
 

Glassy Dynamics in a Disordered Heisenberg Quantum Spin System

A. Signoles ,1,2,† T. Franz ,1,† R. Ferracini Alves,1 M. Gärttner ,1,3 S. Whitlock,1,4 G. Zürn,1 and M. Weidemüller 1,5,*

1Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
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Understanding the dynamics of strongly interacting disordered quantum systems is one of the most
challenging problems in modern science, due to features such as the breakdown of thermalization and
the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics
in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared
in a superposition of two different Rydberg states. The total magnetization is found to exhibit
subexponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation
originates from the buildup of nonclassical correlations. In both experiment and semiclassical simulations,
we find the evolution toward a randomized state is independent of the strength of disorder up to a
critical value. This hints toward a unifying description of relaxation dynamics in disordered isolated
quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios
in classical spin glasses.

DOI: 10.1103/PhysRevX.11.011011 Subject Areas: Atomic and Molecular Physics,
Quantum Information

I. INTRODUCTION

The far-from-equilibrium behavior of isolated quantum
systems and in particular their relaxation toward equilibrium
still evades a unifying description. It has been conjectured
that these systems generically relax to a state of local thermal
equilibrium according to the eigenstate thermalization
hypothesis (ETH) [1]. However, the ETH does not explain
how the equilibrium state will be reached, or even if it will
be reached in experimentally accessible timescales.
Particularly rich relaxation dynamics are found in disordered
quantum systems, where the interplay between interactions
and randomness can give rise to new and intrinsically
nonequilibrium effects such as prethermalization [2–4],

many-body localization [5–7], Floquet time crystals [8,9],
and quantum scars [10,11].
In contrast, most natural systems (e.g., in condensed

matter) are not fully isolated from their environment and
hence always relax to thermal equilibrium imposed by the
external bath [12]. But it is known that disorder and
frustration effects can lead to a dramatic slowdown of
thermalization, associated with the onset of glassy behavior
[13]. A key signature of this behavior is that macroscopic
observables relax in a characteristically nonexponential
way, as encountered, for example, in doped semiconductors
[14] and organic superconductors [15], quasicrystals [16],
atoms in optical lattices [17], or diamond color centers
[18,19]. This raises the question whether slow relaxation,
which appears to be ubiquitous in open disordered systems,
also emerges in isolated quantum systems.
A prototypical model for studying far-from-equilibrium

quantum dynamics is the Heisenberg XXZ Hamiltonian
for spin-1=2 particles. Compared to the Ising Hamiltonian,
this class of spin systems has fewer conserved quantities
and shows complex, chaotic far-from-equilibrium dynam-
ics which are difficult to describe theoretically [20].
Here, we experimentally realize a disordered quantum

*Corresponding author.
weidemueller@uni-heidelberg.de

†These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 011011 (2021)

2160-3308=21=11(1)=011011(13) 011011-1 Published by the American Physical Society

https://orcid.org/0000-0001-7822-9444
https://orcid.org/0000-0002-4162-9193
https://orcid.org/0000-0003-1914-7099
https://orcid.org/0000-0001-5639-5126
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.011011&domain=pdf&date_stamp=2021-01-19
https://doi.org/10.1103/PhysRevX.11.011011
https://doi.org/10.1103/PhysRevX.11.011011
https://doi.org/10.1103/PhysRevX.11.011011
https://doi.org/10.1103/PhysRevX.11.011011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Heisenberg XXZ spin-1=2 model in an ultracold atomic
gas by encoding the spin degree of freedom in two
electronically excited (Rydberg) states of each atom.
Spin-spin interactions arise naturally through the state-
dependent dipolar interactions between Rydberg states,
while disorder originates from the random positions of
each atom in the gas which gives rise to distance-
dependent couplings [21]. Using a strong microwave
field pulse that couples the two Rydberg states, we
initialize the spins in a far-from-equilibrium state and
probe their time evolution, thus employing our system
as a quantum simulator for unitary spin dynamics in a
disordered system out of equilibrium [10,22–26].
In a large ensemble of Rydberg spins, we observe that

the magnetization follows a subexponential dependence
characterized by a stretching exponent that is independent
of the strength of disorder up to a critical value. Our
experiments and supporting numerical simulations suggest
that such glassy dynamics, commonly known in disordered
open systems, might also be a generic feature of isolated
quantum spin systems, hinting toward a unifying effective
theory description.
In Sec. II, we give a qualitative physical picture by

solving the time-dependent Schrödinger equation for a
few spins exactly. We then describe in Sec. III how to
implement the Heisenberg XXZ spin model in a gas of
ultracold atoms that are excited to Rydberg states. In
Sec. IV, we experimentally characterize the relaxation
dynamics, and we theoretically investigate the dependence
on disorder strength and character in Sec. V. Finally, we
discuss in Sec. VI our findings in comparison to other
systems exhibiting glassy dynamics.

II. QUALITATIVE PICTURE OF THE
QUANTUM DYNAMICS

We consider an ensemble of N spin-1=2 particles
randomly positioned in space and all initialized in the
j→i⊗N

x ¼ 1=
ffiffiffi
2

p ðj↑i þ j↓iÞ⊗N state, corresponding to an

initial magnetization hSðiÞx i¼1=2. Here, SðiÞα (α ¼ fx; y; zg)
refers to the spin-1=2 operator of the ith spin. The
experimental protocol is illustrated in Fig. 1(a). The unitary
dynamical evolution of the system is governed by the
Heisenberg XXZ Hamiltonian in the absence of magnetic
fields (in units where ℏ ¼ 1),

HXXZ ¼ 1

2

X
i;j

Jij
�
SðiÞx SðjÞx þ SðiÞy SðjÞy þ δSðiÞz SðjÞz

�
; ð1Þ

where Jij are the interaction couplings between the spins i
and j and δ is the anisotropy parameter. To remain
consistent with the experimental implementation (see
Sec. III), we focus on an anisotropy parameter δ¼−0.73
and spin-spin interactions that decay as a power law
Jij ¼ C6=r6ij with the interparticle distance rij.

