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Twisted bilayer graphene (TBG) provides a unique framework to elucidate the interplay between
strong correlations and topological phenomena in two-dimensional systems. The existence
of multiple electronic degrees of freedom—charge, spin, and valley—gives rise to a plethora of
possible ordered states and instabilities. Identifying which of them are realized in the regime of
strong correlations is fundamental to shed light on the nature of the superconducting and correlated
insulating states observed in the TBG experiments. Here, we use unbiased, sign-problem-free
quantum Monte Carlo simulations to solve an effective interacting lattice model for TBG at charge
neutrality. Besides the usual cluster Hubbard-like repulsion, this model also contains an assisted-
hopping interaction that emerges due to the nontrivial topological properties of TBG. Such a nonlocal
interaction fundamentally alters the phase diagram at charge neutrality, gapping the Dirac cones even
for infinitesimally small interactions. As the interaction strength increases, a sequence of different
correlated insulating phases emerge, including a quantum valley Hall state with topological edge
states, an intervalley-coherent insulator, and a valence bond solid. The charge-neutrality correlated
insulating phases discovered here provide the sought-after reference states needed for a compre-
hensive understanding of the insulating states at integer fillings and the proximate superconducting
states of TBG.

DOI: 10.1103/PhysRevX.11.011014 Subject Areas: Condensed Matter Physics,
Topological Insulators

I. INTRODUCTION

The recent discovery of correlated insulating and super-
conducting phases in twisted bilayer graphene (TBG) [1–3]
and other moiré systems [4–7] sparked a flurry of activity to

elucidate and predict the electronic quantum phases realized
in their phase diagrams [8–68]. Because the low-energy
bands of TBG have a very small bandwidth, of about
10 meV at the magic twist angle, the Coulomb interaction,
which is of the order of 25 meV, is expected to play a
fundamental role in shaping the phase diagram [1,13,20,23].
Indeed, insulating states have been reported at all commen-
surate fillings of the moiré superlattice [10], signaling the
importance of strong correlations. Besides correlations,
topological phenomena have also been reported, including
a quantum anomalous Hall (QAH) phase [69,70].
An important issue is the nature of the quantum ground

state at charge neutrality, characterized in real space by four
electrons per moiré unit cell and in momentum space by
Dirac points at the Fermi level. Experimentally, a large
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charge gap characteristic of an insulating state was reported
in transport measurements in Ref. [10] and in STM
measurements in Ref. [11], despite no obvious alignment
with the underlying hBN layer. The fact that this gap is not
observed in all devices has been attributed to inhomoge-
neity [10]. Theoretically, because the electronic states in
TBG have several degrees of freedom—spin, valley, and
sublattice—various possible ground states can emerge.
Indeed, Hartree-Fock calculations of the continuum model
at charge neutrality found various possible phases, such as
orbital-magnetization density waves, valley polarized
states, and states that spontaneously break the threefold
rotational symmetry of the moiré lattice [44,48,49,53,
59,61,71,72]. To distinguish among these different pos-
sibilities, and to search for novel ordered states in TBG, it is
desirable to employ a method that is not only unbiased but
that can also handle strong correlations.
Large-scale quantum Monte Carlo (QMC) simulations

provide an optimal tool, limited only by the finite lattice
sizes. Although such a limitation makes it impossible to
simulate a model with thousands of carbon atoms per moiré
unit cell, it is very well suited to solve lattice models on the
moiré length scale. At charge neutrality, the noninteracting
part of the model has only Dirac points at the Fermi level.
The crucial part of the model, however, is the interacting
part, which governs the system’s behavior in the strong-
coupling regime. At first sight, based on the analogy with
other strongly correlated models, it would seem sufficient
to consider a cluster Hubbard-like repulsion as the main
interaction of the problem. Previously, some of us used
QMC to simulate this model, which does not suffer from
the infamous fermionic sign problem [63,64]. The result
was a variety of valence-bond insulating states, which,
however, only onset at relatively large values of the
interaction U, of the order of several times the bandwidth
W. Below these large values, the system remained in the
Dirac semimetal phase.
However, microscopically, the full interaction of the

lattice model can be derived from projecting the screened
Coulomb repulsion on the Wannier states (WSs) of TBG.
The latter turn out to be quite different than in other
correlated materials, as they have nodes on the sites of
the moiré honeycomb superlattice and a three-peak structure
that overlaps with Wannier functions centered at other sites
[20,21,23]. Recent work has shown that this leads to the
emergence of an additional and sizable nonlocal interaction,
of the form of an assisted-hopping term [37,54]. This new
interaction ultimately arises from the fact that, in a lattice
model, the symmetries of the continuum model cannot all
be implemented locally, a phenomenon dubbed Wannier
obstruction [23]. Therefore, the assisted-hopping interaction
is not a simple perturbation but a direct and unavoidable
manifestation of the nontrivial topological properties of
TBG. This important aspect of the TBG was not taken into
consideration in the previous QMC simulations.

In this paper, we make this important step forward by
studying the impact of the assisted-hopping interaction on
the ground state of TBG at charge neutrality via sign-
problem-free QMC simulations. We find that such a term
qualitatively changes the phase diagram, as compared to the
case where only the cluster Hubbard interaction is included.
In particular, the Dirac semimetal phase is no longer stable
but is gapped already at weak coupling. We show that this
gap is a manifestation of a quantum valley Hall (QVH)
state, characterized by topological edge states. We confirm
this weak-coupling result by unrestricted Hartree-Fock
(HF) calculations of the same model simulated by QMC.
The HF calculations, well suited for weak interactions, also
show that the QVH state is a robust property of the weak-
coupling regime and is directly connected to the assisted-
hopping term. As the interaction strength increases, a
different type of insulating phase arises, displaying inter-
valley coherence (IVC) order. This on-site IVC order
breaks the spin-valley SU(4) symmetry of the interacting
part of the model, resembling recently proposed ferromag-
netic-like SU(4) states proposed to emerge in TBG at
charge neutrality and other integer fillings [37,48]. Upon
further increasing the interaction, a columnar valence
bond solid (cVBS) insulator state appears, favored by
the Hubbard-like interaction [63,64,73,74]. Importantly,
the presence of the assisted-hopping term makes the QVH
and IVC states accessible already for substantially smaller
values ofU=W, as compared to the case where there is only
Hubbard repulsion. Therefore, the experimental observa-
tion of such quantum states in TBG at charge neutrality
would provide strong evidence for the importance of
nonlocal, topologically driven interactions in this system.

II. MODEL, SYMMETRY ANALYSIS,
AND METHOD

Our lattice Hamiltonian H for spinful fermions on the
moiré superlattice consists of a noninteracting tight-binding
termH0 and an interaction termH⬡. An important property
of the narrow bands of TBG is their fragile topology,
resulting in the phenomenon known as Wannier obstruc-
tion, which prevents the construction of localized Wannier
orbitals that locally implement the symmetries of the
system of coupled Dirac fermions (i.e., the so-called
continuum model) [23]. There are essentially two ways
to overcome the Wannier obstruction: (i) include additional
remote bands (at the expense of adding more Wannier
orbitals and the associated interactions) or (ii) implement
one of the symmetries of the continuum model nonlocally
(at the expense of adding longer-range hopping parame-
ters). In case (ii), the Wannier orbitals, denoted by the
operators cilσ , live on the sites i of the dual honeycomb
moiré superlattice and are labeled by spin σ ¼ ↑;↓ and 2
orbital degrees of freedom, l ¼ 1, 2 (roughly corresponding
to the two valleys) [20,21]. In case (i), the Wannier orbitals
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can live on the sites of the triangular moiré superlattice, and
additional orbital quantum numbers are required.
Since we are interested in the strong-coupling regime, it is

crucial to project the screened Coulomb repulsion onto the
nonobstructed low-energy WSs. This was done in Ref. [37]
for case (ii), which implemented the C2T symmetry non-
locally, where C2 refers to twofold rotations with respect to
the z axis and T to time reversal. This process was found to
give rise to a nonlocal assisted-hopping interaction, besides
the more standard Hubbard-like repulsion.More specifically,
the interacting Hamiltonian in this case is given by the sum
of two contributions [37],

