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We present a theoretical study of the temporal and spatial coherence properties of a topological laser
device built by including saturable gain on the edge sites of a Harper-Hofstadter lattice for photons. For
small enough lattices, the Bogoliubov analysis applies, and the coherence time is almost determined by the
total number of photons in the device in agreement with the standard Schawlow-Townes phase diffusion.
In larger lattices, looking at the lasing edge mode in the comoving frame of its chiral motion, the
spatiotemporal correlations of long-wavelength fluctuations display a Kardar-Parisi-Zhang (KPZ) scaling.
Still, at very long times, when the finite size of the device starts to matter, the functional form of the
temporal decay of coherence changes from the KPZ stretched exponential to a Schawlow-Townes-like
exponential, while the nonlinear dynamics of KPZ fluctuations remains visible as a broadened linewidth as
compared to the Bogoliubov-Schawlow-Townes prediction. While we establish the above behaviors also
for nontopological 1D laser arrays, the crucial role of topology in protecting the coherence from static
disorder is finally highlighted: Our numerical calculations suggest the dramatically reinforced coherence
properties of topological lasers compared to corresponding nontopological devices. These results open
exciting possibilities for both fundamental studies of nonequilibrium statistical mechanics and concrete
applications to laser devices.
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I. INTRODUCTION

The laser is one of the most fundamental tools in modern
science [1,2]. Its defining feature is the emission of
radiation with unprecedented long coherence length and
time. This feature makes laser sources essential ingredients
in a wide range of applications and justifies the continuous
theoretical and technological research of new devices.
Also, from a fundamental science perspective, the physical
mechanisms underlying laser oscillation represent an
archetypical model at the crossroad of nonlinear physics,
nonequilibrium statistical mechanics, and quantum optics
[3–6].
Recent years have witnessed an explosion of the field of

topological photonics [7,8]. Following the ground-breaking
works [9], experiments have initially focused on demon-
strating the topologically protected chiral propagation of
light along the edges of passive photonic lattices displaying
topologically nontrivial band structures in a variety of
different material platforms and frequency regions, from
microwaves in two-dimensional photonic crystal structures

embedding time-reversal-breaking magneto-optical elements
[10] to optical light propagating along an array of evan-
escently coupled helical waveguides laser written in glass
[11], to arrays of coupled ring microcavities in a silicon
photonics platform [12].
In the past years, in addition to nonlinear topological

photonics effects [13–15], major attention has been devoted
to laser operation in topological edge modes [16–26]. Such
topological lasing is of greatest interest in 2D lattice
models: The topologically protected chiral motion of their
1D edge modes suggests the possibility to efficiently phase
lock the field at different sites, so to increase the total
emission power by distributing gain on a large number of
sites and at the same time maintaining a stable single-mode
emission of the whole system. So far, realizations of such
devices include symmetry-protected spin-Hall states in
microcavity arrays [16–19], photonic crystals breaking
time reversal via the magneto-optic effect [20], and more
recently a valley Hall system with a quantum cascade active
medium [27]. Topological lasing was also theoretically
studied in quasiperiodic 1D photonic crystals [21] and
experimentally observed on the 0D edge states of topo-
logical 1D arrays [22–25]. Very recent developments
include the realization of topological bulk lasing in pat-
terned nanodisk arrays [28] and a proposal to obtain stable
mode-locked laser operation in a Floquet system with one
real and one synthetic dimension [29].
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Pioneering theoretical studies focus on the classical
properties of the emission at the mean-field level
[18,30], highlighting the promise of topological lasers with
respect to the power slope efficiency (that is, the derivative
of the emitted laser intensity with respect to the input pump
power) and to the robustness of the single-mode mono-
chromatic emission in the presence of static disorder. A
detailed study of the temporal and spatial coherence
properties of the laser emission including the effect of
noise due, e.g., to spontaneous emission is instead still
missing. The characterization of the ultimate limitations to
the coherence properties is a key element in view of
technological applications of topological lasers and is
the main topic of this work.
As it was first theoretically understood by Schawlow and

Townes [31], spontaneous emission events determine an
inescapable diffusion of the phase of the macroscopic
electromagnetic field, which results in an exponential decay
of the temporal coherence function and in a corresponding
spectral linewidth. In this analysis, the spatial extension of
the laser field is irrelevant, and the dynamics is effectively
restricted to the phase of a single complex number. In
analogy with this ultimate Schawlow-Townes linewidth, a
natural question is to investigate the ultimate limitations to
the coherence of a spatially extended topological laser
device. Here, the evolution of the field involves a complex
spatiotemporal dynamics over many coupled sites.
The goal of this work is to make use of nonequilibrium

statistical mechanics concepts to investigate how spatial
fluctuations affect temporal coherence in topological laser
devices. From the very beginning, topological lasing was
proposed as a very promising strategy in order to achieve
phase locking in arrays of many semiconductor lasers and
make them operate as a single laser [16], which is a
fundamental challenge in laser science [32–34]. Setting up
a quantitative description of such devices is a highly
challenging theoretical task, as it involves a strongly
nonlinear dynamics and is sensitive to the microscopic
details of the photonic structure and of the gain material.
Here, we make an important step in the direction by
analyzing in full detail a simplest model of topological
laser. In particular, we focus on a tight-binding Harper-
Hofstadter model with no polarization degrees of freedom,
and we restrict to the simplest scenario of so-called class-A
lasers [35,36]. In such devices, light amplification is
provided by a saturable gain medium with a temporally
instantaneous response, and the carrier dynamics in the
gain medium and the intensity dependence of the real part
of the refractive index are neglected.
These simplifying assumptions are typically far from

being fulfilled in topological laser devices based on semi-
conductor laser technology [17,19,22,23,27]. Nonetheless,
as long as the topological laser operation remains single
mode as in the experiments [18,20], we expect that the
specific features of the actual device will give quantitative

modifications to the coherence length and time (for
instance, in terms of linewidth broadening factors à la
Henry [35,37]) but will not affect the qualitative structure
of the spatiotemporal correlation functions. These are, in
fact, instead determined by the universal properties of the
underlying nonequilibrium dynamics. Going beyond these
approximations would require an ab initio treatment of
laser oscillation, starting from Maxwell equations for the
electromagnetic field and a microscopic description of the
gain medium [35,38]. Such calculations are the subject of
future work and are of great interest also to precisely
characterize the role of topology in suppressing dynamical
instabilities [36,39] and ruling out multimode behaviors.
The starting point of our study are the recent theoretical

works [40–45] which anticipate that (for small-intensity
fluctuations) the long-wavelength dynamics of the phase in
an array of coupled laser resonators is captured by the
celebrated Kardar-Parisi-Zhang (KPZ) model of nonequi-
librium statistical mechanics [46]. Since topological laser
operation occurs into a one-dimensional edge mode, it is
natural to search for a KPZ dynamics also in this case. As a
first result of our work, we numerically show that this
anticipation is indeed the case once the phase dynamics is
studied in the reference frame moving at the group velocity
of the chiral mode. In particular, we highlight regimes
where the spatiotemporal correlation functions accurately
satisfy the KPZ scaling with no dramatic renormalization of
the nonlinear coupling.
While strictly speaking the KPZ scaling is found in

spatially infinite systems, the situation is completely
different for the behavior of realistic devices which
necessarily have a finite spatial size. This study requires
an explicit analysis of finite-size effects beyond what is
normally considered in the nonequilibrium statistical
mechanics literature. For relatively small lattices, a linear-
ized Bogoliubov analysis is accurate and yields a transverse
Petermann factor [47,48] close to unity, demonstrating the
effectiveness of topological mode guiding. In agreement
with the standard Schawlow-Townes picture, the coherence
then decays according to an exponential law with a
coherence time determined by the ratio of the total number
of photons in the device over the noise rate. In large (but
still finite) systems, a remarkably different behavior is
found: At very long times, the coherence still decays
exponentially à la Schawlow-Townes and does not show
the characteristic KPZ scaling, but the evolution of the
phase keeps memory of the underlying KPZ dynamics,
and the phase diffusion rate gets strongly reinforced by the
intrinsic nonlinearity of the KPZ model. These findings
apply to generic nonequilibrium phase transitions where a
U(1) symmetry is spontaneously broken such as Bose-
Einstein condensation of exciton polaritons [49,50], com-
plementing the previous KPZ studies [40–45].
As a final point of our work, we demonstrate that the

coherence of a topological laser is very weakly affected by
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a static disorder. Coherence is lost only when the strength
of disorder is on the order of the topological gap, that is far
higher than what is needed to spoil the coherence of a
nontopological array. For intermediate values of the dis-
order strength, we numerically find a striking enhancement
of the coherence time almost up to the Schawlow-Townes
value, which can be explained in terms of an effective
suppression of the KPZ nonlinear effects by disorder.
The structure of the article is the following. In Sec. II, we

focus on finite 1D laser chains, and, after inspecting the
crossover from the Kardar-Parisi-Zhang scaling to a
Schawlow-Townes-like phase diffusion at very long times,
we illustrate the significant reduction of the coherence time
from the Bogoliubov-Schawlow-Townes prediction due to
the nonlinear dynamics of the spatial fluctuations of the
phase. In Sec. III, we first review the basic concepts of
topological laser operation into the chiral edge mode of a
2D Harper-Hofstadter lattice. We then investigate the
emission spectrum and the one-dimensional character of
the phase fluctuations. In particular, we probe the universal
KPZ scaling of long-wavelength fluctuations at intermedi-
ate times, and we compute the linewidth of the laser
emission at very long times. In Sec. IV, we demonstrate
the robustness of the coherence of the topological laser
emission in the presence of a static disorder. A critical
discussion of the applicability of our results to specific
topological laser devices is given in Sec. V. Conclusions
and perspectives are finally drawn in Sec. VI.

II. ONE-DIMENSIONAL ARRAY
OF LASER RESONATORS

In this section, we make use of a semiclassical approach
based on stochastic differential equations to characterize
the coherence properties of a simple model of spatially
extended laser formed by a one-dimensional array of
single-mode resonators. While a sizable literature has
investigated the behavior of long-wavelength fluctuations
in terms of the KPZ equation [40–45], not much attention
has been paid to the temporal dependence of the equal-
space correlation function of spatially finite systems, which
is one of the experimentally most relevant quantities for
lasers. To facilitate the reader, we first set the stage by
reviewing the Schawlow-Townes linewidth for single-laser
resonators, and then we move up to the case of interest of a
finite array of coupled resonators.

