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We explore field and temperature scaling of magnetoresistance in underdoped (x ¼ 0, x ¼ 0.19) and
optimally doped (x ¼ 0.31) samples of the high-temperature superconductor BaFe2ðAs1−xPxÞ2. In all
cases, the magnetoresistance isH linear at high fields. We demonstrate that the data can be explained by an
orbital model in the presence of strongly anisotropic quasiparticle spectra and scattering time due to
antiferromagnetism. In optimally doped samples, the magnetoresistance is controlled by the properties of
small regions of the Fermi surface called “hot spots,” where antiferromagnetic excitations induce a large
quasiparticle scattering rate. The anisotropic scattering rate results in hyperbolic H=T magnetoresistance
scaling, which competes with the more conventional Kohler scaling. We argue that these results
constitute a coherent picture of magnetotransport in BaFe2ðAs1−xPxÞ2, which links the origin of
H-linear resistivity to antiferromagnetic hot spots. Implications for the T-linear resistivity at zero field
are discussed.
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I. INTRODUCTION

The electrical resistivity of certain strange metals has
been found to vary linearly with temperature down to low
temperature and seems to cross intrinsic energy scales
(e.g., the Debye temperature) with impunity; these mate-
rials are also characterized by notably rapid quasiparticle
scattering [1–5]. It is thought that these phenomena stem
from quantum critical physics [6], though an agreed upon
explanation of transport in quantum critical metals has still
not been established. In recent years, the magnetoresist-
ance (MR) of quantum critical metals has become a
subject of intense study, providing another avenue to

probe their properties. In particular, in typical metals,
the MR varies quadratically with field over an extended
field range and is determined by a combination of
temperature-dependent and temperature-independent con-
tributions to the resistivity [7]. By contrast, in many
quantum critical metals, the MR has been observed to
vary linearly with magnetic field over an extended field
range [8–17] and to scale only with the temperature-
dependent resistivity, suggesting a nontrivial connection
between magnetic field (H) and temperature (T) in such
materials, but the origin of this behavior is not well
understood.
To elucidate the origin of magnetoresistance and

scaling, it is useful to partition the resistivity into two
contributions—a temperature-independent contribution ρ0,
typically arising from scattering from defects, and a
temperature-dependent contribution ρt that may arise from
charge carrier interactions with phonons, quasiparticle
excitations, order parameter fluctuations, and so on. In
strange metals, ρt ≈ αkBT, with α a phenomenological
constant of proportionality [1–5].
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It has been found that a “hyperbolic” magnetoresistance
scaling form phenomenologically captures the interplay of
field and temperature in strange metals:

ρðT;HÞ − ρ0
αkBT

∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

ηH
αkBT

�
2

s

; ð1Þ

where ρðT;HÞ is the field-dependent resistivity at temper-
ature T and η a parameter that plays a similar role for the
field dependence as α does for the temperature dependence
[8]. Equation (1) was motivated by measurements of
BaFe2ðAs1−xPxÞ2 near its antiferromagnetic (AFM) quan-
tum critical point. Since then, a growing number of putative
quantum critical metals have shown qualitatively similar
behavior [8–17], albeit with notable deviations in the
quantities α and η. The observation of H-linear magneto-
resistance, as suggested by Eq. (1), is unusual but not
unprecedented. There are multiple possible causes of H-
linear MR, including the presence of Dirac quasiparticles
[18,19], sample heterogeneity [20,21], guiding center dif-
fusion in a smooth random potential [22], fluctuations from
spin density waves [23,24], or singular regions of the Fermi
surface where the Fermi velocity changes discontinuously
[7,25]. However, Eq. (1) places further constraints on the
origin of the MR, as it conflicts with the conventional
Kohler’s rule for classical magnetoresistance [7],

ρðHÞ − ρð0Þ
ρð0Þ ¼ f

�
H
ρð0Þ

�
; ð2Þ

where f is a smooth and usually positive function. Kohler’s
rule is satisfied in metals as long as the scattering rate
changes uniformly when, for example, the temperature or
disorder level is varied. Even if the scattering rate is
anisotropic in momentum space, one expects Kohler’s rule
to be satisfied as long as the “pattern” of anisotropy is
unchanged [26]. This constraint of Kohler’s scaling is
reflected in the denominator of Eq. (2), which takes into
account both temperature-independent and temperature-
dependent scattering contributions, ρð0Þ ¼ ρ0 þ ρt. By
contrast, in Eq. (1), the disorder scattering is subtracted,
and the quantum critical MR scales only with the T-linear
component of the resistivity (ρt ¼ αkBT), in apparent
violation of Kohler’s rule. A realistic theory of magneto-
transport in quantum critical metals must simultaneously
capture the H-linear MR and the hyperbolic scaling with
temperature dictated by Eq. (1). In this paper, we describe
such a theory and show that it captures the salient features of
experimentally measured MR in BaFe2ðAs1−xPxÞ2.
Our paper is outlined as follows. First, we describe the