To obtain a qualitative understanding of the quantum
dynamics in this system, we perform a full quantum
mechanical simulation on a small ensemble of N ¼ 12
spins. In Fig. 1(b) we show the time evolution of the

magnetization hSxik ¼ 1=N
P

ihSðiÞx ik for a single disorder
realization k (gray curve). Because of the spatial disorder,
spin-spin interactions give rise to complex many-body
dynamics on strongly varying energy scales. This is in
stark contrast to an effectively classical, mean-field pre-
diction for this Hamiltonian [dashed line in Fig. 1(c)],
which assumes each spin to evolve in the average field
generated by all other spins, thus neglecting quantum
correlations. The initial fully magnetized state is an
eigenstate of the mean-field Hamiltonian which explains
the total absence of relaxation.
Therefore, in the many-body case the loss of magneti-

zation is not caused by classical dephasing, but by the
buildup of entanglement between spins, witnessed by the

(a)

(b)

FIG. 1. Relaxation dynamics in a disordered quantum spin
system. (a) Protocol for initialization and readout of the many-
body spin system composed of Rydberg atoms. Spin states j↑i
and j↓i correspond to two different Rydberg states. (b) Exact
simulation of 12 spins interacting via a Heisenberg XXZ
Hamiltonian. The plot shows the magnetization for a single
realization (gray curve) and the disorder average over 1000
realizations (black curve) which relaxes as function of time given
in units of the median of the mean-field interaction strengths Jmf .
The dashed line indicates the mean-field prediction that does not

relax. The microscopic expectation values of hSðiÞx i, hSðiÞy i, and
hSðiÞz i for each spin are plotted at three different time steps on the
Bloch sphere. The reduction of the expectation values (magneti-
zation) is a consequence of the spreading of entanglement
(visualized by the blue bonds between spins).
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decrease of the local purity Trðρ2i Þ for each spin ρi being
the single-spin reduced state ρi ¼ Tr¬iρ. Since the dynam-
ics are unitary and therefore the full system remains pure
[Trðρ2Þ ¼ 1], we can quantify entanglement by the second
order Rényi entropy,

Sð2Þ
i ¼ − log2½Trðρ2i Þ�; ð2Þ

which increases to Sð2Þ
i ¼ 1 on a similar timescale as the

relaxation of the magnetization (see Fig. 2). After ensemble
and disorder averaging, the magnetization approaches a
fully randomized state with hSx;y;zi ¼ 0 [see black curve in
Fig. 1(b)], consistent with the ETH prediction. However,
this relaxation occurs very slowly compared to the time-
scales associated with spin-spin interactions.

III. REALIZING A HEISENBERG XXZ SPIN
SYSTEM WITH RYDBERG ATOMS

From a few-body perspective, one may wonder whether
glassy dynamics can actually be observed in fully isolated
quantum many-body systems and to what extent it shares
common features with classical spin glasses. We address
this question experimentally using a gas of ultracold
rubidium atoms prepared in a superposition of two different
Rydberg states. For well chosen pairs of states, the electric
dipole-dipole coupling leads to the XXZ model [27,28].
Here we use the two low angular momentum states
j↓i ¼ j48si and j↑i ¼ j49si to realize the Hamiltonian
(1), with C6=2π ¼ 59 GHz μm6 characterizing the strength
of the power law interactions (for the derivation of the
Hamiltonian, see the Appendix A).
The experimental procedure [Fig. 3(a)] starts with a gas

of 87Rb atoms prepared in their electronic ground state
jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i in an optical dipole trap and
with a temperature T ∼ 50 μK, low enough to freeze the

motional degrees of freedom over the timescale of the
experiment. A laser pulse of variable duration brings a
controllable number of atoms N ≤ 1200 to the j↓i ¼
j48S1=2; mj ¼ þ1=2i Rydberg state. For this we use a
two-photon laser excitation at 780 and 480 nm, with a
detuning −2π × 100 MHz from the intermediate state
jei ¼ j5P3=2; F ¼ 3; mF ¼ 3i and an effective Rabi fre-
quency of 2π × 150 kHz. To individually address two
specific Rydberg states, including Zeeman substructure,
we continuously apply a magnetic field of 6 G. To
characterize the resulting three-dimensional Gaussian
Rydberg density distribution, we perform depletion imag-
ing, where the Rydberg density is deduced by absorption
imaging of the ground-state atoms before and after the
Rydberg excitation laser pulse [29].
A two-photon microwave field is then used to couple the

j↓i state to the j↑i ¼ j49S1=2; mj ¼ þ1=2i Rydberg state.
The single-photon frequency ν ¼ 35.2 GHz is detuned
from the intermediate state j48P3=2i by 170 MHz, far
enough to guarantee that the population in this state due to
off-resonant coupling is smaller than 2%. The atoms can
therefore be considered as two-level systems described by
a pseudospin degree of freedom. In this description the

FIG. 2. Buildup of entanglement quantified by the time
evolution of the second order Rényi entropy of the few-particle
simulation from Fig. 1(b). The plot shows the ensemble averaged
entropy for a single realization (gray curve) and the disorder
average over 1000 realizations (black curve). Since the full
system remains pure, the Rényi entropy is a measure of
entanglement that increases on similar timescales to the maximal

value of Sð2Þ
i ¼ 1 as the magnetization relaxes to zero.

