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The bond-dependent Kitaev model on the honeycomb lattice with anyonic excitations has recently
attracted considerable attention. However, in solid-state materials other spin interactions are present, and
among such additional interactions, the off-diagonal symmetric Gamma interaction, another type of bond-
dependent term, has been particularly challenging to fully understand. A minimal Kitaev-Gamma model
has been investigated by various numerical techniques under a magnetic field, but definite conclusions
about field-induced spin liquids remain elusive. One reason for this may lie in the limited sizes of the two-
dimensional geometry it is possible to access numerically, and missed incommensurately ordered states
may be interpreted as a spin liquid. Here we focus on the Kitaev-Gamma ladder model as a guide to
the phase space of disordered states which could potentially become a spin liquid in the two-dimensional
limit. We determine the entire phase diagram in the presence of a magnetic field along the [111] direction.
Because of the competition between the interactions and the field, an extremely rich phase diagram
emerges with 15 distinct phases. Focusing near the antiferromagnetic Kitaev region, we identify nine
different phases solely within this region: several incommensurate magnetically ordered phases, spin-
nematic, and two chiral phases with enhanced entanglement. Of particular interest is a highly entangled
phase with staggered chirality with zero-net flux occurring at intermediate field, which along with its
companion phases outlines a heart-shaped region of high entanglement, the heart of entanglement.
We compare our results for the ladder with a C3 symmetric cluster of the two-dimensional honeycomb
lattice, and offer insight into possible spin liquids in the two-dimensional limit.

DOI: 10.1103/PhysRevX.11.011013 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

The Kitaev model on a two-dimensional honeycomb
lattice is a rare example of an exactly solvable model
offering a quantum spin liquid with fractional excitations
[1]. Under a time-reversal symmetry breaking field, it
exhibits non-Abelian anyons with half-quantized thermal
Hall conductivity originated from Majorana edge mode.
Since the original proposal, finding a solid-state material
possessing such a quantum spin liquid has attracted great
attention. A microscopic mechanism for realizing the
Kitaev model in solid-state material was first suggested

using the combined effects of strong spin-orbit coupling
and electron-electron interactions [2,3]. Later, the nearest
neighbor generic spin model on an ideal honeycomb lattice
was rederived, and it was found that there are additional
bond-dependent interactions present, with the so-called
Gamma (Γ) interaction among the most intriguing [4].
From the material perspective, α-RuCl3 was proposed as

a leading candidate with a weaker coupling between layers
making the material close to two dimensional (2D) [5–10].
Furthermore, the Γ interaction has been found to be as large
as the Kitaev interaction in α-RuCl3 [11–13]. Since then,
RuCl3 has been explored by several experimental and
theoretical techniques [14–18]. In particular, early inelastic
neutron scattering [10] and Raman spectroscopy [19]
measurements have suggested a strong frustration well
above the magnetic ordering temperature, indicating strong
frustration which may originate from the bond-dependent
Kitaev and Γ interactions. Remarkably, a half-quantized
thermal Hall conductivity was recently reported in α-RuCl3
in a certain range of the magnetic field [20] when a zigzag
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magnetically ordered phase is destroyed by the magnetic
field [21]. Other physical quantities accessed by several
experimental techniques in RuCl3 also suggested that there
is a nontrivial intermediate phase under a magnetic field
which is different from a trivially polarized spin state in
high field regime [22–31]. However, the experimental
evidence for a field-induced intermediate disordered phase
in RuCl3 is still under debate [32–34].
In parallel to the experimental progress, theoretical

attempts to find nontrivial field-induced phases in extended
Kitaev model have been pursued extensively [12,35–48].
Most numerical studies are limited to either near the
antiferromagnetic (AFM) Kitaev or near the ferromagnetic
(FM) Kitaev region, as the exactly solvable Kitaev point
offers a starting point. In particular, a minimal Kitaev-
Gamma (KG) model under a [111] magnetic field has been
studied near a FM Kitaev and a AFM Γ region relevant to
RuCl3 [46–49]. A 24-site exact diagonalization (ED) study
showed a field-revealed Kitaev spin liquid near the FM
Kitaev region with a finite AFM Γ interaction, when the
magnetic field is tilted away from the [111] axis [49].
However, the infinite tensor product state found a small
confined Kitaev spin liquid, and broken C3 rotational phases
are induced under the magnetic field [47]. Interestingly,
various large unit cell magnetic orderings have been reported
in the classical KG model under the magnetic field along the
[111] axis [46], which are replaced by these broken rota-
tional phases in the quantum model [48]. Whether the C3

broken phases are quantum spin liquids or not is at present
not clear and will require further studies.
Numerical studies near the AFM Kitaev (AK) limit under

a magnetic field have found intriguing results [37,39–
42,45,50–52]. It was suggested that a gapless U(1) spin
liquid is induced by the magnetic field [45]. The energy
spectra obtained by 24-site ED showed putative gapless
excitations in the intermediate field, which then transition to
a polarized state (PS) in the high field regime. Several
infinite density matrix renormalization group (iDMRG)
studies also reported a change of central charge depending
on the number of legs in the DMRG which indicates a finite
spinon Fermi surface [50]. However, one may question if the
dense energy spectra are due to incommensurate order which
is difficult to detect due to the finite size of ED and limited
access to momentum points in iDMRG. Indeed, different
iDMRG studies have found different gapless points in
momentum space [39,50,52].
Despite intensive studies, definite conclusions on pos-

sible phases and the nature of numerically determined
phases near the Kitaev regions remain indefinite. One
reason for the controversial results among the previous
studies may lie in the limited sizes of the two-dimensional
honeycomb geometry that one can access numerically.
Furthermore, the zero-field and field-induced phases of
the entire phase space of the KG model are yet to be
determined. We therefore focus on the KG model defined

on a two-leg ladder which is much more amenable to a
detailed study and a complete phase diagram in the
presence of a magnetic field along the [111] direction
can be determined. Using high throughput iDMRG calcu-
lations we map out the entire phase diagram of the KG
ladder which shows an extremely rich structure. After we
determine the entire phase diagram, we focus on the region
of the phase diagram where the Kitaev interaction is
predominantly AFM. In this region, in the absence of a
magnetic field, we identify a novel spin-nematic (SN)
phase with quadropolar order in addition to the AFM
Kitaev phase (AK) and a phase connected to the isotropic
FM ladder through a local six-site spin rotation, FMU6

[53–56]. In zero field the KG ladder can be mapped to a
ladder with four-spin exchange closely related to JQ
models [57] (Heisenberg models with four-spin inter-
actions) extensively studied as models of deconfined
criticality [58].
When a magnetic field in the [111] direction is intro-

duced, field and spin interactions compete, and a prolif-
eration of phases is observed. We identify phases with
scalar chiral ordering and several phases with magnetic
ordering, some of which might display incommensurate or
very large unit cell ordering. Of particular interest is two
chiral ordered phases characterized by a staggered chirality
(SC) and uniform chirality (UC). The SC phase is a
magnetically disordered and highly entangled phase occur-
ring at intermediate magnetic field above the AK phase. It
has the staggered chirality with zero-net flux despite it is
under a rather large external field, and shows clear chain
end excitations. Rather poetically, this phase along with its
companion phases outline a heart-shaped region of high
entanglement, “the chiral heart of entanglement.” On the
other hand, the UC phase with the uniform chirality leading
to a finite net flux appears between the SN and the rung
singlet (RSU6

) phase connected to the isotropic AFM ladder
through a local six-site spin rotation [53–56]. It emerges at
extremely low field, as if three phases, SN, UC, and RSU6

,
may meet at a critical point. All together, near the AFM
Kitaev region alone, we identify 9 possible distinct phases
in addition to the FMU6

phase and the PS occurring at high
magnetic fields. Including phases away from the AFM
Kitaev region, we identify a total of 15 phases shown in
Figs. 2, 4, and 5 and elsewhere. Before we discuss these
phases in detail in the following sections, we summarize
their assigned names, their description, and reference in
the Table I.
In Sec. II, we first review the KGmodel. In addition to the

extensive 2D cluster studies, a one-dimensional (1D) KG
chain model including only x and y bonds was studied using
non-Abelian bosonization and DMRG and reported SU(2)
emergent phases [59]. The two-leg ladder is made of
two such KG chains by connecting them by the z bond.
Technical details relevant to the iDMRG and DMRG
numerical methods are subsequently discussed in Sec. III.
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An overview and detailed discussion of the full phase
diagram of the ladder is presented in Sec. IV along with a
discussion of the connection between the KG chain and the
ladder. In Sec. V, we focus on the vicinity of the AFMKitaev
region under a magnetic field, where a rich phase diagram
with various phases with enhanced entanglement is found.
Finally, in Sec. VI we compare our results for the ladder with
24-site ED results obtained in the honeycomb geometry and
discuss the implications of the ladder results to the 2D limit.

II. TWO-LEG KITAEV-GAMMA LADDER

The two-leg KG ladder is formed out of a strip of the
honeycomb lattice. The two KG chains with only x and y
bonds are coupled by adding the z bond as shown in Fig. 1.
Periodic boundary conditions in the direction perpendicular
to the ladder are then imposed by directly coupling the
dangling z bonds thereby forming a regular ladder. These

z bonds are shown as dotted vertical bonds in Fig. 1.
Sometimes the additional z bonds from imposing periodic
boundary conditions are taken to be of opposite sign
(and/or strength), in which case the resulting model is
usually referred to as a honeycomb ladder [60]. Here, all z
bonds are identical and a regular ladder is formed. In
addition to the bond-dependent Kitaev interaction, the KG
Hamiltonian incorporates another bond-dependent interac-
tion Γ [4]. For the KG ladder we orient the bonds so that the
Kitaev z bond connects the two legs of the ladder as shown
in Fig. 1. The complete Hamiltonian is then given by

HKG ¼
X

hi;jiγ∈ðx;y;zÞ
KSγi S

γ
j þ ΓðSαi Sβj þ Sβi S

α
j Þ; ð1Þ

where ðα; βÞ takes on the values ðy; zÞ=ðx; zÞ=ðx; yÞ for
γ ¼ x=y=z, and hi; ji refers to the nearest neighbor sites.
We keep K ¼ cosϕ and Γ ¼ sinϕ and interpolate between
the Kitaev ladder and Γ ladder by varying ϕ from 0 to 2π.
We denote the total number of sites in the ladder (including
both legs) by N. The pure Kitaev ladder at ϕ ¼ 0; π is
exactly solvable [61] and at both points it is in a disordered
gapped phase [61]. However, recently it was shown that
a nonlocal string order parameter (SOP) can be defined
[62] at the Kitaev points. The SOP remains nonzero in
the presence of a small Heisenberg coupling J at both the
Kitaev points. Close to the FM Kitaev point, ϕ ¼ π, the
phase diagram of the KG ladder has recently been inves-
tigated in the presence of a magnetic field and additional
interactions [49]. On the other hand, relatively little is
known about the rest of the phase diagram of the KG ladder
which is our focus here.
In one dimension in the absence of a magnetic field, the

closely related KG chain has been investigated in consid-
erable detail [59,63]. An extended disordered phase close to
the AFM Kitaev point, ϕ ¼ 0, has been identified along
with an adjacent spin-nematic phase. For the KG chain it
can rigorously be established that the phase diagram is
symmetric with respect to Γ → −Γ, a symmetry that is
clearly absent in the KG ladder.
It is of particular interest to also consider the effect

of a magnetic field. Here we exclusively consider a field in
the [111] direction, perpendicular to the honeycomb plane
of the ladder. The magnetic field leads to a Zeeman
coupling as

H ¼ HKG − g
μB
ℏ

X
i

h · S; ð2Þ

where we choose the direction of h along the [111]
axis normalized as h ¼ ðh= ffiffiffi

3
p Þð1; 1; 1Þ, g ¼ 1, and

S ¼ ℏðσ=2Þ where σ is a Pauli matrix. We use units with
ℏ ¼ 1 and μB ¼ 1.