theoretical models that we use, which were developed in
Refs. [24,25]. These models are based on orbital motion in
the presence of anisotropic quasiparticle spectra (turning
points) or scattering time (hot spots) due to AFM order and
fluctuations, respectively, in BaFe2ðAs1−xPxÞ2. Second, we

demonstrate the validity of the model for the parent com-
pound BaFe2As2. Third, we explore BaFe2ðAs1−xPxÞ2 with
x ¼ 0.19 in the antiferromagnetic regime, and discover that
the anisotropic scattering rate at this composition leads to a
breakdown of Kohler’s rule and onset of hyperbolic scaling
similar to that described by Eq. (1). Finally, in the quantum
critical sample (x ¼ 0.31), we demonstrate that the model
captures theH-linear MR and hyperbolicH=T scaling from
first principles. Moreover, we elucidate the role of disorder
scattering in Eq. (1) by systematically irradiating samples
with alpha particles, andwe find that the scaling persists with
coefficients that depend on the disorder level, in agreement
with the predictions of the hot-spot model. These findings
present a coherent picture of magnetotransport in both the
antiferromagnetically ordered and quantum critical regimes
of BaFe2ðAs1−xPxÞ2. We comment on possible connections
to MR in other iron pnictides and cuprate high-temperature
superconductors in the discussion. The implications of these
findings for the zero-field T-linear resistivity are left to the
discussion.

II. THEORETICAL MODEL

The models for orbital magnetoresistance in the presence
of anisotropic quasiparticle spectra or scattering time due to
antiferromagnetism were developed in Refs. [24,25]. The
Fermi surface of BaFe2ðAs1−xPxÞ2 is composed of quasi-
cylindrical electron and hole Fermi surfaces with imperfect
nesting [27–33]. In the AFM ordered phase (x < 0.31), the
Fermi surface is reconstructed, and a gap opens at points on
the Fermi surface nested by the AFM ordering vector due to
exchange coupling between conduction electrons and AFM
fluctuations. As a quasiparticle undergoes orbital motion in
a magnetic field, the Fermi velocity is rapidly reversed at
these “turning points” due to the AFM coupling between
the electronlike and holelike pockets [25]. This mechanism
produces an H2 variation of the MR at low fields, which
crosses over to linear variation at higher fields as the
number of quasiparticles pushed through the turning point
by the Lorentz force linearly increases with field [7,25].
This contribution coexists with the conventional MR of the
rest of the Fermi surface, which is expected to be much
smaller than the turning-point MR; we will show that this is
consistent with the experimental data, and we will neglect
the conventional MR contribution in the present study.
Here, we summarize the resulting magnetoresistance from
the turning point (see Supplemental Material [34]):

ρtpðHÞ − ρð0Þ ¼ rtpBðH=HtpÞ; ð3Þ

with

Htp ¼
2cΔtp

eτtpðvhve sin θtpÞ
ð4Þ

(in CGS units) and
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rtp ≈
4ðvh;x − ve;xÞ2τtpΔtp

π2e2ℏ2τ2coldsvhve sin θtpðnhmh
þ ne

me
Þ2 : ð5Þ

Here, Δtp is the size of the AFM gap, and τtp and τcold are
the quasiparticle scattering rates in the vicinity of the
turning point and in the background; me;h are effective
masses, which are approximately the same for the hole and
electron bands [27–31]; ne;h are the band carrier densities;
and s is the c-axis lattice parameter. Note that τtp need not
be equal to τcold because the scattering rate can be
anisotropic due to scattering on AFM fluctuations. Here,
vh;e are the Fermi velocities on the hole and electron band,
and θtp is the nesting angle. The dimensionless function
BðhÞ computed in Ref. [25] has asymptotics BðhÞ ≃
ð3π=16Þh2 for h ≪ 1 and BðhÞ ≃ h for h ≫ 1. This
function is plotted in Fig. 1, and its exact shape is presented
in the Supplemental Material [34]. Note that this contri-
bution to the MR coexists with the conventional contribu-
tion from the rest of the Fermi surface, but it is enhanced by
a factor of ϵf=Δtp due to the large curvature at the turning
points [25].
When the AFM phase is suppressed to zero temperature

