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Rectified electric current induced by irradiating light, a so-called photocurrent, is an established
phenomenon in optoelectronic physics. In this paper, we present a comprehensive classification of the
photocurrent response arising from the parity violation in bulk systems. We clarify the contrasting role of T
and PT symmetries and consequently find new types of photocurrent phenomena characteristic of parity-
violating magnets—the intrinsic Fermi surface effect and the gyration current. In particular, the gyration
current is induced by circularly polarized light, and it is the counterpart of the shift current caused by
linearly polarized light. This photocurrent adds a new functionality of materials studied in various fields of
condensed matter physics such as multiferroics and spintronics. A list of materials is provided.
Furthermore, we show that the gyration current is strongly enhanced by topologically nontrivial band
dispersion. On the basis of the microscopic analysis of Dirac models, we demonstrate the divergent
photocurrent response and elucidate the importance of the tilting of Dirac cones.
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I. INTRODUCTION

Optical responses have gained much interest in con-
densed matter physics. Optical probes are extensively
implemented in spectroscopy, such as angle-resolved
photoemission spectroscopy and real-space imaging of
material phases. Recent studies have clarified exotic
phenomena where light and electrons are strongly coupled
to each other; for instance, photoinduced phase transitions
and higher harmonic generations in solids [1–3]. Among
the nonlinear optical responses, the photocurrent response
is constantly gaining renewed interest.
The photocurrent phenomenon has historically been

attributed to the internal field and surface effects of
ferroelectric materials [4–7] or to the heterostructure whose
prototypical example is the p-n junction device [8,9]. On
the other hand, the photocurrent response originating from
the bulk electronic structure has also been clarified. The
discovery of the bulk photocurrent can be traced back to the
study of a well-known ferroelectric system, BaTiO3 [10].
The bulk photocurrent has been theoretically investi-
gated by perturbative calculations [11–14]. Subsequently,

a first-principles calculation has successfully explained the
photocurrent response in ferroelectric materials [15,16].
Whereas the basic formalism [14,17–19] and first-

principles calculations [15,16,20,21] have been estab-
lished, recent developments in topological science have
provided us with new insights into the photocurrent
response. The system hosting a topologically nontrivial
electronic structure shows enhanced photoelectronic
responses due to diverging geometric quantities [22–28].
Importantly, the robustness of the nontrivial band
dispersion may be ensured by its topological property,
and it is beneficial for invulnerable and high-performance
optoelectronic devices [29]. Recent experiments have
actually supported the enhanced photoelectronic responses
in various topological materials [30–34].
In general, the photocurrent response is allowed when

parity symmetry is violated. This symmetry requirement
was satisfied by noncentrosymmetric crystal structures in
previous studies. On the other hand, we have overlooked
the other type of parity violation, that is, magnetic parity
violation [35–37]. In the case of magnetic parity violation,
magnetic order breaks not only parity symmetry(P sym-
metry) but also time-reversal symmetry (T symmetry). In a
class of such parity-violating magnets, the combined
symmetry, namely, PT symmetry, is preserved [35–37].
This symmetry is a striking property of the parity-violating
magnets distinct from conventional noncentrosymmetric
systems where T symmetry is preserved. According to the
group-theoretical classification combined with model
studies [38–42], T and PT are fundamental symmetries
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characterizing quantum phases, and they essentially dis-
tinguish the electronic structure and physical responses
unique to parity violation [36,37]. Magnetic parity viola-
tion has already been discussed in the context of multi-
ferroics and spintronics. The candidate materials actually
exist in a broad range of magnetic compounds [36,43,44].
In spite of these findings, few studies focus on the photo-
current in magnetic systems, except for a few recent
theoretical works [45–47]. Thus, it is highly desirable
for promoting the functionality of matter to understand
the role of magnetic parity violation in photoelectronic
phenomena.
This work mainly consists of two parts. First, we present

a systematic classification of the photocurrent responses
from the viewpoint of T and PT symmetries. Following
the established perturbative treatment based on the spinless
free fermions, we clarify the contrasting roles of these
fundamental symmetries and complete all the photocurrent
responses. We show that the photocurrent is clearly
classified on the basis of these symmetries. Furthermore,
the classification result leads to the discovery of new
linearly and circularly polarized photoinduced currents,
which we call the intrinsic Fermi surface effect and the
gyration current, respectively. These photocurrents are
unique to the magnetically parity-violating systems and
show different properties from the known photocurrent
arising from magnetic parity violation [45,46]. We also
generalize our classification scheme to spinful systems. In
particular, owing to the Kramers degeneracy, careful treat-
ment is required to obtain gauge-invariant formulas for the
PT -symmetric systems.
Second, we clarify basic properties of the gyration

current. The gyration current is the counterpart of the shift
current, and it is closely related to the quantum geometry of
the electronic structure. Using the spinful Hamiltonian with
magnetic parity violation, we present microscopic calcu-
lations of the gyration current and compare them with the
attenuation coefficient and joint density of states that
contribute to the optoelectronic phenomena. Moreover,
we show that the gyration current is strongly enhanced
by topologically nontrivial electronic structures. We intro-
duce a model Hamiltonian mimicking a real topological
antiferromagnet CuMnAs and show analytical expressions

for the gyration current coefficient. A divergent behavior in
the low-frequency regime results from the nontrivial
quantum geometry. We also show numerical calculations
indicating that slightly massive Dirac electrons also realize
an enhanced gyration current. Note that CuMnAs is a
promising material for antiferromagnetic spintronics [48].
Thus, our results may motivate interdisciplinary investiga-
tions between topological science, optoelectronics, and
antiferromagnetic spintronics.
The outline of the paper is as follows. In Sec. II, we

introduce the formalism based on the perturbative calcu-
lation in terms of the electric field. Section III presents the
classification of photocurrent responses in spinless systems
by making use of the T and PT symmetries. In Secs. III A
and III B, we describe the photocurrent unique to metals,
and Secs. III C and III D are devoted to the formulation of
the photocurrent allowed in both metals and insulators.
Table I summarizes the classification result of Sec. III. The
formulation is generalized to the spinful case in Sec. IV. In
Sec. V, we study the gyration current in detail. We first
discuss basic properties in Sec. VA and next study a simple
model in Sec. V B. Furthermore, we propose a divergent
enhancement of the gyration current response in topologi-
cal antiferromagnets in Sec. V C. Finally, we summarize
this work in Sec. VI.

II. FORMULATION

This section shows the formalism of perturbative calcu-
lations of nonlinear optical responses within the free
particle approximation. Although the calculation has been
done in previous theoretical studies [12–14,17–19], the
derivation is shown below for completeness. The non-
interacting Hamiltonian is given by

H0 ¼
Z

dk
ð2πÞd

X
a

ϵkac
†
kacka; ð1Þ

where we define the annihilation and creation operators
cka; c

†
ka of the Bloch state jψkai ¼ exp ðik · r̂ÞjuaðkÞi

labeled by the crystal momentum k and band index a.
The periodic part of the Bloch state satisfies a Bloch
equation,

TABLE I. Classification of photocurrent responses in terms of T and PT symmetries and of linearly polarized (↕)
and circularly polarized (↺) light. Note that the entries with the superscript “*” are allowed in metals. The italic font
is for classes clarified by this work.

T PT

(↕)
Shift current

Drude term*
Magnetic injection current
Intrinsic Fermi surface effect*

(↺) Berry curvature dipole effect*
Gyration currentElectric injection current

Intrinsic Fermi surface effect*
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H0ðkÞjuaðkÞi ¼ ϵkajuaðkÞi: ð2Þ

Next, we consider the interaction between electrons and
electromagnetic fields. Since the illuminating light is
spatially uniform in the length scale of a lattice constant
and the photoelectric field is much more strongly coupled
to electrons than the photomagnetic field, the effect of the
electromagnetic field is approximated by a uniform electric
field, which is written as EðtÞ. This is the so-called electric-
dipole approximation [8]. The applied electric field can be
introduced into the Hamiltonian using either the length-
gauge or the velocity-gauge approach [17–19].
In the velocity-gauge approach [11,18,19], the electric

field modifies the kinetic part of the noninteracting
Hamiltonian. The canonical momentum p is replaced by

p → p − qAðtÞ; ð3Þ

where EðtÞ ¼ −∂tAðtÞ and q is the charge of the carriers. In
this framework, the electric field gives rise to a shift of the
momentum. Thus, we can make use of well-established
diagrammatic techniques to calculate the nonlinear optical
responses [19,46,49]. On the other hand, with the length-
gauge approach, the electric field is taken into account
using the dipole Hamiltonian, which is written as

HE ¼ −qr · EðtÞ: ð4Þ

In a general sense, the position operator breaks the
translation symmetry of solids and may make the Bloch
representation less convenient to describe the Hamiltonian
under the electric field. In the infinite volume limit,
however, the position operator is written in the Bloch
representation as [50,51]

½rk�ab ¼ i∂kδab þ ξab: ð5Þ

The position operator consists of the derivative of crystal
momentum ∂μ ¼ ∂=∂kμ and the Berry connection ξab ¼
ihuaðkÞj∂kubðkÞi defined in the manifold of the Brillouin
zone. In particular, the Berry connection is a characteristic
term of crystalline systems. Although the position operator
obtained in Eq. (5) is not diagonal in the band index, we can
proceed to the perturbative calculations without discarding
the Bloch basis. These two gauge choices should be
identical in order to respect the gauge invariance. The
equivalence has been confirmed in noninteracting systems
by explicitly carrying out the time-dependent gauge trans-
formation [13,17]. In the following, we adopt the length
gauge. In fact, by using the length-gauge approach, various
contributions to the nonlinear optical responses are clearly
divided in terms of intraband and interband transitions.
To obtain the expectation value of the nonlinear electric

current, we derive the current density operator qv, where v
is the velocity operator. In the framework of the first

quantization with the Heisenberg picture, the velocity
operator in the length gauge is given by

½vðEÞðtÞ�μ ¼ ½_rðEÞðtÞ�μ ¼ 1

iℏ
½rμðtÞ; HðtÞ�; ð6Þ

where the Hamiltonian HðtÞ consists of Eqs. (1) and (4) in
the length gauge. Because of the commutative property
between the dipole Hamiltonian and the position operator,
the electric field does not make any correction to the
velocity operator of the unperturbed Hamiltonian [Eq. (1)].
Thus, the velocity operator in the Bloch representation is
obtained as

vab½¼ vðEÞab � ¼ ℏ−1∇kϵaδab þ iℏ−1ϵabξab: ð7Þ

We note that the velocity operator in the velocity gauge is
expressed in a modified form since the perturbative part
arising from Eq. (3) does not commute with the position
operator [17–19].
The perturbative calculations are straightforwardly con-

ducted in the sameway as linear response theory [52]. Here,
we derive the nonlinear optical conductivity by following
the density matrix approach [12–14,17]. Introducing the
density matrix operator P ¼ P

n e
−HðtÞ=ðkBTÞjnijni, we

obtain the time evolution as

iℏ∂tPðtÞ ¼ ½HðtÞ; PðtÞ�: ð8Þ

Note that we adopt the Schrödinger picture in the following
calculations. When the perturbative calculations are con-
ducted in the Bloch representation, it is convenient to use the
reduced density matrix defined by

ρk;abðtÞ ¼ Tr½c†kbckaPðtÞ�: ð9Þ

In the following, the momentum dependence of the reduced
density matrix ρk is implicit, unless otherwise mentioned.
Equation (8) in the frequency domain is obtained as

ðℏω−ϵabÞρabðωÞ¼−q
Z

dΩ
2π

EμðΩÞ½rμk;ρðω−ΩÞ�ab; ð10Þ

where ϵab ¼ ϵka − ϵkb, and we adopt a convention for the
Fourier transformation given by

ρabðtÞ ¼
Z

dω
2π

e−iωtρabðωÞ: ð11Þ

Regarding the magnitude of the electric field jEj as the
perturbation parameter, the reduced density matrix is
expanded by powers of the electric field, ρ ¼ P

n ρ
ðnÞ with

ρðnÞ ¼ OðjEjnÞ. Thus, we obtain the recursive equation,
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ðℏω− ϵabÞρðnþ1Þ
ab ðωÞ ¼ −q

Z
dΩ
2π

EμðΩÞ½rμk;ρðnÞðω−ΩÞ�ab;

ð12Þ

where the zeroth component is given by ρð0Þab ðωÞ ¼
2πδðωÞfðϵkaÞδab with the Fermi distribution function
fðϵÞ ¼ ½1þ exp ðϵ − μÞ=ðkBTÞ�−1 and the chemical poten-
tial μ. Following Refs. [17,18], we introduce the matrix d̂ω

defined by

dωab ¼
1

ℏωþ i0 − ϵab
; ð13Þ

where þi0 is the infinitesimal and positive scalar derived
from the adiabatic application of the external field [52].
Then, Eq. (12) is recast as

ρðnþ1Þ
ab ðωÞ ¼ −q

Z
dΩ
2π

dωabE
μðΩÞ½rμk; ρðnÞðω − ΩÞ�ab: ð14Þ

For classification of contributions to nonlinear optical
conductivity, we make use of the intraband-interband
decomposition of the position operator [13,14]. The posi-
tion operator in the Bloch representation rμk [Eq. (5)] is
divided into the diagonal and off-diagonal components in
the band index as ri and re. The perturbation by the electric
field is classified into the intraband effect −qri · E and
interband effect −qre · E. Sequentially calculating the
corrections to the reduced density matrix ρðnÞ (n > 0),
we obtain the second-order correction ρð2Þ as

ρð2Þab ðωÞ ¼ ρðiiÞab ðωÞ þ ρðeiÞab ðωÞ þ ρðieÞab ðωÞ þ ρðeeÞab ðωÞ; ð15Þ

where we classify the components by intraband (i) and
interband (e) effects. Each term is explicitly given by

ρðiiÞab ðωÞ ¼ ð−iqÞ2
Z

dΩdΩ0

ð2πÞ2 EμðΩÞEνðΩ0Þdωabdω−Ωab

× ∂μ∂νfðϵkaÞ2πδabδðω − Ω −Ω0Þ; ð16Þ

ρðeiÞab ðωÞ ¼ −iq2
Z

dΩdΩ0

ð2πÞ2 EμðΩÞEνðΩ0Þdωabdω−Ωaa ξμab∂νfab

× 2πδðω −Ω − Ω0Þ; ð17Þ

ρðieÞab ðωÞ¼−iq2
Z

dΩdΩ0

ð2πÞ2 EμðΩÞEνðΩ0Þdωab½∂μðdω−Ωab fabξνabÞ

− iðξμaa−ξμbbÞdω−Ωab fabξνab�2πδðω−Ω−Ω0Þ;
ð18Þ

ρðeeÞab ðωÞ¼ q2
X
c

Z
dΩdΩ0

ð2πÞ2 EμðΩÞEνðΩ0Þdωab½dω−Ωcb ξμacξνcbfbc

−dω−Ωac ξμcbξ
ν
acfca�2πδðω−Ω−Ω0Þ: ð19Þ

Summation over the repeated Greek indices such as
μ ¼ x, y, z is implicit, and fab ¼ fðϵkaÞ − fðϵkbÞ. Note that
the components ρðiiÞ and ρðeiÞ are finite only when the low-
energy carriers are present, owing to the Fermi surface or
thermal excitations as implied by the Fermi surface factor
∂μf [53–56]. On the other hand, the other terms (ρðieÞ and
ρðeeÞ) contribute to the nonlinear optical conductivity even
in insulating systems at absolute zero temperature [13]. In
the perturbative calculation of the nonlinear response, the
result should not be affected by an arbitrary permutation of
applied external fields [19]. Thus, we symmetrize the
indices and frequencies of electric fields. Exemplified by
Eq. (16), the expression is modified as

ρðiiÞab ðωÞ ¼
ð−iqÞ2
2!