FIG. 1. Two-leg ladder KG honeycomb strip with alternating x
and y bonds along the leg and z bond between the chains with the
numbering of the sites used throughout the paper. The dashed red
line indicates the partition used for ρN=2−1.

TABLE I. Abbreviation of the 15 phases found in the two-leg
KG ladder model under a [111] field as shown in Figs. 2, 4, and 5.
Their description and corresponding section are listed. Some
phases include special points along with their description.

Phase Description Section

SC Staggered chirality without a magnetic order VA, V B
UC Uniform chirality without a magnetic order VA, V B
AK Disordered with string order;

AFM Kitaev point
VA, V C

FMU6
Magnetic order; FM SU(2) Heisenberg point IVA

RSU6
Magnetic order; AFM SU(2)
Heisenberg point

IVA

SN Spin-nematic phase with two magnetic
orderings

IVA 1

FK Disordered with string order;
FM Kitaev point

IVA

AΓ Disordered; AFM Γ point IVA
ZZ Zigzag magnetic phase IVA
PS Polarized state IV C
η Incommensurate VA 1
β Incommensurate or large unit cell VA 1
τ Incommensurate or large unit cell VA 1
γ Large unit cell VA 1
μ Incommensurate or large unit cell VA 1
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III. NUMERICAL METHODS

As our main tools for investigating the KG ladder, we use
exact diagonalization, finite-size density matrix renormal-
ization group [64–69], and infinite DMRG [69,70] tech-
niques. The iDMRG calculations are performed in two
different ways. A high throughput mode with a small unit
cell of size 24 or 60 and a maximal bond dimension of 500
and a high precision mode with a unit cell of 60 and a
maximal bond dimension of 1000. Typical precisions
for the two iDMRG modes are ϵ ¼ 10−8 and ϵ ¼ 10−10,
respectively, and ϵ ¼ 10−10 for the finite-size DMRG
calculations. Finite-size DMRG calculations are performed
both with open boundary conditions (OBC) and for smaller
system sizes with periodic boundary conditions. In order to
establish the phase diagram we focus on several different
characteristics. With e0 the ground-state energy per spin,
we define the energy susceptibilities,

χeh ¼ −
∂2e0
∂h2 ; χeϕ ¼ −

∂2e0
∂ϕ2

; ð3Þ

where χeh could equally well be called a magnetic suscep-
tibility. For finite-size systems of size N it has been
established [71] that the energy susceptibility at a quantum
critical point (QCP) diverges as

χe ∼ N2=ν−d−z: ð4Þ

Here ν and z are the correlation and dynamical critical
exponents and d is the dimension. It follows that χe may not
necessarily detect the phase transition if the critical expo-
nent ν is sufficiently large. We have therefore found it
useful to supplement the analysis of χe by a study of the
entanglement spectrum [72] at different sections of the
ladder. We have found it most useful to use a partition of
the ladder where a cut is introduced at site N=2 − 1 thereby
intersecting a rung (see Fig. 1). With λα the eigenvalues of
the resulting reduced density matrix, ρN=2−1 the entangle-
ment spectrum can be defined as − ln λα and yields a
characteristic signature of a phase. Close to the QCP the λα
rapidly change whereas they remain approximately con-
stant inside a phase. We therefore focus on the largest of the
λα’s which we denote by λ1 and study the lowest edge of the
entanglement spectrum defined by

− ln λ1: ð5Þ

This quantity is often called the single copy entanglement
[73] in a quantum information context. In a product phase
λ1 ¼ 1 (− ln λ1 ¼ 0) and such phases, with zero entangle-
ment, are therefore easily detected by tracing out − ln λ1.
Conversely, phases with high entanglement will have
− ln λ1 ≫ 0, and of course, due to the ordering of the λα
one must have − ln λα > − ln λ1 for any α > 1. Sometimes
changes in − ln λ1 are imperceptible and we have therefore

found it useful to define an entanglement spectrum sus-
ceptibility (or single copy entanglement susceptibility) as
follows:

χλ1h ¼ −
∂2λ1
∂h2 ; χλ1ϕ ¼ −

∂2λ1
∂ϕ2

: ð6Þ

Since the entanglement spectrum has to change at the QCP,
χλ1 should be able to detect any phase transition with the
exception of unlikely scenario’s where λ1 only changes
linearly at the QCP with all nontrivial changes in the higher
λα’s. We have found χλ1 to be an extremely sensitive
measure, often changing many orders of magnitude at a
QCP, and we therefore typically focus on ln χλ1 .

IV. FULL KG LADDER ϕ;h½111� PHASE DIAGRAM

We start with a discussion of the full phase diagram
covering the entire range ϕ ∈ ½0; 2π� and h½111�∈ ½0;1.75�.
Our results for the full phase diagram as obtained from
iDMRG calculations are shown in Fig. 2. We first show
ln χλ1ϕ in Fig. 2(a). The divergence of χλ1ϕ at a phase
transition is so strong that it is most sensible to plot
ln χλ1ϕ . A well-defined phase, where λ1 is close to constant,
is then visible in Fig. 2(a) as a dark blue coloring. On the
other hand, a divergent χλ1ϕ , indicating a phase transition
is visible as a dark red color. As is clearly evident from
Fig. 2(a) the complexity of the phase diagram due to the
many competing phases is truly remarkable.
Figures 2(b) and 2(c) show χeϕ and − ln λ1, and the spin

excitation gap at zero field, respectively. We discuss them
in detail later.
A second view of the full phase diagram is shown in

Fig. 2(d) where the bipartite von Neumann entanglement
entropy Srung is shown. We define

Srung ¼ −TrρN=2−1 ln ρN=2−1; ð7Þ

where ρN=2−1 is the reduced density matrix obtained from a
partition of the ladder after site N=2 − 1, a partition that
will cut a rung in the ladder. The partition is indicated in
Fig. 1. Highly entangled phases are visible as bright yellow
colors, whereas phases with negligible or no entanglement,
i.e., the ground-state wave function is described by a simple
product form, are shown as dark blue colors.
We note that considerable scattering is clearly visible in

certain regions at finite fields, for instance, above ϕ ¼ π=4
and ϕ ¼ 0. The noise is due to poor convergence of the
iDMRG due to the high frustration present. In these regions
a more careful analysis with either exact diagonalizaiton or
finite-size DMRG is necessary.
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A. Zero-field phase diagram

Let us now focus on the phase diagram in zero field.
A detailed high precision calculation of χeϕ at zero field is
shown in Fig. 2(b) along with the lower edge of the
entanglement spectrum, − ln λ1 (the single copy entangle-
ment). A large number of well-defined phase transitions are
clearly visible, which we now discuss.
Part of the phase diagram close to the FM Kitaev point,

ϕ ¼ π, has previously been discussed [49], and in zero field
a gapped spin-liquid phase denoted KSL between ϕ=π ¼ 1
and ϕ=π ¼ 0.883 along with a second gapped phase KΓSL
starting below ϕ=π ¼ 0.883 have been identified. Since we
here discuss the full phase diagram, we shall refer to the
KSL phase as FK and the KΓSL phase as AΓ to distinguish
them from the phases occurring at the AFM Kitaev point.
The notation AΓ makes sense since this phase surrounds
ϕ ¼ π=2, where K ¼ 0, Γ ¼ 1.
A local unitary transformation U6 is also known

[59,63,74]. The U6 transformation locally rotates the spins
in a manner so that the Γ couplings are transformed into
Heisenberg-like (xx, yy, or zz) couplings with a changed
sign. The transformation can be applied equally well to the
chain, the ladder, and the honeycomb plane. At the points
ϕ ¼ π=4 and ϕ ¼ 5π=4, where the Kitaev and Γ couplings
are of equal strength, the KG ladder is therefore trans-
formed into an isotropic FM and AFM Heisenberg ladder.
These two points therefore have hidden SU(2) symmetry.
It is well established that the isotropic AFM Heisenberg
ladder is in a gapped disordered rung singlet phase [75,76]
and we therefore denote the corresponding phase for the
KG ladder as RSU6

. In the two-dimensional honeycomb
lattice limit the RSU6

phase becomes a 120° ordered phase
[4]. For the FM point, ϕ ¼ π=4, we denote the magnetically
ordered gapless phase by FMU6

. Since the FMU6
is well

approximated by a product wave function with negligible
entanglement, it is distinctly visible in Fig. 2(d) with its
almost black coloring. The FM and AFM points are shown
as solid red circles along the ϕ axis in Fig. 2. The same
unitary U6 transformation transforms the FM Kitaev point,
ϕ ¼ π, to the AFM Kitaev point, ϕ ¼ 0. The energy
spectrum at these two points must therefore be identical,
a property that does not hold for any nonzero Γ.
Starting from right to left we observe that the transition

from RSU6
to the FK phase occurs at ϕ=π ¼ 1 with the

subsequent transition from the FK phase to the AΓ phase
occurring at ϕ=π ¼ 0.883. Between the gapless FMU6

phase and the gapped AΓ phase we observe a rapid
sequence of several well-defined phase transitions at
ϕ=π ¼ 0.440, ϕ=π ¼ 0.428, ϕ=π ¼ 0.396, and finally at
ϕ=π ¼ 0.385. See enlargement shown as inset in Fig. 2(c).
While χeϕ only detects a single transition at ϕ=π ¼ 0.385,
the other three transitions are clearly identifiable in − ln λ1,