by P-substitution [as is the case for x ¼ 0.31
BaFe2ðAs1−xPxÞ2] [35–37], quantum critical spin fluctua-
tions produce strong quasiparticle scattering, and the
turning points evolve into hot spots [24,38]. The concept

of hot spots was first introduced in the physics of cuprate
high-temperature superconductors [39,40]. In a magnetic
field, the effect of hot spots on orbital magnetoresistance is
similar to that of the turning points [23,24],

ρhsðHÞ − ρð0Þ ¼ rhsGðH=HhsÞ: ð6Þ

The parameters in the hot-spot model, rhs and Hhs, are
determined by critical spin fluctuations rather than an AFM
gap. Both of these parameters scale in the same way with
temperature and background scattering time,

Hhs ¼ ΓH
T
ffiffiffiffiffiffiffiffiffi
τcold

p ; rhs ¼ Γr
T
ffiffiffiffiffiffiffiffiffi
τcold

p : ð7Þ

The coefficients ΓH and Γr depend on the spin-susceptibility
and electronic-band parameters (see Supplemental Material
[34] for complete expressions), and GðhÞ is a dimensionless
function with a slightly different exact form compared to the
turning-point model in Eq. (3) but qualitatively similar
behavior (Fig. 1). Note that, unlike in the turning-point
model, the characteristic field scaleHhs is determined by the
strength of scattering at the hot spot and its region of
influence as compared to the background scattering rate,
τcold. Thus, changes to this rate are expected to affect the
characteristic field scale in the critical regime.

T
H
H

FIG. 1. Hot-spot and turning-point magnetoresistance scal-
ing functions and comparison with hyperbola. The MR
[Δρ ¼ ρðHÞ − ρðH ¼ 0Þ] in both the turning-point and hot-spot
models is controlled by two parameters, rtp;hs andHtp;hs (tp and hs
indicate turning-point and hot-spot, respectively). The derivations
of the parameters in terms of antiferromagnetic gap, spin-
susceptibility, and electronic-band parameters are given in the
Supplemental Material [34]. The MR from the hot spots or
turning points follows scaling functions (black lines), with exact
expressions given in the Supplemental Material [34]. The
functions are well approximated by a hyperbola Δρ=rtp;hs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðH=Htp;hsÞ
p

− 1 (red line).

(a) (b)

FIG. 2. Transport in BaFe2As2 and magnetoresistance model
based on turning points. (a) Isothermal magnetoresistance at
various temperatures. Black lines are fits to the turning-point
model given by Eq. (3). (b) Model parameters extracted from the
fits; error bars are smaller than the data points. The grey lines
show that both parameters vary with T3 with a finite offset. The
red line shows that the zero-field resistivity similarly varies
approximately with T3, suggesting that the MR parameters vary
with the scattering rate.

MAGNETORESISTANCE SCALING AND THE ORIGIN OF H- … PHYS. REV. X 10, 041062 (2020)

041062-3



Finally, the scaling form of both the turning-point MR
[Eq. (9)] and the hot spot MR [Eq. (6)] can be well
approximated by a hyperbola (Fig. 1),

BðhÞ; GðhÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
− 1: ð8Þ

This approximation will prove useful when exploring the
data in the context of hyperbolic MR scaling and its relation
to these models.

III. RESULTS

A. Parent compound BaFe2As2
The parent compound BaFe2As2 is nonsuperconducting

and has an antiferromagnetic transition at TN ≈ 135 K [41].
Its fermiology is well established [27,29,30,32], and
previous measurements have reported the H-linear MR
in this compound [42]. Here, we explore the MR of an as-
grown single crystal in the context of the turning-point
model to show that the model accurately simulates the
experimentally observed MR.
Figure 2 shows the temperature-dependent MR of

BaFe2As2. The MR is clearly H linear at high fields,
consistent with previous observations [42]. We see that
the data are well fitted by the turning-point model given
by Eq. (3). The two parameters, rtp and Htp, saturate at
low temperature and grow with increasing temperature,
mimicking the behavior of the resistivity at zero field.
This behavior suggests that the changes to the MR
coefficients rtp and Htp reflect the temperature-induced
enhancement of the scattering rate in agreement with
Eqs. (4) and (5). At low temperature, both MR param-
eters saturate, suggesting a single dominant scattering
rate that is independent of temperature, likely due to
disorder. Indeed, in Fig. 3, we observe that the MR
amplitude saturates below 10 K. The failure of Kohler’s
rule as temperature increases can be attributed to temper-
ature-induced anisotropic scattering due to spin waves

FIG. 3. Kohler’s rule in BaFe2As2. Relative magnetoresistance
versus reduced field for different temperatures. The inset shows
the temperature dependence of the relative MR at a reduced field
of μ0H=ρð0Þ ¼ 0.03 T=μΩ cm.

