB + /O "de, /0 “ dryedads adiB.  (K8)

and

tadg ©° _

2

7 A
— ezadA </ dTZerzadBadB )
z A A
= eiadA TadB —+ / de / ’ dT3 €T3ad3 ad% -
2 0 0 2

A T T A
=tadg~+7 / drye?*dadl =
27T, 2

T k2 A
+ / dTZ / ’ d13e’3ad8ad% —
0 0 2

By Lemma A.4, we have

A
e =
2

(K9)

W < exp< 2|\ HI|+L ||A|| ||adzB||

1 Q2]+ HAII L ||adzA||

S d2A||)

This bound is tighter than the previous result of Lemma of
Ref. [38] in that it exploits the commutativity of operator
summands. For the transverse field Ising model, this leads
to an asymptotic improvement on the performance of
Monte Carlo simulation. The remaining analysis proceeds
as in Sec. IV C.

n 62’\\H|\+2’HBII (K10)

2. Ferrormagnetic spin systems

In this section, we consider simulating partition func-
tions of ferromagnetic quantum spin systems,

H = Z puv(_XuXv -

1<u<wv<n

YLtY'l}>

—l_ Z qMU X XU + YMYU —l_ Zdu I + Z )

1<u<wv<n =1

(K11)

where p,,, ¢, € [0,1]. Our goal is to approximate the
partition function Z(f,H)=Tr[e H] for > 0. Following
Ref. [39], we restrict ourselves to the n-qubit (nonunitary)
gate set

{fu<eif>,gm<r>,hm;<r>|u, v= 1o,

1
u;«év,0<t<§}, (K12)
where
1+#2 0 0 ¢
fe 0 0 1 00
St } A= ’
fe*) 0 1 9(1) o 0 1 0
t 0 0 1
M 0 0 0
0 1+2 ¢t 0
h(t) = K13
(1) o 1 10 (K13)
LO 0 0 1

and the subscripts u, v indicate the qubits on which the gates
act nontrivially. These gates approximate the exponentials of
terms of the original Hamiltonian. Specifically, we represent
the gates as
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fule™) = e*atu Gup(1) = e78%uw0), By Proposition 1 of Ref. [39], we have ||%,,(1)| <7
p and ||H,,,(1)| < 7.
— i, v .
B (1) = €7 v, (K14) We divide the evolution into r steps. We choose r > 2/
so that we can implement the product formula using gates
where 0 < t < 1/2 and from Eq. (98) with parameters
1 1 1
_ —§<—édu<§, O<'§qw<§, O<£pm)<§.
Fi:(I+Zu)v gLw(l‘):(_)(u)(v"i_Yqu)__‘(guv(t)’ 4 g g
5 (K16)
Hop()= (=X, X, = Y,Y,) —=H,,(1). K15 _
(1) =( ! 2 t (1) (K15) Consider the gate sequence
|
by s
H € " ” H gub( quv) H hub( puL> H huz( puv) H gub< qu@) H f du
1<u<n 1<u<v<n 1<u<wv<n 1<u<wv<n 1<u<wv<n 1<u<n
— H e 2,duF H e_%qmr?m:(/?qm:) H e_é_ipuz'Huz'(7pub) . H e_%puz'ﬂuv(@pm‘) H e_ﬂqm;?ub(élhu;) H e_é_iyduFu
1<u<n I<u<wv<n 1<u<wv<n I<u<wv<n I<u<wv<n 1<uzn
n
= eXP( < Z le/ Ml)( thU) Z qyzz ub( qu) + Z dMFM>> : W (K17)
1<u<wv<n 1<u<wv<n r u=1
which implements the second-order Suzuki formula, where we have applied Theorem 3 in the last line. Since
m <2 Fu(Can)| <24220n <3 [fu(Con)|<202fpn sy
the perturbed Hamiltonian satisfies
~ S ~ n
S pl e (Bo )|+ 3 aufF (L) |+ bt = (5 )3+ (5 3+ 2mse xig
1<u<wv<n 1<u<v<n