(a)

(b)

FIG. 3. Implementation of the XXZ spin-1=2 model in
Rydberg gases. (a) Experimental procedure. Left: A laser pulse
at 780 nm (red) and 480 nm (blue) excites a controlled fraction
of the 87Rb atoms to the j↓i ¼ j48Si Rydberg state. Middle:
A microwave field couples the j↓i state to the j↑i ¼ j49Si state
to perform a Ramsey experiment. Right: A blue 480 nm laser
depopulates the j↓i Rydberg state, before the j↑i state is
ionized by an electric field. The ions are detected by a
multichannel plate. (b) Ramsey fringes showing a high degree
of phase coherence for a detuning of Δ=2π ¼ 0.47 MHz for a
peak spin density of ρ0S ¼ 6.0ð15Þ × 107 cm−3. The solid line
shows discrete truncated Wigner approximation simulations for
that density.
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microwave field acts as an external field described by the
Hamiltonian

Hext ¼
X
i

�
Ω sinϕSðiÞx −Ω cosϕSðiÞy þ ΔSðiÞz

�
; ð3Þ

withΩ the Rabi frequency, Δ the two-photon detuning, and
ϕ the phase of the field. The Rabi frequency is calibrated
from the period of Rabi oscillations between the two spin
states.
To perform the Ramsey sequence shown in Fig. 1(a), a

resonant microwave π=2 pulse at an effective Rabi fre-
quency Ω=2π ¼ 3.00ð1Þ MHz rotates all spins to the fully
magnetized state j→i⊗N

x with all spins pointing along the x
direction on the Bloch sphere. Uncertainties in the duration
and amplitude of the pulses as well as interaction effects
lead to imperfect initial spin state preparation. Based on
simulations, we estimate the fidelity to be higher than 96%.
After a free-evolution time t in the absence of the

microwave field (Ω ¼ 0), a second microwave π=2 pulse
with adjustable phase ϕ is applied to rotate the equatorial
magnetization components,

hSϕi ¼ cosϕhSxi þ sinϕhSyi; ð4Þ

to the detection basis fj↓i; j↑ig. In this way we effectively
read out the hSxi and hSyi magnetizations from population
measurements of the Rydberg states using electric field
ionization (see Appendix B).
To ensure unitary Hamiltonian dynamics, we restrict the

experimental timescales to a maximum of 10 μs, which is
short compared to the spontaneous decay time and redis-
tribution by black-body radiation (113 and 121 μs, respec-
tively, for the chosen Rydberg states [30]). To verify that
the single-spin phase coherence is preserved during exper-
imental time, we perform a Ramsey measurement with
finite detuning Δ at low spin densities where interactions
can be neglected [31,32]. The full contrast oscillation
shows that the single-spin phase coherence is preserved
over the duration of the experiment, as shown in Fig. 3(b).

IV. EXPERIMENTAL OBSERVATION OF
RELAXATION DYNAMICS

A. Glassy dynamics

We now study the relaxation dynamics due to spin-spin
interactions for increasing spin densities. Figure 4 shows
the experimentally observed relaxation of the magnetiza-
tion using tomographic spin-resolved readout of hSxi and
hSyi. Starting from the almost fully magnetized state
hSxi ¼ 1=2; hSyi ≈ 0, we observe that the magnetization
decays toward the unmagnetized state hSxi ¼ 0; hSyi ¼ 0

within ∼10 μs. This is much shorter than the single-
spin phase coherence time measured in Fig. 3 but still
slower than the characteristic timescale of interactions,

½C6=ð2πÞ=a60�−1 ¼ 0.7ð3Þ μs. Here, a0 ¼ ð4πρ0S=3Þ−1=3
represents the mean interparticle distance. It is defined
as the Wigner-Seitz radius of the Gaussian spin density
distribution [33], whose peak density ρ0S is given by the
initial peak density of spin-down Rydberg atoms.
The time evolution seen in the experiment is qualita-

tively similar to the dynamics obtained by exact diago-
nalisation in Fig. 1(b). Even when accounting for
imperfect preparation of the initial state hSxi≲ 1=2 the
mean-field prediction shows essentially no relaxation on
the experimentally relevant timescales (see dotted line in
Fig. 4 and Appendix C). The qualitative failure of the
mean-field description is different from our earlier obser-
vation [21] of a density-dependent dephasing of hSzi. In
this previous work, mean field also predicted a damping
of Rabi oscillations, yet failing to provide a quantitatively
consistent description of the dynamics. Here, the absence
of dynamics at the mean-field level implies that the
relaxation seen in the experiment is closely related to
buildup of entanglement also apparent in the exact
diagonalization calculations.
We find that the relaxation is well described by a

stretched exponential, in apparent similarity with glassy
dynamics in classical disordered media [18,34–36]:

hSxðtÞi ¼
1

2
exp½−ðγJtÞβ�; ð5Þ

where β is the stretching exponent and γJ defines an
effective relaxation rate. The exponent β characterizes

FIG. 4. Many-body relaxation dynamics of a Heisenberg XXZ
Rydberg spin system. The dots show the temporal evolution of
the two magnetization components hSxi and hSyi from a tomo-
graphic spin readout. Error bars are determined from 120
realizations of the experiment at a peak spin density of ρ0S ¼
1.2ð3Þ × 109 cm−3. The observed dynamics are clearly incon-
sistent with the mean-field prediction including imperfect initial
state preparation (dotted line). The solid lines are DTWA
predictions without free parameters. The shaded area indicates
the systematic uncertainty of the measured density. The dashed
line depicts a fit of the data with a stretched exponential function
yielding a stretching exponent of β ¼ 0.32ð2Þ.
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the deviation from a simple exponential (β ¼ 1) toward a
purely logarithmic decay (β → 0) [see Appendix D].
The experimental data are well described by this phenom-
enological function (dashed line in Fig. 4) yielding an
exponent β ¼ 0.32ð2Þ. This value clearly rules out a pure
exponential decay, i.e., β ¼ 1, that could be expected on the
basis of single-particle dephasing.

B. Insensitivity to microscopic details

To further investigate how slow relaxation and the
characteristic exponent depend on microscopic details,
we control the degree of spatial disorder by taking
advantage of the Rydberg blockade effect in the state
preparation stage [37–39]. During laser excitation the
strong van der Waals interactions between Rydberg states
prevent two spins from being prepared at distances smaller
than the Rydberg blockade radius Rbl. The degree of
disorder is thus controlled by the ratio between blockade
radius Rbl and Wigner-Seitz radius a0 [Fig. 5(a)].