FIG. 2. Phase diagram of the two-leg KG ladder model
versus field, h½111�, and coupling ϕ=π. (a) The entanglement
spectrum susceptibility χλ1ϕ on a logarithmic scale. (b) The
energy susceptibility, χeϕ (blue line) versus ϕ in zero field, and
the single copy entanglement, − ln λ1 (red line), versus ϕ in zero
field. (c) The excitation gap to the first four states; solid blue
circles are extrapolations of Δ1 to N ¼ ∞. (d) Srung versus ϕ
and h½111�. See labels in Fig. 4. Results in (a) and (d) are
from high throughput iDMRG calculations with a unit cell of
60 sites with Δϕ ¼ 0.01π;Δh½111� ¼ 0.01. Results in (b) are
from high precision iDMRG calculations with a unit cell
of 60 sites with Δϕ ¼ 0.001π. Results in (c) are from high
precision finite-size DMRG calculations with periodic boun-
dary conditions, N ¼ 60, and Δϕ ¼ 0.01π. Close to ϕ ¼ π
and ϕ ¼ 0.88π, Δϕ ¼ 0.001π.
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as shown in the enlarged inset. The precise nature of the
intervening phase is at present unclear and left for future
study. A clear transition out of the FMU6

phase to the
gapped spin-liquid phase AK is observed at ϕ=π ¼ 0.086.
As previously mentioned, precisely at ϕ ¼ 0 a nonlocal
string order has been found [62] and the AK phase is clearly
identifiable as a spin-liquid phase. In the 2D honeycomb
lattice limit the AK phase becomes the AFM Kitaev spin
liquid. We discuss the AK phase further below. We now
turn to a discussion of the last phase observed in zero field,
to the left of the AK phase.

1. Nematic phase in zero field, SN

In a recent study [63] the KG chain was investigated and
a phase with spin-nematic (spin-quadropole) order adjacent
to the spin-liquid phase at ϕ ¼ 0 was identified. From a
symmetry analysis of the following four order parameters
were identified:

Qc ¼ SxjS
y
jþ1 þ SyjS

x
jþ1;

Qd ¼ Sy2nþ1S
z
2nþ2 þ Sz2nþ1S

y
2nþ2

þ Sx2nþ2S
z
2nþ3 þ Sz2nþ2S

x
2nþ3; n ¼ 0; 1;…;

Qe ¼ Sy2nþ1S
y
2nþ2 þ Sx2nþ2S

x
2nþ3; n ¼ 0; 1;…;

Qf ¼ SzjS
z
jþ1: ð8Þ

The two order parameters Qc and Qd describe off-diagonal
ordering between sites not coupled by the same terms in the
Hamiltonian and Qe, Qf diagonal ordering again between
sites not coupled the same way in the Hamiltonian. The
above definitions therefore depend on a specific ordering of
the couplings along the leg. In Eq. (8) we only consider a
single leg of the ladder and, as opposed to the rest of the
paper, we number the sites on the leg consecutively,
1; 2; 3…. Considering only the Kitaev coupling, site 1, 2
would be xx coupled, site 2, 3 yy coupled, and so forth.
(Note that along the legs of the KG ladder no SzSz

coupling occurs so Qf and Qc can be defined between
any two nearest neighbor sites.) We can then use the same
order parameters to study nematic ordering along the legs
of the KG ladder. Our results are shown in Fig. 3 as
obtained from iDMRG. Because of the translational
invariance the Q’s are the same among all sites and are
easily calculated. They all four become nonzero at
ϕ=π ¼ −0.155, which coincides with divergences in χeϕ
and χλ1ϕ . The transition by varying ϕ is also clearly visible
directly in − ln λ1, as can be seen in Fig. 2(b).
However, this is not a conventional spin-quadropole

phase. The DRMG with OBC shows two different mag-
netic orderings depending on the size of the system. One
has the AFM order along the leg and FM between the rung,
and the other has a six-site ordering mapping to AFM order
after six-site transformation, while the iDMRG finds the

first one. The AFM order corresponds to a stripe order, if
we continue the ordering pattern by increasing the number
of ladders to the 2D limit. Let us briefly consider what
happens if an additional Heisenberg coupling J is intro-
duced alongside the K and Γ terms. In that case, the striped
phase appears for an AFM Heisenberg interaction J > 0 in
24-site ED calculations on the C3 cluster, while the second
ordering is likely a spiral order occurring for J < 0 [4].
This suggests that this particular window of ϕ with J ¼ 0 is
in fact a line of first order transitions (in J) between these
two orderings. To confirm such a possibility, we have
studied the phase boundary by sweeping J (parametrized as
J ≡ K cos θ). Indeed, we find a clear first order transition
occurring at J ¼ 0 in χeθ, the second derivative of ground-
state energy per spin with respect to θ, as shown
Appendix A.
While it is a line of first order transitions, we would refer

to this as SN for spin nematic, as the SN is a common
feature of these orderings coexiting along the transition
line. As the magnetic field becomes finite, it develops a
magnetic order with almost zero entanglement, which is
shown later. The transition out of the SN phase into the
RSU6

phase occurs at around ϕ=π ¼ −0.265. As we discuss
later, this quantum phase transition is actually a multi-
critical point where the first order transition line ends, and
two other phases occur. A high precision determination of
the location of the critical point is therefore significantly
more difficult than for the other QCPs. In particular so,
since the entanglement for ϕ < ϕ=π ¼ −0.265 is exceed-
ingly high. It is therefore shown as a broader dashed line
in Fig. 3.

FIG. 3. Nematic ordering at zero field in the AFM Kitaev
region. The nematic order parameters are determined along one
leg of the KG ladder. Results are from high precision iDMRG
calculations with a unit cell of 60, calculated in the J → 0þ limit
with a small Heisenberg coupling J. The dotted vertical lines
denote the transitions at critical fields determined from diver-
gences in χeϕ and χλ1ϕ .
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2. Excitation gap in zero field

In Fig. 2(c) we show the spin excitation gap to the first 4
lowest lying states, Δ1, Δ2, Δ3, and Δ4, as obtained from
high precision finite-size DMRG on ladders with N ¼ 60.
We have verified that finite-size effects are relatively small
if not in the proximity of a QCP. This is indicated by the
solid blue circles in Fig. 2(c) which indicate extrapolations
to N ¼ ∞ of δ1 by fitting data for N ¼ 24, 36, 48, 60, and
72 to the form ΔðNÞ ¼ Δ∞ þ a expð−N=ξÞ=N.
Starting from the right, we find that the RSU6

phase, as
expected, has a single ground state with a well-defined
triplet excitation throughout most of the phase. The triplet
excitation merges with higher lying excitations at
ϕ ¼ 1.56π. Precisely at the FM Kitaev point, ϕ ¼ π, there
is a level crossing leading to a clear first order transition.
This is exact also for finite systems. The same holds true by
symmetry at the AFMKitaev point, ϕ ¼ 0. However, while
the FK phase has a single ground state below a well-defined
gap and ϕ ¼ π is a transition point, in the AK phase the
ground state remains double degenerate below a gap, only
split by finite-size effects. The AΓ phase also has a single
ground state with a well-defined triplet excitation above it.
The FMU6

phase is gapless, but occasionally excited state
DMRG calculations get trapped in higher lying states and
the gapless nature of the phase does not appear clearly in
Fig. 2(c). The final phase we discuss here, the SN phase
occurring between ϕ=π ¼ −0.265 and ϕ=π ¼ −0.155, is
clearly gapless, as can be seen in Fig. 2(c) with all four gaps
close to zero.

B. Relation to 1D KG chain

As eluded to above, the phase diagram of the ladder is
closely connected to that of the KG chain and the KG model
defined on the full two-dimensional honeycomb lattice.
Comparing to the phase diagramof theKGchain [59,63], a

gapped FK phase appeared in the ladder, while it was gapless
in the chain model. Similarly, the AK persists near the AFM
Kitaev region, and it is gapped in the ladder, while it is gapless
in the chain. RSU6

is gapped in the ladder similar to AFM
Heisenbergmodel, where as it was gapless in the chain. FMU6

remainsmagnetically ordered with gapless excitations as was
the case for the chain. For the chain a gapless nematic phase
was identified [63] on either side of the AK phase. For the
ladder a similar gapless phase, SN, occurs but this time only
on one side of the AK phase. AΓ remains disordered like the
chain. There is therefore a close connection between the
phases identified in the KG chain, but we expect the KG
ladder to be much closer to the two-dimensional honeycomb
lattice and to represent most of the phases occurring in that
limit although we in some cases expect phases to become
gapless in the two-dimensional limit. For instance, in the KG
ladder AK and FK phases are gapped and we expect these
phases to become the AFM and FM Kitaev spin liquid,
respectively, in the 2D limit, which are gapless.

C. Nonzero field

When a magnetic field in the [111] direction is intro-
duced, the full h½111�, ϕ phase diagram is revealed as
shown in Figs. 2(a) and 2(d). From the rung entanglement
Srung shown in Fig. 2(d), it is clear that the introduction of a
field in many cases tends to increase the entanglement.
New highly entangled phases appear until the fully field
polarized state is attained where all spins are polarized
along h½111�. We denote this polarized state by PS.
Trivially, it is a product state with zero entanglement.
We start by discussing the fate of the RSU6

phase. This
phase is adiabatically connected to the PS phase and no
phase transition is observed at any nonzero field strength.
This is contrary to the FMU6

phase state which cannot be
adiabatically connected to the PS phase. This follows from
the fact that the phase is not an ordinary FM state but only
related to one through the local unitary rotation U6. An
alignment of the spins along the [111] direction is therefore
energetically costly. As can be seen in Figs. 2(a) and 2(d), a
line of phase transitions around field strengths of h½111� ¼
0.7–1.0 occurs, signaling the transition to the PS phase.
A new phase at finite field above ϕ ¼ π=2 is clearly visible.
This is a gapless, magnetically ordered phase with the spins
arranged in a zigzag manner, in opposite directions on the
two legs of the ladder, and we refer to this phase as the ZZ
phase. The fate of the phases occurring between ϕ=π ¼
0.440 and ϕ=π ¼ 0.385 is not known and left for future
study. The FK and AΓ phases survive in the presence
of a magnetic field and survive up to large field strengths.
The nature of these two phases in the presence of h½111�
has previously been discussed [49]. We therefore leave that
part of the phase diagram aside and instead concentrate
on the part of the phase diagram close to the AFM Kitaev
point, ϕ ¼ 0.
In the vicinity of ϕ ¼ 0 it is clear from Figs. 2(a) and 2(d)

that several new phases are induced by the magnetic field,
in many cases with significantly increased entanglement.
The nematic phase, SN, identified in zero field, survives in
the presence of a nonzero field and is clearly visible in
Figs. 2(a) and 2(d). However, the high throughput iDMRG
calculations used in Fig. 2 are in certain regions having
trouble achieving convergence, as can be seen by the noise
in the figure and a precise determination of the phase
diagram in the vicinity of ϕ ¼ 0 is difficult from the data
presented in Figs. 2(a) and 2(d). We therefore focus on a
high resolution study of that part of the phase diagram
combined with finite-size DMRG calculations for the
regions where it is not possible to achieve good conver-
gence using iDMRG.