A. Single resonator linewidth

The basic features of laser operation in a single-mode
resonator, namely, stimulated amplification, the spontane-
ous breaking of the U(1) symmetry of the field, and the
stabilization of the emission intensity by gain saturation,
are all captured by the stochastic differential equation
[4,37,50–52]

i∂tψ ¼ i
2

�
P

1þ n=nS
− γ

�
ψ þ

ffiffiffiffiffiffiffi
2D

p
ξ; ð1Þ

for the single complex variable ψ describing the amplitude
of the electromagnetic field in the resonator, n ¼ jψ j2 is the
field intensity, γ is the loss rate of the “cold” resonator, and
P is the amplification rate induced by the (unsaturated)
gain. As already stressed in the introduction, a key
assumption of our work is that the gain medium has
an instantaneous response to the light intensity n, with a
gain saturation coefficient nS. Even though existing real-
izations of topological lasers [17,19,20,22,23,27] do not
fall in the category of such class-A lasers, this simplifying
assumption facilitates our task of getting insight in the
universal properties of topological laser devices. As usually
done in the semiclassical theory of lasers, the stochastic
term ξ accounts for noise due, e.g., to spontaneous
emission. It is taken in the form of a spatiotemporally
white noise of unit variance hξ�ðtÞξðt0Þi ¼ δðt − t0Þ
rescaled to have a diffusion coefficient D.
Equation (1) is invariant under a U(1) symmetry describ-

ing the rotation of the phase of the field ψ . The steady-state
field ψ0 is zero below the lasing threshold P < Pth ¼ γ.
Above the threshold P > Pth, the steady-state field ψ0

spontaneously breaks the symmetry by choosing a specific
phase, while the steady-state intensity is fixed to
n0 ¼ jψ0j2 ¼ nS½ðP=PthÞ − 1�. For P ¼ 2Pth, one has the
very transparent expression n0 ¼ nS.
To deal analytically with Eq. (1), it is convenient to resort

to the modulus-phase formalism: Writing the field as
ψ ¼ ffiffiffi

n
p

eiϕ, one has

∂tϕ ¼
ffiffiffiffi
D
n

r
ξ1; ð2Þ

∂tn ¼
�

P
1þ n=nS

− γ

�
nþ 2

ffiffiffiffiffiffiffi
nD

p
ξ2 ð3Þ

in terms of the two real and independent noises
hξlðtÞξl0 ðt0Þi ¼ δl;l0δðt − t0Þ; l; l0 ¼ 1, 2. For small enough
perturbations, the intensity relaxes to n0 at a rate
Γ ¼ ½γðP − γÞ=P�. On the other hand, as a direct conse-
quence of the U(1) symmetry of the model, the dynamics of
the phase is a diffusion with no restoring force.
Assuming noise is small enough to cause minor

perturbations to the intensity, phase differences follow a
Gaussian distribution, so within the so-called cumulant
approximation [40], the autocorrelation of the field
reads

gð1ÞðtÞ ¼ hψ�ðtÞψð0Þi ≃ n0e−ð1=2Þh½ϕðtÞ−ϕð0Þ�
2i: ð4Þ

As a consequence, the usual Brownian motion scaling
entails that the decay of coherence is described by an
exponential law
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gð1ÞðtÞ ≃ n0e−ðγST;1=2Þjtj ð5Þ

corresponding to a Lorentzian power spectral density.
The coherence decay rate

γST;1 ¼
1

τST;1
¼ D

n0
ð6Þ

is the celebrated Schawlow-Townes linewidth [31,37].
The crucial feature of this formula for the linewidth is
the steady-state intensity n0 appearing at the denomi-
nator, which has the following physical interpretation:
The more photons are present in the resonator, the less
the phase of the field is perturbed when an additional
photon with a random phase is emitted into the mode
by a spontaneous emission process [1,2,52].

B. Extended lasers and KPZ equation

In analogy to the Schawlow-Townes linewidth of lasing
in a single-mode resonator, the naive intuition for an array
of coupled resonators is that the laser linewidth is inversely
proportional to the total number of photons that are present
within some correlation length. For small enough lattices,
all resonators oscillate in phase, and, for a given number of
photons per resonator n0, the coherence time is proportional
to the length of the array. On the other hand, for large
enough systems, it is known that the physics is described by
the KPZ equation, which leads to different scaling laws.
The main goal of this section is to connect these two points
of view into a unified perspective.
To attack this question in a quantitative way, we make

use of a generalization of Eq. (1) to a one-dimensional array
of Nx coupled laser resonators x ¼ 1;…; Nx:

i∂tψx ¼ −Jψxþ1 − Jψx−1 þ
i
2

�
P

1þ nx
nS

− γ

�
ψx þ

ffiffiffiffiffiffiffi
2D

p
ξx;

ð7Þ

with periodic boundary conditions and independent noises
hξ�xðtÞξx0 ðt0Þi ¼ δxx0δðt − t0Þ. In this work, we always con-
sider weak noise, that is, D small enough (corresponding
to density fluctuations of the order of 15%) to avoid the
generation of topological defects, so that the winding
number over the chain is conserved during the dynamics.
For large J and calling a the distance between neighbor-

ing resonators, one can interpret Eq. (7) as a discrete
version of a continuous field of mass m ¼ ð1=2Ja2Þ. The
corresponding continuous equation is the complex
Ginzburg-Landau equation [53]. Assuming fast relaxation
of the intensity fluctuations, one can focus on the dynamics
of the phase (the derivation is reviewed in Supplemental
Material [54]), which is described by the Kuramoto-
Sivashinsky equation (KSE)

∂tϕ ¼ 1

2m

�
−
Γ−1

2m
∂4
xϕ − ð∂xϕÞ2

�
þ

ffiffiffiffiffi
D
n0

s
ξ1: ð8Þ

Here, ϕ is the unwound phase living on the real axis and not
the compact one restricted to ½0; 2π�.
The characteristic scales of the system as a function of

the microscopic parameters are reported in Ref. [40]:

l� ¼
�

J4

Γ3Dn−10

�
1=7

; t� ¼
�

J2

Γ5ðDn−10 Þ4
�
1=7

;

ϕ� ¼
�ðDn−10 Þ2

JΓ

�
1=7

: ð9Þ

Measuring space, time, and (unwound) phase in terms of l�,
t�, and ϕ�, respectively (and after sending ϕ → −ϕ), the
adimensional KSE reads

∂ t̃ϕ̃ ¼ −∂4
x̃ϕ̃þ ð∂ x̃ϕ̃Þ2 þ ξ̃: ð10Þ

However, since other scales can be relevant for the 2D
topological laser discussed below, in most of the paper we
use the physical (without tilde) space, time, and phase
variables. A rescaling is proposed in order to study KPZ
features in Sec. III D.
The renormalization group analysis shows that at long

distances and times the KSE flows to the KPZ universality
class [55]. The KPZ equation reads

∂ t̃ϕ̃ ¼ ν∂2
x̃ϕ̃þ λ

2
ð∂ x̃ϕ̃Þ2 þ

ffiffiffiffi
D

p
ξ1; ð11Þ

and it was originally proposed [46] to describe the growth
of interfaces. Its scaling behavior at low energies (and
assuming an infinite system and stationary regime) is
characterized by the correlation function

Δϕ̃2
x̃;t̃ ≡ h½ϕ̃ðx̃; t̃Þ − ϕ̃ð0; 0Þ�2i ð12Þ

and by two exponents χ and z which determine
the asymptotic behavior of the spatial and temporal
correlations, respectively, according to Δϕ̃2

x̃;0 ∼ x̃2χ and
Δϕ̃2

0;t̃ ∼ t̃2χ=z.
In 1D we have χ ¼ 1=2 for the roughness exponent and

z ¼ 3=2 for the dynamical exponent; even more precisely,
it holds that

Δϕ̃2
x̃;t̃ ¼

�
1

2
λA2t

�
2=3

gKPZ

�
x̃

ð2λ2At̃2Þ1=3
�
; ð13Þ

where A ¼ D=2ν and Δϕ̃2
x̃;0 ¼ Ajx̃j is the variance of ∂ x̃ϕ̃.

The universal function gKPZ is known exactly [56], and we
here recall its limiting values gKPZðuÞ − 2juj → 0 for u →
∞ and gKPZðuÞ → 1.150… for u → 0. As a consequence,
the equal-time correlation function has the random walk
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form Δϕ̃2
x̃;0 ¼ ðA=2Þjx̃j, which is insensitive to the KPZ

nonlinearity λ and can be captured by a linearized
Bogoliubov analysis. In other words, looking at only the
functional form of the spatial correlations, the dynamics is
not distinguishable from the one of the linear (λ ¼ 0)
Edwards-Wilkinson (EW) model. In both cases, one has
χ ¼ 1=2, which corresponds to an exponential decay of the
spatial coherence [40,43]. A difference is instead visible in
the spatiotemporal correlations, which have different expo-
nents in the two models, namely, z ¼ 2 in the linear EW
model and z ¼ 3=2 in KPZ.
A numerical illustration of the collapse of the coherence

functions to the scaling form (13) is given later on in
Fig. 6(b) in comparison with the topological lasing case.
Even though it goes beyond the present work, it is
interesting to recall that the crossover from EW to KPZ
physics is shown in Ref. [42] to be slower in the presence of
a nonlinear refractive index.

C. Linewidth of extended lasers

The KPZ results reviewed in the previous subsection
apply to spatially infinite systems in the long-time limit but
are not of direct applicability to the concrete problem of the
emission linewidth of a realistic laser device which nec-
essarily has a finite spatial extension. To this purpose, the
crucial quantity to study is the time dependence of the
equal-space correlator

gð1ÞðtÞ ¼ 1

n0
jhψ�ðx; tÞψðx; 0Þij; ð14Þ

which characterizes the temporal coherence of the emis-
sion. The dependence of gð1Þ on x is dropped, since we are
considering a spatially uniform system.

1. Linearized Bogoliubov prediction

Within a Bogoliubov approximation where the theory is
linearized around the mean-field steady state, modes of
different momenta are decoupled. For a discrete lattice, one
obtains with simple algebra that

h½ϕðx;tÞ−ϕðx;0Þ�2i¼ 1

Nx

X
x

h½ϕðx;tÞ−ϕðx;0Þ�2i

¼ 1

n0Nx

X
k

D̄k

Z
t

0

dt0e−2iωkðt−t0Þ; ð15Þ

where the effective drift coefficients D̄k are determined by
the shape of the Bogoliubov modes and tend to D in the
long-wavelength limit k → 0. In this same limit, the lowest
Bogoliubov mode has a diffusive character with ωk ≃
−iγk ¼ −iJ2Γ−1k4 [53]. The factor 1=Nx in front of
Eq. (15) can be interpreted by viewing the white spatial
noise as randomly drawing noise realizations with a given k
and unit strength at each site. The probability to pick a

given mode is then 1=Nx. Note that the “ultraslow decay of
fluctuations” that is numerically observed in Ref. [30] is a
consequence of the softness of the diffusive Goldstone
branch and, thus, a general feature of spatially extended
lasers.
In a spatially finite system where k is quantized, only the

k ¼ 0 mode gives a finite contribution at long times,
proportional to jtj; the contribution of all other modes
decays instead exponentially with time. From this result,
one immediately obtains the expression of the Bogoliubov-
Schawlow-Townes coherence time

τc ¼ τST ¼ 2γ−1ST ¼ 2n0Nx

D
ð16Þ

that generalizes the Schawlow-Townes phase diffusion to
the case of a finite laser array, n0Nx being equal to the total
number of photons.
The situation is a bit different for an infinite array. In this

case, the sum over discrete k modes has to be replaced by
an integral k. This replacement yields the Bogoliubov
prediction gð1ÞðtÞ ∼ e−Bjtj3=4 , where B is a constant. The
slower power-law decay stems from the fact that the
specific k ¼ 0mode is now occurring with probability zero.
For the sake of completeness, it is worth noting that a

differentscalingwouldbefoundinthepresenceofanonlinear
refractive index. In this case, the imaginary part of the
Bogoliubov frequency would scale as γk ∝ k2 in the long-
wavelength k → 0 limit [53], leading to a slower decay
gð1ÞðtÞ ∼ e−Bjtj1=2 in an infinite one-dimensional system.