(a) (b) (c)

FIG. 4. Transport in BaFe2ðAs0.81P0.19Þ2 and magnetoresistance model based on turning points. (a) Resistivity shows a transition to an
AFM ordered state (TN ≈ 95 K), and superconducting state beginning at Tc ¼ 22 K with zero resistance at 15 K. Inside the AFM state,
the resistivity varies with T2, with a finite T ¼ 0 intercept. The data are fitted well by ρðH ¼ 0Þ ¼ 122.8 ½μΩ cm� þ
0.0085 ½μΩ cm=K2� × T2 (black line). (b) Magnetoresistance for different temperatures with fits to the turning-point MR model
[Eq. (3)] indicated by black lines. (c) Fit parameters of the model plotted as a function of temperature, with a best-fit line to the data
below 70 K. Here, Htp ¼ 0.098½T� þ 0.0015 ½T=K2� × T2, and rtp ¼ 0.69 ½μΩ cm� þ 0.0023 ½μΩ cm=K2� × T2.
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[43] in combination with a potentially temperature-
dependent AFM gap.
The dominant role of isotropic disorder scattering at low

temperature allows us to evaluate the plausibility of the
model parameters. Using the known values of carrier
density and effective mass (ne ¼ 1.17 × 1020 cm−3, nh ¼
1.23 × 1020 cm−3, and m ≈ 2me for both electrons and
holes) [27], the Drude estimate of the residual scattering
time is τ ¼ τcold ¼ τtp ¼ 3 × 10−13 s (ρ0 ≈ 100 μΩ cm).
The previously quoted values of Fermi velocity vary between
0.5 × 107 cm=s and 2.5 × 107 cm=s [30,32,44]. With the
Drude scattering time above, Eq. (4) gives an AFM gap of

Δ ≈ 1 meV using the low-temperature Htp ≈ 0.2 T and a
Fermi velocity of vF ≈ 2 × 107 cm=s [44]. This result is
considerably lower than theAFMgapΔ ≈ 10 meV expected
for the transition temperature of 135 K, but it is at least
consistent within an order of magnitude. Better agreement is
found if the relevant scattering time is in fact lower than the
Drude estimate (∼10−12 s),which is a possibility considering
that the Drude estimate may be inaccurate for this multiband
system. Alternatively, there may be a deeper reason for the
relatively small effective gap at the turning point. Parity
constraints cause thehybridizationbetweenhole and electron
bands to vanish at kx ¼ 0 [33]; because the turning points are
close to this axis, this process could result in a suppression of
the effective AFM gap near the turning point.
On a final note, while approximately H-linear MR can

exist over a narrow range of field in compensated metals
such as BaFe2As2 [7], this is only expected to occur close to
the high-field limit when ωcτ ¼ eHτ=mc ≈ 1. From the
above considerations, we estimate that ωcτ ¼ 1 at 40 T in
this sample. The experimental MR therefore becomes H
linear well below the conventional high-field limit.

B. Underdoped BaFe2ðAs1− xPxÞ2 with x = 0.19

Here, we examine a single crystal of BaFe2ðAs1−xPxÞ2
with x ¼ 0.19, where the antiferromagnetic Néel transition
temperature is TN ≈ 95 K. In Fig. 4, transport data are
shown for this crystal. Figure 4(a) shows that the resistivity
at zero applied field varies with T2 over a broad range of
temperature inside the AFM ordered state with a finite
intercept at T ¼ 0. At this composition, the resistivity is
likely influenced by anisotropic quasiparticle scattering
from diffuse spin fluctuations [43,45].
Figure 4(b) shows the MR inside the AFM state, which