V. ANTIFERROMAGNETIC KITAEV
REGION, jΓj ≪ K

The most exotic part of the phase diagram of the KG
model under the field is the AFM Kitaev region around
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ϕ ¼ 0 where jΓj ≪ K. In zero field we have identified the
AK spin-liquid phase and the nematic phase SN. However,
it is clear that there is a very fine balance among the
different couplings and the presence of a magnetic field will
substantially increase this competition. We therefore inves-
tigate this part of the phase diagram with extreme care. Our
results are presented below.
In order to get a detailed picture of the phase diagram we

have performed high throughput iDMRG calculations in
the region ϕ ∈ ½−0.35; 0.10� and h½111� ∈ ½0.00; 1.75� on a
grid with Δϕ ¼ 0.002π, Δh½111� ¼ 0.002 using 24-site
unit cells. By necessity, we have to use a relatively small
unit cell and a maximal bond dimension of 500. Our results
are shown in Fig. 4. In Fig. 4(a) is shown the lower edge of
the entanglement spectrum (the single copy entanglement),
− ln λ1, determined from the reduced density matrix that
cuts a rung. Phases with negligible entanglement (λ1 ∼ 1)
will show as dark blue whereas highly entangled phases
(λ1 ≪ 1) are colored yellow to dark green. The AK phase is
clearly visible as the bright yellow phase centered around
ϕ ¼ 0, extending to nonzero fields. On the other hand, the
SN phase which is close to a product state is clearly visible

as dark blue. In addition to these two previously discussed
phases there is a proliferation of phases occurring at higher
fields. In order to more clearly identify phase transitions we
show χλ1ϕ in Fig. 4(b) on a logarithmic scale. Deep blue
coloring in Fig. 4(b) corresponds to a stable λ1, a well-
defined phase, while dark red coloring signals rapid change
in λ1 and a likely associated phase transition. Note the
logarithmic scale, where the darkest red coloring is more
than 10 orders of magnitude larger than the blue colors.
A significant advantage analyzing the phase diagram in the
way shown in Figs. 4(a) and 4(b) is that the entanglement
spectrum, and therefore also λ1, has to change at a quantum
phase transition.
In Fig. 4(b) many clear phase transitions are visible as

dark red lines. However, there are also some extended
regions with dark red coloring or noise appearing. These
regions marked, η, τ, and μ in Figs. 4(a) and 4(b) are
regions where the small unit cell iDMRG calculations have
difficulty reaching good convergence. Likely this is due
to incommensurability effects and a further investigation
using finite-size DMRG or ED is warranted. From the data
in Figs. 4(a) and 4(b) we identify six well-defined phases,

FIG. 4. Phase diagram for the AFM Kitaev region of the two-leg ladder KG ladder model under the magnetic field along [111] axis.
(a) Lowest edge of the entanglement spectrum (the single copy entanglement), − ln λ1 of the reduced density matrix, ρN=2−1, versus ϕ in
zero field. Dark blue corresponds to λ1 ¼ 1ð− ln λ1 ¼ 0Þ a phase of low entanglement and close to a product state. Dark green
corresponds to a small λ1 and higher entanglement. The ×’s correspond to points studied in detail in Figs. 6 and 7. (b) The entanglement
spectrum susceptibility χλ1ϕ on a logarithmic scale. Dark blue coloring corresponds to a stable λ1, a well-defined phase; dark red coloring
signals rapid change in λ1 and a likely associated phase transition. The dashed lines are studied in Figs. 9 and 10. Identical phase
diagrams obtained from χeh and Srung are shown in Fig. 5. All results in (a) and (b) are from high throughput iDMRG calculations with a
unit cell of 24 sites, with Δϕ ¼ 0.002π, Δh½111� ¼ 0.002.
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the previously discussed AK and SN phases and 4 new
phases that we name SC, β, γ, and UC. Here, SC and UC
refer staggered chirality and uniform chirality because
these phases exhibit a staggered and uniform pattern of
chirality without any magnetic ordering, respectively. As
we discuss in more detail below, it appears that the μ region
is distinct from the SC phase and it seems quite plausible
that the η, τ, and μ regions are in fact well-defined phases
and we therefore discuss them as such below. However, at
present we cannot exclude the possibility that, for instance,
what appears as a phase transition between the SN phase
and the μ phase is instead a “disorder” line marking the
onset of incommensurate short-range correlations thereby
hindering the convergence of the iDMRG calculations. It is
therefore possible that the η, τ, and μ regions are not distinct
phases but simply parts of the adjoining phases where
short-range correlations are different. We return to this
point below. Surprisingly, it is clear that some of the phases
occurring at finite field have significantly increased entan-
glement, most notably the SC phase that together with its
accompanying phases, γ and μ, outline a heart-shaped
region of extraordinary high entanglement.
Complementary views of the same phase diagram can

be obtained from Srung and χeh as shown in Fig. 5. All the

phases except for the UC phase are clearly visible in
Fig. 5(a). However, the transition to the UC phase is subtle
and easily missed in χeh. A large precursor “bump” to this
phase transition [see Fig. 10(a)] is clearly visible in the
lower left-hand corner of Fig. 5(a) as the large band of
bright yellow; however, this feature is not associated with
any real phase transition. See also Fig. 10(a) and the
surrounding discussion.
Another useful depiction of the AFM Kitaev region

phase diagram can be obtained from Srung, with ρN=2−1 the
reduced density matrix of the first N=2 − 1 sites of the
ladder, with the partition cutting the middle rung (and both
legs) of the ladder (see Fig. 1). Our results for this quantity
are shown in Fig. 5(b). In this case the UC phase along
with all the other phases are clearly defined. Regions of
increased values of Srung are visible as bright yellow
colored bands in the μ and τ phases. These bands likely
describe lock-ins to particular magnetic orderings com-
patible with the unit cell used in the calculations. The
“heart of entanglement,” with its elevated entanglement,
encompassing the μ, SC, and γ phases is beautifully
illuminated in yellow and orange colors. Even higher
bipartite entanglement is present in the η phase with its
bright yellow colors.

FIG. 5. (a) Phase diagram for the AFM Kitaev region of the two-leg ladder KG model under the magnetic field along [111] axis as
obtained from χeh. Note the absence of a clear definition of the UC phase. (b) Phase diagram for the AFM Kitaev region of the two-leg
ladder KG model under the magnetic field along [111] axis as obtained from Srung, the bipartite entanglement entropy at N=2 − 1. This
partition cuts the middle rung of the ladder. Note the clear definition of the UC phase. All results are from high throughput iDMRG
calculations with a unit cell of 24 sites, with Δϕ ¼ 0.002π, Δh½111� ¼ 0.002.
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A. Overview of phases, hSαi i
Several of the phases visible in Figs. 4(a) and 4(b)

are magnetically ordered phases. We have therefore per-
formed high precision finite-size DMRG calculations with
N ¼ 400 and OBC at the points marked with a red × in
Fig. 4(a). Results for the local magnetization hSαi i are
shown in Figs. 6 and 7; here the green circles are Sxi , the red
circles Syi , and the blue circles Szi along a single leg of the
ladder. In some cases we find magnetic ordering with a
surprisingly large unit cell, in other cases indications of
incommensurate ordering. Note that a simple polarization
of the spins along the field direction h½111� would have all
Sαi equal. Before we present a detailed discussion of some
of the phases, we summarize the main findings in Figs. 6
and 7. A summary is also provided in Table II.

1. Magnetically ordered phases

We start with the six phases that show clear signs of
ordering.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. On-site magnetization hSαi i, α ¼ x (green), y (red), and
z (blue) along the ladder at six different points in the phase
diagram indicated in Fig. 2 representing the (a) η, (b) β, (c) τ,
(d) γ, (e) μ, and (f) SN phases. Results are from finite-size DMRG
calculations for total system size N ¼ 400 with open boundary
conditions. For clarity, results are shown only for one leg of the
ladder.

(a)

(b)

(c)

(d)

FIG. 7. On-site magnetization hSαi i, α ¼ x (green), y (red), and
z (blue) along the ladder at four different points in the phase
diagram indicated in Fig. 2 representing the (a) SC phase at
h½111� ¼ 0.38, ϕ ¼ −0.08π, (b) SC phase at h½111� ¼ 0.38,
ϕ ¼ −0.10π, (c) AK phase and (d) UC phase. Results are from
finite-size DMRG calculations for total system sizeN ¼ 400with
open boundary conditions. For clarity, results are shown only for
one leg of the ladder.

TABLE II. Summary of phase in the AFM Kitaev region. The
magnetic ordering is in some cases with a large unit cell or
incommensurate. “End excitations” refers to the presence of
localized excitations at the end of the ladder.

Phase
Magnetic
order

Degenerate
ground state

End
excitations

β Yes Yes, possibly gapless
γ Yes Yes
η Yes Yes, possibly gapless
μ Yes Yes, possibly gapless
τ Yes Yes, possibly gapless
SN Yes Yes, possibly gapless
SC No, gap < 0.019 Yes
UC Yes Yes
AK Twofold with gap
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(i) η: This is a high field phase (region). As shown in
Fig. 6(a), the local magnetization appears incom-
mensurate.

(ii) β: As Γ is made slightly more negative the system
transitions from the η phase to the β phase. The local
ground-state magnetization along the leg of the
ladder, shown in Fig. 6(b), displays a characteristic
Möbius form, showing a single twist in Sxi and Syi
from one end of the open chain to the other while Szi
remains constant.

(iii) τ: This phase (region) is adjacent to the β phase, but
the beautiful intricate ordering along the leg shown
in Fig. 6(c) is clearly distinct from that observed in
the β phase with a large variation in Szi along the leg.
The unit cell for the ordering appears at this value of
Γ to be approximately 20 lattice spacings along the
ladder leg. At neighboring values of Γ we find
similar large unit cell ordering.

(iv) γ: The γ phase is nested in between the SC and β
phases occupying a small oval region around ϕ ¼ 0,
h½111� ¼ 0.5. The γ phase again shows an exquisite
ordering along the ladder leg as shown in Fig. 6(d), in
this case with a smaller unit cell of 5 lattice spacings.
There is no variation in the ordering throughout the
γ phase. The ground state is degenerate and the phase
is possibly gapless. However, the bipartite entangle-
ment entropy SðxÞ is close to constant throughout
most of the ladder, which would suggest a gapped
phase (see Supplemental Material [77]).