For a0 ≫ Rbl, the blockade effect has little influence
and the spins are randomly distributed, whereas the limit
a0 ≈ Rbl corresponds to a strongly ordered configuration.
In between, the short distance cutoff imposed by the
Rydberg blockade effect effectively reduces the strength
of the disorder compared to fully uncorrelated random
spin positions.
In the experiment we can tune the disorder strength by

changing the peak spin density ρ0S and thus the mean
number of spins per blockade sphere ða0=RblÞ−3 from
0.20(5) to 0.7(2) [two-dimensional representations of
corresponding distributions are depicted in Fig. 5(a)].
Remarkably, we find the stretching exponent β to be almost
constant over this range [inset in Fig. 5(b)]. Furthermore,
after rescaling the time axis by the characteristic energy
scale C6=a60, the time-dependent data collapse onto a single
line [Fig. 5(b)]. From this we conclude that the dynamics
is insensitive to the disorder strength which is modified by
the blockade effect. These experimental observations are
indicative of a universal behavior in the sense that the
dynamics does not depend on the microscopic details of the
system. This unexpected feature will be explored further in
numerical simulations.
Because of the large number of spins in the experiment,

an exact computer simulation of the unitary dynamics
under the Hamiltonian Eq. (1) is not possible. Instead,
quantum effects can be partially taken into account by
applying the semiclassical discrete truncated Wigner
approximation (DTWA; see Appendix C) [40,41] which
has recently been shown to describe the dynamics of
Rydberg interacting spin systems very well [21]. To model
the present experiments, all physical parameters entering
the simulation are determined through independent mea-
surements, such as the spatial density distribution, total
number of spins, and the microwave coupling strength Ω
used in the preparation and readout stages. The initial spin
distribution is generated from a random excitation model of
the Rydberg atoms, including a cutoff distance to account
for the blockade effect. This classical sampling of the
spatial spin distribution is justified on the basis that neither
the microwave pulses nor the Rydberg-Rydberg inter-
actions couple different terms of the collectively excited
many-body state, each of which satisfy the blockade
constraint (see Appendix E). The numerical simulations
describe the glassy dynamics and the insensitivity with
respect to changes of the distribution function of the
interaction strength very well [solid line in Fig. 4 and in
the inset of Fig. 5(b)], further confirming the validity of
the DTWA approximation for treating the dynamics of
disordered quantum systems.

V. NUMERICAL STUDY OF THE ROLE OF
DISORDER STRENGTH

Theoretical modeling using the DTWA allows to further
test the role of disorder for the glassy dynamics, while

(a)

(b)

FIG. 5. Rescaled magnetization dynamics for different densities
and disorder strengths. (a) 2D representation of a spin system with
different densities and thus strengths of disorder, characterized
by the mean number of spins per blockade radius ða0=RblÞ−2.
The bar denotes the mean x and standard deviation σ of the
interparticle distances mini≠j rij. (b) Data points represent mea-
surements of the averaged magnetization hSxi for spin densities
ρ0S ¼ 0.43ð11Þ × 109 cm−3 (blue), 0.8ð2Þ × 109 cm−3 (green),
1.2ð3Þ × 109 cm−3 (orange and red, corresponding to two differ-
ent datasets). By rescaling time with the effective interaction
strength C6=a60, the data collapse on a single curve described
by a stretched exponential function with stretching exponent
β ¼ 0.32ð2Þ (dashed line). The inset shows β as a function of the
corresponding ratio ða0=RblÞ−3 for the experimental data and
DTWA calculations (solid gray line).
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excluding possible effects of the inhomogeneous spin
density resulting from the optical trap. The simulated spin
dynamics for a uniform density distribution ρS are shown
by the solid lines in Fig. 6(a). For early times where
t ≤ 2πR6

bl=C6, the leading order quadratic Hamiltonian
evolution is clearly visible. For times beyond the pertur-
bative short-time regime, the relaxation is well described by
a stretched exponential [dashed lines in Fig. 6(a); see
Appendix D], proving that the glassy dynamics is an

intrinsic many-body effect and not a result of the density
inhomogeneities.
Figure 6(b) shows the fitted relaxation rate γJ of the four

simulations from Fig. 6(a) (colored dots, the disorder
average is shown as a dashed black line). This rate does
not scale with C6=a6 [a ¼ ð4πρS=3Þ−1=3 (dotted line)]
but with the median of the mean-field interaction strengths
Jmf (solid line), which plays the role of the characteristic
energy scale in the system (see Appendix E). This scale
Jmf ¼ C6=ã6 defines an effective Wigner-Seitz radius ã,
that coincides with the usual Wigner-Seitz radius a for
small spin densities but deviates at larger densities when
spatial correlations induced by the Rydberg blockade effect
become important. Rescaling the time with C6=ã6, the
simulated data from Fig. 6(a) collapse on a single stretched
exponential curve [see Fig. 6(c)], similarly to the exper-
imental observations in Fig. 5(b).
This insensitivity to changes in the cutoff energy induced

by the blockade effect substantiates the nature of the
universal relaxation dynamics. This is further confirmed
by the fitted stretching exponent β shown in the inset of
Fig. 6(c) obtained after disorder averaging [the solid line
depicts the mean, the gray shaded area shows the standard
deviation, the colored dots the single disorder realizations
from Fig. 6(a)]. We find β to be approximately constant for
large disorder strengths where spatial correlations are weak
[i.e., ðã=RblÞ−3 ≲ 0.7], with a value of 0.36, close to the
experimental value of β ¼ 0.32ð2Þ. In fact, the range of
densities in the inhomogeneous experimental distribution
falls well into the regime of a constant stretching exponent
[see inset in Fig. 5(b)].
The simulations allow us to access even higher densities

than those accessible in the experiment, corresponding to
more correlated spatial configurations of the atoms. For
ðã=RblÞ−3 ¼ 1, the DTWA simulations show significantly
different dynamics [dotted line in Fig. 6(a)] that translates
into a stretching exponent β that becomes sensitive to the
strength of the disorder above a certain threshold [see inset
in Fig. 6(c)].
To understand the behavior of β when changing the

disorder, we analyze the influence of the blockade effect on
the distribution of coupling strengths. Figure 7 shows for
four different densities the distribution function of nearest-
neighbor interaction strength rescaled by C6=a6. At low
densities, where we observe a disorder-independent stretch-
ing exponent, the rescaled distributions do not fully
coincide due to the blockade effect, but their shape remains
qualitatively the same. Their functional form is mostly
modified at large interaction strengths which influences
only the short-time dynamics. At large density, however,
the distribution is strongly altered by the high-energy cutoff
which renders the distribution much more peaked.
It is thus tempting to conjecture that the insensitivity

of the dynamics below a certain disorder strength is
related to negligible changes in the distribution of