displays H-linear behavior at high fields. Note that the
measured relative MR just below TN is a factor of 12 larger
than theMR just aboveTN , suggesting that the turning points
again provide a dominant contribution to the measured MR.
We therefore neglect the conventionalMRcontributionwhen
modeling the data. The data are well fitted by the turning-
point model given by Eq. (3), with the temperature-
dependent parameters shown in Fig. 4(c). Again, the MR
parameters follow a similar temperature dependence to that
of the zero-field resistivity, suggesting the MR parameters
vary with the scattering time. The amplitude of the MR and
characteristic field are slightly different in this composition
than in BaFe2As2. This difference can likely be attributed to
changes in the AFM gap or scattering time induced by P-
substitution. Unfortunately, the fermiology is not well
established at this composition, but assuming comparable
parameters to the parent compound, these measurements are
in the low-field limit of orbital MR (i.e., ωcτ ≪ 1).
We find that a hyperbolic MR scaling can be derived

from our model at this composition. From Fig. 4(c), we
observe that the offsets ofHtp ¼ γT2 þ γ0 and rtp ¼ βT2 þ
β0 are relatively small compared to the temperature

(a)

(b)

FIG. 5. Comparison of hyperbolic magnetoresistance scal-
ing and Kohler’s rule inside the AFM ordered state of
BaFe2ðAs0.81P0.19Þ2. (a) A simple hyperbolic scaling relation
holds, where the residual resistivity ρ0 ¼ 122 μΩ cm is first
subtracted. The dashed black line is the expression given by
Eq. (9) with β ¼ 0.0039 ½μΩ cm=K2�, α0 ¼ 0.0085 ½μΩ cm=K2�,
and γ ¼ 0.0015 ½T=K2�. (b) Kohler’s rule is violated as a function
of temperature.
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dependence over the measured range and can be neglected
(at the lowest measured temperature 20 K, β0=βT2 ≈ 0.3,
and γ0=γT2 ≈ 0.1). Plugging in ρð0Þ ¼ ρ0 þ α0T2, Htp≈
γT2, and rtp ≈ βT2 into a hyperbolic approximation of the
turning-point MR [Eq. (8)], we obtain

ρðHÞ − ρ0
T2

≈ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�
μ0H
γT2

�
2

s

þ α0 − β: ð9Þ

The applicability of this hyperbolic scaling relation to the
MR of the x ¼ 0.19 sample is shown in Fig. 5(a). By
contrast, conventional Kohler scaling fails, as shown in
Fig. 5(b). The MR scales only with the temperature-
dependent scattering rate despite the rather large residual
resistivity. The scaling shown in Fig. 5(a) is similar to the
established phenomenology [Eq. (1)] for the MR of
quantum critical metals in the literature—the difference
is that this is realized in the AFM ordered state rather than
the quantum critical regime, and the temperature-dependent
resistivity varies with T2 rather than with T. This difference

is reflected in the different temperature dependence of the
denominator in Eq. (9) compared to Eq. (1).
The validity of hyperbolic scaling described by Eq. (9)

and the failure of Kohler’s rule are rooted in the apparent
anisotropy of the scattering rate. In particular, the MR
parameters are controlled by the scattering rate at the
turning points, and the small offsets of rtpðTÞ and
HtpðTÞ indicate that the temperature-dependent scattering
rate at the turning point is much larger than the
temperature-independent residual contribution over the
measured range. Thus, the MR is primarily controlled by
the temperature dependence independently of the residual
resistivity. Quantitatively, we estimate that the inelastic T2

scattering near the turning point is enhanced by a factor of
½βT2=β0�=½α0T2=ρ0� ≈ 100 over the background scattering
rate; this result is in contrast with the relatively small
changes in the overall resistivity ρð20KÞ=ρ0 ≈ 1.03, which
averages the scattering rate over the whole Fermi surface.
The presence of multiple scattering times, one of which is
anisotropic, explains the violation of Kohler’s rule observed
in Fig. 5(b) [26]. It is not surprising that the scattering rate
at the turning point is much higher than the background,

(a)

(b)

FIG. 6. Magnetoresistance, hot-spot model, and hyperbolic scaling in BaFe2ðAs0.81P0.31Þ2 with varying levels of disorder. (a) Samples
showing clear H-linear dependence at high fields. Black lines are fits to the hot-spot MR model given by Eq. (6). Each panel is labeled
by the extrapolated zero-temperature resistivity, which quantifies the level of disorder. (b) Hyperbolic scaling of MR for each respective
sample. Dashed lines are hyperbolic functions with the parameters shown in each figure.
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given the presence of diffuse spin fluctuations centered at
turning points in underdoped BaFe2As2 [43]. This result
implies that the turning point is simultaneously a hot spot,
where the turning-point MR dominates as long as the
region of hot-spot scattering is much larger than the width
of the turning point. At sufficiently low temperature, spin
fluctuations should be damped, and the isotropic disorder

scattering contribution becomes dominant. We expect the
hyperbolic scaling shown in Fig. 5 to fail and for Kohler’s
rule to be restored when β0=βT2 < 1 (i.e., at T < 10 K).
Unfortunately, the superconducting critical field at this
composition makes this temperature regime inaccessible in
our measurement apparatus.