(v) μ: This phase (region) is nested above the SN phase.
The magnetic ordering is shown in Fig. 6(e), in this
case with a unit cell of 13 lattice spacings along the
leg of the ladder. Neighboring values of γ show
variations in the local magnetization pattern and it is
not clear to what extent this phase is different from
the τ phase. There are also variations in the mag-
netization pattern with h½111� as discussed further in
the Supplemental Material [77].

(vi) SN: In zero field the SN was clearly identified. There
is no indication of a phase transition as the h½111� is
introduced and we therefore assume that the well-
defined uniform phase visible in Figs. 4(a) and 4(b)
is adiabatically connected to the SN phase in zero
field. The phase is gapless and the presence of the
nonzero magnetic field induces an incommensurate
local magnetization as shown in Fig. 6(f).

As outlined above, the large unit cell ordering occurring in
the μ and τ phases (regions) varies with Γ and h½111�. The
same effect is observed for the incommensurate ordering in
the η phase. In fact, the stripes occurring in these phases
visible in Fig. 4(a) are likely caused by the variations in the
local ordering best compatible with the 24-site unit cell.
The lines could therefore represent lock-in transitions.
These phases are therefore not uniform in a conventional

sense but could possibly be a series of phases with shifting

sizes of unit cells for the magnetic ordering. We have not
been able to resolve this.

2. Nonmagnetic phases

We now turn to a discussion of the three remaining
disordered phases which do not show any conventional
local magnetic ordering apart from that induced by the
magnetic field.

(i) SC: In Figs. 7(a) and 7(b) is shown the local
magnetization in the SC phase at two different values
of ϕ both at h½111� ¼ 0.38. In the middle of the chain
the local magnetization aligns with the h½111� field
and the phase is best described as disordered. Clear
excitations at the end of the open chain are visible. As
ϕ is increased from−0.08 to−0.10 approaching the μ
phase the size of the chain end excitations visibly
grows. The SC phase is highly entangled, signifi-
cantly more so than the AK phase. The ground state
does not appear degenerate, but at h½111� ¼ 0.38,
ϕ ¼ −0.05 we can limit the gap to the first excited
state byΔ1 < 0.019. The gap is likely smaller in other
parts of the phase. The bipartite entanglement entropy
SðxÞ is close to constant throughout most of the
ladder, which is also consistent with a gapped phase
(see Supplemental Material [77]). The phase shows
signs of scalar chiral ordering, as we discuss in more
detail below.

(ii) AK: This is the AFM Kitaev phase previously
discussed. As shown in In Fig. 7(b) the local
magnetization is aligned with the h½111� field and
only faint signs of chain end excitations are visible.
It is possible to define a string order parameter
(SOP) [62] as we discuss below.

(iii) UC: On the left-hand side of the SN phase a new
phase appears in the presence of a h½111� field.
As we discuss below, this phase has scalar chiral
ordering. The ground state is degenerate and the
phase is possibly gapless. However, the bipartite
entanglement entropy SðxÞ is close to constant
throughout most of the ladder, which would suggest
a gapped phase (see Supplemental Material [77]).

3. Total magnetization, m⊥ and mk
It is useful to analyze the total magnetization of the

open chain by separating the components parallel mk and
perpendicular m⊥ to the [111] field direction. We define
sα ¼Pi s

α
i =N and then

mk ¼ ðsx þ sy þ szÞ=
ffiffiffi
3

p
: ð9Þ

It follows that

m⃗⊥ ¼ s⃗ −mkð1; 1; 1Þ=
ffiffiffi
3

p
: ð10Þ
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To facilitate visualization it is most convenient to plot
jm⊥j with a sign that we determine as sgnðm⊥ · âÞ with
â ¼ ð1; 1;−2Þ= ffiffiffi

6
p

. Surprisingly, m⊥ is completely aligned
or antialigned with â for two cases shown in Figs. 8(a) and
8(b). In other words, the angle m⊥ forms with â in the â-b̂
plane is either 0 or π. Our results are shown in Figs. 8(a) and
8(b) for ϕ ¼ 0 and ϕ ¼ −0.08π, respectively. The results
are from high precision iDMRG calculations with a unit
cell of 60 and a maximal bond dimension of 1000. An
important point to notice in Fig. 8 is that m⊥ is 2–3 orders
of magnitude smaller than mk.
Let us first discuss the results shown in Fig. 8(a) obtained

from a field sweep from 0 to 0.9 at ϕ ¼ 0. As the η phase is
entered, the iDMRG calculations fail to converge and that
part of the plot is therefore colored light red. Starting from
zero field, mk (blue circles) is found to approximately
linearly increase with h½111� until the SC phase is reached
where a kink in mk is observed, consistent with a
divergence of χeh. Through the SC phase mk increase more
rapidly, this phase is therefore “softer,” consistent with the
large chain end excitations shown in Figs. 7(a) and 7(b).
A second kink in mk is observed as the γ phase is entered,
but the increase in mk throughout the γ phase is less
pronounced. As the η phase is entered and excited, kinks in
mk are again observed and in the PS phase the mk tend
toward the fully polarized value of 1=2. On the other hand,
m⊥ (red circles) is nonmonotonic throughout the AK phase,
and approaches small values in the SC phase before

jumping to larger values in the γ phase. In the polarized
state (PS) phase m⊥ changes sign and approaches zero
from below.
Our results for a similar field sweep at ϕ ¼ −0.08π are

shown in Fig. 8(b). The position of this field sweep is
indicated as the vertical dotted line in Fig. 4(b). Again, mk
is seen to increase more rapidly through the SC and β
phases as compared to the AK phase. The phase transitions
between the AK, SC, and β phases are clearly visible as
kinks inmk and as the PS phase is approachedmk approach
1=2 in a characteristic cusp that was not observed between
the η and PS phase. The nature of the β-PS transition and
η-PS transition therefore clearly appears different. In this
case m⊥ is featureless at the AK to SC transition but the
SC-β and β-PS transitions are clearly visible. m⊥ changes
sign in the SC and β phases. However, m⊥ is in this case 3
orders of magnitude smaller than mk.
For both field sweeps at ϕ ¼ 0 and ϕ ¼ −0.08π we

emphasize that m⊥ is either aligned or antialigned with â.

4. Field and angle sweeps

To further investigate the sharpness of the phase tran-
sitions occurring in Fig. 4 we have performed high
precision sweeps at constant ϕ ¼ −0.08π and constant
h½111� ¼ 0.15. The positions of these sweeps are shown
as the dotted lines in Fig. 4(b). Our results are shown in
Fig. 9 for constant ϕ ¼ −0.08π and in Fig. 10 for constant
h½111� ¼ 0.15. In both cases from high precision iDMRG
calculations with a unit cell of 60 and a maximal bond
dimension of 1000.

(a)

(b)

FIG. 8. Magnetization versus field, h½111�. (a) m⊥ (red circles)
and mk (blue circles) versus h½111� at the AFM Kitaev point
ϕ ¼ 0. (b) mk (red circles) and m⊥ (blue circles) versus h½111�
(blue circles) near the AFM Kitaev point ϕ ¼ −0.08π. Results in
(a) and (b) are from high precision iDMRG calculations with a
unit cell of 60 performed at ϕ ¼ −0.08π. The dotted vertical lines
denote the transitions at critical fields determined from diver-
gences in χeh and χλ1h . Note that mk is roughly 2 orders of
magnitude larger than m⊥.

(a)

(b)

(c)

FIG. 9. Field sweep of the phase diagram in the AFM Kitaev
region at ϕ ¼ −0.08π. (a) χeh versus h½111�. (b) χλ1h versus h½111�;
note the logarithmic scale. (c) Lowest edge of entanglement
spectrum (the single copy entanglement), − ln λ1 from ρN=2−1
versus h½111�. All results in (a)–(c) are from high precision
iDMRG calculations with a unit cell of 60. The dashed vertical
lines correspond to transitions at field values of h½111� of 0.254
(AK-SC), 0.498 (SC-β), and 0.804 (β-PS).
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Results for a field sweep from h½111� ¼ 0 to 0.9
are shown in Fig. 9 for a constant ϕ ¼ −0.08π. In
Figs. 9(a)–9(c) we show results for χeh, χ

λ1
h , and − ln λ1,

respectively. The 3 transitions, AK-SC (h½111� ¼ 0.254),
SC-β (h½111� ¼ 0.498), and β-PS (h½111� ¼ 0.804) are
very well defined and are in complete agreement between
the three different measures. While the β-PS is not all that
visible in − ln λ1, it is very clear in χλ1h . Five orders of
magnitude variation is observed in χλ1h .
Results for a ϕ sweep from ϕ ¼ −0.35π to ϕ ¼ 0.1π

at constant h½111� ¼ 0.15 are shown in Fig. 10. In
Figs. 10(a)–10(c) we show results for χeh, χλ1h , and
− ln λ1, respectively. Five transitions are clearly visible.
While the PS-UC transition at ϕ ¼ −0.289π is easy to miss
in χeh, it is very well defined in χλ1h and − ln λ1. However,
there is a precursor peak in χeh not associated with a
transition. The transition SC-AK is clearly defined at
ϕ ¼ −0.132π, as the μ phase is approached from the SC
side. It is also clear that χeh, χλ1h diverge at the μ-SC
transition at ϕ ¼ −0.146π. This transition is therefore well
defined. On the other hand, the iDMRG fail to achieve good
convergence in the light red colored region, so the transition
from SN to μ is not clear. As discussed above it is possible
that the μ phase only marks the onset of short-range
incommensurate correlations in the SN phase and it is
not a distinct phase. It is also possible that improved

convergence of the iDMRG would show a divergence in χeh
and χλ1h inside the light red colored region.