(b)(a)

(c)

FIG. 6. Numerical simulation of the dynamics for a uniform
density distribution using the DTWA. (a) The simulated dynam-
ics before rescaling. After the quadratic onset, the magnetization
decay is fitted well by the stretched exponential function (dashed
lines). (b) The fitted decay rate γJ (dashed black line) agrees well
with the median of the mean-field interaction strengths Jmf (solid
gray line), which is the typical energy scale of the system. In the
weakly interacting limit, Jmf scales linearly with C6=a6 (dotted
gray line). The colored dots denote the decay rate derived
from the four simulations depicted in (a). (c) For small
(ρS ¼ 1.25 × 108cm−3, blue line and blue dot in the inset)
and intermediate densities (ρS ¼ 3.51 × 108cm−3, green line
and green dot in inset and ρS ¼ 8.73 × 108cm−3, yellow line
and yellow dot in the inset), the numerical data collapses on one
curve after rescaling time with C6=ã6, where ã plays the role of
an effective distance that takes into account the roles of disorder
and power law interactions. For densities as large as ρS ¼
2.11 × 109 cm−3 (dotted red line and red dot in the inset), the
spatial order introduced by the blockade is so large that the
dynamics does not follow the universal behavior observed for
smaller densities. Inset: disorder averaged stretching exponent β
(solid line) as a function of the order in the system expressed by
ðã=RblÞ−3. Below a critical value of ðã=RblÞ−3 ≲ 0.7 the exponent
becomes constant. The shaded area indicates statistical uncer-
tainty. The dots denote the exponent β resulting from the single
disorder realizations of (a). The dashed line is obtained from the
fluctuator model [see Eq. (6) in Sec. VI].
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interaction strength. Nonetheless, the changes at low
density are significant enough to predict a nonconstant β
when applying a simple model such as the fluctuator model
discussed in the next section, ruling out such a simple
interpretation based on energy rescaling.

VI. COMPARISON TO OTHER SYSTEMS
EXHIBITING GLASSY DYNAMICS

It is instructive to compare our findings to other systems
exhibiting glassy dynamics. In isolated quantum systems,
glassy dynamics has been observed for the Ising model
which is exactly solvable by the Emch-Radin ansatz
[36,42,43]. In this analytical solution the averaging
over oscillatory terms results in a stretching exponent of
β ¼ 1=2 for disordered spin systems which was also
confirmed experimentally [44,45]. Such a treatment is not
possible for an arbitraryHeisenbergXXZHamiltonian since
the Emch-Radin ansatz is based on the commutativity
between the terms in the Hamiltonian, which is only given
for the Ising model. Since the additional exchange inter-
actions of the Heisenberg XXZ model make the system
inaccessible to analytical treatment, quantum simulations
are essential to investigate the problem for a large number of
spins [20]. In this respect, our observation of slow dynamics
in a Heisenberg XXZ model in 3D with long-range inter-
actions reveals that glassy dynamics is not an extraordinary
property of the special case of Ising systems, but a more
generic feature applicable to isolated disordered spin sys-
tems. In our quantum simulation experiment, we observed a
value of β ¼ 0.32ð2Þ, significantly lower than 1=2.

A more general approach to explaining glassy dynamics
can be deduced from open disordered systems where
subexponential relaxation is a ubiquitous phenomenon
[34]. Here, the incoherent averaging over a distribution
of decay rates leads to the stretched exponential. The origin
giving rise to a specific distribution depends on the exact
physical system or model.
A commonly used model that predicts glassy dynamics

is the fluctuator model, where each spin is embedded in a
local bath that determines its decay rate. For example, this
model has been applied to NV centers where spins couple
to randomly distributed fluctuators [8,18,19]. A similar
approach is taken for dissipative many-body localized
systems where random decay rates originate from the
disordered potential at each lattice site [17,46]. For our
system, we apply the fluctuator model assuming that the
relaxation of each spin can be effectively described by an
incoherent coupling to its environment, which is deter-
mined by the local rate γi sampled from the probability
distribution of nearest-neighbor interactions from Fig. 7
(qualitatively the same results are obtained for sampling the
decay rates from the distribution of mean-field interaction
strengths):

hSðiÞx ðtÞi ¼ 1

2
exp ½−γit�: ð6Þ

This model predicts a stretched exponential relaxation as
observed in the experiment. However, we find two dis-
crepancies. First, the model predicts stretching exponents
of β > 1=2 inconsistent with our previous finding of β
being smaller than 1=2. Second, the fluctuator model
predicts a stretching exponent varying as a function of
disorder strength, as shown by the dashed line in the inset
of Fig. 6(c). Hence this model is sensitive to the change in
the distribution functions of the interaction strength intro-
duced by the cutoff, as depicted in Fig. 7, already in the
regime of large disorder. Therefore, the fluctuator model
does not capture the collapse of dynamics onto a single
curve after rescaling.
The most prominent example of open systems exhibiting

slow dynamics is spin glasses where, at low temperatures,
the relaxation of the macroscopic magnetization is
described by a temperature-dependent stretching exponent
[13,47]. Similar to the fluctuator model, this can be
explained by incoherent averaging over random relaxation
times. However, these times do not result from a local
environment of each spin, but from a random distribution
of free energies [48]. In this approach, concepts from
equilibrium statistical mechanics like thermodynamic
potentials are applied to describe the long-time evolution
of the system. Although our system does not exhibit sign-
changing interactions [49] or contain geometric frustration
[50] characteristic for spin glasses, the observation of
stretched exponential decay indicates that at long times a
similar quasiequilibrium approach might be applicable.