Z
dΩdΩ0

ð2πÞ2 EμðΩÞEνðΩ0Þdωabdω−Ωab

× ∂μ∂νfðϵkaÞ2πδabδðω − Ω −Ω0Þ
þ ½ðμ;ΩÞ ↔ ðν;Ω0Þ�: ð20Þ

Finally, we obtain the full expression

Jμð2ÞðωÞ ¼
Z

dk
ð2πÞd

X
a;b

qvμabρ
ð2Þ
ba ðωÞ ð21Þ

≡
Z

dω1dω2

ð2πÞ2 σ̃μ;νλðω;ω1;ω2ÞEνðω1ÞEλðω2Þ; ð22Þ

for the second-order nonlinear electric current density.
Considering the common factor, we take a convention
for the second-order optical conductivity σμ;νλðω;ω1;ω2Þ
given by

σ̃μ;νλðω;ω1;ω2Þ¼ 2πδðω−ω1−ω2Þσμ;νλðω;ω1;ω2Þ: ð23Þ

Classifying the components by following the decomposi-
tion in Eq. (15), the conductivity tensor is divided as

σμ;νλ ¼ σμ;νλii þ σμ;νλei þ σμ;νλei þ σμ;νλee ; ð24Þ

where each component is obtained as

σμ;νλii ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a

− vμaadωaad
ω2
aa∂ν∂λfðϵkaÞ

þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�; ð25Þ

σμ;νλei ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a;b

− ivμabd
ω
bad

ω2
aaξνba∂λfba

þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�; ð26Þ
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σμ;νλie ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
ab

− ivμabd
ω
ba½∂νðdω2

bafbaξ
λ
baÞ

− iðξνbb − ξνaaÞdω2

bafbaξ
λ
ba�

þ ½ðν;ω1Þ↔ ðλ;ω2Þ�; ð27Þ

σμ;νλee ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a;b;c

vμabd
ω
baðdω2

caξνbcξ
λ
cafac

− dω2

bcξ
ν
caξ

λ
bcfcbÞ þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�:

ð28Þ
The expression is consistent with the previous results

[13,14,57]. Although the above formula is generally
applicable to second-order optical responses such as second
harmonic generation [58] and the parametric generation
process [8], we only focus on the photocurrent response in
the following sections.

III. PHOTOCURRENT FORMULA

In this section, we derive the photocurrent formulas in
T -/PT -symmetric systems. For the photocurrent response,
the frequencies are taken as

ω ¼ 0; ω1 ¼ −Ω; ω2 ¼ Ω; ð29Þ
where we assume Ω > 0 without loss of generality. In this
section, we consider spinless systems to clarify the con-
trasting role of T and PT symmetries. Note that the
formulas are extended to the spinful systems later (Sec. IV).
First, we present a basic symmetry consideration of the

photocurrent. The photocurrent response is classified as the
linearly polarized and circularly polarized light-induced
currents, which we call the LP photocurrent and CP
photocurrent, respectively. Owing to the fact that the
time-domain electric field is real, the electric field in the
frequency domain satisfies the relation

EðωÞ ¼ E�ð−ωÞ: ð30Þ
The electric current in Eq. (22) is transformed as

Jμð2Þðω¼ 0Þ¼
Z

dω2

2π
σμ;νλð0;−Ω;ΩÞEνð−ΩÞEλðΩÞ ð31Þ

¼
Z

dΩ
2π

σμ;νλð0;−Ω;ΩÞ½EνðΩÞ��EλðΩÞ ð32Þ

¼
Z

dΩ
2π

σμ;νλð0;−Ω;ΩÞ½LνλðΩÞþ iϵνλτFτðΩÞ�:

ð33Þ

Here, we decomposed the product of electric fields into real
and imaginary components defined by

LνλðΩÞ ¼ RefEνðΩÞ½EλðΩÞ��g; ð34Þ

FðΩÞ ¼ i
2
EðΩÞ × E�ðΩÞ; ð35Þ

which are related to the Stokes parameters [59]. Thus, by
taking the linearly polarized light corresponding to the
equator of the Poincaré sphere, Lνλ ≠ 0 and F ¼ 0 are
satisfied. On the contrary, in the case of circularly polarized
light described by the north and south poles of the Poincaré
sphere, Lνλ ¼ 0 and F ≠ 0 are satisfied. The sign of the
vector F represents the handedness of the circularly polar-
ized light; for the left-handed circularly polarized light along
the z direction, E ¼ E0ð1; i; 0Þ leads to F ¼ jE0j2ẑ.
In the case of the LP photocurrent, the indices of

irradiating electric fields are symmetric. Thus, the LP-
photocurrent response is rewritten as

JμLP ¼
Z

dΩ
2π

ημ;νλðΩÞLνλðΩÞ; ð36Þ

where we introduced the symmetrized photocurrent
conductivity

ημ;νλðΩÞ ¼ 1

2
½σμ;νλð0;−Ω;ΩÞ þ σμ;λνð0;−Ω;ΩÞ�: ð37Þ

The symmetry of the LP-photocurrent tensor ημ;νλ is the
same as that of the piezoelectric tensor. Hence, the LP
photocurrent is allowed in noncentrosymmetric systems
belonging to the piezoelectric class [60].
On the other hand, the indices of irradiating electric

fields are antisymmetric for the CP-photocurrent tensor.
The response formula is obtained as

JμCP ¼
Z

dΩ
2π

κμτðΩÞFτðΩÞ; ð38Þ

where we introduced an axial tensor

κμτðΩÞ ¼ iϵνλτσμ;νλð0;−Ω;ΩÞ: ð39Þ
The noncentrosymmetric crystallographic point groups
with nonzero κ̂ are called gyrotropic (optically active)
point groups [60]. Therefore, the piezoelectric and gyro-
tropic point groups having T or PT symmetry are shown
in the Appendix C with a list of materials. With the LP- or
CP-photocurrent decomposition, we finally obtain the
photocurrent response as

Jμð2Þðω ¼ 0Þ ¼ JμLP þ JμCP ð40Þ

¼
Z

dΩ
2π

½ημ;νλðΩÞLνλðΩÞ þ κμνðΩÞFνðΩÞ�:

ð41Þ
Now, we proceed to the derivation of photocurrent

responses. As shown in seminal works, the photocurrent
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responses in the T -symmetric systems have already been
clarified in both insulators [12–14] and metals [55]. On the
other hand, the photocurrent phenomenon arising from the
magnetic order remains unexplored except for a few recent
theoretical studies [45–47]. Although we reproduce some
of the known results in the following subsections, our
calculation is distinct from the previous theoretical studies
for the following reasons: We systematically investigate
all the photocurrent responses from the viewpoint of
T and PT symmetries, unify the reported works, and,
importantly, clarify new photocurrents, which we call the
intrinsic Fermi surface effect and the gyration current. In
the following, we analyze Eqs. (25)–(28) one by one.
Frequency dependence of the conductivity tensor is implicit
unless explicitly denoted otherwise. Table II shows the
classification result of the photocurrent responses in the T -
and PT -symmetric systems.

A. Fermi surface effect I: Drude term

We first consider the intraband-only contribution
[Eq. (25)], which we call the Drude term [46,62]. The
Drude term does not essentially require the multiband
structures, and it can be captured by the conventional
Boltzmann’s transport theory where the single band is
treated [53]. The photocurrent response is evaluated as

σμ;νλii ðω;ω − ω2;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a

− vμaadωaad
ω2
aa∂ν∂λfðϵkaÞ

þ ½ðν;ω − ω2Þ ↔ ðλ;ω2Þ� ð42Þ

¼−
q3

2ℏ2ω

�
1

ω2

þ 1

ω−ω2

�

×
Z

dk
ð2πÞd

X
a

vμaa∂ν∂λfðϵkaÞ ð43Þ

!ω→0;ω2→Ω q3

2ℏ2Ω2

Z
dk

ð2πÞd
X
a

vμaa∂ν∂λfðϵkaÞ: ð44Þ

Therefore, σμ;νλii is classified as the LP-photocurrent
response since we can interchange the order of partial
derivatives ∂ν∂λ. Hence, we rewrite

ημ;νλD ¼ q3

2ℏ2Ω2

Z
dk

ð2πÞd
X
a

vμaa∂ν∂λfðϵkaÞ: ð45Þ

The subscript D denotes the Drude term. It is noteworthy
that the magnitude diverges as approximately Ω−2 in the
low-frequency regime Ω ≪ 1. Owing to Eq. (7), the
momentum integral in Eq. (44) is recast asZ

dk
ð2πÞd v

μ
aa∂ν∂λfðϵkaÞ ¼

1

ℏ

Z
dk

ð2πÞd ð∂μ∂ν∂λϵkaÞfðϵkaÞ;

ð46Þ

which is finite if and only if both the P and T symmetries
are broken [62]. In fact, T symmetry ensures the degen-
eracy between �k points in the Brillouin zone. Thus, the
third derivative of the energy spectrum, ∂μ∂ν∂λϵka, is
canceled out by the integration over k. On the other hand,
PT symmetry does not forbid the antisymmetric band
dispersion, and it allows the Drude term (see Table II).

B. Fermi surface effect II: Berry curvature
dipole term

In this subsection, we consider the photocurrent derived
from the σei term [Eq. (26)]. Although this component is
characteristic to metals like the Drude term, the response
arises from the Berry connection effect. A derivation has
successfully been obtained from semiclassical theory
[55,63]. From Eq. (29), the expression is rewritten as

σμ;νλei ¼ q3

2ℏ2Ω

Z
dk

ð2πÞd
X
a≠b

ξμabξ
ν
ba∂λfba

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ� ð47Þ

¼ q3

2ℏ2Ω

Z
dk

ð2πÞd
X
a≠b

ðξμbaξνab − ξμabξ
ν
baÞ∂λfðϵkaÞ

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ� ð48Þ

¼ q3

2ℏ2Ω

Z
dk

ð2πÞd
X
a

iϵμντΩτ
a∂λfðϵkaÞ

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�; ð49Þ

where we introduced the Berry curvature for the ath band as

TABLE II. Classification of the photocurrent conductivity in
the T -/PT -symmetric systems. The symbols ↕ and ↺ denote
photocurrents induced by linearly polarized and circularly po-
larized light, respectively. The photocurrent denoted by “(this
work)” is clarified in our current paper. The symbols d and o in
the term σee represent the diagonal and off-diagonal components
of the velocity matrix vμab in Eq. (28), while (P) and (δ) denote the
terms consisting of the principal integration (reactive part) and
delta function (absorptive part), respectively.

T PT

σii ✗ ↕ [46]
σei ↺ [55] ✗
σee;dðδÞ ↺ [11,14] ↕ [45]
σie þ σee;oðδÞ ↕ [14] ↺ (this work)
σie þ σeeðPÞ ↺ [61] ↕ (this work)
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Ωμ
a ¼ ϵμνλ∂νξ

λ
aa ¼

i
2

X
b≠a

ϵμνλðξνabξλba − ξλabξ
ν
baÞ: ð50Þ

Conducting a partial derivative in the last line, the formula
is transformed to the well-known form

σμ;νλei ¼ −
iq3

2ℏ2Ω

Z
dk

ð2πÞd
X
a

ðϵμντ∂λΩτ
a − ϵμλτ∂νΩτ

aÞfðϵkaÞ;

ð51Þ
which is called the Berry curvature dipole term [55,56].
Here, we introduce the Berry curvature dipole defined by

Dμν ¼
Z

dk
ð2πÞd

X
a

fðϵkaÞ∂μΩν
a: ð52Þ

The Berry curvature dipole is allowed when P symmetry is
broken and the Berry curvature in momentum space shows
a dipolar distribution in the Brillouin zone [56,64]. The
photocurrent arising from the Berry curvature dipole is
antisymmetric under ν ↔ λ, and it is therefore a CP
photocurrent. Thus, we describe the formula of the
Berry curvature dipole effect [Eq. (51)] as

κμνBCD ¼ iϵνλτσ
μ;λτ
ei ð53Þ

¼ −
q3

ℏ2Ω
ðDμν − δμνTr½D�Þ ð54Þ

which depends on the frequency of irradiating light as
OðΩ−1Þ.
The symmetry of the Berry curvature dipole is the same as

that of the CP-photocurrent tensor, and hence it is allowed
in theT -preserved gyrotropic crystals [55,56]. In contrast, in
thePT -symmetric systems, theBerry curvatureΩμ

a vanishes
at each k point since it is odd parity under thePT operation.
Thus, the photocurrent response derived from σei is regarded
as the Berry curvature dipole effect, which is unique to the
T -symmetric and metallic systems, whereas it is forbidden
in the PT -symmetric or insulating systems.