H⬡ ¼ U
X
⬡

ðQ⬡ þ αT⬡ − 4Þ2: ð1Þ

Here, U sets the overall strength of the Coulomb interaction.
The two terms in Eq. (1), illustrated in Fig. 1(a), consist
of the cluster charge Q⬡ ≡P

j∈⬡ðnj=3Þ, with nj ¼P
lσ c

†
jlσcjlσ , and the cluster assisted hopping T⬡ ≡P

j;σðic†jþ1;1σcj;1σ−ic
†
jþ1;2σcj;2σþH:c:Þ. The index j¼

1;…;6 sums over all six sites of the elemental hexagon
in the honeycomb lattice.
The cluster charge term Q⬡ is analogous to the Hubbard

on-site repulsion in the standard Hubbard model; it extends
over the entire hexagon because of the screening length set

by the separation between the gates in a TBG device and
the overlap betweenWSs of neighboring sites. In particular,
the Wannier wave functions are not peaked at the honey-
comb sites but instead are extended and peaked at the
centers of the three neighboring hexagons [20,21,23].
Therefore, one single WS overlaps spatially with other
WSs on neighboring sites, leading to the cluster charging
term Q⬡. On the other hand, the origin of the assisted-
hopping term T⬡ is topological; i.e., it comes precisely
from the fragile topology of TBG. This can be seen from
the derivation of the coefficient α, which controls the
relative strength of the two interactions. It is the overlap of
two neighboring WSs in a single hexagon, given as [37]

α ¼ −i
Z
⬡
drw�

1;1ðrÞw2;1ðrÞ; ð2Þ

where w1;1ðrÞ is the wave function of the WS at site 1 of the
hexagon with the valley index 1, and w2;1ðrÞ is the WS
at site 2 of the hexagon. Note that the integral is taken only
inside the single hexagon. Although α is generally a
complex number, its phase can always be removed by a
gauge transformation. As argued in Ref. [37], the sizable
value of α comes from the topological obstruction to the
fully symmetric WSs. If the bands are topologically trivial,
all the symmetries can be locally implemented for
the WSs. As a consequence, the WSs are C00

2 symmetric

l=1 l=2
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FIG. 1. Ground-state phase diagram at charge neutrality obtained via QMC simulations. (a) Schematics of the model: Each lattice site
on the dual moiré honeycomb lattice contains two valleys l ¼ 1, 2 (red and green triangles) and spins σ ¼ ↑;↓ (not shown), with spin-
valley SU(4) symmetry. The interactions act on every hexagon and consist of the cluster charge term Q⬡ (yellow dots) and the assisted-
hopping interaction term T⬡ (blue arrows). (b) Ground-state phase diagram, spanned by the U=W and α axes, obtained from QMC
simulations. The y axis at U ¼ 0 (dashed line) stands for the Dirac semimetal phase. At very small U, the ground state is a QVH phase
characterized by emergent imaginary next-nearest-neighbor hopping with complex conjugation at the valley index, as illustrated by the
red and green dashed hoppings with opposite directions. The system has an insulating bulk but acquires topological edge states. Upon
further increasing U, an IVC insulating state is found, which breaks the SU(4) symmetry at every lattice site by removing the valley
symmetry. Because it preserves the lattice translational symmetry, it is ferromagnetic-like. The cVBS insulator, which appears after the
IVC phase, breaks the lattice translational symmetry and preserves the on-site SU(4) symmetry. Note that there is a reemergence of the
IVC phase for the largest interactions probed. The phase transitions between QVH and IVC (blue line), between the IVC and cVBS
(black line), and between the cVBS and IVC (red line) are all first order.
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and have the same parity. While two neighboring WSs
overlap in two neighboring hexagons and sum to 0 because
of the orthogonality, the two overlaps are equal since C00

2

symmetry relates them together. Therefore, each one
vanishes, leading to α ¼ 0. The sizable value of αmanifests
the nontrivial topological properties of the narrow bands. In
Ref. [37], α was found to be 0.23 based on Koshino’s
model, without including the lattice relaxation [75]. Since
the relaxation will inevitably change α, we will not fix its
value here but instead study the phase diagram for a wider
range of α.
The nonlocal implementation of the C2T symmetry also

results in many longer-range hopping parameters in H0

[20]. Ideally, one would like to solve the model containing
all of these tight-binding terms, but such a model would, in
general, suffer from the sign problem and cannot be
efficiently simulated with QMC, which has the advantage
of being unbiased and applicable even for large interaction
values. In contrast, the interaction term H⬡ alone can be
solved with QMC without the sign problem, despite the
presence of the nonlocal interaction T⬡ (see discussions in
the Appendix A). Therefore, because we are interested in
the strong-coupling regime, we opt to keep the full non-
trivial interaction term and simplify the tight-binding
Hamiltonian in order to circumvent the sign problem,

H0 ¼ −t
X
hijilσ

ðc†ilσcjlσ þ H:c:Þ: ð3Þ

This simple nearest-neighbor band dispersion displays
Dirac points at charge neutrality and can be simulated with
sign-problem-free QMC at charge neutrality (four electrons
per hexagon once averaging over the lattice), which we
assume hereafter. Moreover, we set the hopping parameter
t ¼ 1 and use the bare bandwidthW ¼ 6t as the energy unit
in the remainder of the paper.
We emphasize that, in the strong-coupling regime, we

expect that it is the nontrivial structure of the projected
interactions that will determine the ground state and not
the bare tight-binding dispersion. Below, we provide
evidence that this is indeed the case. Thus, the crucial
point is that the topologically nontrivial properties of the
TBG band structure are already incorporated in the
interacting part of our model, which inherits them from
the projection of the screened Coulomb interaction on the
nontrivial WSs.
An interesting feature of H⬡ is its emergent SU(4)

symmetry describing simultaneous rotations in spin and
orbital spaces. To illustrate this feature, we introduce the
spinor ψ i ¼ ðci1↑; ci1↓; ci2↑; ci2↓ÞT and rewrite the inter-
actions as

Q⬡ ¼ 1

3

X
i∈⬡

ψ†
iψ i; ð4Þ

T⬡ ¼ i
X
i∈⬡

ψ†
iþ1T0ψ i þ H:c:; ð5Þ

with T0 ¼ diagð1; 1;−1;−1Þ denoting a diagonal matrix.
Consider the unitary transformation