FIG. 7. Normalized probability distribution of nearest-neighbor
interactions gðJÞ for the densities given in Fig. 6 (blue line,
ρS ¼ 1.25 × 108 cm−3; yellow line, ρS ¼ 8.73 × 108 cm−3; red
line, ρS ¼ 2.11 × 109 cm−3). The dashed line depicts a distribu-
tion corresponding to randomly placed spins. The blockade effect
induces correlations in the system and hence the probability
distribution at high densities becomes more peaked. This results
in a decreased disorder compared to the completely random case.
The inset shows the same data with linear axis to illustrate the
narrowing of the distribution functions.
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This conjecture is supported by the fact that our system is
expected to thermalize in the sense of the ETH, but
approaches this limit only at exponentially long times in
analogy to classical spin glasses.

VII. CONCLUSION

In this work we implemented the XXZ Hamiltonian in
3D using a frozen gas of Rydberg atoms. We studied the
out-of-equilibrium dynamics of this model starting from
an almost zero entropy initial state, which lacks a
thorough theoretical understanding and is hard to simu-
late by classical means. We observed glassy dynamics in
close analogy to the subexponential relaxation known
from open disordered systems described by a stretched
exponential function. While the latter is driven by thermal
fluctuations, the dynamics of the disordered isolated
quantum system is governed by quantum fluctuations
and spreading of entanglement going beyond mean-field
approximations. The observation that the dynamics of the
magnetization is well described by semiclassical trun-
cated Wigner simulations suggests that quantum inter-
ference effects become less important as the system
approaches its equilibrium state. This is in line with
previous findings that the long-time dynamics of generic
thermalizing quantum many-body systems simplifies also
in the sense that states can be represented efficiently due
to limited entanglement [51].
In the experiment, disorder is changed by exploiting the

Rydberg blockade, which shifts the upper cutoff scale in
the distribution of interaction strengths. Remarkably, the
stretching exponent β takes on a constant value above a
certain disorder strength, as confirmed by both experiment
and semiclassical simulations. The long-time evolution is
therefore insensitive to the microscopic details of the
system parameters on high-energy scales. We interpret
the independence of the dynamics to changes in the
distribution function of interaction strengths as universal
behavior. This and the validity of a semiclassical descrip-
tion as a strong hint that the dynamics of many-body
quantum systems might be amenable to a simplified
description of the late-time dynamics in terms of effective
low-energy degrees of freedom. Concretely, this could be
approached within the framework of the strong disorder
renormalization group, iteratively integrating out the high-
est energy degrees of freedom resulting from most strongly
interacting spins or clusters of spins [52]. Furthermore, spin
glasses in the aging regime have been found to show certain
quasithermal properties. For example, a fluctuation dis-
sipation theorem has been found to hold [53] and the spin-
glass transition shows similarities to a thermal phase
transition [54]. Thus, the similarities to dynamics in open
glassy systems observed in this work are encouraging
to extend such an effective thermal-like description to
quantum glassy dynamics.
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APPENDIX A: CALCULATION OF RYDBERG
INTERACTIONS AND SPIN MODEL

In order to describe the interaction between two Rydberg
excitations, the Hamiltonian is expanded in multipoles.
This is well justified, as the minimal distance between the
Rydberg atoms that is determined by the blockade radius
Rbl is much larger than the LeRoy radius RLR that describes
the typical spread of the electron wave function. The
leading order term of this expansion is the dipole-dipole
interaction Hamiltonian,

ĤDDI ¼
d̂i · d̂j − 3ðd̂i · erÞðd̂j · erÞ

R3
; ðA1Þ

that couples Rydberg atoms with different angular
moment quantum number l. For dipolar forbidden tran-
sitions, the second order term in perturbation theory
needs to be calculated giving rise to the van der Waals
Hamiltonian,

HvdW ¼ −
1

ℏ

X
m

HDDIjmihmjHDDI

ΔF
δðωfm þ ωmiÞ; ðA2Þ

where the Foerster defect ΔF ¼ Em − Ei is the energy
difference between the intermediate and initial state, and
δðωÞ the Dirac function. Aiming for a simpler notation,
the two different Rydberg states can be identified as
spin states j↑i and j↓i. In the pair state basis ðj↑↑i;
j↑↓i; j↓↑i; j↓↓iÞ, the total Hamiltonian describing the
interaction between two atoms i and j can be written in
matrix form as
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Ĥtot
i;j ¼

0
BBBBB@

E↑↑ 0 0 0

0 E↓↑
Jex
2

0

0 Jex
2

E↓↑ 0

0 0 0 E↓↓

1
CCCCCA
; ðA3Þ

with the matrix elements E↑↑ ¼ h↑↑jHvdWj↑↑i,
E↓↑ ¼ h↓↑jHvdWj↓↑i, E↓↓ ¼ h↓↓jHvdWj↓↓i, and Jex ¼
h↑↓jHvdWj↓↑i. This Hamiltonian can be identified as the
Heisenberg XXZ Hamiltonian,

HXXZ ¼ 1

2

X
i;j

Jij
�
SðiÞx SðjÞx þ SðiÞy SðjÞy þ δSðiÞz SðjÞz

�

þ
X
i

ΔvdWS
ðiÞ
z ;

where Jij ¼ 2Jex, δ ¼ ðE↓↓ þ E↑↑ − 2E↓↑Þ=Jij, and
ΔvdW ¼ ðE↓↓ − E↑↑Þ=2. The additional single-spin detun-
ing ΔvdW is an order of magnitude smaller than the
interaction strength Jij and thus negligible.
The matrix elements E↑↑, E↓↑, E↓↓, and Jex were

calculated using the PYTHON module ARC [30]. For the
Rydberg states j48S1=2;þ 1

2
i and j49S1=2;þ 1

2
i this yields

the interaction strength Jij ¼ C6=rij with C6=ð2πÞ ¼
59 GHz μm6 and δ ¼ −0.73.