We also need to bound nested commutators of Hamiltonian
terms with two layers of nesting. This analysis is similar to
that for the transverse field Ising model; the resulting
scaling is O(n*). By Theorem 6, there exists a constant
¢ > 0 such that

}’Lﬂ lan/}
ku<exp( x )

To proceed, we apply Lemma A.2 to switch to the
interaction picture, giving

em( < > puHu < pm/>
1<u<wv<n

+ Z qm/‘ ?M’U (g qul/') + i stFM>>
u=1

1<u<v<n

(K20)

s

=y, (K21)

where

V_eXpT< /drefH< Z puv uv < pm>
1<u<wv<n

+ Z quv ?Mﬂ < CIM> Z d F H> _1H>
From Eq. (K15),

1<u<wv<n
> pudtu(Pon) + Y auf (q)

1<u<wv<n 1<u<wv<n
n ﬂ
=+ E duFu_HH = E pub (;puv>
= 1<u<wv<n Puv

+ Quv uv <_ QMU> H
n
+( >2ﬂqu1;:2n2ﬂ,
2 r r

AW
< (2>2rpm}

whereas the original Hamiltonian has spectral norm
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HH” < Z pr||_XuX1: - YuY1:”

1<u<v<n

+ Z quﬂ||_XuX1)+Yqu||

1<u<wv<n

n
+ ) 1l + 2, (K22)
u=1
n n
< < ) 2+ < ) 2+n-2=2n%  (K23)
2 2
Thus, Lemma A.4 implies
2
v <exp< iy ”). (K24)
Altogether, we obtain
_b
H fu (6 'd“> H gub( ‘Im;)
1<u<gn I<u<v<n
P
H huv <_puv H huv puL
1<u<v<n r 1<u<wv<n
p )
H Guv <_Qtw H fu e
1<u<wv<n r 1<u<n
= U, (K25)

where the operator U = VW has spectral norm bounded by

Cl’l4ﬂ3 12025

P eT) (K26)

2n
01 = [vwl < exp(* e 4

3

for some constant ¢ > 0. The remaining analysis continues
as in Sec. IV C. Similar to the case of the transverse field
Ising model, our Trotter error bound gives improved
quantum Monte Carlo simulation of the ferromagnetic
quantum spin systems.

APPENDIX L: SECOND-ORDER ERROR BOUND
WITH SMALL PREFACTOR

In this section, we prove the tight error bound for the
second-order Suzuki formula in Proposition 10.

1 r
_%HIHe_%HV ltZy 1 E H e 12 ne lt
=I y=1 V2=71
ri=1
r r
l3
1 > H
ri=1"Ltys=y+1

r 71
H it
o=y +1 72 | | e IZHVZ —

—it H, _;t
/16 /2 71+ Vze 5

15 mon]l-55

y2=y1+1

For the two-term case, our goal is to decompose the
evolution e~ = ¢=A+B) ysing the product formula

8, (t) = e~ 1/2Ae=itB=i(t/2)A " Using the variation-of-
parameters formula (Lemma A.1), we have

52@ = ¢~itH /[dTle—i(t—rl)He—i%'A
0

T (z))e B, (L1)

where
. A\ A
TZ(TI) - e_lT]B (—l2> e”lB + lE
+ ¢4 (iB)e™A — iB. (L2)

By Theorem 4 or a direct calculation, we find the order
condition 7,(z;) = O(t7), which implies

T T ) A
TZ(TI) ES / l de/ ’ dT3 |:€_”3adBad%iB (-l-)
0 0 2
+ i3y adfé(iB)] . (L3)
2

Altogether, we have the representation

(*Sj = _ltH+/ dTl/ de/ dT3€ i(1—1)H
. —z—A —itzadp 442 =
ratal3)

+ ei7ads ad?A(iB)} e~1BemizA, (L4)
and the error bound for ¢ > 0,
' 3
_ e—ltH || <

[152(2) _%Il[B [BA]H|+ II[ [ABlJJl. (LS)

For a general Hamiltonian H = Z;zl H,
triangle inequality to get

, we apply the

7i—l
. it F .
| | e 12 ne —u yz:n Hyz | | e_l%Hrz

r2=1 r2=ri—-1 r2=1

. r
Hyl —e ltz;?:yl HVZ

o £ ] s

r2=r1+1
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This completes the proof of Proposition 10.