ψ i∈A → Uψ i and ψ i∈B → T0UT0ψ i; ð6Þ

where U is an arbitrary 4 × 4 unitary matrix and AðBÞ are
the two sublattices of the honeycomb lattice. It is clear that
both Q⬡ and T⬡ are invariant under this transformation.
On the other hand, the kinetic term H0 is not invariant
under the transformation given by Eq. (6), thus leaving the
whole Hamiltonian only Uð1Þ × SUð2Þ × SUð2Þ symmet-
ric, i.e., the valley U(1) symmetry and the two independent
spin SU(2) rotations for the two valleys [23,43]. Thus,
strictly speaking, the SU(4) symmetry is exact for H⬡ but
only approximate for H0.
To solve the model H ¼ H0 þH⬡ nonperturbatively,

we employ large-scale projection QMC simulations
[63,64]. This QMC approach, employed in several previous
studies [63,64,73,76–79], provides results about the T ¼ 0
ground state, the correlation functions (which are used
to determine broken symmetries), and the electronic spectra
(both single-particle and collective excitations). As
explained above, despite the presence of the assisted-
hopping interaction, the model at charge neutrality does
not suffer from the sign problem (see Appendix A for
details). Thus, it can be efficiently simulated by introducing
an extended auxiliary bosonic field that dynamically
couples to the electrons on a hexagon—in contrast to
the standard Hubbard model, where the auxiliary field is
local. Details about the projection QMC implementation, as
well as comparison with results from exact diagonalization,
are discussed in Appendixes A and B.
We also complemented the unbiased QMC simulations

with self-consistent HF calculations, which are well suited
for the weak-coupling regime and can be employed even
when additional terms are included in H that introduce a
sign problem for QMC. The HF approach is fully unre-
stricted in the sense that H0 þH⬡ is mean-field decoupled
in all channels and free to acquire any value in site, spin,
and valley space. Further technical details, including the
resulting coupled set of (real space) self-consistency
equations, can be found in Appendix C. In the regime
of weak interactions, we find excellent agreement between
the results obtained from HF and QMC. Importantly, in the
same Appendix, we also extend the HF calculations to
include longer-range hopping terms in H0 and find that the
results are similar. This result supports our aforementioned
expectation that the nontrivial structure of the projected
interactions, arising from the fragile topology of TBG,
dominates the ground-state properties of the system, at least
at charge neutrality.

YUAN DA LIAO et al. PHYS. REV. X 11, 011014 (2021)

011014-4



III. QUANTUM VALLEY HALL PHASE,
INTERVALLEY-COHERENT INSULATOR, AND

VALENCE-BOND SOLID

The QMC-derived phase diagram for the ground states at
charge neutrality is shown in Fig. 1(b) as a function of
U=W and α. We emphasize that while U gives the overall
magnitude of the total interaction term, α is proportional to
the relative strength between the assisted-hopping and
cluster-charge terms. We find that three types of correlated
insulating phases emerge in the phase diagram: the QVH
phase, the IVC phase, and the cVBS.
The QVH phase is the ground state for small U values

and is characterized by a gap in the single-particle
spectrum. This gap can be extracted from the imaginary-
time decay of the Green’s function along a high-symmetry
path of the Brillouin zone (BZ), Gðk; τÞ ∼ e−ΔspðkÞτ.
Figure 2(a) shows the enhancement of the single-particle
gap at the K point of the BZ as a function of U for a
fixed α ¼ 0.45 (blue points). Together with Fig. 2(b), one
sees that the gap opens at the entire BZ at infinitesimally

small U. In many honeycomb lattice models, the Dirac
cone at the K point is protected by a symmetry, and the
semimetal phase is robust against weak interactions
[63,64,73,76]. In TBG, however, the relevant symmetry
C2T cannot be implemented locally due to the topological
Wannier obstruction, which opens up the possibility of very
weak interactions gapping out the Dirac cone.
In our QMC simulations, for any nonzero α that we

investigated, a gap appears even for the smallest values of
U probed. This result suggests a weak-coupling origin of
this phase. To verify it, we perform HF calculations on the
same lattice model. The results, shown by the red points in
Fig. 2(a), are in very good agreement with the QMC results.
We also use HF to investigate the stability of the gap against
changing the phase that appears in the assisted-hopping
term T⬡ [37]. This phase can be gauged away, at the
expense of introducing complex hopping terms in H0,
which introduce a sign problem to the QMC simulations.
However, they do not affect the efficiency of the HF
algorithm. As discussed in Appendix C, our analysis
confirms that the onset of the QVH phase is robust and
appears regardless of the phase of T⬡.
Importantly, we find that the gap completely disappears

when α ¼ 0, in agreement with Ref. [64]. Combined with
the fact that the gap opens for small interaction values when
α ≠ 0, this suggests that the origin of the gap can be
understood from a mean-field decoupling of the cross termP

⬡ Q⬡T⬡ of the interaction in Eq. (1). This cross term
can be rewritten as

X
⬡

Q⬡T⬡ ¼ i
X
⬡

X6
i;j¼1

X2
l;m¼1

ð−1Þmðc†i;lc†jþ1;mcj;mci;l−H:c:Þ;

ð7Þ

where l and m are valley indices and the spin index is
omitted for simplicity. The terms with j ¼ i − 1 and j ¼ i
vanish after summing over different hexagons. In the weak-
coupling limit, we can do a mean-field decoupling and
use hc†i;lciþ1;mi ∝ δlm, due to the nearest-neighbor hopping
term present in H0. The cross term then becomes

X
⬡

Q⬡T⬡ ∝ −i
X
⬡

X6
i¼1

X2
l¼1

ð−1Þl

× ðc†i;lciþ2;l þ c†i−2;lci;l − H:c:Þ: ð8Þ

Thus, the cross term of the interaction naturally induces an
imaginary hopping between next-nearest neighbor in the
weak-coupling limit. As a consequence, the mean-field
Hamiltonian becomes two copies (four, if we consider the
spin degeneracy) of the Haldane model [80,81], leading to a
Chern number of �1 for the two different valleys. Hence
we dub this phase QVH it is illustrated in
the corresponding inset in Fig. 1(b). We verify that our
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FIG. 2. QVH and gapless edge states. (a) Single-particle gap
ΔspðKÞ=W at the K point as a function of U=W for α ¼ 0.45,
extracted from both QMC (blue points) and HF calculations (red
points). For QMC, the spatial system size is L ¼ 12. The Dirac
semimetal is gapped out at the smallest U values probed.
(b) Single-particle gap extracted from QMC with L ¼ 12 along
a high-symmetry path of the Brillouin zone. (c) Topological
nature of the QVH phase manifested by valley-polarized edge
states. Here, we compare the edge Green’s function for valley
l ¼ 1 and spin ↑ at U=W ¼ 0.25 (inside the QVH phase) and
U=W ¼ 2.0 (inside the IVC phase). It is clear that gapless edge
modes only appear in the former case, highlighting the topo-
logical nature of the QVH phase.
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self-consistent HF calculation generates the same pattern of
imaginary next-nearest-neighbor hopping.
One of the hallmarks of the Haldane model is the

existence of gapless edge modes, despite the bulk being
gapped. In the QVH phase, these edge states should be
valley polarized. To probe them, we perform QMC sim-
ulations with open boundary conditions and extract the
imaginary-time Green’s functions on the edge, GedgeðτÞ∼
e−Δspτ. As shown in Fig. 2(c), in the regime of small U
(U=W ¼ 0.25), the Green’s function on the edge decays to
a constant in the long imaginary-time limit, demonstrating
the existence of a gapless edge mode in the QVH phase.
To verify the existence of edge states, we also use HF to
capture the topological nature of the QVH phase. In
practice, we open the boundaries in the system and
compute a self-consistent result with parameters as in
Table I from Appendix C (t ¼ 1, α ¼ 0.45, U=W ¼ 0.5,
T ¼ 2.5 × 10−5, and N ¼ 4 × 600). We find clear evidence
of edge states, as seen in Fig. 3. Note that a Chern number
can be defined separately for each valley l ¼ 1 and l ¼ 2
(with spin degeneracy). Because the valley Uð1Þ symmetry
guarantees that these two Chern numbers must be equal,
the whole system is characterized by one Chern
number that takes integer values; i.e., it belongs to a Z
classification [82].
Figure 2(c) also shows that, as U increases (U=W ¼ 2),

the gapless edge mode disappears, signaling a departure
from the topological QVH phase. Clearly, the bulk remains
gapped, as shown in Fig. 2(a). The new insulating phase
is an IVC state, which spontaneously breaks the on-site
spin-valley SU(4) symmetry. In the QMC simulations, IVC
order is signaled by an enhancement of the correlation
function CIðkÞ ¼ ð1=L4ÞPi;j∈AðBÞ eik·ðri−rjÞhIiIji; here,

the operator Ii ¼
P

σðc†i;l;σci;l0;σ þ H:c:Þ, l ≠ l0, represents
an “on-site hopping” between the two different valleys.
Thus, the correlation function is a 2 × 2matrix in sublattice