C. Quantum critical BaFe2ðAs1− xPxÞ2 with x = 0.31

In this sample, the AFM phase is suppressed to zero
temperature, and the turning points evolve into hot spots
characterized by scattering from critical spin fluctuations
[24,35–37]. The phenomenological H=T scaling given by
Eq. (1) is known to describe the MR of this composition
[8]. Here, we show that this behavior can be captured by the
hot-spot MR model given by Eq. (6), as the characteristic
parameters are predicted to have a linear variation with
temperature. Moreover, as discussed in the theory section,
an effective experimental method to test this model in the
quantum critical regime is to vary the background scatter-
ing rate (τcold), for example, by varying the concentration of
defects in the underlying crystal lattice. This method is
expected to alter the characteristic field scale determining
the crossover between H2 and H-linear MR [Eq. (7)]. We
accomplish this experimentally with 3-MeV alpha-particle
irradiation of samples with x ¼ 0.31 phosphorous substi-
tution. This irradiation method produces isotropic defects
with a distribution of radii (from pointlike to nm in radius)
[46], which increase the residual resistivity at zero field and
temperature. The temperature-dependent resistivity follows
a T-linear dependence, which is not significantly affected
by irradiation (see Supplemental Material [34]).
Figure 6(a) shows the magnetoresistance for samples in

the quantum critical regime with varying concentration
of defects. The MR data for each sample across a range
of temperatures can be well fitted by Eqs. (6) and (7).
Figure 6(b) shows that each sample obeys the hyperbolic
H=T scaling form described in the Introduction; this scaling
is not qualitatively affected by a factor of 3 increase in the
residual resistivity, but there is a notable change in the
coefficients of the scaling function.
Here, we show that H=T MR scaling and the disorder

dependence of the coefficients are captured by our hot-spot
MR model. As shown in Fig. 7, the hot-spot parameters
extracted from the fits have the following temperature
dependence: Hhs ≈ γT and rhs ≈ βT, consistent with the
theory predictions [Eq. (7)]. We note that the offsets of rhs
andHhs are essentially zero within the error bars and can be
neglected. Using the hyperbolic approximation of the hot-
spot MR scaling function, Eq. (8), along with Hhs ¼ γT,
rhs ¼ βT, and ρ ¼ ρ0 þ αT, we arrive at the hyperbolic
H=T scaling relation

ρðHÞ − ρ0
T

≈ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�
μ0H
γT

�
2

s

− β þ α: ð10Þ

(a)

(b)

FIG. 7. Hot-spot parameters in BaFe2ðAs1−xPxÞ2 with
x ¼ 0.31. (a) Characteristic fieldHhs as a function of temperature
with a linear fit for each sample. The inset shows the slope of
HhsðTÞ versus the residual resistivity. The dotted line shows the
expected ρ1=20 dependence according to Eq. (7) of the hot-spot
model. (b) Hot-spot MR amplitude. The inset shows the slope of
rhsðTÞ versus the residual resistivity with a fit to the expected ρ1=20

dependence. Error bars are derived from the confidence intervals
of the hot-spot fits and the linear fits in the present figure.
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Figure 6(b) shows the validity of this hyperbolic scaling
relation. Note that Eq. (10) has a form similar to the
phenomenological scaling established by Eq. (1). We
emphasize that this scaling results from the T-linear
dependence of hot-spot parameters, which is a direct
prediction of our MR model [Eq. (7)]. In addition, the
small offset of rhs manifests the dominant role of inelastic
scattering over background disorder scattering at the hot
spot over the measured range; this case is similar to the
situation at x ¼ 0.19 and is an essential property for
realizing the hyperbolic MR scaling.
Figure 7 shows the T-linear dependence of the hot-spot