APPENDIX M: HIGHER-ORDER ERROR
BOUNDS WITH SMALL PREFACTORS

We have shown in Sec. VA that our analysis reproduces
known tight error bounds for first- and second-order for-
mulas. In this section, we give heuristic strategies to derive
higher-order Trotter error bounds with small prefactors. We
illustrate this for the fourth-order formula, which is advanta-
geous for simulating small-size systems [31] but does not
have a tight error analysis. We further benchmark our bounds
in Sec. V B by numerically simulating systems with nearest-
neighbor and power-law interactions. Throughout this sec-
tion, we assume H is Hermitian, ¢t € R, and consider the real-
time evolution e~

We first consider a Hamiltonian H = A + B consisting
of two summands. This Hamiltonian models systems with
nearest-neighbor interactions where summands are grouped
in an even-odd pattern [Eq. (124)]. The ideal evolution
under H for time ¢ is e~ which we decompose using the
fourth-order product formula &,(7). Recall from Eq. (11)
that §4() is defined by

To this end, we compute

d
dr

i p—itA ,—ilB ,—itA
So(1) = e e e,

S4(1) = [8H(uat) PSH((1 = 4up)1)[ S5 (up0) ]2, (M1)

with u, == 1/(4 —4'/3). Expanding this definition, we
obtain

Si(t) = o—ita6A p=ithsB p=itasA ,=ithyB p—ita,A

=ithB g=itazA p=ithyB p=itarA p=ith B p=itar A

e
where
U
ap = dg = —,
1 6 D)
bl = q, = b2 = b4 = as = b5 = Uy,
1 - 3”2
Az = day '=———,
3 4 D)
b3 =1 — 4I/t2. (MZ)

Without loss of generality, we analyze the additive
Trotter error of &,(¢). In Sec. III B, we gave an analysis
that works for a general product formula, and we improve
that here to obtain an error bound for &4(¢) with a small
prefactor.

el 54(0 _ (—lH) 0534(t) — [e—ita(,A , —leB] e—itb5Be—ita5Ae—itb4Be—ita4Ae—itb;Be—it@Ae—itsze—itazAe—itblBe—italA

+ [e—ita(,Ae—itb5B’ _iaSA]e—ita5Ae—itb4Be—ita4Ae—ith;Be—ita3Ae—itsze—ita2Ae—itblBe—italA + .

+ [emitaoh gmithsB gitasA p=ithiB g=itash p=ithsB g=itasA pithsB g=itasA _jpy, Ble=ithiB pitaA

- [emitach gmithsB gitasA p=ithiB g=itash p=ithsB g=itasA p=ith:B g=itaA g=ith B _jq Ale=itaiA (M3)

Performing the commutation sequentially, we have

d
dr

el 54(0 _ (—lH>c$’4(l‘) — [e—itaGA , —leB] e—itb5Be—ita5Ae—itb4Be—ita4Ae—itb3B€—ita3Ae—itsze—itazAe—itblBe—italA