B. Scalar chirality in the UC and SC phases

The presence of a nonzero Γ term or the magnetic field
raises the possibility of chiral ordering. The chirality
without magnetic ordering is rare, unless there are three-
or four-spin interactions. In 1D system, it was shown that a
four-spin interaction produces a long-range scalar chirality
[78]. To check the presence of chiral ordering, we label the
ith spin on two legs of the ladder as Si;1 and Si;2, where 1
and 2 refer to the bottom leg and top leg, respectively. We
then define the scalar chiral order parameter with S ¼ σ=2
as follows:

κ ¼ hσi;1 · ðσi;2 × σiþ1;1Þi: ð11Þ

This clockwise definition is kept for all triangles made
of three spins; for example, κ ¼ hσi;2 · ðσiþ1;2 × σiþ1;1Þi for
upper triangles. If the κ is positive (negative), we assign
blue (red) arrows i → j → k for κ ¼ hσi · ðσj × σkÞi and all
even permutations of i, j, k, which leads to the clockwise
(anticlockwise) circulation.
It is also of interest to define the scalar chiral correlation

function,

CκðrÞ ¼ hκiκiþri; ð12Þ

such that CκðrÞ → κ2. The scalar chiral order parameter
breaks spatial symmetries and time-reversal symmetry, but
not SU(2).
In Fig. 11(a) we show κ along a field sweep at constant

ϕ ¼ −0.27π through the UC phase. Results are from high
precision iDMRG with a unit cell of 60 sites and a maximal
bond dimension of 1000. In this case we determine κ from
CκðrÞ shown in the inset of Fig. 11(d) at h½111� ¼ 0.125.
CκðrÞ reaches a constant value relatively quickly and κ is
clearly nonzero throughout the phase, reaching significant
values at the center of the UC phase. The scalar chirality κ
is negative throughout the chain and a sketch of the spatial
modulation is shown in Fig. 13. Note the edge states
appearing on the two opposing legs. Here weaker lines
indicate a weaker κ. Since the h½111� field favors alignment
of the spins, which would result in κ ¼ 0, it is rather
surprising to observe such a well-defined scalar chirality at
finite fields. In Figs. 11(b) and 11(c) are shown χeh and χλ1h ,
respectively. While the transitions delimiting the UC phase
are almost absent in χeh, and clearly do not coincide with the
broad maximum of χeh around h½11� ∼ 0.25, they are very
well defined in χλ1h and in both cases they coincide with the
results for κ in Fig. 11(a). As far as we can tell, the UC
phase does not intersect the zero field axis; instead, as can
be seen in Fig. 4, the UC and SN phases meet at a triple
point close to ϕ ¼ −0.265π. Entanglement close to this

(a)

(b)

(c)

FIG. 10. Angle sweep of the phase diagram in the AFM Kitaev
region at h ¼ 0.15. (a) χeϕ versus ϕ=π; note the almost imper-

ceptible divergence in χeϕ at ϕ ¼ −0.289π. (b) χλ1ϕ versus ϕ=π;
note the logarithmic scale. (c) Lowest edge of entanglement
spectrum (the single copy entanglement), − ln λ1 from ρN=2−1
versus ϕ=π. All results in (a)–(c) are from high precision iDMRG
calculations with a unit cell of 60. The dashed vertical lines
correspond to transitions at angles ϕ=π of −0.289 (PS-UC),
−0.253 (UC-SN), −0.146 (μ-SC), −0.132 (SC-AK), and 0.083
(AK-FMU6

). The light red coloring denotes a region of ϕ=π
where convergence of the iDMRG is problematic.
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triple point is therefore very elevated, which is why − ln λ1
[blue squares in Fig. 11(c)] is so high close to zero field.
In Fig. 12 we show iDMRG calculations for κ versus

h½111� at a fixed ϕ ¼ −0.08, crossing the AK, SC, and β

phases. χeh and χ
λ1
h along the same line in the phase diagram

are shown in Fig. 9. As before, κ is obtained from
calculations of CκðrÞ in the large r limit and the sign of
κ from local direct estimates of κ. In this case there is a
spatial þ− alternation of κ as shown in Fig. 14, but the
magnitude of κ is the same for each triangle leading to the
zero flux in the system. Although there is weak chirality in
the AK and β phases, κ is an order of magnitude larger in
the SC phase and jumps rather abruptly at the critical points
indicated by the dotted lines in Fig. 12. In Fig. 12(b) is
shown CκðrÞ versus r at h½111� ¼ 0.42 which attain a
constant value for modest values of r ∼ 20. Figure 12(c)
shows the bipartite entanglement obtained from a biparti-
tion of the system at site r. The resulting entanglement
entropy SðrÞ ¼ −Trρr ln ρr is shown versus r for a finite
ladder with N ¼ 400 and OBC. Clearly, SðrÞ is close to
constant in the middle of the ladder, which would be
consistent with the existence of a nonzero gap in the SC
phase (see also Supplemental Material [77]).

To make a comparison to the AK phase, we also compute
the chirality in the AK phase, and its pattern is shown in
Fig. 15. κ has distinctly different circulations. It has a
staggering circulation between upper and lower triangles,

(a)

(b)

(c)

FIG. 11. Ordering in the UC phase. (a) The scalar chirality κ

versus h½111�. (b) χeh versus h½111�. (c) χλ1h (orange circles) and
− ln λ1 (blue circles) versus h½111�. (d) The chiral correlation
function CðrÞ along the ladder at h½111� ¼ 0.125. All results in
(a)–(d) are from high precision iDMRG calculations with a
unit cell of 60 performed at ϕ ¼ −0.27π. The dotted vertical
lines denote the transitions at critical fields hc1 ¼ 0.022 and
hc2 ¼ 0.221. Note that the divergence in χeh at h

c
1 is imperceptible

and very small at hc2 where it occurs away from the maximum.
However, χλ1ϕ show very well defined peaks at both hc1 and hc2.

(a)
(b)

FIG. 12. Ordering along ϕ ¼ −0.08π (AK, SC, and β phase).
(a) The scalar chirality κ versus h½111�. (b) The chiral correlation
function CðrÞ along the ladder at h½111� ¼ 0.42. (c) Bipartite
entanglement entropy SðrÞ versus r at h½111� ¼ 0.38. Results in
(a) and (b) are from high precision iDMRG calculations with a
unit cell of 60 performed at ϕ ¼ −0.08π while (c) is from finite-
size DMRGwith OBC at ϕ ¼ −0.08π, h½111� ¼ 0.38. The dotted
vertical lines denote the transitions at critical fields hc1 ¼ 0.254,
hc2 ¼ 0.498, and hc3 ¼ 0.804.

FIG. 13. Scalar chirality in the UC phase. At h ¼ 0.125 and
ϕ ¼ −0.27, κ ¼ −0.204, −0.298, −0.298, −0.204 for first four
triangles, respectively, and then repeat.

FIG. 14. Scalar chirality in the SC phase. At h ¼ 0.42 and
ϕ ¼ −0.08, κ ¼ 0.139, −0.139, −0.139, 0.139 for first four
triangles, respectively, and then repeat.

FIG. 15. Scalar chirality in the AK phase. At h ¼ 0.2 and
ϕ ¼ −0.08, κ ¼ −0.0191, 0.0191, −0.0466, 0.0466 for first four
triangles, respectively, and then repeat.
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but different staggering from the SC phase. For both the
AK and SC phases, the magnitude of κ is the same for all
pairs of triangles, implying that there is zero-net flux in the
system. The phase transition from the AK to SC phases is
accompanied by the sharp change of both magnitude and
distinct pattern of κ.

C. String order and mapping to KQ model

Through a nonlocal unitary transformation it is possible
to map the KG ladder to a Heisenberg model with four spin
interactions that we shall call the KQ model. The starting
point is a nonlocal unitary transformation V introduced in
Ref. [62] for an N-site chain with OBC:

V ¼
Y
jþ1<k

j odd; k odd
j¼1;…;N−3
k¼3;…;N−1

Uðj; kÞ; ð13Þ

with the individual Uðj; kÞ given as follows:

Uðj; kÞ ¼ eiπðS
y
jþSyjþ1

Þ·ðSxkþSxkþ1
Þ: ð14Þ

At the AFM Kitaev point, ϕ ¼ 0, V maps the ladder with
open boundary conditions to a so-called dangling-Z model,
Hd−Z, that has long-range ordering in hS̃zi S̃ziþri, where S̃ are
the spins in Hd−Z [62]. If this correlation function is
transformed back to the original Kitaev ladder, one arrives
at a string correlation function of the following form:

hOzðrÞi ¼ 4hS̃z2S̃z2þri ¼ ð−1Þbðrþ1Þ=2c

×

8>><
>>:
D
σy1σ

x
2

�Q
r
k¼3 σ

z
k

�
σxrþ1σ

y
rþ2

E
r evenD

σy1σ
x
2

�Qrþ1
k¼3 σ

z
k

�
σyrþ2σ

x
rþ3

E
r odd:

ð15Þ
Note that in Ref. [62] some of the indices in Eq. (15) in
the expression for r even were incorrect. With this
definition we find that the usual plaquette operator [1]
Wp ≡Ozðr ¼ 4Þ. Wp is often used to characterize the AK
phase. See Supplemental Material [77].
Results for Oz are shown in Fig. 16. In the presence of a

nonzero magnetic field or a nonzero Γ the string order
correlation function OzðrÞ is not long-range. Instead,
as shown in the inset in Fig. 16(a) for h½111� ¼ 0.25, it
decays exponentially to zero. However, the length scale
describing this exponential decay is extremely large, often
exceeding hundreds or, for small enough Γ, h½111�,
thousands of lattice spacings. The extent of the AK phase
can therefore be determined by determining Ozðr ¼ 100Þ
or Ozðr ¼ 900Þ, which remain nonzero throughout the
AK phase. This is illustrated in Fig. 16(a) where both
Ozðr ¼ 100Þ (solid blue triangles) and Ozðr ¼ 900Þ (solid
green circles) are plotted versus h½111� alongside χeh (open
red circles) at ϕ ¼ 0. Clearly, Ozðr ¼ 100Þ drops abruptly

toward zero at the phase transition between AK and the SC
phase. Figure 16(b) shows Ozðr ¼ 100Þ versus ϕ at fixed
h½111� ¼ 0.15, where abrupt changes in Ozðr ¼ 100Þ are
observed at the boundary of the AK phase.

1. Mapping to KQ model

It is of considerable interest to explore nonlocal unitary
operators that will lead to string order correlation functions
showing long-range order also for Γ ≠ 0. We begin by
considering how the ladder is transformed under the U6

transformation previously described. If the spins on one leg
of the ladder are numbered i ¼ 1…N=2 we assign them a
second label k ¼ ði − 1Þ mod 6þ 1, and on the second leg
we assign the label k ¼ ðiþ 2Þmod 6þ 1. With this label-
ing we introduce the following notation for the transformed
bonds:

x0∶ − KSxi S
x
j − ΓðSyi Syj þ Szi S

z
jÞ;

y0∶ − KSyi S
y
j − ΓðSxi Sxj þ Szi S

z
jÞ;

z0∶ − KSziS
z
j − ΓðSxi Sxj þ Syi S

y
jÞ: ð16Þ

Here j is a nearest neighbor site. With this notation we
can represent the transformed ladder using the picture
in Fig. 17.