parameters extracted from the experimental data in agree-
ment with Eq. (7) of the theory. Notably, Fig. 7(a) shows
that the characteristic field scale Hhs increases as the
background scattering rate increases. The square-root
dependence of this field scale on the disorder scattering
rate is consistent with the expectation of the hot-spot model
[Eq. (7), where ρ0 ∼ τ−1cold]. This dependence is reflected in
the broadening of the hyperbolic MR as the disorder level
increases, as shown in Fig. 6(b). We also observe that the
gradient of rhsðTÞ increases as the disorder level increases,
in agreement with Eq. (7), though the error bars from the
fits are comparably larger for this parameter.
We also perform tests of Kohler’s rule at fixed temper-

ature, where the scattering rate is varied by disorder to
further verify the hot-spot model. In Fig. 8, we show that at
a fixed temperature in BaFe2ðAs1−xPxÞ2 (x ¼ 0.31),
Kohler’s rule is violated in the high-field linear magneto-
resistance regime, but it is satisfied in the low-field
quadratic regime. The failure of Kohler’s rule in the linear
magnetoresistance regime at a fixed temperature reflects
the fact that the background disorder scattering alters the
pattern of scattering anisotropy as predicted by our hot-spot

model in Eq. (7) and the text surrounding it. This result is
also consistent with the nontrivial dependence of the
characteristic field Hhs on disorder [Fig. 7(a)]. The validity
of Kohler’s rule in the low-field quadratic regime confirms
the orbital origin of the MR in the quantum critical
composition of BaFe2ðAs1−xPxÞ2. In the low-field limit,
the majority of quasiparticles have not yet been pushed into
the hot spot (a conservative estimate of ωcτ ¼ 1 is
100 Tesla), so only a small fraction of a cyclotron orbit
has been completed.

IV. DISCUSSION

The H-linear MR of BaFe2ðAs1−xPxÞ2 can be recon-
ciled as an orbital response with a highly anisotropic
structure in the Fermi surface—either due to the presence
of a gap or a hot spot—at points on the Fermi surface
nested by the antiferromagnetic ordering vector. In the
critical regime, spin fluctuations result in a linear increase
of the hot-spot scattering with temperature, which under-
lies the hyperbolic H=T scaling of MR at x ¼ 0.31 [8].
Another important ingredient for realizing hyperbolic MR
scaling is that the disorder scattering rate at the hot spot is
comparably smaller than the inelastic spin-fluctuation
scattering rate, and therefore, the MR is primarily con-
trolled by the temperature-dependent resistivity. This
interpretation is confirmed by our observation of hyper-
bolic H=T2 scaling in BaFe2ðAs1−xPxÞ2 with x ¼ 0.19 in
the AFM regime. Note that this case does not imply that
ρ0 is small compared to ρt, only that the effect of disorder
on the hot-spot scattering rate is small compared to its
temperature dependence. Consequently, hyperbolic scaling
is expected to break down and give way to Kohler scaling
at the lowest temperature where disorder scattering
becomes dominant. We indeed observe a weak deviation

FIG. 8. Isothermal Kohler’s rule in quantum critical BaFe2ðAs1−xPxÞ2 (x ¼ 0.31). A comparison of the isothermal magnetoresistance
of separate samples with varying doses of alpha-particle irradiation. The violation of Kohler’s rule in the linear MR regime suggests that
disorder scattering alters the degree of scattering anisotropy, in agreement with the hot-spot model. Solid lines are fits to Eq. (6), for
which the zero-field resistivity is extracted from each trace. The curves are labeled by the resistivity of the sample at zero field at the
given temperature. Note that μ0H=ρð0Þ is in units of Tesla=μΩ cm.
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from hyperbolic scaling in the most disordered x ¼ 0.31
sample at 1.5 K (see Supplemental Material [34]).
Experiments at lower temperatures and sufficiently high
magnetic fields to destroy superconductivity are necessary
to explore the potential restoration of Kohler scaling in the
low-temperature limit.
Our study shows that the temperature dependence of the