+ e—ita6A [e—itb5B’ _iasA]e—itaSAe—itb4Be—ita4Ae—itb3Be—ita3Ae—itsze—ita2Ae—itblBe—italA
+ e—itaGAe—itbSBe—im5Ae—itb4Be—ita4Ae—itbgBe—ita3Ae—itsz [e—itazA’ —lblB} e—itblBe—italA
4 e—itagA p=ithsB p—itasA ,—itbyB ,—itayA ,—ith3B [e—itagA’ _iblB]e—itsze—itazAe—itblBe—ita]A
4 e—itagA p=ithsB ,—itasA ,—ithyB [e—ita4A’ —iblB]e‘itb3Be_i’“3Ae_i’bZBe_itazAe‘ilblBe_it“IA
+ e—izaéAe—izb5B [e—itasA7 —iblB]e_”b4Be_"’“4Ae_itb3Be_i’“3Ae_i’bZBe_itazAe_ilblBe_italA
+ [e—itaéA , —ib1 B] e—itbSBe—itasAe—izb4Be—ita4Ae—itb3Be—ita3Ae—itthe—izazAe—izblBe—imlA
+ e—itasAe—ithSBe—itasAe—itb4Be—ita4Ae—itb;Be—i1a3Ae—itsze—itazA [e—ith,B’ —ialA]e_’m‘A
+ e—ita6Ae—ithSBe—ita5Ae—il‘b4Be—itu4Ae—itb3Be—ita3A [e—itb237 _ialA]e—ituer—izblBe—ita,A

+ ritasA githsB g—itasA g—ithyB p-itayA [e—itb3B ]e—iza3Ae—itsze—ita2Ae—itblBe—italA

,—ia 1A

+ eritasA gmithsB g-itasA [e—itb4B’ _ialA]e—ita4Ae—itb3Be—ita3Ae—itsze—im2Ae—irblB —ita;A

e

+ e—ztaGA [e—ltbSB’ _ialA]e—ttaSAe—ttb4Be—tta4Ae—ttb3B€—zta3Ae—ttsze—ttazAe—ztblBe—ltalA.
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We further define
cy = day, dy = by,
Cyi=ay + ay, dy ==by + by,
c3=ap +ap + as, dy == by + by + b3,
cyi=ay +ay +az + ay, dy:=b; 4+ by + bz + by,

C5:=Cl1+a2+a3+a4+a5, d5==b]+b2+b3+b4+b5, (MS)
so that
d ; —itagA _; —ithsB ,—itasA ,—ithyB ,—ita,A ,—itbsB ,—itazA ,—ith,B ,—itayA ,—ith)B ,—itai A
d—54(t)—(—lH)cS’4(t) = [e7"A, —idsB|e"PsP em1asA g1l g1t A o =ith3 B g milasA gm0y B o milar A g~ 11Dy B p—itay
t
+ e—ita(,A [e—itb5B _iCSA]e—itasAe—itb4Be—ita4Ae—itbgBe—iu@Ae—itsze—itazAe—itblBe—ita]A + .
+ e—ita(,Ae—itbSBe—ita5Ae—itb4Be—ita4Ae—itbgBe—ita3Ae—itsz [e—itazA’ —idl B} e—itblBe—ita]A
- eitach githsB gitash githyB g-itasA githsB gitas githyB pmitarA [ g=ithi B _jc AlmitmiA, (M6)
|
In Sec. III B and Appendix C, we factor out the operator- Sefi(t) 1= e 1a6A g ithsB gilasA p=ithyB p=itasA
Value;fl function §,(r) from the left-hand side of the above Sright(1) = e~ iPB gt gmith:B pmita:A p=ithi B p=iteiA (MO
equation as
d _ It then remains to analyze 7 4(7).
a54(t) — (=iH)S4(1) = S4()T (1). (M7) To this end, we use the fact that
This approach suffices to establish the asymptotic bound in [, Y] = X / ! dr e~ [X, ¥]e™
Theorem 6 and Corollary 7. However, the resulting function 0
7 (1) contains unitary conjugations with a large number of t X XX
conjugating layers, which defeats the goal of establishing - 0 dz et [X, Y]eT e, (M10)

tight error bounds. We improve this by simultaneously

factoring out &4 1 (7) from the left-hand side of the equation  for any ¢ € R and operators X, Y. We then have from