C. Interband effect I: Injection current

We next consider the σee term [Eq. (28)]. In particular, in
this subsection, we focus on the diagonal component of the
velocity operator vμab (a ¼ b) and denote the corresponding
conductivity tensor as σee;d. The expression is given by

σμ;νλee;dðω;ω1;ω2Þ ¼
q3

2ℏω

Z
dk

ð2πÞd
X
a≠c

Δμ
acξνacξ

λ
cafacd

ω2
ca

þ ½ðν;ω1Þ ↔ ðλ;ω2Þ� ð55Þ

¼ q3

2ℏω

Z
dk

ð2πÞd
X
a≠c

Δμ
acξνacξ

λ
cafacðdω2

caþdω1
acÞ;

ð56Þ

where Δμ
ac ¼ vμaa − vμcc ¼ ∂μϵac=ℏ represents the group

velocity difference between the ath and cth band electrons
at momentum k [45]. With the condition in Eq. (29), the
resulting expression diverges due to the prefactor ω−1.
Thus, Oðω0Þ and OðωÞ terms in the integrand of Eq. (56)
will survive in the limit of ω → 0 [61,65]. Accordingly, we
perform Taylor expansion,

dω1
ac ¼ d−ω2

ac þ −ℏ
ðℏω1 − ϵcaÞ2jω1¼−ω2

ðω1 þ ω2Þ

þO½ðω1 þ ω2Þ2�; ð57Þ

and we rewrite Eq. (56) as

σμ;νλee;dðω;ω1;ω2Þ

¼ q3

2ℏω

Z
dk

ð2πÞd
X
a≠c

�
Δμ

acξνacξ
λ
cafacðdω2

ca þ d−ω2
ac Þ

þ Δμ
acξνacξ

λ
cafac

−ℏ
ð−ℏω2 − ϵcaÞ2

ðω1 þ ω2Þ
�

þO½ðω1 þ ω2Þ2� ð58Þ

¼ q3

2ℏω

Z
dk

ð2πÞd
X
a≠c

½Δμ
acξνacξ

λ
cafacðdω2

ca þ d−ω2
ac Þ

þ ξνacξ
λ
cafacð∂μd

ω1
caÞjω1¼−ω2

ðω1 þ ω2Þ�
þO½ðω1 þ ω2Þ2� ð59Þ

¼ σμ;νλinj ðω;ω1;ω2Þ þ σμ;νλintI ðω;ω1;ω2Þ þO½ðω1 þ ω2Þ2�;
ð60Þ

where we denote the Oðω−1Þ and Oðω0Þ components by
σμ;νλinj and σμ;νλintI , respectively.
With the condition Eq. (29), we take the first line in

Eq. (59),

σμ;νλinj ¼ lim
ω→0

q3

2ℏω

Z
dk

ð2πÞd
X
a≠b

Δμ
abξ

ν
abξ

λ
bafabðdΩba þ d−Ωab Þ:

ð61Þ

The optical response is strongly enhanced under the
resonant condition that ℏΩ ¼ �ϵab. Thus, we decompose
the matrix dΩab as

dΩab ¼
1

ℏΩ − ϵab
¼ P

1

ℏΩ − ϵab
− iπδðℏΩ − ϵabÞ; ð62Þ

where P symbolically represents the principal integral for
Ω. Note that the infinitesimal parameter þi0 is implicitly
assumed in the form of ℏΩþ i0.
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Equation (61) is rewritten as

σμ;νλinj ¼ lim
ω→0

−iπq3

ℏω

Z
dk

ð2πÞd
X
a≠b

Δμ
abξ

ν
abξ

λ
bafabδðℏΩ − ϵbaÞ

ð63Þ

¼ lim
ω→0

−iπq3

ℏω

Z
dk

ð2πÞd
X
a≠b

Δμ
ab

�
gνλab −

i
2
Ωνλ

ab

�

× fabδðℏΩ − ϵbaÞ; ð64Þ
where we introduce the band-resolved quantum metric and
Berry curvature, which are respectively given by

gμνab ¼
1

2
ðξμabξνba þ ξμabξ

ν
baÞ; ð65Þ

Ωμν
ab ¼ iðξμabξνba − ξνabξ

μ
baÞ: ð66Þ

These geometric quantities are related to the U(1) quantum
metric and Berry curvature as gνλa ¼ P

b≠a g
νλ
ab and Ωμ

a ¼P
b≠a ϵμνλΩνλ

ab=2 [66]. The band-resolved quantum metric
(Berry curvature) is symmetric (antisymmetric) under ν ↔ λ
and contributes to the LP photocurrent (CP photocurrent).
Equation (64) is the general formula for the photocurrent

arising from the component σinj. Then, we proceed to
the classification by T and PT symmetries below.
Beforehand, we investigate the transformation property
of geometric quantities under those symmetry operations.
As shown in Appendix A, the Berry connection is
transformed as ξνabðkÞ ¼ ξνbað−kÞ for T symmetry while
ξνabðkÞ ¼ −ξνbaðkÞ for PT symmetry. Accordingly, the
band-resolved geometric quantities are transformed as

gμνabðkÞ ¼ gμνabð−kÞ; Ωμν
abðkÞ ¼ −Ωμν

abð−kÞ; ð67Þ

for T symmetry while

gμνabðkÞ ¼ gμνabðkÞ; Ωμν
abðkÞ ¼ −Ωμν

abðkÞ; ð68Þ

for PT symmetry. Making use of the fact that the group
velocity difference Δμ

ab is odd/even under T =PT sym-
metry, we can show that either the band-resolved quantum
metric or the Berry curvature contributes to the
photocurrent response [45].
In the T -symmetric systems, the corresponding photo-

current is obtained as

σμ;νλinj ðT Þ ¼ lim
ω→0

−πq3

2ℏω

Z
dk

ð2πÞd
X
a≠b

Δμ
abΩνλ

abfabδðℏΩ − ϵbaÞ;

ð69Þ

which satisfies the antisymmetric condition under the
permutation ν ↔ λ and hence represents the CP photo-
current. This current is called the “injection current” [14].

Following the definition in Eq. (39), we obtain the
CP-photocurrent tensor

κμνinj ¼ iϵνλτσ
μ;λτ
inj ðT Þ

¼ lim
ω→0

−iπq3

2ℏω

Z
dk

ð2πÞd
X
a≠b

ϵνλτΔ
μ
abΩλτ

abfabδðℏΩ − ϵbaÞ:

ð70Þ
The band-resolved Berry curvature is further simplified
by the circular representation of the Berry connection given
by [67]

ξ�ab ¼
1ffiffiffi
2

p ðξxab � iξyabÞ: ð71Þ

On the basis of this representation, Eq. (66) is recast as

Ωxy
ab ¼ jξ−abj2 − jξþabj2; ð72Þ

which indicates the difference of the dipole-transition
amplitude between left- and right-handed circularly polar-
ized light [67]. Accordingly, Eq. (70) with ν ¼ z is
rewritten as

κμzinj ¼ lim
ω→0

iπq3

ℏω

Z
dk

ð2πÞd
X
a≠b

ðjξþabj2 − jξ−abj2Þ

× Δμ
abfabδðℏΩ − ϵbaÞ: ð73Þ

The injection current in the T -symmetric systems arises
from the band-resolved Berry curvature. Therefore, non-
magnetic Weyl semimetals hosting the divergent Berry
curvature are potential candidates that show a giant
injection current response in the low-frequency regime.
For instance, a well-known Weyl semimetal TaAs exerts a
large photocurrent response under midinfrared light, which
may be attributed to the large Berry curvature near Weyl
nodes [68], while the enhanced response has also been
observed in the higher-frequency regime (near-infrared
regime) where the group velocity difference may be
responsible for the enhanced photocurrent [69]. Such a
topological effect may appear more prominently in the
presence of the chiral Weyl fermions [22,70–72]. Recently,
a related experimental work has been performed with a
chiral Weyl system RhSi [34].
On the other hand, PT symmetry requires that the Berry

curvature vanishes at each k. Hence, the injection current
in the PT -symmetric systems originates from the band-
resolved quantum metric. The formula is written as

σμ;νλinj ðPT Þ¼ lim
ω→0

−iπq3

ℏω

Z
dk

ð2πÞd
X
a≠b

Δμ
abg

νλ
abfabδðℏΩ− ϵbaÞ:

ð74Þ
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This expression satisfies the symmetric property for
the permutation ν ↔ λ. Thus, the photocurrent is classified
as a LP photocurrent. This result is consistent with
Refs. [45–47]. The response tensor is given by ημ;νλinj ¼
σμ;νλinj ðPT Þ=2þ σμ;λνinj ðPT Þ=2, with Eq. (74). In contrast to
the band-resolved Berry curvature, the band-resolved
quantum metric represents the dipole-transition amplitude
under linearly polarized light.
As shown above, the geometric property related to the

injection current is different between the T -symmetric and
PT -symmetric systems. Whereas the CP photocurrent in
the former is caused by the band-resolved Berry curvature,
the LP photocurrent in the latter arises from the band-
resolved quantum metric. Thus, we distinguish the injec-
tion currents allowed in the T - and PT -symmetric systems
as “electric injection current” and “magnetic injection
current,” respectively (see Table I).
The general formula in Eq. (64) is decomposed as

σμ;νλinj ¼ ημ;νλinj −
i
2
ϵνλτκ

μτ
inj; ð75Þ

and both the electric and magnetic injection currents are
allowed in the absence of T and PT symmetry. We give a
parallel discussion for the intrinsic Fermi surface effect and
shift current in Sec. III D.
In addition to the quantum geometric quantities, two

factors are responsible for these injection currents: the joint
density of states and group-velocity difference Δμ

ab. The
joint density of states is defined as

JðΩÞ ¼
X
a≠b

Z
dk

ð2πÞd δðℏΩ − ϵabÞ: ð76Þ

It measures the number of electrons excited by illuminating
light having frequency Ω, and it also plays a crucial role in
linear optical responses [73]. Note that JðΩÞ is strongly
enhanced in the presence of the generalized van Hove
singularity, where the following condition is satisfied:

∂kϵab ≡ 0: ð77Þ
The generalized van Hove singularity originates not only
from a pair of the usual van Hove singularities given by
∂kϵka ¼ ∂kϵkb ≡ 0 but also from the subspace in the
Brillouin zone satisfying ∂kϵka ¼ ∂kϵkb ≠ 0. The factor
Δμ

ab, however, weakens the contribution from the latter
singularity points. Thus, it may be important for a sizable
injection current to make use of the normal van Hove
singularities satisfying

∂kϵka ≡ 0; ∂kϵkb ≡ 0; ∂2
μϵkb · ∂2

μϵka < 0; ð78Þ

where the coordinate kμ denotes the direction of the
injection current. Such dispersion can be found in proto-
typical direct-gap semiconductors.

Peculiarly, response coefficients of the injection currents
diverge in the limit of ω → 0. This seemingly unphysical
behavior can be bounded by the scattering rate γ [18], while
our calculation assumes the optical regime, ℏω ≫ γ, for
simplicity. Since the induced photocurrent suffers from
scatterings before it diverges, the resulting current con-
verges to a finite value [34]. By introducing the scattering
rate γ, the matrix dωab is modified as

dωab ¼
1

ℏωþ i0 − ϵab
→

1

ℏωþ iγ − ϵab
: ð79Þ

Accordingly, for instance, the formula of the electric
injection current in Eq. (70) is replaced with

κμνinj → −
πq3

2

Z
dk

ð2πÞd
X
a≠b

ϵνλτΔ
μ
abΩλτ

abfab
1

ðℏΩ− ϵbaÞ2 þ γ2
:

ð80Þ

The expression converges in the limit ω → 0. This phe-
nomenological treatment is known to be justified in the
calculation based on Floquet formalism [22].
Next, the remaining term σintI in Eq. (59) is decomposed

into the LP and CP photocurrents. It is given by

σμ;νλintI ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

ξνabξ
λ
bafabð∂μdω

0
baÞjω0¼−Ω ð81Þ

¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

�
gνλab −

i
2
Ωνλ

ab

�
fab

ℏΔab

ðℏΩ − ϵabÞ2
:

ð82Þ

Making use of Eqs. (67) and (68) and following the parallel
discussion of the injection current, we identify that the
CP photocurrent (LP photocurrent) is allowed in the
T -symmetric (PT -symmetric) systems as

σμ;νλintI ðT Þ ¼ −iq3

4ℏ

Z
dk

ð2πÞd
X
a≠b

Ωνλ
abfab∂μ

1

ℏΩ − ϵab
; ð83Þ

σμ;νλintI ðPT Þ ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

gνλabfab∂μ
1

ℏΩ − ϵab
; ð84Þ

which will be discussed in the next subsection.