2. Nonlinear KPZ effects

All the results discussed in the previous subsection are
based on a linearized Bogoliubov approximation where
different modes are decoupled. Of course, we know that
this approximation is not adequate for an infinite or large
enough system, where nonlinear KPZ features set in.
For an infinite system, a stretched exponential behavior

gð1ÞðtÞ ∼ e−Bjtj2β ð17Þ

is predicted in Ref. [43], with a universal 2β ¼ 2χ=z ¼ 2=3
and a nonuniversal value of the constant B.
If the system is sufficiently large but finite, the

Bogoliubov approximation breaks down, but the sponta-
neously broken U(1) symmetry still imposes that the
coherence must decay at long times at least as fast as a
pure exponential, gð1ÞðtÞ ∼ e−jtj=τc . In this case, we expect
that the KPZ physics typical of the infinite chain should
remain visible only for intermediate times, up to a satu-
ration time scaling as ðNxÞz.
These arguments on the functional form of the temporal

decay of coherence are quantitatively illustrated in Fig. 1,
where we display the temporal correlation function com-
puted by numerically solving Eq. (7) for three different
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system sizes Nx ¼ 64, 256, 1024: The thick black line
shows − log gð1ÞðtÞ, while the red and cyan lines are linear
fits in the loglog scale of the plot. Keeping the same
observation window, for small system sizes the temporal
decay of the coherence gð1ÞðtÞ is mainly diffusive and
follows an exponential law [Fig. 1(a)]. For very large sizes
[Fig. 1(c)], the exponential Schawlow-Townes behavior is
pushed at very long times so that only the KPZ stretched
exponential gð1ÞðtÞ ∼ e−Bjtj2=3 is clearly visible in the time
window displayed in the plot. An attempt to see the
xponents of both regimes on a single plot is shown in
the plot for an intermediate size shown in Fig. 1(b): While a
hint of them is visible, a complete separation of the two
regimes would require very large system sizes and very
long observation times, which is numerically very demand-
ing [57].
The KPZ scaling of gð1ÞðtÞ at intermediate times is a clear

indication of the crucial role of nonlinear coupling between
modes in determining the phase dynamics. While the
linearized Bogoliubov theory predicts the (qualitatively
correct) exponential form of the decay of coherence at long
times, it is natural to wonder whether the KPZ nonlinear
couplings are responsible for any quantitative deviation
of the coherence time from the Bogoliubov-Schawlow-
Townes prediction (16).
This issue is numerically investigated [58] in Fig. 2,

where we plot the numerical result for the coherence
time τc in one-dimensional arrays of increasing sizes for
two different values of the intersite coupling J ¼ 5γ
(blue) and J ¼ 0.5γ (cyan). To better highlight the
KPZ features, we normalize the coherence time to the
single-site Schawlow-Townes coherence time τST;1 ≡
τST=Nx¼ð2n0=DÞ. For all parameter choices, the

coherence time follows the Bogoliubov scaling propor-
tional to Nx until a certain critical size numerically compa-
tible with the scaling of l� ∼ J4=7 given in Eq. (9), after
which its increase with Nx occurs at a much slower rate.

(a) (b) (c)

FIG. 1. Kardar-Parisi-Zhang to Schawlow-Townes crossover in the temporal coherence of finite, one-dimensional laser arrays. The
numerical prediction of Eq. (7) for the logarithm of the equal-space time correlation function − log gð1ÞðtÞ is plotted in loglog scale as a
function of time for increasing system sizesNx ¼ 64 (left),Nx ¼ 256 (middle), andNx ¼ 1024 (right). In all cases, lasing occurs around
klasx ¼ 0. For a given temporal window, the decay of the coherence is dominated by a Schawlow-Townes-like diffusion gð1ÞðtÞ ∼ e−Bjtj for
small sizes (a) and by the KPZ behavior gð1ÞðtÞ ∼ e−Bjtj2=3 for large sizes (c). The crossover between the two regimes is visible for
intermediate sizes (b). The cyan and red lines are fits of log½− log gð1ÞðtÞ� with functions of the form 2β log jtj þ B0. Other system
parameters: J ¼ 0.5γ, P ¼ 2γ, nS ¼ 1000, and D ¼ γ.

FIG. 2. Scaling of the coherence time with system size Nx. The
coherence time τc is extracted from the long-time exponential
decay of coherence for different systems. Blue and cyan markers
refer to the one-dimensional, topologically trivial arrays of laser
resonators of Eq. (7) with different values of the intersite coupling
J ¼ 5γ and J ¼ 0.5γ, respectively. The red and orange markers
refer to the topological laser caseofEq. (20) for the same twovalues
ofJ. Foreachpoint, thevalueof the coherence time τc is normalized
toaneffectivesingle-site coherence time τST;1.For the1Darray, this
value is defined by the Schawlow-Townes formula (6). For the
topological 2D array, it is given by τST;1 ≡ τST=Nx, with τST being
the Bogoliubov-Schawlow-Townes prediction (32) that includes
the (small) Petermann correction.
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This marked deviation is indeed expected and can be
understood looking at the KPZ equation (11): The total
phase drift is the k̃ ¼ 0 part of the phase field, which can be
decomposed in two statistically independent contributions:

ϕ̃ðx̃; t̃Þ ¼ ϕ̃0ðt̃Þ þ ϕ̃0ðx̃; t̃Þ: ð18Þ

Here, ϕ̃0 accounts for the global phase evolution generated
by the k̃ ¼ 0 component of noise,

∂ t̃ϕ̃0 ≡
ffiffiffiffi
D

p
ξ1ðk̃ ¼ 0; t̃Þ; ð19Þ

and yields the Schawlow-Townes drift. Even though the
equation for ϕ̃0ðx̃; t̃Þ is independent of ξ1ðk̃ ¼ 0; t̃Þ, an
additional evolution of ϕ̃0ðk̃ ¼ 0; t̃Þ is induced by the finite
k̃ components ϕ̃0ðk̃ ≠ 0; t̃Þ of the phase field via the KPZ
nonlinearity λ. The additional phase noise induced by this
nonlinear coupling is responsible for the deviation of the
coherence time from the Bogoliubov-Schawlow-Townes
prediction visible in Fig. 2. The complex behavior of
τcðNxÞ shown in the figure suggests that a quantitative
explanation of the phenomenon requires a nonperturbative
analysis that is the subject of future work. In particular, the
value of the exponent ρ characterizing the large Nx

dependence τc ∼ Nρ
x is expected to be ρ ¼ 1=2 for the

present 1D case [59].
Notice that in any finite system the coherence decays

exponentially in time independently of the dimensionality
of the lattice; even when spatial long-range order can be
established, a linewidth enhancement is expected with
ρ ¼ 1 [59]. For completeness, we mention that nonlinear
mode couplings are predicted in Ref. [60] to play a crucial
role in the phase diffusion of equilibrium condensates but
have a different physical origin in Beliaev processes driven
by thermal fluctuations.

III. HARPER-HOFSTADTER
TOPOLOGICAL LASER

As shown in recent theoretical [18,30] and experimental
[19,20] works, it is possible to make the edge mode of a
photonic topological insulator to lase by introducing a gain
material into the device, while preserving the topological
properties such as the chirality of the edge mode propa-
gation and its topological robustness in circumventing
defects without suffering backscattering. This section is
devoted to the study of the spatiotemporal coherence
properties of such a device. Within the usual semiclassical
approach, quantum and classical noise is described by
including a white noise term to the equation of motion of
the field. While the overall behavior turns out to be very
similar to the nontopological case studied in the previous
section, some interesting consequences of the topological
nature of the mode are found and highlighted.

A. The model

With no loss of generality, we focus our attention on the
topological bands of a two-dimensional Harper-Hofstadter
model. This most celebrated topological model is widely
used in studies of topological photonics. By labeling with
x¼1;…;Nx and y¼1;…;Ny the sites of the two-
dimensional lattice, the equations of motion for the field read

i∂tψx;y¼−J½ψx;yþ1þψx;y−1þe−2πiαyψx−1;yþe2πiαyψxþ1;y�

þ i
2

�
Pδy;1

1þnx;y=nS
− γ

�
ψx;yþ

ffiffiffiffiffiffiffiffiffiffiffi
2Dx;y

p
ξx;y; ð20Þ

where α is the synthetic magnetic field flux per plaquette in
units of the magnetic flux quantum. As in many previous
works, we focus on the α ¼ 1=4 case. To simplify the
geometry, we consider a cylindrical lattice with periodic
boundary conditions along the x direction, and we introduce
the gain medium on all sites of the y ¼ 1 edge. Inspired by
the Wigner approach [4], we take the diffusion coefficient to
have the form Dx;y ¼ ð1þ δy;1Þγ=2. The stronger noise on
the edge sites reflects the presence of gain and the con-
sequent spontaneous emission processes. We, however,

FIG. 3. Topological lasing. Lower: Typical snapshot
of the field modulus distribution jψðx; yÞj at steady state.
Upper: Wave-vector- and energy-resolved spectrum of the
field on the y ¼ 1 edge. The dotted lines are the Harper-
Hofstadter bands, and the spectral intensities are normalized to
the laseremissionatωlas ≃ −9.774γ,klasx ¼ −2π 19