(a)

(b)

FIG. 16. String order hOzi versus field in theAFMKitaev region.
(a) hOzðr ¼ 100Þi (blue triangles) and hOzðr ¼ 100Þi (green
circles) versus h½111� at the AFMKitaev point ϕ ¼ 0 shown along
with χeh. Open red circles show χeh. The inset shows hOzðrÞi (red
circles) versus r at h½111� ¼ 0.25, ϕ ¼ 0. (b) hOzðr ¼ 100Þi (blue
triangles) versus ϕ=π at fixed h½111� ¼ 0.15. Results in (a) and (b)
are from high precision iDMRG calculations with a unit cell of 60.
The dotted vertical lines denote the transitions at critical fields
determined from divergences in χeh and χλ1h .
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We then consider the zero-field case with OBC and
change notation slightly compared to Ref. [62] by using an
equivalent nonlocal unitary operator:

W ¼
Y
jþ1<k

j odd; k odd
j¼1;…;N−3
k¼3;…;N−1

wðj; kÞ; ð17Þ

with the individual wðj; kÞ given as follows:

wðj; kÞ ¼ eiπðS
y
jþSyjþ1

Þ·ðSzkþSzkþ1
Þ; ð18Þ

and W† ¼ W. With this definition of W we see that on the
vertical bonds of the ladder W leaves all interactions
unchanged:

WSα1S
α
2W ¼ Sα1S

α
2; WSα3S

α
4W ¼ Sα3S

α
4;…: ð19Þ

However, on horizontal bonds we find

WSy2S
y
4W ¼ −Sy1S

y
4; WSy3S

y
5W ¼ −Sy4S

y
5;…: ð20Þ

Note that W effectively moves the bond and changes the
sign of the interaction. Likewise, we get for the horizontal
zz bonds

VSz2S
z
4V ¼ −Sz2S

z
3; VSz3S

z
5V ¼ −Sz3S

z
6;…: ð21Þ

However, the horizontal xx bonds give rise to nontrivial
four-spin interactions. Specifically,

VSx2S
x
4V ¼ −σy1S

z
2σ

z
3S

y
4; VSx3S

x
5V ¼ −Sz3σ

y
4S

y
5σ

z
6;…;

ð22Þ

thereby coupling the four spins around a plaquette. We then
introduce additional notation for transformed bonds:

KzΓy∶KSziS
z
j þ ΓSyi S

y
j ;

KyΓz∶KS
y
i S

y
j þ ΓSzi S

z
j;

ΓyΓz∶ΓS
y
i S

y
j þ ΓSzi S

z
j;

Γk;l
i;j∶4ΓðSzkSzl Syi Syj þ SykS

y
l S

z
i S

z
jÞ;

Kk;l
i;j∶4KðSzkSzlSyi Syj þ SykS

y
l S

z
i S

z
jÞ: ð23Þ

With this notation in hand we can now apply the W
transformation to the U6 transformed ladder shown in

Fig. 17. The resulting Hamiltonian can be drawn in the
manner shown in Fig. 18. It is quite remarkable that the W
transformation has generated four-spin exchange terms. We
call thisHKQ Hamiltonian the KQ ladder since the model is
a close cousin of JQ models [57] extensively studied as
models of deconfined criticality [58]. Unexpectedly, the
ground state for the KQ model in the AK phase has a
significant overlap with a rung-triplet state. If we define

tx ¼ ðj↑↑i − j↓↓iÞ=
ffiffiffi
2

p
;

ty ¼ ðj↑↑i þ j↓↓iÞ=
ffiffiffi
2

p
;

tz ¼ ðj↑↓i þ j↓↑iÞ=
ffiffiffi
2

p
; ð24Þ

then we can pictorially draw the rung-triplet state as
shown in Fig. 19. With OBC there is another energetically
equivalent rung-triplet state obtained by translation as
shown in Fig. 19. The two states approximates the doublet
ground state of the KQ model. Surprisingly, the unit cell for
these triplet states is 12 sites and not six sites as one might
have expected from the structure of HKG. Ordering of this
type has previously been studied using SOPs inspired by
the studies of s ¼ 1 spin chains. If ταi ¼ Sαi;1 þ Sαiþ1;2 are the
sum of two diagonally situated spins, one defines [79,80]

Oα
evenðrÞ ¼ −

*
ταi exp

 
iπ
Xiþr−1

l¼iþ1

ταl

!
ταiþr

+
: ð25Þ

This order parameter has been used to distinguish topo-
logically distinct phases in Heisenberg ladders and is
nonzero in the rung-singlet phase where the topological
number is even.
In Fig. 20 we show results for Oz

even estimated from
Oz

evenðrÞ in the large r limit on systems with N ¼ 120 and

FIG. 17. The KG ladder after the U6 local transformation. FIG. 18. HKQ. The KG ladder after the U6 transformation
followed by the W transformation.

FIG. 19. The rung-triplet states A and B for the KQ model.
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OBC. An example of Oz
evenðrÞ at ϕ ¼ 0.08π is plotted in

the inset of Fig. 20. This SOP drops abruptly to zero at the
limits of the AK phase and, as can be seen from the inset,
there is no exponential decay observed in Oz

evenðrÞ which
instead quickly attains a constant value. As expected,Oz

even
is also nonzero in the RSU6

phase, but clearly zero in the SN
phase. Also shown in Fig. 20 are the overlaps with the rung-
triplet states hAjψi and hBjψi as obtained from small
N ¼ 12 systems with OBC. There are significant finite-
size effects at the boundaries of the AK phase for the
overlaps; although they drop to zero outside the AK phase,
the critical points are not as well defined as for Oz

even.
The rung-triplet states shown in Fig. 20 are approximate
and for N > 12 different linear combinations enter such
that with the simple definitions of the rung-triplet states
above hAjψi and hBjψi tend to zero as N → ∞. However,
Oz

even is clearly nonzero in the AK phase and in the KQ
model this phase is therefore topologically equivalent to the
Haldane-like phases observed in Heisenberg ladders with
even topological number. Since the KQ model is related to
the KG model through unitary transformations, the same
must be true for the KG ladder throughout the AK phase.
Calculations in the FK phase show thatOz

even is also clearly
nonzero in zero field throughout that phase but drops to
zero in the AΓ phase.

VI. COMPARISON: THE HONEYCOMB
KG MODEL

It is important to note that the pure AFM Kitaev under
the magnetic field studied by DMRG and 24-site ED

exhibits an intermediate gapless phase before it polarizes.
A U(1) spin liquid was suggested for this field-induced
gapless phase [45]. However, in the two-leg ladder, we
found five distinct phases including AK, SC, γ, η, and PS at
the pure AFM Kitaev point (white thin line at ϕ ¼ 0 in
Fig. 4), as the magnetic field increases. There are several
factors including the obvious geometry difference that may
result in the different results between the 24-site honey-
comb cluster and current results. To understand possible
origins of the difference, we investigate the following
systems at AFM Kitaev point, ϕ ¼ 0.
First we study the 24-site ladder using ED and compare

the result with iDMRG with a unit cell of 60, to understand
the finite-size effects. The results of χeh are shown in
Fig. 21(a), where the red and green dots are obtained by
iDMRG and ED, respectively. Note that, due to problems
with convergence, there are no iDMRG results in the η
phase. The sharp transitions seen in the iDMRG between
AK and SC at h½111� ¼ 0.416, and between SC and γ at
h½111� ¼ 0.489, are replaced by broad bumps in ED, while
the transition between γ and η at h½111� ¼ 0.530 in the
iDMRG is also sharp in the ED results. The transition to the
PS phase occurs around the same field strength for both ED
and iDMRG, h½111� ¼ 0.747. There are a couple of sharp
features within η phase only found in ED, which we assign
to finite-size effects. Other than these additional peaks in η
phase, the results are remarkably similar.
We also investigate the 24-site C3 symmetric honeycomb

cluster using the ED. χeh is shown in Fig. 21(b), where h
sweeps from 0 to 0.8 by δh ¼ 0.001, much smaller steps
than previous studies [45]. There are four transitions
found at h½111� ¼ 0.388, 0.543, 0.598, and 0.641, which
may suggest three intermediate phases. For comparison
Ref. [45] only finds 2 transitions performing ED on the
same 24-site C3 cluster, presumably due to a larger δh.
However, based on the finite-size effects found in 24-site
ladder ED, we suspect that there are significant finite-size
effects in this system that makes it hard to determine
whether these phases correspond to the SC, γ, and η phases,
or only one (SC) or two phases survive in the thermody-
namic limit. Indeed when the field is tilted away from the c
axis, there are only two transitions found in the 24-site C3

cluster [45], while the three intermediate phases—SC, γ,
and η—found in the iDMRG ladder persist even in the tilted
field (see Appendix B). Given that γ and η are incom-
mensurate magnetic phases, and thus sensitive to the shape
of cluster, we speculate that they likely turn into another
type of incommensurate phase confined in the C3 sym-
metric cluster. The chirality of the SC phase may survive in
the honeycomb cluster defined at a triangle made of nearest
neighbors or next nearest neighbors of honeycomb lattice.
This is an excellent topic for future study, as it requires a
bigger size system to check the chiral correlation CðrÞ.
To shed further light on the occurrence of gapless

excitations in 24-site C3 cluster in ED, we choose an even

FIG. 20. String order parameter hOz
eveni versus field (green circles)

in theAFMKitaev region forHKQ withN ¼ 120. Results are shown
alongside the overlaps hAjψi and hBjψi from calculations with
N ¼ 12. Results are from high precision DMRG calculations with
OBC. The dotted vertical lines denote the transitions at critical fields
determined from divergences in χeh and χ

λ1
h . An example ofOz

evenðrÞ
at ϕ ¼ −0.08π is shown in the inset.
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smaller cluster of 2 × 6 ladder, and compute various
quantities under the [111] field. The energy spectrum is
shown in Fig. 22, which indicates three phase transitions
(red dashed lines obtained from χeh with four phases: the
low-field Kitaev phase changes to a field-induced inter-
mediate phase, which then transitions to another inter-
mediate phase, before it becomes the polarized state). The
collapse of the excitations is remarkably similar to 24-site
C3 cluster, suggesting that the intermediate gapless exci-
tation feature is insensitive to the cluster size and shape,
even though the critical fields where such phases arise
change depending on the shape. The qualitative behavior is

similar to the 24-site ladder and C3 ED presented above.
However, it is not clear if there is one or two intermediate
phases, as the incommensurability of γ and η phases would
suffer from the change of cluster size and shape, as
discussed above. The dynamical structure factor at a
particular momentum Q2 (shown in the inset) and the
specific heat in the field are shown in Figs. 23(a) and 23(b),
respectively. The first intermediate phase is likely disor-
dered, while the second intermediate phase likely exhibits
incommensurate ordering. They do not exhibit well-defined
excitation spectra in the specific heat similar to what is
observed in the C3 24-site ED [45]. While it is a 12-sites
ladder geometry, the qualitative results are incredibly
similar to the DMRG phase diagram at the ϕ ¼ 0 AFM
Kitaev point under the field and the 24-site C3 symmetric
honeycomb geometry results [45]. It shows a dense energy
spectrum in the intermediate states of both disordered (SC)
and field-induced incommensurate (η or γ) phase.
The above analysis with small ladder and C3 cluster

suggests that the AFM Kitaev 2D honeycomb model under
the field may also display a richer phase diagram than what
has been reported, and a high resolution numerical calcu-
lation is required to refine the phase diagram. Since the γ
or η phases also show a dense energy spectrum, it is
important to differentiate the U(1) spin liquid from the
incommensurate phases in the honeycomb AFM Kitaev
limit. Comparing the critical field above which gapless spin
liquid occurs in 24-site ED [45], it is likely that the

(a)

(b)

FIG. 21. Comparison between the two-leg ladder and the
24-site C3 symmetric honeycomb geometry at ϕ ¼ 0. (a) The
ladder. χeh versus h½111� as obtained from ED with N ¼ 24 (green
circles) and from high precision iDMRG with a unit cell of 60
(red circles). (b) The C3 symmetric honeycomb geometry. χeh
versus h½111� as obtained from ED with N ¼ 24 (orange circles).
The critical fields are at 0.388, 0.543, 0.598, and 0.641.