D. Interband effect II: Shift current
and intrinsic Fermi surface effect

Finally, we analyze the remaining terms, that is, the σee
term with the off-diagonal component of vμab in Eq. (28)
and the σie term in Eq. (27). We denote the former
contribution by σee;o.
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When we consider the photocurrent response by adopt-
ing Eq. (29), the formula for σie is recast using Eq. (7) as

σμ;νλie ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

½−∂νξ
μ
ab þ iðξνaa − ξνbbÞξμab�ξλbafbadΩba

þ ½ðν;−ΩÞ↔ ðλ;ΩÞ�: ð85Þ

It is convenient to introduce the U(1)-covariant derivative
D, which acts on the physical quantity in the Bloch
representation as [13,14,17]

½DμO�ab ¼ ∂μOab − iðξνaa − ξνbbÞOab: ð86Þ

Then, we rewrite Eq. (85) as

σμ;νλie ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

− ½Dνξ
μ�abξλbafbadΩba

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�: ð87Þ

A similar expression can be found in the term σee;o, which is
given by

σμ;νλee;oðω;ω1;ω2Þ¼
q3

2

Z
dk

ð2πÞd
×

X
a≠b≠c

vμabd
ω
baðdω2

caξνbcξ
λ
cafac−dω2

bcξ
ν
caξ

λ
bcfcbÞ

þ½ðν;ω1Þ↔ðλ;ω2Þ�: ð88Þ

In the condition Eq. (29), the formula is recast as

σμ;νλee;o ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b≠c

iξμabðdΩcaξνbcξλcafac − dΩbcξ
ν
caξ

λ
bcfcbÞ

þ ½ðν;−ΩÞ↔ ðλ;ΩÞ� ð89Þ

¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b≠c

iðξμabξνbc − ξνabξ
μ
bcÞξλcafacdΩca

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�; ð90Þ

where we use Eq. (7) in the first line. As for the summation
over the band index b, we can use the following
formula [13]:

½Dμξ
ν�ac − ½Dνξ

μ�ac ¼
X
b≠a;c

iðξμabξνbc − ξνabξ
μ
bcÞ: ð91Þ

The σee;o term is therefore rewritten as

σμ;νλee;o ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠c

ð½Dμξ
ν�ac − ½Dνξ

μ�acÞξλcafacdΩca

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�: ð92Þ

Summing up Eqs. (87) and (92), we obtain a simplified
expression,

σμ;νλeeþie ¼ σμ;νλee;o þ σμ;νλie

¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

½Dμξ
ν�abξλbafabdΩba

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�: ð93Þ

Using Eq. (62), the formula is decomposed into

σμ;νλeeþie ¼
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fab

×

�
Sμ;νλab P

1

ℏΩ − ϵba
− iπAμ;νλ

ab δðℏΩ − ϵbaÞ
�
: ð94Þ

Here, we introduce

Sμ;νλab ¼ ½Dμξ
ν�abξλba þ ½Dμξ

λ�baξνab; ð95Þ

Aμ;νλ
ab ¼ ½Dμξ

ν�abξλba − ½Dμξ
λ�baξνab: ð96Þ

Owing to the Hermitian property of the Berry connection,
general formulas for the LP- and CP-photocurrent coef-
ficients are obtained as

ημ;νλeeþie ¼
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fab

×

�
ReSμ;νλab P

1

ℏΩ − ϵba
þ πImAμ;νλ

ab δðℏΩ − ϵbaÞ
�
;

ð97Þ

and

κμτeeþie ¼ ϵτνλ
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fab

×

�
ImSμ;νλab P

1

ℏΩ − ϵba
− πReAμ;νλ

ab δðℏΩ − ϵbaÞ
�
;

ð98Þ

which do not include any imaginary component.
Now, we present a symmetry classification of the general

expressions, Eqs. (97) and (98), as we did for the injection
current. The T symmetry leads to the relation [74]

½DμðkÞξνðkÞ�abξλbaðkÞ¼−½Dμð−kÞξνð−kÞ�baξλabð−kÞ: ð99Þ

Combining this relation with the relation ϵka ¼ ϵ−ka
ensured by T symmetry, Eq. (94) is transformed as
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σμ;νλeeþieðT Þ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fab

×

�
iImSμ;νλab P

1

ℏΩ− ϵba
þπImAμ;νλ

ab δðℏΩ− ϵbaÞ
�
:

ð100Þ
This equation is the photoconductivity formula in the
T -symmetric systems. The integrands, including the prin-
cipal value and that with the delta function, are antisym-
metric and symmetric under the permutation ν ↔ λ,
respectively. Thus, the former corresponds to theCP photo-
current given by

κμτintII ¼ iϵνλτσ
μ;νλ
eeþieðT Þ ð101Þ

¼−q3

ℏ

Z
dk

ð2πÞd
X
a≠b

ϵνλτImð½Dμξ
ν�abξλbaÞfabP

1

ℏΩ−ϵba
:

ð102Þ

By using the band-resolved Berry curvature, the formula is
rewritten as

κμνintII ¼
q3

4ℏ

Z
dk

ð2πÞd
X
a≠b

ϵνλτ∂μΩλτ
abfabP

1

ℏΩ − ϵba
: ð103Þ

On theother hand, the latter is theLPphotocurrent,whichwe
call the shift current [11,14],

ημ;νλshift ¼
πq3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× Imð½Dμξ
ν�abξλba þ ½Dμξ

λ�abξνbaÞ: ð104Þ
Taking both components into account, we denote the total
photoconductivity as follows:

σμ;νλeeþieðT Þ ¼ ημ;νλshift −
i
2
ϵνλτκ

μτ
intII: ð105Þ

TheCP photocurrent κμτintII is simplified by combining it with
Eq. (83). The expression is obtained as

κμνIFS ¼ iϵνλτσ
μ;λτ
intI ðT Þ þ κμνintII ð106Þ

¼−
q3

4ℏ

Z
dk

ð2πÞd
X
a≠b

ϵνλτΩλτ
abP

1

ℏΩ− ϵba
∂μfab ð107Þ

¼ −
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

ϵνλτΩλτ
ab

ℏΩ
ℏ2Ω2 − ϵ2ab

∂μfðϵkaÞ;

ð108Þ
which we denote as the intrinsic Fermi surface effect in
Table II. The formula represents a Fermi surface effect, but it

is not sensitive to the relaxation time, in contrast to the usual
Fermi surface effects such as Drude conductivity. The
resulting formula is consistent with Ref. [61], where the
nearly static photocurrent in the T -symmetric systems has
been elucidated.
Here, we discuss the shift-current term in detail.

Following the prescription presented in Ref. [14], we
decompose the Berry connection into the magnitude and
phase,

ξνab ¼ jξνabj exp ð−iϕν
abÞ: ð109Þ

Here, jξνabj ¼ jξνbaj and ϕν
ab ¼ −ϕν

ba are satisfied by the
Hermitian property. The shift-current formula Eq. (104) is
recast as

ημ;νλshift ¼−
πq3

2ℏ

Z
dk

ð2πÞd
X
a≠b

ðRμ
ab;νþRμ

ab;λÞgνλabfabδðℏΩ− ϵbaÞ

−
πq3

2ℏ

Z
dk

ð2πÞd
X
a≠b

½ð∂μjξνabjÞjξλbaj

− jξνabjð∂μjξλbajÞ� sinðϕν
abþϕλ

baÞfabδðℏΩ− ϵbaÞ;
ð110Þ

where we introduced the so-called shift vector defined by

Rμ
ab;ν ¼ ∂μϕ

ν
ab þ ξμaa − ξμbb: ð111Þ

This vector implies the wave-packet shift of the excited
electron along the μ direction through the interband
transition a ↔ b [75,76]. We can take coordinate axes
so that the polarization of the linearly polarized light is
parallel to one of the axes. Thus, taking ν ¼ λ without loss
of generality, we obtain the well-known formula for the
shift current [11,14],

ημ;ννshift¼−
πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

Rμ
ab;νg

νν
abfabδðℏΩ−ϵbaÞ: ð112Þ

Note that the shift vector and band-resolved quantum
metric are individually invariant under the U(1)-gauge
transformation. The shift current [Eq. (112)] is in sharp
contrast to the magnetic injection current [Eq. (74)],
another LP photocurrent allowed in insulators. The shift
current is described by the shift vector in the real-space
picture, whereas the magnetic injection current arises from
the group-velocity difference Δμ

ab, which is a characteristic
property in momentum space (see also Table III). The joint
density of states and band-resolved quantum metric play
important roles in both LP photocurrents.
Now, we move on to the photocurrent in the PT -

symmetric systems, a main topic of this paper. We can
simplify Eq. (94) by making use of PT symmetry. After a
parallel discussion, we obtain
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σμ;νλeeþieðPT Þ ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fab

×

�
ReSμ;νλab P

1

ℏΩ − ϵba

− iπReAμ;νλ
ab δðℏΩ − ϵbaÞ

�
; ð113Þ

for the photoconductivity σieþee in the PT -symmetric
systems. We notice the T =PT correspondence of the
σμ;νλeeþie term. In the PT -symmetric system, the reactive
term, including the principal integrand, represents the
response to linearly polarized light, while the absorptive
term containing the delta function represents the circularly
polarized light-induced photocurrent.
The formula for the LP photocurrent is obtained as

ημ;νλintII ¼
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fabP
1

ℏΩ − ϵba

× Reð½Dμξ
ν�abξλba þ ½Dμξ

λ�abξνbaÞ ð114Þ

¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

∂μgνλabfabP
1

ℏΩ − ϵba
: ð115Þ

Combining this equation with Eq. (84), we finally obtain
the formula for an intrinsic Fermi surface effect,

ημ;νλIFS ¼ σμ;νλintI ðPT Þ þ ημ;νλintII ð116Þ

¼ q3

ℏ

Z
dk

ð2πÞd
X
a≠b

gνλab
ϵab

ℏ2Ω2 − ϵ2ab
∂μfðϵkaÞ: ð117Þ

This term comprises the Fermi surface term and the
quantum metric, and it is therefore the counterpart of
Eq. (108), which is characterized by the Berry curvature
instead of the quantum metric. In the static limit (Ω → 0),
the formula for the LP photocurrent is recast as

ημ;νλIFS → −
q3

ℏ

Z
dk

ð2πÞd
X
a≠b

gνλab
ϵab

∂μfðϵkaÞ: ð118Þ

The expression is similar to the semiclassically derived
(static) nonlinear conductivity [77], which is interpreted as
a correction to the quantum geometry by the electric field.
However, we note that the nonlinear conductivity in
Ref. [77] shows only the Hall response. On the contrary,
Eq. (117) indicates that the induced photocurrent can be
parallel as well as perpendicular to the polarization direc-
tion of light.
Here, we show the CP photocurrent, which is the

counterpart of the shift current. This photocurrent has
properties distinguished from the shift current: It is induced
by the circularly polarized photon instead of the linearly
polarized photon, and it is unique to the magnetically
parity-violating system. We therefore call the response the
gyration current. The gyration current formula is given by

κμνgyro ¼ iϵνλτσ
μ;λτ
eeþieðPT Þ ð119Þ

¼πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

ϵνλτReð½Dμξ
λ�abξτbaÞfabδðℏΩ−ϵbaÞ:

ð120Þ

We discuss the gyration current in Sec. V in detail. It is
noteworthy that only the gyration current is induced by the
circularly polarized light in the PT -symmetric systems.
Therefore, we can unambiguously detect the gyration
current by measuring the CP photocurrent, which is not
the case for the CP photocurrent of T -symmetric systems
because of the admixture of various CP photocurrents such
as the Berry curvature dipole term and the electric injection
current [22] (see Table I). Furthermore, the photocurrent
measurements may be useful to identify the symmetry of a
parity-violating order parameter in magnetic materials
because the response tensor is sensitive to the symmetry.
Combining the gyration current with part of the intrinsic

Fermi surface term, we obtain the photoconductivity in the
PT -symmetric systems,

σμ;νλeeþieðPT Þ ¼ ημ;νλintII −
i
2
ϵνλτκ

μτ
gyro: ð121Þ

Using Eqs. (105) and (121), we rewrite the general formula
for the σieþee term and decompose it into the LP photo-
current and CP photocurrent,

ημ;νλieþee ¼ ημ;νλshift þ ημ;νλintII; ð122Þ

κμνieþee ¼ κμνintII þ κμνgyro: ð123Þ

Thus, the T =PT correspondence also holds in the case of
the intrinsic Fermi surface effect and the shift-current

TABLE III. Director Xμ and dipole-transition amplitude Tνλ for
the photocurrent responses allowed in insulators (see also Table I).
The directors Δμ, Rμ, and Rμ

� are the group velocity difference,
shift vector, and chiral shift vector, respectively.
The transition amplitude is characterized by the quantum metric
gνλ and Berry curvature Ωνλ.

Xμ Tνλ

Electric injection current Δμ Ωνλ

Shift current Rμ gνλ

Magnetic injection current Δμ gνλ

Gyration current Rμ
� gνλ;Ωνλ
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mechanism. When both T and PT symmetries are broken,
the photocurrents allowed by each symmetry are admixed
with each other. A similar discussion can be found in
second-order nonlinear conductivity [62].
Summarizing this section, we reproduced the formulas

for several known photocurrent responses and uncovered
new photocurrents—the intrinsic Fermi surface effect and
the gyration current. Although the contrasting role of the T
and PT symmetries has been implied for several photo-
current responses studied very recently [45,46], it remained
unclear whether the T =PT correspondence is generally
applicable to the photocurrent classification. Our classi-
fication, however, systematically classifies the photocurrent
responses and verifies the T =PT correspondence in a
rigorous way. The obtained classification completes all the
photocurrent responses within the independent-particle
approximation and provides a clear decomposition of the
general photoconductivity coefficients [see Eqs. (75),
(122), and (123)]. The decomposition has naturally led
to finding the intrinsic Fermi surface effect and the gyration
current.
Furthermore, it is also shown in Ref. [62] that the T and

PT symmetries play important roles in classifying the
extrinsic contributions [78,79] to the photocurrent
response. Interestingly, the extrinsic contributions arising
from the impurity scattering are strongly suppressed byPT
symmetry [62], while they can be the main terms in the T -
symmetric systems. Therefore, the PT -symmetric systems
that we focus on in this paper are more favorable to
investigate the intrinsic photocurrent.

IV. GENERALIZATION TO SPINFUL SYSTEMS

The formulation is straightforwardly generalized to the
spinful system. Classification of the LP or CP photocurrent
in Table II does not depend on whether the system is
spinless or spinful. The photoconductivity formula in the
PT -symmetric systems, however, is slightly modified due
to the Kramers degeneracy appearing at each k.
Owing to the double degeneracy ensured by PT

symmetry, the Bloch states have U(2)-gauge degrees of
freedom, at least. Note that the gyration current formula
in spinless systems [Eq. (120)] is not invariant under the
U(2)-gauge transformation. Thus, we modify the decom-
position of the nonlinear conductivity tensor in Eq. (24) to
be U(2)-gauge invariant. First, the Berry connection is
divided as

ξμab ¼ αμab þAμ
ab; ð124Þ

where the intraband Berry connection αμab is introduced for
the degenerate bands satisfying ϵka ¼ ϵkb. With the decom-
position of the Berry connection, the intraband position
operator rμi is modified as

ðrμi Þab ¼ i∂μδab þ αμab; ð125Þ

and the interband position operator is given by
ðrμeÞab ¼ Aμ

ab. Accordingly, we define the band-resolved
quantum metric and Berry curvature as

gμνab ¼
1

2
ðAμ

abA
ν
ba þAν

abA
μ
baÞ; ð126Þ

Ωμν
ab ¼ iðAμ

abA
ν
ba −Aν

abA
μ
baÞ: ð127Þ

Based on the U(2)-type position operators, we divide the
nonlinear optical conductivity into four terms. The calcu-
lation can be done as in the spinless systems, and we give
the derivation in Appendix B.
In the following, we consider formulas for the photo-

current in the PT -symmetric and spinful systems, that is,
the Drude term, the magnetic injection current, the intrinsic
Fermi surface effect, and the gyration current. The Drude
term is the same as Eq. (45) except for the Kramers degree
of freedom included in the summation over the band
indices. In the case of spinful systems, the antisymmetri-
cally distorted band structure causing a finite Drude term is
realized by the coupling between parity-violating magnetic
order and the sublattice-dependent spin-orbit coupling
[38,39]. This case will be exemplified by the model study
in Secs. V B and V C.
Similarly, the photoconductivity formulas for the mag-

netic injection current and intrinsic Fermi surface effect
are, respectively, obtained by replacing the band-resolved
quantum metric in Eqs. (74) and (117) with Eq. (126),
whereas the formula for the gyration current is obtained as

κμνgyro ¼ πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× ϵνλτReð½DμAλ�abAτ
baÞ; ð128Þ

whereDμ is the U(2)-covariant derivative. We can straight-
forwardly show that all the obtained expressions are U(2)-
gauge invariant.
In conclusion, although the photocurrent formulas for the

spinful system are mostly the same as those for the spinless
system, the gyration current is modified due to the different
gauge symmetry. Note that the formulation can be easily
generalized to the systemhavingn-fold degenerate bands. In
particular, in a high-symmetric subspace of the Brillouin
zonemanifold, a high degeneracy with n ¼ 4, 6 may exist in
a symmetry-enforced way. Hence, our formulation gives
insights into the photocurrent responses arising from such
multifold degenerate fermions [72,80,81].
We comment that the U(2)-gauge-invariant formulation

becomes unnecessary when PT symmetry is absent and
the Kramers degeneracy is lifted. Then, the U(2)-covariant
derivative is replaced by that for the U(1) gauge [Eq. (86)].
In particular, calculations of T -symmetric spinful systems
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can be conducted as in the spinless case. Thus, the formulas
for the photocurrent are the same as those for spinless
systems.