128
.Numericalcal-

culations are performed according to Eq. (20) for a lattice
of size Nx ¼ 128, Ny ¼ 12 with periodic boundary conditions
along x and a flux density α ¼ 1=4. System parameters:
J ¼ 5γ, P ¼ 2γ, ns ¼ 1000, and Dx;y ¼ ð1þ δy;1Þγ=2.
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check that our results remain qualitatively identical if
different spatial distributions of Dx;y are used. We also
check that the statistical results that are discussed in the
following are unchanged if different system geometries
are considered, e.g., with open boundary conditions (see,
e.g., Fig. S3 in Ref. [54]). We also mention the study [61] of
the chiral fluctuations in a similar configuration but in the
linear amplifier regime.
For the sake of completeness, let us first recall

the properties of the underlying Harper-Hofstadter
Hamiltonian in the absence of gain, losses, and noise.
Within the Landau gauge used in Eq. (20), implementing
periodic boundary conditions along the x direction makes
the system translationally invariant, so that it is convenient
to label states by the wave vector kx. The dispersion for
our α ¼ 1=4 case is shown by the cyan dotted lines in
Fig. 3: It consists of four bands of bulk states delocalized
over the whole system, plus two chiral modes localized on
each edge and energetically located in the gaps within the
bands. On the y ¼ 1 side per example, the edge state in
the lower (upper) gap has positive (negative) group
velocity, and vice versa for the other side. The fact that
there are no two counterpropagating states on the same
edge at the same frequency is at the origin of the
topological protection.
We study the temporal evolution of the field according to

the stochastic equations (20). Starting the simulation with
zero field, noise triggers laser operation by spontaneously
breaking the U(1) symmetry. A mean-field study of this
physics in the absence of noise with random initial
conditions is presented in Ref. [30]: At steady state,
quasimonochromatic laser oscillation takes place in a mode
which is randomly selected by the initial noise. The
probability distribution is peaked at discrete frequencies
roughly fixed by the eigenvalues of the underlying finite
Harper-Hofstadter model. The distribution is symmetric

with respect to zero frequency and has support in the energy
gaps of the band structure. The maximum corresponds to
the eigenstates that are most localized on the edge for which
the effective gain is the strongest: As pointed out in
Refs. [36,39], the kx-dependent overlap of the Harper-
Hofstadter eigenmode with the gain material determines a
nontrivial dependence of the imaginary part of the
dispersion.
The main features of the steady-state topological laser

operation including noise are illustrated in Fig. 3. In the
lower panel, we plot a typical example of the field modulus
jψx;yj for a finite Nx ¼ 32, Ny ¼ 12 cylindrical lattice,
showing localization of the mode on the edge. The upper
panel reports instead the power spectral density Sðkx;ωÞ of
the field ψx;1ðtÞ on the y ¼ 1 edge: The narrow lasing mode
is strongly saturated on this scale and is indicated by the
cyan circle. Noise-induced fluctuations distribute them-
selves over all modes but are concentrated on the ones with
largest overlap with the y ¼ 1 side, in particular, on the two
edge states with opposite chiralities. While the spectral
distribution roughly follows the dispersion of the optical
modes in the underlying passive Harper-Hofstadter model
indicated as a cyan dotted line, a complete theory requires a
Bogoliubov analysis of the collective modes. This require-
ment is addressed in Ref. [62] and is the subject of the
forthcoming work in Ref. [39].

B. Chiral motion of the phase fluctuations

To characterize the spatiotemporal coherence of the
emission, we consider the fluctuations of the phase of
the one-dimensional field living on the amplifying boun-
dary of the Harper-Hofstadter lattice, ψðx; tÞ≡ ψx;1ðtÞ.
In the steady state of laser operation, the phase displays

slow fluctuations around a carrier wave vector klasx and
frequency ωlas: The former can be extracted from the

FIG. 4. Chiral motion of the phase fluctuations. (a) Spatiotemporal plot of the slowly varying phase of a random realization of
ψ slðx; tÞ, showing that the fluctuations chirally move around the system. (b) Spatiotemporal plot of the phase of ψCMðx; tÞ in the
comoving frame: Now the fluctuations are observed in their natural frame of reference and evolve slowly. (c) Correlation function
gð1Þðx; tÞ: Since the fluctuations move at vg, after a time t the field in x is correlated with the one in xþ vgt. System parameters:
Nx ¼ 128, Ny ¼ 12, J ¼ 5γ, P ¼ 2γ, ns ¼ 1000, and D ¼ 2γ.
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(spatial) winding number of the phase around the system,
and the latter can be determined by fitting the evolution of
the field phase on single sites. In the spectrum of Fig. 3,
they are indicated by the position of the cyan circle. While a
precise determination of these quantities can be important
from the applicative point of view, they are somehow
uninteresting from the statistical mechanics point of view,
since they are mostly determined by the deterministic
dynamics of the device and are weakly affected by the
fluctuations.
In order to remove the carrier frequency and wave vector

and concentrate on the stochastic fluctuations, we define
the slowly varying field

ψ slðx; tÞ≡ e−iðklasx x−ωlastÞψðx; tÞ: ð21Þ

Looking at the phase of a typical realization of ψ slðx; tÞ
shown in Fig. 4(a), we easily recognize a phase fluctuation
pattern that moves at a constant velocity and gets slowly
distorted. The drift velocity can be inferred from the
dispersion ωemðkxÞ of the lasing chiral edge mode, which
has group velocity vg ¼ ðdωem=dkxÞðklasx Þ and curva-
ture Jeffðklasx Þ ¼ 1

2
ðd2ωem=dk2xÞðklasx Þ < J.

In order to focus on the intrinsic dynamics of the phase
fluctuations, we plot in Fig. 4(b) a typical realization of the
phase evolution seen from the moving frame at vg:

ψCMðx; tÞ≡ ψ slðxþ vgt; tÞ: ð22Þ

For the relatively strong intersite coupling J ¼ 5γ and
relatively small system size Nx ¼ 128, the phase fluctua-
tions develop very slowly and remain quite small. Their
magnitude gets larger if the mean intensity n0 is reduced,
the intersite coupling J is reduced, or larger systems are
considered. This situation is discussed in Sec. III D.
While the transformation to ψCMðx; tÞ allows for a direct

visualization of the phase dynamics, it is also possible to
study the fluctuations circulating along the edge by
computing the space-time correlation function of the
original field,

gð1Þðx; tÞ ¼ jhψ�ðx; tÞψð0; 0ÞijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihnðxÞihnð0Þip ð23Þ

where the average is taken over the noise and invariance
under temporal t and spatial x translations is assumed. This
analysis requires no preliminary estimate of klasx and ωlas

and is our workhorse in the next sections. As is apparent
looking at the smooth stripes in Fig. 4(c), the analysis of
gð1Þðx; tÞ is the cleanest way to extract the velocity at which
fluctuations travel. The result vg ≃ 6.07γa is perfectly
compatible with the group velocity vg ≃ 6.08γa obtained
from the linear dispersion of the chiral edge mode (see also
Fig. S4 in Ref. [54]).

C. Correlated side peaks in the emission spectrum

A complete understanding of the spectral distribution
jψðkx;ωÞj2 obtained by spatiotemporal Fourier transform
and shown in Fig. 3(b) requires inspecting the Bogoliubov
modes on top of the noiseless lasing state. This inspection is
the subject of a forthcoming work [39].
For the moment, we restrict our discussion to a few

simple yet important remarks on the emission spectrum
from each site. In Fig. 5(a), we show the emission spectrum
defined as

SðωÞ ¼ 1

Nx

X
x

jψðx;ωÞj2 ð24Þ

for the parameters and lasing point shown in Fig. 3(b). In
addition to the main lasing peak, the emission spectrum
displays a comblike structure with a series of symmetric
side peaks: The frequency spacing is determined by the
quantization of the momentum along the periodic direction
and is approximatively vgð2π=NxÞ.
The visibility of the comb is not merely due to the

existence of eigenstates at those specific values of the
frequency, but their population by noise is enhanced by
correlations. This enhancement is illustrated in Fig. 5(b),
where we show the normalized momentum-space intensity-
intensity correlation function

Rð2Þðkx; k0xÞ ¼
hnkxnk0xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2kxihn2k0xi

q : ð25Þ

Here, the momentum-space densities nkx are evaluated at
the same time over the whole edge: nkxðtÞ ¼ jψðkx; tÞj2.
Several features are visible in this plot. The diagonal line

for kx ¼ k0x is due to a trivial self-correlation, and Rð2Þ is
here equal to 1. For generic pairs of modes, the thermal

(a) (b)

FIG. 5. Correlated side peaks in the emission spectrum.
(a) Spectrum of the field on a single resonator located on the
amplified edge. The spacing of the side peaks is determined by
the quantization of the wave vector kx around the periodic
direction. The side peaks are generated by parametric scattering
processes from the lasing mode into pairs of symmetrically
located modes. (b) Color plot of the momentum-space correlation
function (25) in the kx; k0x plane showing—among others—strong
correlations along the antidiagonal, that is, within pairs of
symmetrically located modes.
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gð2ÞðkxÞ ¼ 2 character of all kx ≠ klasx modes implies that
the background value is Rð2Þ ¼ 0.5. When one (two) modes
coincide with the lasing one, Rð2Þ is equal to 1=

ffiffiffi
2

p
(1),

which explains the vertical and horizontal stripes and the
central peak. The most interesting feature is the stripe on
the antidiagonal, corresponding to correlations between
symmetrically located modes such that kx þ k0x ¼ 2klasx . For
the first two pairs of side peaks, this correlation is nearly
perfect, indicating that these modes are populated in pairs
by parametric scattering processes.
Of course, such correlations are not specific of topo-

logical systems but can be observed also in the trivial
systems studied in the previous Sec. II, albeit with a
suppressed intensity due to the curvature of the dispersion.
In analogy to exciton-polariton systems pumped around the
magic angle [50], the magnitude of these parametric
correlations is strongest if lasing is made to operate around
the inflection point of the dispersion.

D. KPZ spatiotemporal correlations

The discussion of the emission spectrum presented in the
previous subsection gives first hints of the complexity of
the fluctuation dynamics in an extended device. Here, we
build a complete theoretical picture of the spatiotemporal
coherence of the topological laser.
Since the field is concentrated along the one-dimensional

edges of the system and its transverse profile closely
follows the one of the linear edge mode, it is natural to
describe the dynamics in terms of a one-dimensional
equation. Sitting in the comoving frame, this can be written
in the form

i∂tψCMðx; tÞ ¼ ð−Jeff þ iηÞ∂2
xψCM

þ i
2

�
Peff

1þ nSjψCMj2
− γ

�
ψCM þ

ffiffiffiffiffiffiffi
2D

p
ξ:

ð26Þ

Here, Jeff is given by the curvature of the bare Harper-
Hofstadter topological mode, Peff is chosen to retrieve the
numerical mean intensity n0 on the edge, and η accounts
phenomenologically for the k-dependent localization of the
lasing mode on the edge of the lattice and the consequent k
dependence of gain. A rigorous account of this dimensional
reduction procedure is presented in Ref. [39]. We mention
that a finite η would arise also in the 1D chain if a
dissipative coupling described by a nonvanishing imagi-
nary part of J [34,63,64] were considered.
Assuming a fast relaxation of the intensity fluctuations,

we can then restrict our attention to the dynamics of the
phase. By neglecting terms containing four derivatives
(both the linear, Galilean-preserving ones and the non-
linear, Galilean-breaking ones as shown in Supplemental
Material [54]), one gets to a motion equation for the phase
of the KPZ form:

∂tϕ ¼ η∂2
xϕ −

J2eff
Γ

∂4
xϕ − Jeffð∂xϕÞ2 þ

ffiffiffiffiffi
D
n0

s
ξ: ð27Þ

Since η is the less controlled parameter of the model, we do
not perform the usual KPZ rescaling [43] to yield an
equation containing the effective nonlinearity as the only
parameter. Rather, we rely on the rescaling Eqs. (9) with the
effective parameters J → Jeff ; P → Peff ; this transforma-
tion does not depend on η [65] and yields