APPENDIX B: DETERMINATION OF THE
MAGNETIZATION

The magnetization is extracted from population mea-
surements of the Rydberg states after the readout pulse. To
vary the phase ϕ of this pulse rapidly enough in order to
explore the short-time dynamics, the microwave field is
generating using frequency up-conversion with a radio-
frequency field of frequency 400 MHz, offering time
resolution of 10 ns. The populations of the Rydberg states
are then extracted using electric field ionization [55].
At the end of the sequence, a strong electric field of
100 Vcm−1 is switched on and the resulting ions are
guided toward a multichannel plate detector. To calibrate
the detection efficiency, we combine ionization measure-
ments and depletion imaging [29]. We deduce a detection
efficiency η ¼ 0.173� 0.043 from four different calibra-
tion curves.
At time t we access the magnetization hSϕi by counting

after the readout pulse both the population of the j↑i state
N↑ðϕÞ and the total spin number N↓þ↑, according to

hSϕi ¼
N↑ðϕÞ − N↓ðϕÞ

2N↑þ↓
¼ N↑ðϕÞ

N↑þ↓
−
1

2
: ðB1Þ

Since the ionization is not state selective, N↑ðϕÞ is inferred
by counting the spin number after depopulating the j↓i

state. It is performed by optically coupling the j↓i state to
the short-lived intermediate state jei during 1.5 μs.
Because of the finite lifetime of the spin states and

microwave transfer, auxiliary Rydberg states might also be
populated. This residual population leads to an offset in the
measured ion signal, a number Na of those atoms being
energetically above the ionization threshold (see Fig. 8).
As a consequence, what we measure instead of N↑ðϕÞ
and N↓þ↑ are two quantities M↑ðϕÞ and M↓þ↑ given by

M↑ðϕÞ ¼ N↑ðϕÞ þ Na; ðB2Þ

M↓þ↑ ¼ N↓þ↑ þ Na: ðB3Þ

The measured quantity M↑ is a sinusoidal function of ϕ,
centered around its mean value:

M̄↑ ¼ N↓þ↑

2
þ Na: ðB4Þ

We determine from a sinusoidal fit the values M↑ðϕÞ
and M̄↑ and thus compute the magnetization hSϕi using
Eqs. (B1)–(B4). The amplitude A of the sinusoidal fit,
normalized by N↑þ↓, corresponds to the magnetization in
the xy plane. Following this procedure, we deduce that the
number of atoms in the auxiliary states Na increases
linearly in time with a rate of 7 kHz, consistent with the
blackbody decay of the spin states toward Rydberg states
above the ionization threshold.

APPENDIX C: THEORETICAL MODELS

To compare the experiment to the mean-field prediction,
we solve the classical equations of motion that are obtained
from the classical Hamiltonian function [41],

FIG. 8. Reconstruction of the magnetization. Left: measure-
ments of the total number of spins M↑þ↓. Right: measurement of
the population in the j↑i state M↑ðϕÞ after a readout pulse of
phase ϕ. Both are affected by the population in auxiliary states
Na. The measurement M↑ is fitted by a sinusoidal function
(orange line), from which we extract the mean value M̄↑. The
amplitude A of the fit, normalized by the total number of spin
N↑þ↓, indicates the magnetization in the xy plane.
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HC ¼ 1

2

X
i;j

Jij
�
sðiÞx sðjÞx þ sðiÞy sðjÞy þ δsðiÞz sðjÞz

�
; ðC1Þ

via Hamilton’s equation

_sðjÞx ¼ fsðjÞx ; HCg: ðC2Þ

Here, sðiÞ ¼ ðsðiÞx ; sðiÞy ; sðiÞz Þ are classical spins and f� � �g
denotes the Poisson bracket. The system of ordinary
differential equations is solved by Tsitouras’s 5=4
Runge-Kutta method [56] using the JULIA differential
equations package [57]. For a perfect initial state where
all spins are aligned in the x direction, mean-field theory
does not predict any dynamics. However, the interactions
present during the first π=2 pulse of the Ramsey protocol
induce small fluctuations in the initial state. We take these
imperfections into account by including the preparation
and readout pulses in the simulations, which leads to the
dynamics shown by the dotted line in Fig. 4. For the
relevant timescale of the experiment, these dynamics are
negligible.
For the considered dynamics, the initial state is an

eigenstate of the mean-field Hamiltonian. The relaxation
is thus triggered by the initial quantum fluctuations,
meaning that mean-field approaches fail in this case.
Instead, we use a discrete truncated Wigner approximation
(DTWA), which still performs classical evolution of the
spins following Eq. (C2) but includes the initial quantum
fluctuations into statistical ensembles of the initial state by
sampling Monte Carlo trajectories on discrete phase space
[40,41]. For the simulations in this paper, we sample over
100 initial conditions, which is sufficient for the magneti-
zation to be converged. Simulating far-from-equilibrium

dynamics of disordered spin systems has been successfully
applied to spin systems in recent work [21]. Imperfections
of the preparation and readout are taken into account by
simulating the whole Ramsey sequence including those
two microwave pulses. We also compared DTWA with an
approximate quantum mechanical model, the so-called
moving average cluster expansion (MACE) [58], which
qualitatively gives similar results (see Fig. 9).

APPENDIX D: QUANTIFICATION OF SLOW
DYNAMICS BY A STRETCHED EXPONENTIAL

A phenomenological approach to describe slow dynam-
ics in disordered systems is a fit of the magnetization with a
stretched exponential,

hSxiðtÞ ¼
1

2
exp½−ðγJtÞβ�; ðD1Þ

with relaxation rate γJ and stretching exponent β. This was
already proposed by Kohlrausch in 1847 [59]; a review on
the stretching exponent in numerical simulations and in
experimental data of various materials can be found
in Ref. [34].
For β ¼ 1, the stretched exponential describes an expo-

nential decay. In the limit β → 0, the stretched exponential
approaches the logarithmic decay which can be seen by
performing a Taylor expansion at small β:

exp½−ðt=τÞβ� ¼ 1

e
−
β logðtτÞ

e
þOðβ3Þ: ðD2Þ

So, the stretching exponent β quantifies how slow a system
relaxes: A small value signifies that the dynamics are
close to logarithmic and slow; a large value indicates fast
dynamics.
The magnetization at early times can be calculated by the

Baker-Campbell-Haussdorff formula:

hSxðtÞi ¼ heiHtSxe−iHti
¼ hSxi þ ith½H; Sx�i − t2=2h½H; ½H; Sx��i þ � � � :

ðD3Þ

Since the initial state j →i⊗N
x is an eigenstate of Sx, the

expectation value of the commutator ½H; Sx� vanishes for
this state and we expect the initial dynamics to be quadratic
in time. However, this does not hold for the stretched
exponential function that is a power law with exponent β
for short times t ≪ ð1=γJÞ:

hSxiðtÞ ¼ 1=2½1 − βðγJtÞβ�: ðD4Þ

Therefore, we exclude the very early dynamics from the fit
where t < 1=Jmax (see Fig. 6).