V. ANALYSIS OF GYRATION CURRENT

In this section, we investigate the gyration current
response [Eq. (120) for spinless systems and Eq. (128)
for spinful systems] in detail. After revealing the basic
properties in Sec. VA, we present a microscopic study
based on a spinful model in Sec. V B. Furthermore, we
show a giant gyration current arising from divergent geo-
metric quantities in a topological antiferromagnet in
Sec. V C.

A. Basic properties

First, we consider the spinless system, for simplicity.
Since the gyration current is induced by circularly polarized
light, it is convenient to adopt the circular representation as
in the electric injection current. With the circularly polar-
ized light along the z direction, the response formula is
rewritten as

κμzgyro ¼ πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× Reði½Dμξ
þ�abξ−ba − i½Dμξ

−�abξþbaÞ: ð129Þ

Note that this formula can be applied to the system without
PT symmetry. We write the left- or right-handed Berry
connections ξ� by

ξ�ab ¼ jξ�abj exp ð−iϕ�
abÞ; ð130Þ

which satisfy the relation ϕþ
ab ¼ −ϕ−

ba due to the definition
of ξμab (μ ¼ x, y and a ≠ b). Then, the gyration current
formula is recast as

κμzgyro ¼ πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× ðRμ
ab;þjξþabj2 − Rμ

ab;−jξ−abj2Þ: ð131Þ

Here, we introduce the chiral shift vector, given by

Rμ
ab;� ¼ ∂μϕ

�
ab þ ξμaa − ξμbb; ð132Þ

which is invariant under the U(1)-gauge transformation.
The meaning of Eq. (131) is clear. Corresponding to the

handedness of the dipole-transition amplitude denoted by
jξ�abj2, the circularly polarized light excites the electrons.
Through the interband transition a ↔ b, the excited elec-
tron makes a positional shift determined by the chiral shift
vector. The resulting electrons’ flow gives rise to the
gyration current. Interestingly, a similar expression has

been obtained in a recent study of a circular-photoinduced
nonlinear polarization in a layered system [66].
The transition amplitudes jξ�abj2 are further decomposed

into

jξ�abj2 ¼ ðgxxab þ gyyabÞ ∓ Ωxy
ab; ð133Þ

which consists of the band-resolved quantum metric and
the Berry curvature. Although other photocurrents allowed
in insulators are related to either the band-resolved quan-
tum metric or the Berry curvature, the gyration current is
derived from both geometric quantities. Using the decom-
position in Eq. (133), Eq. (131) is transformed as

κμzgyro ¼ πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× ½ðRμ
ab;þ − Rμ

ab;−Þðgxxab þ gyyabÞ
− ðRμ

ab;þ þ Rμ
ab;−ÞΩxy

ab�: ð134Þ
When we impose PT symmetry, we have

κμzgyro ¼ 2πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞRμ
ab;þðgxxab þ gyyabÞ:

ð135Þ
where we use the relations Ωμν

ab ¼ 0 and ϕ−
ab ¼ −ϕþ

ab þ π.
Next, we consider the gyration current in the spinful

system [Eq. (128)]. For the U(2)-gauge description, we
assume the PT -symmetric system below. The formula is
recast as

κμzgyro ¼ πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× Reði½DμAþ�abA−
ba − i½DμA−�abAþ

baÞ ð136Þ

¼πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ−ϵbaÞ

×Re½ðRμ
ab;þjAþ

abj2−Rμ
ab;−jA−

abj2Þ
þαμaāðAþ

ābA
−
ba−A−

ābA
þ
baÞ−αμ

b̄b
ðAþ

ab̄
A−

ba−A−
ab̄
Aþ

baÞ�;
ð137Þ

where ða; āÞ denotes the Kramers pair ensured by PT
symmetry and we introduce the circular representation of
the Berry connection A�

ab as in Eq. (71). Taking the gauge
where αμaā ¼ 0 is satisfied, the formula is recast as

κμzgyro¼πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ−ϵbaÞ

× ½ðRμ
ab;þ−Rμ

ab;−ÞðgxxabþgyyabÞ−ðRμ
ab;þþRμ

ab;−ÞΩxy
ab�:
ð138Þ
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Owing to the spin degree of freedom, the contribution
from the band-resolved Berry curvature is not canceled
out, in contrast to the formula for the spinless fermions
[Eq. (135)].
Combining these findings with the known results of the

photocurrent allowed in insulators, we notice that the
photocurrent response arises from two processes: par-
ticle-hole pair creation and “director” of created charges.
Particle-hole creation is determined by the Pauli blockade
effect fabδðℏΩ − ϵabÞ and the dipole-transition amplitude
Tνλ given by the product of the interband Berry connec-
tions. The director Xμ rectifies the created particles and
holes. The overall formula is given by

σμ;νλ ∝
Z

dkXμTνλfabδðℏΩ − ϵabÞ; ð139Þ

where Xμ and Tνλ are different between each photocurrent
response. It is known that the particle-hole excitation
determines the linear optical (absorptive) response [73].
Thus, the photocurrent response can be intuitively under-
stood as follows: Electron-hole pairs are created under
irradiating lights as in the linear optical response; then, the
director rectifies created pairs to produce an electric current
(Fig. 1). Note that the director arises from the band
structure of electrons in bulk, while it is the internal electric
field in the case of the prototypical photocurrent response
in the ferroelectric materials and p-n junction. In the case of
the electric injection current, for instance, the transition
amplitude and director are the Berry curvature Tνλ ¼ Ωνλ

and the group velocity difference Xμ ¼ Δμ, respectively.
The set ðXμ; TνλÞ for each photocurrent is summarized in
Table III.

B. Model study of gyration current

In this section, we present a microscopic calculation of
the gyration current in a spinful model. The PT -preserved
but P-broken system is realized by the antiferromagnetic
order in locally noncentrosymmetric systems.
The locally noncentrosymmetric system hosts crystalline

sublattices whose site symmetry lacks P symmetry, while

global P symmetry is preserved by interchanging the
sublattice. The prototypical examples are the honeycomb
lattice and the bilayer system. Such peculiar crystal
symmetry gives rise to the sublattice-dependent antisym-
metric spin-orbit coupling (sASOC) [38,39,82,83]. In
many cases, effects of the sASOC do not appear in
macroscopic phenomena, while the spin- and momen-
tum-resolved spectroscopy can capture a fingerprint of
the sASOC [84]. On the other hand, a sublattice-dependent
order unveils the sASOC in the way that a coupling
between the sASOC and order parameter gives rise to
nontrivial electronic structures and cross-correlated
responses [85]. For instance, the combination of sASOC
with antiferromagnetic order leads to an asymmetric band
dispersion, which is an essential ingredient in the Drude
term. Note that such parity-breaking magnetic systems
exist in a broad range of compounds [36,43,44].
The adopted Hamiltonian is modeled after such parity-

violating magnets. A two-dimensional rectangular lattice
system consists of two sublattices labeled A and B. Owing
to the locally noncentrosymmetric property, site symmetry
is denoted by the noncentrosymmetric point group C2v
(mm2), while global symmetry is centrosymmetric and
labeled byD2h (mmm). In the point group C2v, the Rashba-
type ASOC and (anisotropic) Dresselhaus-type ASOC are
allowed [86]. Thus, the system hosts these types of ASOC
in a sublattice-dependent way as the sASOC. Using the
tight-binding approximation, the Bloch Hamiltonian is
given by

HðkÞ ¼
�
ϵ0ðkÞ þ gAðkÞ · σ VABðkÞ

VABðkÞ ϵ0ðkÞ þ gBðkÞ · σ

�
; ð140Þ

where σ and τ are Pauli matrices representing the spin and
sublattice degrees of freedom, respectively. The compo-
nents are defined as

ϵ0ðkÞ ¼ −tðcos kx þ cos kyÞ; ð141Þ

VABðkÞ ¼ −2t̃ cos
kx
2
cos

ky
2
; ð142Þ

FIG. 1. Schematic picture of the two processes causing the photocurrent response. (a) Electron-hole pair creation and (b,c) alternating
rectification of paired charges by the director. There are two kinds of directors: (b) the group velocity difference for the injection currents
(momentum space picture) and (c) the positional shift of wave packets for the shift and gyration currents
(real space picture).
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gAðkÞ ¼ g0ðkÞ þ hAF ¼

0
B@

hxAF − αR sin ky þ αD sin ky

hyAF þ αR sin kx þ αD sin kx
hzAF

1
CA;

ð143Þ

and gBðkÞ ¼ −gAðkÞ. The parameters t ¼ 1.0 and t̃ ¼ 0.5
are intrasublattice and intersublattice hopping parameters,
respectively. Importantly, we introduce the Rashba-type
and Dresselhaus-type sASOC parametrized by αR ¼ 0.2
and αD ¼ 0.4, respectively. In the specific case that
jαRj ¼ jαDj, the gyration current response vanishes since
the emergent symmetry may be present [87]. We take the
molecular field for the antiferromagnetic order as
hAF ¼ ð1.6; 0; 0Þ, which represents x-collinear antiferro-
magnetic order. The doubly degenerate energy spectrum for
Eq. (140) is obtained as

ϵk� ¼ ϵ0ðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VABðkÞ2 þ gðkÞ2

q
: ð144Þ

Mainly owing to the large molecular field hAF, two
degenerate bands are separated by the energy gap, δϵ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VABðkÞ2 þ gðkÞ2

p
.

The point group symmetry is denoted by mm0m, lacking
P symmetry in the antiferromagnetic state. Indeed, the
antiferromagnetic order parameter is characterized by the
odd-parity irreducible representation B2u of the point group
D2h. According to the reduced symmetry, we have

κxzgyro ≠ 0; κyzgyro ¼ 0: ð145Þ

Note that we can only take the index ν ¼ z in κμνgyro because
of the absence of the kz dispersion in the two-dimensional
model. Many well-known magnetoelectric insulators such
as LiTPO4 (T ¼ Fe, Co, Ni) [88–93] are characterized by
the same irreducible representation and allow the gyration
current response in Eq. (145).
In addition to the gyration current response function, we

calculate the joint density of states JðΩÞ in Eq. (76) and the
attenuation coefficient εatt given by [14,21,94]

εμνatt ¼ iπq2
Z

dk
ð2πÞ2

X
a≠b

Aμ
abA

ν
bafabδðℏΩ − ϵbaÞ ð146Þ

¼ iπq2
Z

dk
ð2πÞ2

X
a≠b

�
gμνab −

i
2
Ωμν

ab

�
fabδðℏΩ − ϵbaÞ;

ð147Þ

which is derived from the absorptive part of the expectation
value Tr½qrePð1Þ� with the interband position operator re
and the first-order perturbed density matrix Pð1Þ. Under the
linearly polarized light along the μ direction, the attenu-
ation coefficient is solely determined by the band-resolved

quantum metric gμνab. Thus, the comparison between the
shift-current coefficient σμ;ννshift and the symmetric component
of the attenuation coefficient εμνatt is informative
[8,15,16,21]. On the other hand, the attenuation of the
circularly polarized light arises from both the band-
resolved quantum metric and the Berry curvature
[66,67]. We define the attenuation coefficients of the
left-handed (þ) and right-handed (−) circularly polarized
light as

ε�att ¼
1

2
ðεxxatt þ εyyattÞ ∓ i

2
ðεxyatt − εyxattÞ ð148Þ

¼ iπq2
Z

dk
ð2πÞ2

X
a≠b

�
1

2
ðgxxab þ gyyabÞ ∓ 1

2
Ωxy

ab

�

× fabδðℏΩ − ϵbaÞ ð149Þ

¼ iπq2
Z

dk
ð2πÞ2

X
a≠b

1

2
jA�

abj2fabδðℏΩ − ϵbaÞ: ð150Þ

In the T - and PT -symmetric systems, the band-resolved
Berry curvature does not contribute to the attenuation
coefficients in Eq. (149) due to the Kramers degeneracy.
Thus, in the numerical calculation, we calculate εatt ¼
εxxatt=2þ εyyatt=2 and take a dimensionless value defined by
εr ¼ εatt=ðε0lÞ, where ε0 and l are the vacuum permittivity
and thickness of the system, respectively [21].
We show the numerically calculated gyration current

coefficient κμνgyro, the attenuation coefficient εr, and the joint
density of states JðΩÞ [95] in Fig. 2. For numerics, we
approximate the delta function in Eqs. (76), (128), and
(150) using the Lorentzian function. This treatment corre-
sponds to taking into account a phenomenological scatter-
ing rate γ ¼ 0.01. We assume absolute zero temperature
(T ¼ 0) and fix the chemical potential between the two
bands in Eq. (144). Thus, the system in the insulating
state satisfies fðϵkaÞ ¼ 0 for the upper band (a ¼ þ) and
fðϵkaÞ ¼ 1 for the lower band (a ¼ −).
Figure 2 plots the frequency dependence. We see that

the three quantities mostly share the peak positions. Thus,
it is indicated that the frequency dependence of the gyration
current coefficient is roughly determined by the joint
density of states. This result is consistent with the conven-
tional understanding of the optical conductivity [73].
A large joint density of states may be found in low-
dimensional magnetoelectric materials such as those that
crystalize in a pyroxene structure [36,97]. On the other
hand, in the presence of a geometrically nontrivial elec-
tronic structure, the gyration current may show strong
enhancement, which cannot be attributed to the joint
density of states. As an example, we investigate the
gyration current in a topologically nontrivial antiferromag-
net in the next subsection.
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C. Enhanced gyration current
in topological materials

Dirac and Weyl electrons with gapless band dispersions
give rise to various nontrivial phenomena. For instance,
geometric properties of such electronic structures lead to
unconventionally large nonlinear responses such as the
nonlinear Hall effect [56,64,98], higher harmonic gener-
ations [19,32], the injection current [22–24,26–28,31,
68,80], and the shift current [75,99]. Based on these
findings, we investigate the possibility of the giant gyration
current response in topological materials.
The model Hamiltonian is obtained by taking the

parameters in Eq. (140) as

t ¼ 0.08; t̃ ¼ 1; αR ¼ 0.8;

αD ¼ 0; hAF ¼ ð0.6; 0; 0Þ: ð151Þ

This model has been proposed as an effective two-dimen-
sional model Hamiltonian of tetragonal CuMnAs [100]. We
plot the band dispersion of the Hamiltonian in Fig. 3.
Interestingly, gapless points appear along the high-sym-
metry line (kx ¼ π). Appearance of the gapless points is
due to the facts that the sASOC overwhelms the molecular
field and that the intersublattice hoppings are forbidden by
the mirror symmetry denoted by fMxj½1=2; 0; 0�g [41,100–
102]. The coordinates of the gapless points are analytically
obtained as k¼ðπ;π=2�k0Þ with k0 ¼ arccosðhAF=αRÞ ∈
ð0; π=2�. Here, we denote hAF ¼ hAFx̂, and adopt the
energy unit jt̃j ¼ 1 ðeVÞ for a quantitative estimation.