∂ t̃ϕ̃ ¼ ηt�
l2�

∂2
x̃ϕ̃ − ∂4

x̃ϕ̃þ ð∂ x̃ϕ̃Þ2 þ ξ̃: ð28Þ

In these units, we then expect the KPZ nonlinearity to be
close to λ ¼ 2; this value is also protected from renorm-
alization induced by the quartic derivative term in the KSE
[55]. It is thus natural to expect that the coherence of the
topological laser will closely resemble the one of the
generic extended laser discussed in Sec. II. In what follows,
we proceed to numerically verify this statement on simu-
lations of the stochastic laser equations in the topological
two-dimensional lattice.
Based on our previous discussion, we expect that the

KPZ universal dynamics occurs, in a lattice of Nx sites, on
timescales shorter than the saturation time∼Nz

x (after which
the Schawlow-Townes-like behavior described above sets
in) but larger than the timescales where the linear
Bogoliubov dynamics and nonuniversal effects dominate.
Having a sizable window to observe KPZ physics then
requires the system to be large enough; precisely, it should
be at least Nxa ≫

ffiffiffi
2

p
πl� [40]. We thus consider a large

system of length Nx ¼ 1024 with periodic boundary
conditions along x and with Ny ¼ 12 points along the
open direction y. In order to clearly observe KPZ physics
while keeping intensity fluctuations within 15% and having
a tractable system size, it is beneficial to use a small
intersite coupling J ¼ 0.5γ.
One may argue that such a value of the coupling J (and,

thus, of the topological gap) is comparable with the bare
linewidth γ. Such narrow topological gaps are very relevant
for experimental implementations [20], but it is not a priori
obvious whether in this regime the chiral edge modes
survive losses. While this issue is indeed serious to observe
chiral edge propagation in passive systems, it is a crucial
result of laser theory that the laser linewidth above thresh-
old can be orders of magnitude smaller than γ. Our
numerical simulations confirm stable lasing into the chiral
edge mode even for small J=γ; in particular, the robustness
of topological lasing is verified in the presence of a strong
defect on the edge, as reported in Fig. S5 [54].
To numerically highlight the KPZ physics, we perform

20 simulations of the full two-dimensional lattice of
duration γT ¼ 5 × 105, starting from a plane wave with
the wave vector value for which the Harper-Hofstadter
eigenstate is most localized on y ¼ 1, that is,
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kx ¼ −2π 155
1024

. For each run, after a suitable equilibration
time, the correlation function hψ�ðx; tþ t̄Þψð0; t̄Þi on the
edge site is computed and then averaged over the 20 trials
to yield gð1Þðx; tÞ. The typical dynamics occurring in a time
γT ¼ 2 × 104 is depicted in Fig. 6(a), where the phase of
the field ψCMðx; tÞ along the edge is shown in the comoving
frame: A structure similar to the fractal structure of inter-
face growth can be recognized.
Defining the correlation function in the comoving

frame as

gð1ÞCMðx; tÞ ¼
jhψ�

CMðx; tÞψCMð0; 0ÞijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihnCMðxÞihnCMð0Þi
p ð29Þ

and the rescaled correlator as

C̃ðt̃; x̃zÞ≡ −2ðϕ�Þ−2x̃−2χ log gð1ÞCMðx̃; t̃Þ; ð30Þ

KPZ universality requires that

C̃ðx̃; t̃Þ ¼ C̃ðt̃=x̃zÞ ¼
�
1

2
λA2s

�
2=3

gKPZ

�
1

ð2λ2As2Þ1=3
�
ð31Þ

with s ¼ t̃=x̃z and z ¼ 3=2 on the right-hand side and gKPZ
a universal function discussed in Sec. II B. In particular,
one has C̃ð0Þ ¼ A.
A series of curves of C̃ðx̃; t̃Þ for x ¼ �30;…;�160 is

plotted as orange lines in Fig. 6(b) as a function of t̃=x̃z [to
correct for the finite size effects, we actually plot
C̃ðx̃; t̃Þ=ð1 − jxj=NxÞ, as illustrated in Fig. S6 [54] ]. The
collapse of these lines onto a single curve demonstrates that
within an excellent approximation C̃ depends only on t̃=x̃z,
as expected from the KPZ scaling. This result for the
topological laser is to be compared to an analogous analysis
for a trivial one-dimensional array with the same physical
parameters lasing in the k ¼ 0 mode as discussed in
Sec. II B. Also in this case, the different lines (cyan)
collapse on a single curve, confirming the expected KPZ
scaling.
The crucial point about Fig. 6(b) is that the phase, the

space, and the time are rescaled by the ϕ�, l�, and t� values,
respectively, obtained by using the effective masses and
gain parameters: For the topological laser, Jeff is the
curvature of the Harper-Hofstadter band at the lasing point,
and Peff is chosen in order to reproduce the observed
intensity on the edge. For instance, Jeff ≃ 0.319γ and,
hence, l� ≃ 1.92 here.
As already mentioned, the renormalization group analy-

sis [55] predicts for the nontopological 1D array lasing in
the klas ¼ 0 mode that the rescaled KSE Eq. (11) flows to
the low-energy effective KPZ theory Eq. (10) with λ ¼ 2,
since, thanks to the Galilean invariance holding for
KSE and KPZ equations, the nonlinear coupling is not

renormalized. This result is confirmed by our simulations,
which show that the rescaled correlation functions indeed
collapse to a unique curve as shown in Fig. 6(b), and this
curve is excellently fitted (blue dashed line) using Eq. (31)
with λ ¼ 2 and A ¼ 0.96, as expected from the Galilean
invariance argument.
For the topological laser, the curves again collapse onto

a single curve, which is well fitted using λ ¼ 2.1 and
A ¼ 0.65 (red dashed line). Note that an upper bound for
the fitted value of the nonlinearity is provided by the value
λ ¼ 2.3 with A ¼ 0.63.

FIG. 6. KPZ dynamics of topological lasing. (a) Typical
example of the steady-state space-time dynamics of the phase
of the field ψCMðx; tÞ on the system edge seen from the comoving
frame. (b) Correlators C̃ðt̃; x̃zÞ for x ¼ �30;…;�160 (small
lines) for the topological device lasing into the kx ¼ −2π 155

1024

mode (orange) and for the nontopological one-dimensional array
lasing in the kx ¼ 0 mode (cyan). Red and blue dashed lines
indicate the KPZ universal function (31) on which all curves
collapse. System parameters: Nx ¼ 1024, J ¼ 0.5γ, P ¼ 2γ,
nS ¼ 1000, and Dx;y ¼ γ=2ð1þ δy;1Þ.
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In contrast to the nontopological case, for the topological
laser there is no a priori guarantee that a Galilean invariant
KSE holds microscopically; to the contrary, an analysis
along the lines of Refs. [40,41] suggests that a rescaling
with Jeff still yields a microscopic λ ¼ 2, but other terms
should also be added in Eq. (10), e.g., of the kind
∂2
xϕð∂xϕÞ2, ð∂2

xϕÞ2, ∂3
xϕ∂xϕ, etc. These additional terms

come from effective imaginary derivatives due to the kx-
dependent localization of the Harper-Hofstadter eigenstates
on the edge; in particular, they break Galilean invariance,
and one may expect that they significantly renormalize the
effective KPZ parameters, since they contain the same
number (four) of derivatives as the KSE term. However, it
turns out from our numerics that the renormalization of λ
remains small.
Still, it is interesting to note that the curves for the

topological laser (in the properly rescaled units) sit below
the ones of the trivial one-dimensional laser array and are
correspondingly fitted by a KPZ form with a lower A. This
feature can be traced back to the imaginary term propor-
tional to η in Eq. (26) that accounts for the k dependence of
the edge mode penetration in the bulk. This term stabilizes
the emission and makes the topological device more
coherent than the 1D laser with the corresponding Jeff
and Peff . The crucial role of η in topological devices is
apparent already at the level of Bogoliubov analysis [39], at
least for class-A lasers. It is also remarkable that the very
noisy field in the bulk that is visible, e.g., Fig. S2 of
Ref. [54], does not impact the coherence of the edge
mode.
We conclude this section with a brief remark on the

experimental protocol to assess KPZ physics. The analysis
of the correlation functions gð1ÞCMðx; tÞ shown in Fig. 6(b) is
carried out in the reference frame comoving with the chiral
mode. Typical experiments measure correlation functions

between different times gð1Þðx; tÞ and different points in the
laboratory frame. However, since the correlation functions
in the comoving and laboratory frames are simply related

by gð1ÞCMðx; tÞ ¼ gð1Þðx − vgt; tÞ, the interesting gð1ÞCM can be
extracted by a straightforward postprocessing of gð1Þðx; tÞ
measured in the laboratory frame. Graphically, this process-
ing amounts to tilting the correlation function in Fig. 4(c)
with the suitable vg to have the maximum of gð1Þðx; tÞ at
x ¼ 0 for all times t (see Fig. S4 [54]).

E. Temporal coherence and linewidth

After having confirmed that the long-time, large-distance
spatiotemporal coherence of the topological laser is well
described by the KPZ model, we now proceed to inves-
tigate the problem of the coherence time of a realistic,
finite-size device. Rather than analyzing with high reso-
lution the linewidth of the main spectral peak in Fig. 5(a),
we work in real time, and, with a concrete optical experi-
ment in mind, we monitor the temporal coherence of the
emission from a given site. As compared to our discussion
of the trivial case in Sec. II B, there is the complication that
phase fluctuations undergo a chiral motion around the
system, so the coherence function of a given site displays
the strong temporal oscillations that are visible in Fig. 4(c).

1. KPZ to Schawlow-Townes crossover

As a first step, we illustrate the crossover between KPZ
coherence decay and Schawlow-Townes for different sys-
tem sizes Nx. In Fig. 7, we show the temporal evolution of
the phase diffusion − log gð1ÞðtÞ (thick solid black lines)

and − log gð1ÞCMðtÞ≡ − log gð1ÞCMð0; tÞ (thin dashed black
lines) in a given temporal window for increasing
Nx ¼ 64, 256, 1024. As expected, these curves show sharp

(a) (b) (c)

FIG. 7. Kardar-Parisi-Zhang to Schawlow-Townes crossover in a finite-size topological laser. This plot is the analog of Fig. 1 for the
topological laser. The thick black lines correspond to the logarithm of the temporal correlation for a given site on the edge of the lattice.
The thin dashed lines show the temporal evolution of the coherence − log gð1ÞCMðtÞ seen from the reference frame comoving with the edge
state. For increasing system sizes and a given temporal window, a crossover between an exponential (red fits) and a KPZ (cyan fits)
decay of the coherence is observed. The amplitude of the oscillations is inversely proportional to the spatial coherence of the device. In
the long-time limit, only the global phase matters, and the oscillations fade away.
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local minima of − log gð1ÞðtÞ corresponding to local
maxima of the coherence. As they originate from chiral
motion of fluctuations around the system, these oscillations
have a period Nx=vg. The value of the coherence at these
minima provides a discrete sampling of the equal-space

coherence function gð1ÞCMðtÞ. Similarly, the local maxima

(minima of coherence) provide a sampling of gð1ÞCMðNx=2; tÞ.
Looking at the envelope of the minima for the largest

system, we see that the agreement of Fig. 7(c) with the KPZ
result is very good. In particular, it makes a clear distinction
from the predictions of the linear Edwards-Wilkinson
model for which the exponent would be different. Note
also that the oscillations in − log gð1ÞðtÞ are well visible at
short times but fade away at long times, where only the
global phase of the field over the whole lattice matters and
no oscillation is any longer visible. For the same reason,
monitoring a resonator in the bulk would show a fast initial
decay, but at long times the phase diffusion would recover
the same value as on the edge, as sketched in Fig. S2 [54].
For the smaller systems, the different functional form

shown in Fig. 7(a) displays an exponential decay of the
late-time coherence. As one can see comparing with
Fig. 7(b), the late-time exponential decay is always there;
it is just pushed to extremely long times in the largest
systems. This result is in close analogy with what we find in
Sec. II C for the trivial system.