hot-spot or turning-point parameters is strongly influenced
by the P-substitution level [Figs. 2(b), 4(c), and 7]. For
example, the temperature scaling of the characteristic field
goes from T3 to T2 to T linear, following a similar trend as
the zero-field resistivity, as the P concentration tunes the
system towards the critical point at x ¼ 0.31. This process
may reflect the character of spin-excitation scattering and
AFM gap as a function of P-substitution. In particular,
neutron scattering experiments show that the well-defined
spin waves of BaFe2As2 become increasingly diffusive spin
fluctuations as the material is doped [43]. It is likely that
diffusive spin fluctuations result in a relatively high
scattering rate at the hot spots or turning points at x ¼
0.19 and x ¼ 0.31, which contributes to the onset of
hyperbolic scaling at those compositions. This case is in
contrast to the parent compound BaFe2As2 where the spin
waves are sharply defined [43], and the hyperbolic scaling
fails (see Supplemental Material [34]). Notably, it is thought
that the diffusive spin fluctuations at moderate doping levels
also provide a pairing mechanism for superconductivity
[43,47], and therefore, it would be interesting to explore
the possible correlation between hyperbolic MR scaling and
superconductivity in BaFe2ðAs1−xPxÞ2 [9]. The present
study shows that MR measurements may be useful for
probing hot-spot properties across the P-substituted phase
diagram, potentially providing valuable quantitative infor-
mation as to how spin excitations influence the resistivity,
and ultimately superconductivity, in iron-based supercon-
ductors [47]. Note that compositions of BaFe2ðAs1−xPxÞ2
also undergo a tetragonal-to-orthorhombic distortion when
cooling through TN . The resulting twin boundaries in single
crystals are expected to induce temperature-independent
scattering, which can be parametrized by the disorder
scattering rate in our model.
The proximity to a nematic quantum critical point [48]

suggests nematic fluctuations could also affect the resis-
tivity [47,49–52]. However, our model naturally captures
the MR over a wide range of the phase diagram, and
therefore, it seems that the influence of nematic order on the
MR can be neglected in this material. On the other hand,
FeSe1−xSx near a putative nematic QCP [53] shows
very similar MR to that of BaFe2ðAs1−xPxÞ2 [11]. It is
possible that the nearby magnetism in FeSe1−xSx has a
strong influence on the MR, and the present hot-spot
model is applicable to that material [54,55]. Another
option is that nematic fluctuations effectively create hot
spots in FeSe1−xSx [49], but the differences between
BaFe2ðAs1−xPxÞ2 and FeSe1−xSx should be explored

further. Note that while the conventional MR contribution
of our samples can be neglected due to the high level of
disorder scattering, a coexistence of conventional orbital
MR with a quantum critical component has been observed
in very clean samples of Fe(Se1−xSx) [11]. In the language
of the present study, this case can be interpreted as a parallel
contribution of orbital MR from the cold and hot spots,
where the latter induces a hyperbolic dependence of theMR
on H.
Given that the hot-spot model accurately captures the

MR of BaFe2ðAs1−xPxÞ2 and the H=T scaling, it is likely
that the AFM fluctuations are the source of the anomalous
T-linear resistivity in the quantum critical regime.
However, while the hot-spot regions are expected to give
a correction to the conductivity that is linear in T (see
Supplemental Material [34]), at zero field, the cold parts of
the Fermi surface are expected to dominate [39]. Within a
nearly antiferromagnetic Fermi-liquid framework, one
option is that mixing of hot-spot and disorder scattering
leads to nontrivial behavior of the overall resistivity
[23,56]. Our data are difficult to reconcile with such a
mechanism for temperatures above Tc—disorder adds a
temperature-independent component to the resistivity con-
sistent with Matthiessen’s rule, which can only occur if the
temperature-dependent scattering is independent of disor-
der. Other nearly antiferromagnetic Fermi-liquid models
show that magnetic fluctuations at hot spots can influence
the overall resistivity through multiple scattering [57],
or the so-called backflow effect [58]. A more recent revival
of the hot-spot picture has shown that an unconventional
two-particle scattering process connecting hot and cold
regions can render the entire Fermi surface a “marginal”
Fermi liquid with an overall T-linear resistivity [59]. A
theory of orbital MR in a marginal Fermi liquid would be
an interesting extension of the present study.
Finally, hot spots at the antinodal regions of the Brillouin

zone of the cuprates have been suggested as a source of
anomalous behavior in transport and photoemission mea-
surements for some time [60,61], so in light of our results, the
recent observations of H-linear magnetoresistance in both
electron- and hole-doped cuprate superconductors may be
interpreted as a result of antiferromagnetic fluctuations at hot
spots [9,17]. This picture of an anisotropic scattering rate
would also explain a long-standing question regarding the
violation of Kohler’s rule observed in the cuprates [62].
Moreover, scaling behavior with the cotangent of the Hall
angle has been observed inmany quantumcriticalmetals, the
so-called “modified”Kohler’s rule [63,64], and we leave the
question of whether this can be captured in the present hot-
spot model to future work.
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