and & ;e (#) from the right-hand side, obtaining Lemma A.1 that

d

where where

7 . . . . . . . . . .
T4(T1 ) — / d’L’zema“AelT'b“BemaSAe”‘b5Be”2a6A [—ia6A, _idSB]e—trzaﬁAe—mb5Be—l‘r,a5A e—lr]b4Be—n’]a4A
0
71 . . . . . . . .
+ / dT2€t‘r|a4Aelr|bABen|a5Ael‘rzb5B [—ibsB, _iCSA]e—lrzbsBe—lrlaSAe—lrlb4Be—lT]a4A
0
7 . . . . . .
+ / drzetrla4Aetrlb4Betrza5A [—iasA, _l'd4B]e—zrza5Ae—lrlb4Be—tT]a4A
0
o it,asA itsbyB i2b4B ,—it asA “ ityasA ityasA
+ drye'n1@h e B[—jby B, —ic Ale” PP eIt 4 drye'%4 [—iayA, —idy Ble™ %
0 0

71 . . 7 . . . .
+ / dee_lTZb3B [—lb3B, —lC3A]€lTZb3B + / dTQe—trlb3Be—n'2a3A [—la3A, _ldzB]elrza3Aezrlb3B
0 0
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7 . . . . . .
+ / d‘[ze_”lb3B€_”1a3A€_”2sz [—isz, —l.CzA} glfzszelTla3AelTIb3B
0
71 . . . . . . . .
4 / dfze_lflb3B€_”1a3A€_”1sze_”2a2A [—iazA, _idlB]elfzaerlT]szelT]a3AelT1b3B
0

7 . . . . . . . . . .
+ / dT26—111b3Be—111a3Ae—zrlsze—n’]aer—wzblB [—iblB, —iCIA]elTZblBelT]aerlTIszelTIa3AelTIb3B. (Ml 1)
0

The operator-valued function 7 4(z;) has the order condition 7 4(z;) = O(z}), which follows from Proposition D.3 and
the fact that &4(¢) = e~ + O(#°). For terms in 7 4(z;), we compute the Taylor expansion of each layer of unitary
conjugation as in Sec. III D. In light of Lemma D.2, we expand the time variables 7; and 7, to third order, as the double
integral [} dz [;' dr, already exists. We then apply the triangle inequality to bound the spectral norm of a linear
combination of nested commutators of A and B with four nesting layers. Since [A, A] = [B, B] = 0 and [A, B] = [B, A], the
bound only contains 2°/4 = 8 nonzero terms.

Altogether, we obtain

184(2) = e=]| < £(0.0047||[A. [A. [A. [B. A]]]]|| + 0.0057|[[A. [A. [B. [B. AJJJ]|
+0.0046|[A, [B, [A, [B, A]l]]|| + 0.0074][[A, [B, [B, [B, A]]]]|
+0.0097||[B, [A, [A, [B, A]l]]|| + 0.0097][[B. [A, [B, [B, A]]]]|
+0.0173[|[B, [B, [A, [B, AlJ]]|| + 0.0284]|[B, [B. [B, [B, Al|]]|}). (M12)

assuming ¢ > 0.

TABLE II. Coefficients of the fourth-order Trotter error bound [Eq. (M14)] for Hamiltonians with three summands.