2. Linearized Bogoliubov prediction for the linewidth

The natural question is now to estimate the rate of this
exponential decay and see how it scales with the size of the
system. As a first step, we adopt a linearized Bogoliubov
approach. For generic systems of N sites (labeled as x⃗) of
arbitrary dimensionality, let us call Llas the 2N × 2N
Bogoliubov matrix of the linearized dynamics on top of
the lasing steady state. Let V ¼ fVx⃗σ;pg be the invertible
matrix which diagonalizes Llas, where the pseudospin σ ¼
↑;↓ indicates the particle and hole components of the
Bogoliubov problem and p labels the 2N eigenmodes.
The Goldstone mode Vx⃗σ;G, that we assume to be unique
with all other excitations having a finite lifetime, is the
eigenstate with zero eigenvalue. As usual, its spatial shape
follows the one of the lasingmode. The effectivenoise acting
on the lasingmode is determinedby the projectionof thebare
noise on it. For generality, we consider a position-dependent
bare noise Dx⃗. Then, in the Bogoliubov approximation,
the phase drift associated with the Goldstone mode is given
by

hΔtϕ
2i ¼ Φ2

G

X
x⃗

Dx⃗ðV−1ÞG;x⃗↑ðV−1ÞG;x⃗↓jtj; ð32Þ

where the summation represents the projection of the noise
on the Goldstone mode and

ΦG ¼ ΦGðx⃗Þ ¼
−i

n0ðx⃗Þ
½ψ�

0ðx⃗ÞVx⃗↑;G − ψ0ðx⃗ÞVx⃗↓;G� ð33Þ

is actually independent of x⃗ and provides the normalization
of the Goldstone mode phase component.
For a system which is translationally invariant along x,

the Bogoliubov matrix can be made block diagonal
Llas ¼ ⨁

kx

LlasðkxÞ with the transverse part of the

Goldstone Vyσ;G diagonalizing the kx¼0 block. Then,

in Eq. (32), one should replace
P

x⃗ → Nx
P

y, ψ0ðx⃗Þ ¼
ψ0ðyÞeiklasx x → ψ0ðyÞ and, choosing the standard normali-
zation of the modes, Vx⃗σ;G → Vyσ;G=

ffiffiffiffiffiffi
Nx

p
, V−1

G;x⃗σ →

V−1
G;yσ=

ffiffiffiffiffiffi
Nx

p
. This approach leads us to write τST ¼

NxτST;1, where τST;1 does not depend on Nx but in a subtle
and weak way via the discretization of klasx .
If VV† ¼ 1, a very clear expression holds for the

Schawlow-Townes line:

γST ¼
P

x⃗Dx⃗nx⃗
n2tot

¼ Dn

ntot
ð34Þ

with ntot ¼
P

x⃗ nx⃗ and Dn ¼
P

x⃗ Dx⃗nx⃗=
P

x⃗ nx⃗. This
expression is, for instance, the case of a spatially uniform,
topologically trivial system, for which the different wave
vectors decouple and the sector of Llasðkx ¼ 0Þ, corre-
sponding to the lasing wave vector k⃗las, is diagonalized by a
2 × 2 unitary matrix VV† ¼ 1, since modulus and phase are
decoupled for the lasing mode.
The situation is a bit more complicated in the topological

case: The kx ¼ 0 sector has dimension 2Ny × 2Ny and V is
not unitary VV† ≠ 1, so the theory discussed above does
not hold. However, for the considered parameters it turns
out that VV† ≃ 1, so the approximate expression

τST ¼ 2

γST
≃ 2

½Px;ynx;y�2P
x;ynx;yDx;y

¼ 2Nx

P
yn1;y
Dn

ð35Þ

is expected to provide an accurate approximation. In the
standard laser theory, the nonorthogonality of V is also
known under the terminology of Petermann factor and
excess noise [47,48]. The transverse Petermann factor,
defined here as the ratio K ¼ ½γST=ðDn=ntotÞ�, for the
topological laser device is around K ≃ 1.002 for J ¼ 5γ
and K ≃ 1.1 for J ¼ 0.5γ (the difference to be attributed
to gain guiding), meaning that, within the linearized
Bogoliubov approximation, the laser emission is for all
practical purposes determined only by the total number of
photons in the device, which is the textbook, optimal case.
This result confirms that topological guiding in the edge
mode is immune from the linewidth-broadening effects
typical of lasing in open resonators with gain guiding.
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3. Numerical results for the linewidth

In order to assess the validity range of the Bogoliubov
calculation, numerical simulations of the stochastic equa-
tions are performed for the full two-dimensional model.
The numerical predictions for the coherence time of the
topological laser are shown by the red and orange
triangles in Fig. 2 as a function of the system size.
The dashed line shows the theoretical prediction Eq. (32).
From these results, one concludes that the topological
laser behaves again similarly to the topologically trivial
one-dimensional laser array: On one hand, the agreement
with the Bogoliubov-Schawlow-Townes model of phase
diffusion is excellent for small Nx and the coherence
grows proportionally to Nx. On the other hand, a much
slower growth of the coherence time with Nx is found for
larger systems.
As a final point, it is interesting to note that the

Bogoliubov-Schawlow-Townes prediction that well cap-
tures the emission linewidth for small systems does not
depend on Jeff nor on the dispersion of the Bogoliubov
modes at kx ≠ 0. On the other hand, the deviation observed
for larger systems does strongly depend on Jeff , which
pinpoints the crucial role of the KPZ nonlinearities illus-
trated above [66].

IV. LASING WITH ON-SITE DISORDER

The general message of the previous section is that the
coherence properties of a topological laser follow the same
KPZ dynamics as the ones of a topologically trivial, one-
dimensional laser array. This conclusion is not restricted
to the well-known KPZ features in the infinite system limit
but also applies to the dependence of the coherence time
on the system size and to its marked deviations from the
Bogoliubov-Schawlow-Townes prediction.
In this section, we investigate the effect of static

disorder on the coherence of the laser emission. A certain
degree of fabrication imperfections and inhomogeneities
is, in fact, expected to be always present in any real
device. As we are now going to see, our numerical study
points out a dramatically different behavior of topologi-
cally trivial vs topological systems: Disorder has a strong
impact on the coherence of a topologically trivial system,
a small amount of disorder being able to give a wide
range of realization-dependent, chaotic, and multimode
phenomena. On the other hand, the temporal coherence
of a topological laser is robust against a sizable disorder,
and emission remains well monochromatic as long as the
disorder magnitude is not so large to close the topologi-
cal gap.

A. Lasing in a nontopological
one-dimensional array with disorder

We start by considering the effect of on-site disorder on
the lasing properties of a nontopological array of

resonators. We do not aim here to a general discussion
of the theory of lasing in disordered systems or to make a
connection with random lasers [67], but our purpose is just
to provide a benchmark to assess the features of a
topological laser.
Along all this section, a disordered potential is added to

Eqs. (7) and (20) in the form

i∂tψ x⃗ ¼ � � � þWGð0; 1Þψ x⃗; ð36Þ

where Gð0; 1Þ is a Gaussian random variable with mean 0
and variance 1. For the sake of definiteness, we restrict here
to the Nx ¼ 128 and J ¼ 5γ case. The lasing dynamics in
the presence of disorder is, in general, very complex, but,
since our ultimate goal is a qualitative comparison with the
topological laser, we focus here on the coherence time
of the system for various values of disorder W and, in
particular, on whether there is a clear threshold value of
disorder above which coherence collapses.
For linear waves, the sensitivity of the eigenstates at a

given energy to a static perturbation is proportional to the
spectral density of states. Then, in order to have a fair
comparison of the trivial and topological cases, we consider
lasing both at klas ¼ 0 and at klas ¼ 2π 13

128
. This latter case

has a finite group velocity (and, hence, a density of states)
comparable to the one of the chiral edge mode of the
Harper-Hofstadter model in its central part, and for these

FIG. 8. Topological robustness of the temporal coherence. Plot
of the coherence time normalized to the clean system value, as a
function of the strengthW of the disorder. Different markers refer
to different realizations of disorder. Blue and green markers
are for a nontopological one-dimensional laser array lasing at
klas ¼ 0 (blue) or klas ¼ 2π 13

128
(green). Red markers are for the

topological laser with periodic boundary conditions (squares and
triangles) and with open boundary conditions (crosses). The same
marker shapes correspond to the same spatial distribution of the
disorder potential except for the overall strength W.
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reasons we propose it as the proper benchmark for the
topological laser.
In Fig. 8, we plot the coherence time normalized to the

value in the absence of disorder. In particular, we use an
exponential fit to extract the coherence time τc for each site
[an exponential fit is used even if the shape of gð1ÞðtÞ is, in
general, very complex], and we plot the average over the
lattice. Markers with the same shape indicate that the same
realization of disorder and the same initial conditions are
used, while only the overall strength factor W is varied.
Looking at the blue and green points in the plot, we see

that already a very small disorder has a marked impact on
the coherence time of the device. As expected, the threshold
value depends on klasx , as visible comparing the blue dataset
for lasing at klas ¼ 0 and the green dataset for a finite klas

where the density of states is smaller. While a detailed
description of the variety of possible behaviors for different
disorder realizations goes beyond the scope of this work,
some illustrative examples are shown in Supplemental
Material [54]. In particular, for intermediate disorder
W ∼ 0.08J, laser operation may get fragmented with
different portions of the sample lasing at different frequen-
cies [see Figs. S7(c) and S7(d) in Ref. [54] ]. Calculations
for different realizations of disorder suggest that coherence
can be greatly reduced even in the absence of fragmentation
[as shown in Fig. S7(b)] and without affecting the intensity
of the field, thus showing that there is no general one-by-
one correspondence between the power slope efficiency
and the robustness of coherence robustness to static
disorder. Finally, curious nonmonotonic behaviors can also
be observed in some other realizations.