space, i.e.,
�
CAA
I

CBA
I

CAB
I

CBB
I

�
, which has the relation

CAA
I ¼ CBB

I ¼ −CAB
I ¼ −CBA

I . In the upper panels of
Figs. 4(a) and 4(b), we show the diagonal component
CAA
I ðkÞ. The fact that the correlation function is peaked at
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FIG. 3. In-gap local density of states in the QVH phase. We
show the real-space plot of the local density of states integrated
over 1.66 < E=W < 2.00, with U=W ¼ 0.5. Here, rx;y is the
position of the lattice sites in units of the moiré lattice spacing,
am. The result is computed with open boundary conditions and
parameters as in Table I from Appendix C.
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tively, as a function of U=W for (a) α ¼ 0.4 and (b) α ¼ 0.6.
Linear system sizes are indicated in the legend. In both panels, the
QVH-IVC transition, the IVC-cVBS transition, and the cVBS-
IVC transition are all first order. The inset in panel (a) presents
the histogram of the complex bond order parameter DK at
U=W ∼ 5.3. The positions of the three peaks are those expected
for a cVBS phase instead of a pVBS state.
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k ¼ Γ implies that the IVC order is ferromagnetic-like; i.e.,
it does not break translational symmetry. Such an on-site
coupling between opposite valleys [see the corresponding
inset in the phase diagram in Fig. 1(b)] breaks the valley
Uð1Þ symmetry and, hence, the SU(4) symmetry of the
model. The fact that the SU(4) symmetry-breaking pattern
is ferromagnetic-like is similar to recent analytical results
[37,38], which focused, however, at integer fillings away
from charge neutrality. We also note that our IVC state is
different from that of Ref. [48] since our IVC phase does
not have edge modes protected by a modified Kramers
time-reversal symmetry, as is the case of the IVC state
proposed in Ref. [48].
For larger values of U=W, as shown in Fig. 4, the IVC

order fades away, but the system remains insulating. The
new state that emerges is the cVBS insulator, characterized
by the appearance of strong nearest-neighbor bonds form-
ing the pattern illustrated in the corresponding inset of
Fig. 1(b). The onset of cVBS order is signaled by an
enhancement of the bond-bond correlation function [63,64,
73,74], CBðkÞ¼ð1=L4ÞPi;j e

ik·ðri−rjÞhBi;δBj;δi, with bond

operator Bi;δ ¼
P

l;σðc†i;l;σciþδ;l;σ þ H:c:Þ and δ denoting
one of the three nearest-neighbor bond directions of the
honeycomb lattice (ê1, ê2, and ê3). For this particular
calculation, ê1 was chosen.
As shown in the lower panels of Figs. 4(a) and 4(b), we

find an enhanced CBðkÞ at momenta K and K0, demon-
strating that the bond-order pattern breaks translational
symmetry. However, a peak of CBðkÞ at these momenta
does not allow us to unambiguously identify the cVBS
state, as the plaquette valence-bond solid (pVBS)
also displays peaks at the same momenta [63,64,73]. To
further distinguish the two types of VBS phases, we
construct the complex order parameter DK ¼ ð1=L2Þ×P

i ðBi;ê1 þ ωBi;ê2 þ ω2Bi;ê3ÞeiK·ri , with ω ¼ eið2π=3Þ. The
Monte Carlo histogram of DK is different for the two VBS
phases [73,74]: For the pVBS state, the angular distribution
of DK is peaked at argðDKÞ ¼ π=3, π, 5π=3, whereas for
the cVBS state, it is peaked at argðDKÞ ¼ 0, 2π=3, 4π=3.
Our results, shown in the inset of Fig. 4(a), clearly
demonstrate that the cVBS order is realized in our
phase diagram.
The phase boundaries in Fig. 1(b) are obtained by

scanning the correlation functions CIðΓÞ and CBðKÞ as
a function ofU=W for fixed values of α. Two of these scans
are shown in Fig. 4, for α ¼ 0.4 [panel (a)] and α ¼ 0.6
[panel (b)]. It is clear that, as U=W increases, in both cases
the ground state evolves from QVH to IVC to cVBS and
then back to IVC. Furthermore, in the strong-coupling limit
U=W → ∞, the IVC order CIðk ¼ 0Þ is independent of α
and saturates at 0.5, consistent with our analytical calcu-
lation at the charge neutrality point (see Appendix D). The
transitions between IVC to cVBS are first order, as signaled
by the fact that as the system size L increases, the
suppression of the IVC order becomes sharper [see, for

instance, the region around U=W ∼ 5 and U=W ∼ 11 in
panel (a)]. A similar sharp drop is also featured at the
QVH-IVC transition [region around U=W ∼ 2.5 in panel
(a)], indicating that the QVH-IVC and IVC-cVBS tran-
sitions are all first order. It is interesting to note that, as α
increases, the values of U=W for which the IVC and cVBS
phases emerge are strongly reduced.
We note that in the limit of vanishing bandwidth, our

analyses in Appendixes A and D reveal that in this very-
strong-coupling limit, the ground state of the system is in
the IVC phase for the range of α considered here.

IV. DISCUSSION

In this paper, we employed QMC simulations, which are
exact and unbiased, to obtain the phase diagram of a lattice
model of TBG at charge neutrality. Our main result is that
even very small interaction values trigger a transition from
the noninteracting Dirac semimetal phase to an insulating
state. Upon increasing U, the nature of the insulator
changes from a nonsymmetry-breaking topological QVH
phase to an on-site SU(4) symmetry-breaking IVC state, to
a translational symmetry-breaking cVBS phase, and then
finally back to a reentrant IVC state. This rich phase
diagram is a consequence of the interplay between two
different types of interaction terms: a cluster-charge repul-
sion Q⬡ and a nonlocal assisted-hopping interaction T⬡.
The former is analogous to the standard Hubbard repulsion
and, as such, is expected to promote either SU(4) anti-
ferromagnetic order or valence-bond order in the strong-
coupling regime. The latter, on the other hand, arises from
the topological properties of the flat bands in TBG. When
combined with Q⬡, it gives rise not only to SU(4)
ferromagnetic-like order but also to correlated insulat-
ing phases with topological properties, such as the
QVH phase.
While the precise value of U=W in TBG is not known, a

widely used estimate is that this ratio is of order 1 [37].
Referring to our phase diagram in Fig. 1(b), this means that
certainly the QVH phase and possibly the IVC phase can be
realized at charge neutrality, provided that α is not too
small. While some experimental probes report a gap at
charge neutrality (Refs. [10,11]), additional experiments
are needed to establish its ubiquity among different devices
and the nature of the insulating state. The main manifes-
tation of the QVH phase would be the appearance of
gapless edge states, whereas in the case of the IVC state, it
would be the emergence of a k ¼ 0 order with on-site
coupling between the two different valleys.
A number of recent insightful Hartree-Fock studies have