Commutator Coefficient Commutator Coefficient Commutator Coefficient
\|[H 1, [Hy, [Hy, [Ha, H]]]]] 0.0047 \[[Hy, [Hy, [Hy, [Hs, H]]]]] 0.0047 |[H 1. [Hy, [Hy, [Hs, Ho]]]| 0.0043
\|[Hy, [Hy, [Ha, [Ha, Hy]]]]] 0.0057 \|[Hy, [Hy, [Ha, [Hs, Hi]]]]] 0.0057 |[H 1, [Hy, [Ha, [Hs, Hol]]]| 0.0057
|[Hy, [Hy, [Hs, [Ha, Hi]]]]] 0.0057 I[Hy. [Hy. [Hs. [Hs, Hi]]]]] 0.0057 I[Hy. [Hy. [Hs. [Hy, H]]]]| 0.0057
I[Hy., [Ha, [Hy. [Hy, Hy]]]]] 0.0046 I[Hy., [Ha, [Hy. [Hs, Hi]]]]] 0.0046 I[Hy. [Ha, [Hy. [Hs, Hy]]]| 0.0035
I[Hy. [Ha. [Hy. [Hy, Hi]]]]] 0.0074 I[Hy. [Ha. [Hy., [Hs, Hi]]]]] 0.0070 I[Hy. [Ha. [Hy. [Hs, Hy]]]]| 0.0062
\|[H 1, [Hy, [H3, [Ha, Hy]]]]| 0.0082 \|[H 1, [Hy, [H3, [Hs, H,]]]]| 0.0082 \|[H 1., [Hy, [H3, [H3, Ho]]]| 0.0082
\|[H 1, [H3, [Hy, [Ha, Hi]]]]] 0.0046 \|[H 1, [H3, [Hy, [Hs, H,]]]]] 0.0046 |[H 1, [H3, [Hy, [Hs, Ho]]]| 0.0035
I[Hy. [Hs. [Hy. [Hy, Hi]]]]] 0.0070 \|[H 1, [H3, [Ha, [Hs, Hi]]]]] 0.0058 |[H 1, [H3, [H,, [Hs, Hol]]]| 0.0046
\|[H 1, [H3, [H3, [Ha, Hi]]]]] 0.0082 I[Hy. [H. [Hs. [Hs, Hi]]]]] 0.0074 I[Hy. [Hs. [H3. [Hs, H]]]]| 0.0074
I[Ha. [H. [Hy. [Hy, Hy]]]]] 0.0150 \I[Ha. [Hy. [Hy. [Hs, Hi ] 0.0150 |[Ha. [Hy. [Hy. [Hs, Hy]]]| 0.0141
\|[Hy, [Hy, [Ha, [Ha, Hy]]]]| 0.0161 \|[H>, [Hy, [Hy, [Hs, H]]]]| 0.0161 \|[H>. [Hy, [Hy, [H3, Ho]]]| 0.0161
\|[H>, [Hy, [H3, [Ha, Hy]]]]| 0.0161 \|[H>, [Hy, [H3, [Hs, H]]]]| 0.0161 \|[H>, [Hy, [H3, [H3, Ho]]]| 0.0161
\|[H>, [Hy, [Hy, [Ha, Hi]]]]| 0.0239 \|[H>, [Hy, [Hy, [Hs, Hi]]]]] 0.0239 |[H>, [Hy, [Hy, [Hs, Hol]]]| 0.0212
| (2. [Hy. [Ha, [H,. Hy]]]]] 0.0315 \|[H2. [H3, [Ha, [H3. Hy]]]]] 0.0306 (2. [Hy, [Ha, [H3. H,]]]]] 0.0290
\|[H>, [H,, [H3, [Ha, Hi]]]]] 0.0303 \I[Ha. [H2. [H3. [H3, H,]]]]]] 0.0303 |[Ha. [Ha. [H3. [Hy, H]]]]] 0.0303
\I[Ha. [H3. [H,. [Hy, Hi]]]]| 0.0179 \I[Ha. [H3. [H,. [Hs, Hi ]| 0.0179 \|[Ha. [Hs3. [H,. [Hs, H]]]]| 0.0153
\|[H>, [H3, [Hs, [Ha, H,]]]]| 0.0232 \|[H>, [H3, [Hs, [H3, H,]]]]| 0.0206 \|[H>. [H3, [H,, [H3, Ho]]]| 0.0179
\|[H>, [H3, [H3, [Ha, H,]]]]| 0.0259 \|[H>, [H3, [H3, [H3, H,]]]]| 0.0241 \|[H>. [H3, [H3, [H3, Ho]]]| 0.0241
\|[H3, [Hy, [Hy, [Ha, Hy]]]]] 0.0204 \|[H5, [Hy, [Hy, [Hs, H]]]]| 0.0204 \|[H3, [Hy, [Hy, [Hs, Ho]]]| 0.0186
\|[H3, [Hy, [Ha, [Ha, Hi]]]]| 0.0225 \|[H5, [Hy, [Ha, [Hs, Hi]]]]] 0.0225 |[H5, [Hy, [Ha, [Hs, Hol]]]| 0.0217
\|[H3, [Hy, [H3, [Ha, Hi]]]]] 0.0225 I[H. [H. [H3. [Hs. Hi ] 0.0225 I[Hs. [H,. [H3. [Hs, H]]]]| 0.0225
\|[H3, [Hy, [Hy., [Ha, Hi]]]]] 0.0423 \|[H3, [Hy, [Hy., [Hy, Hi]]]]] 0.0423 |[H3. [Hy, [Hy, [Hs, Ho]]]| 0.0377
\|[H3, [H>, [Ha, [Ha, H,]]]]| 0.0585 \|[H3, [Hy, [Hs, [H3, H,]]]]| 0.0571 \|[H3. [Hy, [H,, [H3, Ho]]]| 0.0537
\|[H3, [H, [H3, [Ha, H,]]]]| 0.0502 \|[H3, [H, [H3, [H3, H,]]]]| 0.0502 \|[H3. [H, [H3, [H3, Ho]]]| 0.0502
\|[H3, [H3, [Hy, [Ha, Hi]]]]| 0.0423 \|[H5, [H3, [Hy, [Hs, H]]]]| 0.0423 \|[H3, [H3, [Hy, [Hs, Ho]]]| 0.0377
\I[Hs. [Hs. [Hy. [Hy, Hi]]]]] 0.0681 \I[Hs. [H5. [Hy. [H;. Hi ]| 0.0641 |[Hs. [Hs. [H>. [Hs, H]]]]| 0.0601
\|[H3, [H3, [H3, [Ha, H,]]]]] 0.0648 I[Hs. [H5. [H3. [Hy, H,]]]]]] 0.0621 I[Hs. [Hs. [H3. [Hy, H]]]]]] 0.0628
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Proposition M.1:

(Trotter error bound for the fourth-order Suzuki formula with two summands). Let H = A + B be a

Hamiltonian consisting of two summands and 7 > 0. Let &§4(7) be the fourth-order Suzuki formula (11). Then,

184(2)

+0.0097|||
+0.0173|]

> =

— 71| < £5(0.0047]|[A, A, [A,

+0.0046||[A, [B. [A.
(A [A,
[B.[A,

|| +0.0057||[A. [A, [B. [B.A]
|| +0.0074] (A, [B. [B.

| +0.0097|[B. [A. B,
- (M13)

A generalization of this approach analyzes Hamiltonians with three summands, which is relevant for certain nearest-
neighbor and power-law systems where terms are ordered in an X-Y-Z pattern [Eq. (125)].

Proposition M.2: (Trotter error bound for the fourth-order Suzuki formula with three summands). Let H = H; +
H, + H; be a Hamiltonian consisting of three summands and ¢ > 0. Let &4(¢) be the fourth-order Suzuki formula (11).

Then,

Ull$4(2) -

—le|| <P Z

i.j,k,l,m=1

where the coefficients ¢; ;;,, are given by Table II.

Unlike the first- and second-order cases, we do not have
arigorous proof of the tightness of these bounds. However,
our numerical result suggests that these bounds are close to
tight for one-dimensional Heisenberg models with nearest-
neighbor [Eq. (122)] and power-law [Eq. (126)] inter-
actions. We hope future work will shed light on the
tightness of our analysis through either theoretical justifi-
cation or numerical calculation.
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