B. Lasing in a topological disordered system

The same protocol is repeated for the topological laser
on a Nx ¼ 128 times Ny ¼ 12 stripe with J ¼ 5γ, periodic
boundary conditions along y and gain localized on the
y ¼ 1 row of sites. The results are reported as red datasets
in Fig. 8. Simulations are also performed with fully open
boundary conditions and gain distributed along the whole
edge, yielding the same conclusions. In contrast to the
nontopological case discussed in the previous subsection,
the behavior of the topological laser remains quite regular
in the presence of disorder, and different realizations show
very similar features.
For weak disorder strengthsW, disorder has a negligible

impact: As naively expected, scattering on defects is
topologically suppressed, as the laser field in the chiral
edge mode is able to continuously travel around the system
almost undisturbed. The temporal and spatial coherence
properties of the clean system are, thus, very well preserved
(as apparent in Fig. S8 [54]). For strong disorders,
topological protection breaks down, and the coherence
displays a marked threshold at a value of disorder Wc ∼ J,
that is, on the order of the topological gap of the underlying

Harper-Hofstadter model. Beyond this value, spatial and
temporal coherence are rapidly lost.
The most intriguing regime is for intermediate values

of the disorder strength, where we observe a surprising
and systematic enhancement of the temporal coherence.
A tentative explanation for this expected behavior can be
put forward in terms of the KPZ dynamics. Even though
they are too small to destroy the topology, these values of
W=J are strong enough to hamper the nonlinear phase
dynamics that is responsible for the deviation from the
Bogoliubov-Schawlow-Townes prediction seen in Fig. 2.
As a result, for intermediateW the coherence time recovers
the Bogoliubov-Schawlow-Townes prediction (32).
This interpretation is substantiated by the analysis

reported in Fig. 9. As a first step, in Fig. 9(a), we plot
the real and imaginary parts of the lowest Bogoliubov
eigenfrequencies [39,62] for a few realizations of disorder
and different disorder strengths indicated by the shape and
color of the markers. As usual in such calculations, the
computation consists in reaching the noiseless steady state
via the deterministic evolution in the presence of disorder
and then finding the eigenmodes of the linearized evolution
around the steady state by diagonalizing Bogoliubov
matrix. From the plot, it is apparent how disorder has a
strong effect in reducing the lifetime of the excitation
modes. Physically, this behavior can be understood in terms
of the fluctuation modes being pushed by the disorder
deeper into the nonamplifying bulk of the lattice. Since the
Bogoliubov-Schawlow-Townes coherence time is not sen-
sitive to the decay rate of fluctuation modes, this effect is,
however, not enough to explain the numerical observation
shown in Fig. 8: As reported in the inset, a computation
using the linearized Bogoliubov-Schawlow-Townes recipe
of Eq. (35) rather predicts a slightly decreased coherence
time for increasing disorder.
On the other hand, as the precursor of KPZ physics in a

linearized analysis is typically given by the softening of the
Bogoliubov modes, the faster decaying modes reported in
Fig. 9(a) hint at a suppression of the effective nonlinear
coupling responsible for the KPZ-broadened linewidth.
This intuition is quantitatively tested by repeating our
calculation of the coherence time for different system
sizes. As we have seen in Fig. 2, the KPZ nonlinearity
has, in fact, no effect on small systems, but it dramatically
reduces the coherence of large systems.
Figures 9(b) and 9(c) fully confirm this mechanism. For

the small Nx ¼ 32 system size for which Fig. 2 shows an
accurate agreement with Schawlow-Townes, we find in
Fig. 9(b) that no enhancement is present and the coherence
time remains nearly constant up to the threshold value Wc
for which topological protection is broken. Figure 9(c)
shows the same data on a different scale, with the coherence
time normalized to the Bogoliubov-Schawlow-Townes
prediction plotted in the inset in Fig. 9(a). For small lattices
Nx ¼ 32, the relative coherence time τc=τST ≈ 1 up to Wc,
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showing that the Bogoliubov-Schawlow-Townes prediction
is accurate and the KPZ nonlinearity plays no role. For the
large system with Nx ¼ 128, the relative coherence time
τc=τST is suppressed at small disorders by the KPZ non-
linearity and recovers the unit value only as the threshold
Wc is approached and the KPZ nonlinearity is no longer
effective. We check that these considerations remain valid
for different noise distributionDx;y, as displayed in Fig. S9.
As a last point, it is worth commenting on the depend-

ence of these results on the specific value of klas, that is, the
winding number klasNx=ð2πÞ of the lasing mode. For a
nontopological one-dimensional system, we see in the blue
and green datasets of Fig. 8 that lasing at different klas gives
very different robustness to disorder. On the other hand, we
find that topological lasing is quite insensitive to the
specific value of klas that can be chosen for laser operation
[30]. The simulations of the topological laser can thus be
started with arbitrary initial conditions on the field, finding
almost identical behaviors at the steady state. This result
further demonstrates that the topological device is able to
automatically reach a stable and coherent steady-state
emission.

V. DISCUSSION

As stated in the introduction, our calculations are based
on a simple model that brings together two main ingre-
dients: laser oscillation, meant as an archetype of nonlinear
physics, and topologically protected chiral edge states.
Within this idealized model, we give a rather complete
treatment of the spatiotemporal coherence properties of
topological laser emission. While our predictions may
directly apply to class-A laser devices, many additional

elements are neglected that would be essential to describe
those semiconductor laser that are of strongest interest for
applications. In this subsection, we discuss to what extent
our results are expected to apply to realistic devices, in
particular, the recent semiconductor-based realizations
[17,19,20,22,23,27], and in which properties the main
deviations are expected to occur.
A first crucial issue to be carefully considered is the

actual validity of the tight-binding approximation for a
specific topological photonic system and the possibility of a
complex nonlinear dependence of the tight-binding param-
eters on the circulating light intensity. The tight-binding
approximation performed in our calculations consists in
solving the nonlinear dynamics of the field on a discrete
lattice of coupled single-mode resonators instead of dealing
ab initio with the full nonlinear Maxwell equations in the
microscopic geometry of the underlying topological struc-
ture. To this latter purpose, powerful methods have been
developed in the past decades, e.g., the so-called SALT—
steady-state ab initio laser theory [38]—but they remain
computationally very expensive compared to the tight-
binding model: They allow one to compute the determin-
istic steady state and then compute the Schawlow-Townes
linewidth within the linearized approach but have never
been pushed to more subtle spatiotemporal features in
spatially extended systems. This computation is a computa-
tionally very challenging task that will be subject of further
investigations.
Concerning the gain mechanism, in this work we focus

our attention on an idealized gain mediumwhere the optical
nonlinearity reduces to gain saturation and does not affect
the real part of the refractive index. Furthermore, we also
assume that the gain medium has a temporally

(a) (b) (c)

FIG. 9. (a) Bogoliubov modes ωλ in the Goldstone dome for a Nx ¼ 128; J ¼ 5γ topological array in the presence of disorder, plotted
as Imωλ versus Reωλ. Different marker shapes correspond to different realizations of disorder, and colder to warmer colors point at
increasing values ofW=J. Remarkably, the lifetime of the Bogoliubov modes is significantly reduced forW ∼ 0.5J, so that longer times
and larger arrays are required to observe appreciable nonlinear effects in the phase dynamics. Inset: Bogoliubov-Schawlow-Townes
prediction for the coherence time τST for increasing disorder strength W=J, plotted in units of the coherence time in the clean sample.
(b) Plot of the ratio τcðWÞ=τcð0Þ as a function of the disorder strength W=J for different system sizes Nx ¼ 32, 80, 128; in particular,
note how the enhanced coherence time at intermediate W=J is observed only for large enough systems. (c) Plot of the ratio
τcðWÞ=τSTðWÞ as a function of disorder strengthW=J for different system sizes Nx ¼ 32, 64, 128, showing how the linewidth recovers
the Bogoliubov prediction for smaller arrays and for stronger disorder close to the threshold.
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instantaneous response. This approximation is good for a
gain medium with a fast relaxation rate, in which the
electronic dynamics in the medium can be adiabatically
eliminated in favor of the electromagnetic field dynamics.
While this approximation is appropriate for so-called class-
A lasers, making quantitative predictions for specific
semiconductor laser devices requires extending our theory
to go beyond these approximations, which will be the
subject of future work.
Still, in spite of all these complexities of real-life

systems, we do not expect that the additional elements
will introduce major changes to the qualitative features of
the long-time, large-distance physics. For instance, it is
shown in Refs. [40,43,45] that the characteristic length and
timescales over which the KPZ regime is observed are, of
course, modified in the presence of reactive optical non-
linearities, but not the universal scaling behavior.
But one must not forget that all our theory applies only as

long as the additional features—in particular, the slow
carrier dynamics—do not introduce dynamical instabilities
akin to those predicted in Refs. [36,39,68] or multimode
lasing behaviors. Developing a theoretical framework able
to predict the single- or many-mode behavior of a specific
laser device and to understand the actual advantage of
topology [69] in stabilizing single-mode emission is an
extremely challenging task which will most likely require a
full microscopic theory. In any case, inspection of the
experimental spectra reported in Refs. [18,20] agree with
our numerical calculation in giving a stable single-mode
emission, so this challenge does not appear to be a concern
for existing experiments.
More specifically, it is well known that the details of the

gain medium [35,71] can have a sizable impact on the
linewidth, but they typically do not change the exponential
functional form of the long-time coherence decay. In
particular, the intensity dependence of the refractive index
is typically responsible of an additional linewidth-broad-
ening effect as intensity fluctuations translate (often in a
temporally nonlocal way determined by the carrier dynam-
ics) into fluctuations of the cavity mode frequency and,
thus, in a diffusion of the phase. The ensuing linewidth-
broadening effect is quantified by the so-called Henry
factor, which in semiconductor lasers can be as large as a
few tens. In realistic topological lasers, we expect that this
broadening source will sum up with the Petermann factor
and the broadening factor arising from the nonlinear KPZ
phase dynamics illustrated in Fig. 2.
The effect of a noninstantaneous response of the gain

medium on the linewidth requires some distinctions. On
one hand, a slow carrier dynamics breaking our adiabaticity
assumption should not introduce any additional linewidth-
broadening effect [35]. On the other hand, the restricted
frequency band of gain that is often associated to a
noninstantaneous response of the gain medium may
enhance both spatial and temporal coherence, since lasing

typically occurs at the point of maximum gain and the
weaker amplification of fluctuating side modes results in a
faster effective damping ν in Eq. (11) and η in Eq. (27). A
theoretical study of the role of a frequency-dependent
amplification in favoring laser operation in the topological
edge modes over bulk modes as observed in Ref. [20] will
be the topic of a forthcoming publication [72].
Finally, even though in this work we have chosen the

strength of the noise having in mind the ultimate limit set
by spontaneous emission, our semiclassical analysis
extends straightforwardly to include any additional source
of noise which gives homogeneous broadening. In this way,
one can deal with a wide range of practical applications
where a Lorentzian linewidth is observed, possibly much
broader than the Schawlow-Townes limit. In contrast,
genuinely quantum fluctuation effects are expected to
become important in the case of multimode lasing [73]
and in the presence of strong optical nonlinearities. These
interesting issues require a specific study; in particular, the
role of topology in these regimes remains unexplored.
In summary, in this concluding section, we have dis-

cussed a number of physical effects that were neglected in
our model but will need be taken into account to get a
quantitative description of experiments. Still, since our
conclusions on the spatiotemporal coherence are based on
universal properties, we can anyway expect that they are
independent of the underlying microscopic model, so they
should extend to generic realizations of the topological
laser concept by adjusting the effective length and time-
scales appearing in the correlation functions, irrespectively
of the specific material platform under investigation. The
only crucial assumption—apparently well verified in the
recent experiments [18,20]—is that no dynamical insta-
bilities occur, so the dynamics can be described by a
classical stochastic field oscillating at a unique carrier
frequency, or in the laser terminology, that the emission is a
single-mode one.