also reported several unusual ordered states at charge
neutrality [44,48,49,71,72]. In their approach, starting from
the Bistritzer-MacDonald (BM) continuum wave functions,
the Coulomb interactions are projected by use of the
continuum model and typically include several remote
bands. As usual, HF studies can depend crucially on the
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restrictions imposed in the search for ordered states, which
may explain the rich variety of proposed spontaneously
symmetry-broken phases identified from the continuum
approach, including a semimetal phase, quantum Hall
insulator, valley-Hall, and spin- and valley-polarized
phases. Recently, Ref. [48], allowing for coherence
between the two valleys, argued that the resulting insu-
lating IVC phase is the ground state at charge neutrality
for a broad parameter range. As discussed in the
Introduction of this paper, we have presented a comple-
mentary approach; starting from the strongly interacting
limit, we have applied the topologically nontrivial pro-
jected Coulomb interaction and utilized fully unrestricted
and unbiased numerical methods able to handle cases
where the scale of interactions exceeds the kinetic band-
width, to identify the ordered states at charge neutrality. In
qualitative agreement with some earlier studies, we locate
an IVC phase from this strong-coupling approach but
additionally identify both the QVH and a translationally
symmetry-breaking cVBS phase. While HF calculations
with the Bloch states usually produce homogeneous phases
without breaking the translation symmetry, more recent
density matrix renormalization group (DMRG) calcula-
tions with hybrid WSs have identified the stripe phase as a
strong candidate for a ground state in a toy BM model
without spin and valley degrees of freedom [54,66]. In
agreement with the DMRG calculations, our QMC study
found that the increasing kinetic terms drive the system
from the IVC phase in the strong coupling limit into the
cVBS phase in a more intermediate coupling regime.
In a more general context beyond TBG, our work offers a

promising route to realize correlation-driven topological
phases. As explained above, the topological QVH insulat-
ing state appears due to the cross term in the interaction
Hamiltonian that contains both Q⬡ and T⬡. While repul-
sive interactions similar to the charge-cluster term are
generally expected to appear in any correlated electronic
system, an interesting question is about the necessary
conditions for the emergence of an interaction similar to
the assisted hopping. In our case, it arises from the
projection of the standard Coulomb repulsion on WSs that
suffer from topological obstruction. The latter, in turn, is a
manifestation of the phenomenon of fragile topology [83].
Thus, interacting systems with fragile topology may offer
an appealing route to search for interaction-driven topo-
logical states. While here the Wannier obstruction arising
from the fragile topology is circumvented by implementing
the C2T symmetry of the continuous model nonlocally,
another route is to include the remote bands, separated from
the narrow bands of TBG by a sizable gap. While we expect
the ground state to be the same regardless of how the
Wannier obstruction is avoided, it is an interesting open
question to establish the strong-coupling phase diagram of
TBG starting from a model containing both the narrow and
remote bands.
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APPENDIX A: PROJECTION QMC METHOD

1. Construction

Since we are interested in the ground-state properties
of the system, the projection QMC (PQMC) is the
method of choice [76,79,84]. In PQMC, one can obtain
a ground-state wave function jΨ0i from projecting a trial
wave function jΨTi along the imaginary axis jΨ0i ¼
limΘ→∞e−ðΘ=2ÞHjΨTi; then, the observable can be calcu-
lated as

hÔi ¼ hΨ0jÔjΨ0i
hΨ0jΨ0i

¼ lim
Θ→∞

hΨT je−Θ
2
HÔe−

Θ
2
HjΨTi

hΨT je−ΘHjΨTi
: ðA1Þ

To evaluate overlaps in the above equation, we perform
Trotter decomposition to discretize Θ into Lτ slices
(Θ ¼ LτΔτ). Each slice Δτ is small, and the systematic
error is OðΔτ2Þ. After the Trotter decomposition, we have
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hΨT je−ΘHjΨTi ¼ hΨT jðe−ΔτHUe−ΔτH0ÞLτ jΨTi þOðΔτ2Þ;
ðA2Þ

where the noninteracting and interacting parts of the
Hamiltonian are separated. To treat the interacting part,
one usually employs a Hubbard-Stratonovich (HS) trans-
formation to decouple the interacting quartic fermion term
to fermion bilinears coupled to auxiliary fields.
For the cluster interaction in Eq. (1) of the main text,

we make use of a fourth-order SUð2Þ symmetric
decoupling,

e−ΔτUðQ⬡þαT⬡−4Þ2 ¼ 1

4

X
fs⬡g

γðs⬡Þeληðs⬡ÞðQ⬡þαT⬡−4Þ; ðA3Þ

with λ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ΔτU

p
, γð�1Þ¼1þ ffiffiffi

6
p

=3, γð�2Þ ¼ 1 −
ffiffiffi
6

p
=3,

ηð�1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3 − ffiffiffi

6
p Þ

q
, ηð�2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffiffi

6
p Þ

q
, and

the sum is taken over the auxiliary fields s⬡ on each
hexagon, which can take four values �2 and �1. After
tracing out the free fermionic degrees of freedom,
we obtain the following formula with a constant factor
omitted:

hΨT je−ΘHjΨTi ¼
X
fs⬡;τg

��Y
τ

Y
⬡

γðs⬡;τÞe−4ληðs⬡;τÞ
�

× det ½P†BðΘ; 0ÞP�
�
; ðA4Þ

where P is the coefficient matrix of the trial wave
function jΨTi. In the simulation, we make use of the
real-space ground-state wave function of the tight-binding
Hamiltonian H0 as the trial wave function jΨTi. In the
above formula, the B matrix is defined as

Bðτ þ 1; τÞ ¼
X
fs⬡;τg

eληðs⬡;τÞV · e−ΔτK ðA5Þ

and has properties Bðτ3; τ1Þ ¼ Bðτ3; τ2ÞBðτ2; τ1Þ; i.e., the B
matrix is an imaginary-time propagator, where we have
written the coefficient matrix of the interaction part as V
and K is the hopping matrix from the H0.

Every hexagon contains six sites, as shown in the figure
below, so our V matrix is a block matrix; every block
contributes a 6 × 6 matrix,

The configurational space fs⬡ði; τÞg with size L × L ×
Θ is the space in which the physical observables in Eq. (A1)
are computed with ensemble average. We choose the
projection length Θ ¼ 2L=t and discretize it with a step
Δτ ¼ 0.1=t. The spatial system sizes are L ¼ 6, 9, 12, 15.
The Monte Carlo sampling of auxiliary fields is further

performed based on the weight defined in the sum of
Eq. (A4). The measurements are performed near τ¼Θ=2.
Single-particle observables are measured by the Green’s
function directly, and many-body correlation functions are
measured by the products of single-particle Green’s func-
tions based on their corresponding form after Wick decom-
position. The equal-time Green’s function is calculated as

Gðτ; τÞ ¼ 1 − RðτÞ½LðτÞRðτÞ�−1LðτÞ; ðA6Þ

with RðτÞ ¼ Bðτ; 0ÞP, LðτÞ ¼ P†BðΘ; τÞ.

2. Absence of sign problem

At the charge neutrality point, the model is sign-problem-
free, as can be seen from the following analysis. Define
Wσ;l;Si as the updated weight of one fixed auxiliary field at
the ith hexagon, where l ¼ 1, 2 is a valley or orbital index
and σ ¼ ↑;↓ is a spin index. From the symmetry
of the Hamiltonian, W↑;l;Si ¼ W↓;l;Si . Since the model is
particle-hole symmetric at charge neutrality, one can perform
a particle-hole transformation (PHS) only for the valley
l ¼ 2. Then, one can focus on a fixed auxiliary field and
focus only on one spin flavor, such as spin up. Equation (A3)
in the main text can then be abbreviated as Eqs. (A7)
and (A8). Applying PHS for valley 2 and using the relation
Eq. (A9), we find that Eq. (A8) becomes Eq. (A10),

For l ¼ 1; exp

�
iαηðSiÞ

�X6
p¼1

ðic†pþ1;1;↑cp;1;↑ − ic†p;1;↑cpþ1;1;↑Þ þ
1

3

X6
p¼1

�
c†p;1;↑cp;1;↑ −

1

2

���
; ðA7Þ

For l ¼ 2; exp

�
iαηðSiÞ

�X6
p¼1

ð−ic†pþ1;2;↑cp;2;↑ þ ic†p;2;↑cpþ1;2;↑Þ þ
1

3

X6
p¼1

�
c†p;2;↑cp;2;↑ −

1

2

���
; ðA8Þ

−ic†pþ1;2;↑cp;2;↑ þ ic†p;2;↑cpþ1;2;↑ →
PHS

ic†pþ1;2;↑cp;2;↑ − ic†p;2;↑cpþ1;2;↑c
†
p;2;↑cp;2;↑ −

1

2
→
PHS 1

2
− c†p;2;↑cp;2;↑; ðA9Þ
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For l ¼ 2PHS; exp