FIG. 22. The energy spectrum of the pure AFM Kitaev limit
under the [111] field using 2 × 6 ladder.

(a)

(b)

FIG. 23. (a) Dynamical spin structure factor SðQ2;ωÞ at the
wave vector ofQ2 defined in the BZ figure shown in the inset and
(b) specific heat CðTÞ of the pure AFM Kitaev limit under the
[111] field using 2 × 6 ladder.
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disordered SC phase with enhanced entanglement and edge
excitations extends to the gapless spin liquid in the
honeycomb lattice, and the incommensurate phase is mixed
with a polarized state, which was missed in 24-site ED of
the honeycomb lattice. We conclude that the ladder model
at the AFM Kitaev limit captures both disordered and
incommensurate magnetically ordered phases under the
magnetic field, and offers future directions in searching for
a spin liquid in the honeycomb KG model.

VII. SUMMARY AND DISCUSSION

The KG model consists of two bond-dependent inter-
actions, namely the Kitaev and Gamma interactions. The
Kitaev interaction on the honeycomb lattice exhibits a spin
liquid with fractionalized excitations. In particular, under a
time-reversal symmetry breaking term, the excitations obey
non-Abelian statistics. The Gamma interaction is another
highly frustrated interaction leading to a macroscopic
degeneracy in the classical limit, and quantum fluctuations
do not lift the degeneracy found in the AFM classical
Gamma model [81].
Since these two frustrating interactions are dominant

interactions in realistic descriptions of emerging Kitaev
candidates such as RuCl3, the minimal KG model was
initially proposed to understand RuCl3 [49,82]. The mag-
netic field has been a crucial parameter, as the system may
undergo a transition into a field-induced disordered phase
before the trivial PS appears. Aside from its relevance to
Kitaev materials, the minimal KG model may offer a
playground to discover exotic spin liquids due to the
combined frustration of the K and Gamma term, and thus
has been extensively studied for the past few years. Given
the huge phase space of AFM and FM Kitaev, AFM and
FM Gamma, and the field, most studies are limited to a
narrow phase space focusing on the FM Kitaev and AFM
Kitaev regions. Many numerical methods have been
used to identify phases of the extended Kitaev model
under the field and intriguing results were reported near
AFM Kitaev and FM Kitaev regions including the field-
induced gapless U(1) spin liquid near the AFM Kitaev
region [45]. However, it is not clear if the gapless
excitations are due to more conventional physics such
as incommensurate ordering.
Here we investigate the entire phase space of the KG

laddermodel under the magnetic field. While the geometry
is limited to the ladder, it has the great advantage of
allowing for high numerical precision such as accessing
iDMRG with a high precision mode with a unit cell of 60
and a maximal bond dimension of 1000. Numerical
calculations are therefore very well controlled. We found
an extremely rich phase diagram of the KGmodel under the
field. Among 15 distinct phases identified, nine phases
appear near the AFM Kitaev region alone. In the zero field,
there is a quadrupole ordered phase named SN, two
magnetically ordered phases (FMU6

and RSU6
)

straightforward to understand from the mapping of six-
site transformation, and the disordered AK phase. It is
interesting that the SN phase found in the KG chain [63]
survives in the ladder. Other than the AK phase (which
becomes the Kitaev spin liquid in the 2D limit), the zero-
field phases are ordered and the entanglement entropy is
rather low. Under the field, highly entangled phases
emerge. Apart from several incommensurate magnetic
ordered phases, two highly entangled phases denoted by
SC referring staggered chirality and UC uniform chirality
are induced by the field. These phases exhibit distinct
chirality orderings and high entanglement entropy with
gapless edge excitations when the boundary is open.
The ladder results presented here offer several important

insights in possible spin liquids and not-yet-identified
phases in the 2D honeycomb lattice. We would like to
recall that the pure Kitaev model in the ladder correspond-
ing to AK and FK in this study is gapped, where the ladder
can be viewed as a coupled chain [83]. As the number of
chains grows, the ground state changes between gapped
and gapless depending on the even and odd numbers of the
chains, and eventually maps to the 2D Kitaev spin liquid in
a true 2D limit. The AK and FK are gapped due to the
geometry of the ladder, but its nature, magnetically dis-
ordered with high entanglement, is captured in the ladder
model. Applying similar logic, we suggest that the dis-
ordered SC phase is related to the spin liquid in the 2D
limit. The SC phase has a staggered chirality but different
patterns from the AK phase in field, which differentiate the
two phases. While it is gapped in the ladder, it may become
gapless as the number of chains grows.
Interestingly the previous DMRG studies on the pure

AFM Kitaev point (ϕ ¼ 0) under the ½111� field with 3–5
number of legs reported different central charge in the
intermediate phase. For three-leg chains, the central
charge c ¼ 1 [50] was reported, while for four- and
five-leg chains, c ¼ 0 [50] and c ∼ 4 [39], respectively,
were found. Based on the central charge arguments, these
studies indicate that there are gapless excitations asso-
ciated with a spinon Fermi surface in the intermediate
field region. It was suggested that the spinon Fermi
surface pockets are around the K=K0 and Γ point of the
first Brillouin zone [50], while the other DMRG study
proposed the pockets around M and Γ points [52]. The
existence of a spinon Fermi surface in momentum space is
yet to be determined.
While most of the previous studies reported the field-

induced intermediate phase as a single phase at the pure
AFM Kitaev ϕ ¼ 0 point in the ½111� field [37,40,41,45,
50,52], a separation of the intermediate region into three
phases was noted in Ref. [39], and the middle phase, which
corresponds to the γ phase in the ladder, grows in extent
with larger bond dimensions where five legs were used. We
find three different intermediate phases, SC, γ, and η, in the
ladder at ϕ ¼ 0. While the γ phase occupies a tiny phase
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space in the ladder, it is possible that this gapless incom-
mensurate γ extends its phase space, as the number of
chains grows. This implies that the chiral spin-liquid
candidate SC may require a finite FM Γ interaction, as it
generates more frustration. The SC phase with long-range
chirality and enhanced entanglement appearing at the
intermediate field region of the ladder likely evolves to a
field-induced spin liquid with a finite staggered chirality.
The UC phase is another candidate of spin liquid. It has

uniform chirality pattern with high entanglement with a
finite net flux, and it appears at very low field between SN
and six-site transformed FM phase. This phase space has
not been well explored in honeycomb clusters, and we
suggest further studies in this region to look for a possible
spin liquid. The nature of the SC and UC phases and
statistics of excitations in these phases are excellent topics
for future study. A study of the evolution of each phase
region under an added Heisenberg interaction would also
be an interesting task left for the future.
Possible incommensurate orderings in the 2D limit also

deserve some discussion. Incommensurate orderings are
generally difficult to pin down, as they depend on the size
of cluster, and the ordering wave vector itself changes
even inside a phase due to the nature of incommensura-
tion. In the ladder, we found several incommensurate
orderings. Some have high entanglement indicating a
quantum order coexisting with an incommensurate order-
ing. The possibility of incommensurate ordering has
been excluded in the C3 symmetric cluster, mainly
because of technical difficulty set by a limited size.
Our ladder study suggests several incommensurate order-
ings may be present in the 2D honeycomb lattice, and
future studies on such a possibility on larger honeycomb
clusters are desirable.
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APPENDIX A: SN PHASE AT ZERO FIELD

To understand the zero-field SN phase where the
DMRG with OBC finds two different magnetic orderings
depending on the system, we introduce an additional
Heisenberg coupling, J ¼ K cos θ, and study (a) the energy
susceptibility χeθ and (b) ln χλ1θ versus θ at a fixed
ϕ ¼ −0.21π. This is to check if there is a first order
transition as a function of J occurring along the line of the
SN. Indeed a clear first order transition is found in the
energy susceptibility at θ ¼ π=2, i.e., J ¼ 0 as shown in
Fig. 24. We conclude that the phase space denoted by
the SN is a line of first order transitions separating two
different magnetic ordering states. Since the nematic (spin-
quadropole) order is finite in both ordered states, we keep
the name the SN for this line of first order transitions,
throughout the paper.

APPENDIX B: AFM KITAEV POINT
IN TILTED FIELD

It is an interesting question if the phases found around
the AFM Kitaev point persist when the field direction is
changed. In order to investigate this we have calculated
χeh in the presence of a field tilted slightly away from the
[111] direction toward the ½11 − 2� direction of the
following form: cosðθÞh½111� þ sinðθÞh½11 − 2� with
θ ¼ 7.5°. Our results, obtained from iDMRG, are shown
in Fig. 25. In Fig. 25(a) we show for comparison our
previous results for θ ¼ 0, and in Fig. 25(b) for a tilted
field with θ ¼ 7.5°. The AK, SC, and γ phases are still

(a)

(b)

FIG. 24. (a) χeθ and (b) ln χλ1θ versus θ at a fixed ϕ ¼ −0.21π
inside the SN phase where we set J ≡ K cos θ for the KG ladder.
It shows a clear first order transition at J ¼ 0 indicating a first
order transition point. Results are from high precision iDMRG
with unit cell of 60.
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clearly present, as is the transition to the polarized phase
PS. However, the transition to the η phase is in this case
less well defined. In both panels the light red coloring
indicates regions where the iDMRG does not converge
well. Remarkably the critical fields for the AK-SC and
η-PS transition appear almost unchanged by the tilt of
the field.
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