To calculate the gyration current arising from the gapless
band electrons, we analyze an effective Dirac Hamiltonian
given by

Hðk; szÞ ¼ v0ky þ a1kyσx − a2kxσy þ wkxτx þ Δ; ð152Þ

where the coefficients are obtained from the microscopic
parameters as

v0 ¼ t cos k0; a1 ¼ αR sin k0sz; a2 ¼ αR;

w ¼ t̃ cos

�
π=2þ szk0

2

�
; Δ ¼ t sin k0sz: ð153Þ

We introduced the label sz ¼ ↑;↓ representing the Dirac
nodes at ðπ; π=2þ k0Þ and ðπ; π=2 − k0Þ, respectively.
Note that the v0 term gives rise to tilting of the Dirac
cones along the y axis, whereasΔ gives the opposite energy
shift to the two Dirac nodes. Below, we show that the tilting
is important to enhance the gyration current.
Here, we take one of the Dirac nodes and calculate the

contribution to the gyration current coefficient. Introducing
the polar coordinate as ρ sin θ ¼ ja1jky and ρ cos θ ¼
ða22 þ w2Þ1=2kx, we write the energy spectrum of
Eq. (152) as

ϵk�;sz ¼ ρ

�
v0
ja1j

sin θ � 1

�
þ Δ: ð154Þ

Owing to the double degeneracy, summation over the band
indices can be computed by putting aside the energy-related
term, fabδðℏΩ − ϵbaÞ, in Eq. (136). When we take the
frequency of light as Ω > 0 and assume absolute zero
temperature T ¼ 0, the summation is evaluated as

X
a¼−

X
b¼þ

Reði½DμAþ�abA−
ba − i½DμA−�abAþ

baÞ

¼ 1

ρ3
a21ða22 þ w2Þ sin θ: ð155Þ

FIG. 2. Frequency dependence of (upper panel) the gyration
current coefficient κxzgyro (μA · V−2), (middle panel) dimensionless
attenuation coefficient εr, and (lower panel) joint density of
states JðΩÞ (eV−1). We adopted q ¼ 1.60 × 10−19ðCÞ, ε0 ¼
8.85 × 10−12 ðF · m−1Þ, l ¼ 1 ðnmÞ, and jtj ¼ 1 ðeVÞ.

FIG. 3. Band structure of the Hamiltonian [Eq. (140) with
Eq. (151)]. Left panel: dispersion over all the Brillouin zone.
Right panel: enlarged view around the gapless Dirac points.
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The summation was taken over the lower degenerate bands
for a and over the upper degenerate bands for b, respec-
tively. We notice that the gyration current is totally canceled
out if the tilting parameter is zero since the energy
dispersion is symmetric under ky → −ky when v0 ¼ 0.
Thus, the tilting parameter is an essential ingredient for the
gyration current response.
After some simple algebra, we obtain the analytical

expression for the gyration current coefficient as

κxzgyroðΩÞ

¼
X

sz¼↑;↓

2q3

πℏ3Ω2
ða22þw2Þ1=2sgnðv0Þ

×Re

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

a21
v20

�
μþΔ
ℏΩ=2

þ1

�
2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

a21
v20

�
μþΔ
ℏΩ=2

−1

�
2

s #
:

ð156Þ

Differences in contributions from the two Dirac nodes can
be found in the energy shift of the Dirac nodes Δ and
in wðsz ¼ ↑Þ ≠ wðsz ¼ ↓Þ. Otherwise, Dirac electrons
around ðπ; π=2� k0Þ equally contribute to the gyration
current response. As a result, the tilting parameters v0 and
the energy shift Δ play two important roles as illustrated in
Fig. 4. First, the tilting of each Dirac cone due to v0
prevents the gyration current from compensation of the
contributions from k0 � k. Second, cancellation between
the gyration current from the two Dirac cones is suppressed

when the opposite potential shift Δ sufficiently separates
the Dirac nodes. Supposing a small potential difference Δ,
the gyration current is partially compensated in the low-
frequency regime as shown in the lower panel of Fig. 6.
Therefore, Dirac nodes separated along the energy axis are
favorable for a divergent photocurrent response in the low-
frequency regime. Consequently, for an enhanced gyration
current response, it is important to hunt for materials
hosting strongly tilted gapless dispersions such as the
type-II Dirac materials [103,104].
We demonstrate the impact of tilting by taking the Dirac

node labeled by sz ¼ ↑. For a fixed frequency Ω, the
gyration current appears in the region given by

−
ℏΩ
2

�����v0a1
����þ 1

�
≤ μ− t sink0 ≤

ℏΩ
2

�����v0a1
����− 1

�
; ð157Þ

for μ < t sin k0, and

−
ℏΩ
2

�����v0a1
����− 1

�
≤ μ− t sink0 ≤

ℏΩ
2

�����v0a1
����þ 1

�
; ð158Þ

for μ > t sin k0. For the parameters in Eq. (151), jv0=a1j ¼
0.11 < 1. Thus, the chemical potential has energy windows
where the gyration current response is finite. The width
δΩI ¼ Ωjv0=a1j increases in proportion to the frequencyΩ,
while it vanishes in the nontilted system (v0 ¼ 0). When
the chemical potential lies in the window, the gyration
current is extensively enhanced as OðΩ−2Þ in the low-
frequency regime.
When the tilting parameter v0 increases, the system

changes from a type-I Dirac system (jv0=a1j < 1) to a type-
II Dirac system (jv0=a1j > 1). In the type-II Dirac system,
the width of the energy window reaches as large as
δΩII ≥ Ω. On the other hand, the upper and lower energy
windows given in Eqs. (157) and (158) overlap with each
other; hence, the gyration current is partially canceled out.
The tilting parameters do not influence the maximal value
of the gyration current coefficient, as shown in Fig. 5,
because the Berry connection itself is not relevant to the
trace of the Dirac Hamiltonian in Eq. (152).
On the basis of the analytical formula in Eq. (156), we

plot ðμ;ΩÞ dependence of the gyration current coefficient
by taking both Dirac nodes into account (Fig. 6). It is
clearly shown that the energy windows of the two nodes
grow from the offset energies given by Δ and overlap near
ℏΩ ∼ 2jΔj ∼ 0.1 ðeVÞ. In the overlapped region, the total
gyration current coefficient is decreased by partial cancel-
lation. Interestingly, the gyration current shows divergent
behavior in the low-frequency regime Ω ≪ 1. Taking an
available low-frequency light in the terahertz regime
ℏΩ ¼ 1 ðmeVÞ, the energy window of each node is
evaluated as

0.44 ≤ jμ − 52j ≤ 0.56 for sz ¼ ↑; ð159Þ

FIG. 4. Mechanism of the enhanced gyration current response
in the tilted Dirac system. A coordinate qy ¼ ky − π=2 is
introduced. (a) Contributions from qy ¼ k0 � k are not canceled
out because of the tilting of a single Dirac cone. A dotted arrow
represents the transition prohibited by the Pauli blockade. (b) The
opposite energy shift �jΔj of the nodes prevents cancellation
between two Dirac nodes.
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0.44 ≤ jμþ 52j ≤ 0.56 for sz ¼ ↓; ð160Þ

where the unit (meV) is abbreviated. The gyration
current coefficient is estimated to be as large as jκxzgyroj∼
10 ðA · V−2Þ.
Note that the divergent response shown in Fig. 6 is also

found in our calculations for the original tight-binding
Hamiltonian in Eqs. (140) and (151). Thus, the effective
Dirac model picks up the photocurrent response well in the
low-frequency regime (ℏΩ≲ 100 meV in this model).
Here, we move on to a slightly gapped Dirac system,

which is realized when jhAFj ≥ jαRj. We numerically cal-
culate the gyration current response and find that themassive
Dirac dispersion is also responsible for an enhancedgyration
current. When the molecular field increases so as to surpass
the sASOC, the two Dirac nodes merge at ðkx; kyÞ ¼
ðπ; π=2Þ and then turn into massive Dirac dispersion.
Figure 7 shows the numerical results of Eq. (136) with
the discretized Brillouin zone mesh N ¼ 15002 and the
phenomenological scattering rate γ ¼ 0.01 ðeVÞ. We
assume an insulating state at zero temperature T ¼ 0; that
is, the chemical potential is positioned in the energy gap.
Such electronic structure may be realized in MnBi2Te4 thin
films consisting of the double septuple layers [105].
Interestingly, we see a large gyration current coefficient
jκxzgyroj ∼ 100 ðμA · V−2Þ for a relatively high frequency
ℏΩ ∼ 100 ðmeVÞ of light [68,99]. The coefficient is there-
fore expected to be an order of magnitude larger than
the photoconductivity of typical semiconductors such as
GaAs [21].
There are two possible reasons for the enhanced photo-

current response. One reason is that the quadratic band
edge at ðkx; kyÞ ¼ ðπ; π=2Þ forms a generalized van Hove

singularity [see Eq. (77)]. The van Hove singularity gives
rise to a large joint density of states JðΩÞ leading to an
enhanced gyration current, while this factor is absent in the
linear and gapless Dirac systems. The other reason is that
the geometric quantity is still large in a slightly gapped
regime. As the antiferromagnetic molecular field hAF
increases and the geometric quantity becomes smaller,
the maximum value of the gyration current coefficient is
suppressed (inset of Fig. 7). The exchange splitting due to
antiferromagnetic order grows as the temperature is low-
ered, and the gyration current is therefore expected to show
a drastic temperature dependence. This nontrivial temper-
ature dependence is a striking property of the photocurrent
in magnetically parity-violating systems.
To discuss the geometric properties of the system in more

detail, we introduce a quantity defined by

Gμzðkx; kyÞ

¼ πq3

ℏ

X
a∶occ:

X
b∶unocc:

Reði½DμAþ�abA−
ba − i½DμA−�abAþ

baÞ;

ð161Þ

FIG. 6. Upper panel: chemical potential and frequency depend-
ence of the gyration current coefficient in units of (A · V−2).
Lower panel: chemical potential profile of the gyration current
coefficient for ℏΩ ¼ 100 ðmeVÞ.

FIG. 5. Chemical potential dependence of the gyration current
coefficient for the frequency of light ℏΩ ¼ 100ðmeVÞ. Several
plotsareshownbychangingv0.Theratiosv0=a1 ¼ −0.1,−0.8,and
−1.5 represent the type-I Dirac (red line), highly tilted type-I Dirac
(blue line), and type-II Dirac systems (green line). We introduce
Δþ ¼ t sin k0 for the energy shift of the Dirac node sz ¼ ↑.
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which is indeed part of integrand in Eq. (136). We also
consider a momentum-resolved gyration current coefficient
defined by

κ̄μzgyroðkx; kyÞ ¼ Gμzðkx; kyÞδðℏΩ − δϵÞ; ð162Þ

where δϵ is the energy gap. Since both Gxz and κ̄xzgyroðkÞ
show a dipolar profile [Fig. 8(b)] around the massive Dirac
point at ðkx; kyÞ ¼ ðπ; π=2Þ, the total gyration current
coefficient is seemingly canceled out by integration over
ðkx; kyÞ. However, the cancellation is actually prevented by
an asymmetric energy dispersion along the ky axis. The
intersublattice hopping VABðkÞ gives rise to the asymmetry
of the energy gap between the momentum ðkx; kyÞ and

ðkx; π − kyÞ and hence makes the net gyration current
uncompensated. The lack of compensation can be seen
in the distribution of the symmetrized gyration current
coefficient defined by κ̄xzgyroðkx; kyÞ þ κ̄xzgyroðkx; π − kyÞ
[Fig. 8(b)]. Thus, the microscopic origin of the enhanced
gyration current response is different in massive and
massless Dirac systems. In the former, the asymmetric
band gap due to the intersublattice hopping plays an
important role, while in the latter, cancellation is prevented
by a combination of tilting in the Dirac nodes and Pauli
blockade (see Fig. 4).
At the end of this section, we comment on the extrinsic

effect due to impurity scattering. In the presence of metallic
conductivity, the impurity effect may overwhelm the
intrinsic terms as in the case of the anomalous Hall effect
[106]. Theoretical works have reported that
such extrinsic contributions play an important role in
T -symmetric metals [78,79], which may smear the topo-
logical enhancement of the intrinsic photocurrents such as
the injection current. On the other hand, in PT -symmetric
systems, the extrinsic effects are strongly suppressed [62]
except for trivial corrections such as smearing resonant
behavior [see Eq. (80)]. Thus, we expect that the enhance-
ment of the gyration current in topological materials is
robust to the admixture with other contributions, in contrast
to the intrinsic CP photocurrent in T -symmetric systems.