�
iαηðSiÞ

�X6
p¼1

ðic†pþ1;2;↑cp;2;↑ − ic†p;2;↑cpþ1;2;↑Þ þ
1

3

X6
p¼1

�
1

2
− c†p;2;↑cp;2;↑

���
; ðA10Þ

For l ¼ 1; e−αηðSiÞBþiαηðs⬡ÞA → e−αηðs⬡ÞBeiαηðs⬡ÞA;

For l ¼ 2PHS; e−αηðSiÞBþiαηðs⬡ÞA → e−αηðs⬡ÞBe−iαηðs⬡ÞA: ðA11Þ

Let us define the matrices A ¼ 1
3

P
6
p¼1 ðc†p;2;↑cp;2;↑ − 1

2
Þ

and iB ¼ P
6
p¼1 ðic†pþ1;1;↑cp;1;↑ − ic†p;1;↑cpþ1;1;↑Þ—or,

equivalently, B ¼ P
6
p¼1 ðc†pþ1;1;↑cp;1;↑ − c†p;1;↑cpþ1;1;↑Þ.

The matrices A and B are real matrices. Then, due to
the fact that the matrix A is a diagonal matrix and
Aii ¼ Ajj, Eqs. (A7) and (A10) can be written
as Eq. (A11).
Because of the relations above, the total weight of

the model is
P

Si W↑;1;Si �W↑;2;Si �W↓;1;Si �W↓;1;Si ¼P
Si ðW↑;1;SiW

�
↑;1;Si

Þ2, which is a real positive number.
This result implies that the QMC simulations are sign-
problem-free.

3. Strong-coupling limit

The PQMC simulations can also be applied at the strong-
coupling limit, where the Hamiltonian only contains the
interaction part H⬡. We have performed the corresponding
simulations and found, as a function of α, that the system is
always in the IVC phase since the corresponding correla-
tion function CIðΓÞ is close to the saturation value of 0.5.
At the same time, the correlation function of the cVBS
phase, CBðKÞ, approaches zero as the system size
increases. The results are shown in Fig. 5. This case is

consistent with the theoretical analysis in this limit dis-
cussed in Appendix D.

APPENDIX B: BENCHMARK WITH EXACT
DIAGONALIZATION

We employ Lanczos exact diagonalization (ED) to bench-
mark the PQMC results, shown in Fig. 6. The system
contains 2 × 2 unit cells of the honeycomb lattice with
periodic boundary conditions (16 electrons in total). We
make use of symmetries, such as the valley Uð1Þ symmetry
and the total Sz conservation for each valley, to reduce the
computational cost of the ED. The ground state lies in the
subspace with N↑ ¼ 4, N↓ ¼ 4 in both valleys, where
N↑ðN↓Þ is the number of electrons with spin up (down)
in each valley. The dimension of the ground-state subspace is
about 24 × 106. In the PQMC simulations, we choose
the linear system size L ¼ 2 and the projection length
Θ ¼ 100=t with Trotter slice Δτ ¼ 0.0005=t. We compare
the ground-state expectation values of hH0i and of the
double occupation as a function ofU=t at α ¼ 0.3, which are
shown below. The results of both methods agree very well.

APPENDIX C: HARTREE-FOCK METHOD

To solve the TBG model within the Hartree-Fock
approach, we write the Hamiltonian in Eq. (1) of the main
text as

H⬡ ¼ U
X
⬡

ðQ0
⬡ þ αT 0

⬡ÞðQ⬡ þ αT⬡Þ; ðC1Þ

where primes indicate independent index summations. The
direct terms immediately give

HH
⬡ ¼ 2U

X
⬡

hQ0
⬡ þ αT 0

⬡iðQ⬡ þ αT⬡Þ: ðC2Þ
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FIG. 5. CIðΓÞ and CBðKÞ as a function of α at the strong-
coupling limit. We perform the QMC simulation with projection
length Θ ¼ 200L, interval of time slice Δτ ¼ 0.1, and spatial
system sizes L ¼ 9, 12, and by setting U ¼ 1 as a dimensionless
constant. The corresponding correlation function CIðΓÞ of IVC is
close to the saturation value of 0.5, and the correlation function
CBðKÞ of the cVBS is close to 0, which means the cVBS
disappears at the strong-coupling limit.
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FIG. 6. (a) Kinetic energy and (b) double occupancy as a
function of U=W for α ¼ 0.3. Red circles and blue squares with
error bars are obtained from ED and QMC, respectively.
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The exchange terms are given in Eq. (C3), where
P

all ¼ ðPl;l0¼1;2

P
σσ0

P
6
i;i0¼1

Þ. Manipulating and collecting terms in
Eqs. (C2) and (C3) yields the Hartree-Fock Hamiltonian Eq. (C3).

HF
⬡ ¼ −U

X
⬡

X
all

�
1

9
½hc†i0l0σ0cilσic†ilσci0l0σ0 þ H:c:�

þ αi
3
f½ð−Þl0þ1hc†i0þ1l0σ0cilσic†ilσci0l0σ0 þ H:c:� þ ½ð−Þl0 hc†i0l0σ0cilσic†ilσci0þ1l0σ0 þ H:c:�g

þ α2i2f½ð−Þl0þlhc†i0þ1l0σ0cilσic†iþ1lσci0l0σ0 þ H:c:� − ½ð−1Þl0þlhc†i0þ1l0σ0ciþ1lσic†ilσci0l0σ0 þ H:c:�

− ½ð−1Þl0þlhc†i0l0σ0cilσic†iþ1lσci0þ1l0σ0 þ H:c:� þ ½ð−Þl0þlhc†i0l0σ0ciþ1lσic†ilσci0þ1l0σ0 þ H:c:�g
�
;

HHF
⬡ ¼ 2U

X
⬡

	
n̄⬡ðQ⬡ þ αT⬡Þ −

X
all

�X
n;m

αnðl0Þαmðlþ 1Þhc†i0þnl0σ0ciþmlσi
�
c†ilσci0l0σ0



: ðC3Þ

Here, n;m ¼ f−1; 0; 1g, and we have defined

n̄⬡ ¼ hQ⬡ þ αT⬡i;

αðlÞ ¼

0
B@

α−1

α0

α1

1
CA ¼

0
B@

ð−1Þliα
1=3

ð−1Þlþ1iα

1
CA:

We solve the full Hartree-Fock Hamiltonian (H ¼
H0 þHHF

⬡ ) self-consistently using

hc†κcλi ¼
XN
ϵ;η¼1

U†
ϵκUληhγ†ϵγηi ¼

X
ϵ

U†
ϵκUλϵfðEϵ; μÞ; ðC4Þ

where κ; λ ¼ filσg, U is the unitary transformation diag-
onalizing H, γ’s are the eigenvectors, and fðEϵ; μÞ is the
Fermi-Dirac distribution of the excitation energies Eϵ. We
explicitly write the dependence on the chemical potential,
μ, as we iterate this value to fulfill N−1P

ϵ fðEϵ; μÞ ¼ ν,
where ν is the filling.
We compute results at charge neutrality (ν ¼ 0.5) with a

total of 600 lattice sites and periodic boundary conditions.
The calculations are fully unrestricted; thus, we iterate
all ð4 × 600Þ2 mean fields and define the convergence by
the condition that