FIG. 9. Comparison between DTWA and MACE. Both moving
average cluster expansion (MACE) and DTWA perform well
to describe the experimental data at late times. At intermediate
times (between 1 and 3 μs), MACE predicts faster depolarization
dynamics.
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APPENDIX E: SPATIAL SPIN DISTRIBUTION
AND DISORDER STRENGTH

To model the experimental 3D spin distribution, we
employ a simplified description of the Rydberg excitation
dynamics in a cloud of ground-state atoms. Although the
experimental procedure creates a superposition of different
configurations of atoms being excited to the Rydberg state,
each configuration of this superposition can be regarded as
an independent disorder realization. Indeed, the different
configurations evolve independently from each other under
the spin dynamics, and the final projective measurement
randomly selects one of them (see Appendix B). Thus, to
create samples of such configurations of Rydberg excita-
tions we iteratively select atoms randomly and excite
them to the Rydberg state with a certain excitation
probability which we set to zero if another atom within
a distance of Rbl is already in the Rydberg state. The
excitation probability includes a collective enhancement
factor caused by the Rydberg blockade effect [60,61]. We
also take into account the profile of the laser excitation,
characterized by a Gaussian distribution of the two-photon

Rabi frequency with measured radius σ ¼ 70.6ð3Þ μm
(e−1=2), and the Gaussian density distribution of the
ground-state atomic cloud [measured radii at e−1=2:
σx ¼ 203ð3Þ μm, σy ¼ σz ¼ 35ð1Þ μm]. In our simula-
tions, the peak two-photon Rabi frequency was chosen
such that the total number of excited atoms equals the one
measured by field ionization.
For simulations of a homogeneous system, the spins

are randomly distributed in a uniform box taking into
account a blockade radius of 5 μm until the desired density
ρS is reached. In the limit of no blockade effect, the nearest-
neighbor distribution for a given Wigner-Seitz radius
a ¼ ð4πρ=3Þ−1=3 would be given by [33]

hðrÞ ¼ 3

a
ðr=aÞ2 exp½−ðr=aÞ3�; ðE1Þ

yielding the distribution of coupling strengths hðJÞ ¼
hðrÞð∂r=∂JÞ. Instead, the blockade effect modifies the
nearest-neighbor distribution, resulting in a different cou-
pling distribution gðJÞ [see Fig. 7(a)]. We quantify the
disorder strength of the spin system with the Kullback-
Leibler divergence [62],

DKLðgkhÞ ¼
Z

gðJÞ log
�
gðJÞ
hðJÞ

�
dJ; ðE2Þ

i.e., the amount of information that is gained by updating
from the distribution hðJÞ. Indeed, the Kulback-Leibler
divergence increases almost linearly with density (see
Fig. 10). This confirms that ða=RblÞ−3 is a relevant scale
to describe the disorder strength.
When investigating the universal character of the spin

dynamics for a homogeneous system, we have concluded
that the typical energy scale should be determined by the
median of the mean-field energy Jmf ¼ medianðC6=r̃6i Þ,
with r̃−6i ¼ P

j r
−6
ij (see Fig. 6). The effective distance ã,

defined by Jmf ¼ C6=ã6, thus corresponds to the median of
the non-Gaussian distribution fr̃ig.

APPENDIX F: SUMMARY OF PARAMETERS

Table I summarizes the parameters of the individual
measurements shown in Figs. 2 and 3 of the main text.

FIG. 10. Scaling of the disorder strength as a function of
density. The Kullback-Leibler divergence DKL increases mono-
tonically with ða=RblÞ−3. This quantifies the additional correla-
tions induced by the Rydberg blockade effect. The dots indicate
the Kullback-Leibler divergence corresponding to the specific
simulations presented in Fig. 6.

TABLE I. Experimental parameters. texc denotes the time of laser excitation from the ground to the Rydberg state. ρ0gs denotes the
measured ground-state density. ρ0S the derived peak spin density, NS the derived number of total spins. Rbl is the blockade radius derived
from the excitation time and laser coupling strength. a denotes the Wigner-Seitz radius, C6=a6 the van der Waals coefficient, and β is the
exponent of the stretching exponential derived from a fit to the relaxation curves.

Figure texc ðμsÞ ρ0gs 10
11 ðcm−3Þ ρ0S 109 ðcm−3Þ NS × 1000 Rbl ðμmÞ a ðμmÞ ða=RblÞ−3 C6=ð2πÞ=a6 (MHz) β

2, 3 1.0 1.79(9) 1.2(3) 1.2(3) 5.21 5.8(5) 0.7(2) 1.5(8) 0.32(2)
3 0.6 1.69(12) 0.43(11) 0.4(1) 4.81 8.2(7) 0.20(5) 0.195(97) 0.37(2)
3 0.8 1.73(9) 0.8(2) 0.8(2) 5.03 6.6(6) 0.43(11) 0.7(3) 0.36(4)
3 1.0 1.64(15) 1.2(3) 1.1(3) 5.21 5.9(5) 0.7(2) 1.4(7) 0.305(14)
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T. Lahaye, and A. Browaeys, Tunable Two-Dimensional
Arrays of Single Rydberg Atoms for Realizing Quantum
Ising Models, Nature (London) 534, 667 (2016).

[25] S. Lepoutre, J. Schachenmayer, L. Gabardos, B. Zhu, B.
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