VI. SUMMARY AND DISCUSSION

In this work, we systematically investigated the
second-order photocurrent and uncovered new types of
photocurrents—the intrinsic Fermi surface effect and the

FIG. 7. Frequency dependence of the gyration current coef-
ficient when changing the molecular field hAF. The other
parameters are the same as Eq. (151). The inset plots the
maximum magnitude of κxzgyro as a function of hAF.

FIG. 8. (a) Energy dispersion in the vicinity of ðkx; kyÞ ¼ ðπ; π=2Þ in the slightly gapped regime (hAF ¼ 0.85). The red-colored region
represents the momentum where interband transitions are allowed with frequency ℏΩ ¼ 120 ðmeVÞ and scattering rate γ ¼ 10 ðmeVÞ.
(b) Momentum-resolved distributions for Gxzðkx; kyÞ (upper panel), κ̄xzgyroðkx; kyÞ (middle panel), and κ̄xzgyroðkx; kyÞ þ κ̄xzgyroðkx; π − kyÞ
(lower panel).
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gyration current. Our formalism is based on the well-
established perturbative calculations [12–14], and it
presents formulas unifying the PT -symmetric parity-
violating system (magnetic parity violation) and the
T -symmetric parity-violating one. We showed that T
and PT symmetries play contrasting roles in the classi-
fication of photocurrent responses. The symmetry deter-
mines whether linearly polarized light or circularly
polarized light generates the photocurrent via the injection
current, the Fermi surface effects, or the shift current. Our
formulation also identifies the geometric quantities that
give rise to these photocurrent responses. Making use of the
results of classification, we found the chiral photocurrent
arising from the gyration current in the PT -symmetric
systems, which is the counterpart of the shift current in the
T -symmetric systems [8,11,14].
We also elucidated that the gyration current is enhanced

in topological systems. On the basis of the minimal model
for the PT -symmetric and topologically nontrivial anti-
ferromagnet CuMnAs, we derived analytical expressions
revealing a divergent gyration current in the low-frequency
regime. In particular, tilting of the gapless Dirac dispersion
is an essential ingredient for the enhanced gyration current.
As shown in Fig. 7, massive Dirac systems may also cause
an enhanced gyration current due to a relatively large joint
density of states and quantum geometric quantity. We
expect that experimental detection of the enhanced chiral
photocurrent is promising because the gyration current is
not admixed with other chiral photocurrents (see Table I)
and because extrinsic contributions from the impurity
scattering [78,79] play a minor role in generating the
photocurrent in PT -symmetric systems.
More elaborate investigations of the gyration current in

various topological materials are desirable, although this
work focuses on two-dimensional Dirac electron systems.
Recent studies have clarified that some magnetic space
groups can ensure the multifold degeneracy at high-
symmetry points in the Brillouin zone [72]. For instance,
Cu3TeO6 undergoes parity-violating magnetic order and
may possess sixfold degenerate electrons at the Brillouin
zone corner [72,107–109]. Although this compound is
insulating and the degenerate states do not lie near the
Fermi energy, related compounds may be potential candi-
dates to realize a giant gyration current response.
Alternatively, the photocurrent may be enhanced by a
large joint density of states. Some of the magnetoelectric
materials show low-dimensional behavior and thus
may be potential candidates for a good photocurrent
generator [97,110].
This work completes all the photocurrent responses of

the band electrons. On the other hand, the electron
correlation effect may enrich the photocurrent phenomena
[111]. Indeed, it has been shown that the strong correlation
influences the frequency dependence of photocurrent
responses [75]. Furthermore, it has been proposed that

the photocurrent can be generated through the bosonic
excitations such as electromagnons and excitons in corre-
lated systems [112–114]. Thus, the interplay of correlation
effects and topological electronic structures in the photo-
current generation needs to be clarified in future works.
Moreover, relaxation of photoexcited electrons should be
elaborated for a more accurate description of photocurrent
responses. Throughout this work, we take into account the
relaxation within the relaxation-time approximation as in
Eq. (80). Although this assumption may be reasonable in
the optical regime where the inverse relaxation time τ−1 is
much smaller than the frequency of light, Ω ≫ τ−1, the
enhanced photocurrent response we are interested in may
be in the low-frequency regime where Ω ≪ τ−1. Thus, we
still need to clarify how the photocurrent responses are
influenced by the self-energy and vertex corrections arising
from impurity scatterings. However, the gyration current
may not be significantly changed by scattering because its
counterpart, the shift current, is quite invulnerable to the
impurities [115], and the extrinsic contributions beyond the
relaxation-time approximation are strongly suppressed by
PT symmetry [62]. Recent experiments have used ultrafast
spectrometry and successfully observed the dynamics of
the photoelectrons [31,69,114,116–119]. These previous
experiments worked on the photocurrent measurements in
the T -symmetric systems. On the other hand, because the
antiferromagnetic magnon excitations are present, the time-
resolved dynamics of photoelectrons in the PT -symmetric
magnetic systems may show relaxation distinct from the
nonmagnetic systems. The relaxation process of the photo-
induced electrons may be an important key to realize high-
performance photoelectric devices.
Interest in the gyration current extends to a vast range of

condensed matter physics, such as optoelectronic, multi-
ferroics, spintronics, and topological science. In particular,
the gyration current coefficient is sensitive to parity-
violating magnetic order. Thus, it may enable us to observe
domain states via optical probes and to realize a magneti-
cally switchable photocurrent response [45]. We expect that
further studies of the gyration current will be beneficial not
only for fundamental research clarifying magnetic com-
pounds but also for applications to multifunctional devices
where the light, spins, and electrons are closely correlated
with each other.
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Note added.—Recently, a theoretical work on the same
topic was conducted by J. Ahn and N. Nagaosa [120]. They
also successfully showed the T =PT correspondence and
proposed the enhanced photocurrent responses in topo-
logical materials. Their results are consistent with ours,
although each work has been done in a completely
independent way. We sincerely thank J. Ahn and N.
Nagaosa for sending the manuscript before submission
and agreeing to the simultaneous submission of our works.

APPENDIX A: SYMMETRY CONSIDERATIONS
OF T AND PT SYMMETRIES

In this Appendix, we introduce basic transformation
properties under the antiunitary operations such as T and
PT symmetries. Let us consider an antiunitary symmetry
described by an operator a ¼ θg, where θ and g are the
time-reversal operation and the unitary symmetry opera-
tion, respectively. In particular, we take the space-inversion
operation g ¼ I for PT symmetry and g ¼ 1 for T
symmetry. Bloch states at momentum k are related to
those at −gk. The transformation property is given by

ajuaðkÞi ¼ jubð−gkÞiwbaðkÞ; ðA1Þ

where the matrix ŵðkÞ is unitary. In the following, we
describe the basic transformation properties in spinless and
spinful systems.

1. Spinless system

In the spinless system, the time-reversal operation is
expressed by the complex conjugation operator, θ ¼ K.
Then, the unitary matrix can be taken as the scalar
ŵðkÞ¼1 when g2¼1. Owing to the equation θ2¼K2¼1,
we obtain the formula

huaðkÞjubðkÞi ¼ hθubðkÞjθuaðkÞi
¼ hubð−kÞjuað−kÞi: ðA2Þ

Thus, T symmetry gives a constraint on the Berry
connection,

ξμabðkÞ ¼ ξμbað−kÞ: ðA3Þ
Similarly, we obtain

ξμabðkÞ ¼ −ξμbaðkÞ; ðA4Þ
for PT symmetry.
In general, ŵðkÞ can take an arbitrary phase factor due to

the U(1)-gauge degree of freedom. For instance, for a gauge
θjuaðkÞi ¼ juað−kÞi exp ½−iϕaðkÞ�, the Berry connection
satisfies the relation

ξμabðkÞ ¼ ξμbað−kÞe−i½ϕaðkÞ−ϕbðkÞ�: ðA5Þ

The formulas in Eqs. (67) and (99), however, are irrelevant
to the choice of the matrix ŵðkÞ. This is consistent with the
fact that the formulas obtained for photocurrent responses
are U(1)-gauge invariant.

2. Spinful system

In the presence of the spin degree of freedom, the matrix
ŵðkÞ is at least two dimensional and has no diagonal
component, according to the Kramers theorem. When
g2 ¼ 1, the unitary matrix ŵðkÞ is written as

ŵðkÞ ¼
�

0 e−iθk

e−iϕk 0

�
; ðA6Þ

where θk and ϕk denote real-valued functions of k. Owing
to the Kramers theorem,

−juaðkÞi ¼ a2juaðkÞi ¼ a½jubð−gkÞiwbaðkÞ� ðA7Þ

¼ jucðkÞiw�
baðkÞwcbð−gkÞ ðA8Þ

leads to the relation

θðkÞ ¼ ϕð−gkÞ þ π: ðA9Þ

Therefore, we obtain the unitary matrix

ŵðkÞ ¼
�

0 e−iθðkÞ

−e−iθð−gkÞ 0

�
; ðA10Þ

which describes the transformation property between
doubly degenerate states. In particular, when we take the
gauge so as to satisfy θðkÞ≡ 0, the corresponding unitary
matrix represents the well-known transformation property
in the Kramers doublet,

aju�ðkÞi ¼ �ju∓ð−gkÞi; ðA11Þ

where the subscript � denotes the Kramers degree of
freedom. Although the discussion can be generalized to
other antiunitary operations satisfying g2 ≠ 1, the above
discussion sufficiently describes T and PT symmetries.
Here, we proceed to analyze PT symmetry. For PT

symmetry, k ¼ −gk, and thus, we have the Kramers
doublet labeled by σ ¼ � as juaσðkÞi, where a denotes
the band index. Below, we abbreviate the momentum
dependence, unless explicitly stated otherwise. The
Kramers doublets are related to each other by Eq. (A1),
and the unitary matrix ŵðkÞ is

ŵðkÞ ¼ iσye−iθ: ðA12Þ

HIKARU WATANABE and YOUICHI YANASE PHYS. REV. X 11, 011001 (2021)

011001-22



Note that we take into account a band-independent phase
factor θ.
First, we show the proof of the formula

Aμ
abðkÞAν

baðkÞ ¼ Aμ
b̄ ā
ðkÞAν

ā b̄
ðkÞ; ðA13Þ

where Aμ
ab is the interband component of the U(2) Berry

connection in Eq. (124) and ðs; s̄Þ labels a Kramers pair.
The transformation property of the Berry connection is
obtained as

ξμaσ;bτ ¼ ihuaσj∂μubτi ðA14Þ

¼ ihað∂μubτÞjaðuaσÞi ðA15Þ

¼ i½∂μðjubτ0 iwτ0τÞ��juaσ0 iwσ0σ ðA16Þ

¼ iðh∂μubτ0 juaσ0 i þ i∂μθhubτ0 juaσ0 iÞ
× ðiσyÞ†ττ0 ðiσyÞσ0σ ðA17Þ

¼ ð−ξμbτ0;aσ0 − ∂μθδabδτ0σ0 ÞðiσyÞ†ττ0 ðiσyÞσ0σ: ðA18Þ

Taking different band indices a ≠ b and applying
Eq. (A18) to the product Aμ

abA
ν
ba, we obtain Eq. (A13).

Similarly, we can derive the formula

½DμðkÞAνðkÞ�abAλ
baðkÞ ¼ ½DμðkÞAνðkÞ�baAλ

ā b̄
ðkÞ; ðA19Þ

in which Dμ indicates the U(2)-gauge-covariant derivative
shown in Eq. (B1). For the band indices satisfying
ϵka ≠ ϵkb, the covariant derivative of the Berry connection
is transformed as

½DμðkÞξνðkÞ�aσ;bτ
¼ ∂μξ

ν
aσ;bτ − iðξμaσ;aσ − ξμbτ;bτÞξνaσ;bτ

− iðξμaσ;aσ̄ξνaσ̄;bτ − ξνaσ;bτ̄ξ
μ
bτ̄;bτÞ ðA20Þ

¼ ½−∂μξ
ν
bτ̄0;aσ0 − iðξμaσ̄;aσ̄ þ ∂μθ − ξμbτ̄;bτ̄ − ∂μθÞξνbτ0;aσ0

− iξμaσ̄0;aσ0ξ
ν
bτ0;aσ̄0 þ iξνbτ̄0;aσ0ξ

μ
bτ0;bτ̄0 � × ðiσyÞ†ττ0 ðiσyÞσ0σ

ðA21Þ

¼ −½Dμξ
ν�bτ0;aσ0 ðiσyÞ†ττ0 ðiσyÞσ0σ: ðA22Þ

Combining this equation with Eq. (A18), we obtain
Eq. (A19). This equation is essential for the derivation
of the gyration current formula in the main text. Note
that a similar analysis can be conducted in the case of
T -symmetric spinful systems.