P jΔEϵj < N × 10−10, where ΔEϵ is the
change of the excitation energies from one iteration to the
next, and N is the total number of states (4 × 600). In
Table I, we present an example of the HF calculations,
displaying results for t ¼ 1, α ¼ 0.45, andU=W ¼ 0.5. We
set the temperature T ¼ 2.5 × 10−5 in all computations.
The values in the table are the renormalized mean fields.
It is evident that all hoppings within each hexagon
are renormalized due to the interactions. The simple
hopping renormalizations, however, do not open a gap
in the Dirac cones. The gap is generated directly by the
mean fields hc†i;1;σci�2;1;σi ¼ −hc†i;2;σci�2;2;σi ¼ �0.0914i,

which explicitly display a spin-degenerate QVH phase, as
illustrated in Fig. 1(b) of the main text.
In Fig. 7(a), we show the single-particle gap in the QVH

phase with α ¼ 0.45 for several interaction strengths.
Figure 7(b) displays the corresponding band structures.
The Dirac cone at K in the bare bands is immediately
gapped out when including interactions. The renormaliza-
tion initially flattens the bands with a significant gap at all
high-symmetry points. As U increases, the valence band
gradually develops a peak at Γ while it is pushed down
correspondingly at K. This behavior results in a gradual
shift of the maximal gap value from Γ to K.
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FIG. 7. QVH insulator and band structures. (a) Single-particle
gap Δ=W along the high-symmetry path of the BZ with α ¼ 0.45
and various interaction strengths. The Dirac cones are gapped at
infinitely small U, and the system enters the QVH state. The
maximal gap value gradually shifts from Γ to K. (b) Band
structures at various interaction strengths with α ¼ 0.45. The top-
left plot displays the bare kinetic bands in the absence of any
interactions. The Dirac cone at K is evident and confirms the
semimetallic phase of the bare bands. The remaining three plots
of (b) present the renormalized band structures with increasingU.
The two bands flatten for small U and gradually develop a peak
at Γ. All bands are fourfold degenerate, as the QVH phase does
not break the approximate SUð4Þ symmetry.
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Furthermore, while QMC cannot handle a longer-range
tight-binding model due to the sign problem, the same is
not true for our unrestricted Hartree-Fock calculation.
We thus have computed a check with the tight-binding
model suggested in Refs. [21,22], including complex fifth
nearest-neighbor hopping (t2=t ¼ 0.025� 0.1i), which
breaks particle-hole symmetry and introduces a splitting
along the ΓM line. We find a complete, quantitative
agreement with the renormalized mean-field results pre-
sented in Table I. Thus, in the weak-coupling regime, the

QVH phase is very robust to the addition of long-range
hoppings inH0. The resulting bands with and without long-
range hopping can be seen in Fig. 8.
Finally, we present results obtained by implementing

the interaction terms found in Ref. [37]. As mentioned in
the discussion section of the main text, we are able to solve
this model within the HF approach as it does not suffer
from sign problems. The assisted hopping reads

T⬡ ¼
X6
i¼1

X
l;σ

ð−Þi−1ðc†ilσciþ1lσ þ H:c:Þ: ðC5Þ

The other terms, Q⬡ and H0, remain unchanged. To reach
this expression for T⬡, we have performed the following
gauge transformation,

cilσ → eiθl=2cilσ i odd;

cilσ → e−iθl=2cilσ i even: ðC6Þ
The transformation introduces phases in H0, effectively
causing t to become complex. We set the phases according
to Ref. [37], that is, θ1 ¼ −θ2 ¼ 0.743π. The renormalized
mean fields are presented in Table II, where we have
performed the inverse gauge transformation for direct
comparison with Table I. Input parameters are the same
as those used to generate Table I. The result is consistent
with the values presented in Table I and clearly also features
a QVH phase.

APPENDIX D: STRONG-COUPLING LIMIT AT
THE CHARGE NEUTRALITY POINT

For the system at the charge neutrality point, each unit
cell contains four fermions on average. Following the

E
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FIG. 8. QVH insulator and band structures with longer hop-
pings. Band structures at various interaction strengths with α ¼
0.45 and fifth nearest-neighbor hopping (a) t2=t ¼ 0 and
(b) t2=t ¼ 0.025� 0.1i. The top-left plots in (a,b) display the
bare kinetic bands in the absence of any interactions. The Dirac
cones at K are evident and confirm the semimetallic phase of the
bare bands in both cases. The remaining six plots present the
renormalized band structures with increasing U. It is evident that
the only effect of including the fifth nearest-neighbor hopping is
an emergent splitting along Γ −M. This splitting decreases with
increasing U=W.

TABLE I. Mean-field renormalization with U=W ¼ 0.50 and α ¼ 0.45. The input on ½c†ilσ ; cjl0σ � represents the renormalized mean-
field parameter hc†ilσcjl0σi. The result is homogeneous and spin degenerate; hence, the listed values contain information about all sites
and flavors. Note that interactions have generated neither spin nor valley mixing. We have subtracted the bare band contributions
evaluated at ν ¼ 0.5 and ignored all mean fields with ðjMFjmax=jMFjÞ > 100.

U=W ¼ 0.50

ci;1;σ ci;2;σ ci�1;1;σ ci�1;2;σ ci�2;1;σ ci�2;2;σ ciþ3;1;σ ciþ3;2;σ

c†i;1;σ � � � � � � −0.0209 � � � �0.0914i � � � 0.0024 � � �
c†i;2;σ � � � � � � � � � −0.0209 � � � ∓ 0.0914i � � � 0.0024

TABLE II. Mean-field renormalization with U=W ¼ 0.50 and α ¼ 0.45 using the model from Ref. [37]. The input on ½c†ilσ ; cjl0σ �
represents the renormalized mean-field parameter hc†ilσcjl0σi. The result is homogeneous and spin degenerate; hence, the listed values
contain information about all sites and flavors. We have subtracted the bare band contributions evaluated at ν ¼ 0.5 and ignored all mean
fields with ðjMFjmax=jMFjÞ > 100.

U=W ¼ 0.50

ci;1;σ ci;2;σ ci�1;1;σ ci�1;2;σ ci�2;1;σ ci�2;2;σ ciþ3;1;σ ciþ3;2;σ

c†i;1;σ � � � � � � −0.1015 − ð−Þi0.0555i � � � ∓ 0.0945i � � � −0.0806þ ð−Þi0.0300i � � �
c†i;2;σ � � � � � � � � � −0.1015þ ð−Þi0.0555i � � � �0.0945i � � � −0.0806 − ð−Þi0.0300i
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method applied in Ref. [37], the ground state jΨgri of the
interaction H⬡ should be annihilated by the assisted-
hopping operator T⬡ for any hexagon. The most general
form of the wave function is

jΨgri ¼
Y
i

X
αβ

U1αU2βψ
0
i;α

†ψ 0
i;β

†j∅i; ðD1Þ

where ψ 0
i¼ðci;1;↑;ci;1;↓;ð−ÞsðiÞci;2;↑;ð−ÞsðiÞci;2;↓ÞT , andUaγ

is an arbitrary 4 × 4 matrix.

1. H0 = 0

In the case of zero kinetic energy, the manifold of the
ground states is described by Eq. (D1) and thus can be
compared with the numerical results produced by QMC.
For this purpose, we consider the correlation function:

Ii;↑ ¼ hc†i;1;↑ci;2;↑ þ H:c:i
¼ ð−ÞsðiÞðU�

11U13 þ U�
21U23 þ c:cÞ; ðD2Þ

Ii;↓ ¼ hc†i;1;↓ci;2;↓ þ H:c:i
¼ ð−ÞsðiÞðU�

12U14 þ U�
22U24 þ c:cÞ; ðD3Þ

which leads to

CAA
I ¼ 1

L4

X
i;j∈A

⟪ðIi;↑ þ Ii;↓ÞðIj;↑ þ Ij;↓Þ⟫

¼ 1

L4

X
i;j∈A

ð⟪Ii;↑Ij;↑⟫þ ⟪Ii;↓Ij;↓⟫Þ

¼ 2 × ðjU11j2jU13j2 þ jU21j2jU23j2 þ jU12j2jU14j2

þ jU22j2jU24j2Þ ¼
1

2
:

Note here that ⟪ � � �⟫ is the average over all possible
4 × 4 unitary matrices, and therefore, U�

ijUkl ¼ 1
4
δikδlj.