VI. CONCLUSIONS

In this work, we have investigated the spatiotemporal
coherence properties of arrays of coupled laser resonators,
discussing analogies and differences between lasing in a
nontopological one-dimensional chain and chiral edge-
state lasing in a 2D topological Harper-Hofstadter lattice.
A main focus of our work has been to clarify how the
spatial fluctuations of a nonequilibrium classical field
impact on its temporal coherence.
As a common feature of both nontopological and

topological laser arrays, we have highlighted the crossover
for growing observation times from a Kardar-Parisi-Zhang
scaling of the temporal coherence to a Schawlow-Townes-
like phase-diffusion regime. Furthermore, for growing
system sizes the long-time phase diffusion rate displays
a crossover from the standard Bogoliubov-Schawlow-
Townes linewidth with an optimal, near unity Petermann
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factor, to a faster decoherence determined by the nonlinear
dynamics of spatial fluctuations encoded in the KPZ
dynamics.
Crucial consequences of topology have instead been

identified in disordered systems, where the chiral motion of
the lasing mode entails a much larger resilience to fab-
rication imperfections. For the nontopological arrays, dis-
order is, in fact, able to spatially localize the lasing mode
and/or break it into several disconnected and incoherent
pieces. On the other hand, the topological protected chiral
motion of the edge state of a topological laser device is able
to phase lock the different sites and, thus, maintain the
spatial and temporal coherence across the whole sample up
to much larger values of the disorder strength on the order
of the topological gap.
These results confirm the strong promise that topological

lasers hold for practical optoelectronic applications where
one needs to make an array of many lasers to phase lock
and emit as a single laser. Also, on the fundamental science
side, topological laser are extremely promising to suppress
undesired spatial inhomogeneities and boundary effects in
experimental studies of the critical properties of different
nonequilibrium statistical models [74].
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André, J. Staehli et al., Bose–Einstein Condensation of
Exciton Polaritons, Nature (London) 443, 409 (2006).

[50] I. Carusotto and C. Ciuti, Quantum Fluids of Light, Rev.
Mod. Phys. 85, 299 (2013).

[51] M. Lax, Classical Noise. V. Noise in Self-Sustained Oscil-
lators, Phys. Rev. 160, 290 (1967).

[52] M. Scully and M. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, England, 1997).

[53] M. Wouters and I. Carusotto, Excitations in a Nonequili-
brium Bose-Einstein Condensate of Exciton Polaritons,
Phys. Rev. Lett. 99, 140402 (2007).

[54] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.041060 for details on
the derivation of the modulus-phase equations, numerical
determination of the linewidth, open boundary conditions,
finite size effects and examples of disordered lasing.

[55] K. Ueno, H. Sakaguchi, and M. Okamura, Renormalization-
Group and Numerical Analysis of a Noisy Kuramoto-
Sivashinsky Equation in 1þ 1 Dimensions, Phys. Rev. E
71, 046138 (2005).

[56] M. Prähofer and H. Spohn, Exact Scaling Functions for
One-Dimensional Stationary KPZ Growth, J. Stat. Phys.
115, 255 (2004).

[57] Note that the small downward deviations that are visible on
the black curves next to the right edge of the plotting
window [in particular, in Fig. 1(a)] are a numerical artifact
due to the large statistical spread of the late-time points. An
explanation of its origin is given in Sec. SII of Supplemental
Material [54].

[58] Note that the numerical effort required for these calculations
grows up rapidly with Nx, since one has to access the

THEORY OF THE COHERENCE OF TOPOLOGICAL LASERS PHYS. REV. X 10, 041060 (2020)

041060-19

https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1103/PhysRevLett.120.113901
https://doi.org/10.1038/s41377-019-0149-7
https://doi.org/10.1038/s42005-018-0083-7
https://doi.org/10.1515/nanoph-2019-0376
https://doi.org/10.1038/s41586-020-1981-x
https://doi.org/10.1038/s41565-019-0584-x
https://doi.org/10.1038/s41565-019-0584-x
https://doi.org/10.1103/PhysRevX.10.011059
https://doi.org/10.1103/PhysRevX.10.011059
https://doi.org/10.1103/PhysRevResearch.1.033148
https://doi.org/10.1103/PhysRev.112.1940
https://doi.org/10.1364/OL.9.000125
https://doi.org/10.1364/OL.9.000125
https://doi.org/10.1063/1.94729
https://doi.org/10.1063/1.94729
https://doi.org/10.1063/1.5028453
https://doi.org/10.1103/PhysRevA.91.063806
https://doi.org/10.1209/0295-5075/122/14004
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1103/PhysRevA.74.043822
https://arXiv.org/abs/1912.03911
https://doi.org/10.1103/PhysRevA.90.023615
https://doi.org/10.1103/PhysRevX.5.011017
https://doi.org/10.1103/PhysRevB.91.045301
https://doi.org/10.1103/PhysRevB.92.155307
https://doi.org/10.1103/PhysRevE.96.012220
https://doi.org/10.1103/PhysRevB.97.195453
https://doi.org/10.1103/PhysRevB.97.195453
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevA.39.1253
https://doi.org/10.1103/PhysRevA.39.1253
https://doi.org/10.1103/PhysRevA.39.1264
https://doi.org/10.1103/PhysRevA.39.1264
https://doi.org/10.1038/nature05131
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/PhysRev.160.290
https://doi.org/10.1103/PhysRevLett.99.140402
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041060
https://doi.org/10.1103/PhysRevE.71.046138
https://doi.org/10.1103/PhysRevE.71.046138
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc


dynamics at very long times, larger than the KPZ saturation
time scaling as ∼N3=2

x . For this reason, a statistical analysis
of the errors is restricted to the Nx ¼ 128; J ¼ 5γ case, as
expanded in Sec. SII of Supplemental Material [54].

[59] I. Amelio, A. Chiocchetta, and I. Carusotto, Theory of the
Linewidth of 1D Non-Equilibrium Quasi-Condensates (to
be published).

[60] A. Sinatra, Y. Castin, and E. Witkowska, Coherence Time of
a Bose-Einstein Condensate, Phys. Rev. A 80, 033614
(2009).

[61] V. Peano, M. Houde, F. Marquardt, and A. A. Clerk,
Topological Quantum Fluctuations and Traveling Wave
Amplifiers, Phys. Rev. X 6, 041026 (2016).

[62] P. Zapletal, B. Galilo, and A. Nunnenkamp, Long-Lived
Elementary Excitations and Light Coherence in Topological
Lasers, Optica 7, 1045 (2020).

[63] I. L. Aleiner, B. L. Altshuler, and Y. G. Rubo, Radiative
Coupling and Weak Lasing of Exciton-Polariton Conden-
sates, Phys. Rev. B 85, 121301(R) (2012).

[64] S. L. Harrison, H. Sigurdsson, and P. G. Lagoudakis,
Synchronization in Optically Trapped Polariton Stuart-
Landau Networks, Phys. Rev. B 101, 155402 (2020).

[65] Actually, also the dependence on Γeff is such that, given the
measured n0, any uncertainty on the value of Peff affects
only the KPZ coefficient of the Laplacian.

[66] For this plot, we choose the klasx corresponding to the
maximally localized Harper-Hofstadter eigenvector, but
the results are qualitatively independent of this choice.
Fixing klasx is, however, needed if one is to compute the
KPZ correlation functions by running parallel simulations.

[67] D. S. Wiersma, The Physics and Applications of Random
Lasers, Nat. Phys. 4, 359 (2008).

[68] F. Baboux, D. D. Bernardis, V. Goblot, V. N. Gladilin, C.
Gomez, E. Galopin, L. L. Gratiet, A. Lemaître, I. Sagnes, I.
Carusotto, M. Wouters, A. Amo, and J. Bloch, Unstable and
Stable Regimes of Polariton Condensation, Optica 5, 1163
(2018).

[69] Certainly, the fact that the edge and bulk HH modes have
very different spatial profiles can be helpful to achieve this
goal, as pointed out also in connection to supersymmetric
laser arrays [70].

[70] M. Khajavikhan, M. Hokmabadi, J. H. Choi, and D.
Christodoulides, Topological and Supersymmetric Laser
Arrays (Conference Presentation), in Novel In-Plane Semi-
conductor Lasers XIX, Vol. 11301, edited by A. A. Belyanin
and P. M. Smowton (International Society for Optics and
Photonics, Bellingham, WA, 2020).

[71] D. M. Whittaker and P. R. Eastham, Coherence Properties
of the Microcavity Polariton Condensate, Europhys. Lett.
87, 27002 (2009).

[72] M. Secli and I. Carusotto, Harper-Hofstadter Topological
Laser with Frequency-Dependent Gain, in Proceedings of
the
2019 Conference on Lasers and Electro-Optics Europe
European Quantum Electronics Conference (CLEO/
Europe-EQEC) (2019), https://ieeexplore.ieee.org/abstract/
document/8872202.

[73] A. Pick, A. Cerjan, and S. G. Johnson, Ab Initio Theory of
Quantum Fluctuations and Relaxation Oscillations in Mul-
timode Lasers, J. Opt. Soc. Am. B 36, C22 (2019).

[74] F. Baboux, Kpz... (to be published).
[75] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,

Julia: A Fresh Approach to Numerical Computing, SIAM
Rev. 59, 65 (2017).

IVAN AMELIO and IACOPO CARUSOTTO PHYS. REV. X 10, 041060 (2020)

041060-20

https://doi.org/10.1103/PhysRevA.80.033614
https://doi.org/10.1103/PhysRevA.80.033614
https://doi.org/10.1103/PhysRevX.6.041026
https://doi.org/10.1364/OPTICA.391718
https://doi.org/10.1103/PhysRevB.85.121301
https://doi.org/10.1103/PhysRevB.101.155402
https://doi.org/10.1038/nphys971
https://doi.org/10.1364/OPTICA.5.001163
https://doi.org/10.1364/OPTICA.5.001163
https://doi.org/10.1209/0295-5075/87/27002
https://doi.org/10.1209/0295-5075/87/27002
https://ieeexplore.ieee.org/abstract/document/8872202
https://ieeexplore.ieee.org/abstract/document/8872202
https://ieeexplore.ieee.org/abstract/document/8872202
https://ieeexplore.ieee.org/abstract/document/8872202
https://doi.org/10.1364/JOSAB.36.000C22
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