APPENDIX B: U(2)-GAUGE DESCRIPTION
OF PHOTOCURRENT RESPONSES
IN PT -SYMMETRIC SYSTEMS

In this section, we show the derivation of the photo-
current formulas in the PT -symmetric spinful systems.
Previous theoretical studies considered nondegenerate
Bloch states and characterized intraband effects by the
diagonal component of the Bloch basis [13,14]. This
assumption is reasonable in the spinless system or in the
PT -violated spinful system. Indeed, much attention has
been given to the P-broken nonmagnetic systems, and
hence, the U(1)-covariant formulation is sufficient to obtain
gauge-invariant expressions. On the other hand, the PT -
symmetric and spinful systems have the Kramers degen-
eracy in the band structure at each k. Thus, we have to
carefully proceed to the perturbative calculations using the
U(2)-covariant derivative as follows.
Using the U(2) intraband position operator in Eq. (125),

theU(2)-gauge-covariant derivative is defined byDμ¼−irμi .
The derivative acts on the physical quantities in the Bloch
representation Oab as

½DμO�ab ¼ ∂μOab − i

�X
c

αμacOca −
X
c

Oacα
μ
cb

�
: ðB1Þ

We can check that ½DμO�ab is U(2) covariant by taking the U
(2)-gauge transformation juaðkÞi → jubðkÞiUba, where the
summation of the band index b is taken over the Kramers
pair, ϵkb ¼ ϵka. The U(1) quantum metric and Berry curva-
ture are defined by

gμνa ¼ 1

2

X
σ

X
b

ðAμ
aσ;bA

ν
b;aσ þAν

aσ;bA
μ
b;aσÞ; ðB2Þ

Ωμ
a ¼ i

2

X
σ

X
b

ϵμνλðAν
aσ;bA

λ
b;aσ −Aλ

aσ;bA
ν
b;aσÞ; ðB3Þ

where we explicitly show the Kramers degree of freedom σ
for the ath band. Accordingly, we define the band-resolved
U(1) quantum metric and Berry curvature as

gμνab ¼
1

2
ðAμ

abA
ν
ba þAν

abA
μ
baÞ; ðB4Þ

Ωμν
ab ¼ iðAμ

abA
ν
ba −Aν

abA
μ
baÞ: ðB5Þ

Following the U(2)-covariant decomposition of the
position operator, we divide the nonlinear optical conduc-
tivity into four parts [see Eq. (24)] as
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σμ;νλii ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a

− vμaadωaad
ω2
aa∂ν∂λfðϵkaÞ þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�; ðB6Þ

σμ;νλei ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a;b

− ivμabd
ω
bad

ω2
aaAν

ba∂λfba þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�; ðB7Þ

σμ;νλie ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a;b

ivμabd
ω
ba

�
∂νðdω2

bafabA
λ
baÞ − i

�X
c

ανbcd
ω2
caAλ

cafac −
X
c

ανcad
ω2

bcA
λ
bcfcb

��

þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�; ðB8Þ

σμ;νλee ðω;ω1;ω2Þ ¼
q3

2

Z
dk

ð2πÞd
X
a;b

vμabd
ω
ba

�X
c

dω2
caAν

bcA
λ
cafac −

X
c

dω2

bcA
ν
caAλ

bcfcb

�
þ ½ðν;ω1Þ ↔ ðλ;ω2Þ�: ðB9Þ

The component σii has the same form as that in the U(1)-
covariant representation, whereas the remaining compo-
nents are modified. Thus, we investigate the photocurrent
responses arising from the components other than σii in the
following subsections. Note, again, that we consider
systems preserving PT symmetry.

1. Berry curvature dipole term

Under the condition Eq. (29), the component σei is
recast as

σμ;νλei ¼ q3

2ℏ2Ω

Z
dk

ð2πÞd
X
a;b

Aμ
abA

ν
ba∂λfbaþ½ðν;−ΩÞ↔ðλ;ΩÞ�

ðB10Þ

¼ −iq3

2ℏ2Ω

Z
dk

ð2πÞd
X
a≠b

Ωμν
ab∂λfðϵkaÞþ½ðν;−ΩÞ↔ðλ;ΩÞ�;

ðB11Þ

Applying Eq. (A13) to Eq. (B11) and using the relation
ϵka ¼ ϵkā, we find that the photocurrent σei vanishes. Thus,
the Berry curvature dipole term is forbidden due to PT
symmetry as in the spinless system.

2. Injection current

We consider part of the σee term derived from the diagonal
component of the velocity operator vμab in Eq. (B9). The
corresponding contribution σee;d is given by

σμ;νλee;dðω;ω1;ω2Þ

¼ q3

2ℏω

Z
dk

ð2πÞd
X
a;b

Δμ
abA

ν
abA

λ
bafabðdω2

baþdω1

abÞ: ðB12Þ

Owing to the pole at ω ¼ 0, it is necessary to pick up the
terms in the integrand up to Oðω1Þ. Following the parallel
discussion of Sec. III C,

σμ;νλee;dðω;ω1;ω2Þ

¼ q3

2ℏω

Z
dk

ð2πÞd
X
a;b

½−2iπΔμ
abA

ν
abA

λ
bafabδðℏω2 − ϵbaÞ

þAν
abA

λ
bafabð∂μd

ω1

baÞjω1¼−ω2
ðω1 þ ω2Þ�

þO½ðω1 þ ω2Þ2�: ðB13Þ

Under the photocurrent condition [Eq. (29)], the first
term in Eq. (B13) is obtained as

σμ;νλinj ¼ lim
ω→0

−iπq3

ℏω

Z
dk

ð2πÞd
X
a;b

Δμ
abA

ν
abA

λ
bafabδðℏΩ− ϵbaÞ:

ðB14Þ

Using Eq. (A13), the expression is recast as

σμ;νλinj ðPT Þ

¼ lim
ω→0

−iπq3

2ℏω

Z
dk

ð2πÞd
×
X
a;b

Δμ
abðAν

abA
λ
baþAλ

abA
ν
baÞfabδðℏΩ− ϵbaÞ ðB15Þ

¼ lim
ω→0

−iπq3

ℏω

Z
dk

ð2πÞd
X
a≠b

Δμ
abg

νλ
abfabδðℏΩ− ϵbaÞ; ðB16Þ

which is symmetric under the permutation ν ↔ λ. This
expression corresponds to the formula for the magnetic
injection current [Eq. (74)].
The LP photoconductivity ηintI arising from the second

term in Eq. (B13) is obtained as
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ημ;νλintI ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a;b

gνλabfab∂μdΩba ðB17Þ

¼ q3

2ℏ

Z
dk

ð2πÞd
X
a;b

gνλabfab∂μP
1

ℏΩ − ϵba
; ðB18Þ

in which we use Eq. (A13) and the PT -ensured Kramers
theorem. This contribution will be combined with the
remaining terms around σee, as shown in the next subsection.

3. Gyration current

Here, we calculate the remaining terms, that is, σie and
σee;o. As for the component σie, we use Eq. (29) and arrange
the integrand as

ivμabd
0
ba

�
∂νðdΩbafabAλ

baÞ

− i

�X
c

ανbcd
Ω
caAλ

cafac−
X
c

ανcadΩbcA
λ
bcfcb

��
ðB19Þ

¼−Aμ
ab

�
∂νðdΩbafabAλ

baÞ

− i

�X
c

ανbcd
Ω
caAλ

cafac−
X
c

ανcadΩbcA
λ
bcfcb

��
ðB20Þ

¼ dΩbafabAba½DνAμ�ab − ∂νðdΩbafabAμ
abA

λ
baÞ: ðB21Þ

Discarding the total derivative as a surface term, the σie
term is simplified as

σμ;νλie ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

− ½DνAμ�abAλ
bafbad

Ω
ba

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�: ðB22Þ

The component σee;o is written as

σμ;νλee;o ¼ q3

2

Z
dk

ð2πÞd
X
a≠b

vμabd
0
ba

×

�X
c

dΩcaAν
bcA

λ
cafac −

X
c

dΩbcA
ν
caAλ

bcfcb

�

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�: ðB23Þ

Although the summation of the band indices includes the
Kramers pair ða; bÞ ¼ ða; āÞ, the matrix element of the
velocity operator satisfies vμaā ¼ 0 by taking the orthogonal
Bloch states, juaðkÞi and juāðkÞi. Owing to the adiabatic
parameter in d0aā ¼ ðþ0Þ−1, we have vμaād0aā ¼ 0. Thus, the
integrand in Eq. (B23) is recast as

X
a≠b

vμabd
0
ba

�X
c

dΩcaAν
bcA

λ
cafac −

X
c

dΩbcA
ν
caAλ

bcfcb

�

ðB24Þ

¼
X
a≠b≠c

iAμ
abðdΩcaAν

bcA
λ
cafac − dΩbcA

ν
caAλ

bcfcbÞ ðB25Þ

¼
X
a≠c

idΩcaAλ
cafac½Aμ;Aν�ac ðB26Þ

¼
X
a≠c

dΩcaAλ
cafacð½DμAν�ac − ½DνAμ�acÞ; ðB27Þ

where we used a formula for the U(2)-covariant derivative

½DμAν�ab − ½DνAμ�ab ¼ i½Aμ;Aν�ab: ðB28Þ

As a result, we obtain

σμ;νλee;o ¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

ð½DμAν�ab − ½DνAμ�abÞAλ
bafabd

Ω
ba

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�: ðB29Þ

Summing Eqs. (B22) and (B29), we obtain the photo-
current formula

σμ;νλieþee ¼
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

dΩbafab½DμAν�abAλ
ba

þ ½ðν;−ΩÞ ↔ ðλ;ΩÞ�; ðB30Þ

where bothAλ
ba and ½DμAν�ab are U(2) covariant and hence

the overall expression is U(2) invariant. Making use of
Eq. (A19), we obtain the final expression as

σμ;νλeeþieðPT Þ ¼ ημ;νλintII −
i
2
ϵνλτκ

μτ
gyro; ðB31Þ

with the photoconductivity coefficients

ημ;νλintII ¼
q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fabP
1

ℏΩ − ϵba

× Reð½DμAν�abAλ
ba þ ½DμAλ�abAν

baÞ ðB32Þ

¼ q3

2ℏ

Z
dk

ð2πÞd
X
a≠b

fabP
1

ℏΩ − ϵba
∂μgνλab; ðB33Þ

for the reactive part, and
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κμνgyro ¼ πq3

ℏ

Z
dk

ð2πÞd
X
a≠b

fabδðℏΩ − ϵbaÞ

× ϵνλτReð½DμAλ�abAτ
baÞ; ðB34Þ

for the absorptive part, that is, the gyration current.
Combining Eq. (B18) with Eq. (B31), we obtain the
intrinsic Fermi surface term

ημ;νλIFS ¼ ηintI þ ημ;νλintII ðB35Þ

¼ q3

ℏ

Z
dk

ð2πÞd
X
a≠b

gνλab
ϵab

ℏ2Ω2 − ϵ2ab
∂μfðϵkaÞ: ðB36Þ

We note that the formula is determined by the band-
resolved quantum metric gνλab defined by Eq. (B4).

APPENDIX C: CLASSIFICATION OF
PHOTOCURRENT RESPONSE

BASED ON MAGNETIC
POINT GROUP

This section lists the noncentrosymmetric magnetic point
groups preserving T or PT symmetry. The 122 magnetic
point groups are classified into three categories: 32 T -
symmetric point groups (gray group), 32 point groups
whose symmetry operations are not relevant to the time-
reversal operation (black group), and the other 58 (black-
white group, BW group). There are 21 noncentrosymmetric
and T -symmetric (PT -symmetric) point groups in the gray
(BW) group (see Table IV).
For instance, let us consider the noncentrosymmetric

gray group. The gray group G is described by

G ¼ H þ θH; ðC1Þ

with a noncentrosymmetric black group H. Among the 21
groups, 20 groups other than the case with H ¼ m3̄mðOÞ
are piezoelectric. On the other hand, 18 groups other than
the cases H ¼ 6̄ðC3hÞ; 6̄m2ðD3hÞ; 4̄3mðTdÞ are gyrotropic.
Similarly, we can identity the piezoelectric groups and
gyrotropic groups included in the PT -symmetric BW
group by replacing θ with θI in Eq. (C1).
As we mentioned in the main text, piezoelectric groups

allow the LP photocurrent while gyrotropic groups allow
the CP photocurrent. Thus, by referring to Tables I and IV,
we can systematically identify which photocurrent is
allowed in a given noncentrosymmetric system. We also
show candidate materials in Table IV. Many other candi-
dates for the PT -symmetric compounds can be found in
Refs. [36,43,44].

TABLE IV. List of the photocurrent responses allowed in the
T -symmetric point groups (gray group) and PT -symmetric BW
point groups. MPG denotes the magnetic point group, and H is
the maximal unitary subgroup of MPG. The symbols ↕ and ↺
denote photocurrents induced by linearly polarized and circularly
polarized light, respectively. The allowed response is indicated by
✓. The low CM shows candidate materials, where (ML) or (BL)
means monolayer or bilayer. As for the point groups, except for
the cubic systems, some of the symbols ✓ are enclosed in
parentheses to indicate that the corresponding responses are not
allowed in two-dimensional systems. Classification of the point
groups with H ¼ C2; C2v is further divided according to the
relation between the incident direction of light (k) and the
primary axis of the point group.

MPG H ↕ ↺ CM

(T -symmetric groups)
110 C1 ✓ ✓
210 C2kk (✓) (✓)

C2⊥k ✓ ✓
m10 Cs ✓ ✓ WTe2ðBLÞ
22210 D2 (✓) (✓)
mm210 C2vkk (✓) (✓) TaIrTe4, MoTe2 (Td), WP2

C2v⊥k ✓ ✓
410 C4 (✓) (✓)
4̄10 S4 (✓) (✓)
42210 D4 (✓) (✓) ðTaSe4Þ2I
4mm10 C4v (✓) (✓) BiTeI, TaP, TaAs, NbP
4̄2m10 D2d (✓) (✓)
310 C3 ✓ (✓)
3m10 C3v ✓ (✓) Bi2Se3 (001), LiOsO3

3210 D3 ✓ (✓) Bi
610 C6 (✓) (✓)
6̄10 C3h (✓)
62210 D6 (✓) (✓)
6mm10 C6v (✓) (✓)
6̄m210 D3h ✓ MoS2ðMLÞ
2310 T ✓ ✓ RhSi
4̄3m10 Td ✓ Ce3Bi4ðPt;PdÞ3
43210 O ✓ Li2BPt3
(PT -symmetric groups)
1̄0 C1 ✓ ✓ CaMn2Bi2
20=m Cs ✓ ✓ SrMn2As2
2=m0 C2kk (✓) (✓) Na2RuO4

C2⊥k ✓ ✓
m0m0m0 D2 (✓) (✓) LiMnPO4

mmm0 C2vkk (✓) (✓) CuMnAs, Mn2Au
C2v⊥k ✓ ✓

4=m0 C4 (✓) (✓)
40=m0 S4 (✓) (✓)
4=m0m0m0 D4 (✓) (✓) Fe2TeO6

4=m0mm C4v (✓) (✓)
40=m0m0m D2d (✓) (✓) BaMn2As2, EuMnBi2
3̄0 C3 ✓ (✓)
3̄0m C3v ✓ (✓) MnPS3ðMLÞ
3̄0m0 D3 ✓ (✓) Cr2O3, MnBi2Te4ðBLÞ
6=m0 C6 (✓) (✓)
60=m C3h (✓)

(Table continued)
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TABLE IV. (Continued)

MPG H ↕ ↺ CM

6=m0m0m0 D6 (✓) (✓)
6=m0mm C6v (✓) (✓)
60=mmm0 D3h ✓

m03̄0 T ✓ ✓ Cu3TeO6
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