Similarly, we can obtain CBB
I ¼ −CAB

I ¼ −CBA
I ¼ 1

2
.

2. Strong-coupling limit

In this subsection, we assume that H0 is finite but small
compared with H⬡. Since the kinetic terms break SUð4Þ
symmetry, the ground-state manifold shrinks and becomes
a subset of the manifold described in Eq. (D1). Our purpose
here is to identify the new manifold of the ground states and
show that it is independent of the exact form of kinetic
terms as along as it breaks the SUð4Þ symmetry described
in the main text.
For the convenience of calculation, we write Eq. (D1) in

the following form,

jΨGSi ¼
Y
i

ðα1c†i;1;n̂ þ ð−ÞsðiÞα2c†i;2;m̂Þ

× ðγðα�2c†i;1;n̂ − ð−ÞsðiÞα�1c†i;2;m̂Þ þ β1c
†
i;1;−n̂

þ ð−ÞsðiÞβ2c†i;2;−m̂Þj∅i; ðD4Þ

where sðiÞ ¼ 0 and 1 if the site i is on sublattice A and B,
respectively. Here, n̂ and m̂ are two arbitrary spin quan-
tization directions, and α1, α2, β1, and β2 are four complex
variables that satisfy jα1j2þjα2j2¼jγj2þjβ1j2þjβ2j2¼1.
Furthermore, consider the hopping between two sites.

We show next that the energy is minimized when
jα1j ¼ jα2j ¼ 1=

ffiffiffi
2

p
, γ ¼ 0, and jβ1j ¼ jβ2j ¼ 1=

ffiffiffi
2

p
.

Applying the second-order perturbation theory, the correc-
tion to the energy of the ground state is found to be

δE ¼
X
n

jhnjH0jΨGSij2
E0 − En

;

where n sums over all the excited states. Since it is almost
impossible to obtain the exact spectrum of the excited
states, we will maximize the term

P
n jhnjH0jΨGSij2

instead of δE. Furthermore, note that hGSjH0jΨGSi ¼ 0,
and write H0 ¼

P
ij Kði; jÞ, where i and j refer to the

honeycomb lattice site; we obtain

X
n

jhnjH0jΨGSij2 ¼ kH0jΨGSik2 ¼
X
ij

kKði; jÞjΨGSik2:

For notational convenience, it is worth introducing
f†i;a ¼

P
α ψ

0
i;α

†Uαa, where U is a unitary 4 × 4 matrix,
and the ground state is given by

jΨGSi ¼
Y
i

Y2
a¼1

f†i;1f
†
i;2j∅i:

From Eq. (D4), it is obvious that

U1α ¼ ðα1; 0; α2; 0Þ U2α ¼ ðγα�2; β1;−γα�1; β2Þ:

We introduce the diagonal matrix

T ¼ diagðt; t; ð−ÞsðiÞþsðjÞt�; ð−ÞsðiÞþsðjÞt�Þ;

where t is the hopping constant from site j to site i for
valley 1. The kinetic terms can be written as

Kði; jÞ ¼ ψ 0
i;α

†Tαβψ j;β ¼ f†i;aðU†TUÞabfj;b:

Now, it is easy to derive
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kKði; jÞjΨGSik2

¼
X
i;j

X4
a¼3

X2
b¼1

TiiT�
jjU

�
iaUibUjaU�

jb

¼
X
ij

TiiT�
jj

�
δij −

X2
a¼1

U�
iaUja

�
UibU�

jb

¼
X
i

jTiij2
X2
b¼1

jUibj2 −
X
ij

X2
ab¼1

TiiT�
jjU

�
iaUibUjaU�

jb

¼ 8jtj2 −
X
ij

X2
ab¼1

TiiT�
jjU

�
iaUibUjaU�

jb: ðD5Þ

Since the first term is independent of the form of the ground
state, we need to minimize the last term. Notice the T
matrix can be written as

T ¼ t0I4×4 þ t1diagð1; 1;−1;−1Þ;

and t0;1 ¼ 1
2
ðt� ð−ÞsðiÞþsðjÞt�Þ, which leads to t0t�1, is a

pure imaginary number. Thus, we find

kKði; jÞjΨGSik2 ¼ 8jtj2 − 8jt0j2 − jt1j2
X
ab

jMabj2; ðD6Þ

where M is a 2 × 2 matrix given by

M ¼
� jα1j2 − jα2j2 2γα�1α

�
2

2γ�α1α2 −jγj2ðjα1j2 − jα2j2Þ þ jβ1j2 − jβ2j

�
:

Clearly, the energy due to the second-order perturbation
is minimized when jα1j ¼ jα2j ¼ 1=

ffiffiffi
2

p
, γ ¼ 0, and

jβ1j ¼ jβ2j ¼ 1=
ffiffiffi
2

p
.

It is worth emphasizing that this result is independent of
the exact form of the kinetic terms. As long as the hoppings
break the SUð4Þ symmetry, the second-order perturbation
always leads to the same manifold of the ground states.
As a consequence, the ground state is an equal mixture of

two valleys. It is easy to obtain

hc†i;1;n̂ci;2;m̂i ¼ ð−ÞsðiÞα�1α2;
hc†i;1;n̂ci;2;−m̂i ¼ hc†i;1;−n̂ci;2;m̂i ¼ 0;

hc†i;1;−n̂ci;2;−m̂i ¼ ð−ÞsðiÞβ�1β2: ðD7Þ

Suppose that n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ and
m̂ ¼ ðsin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þ. We obtain

Ii;↑ ¼ hc†i;1;↑ci;2;↑ þ H:c:i ¼ ð−ÞsðiÞ
�
cos

θ

2
cos

θ0

2
α�1α2 þ sin

θ

2
sin

θ0

2
eiðϕ−ϕ0Þβ�1β2 þ c:c

�
; ðD8Þ

Ii;↓ ¼hc†i;1;↓ci;2;↓ þ H:c:i ¼ ð−ÞsðiÞ
�
cos

θ

2
cos

θ0

2
β�1β2 − sin

θ

2
sin

θ0

2
eiðϕ−ϕ0Þα�1α2 þ c:c

�
: ðD9Þ

As a consequence, when averaging over all the possible configurations of the ground states, we obtain

CAA
I ¼ 1

L4

X
i;j∈A

⟪ðIi;↑ þ Ii;↓ÞðIj;↑ þ Ij;↓Þ⟫ ¼ 1
L4

X
i;j∈A

ð⟪Ii;↑Ij;↑⟫þ ⟪Ii;↓Ij;↓⟫Þ

¼ 2 ×

�
⟪cos2

θ

2
cos2

θ0

2
⟫ðjα1j2jα2j2 þ jβ1j2jβ2j2Þ þ ⟪sin2

θ

2
sin2

θ0

2
⟫ðjα1j2jα2j2 þ jβ1j2jβ2j2Þ

�
; ðD10Þ

where ⟪ � � �⟫ refers to the average over the directions n̂ and
m̂, as well as the phases of α1, α2, β1, and β2. Averaging
over n̂ and m̂ on the sphere, we obtain ⟪cos2 θ

2⟫ ¼
⟪cos2 θ0

2 ⟫ ¼ ⟪sin2 θ
2⟫ ¼ ⟪sin2 θ0

2 ⟫ ¼ 1
2. Thus, CAA

I ¼ 1
2
.

Similarly, we can obtain CBB
I ¼ −CAB

I ¼ −CBA
I ¼ 1

2
, which

is the same as the case of zero kinetic energy and consistent
with the QMC result in the limitU=W → ∞ in Appendix A.
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