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We study the quantum dynamics of massive impurities embedded in a strongly interacting, two-
dimensional atomic gas driven into the fractional quantum Hall (FQH) regime under the effect of a
synthetic magnetic field. For suitable values of the atom-impurity interaction strength, each impurity can
capture one or more quasihole excitations of the FQH liquid, forming a bound molecular state with novel
physical properties. An effective Hamiltonian for such anyonic molecules is derived within the Born-
Oppenheimer approximation, which provides renormalized values for their effective mass, charge, and
statistics by combining the finite mass of the impurity with the fractional charge and statistics of the
quasiholes. The renormalized mass and charge of a single molecule can be extracted from the cyclotron
orbit that it describes as a free particle in a magnetic field. The anyonic statistics introduces a statistical
phase between the direct and exchange scattering channels of a pair of indistinguishable colliding
molecules and can be measured from the angular position of the interference fringes in the differential
scattering cross section. Implementations of such schemes beyond cold atomic gases are highlighted—in
particular, in photonic systems.
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I. INTRODUCTION

The discovery of the fractional quantum Hall (FQH)
effect in two-dimensional (2D) electron gases under a
strong transverse magnetic field [1–3] is a cornerstone of
modern physics. Not only did it pave the way towards the
study of topological phases of matter [4], but it also
changed the paradigm of the boson-fermion dichotomy
when the possibility of observing quasiparticles with
fractional statistics (and fractional charge) in 2D systems
was proposed, the so-called anyons [5–10]. Such exotic
quasiparticles have been predicted to arise as emergent
excitations of FQH fluids with different properties, depend-
ing on the fluid density and the applied magnetic field [2].
In addition to their intrinsic interest as exotic quantum
mechanical objects, in recent years, they have also attracted
much attention for the crucial role that they are expected to
play in the development of fault-tolerant quantum com-
puters [11]. The existence of fractionally charged quasi-
particles on the edges of a 2D electron gas in the FQH state
was confirmed by shot-noise experiments [12]. Individual

fractionally charged states localized in the bulk of a FQH
have been imaged using a scanning single-electron tran-
sistor in Ref. [13]. In contrast, a clear signature of fractional
statistics has long remained elusive [14,15]. Very recently,
the consequences of fractional statistics were observed in a
mesoscopic electronic device as a generalized exclusion
principle in a current-current correlation measurement at
the output of a beam splitter [16].
In parallel to these studies in the electronic context of

solid-state physics, impressive developments in the exper-
imental study of ultracold atomic gases [17] opened the
door to the exploration of topological phases of matter
using these highly controllable quantum systems [18].
Several protocols have been investigated to drive a 2D
gas of ultracold atoms into the FQH regime. Conceptually,
the most straightforward one relies on the Coriolis force
experienced by neutral atoms set into rotation, which
formally recovers the Lorentz force felt by charged par-
ticles in a magnetic field. Alternative strategies to induce
effective Lorentz forces on neutral atoms involve the
application of suitable optical and magnetic fields in order
to associate a nontrivial Berry phase to the atomic motion
and generate a synthetic magnetic field [19,20]. At suffi-
ciently low temperatures and for sufficiently strong inter-
actions, the atoms are then expected to turn into a sequence
of strongly correlated FQH liquid states for growing values
of the angular speed or of the synthetic magnetic field
strength [2,3,21]. Pioneering experimental investigations in
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this direction were reported in Ref. [22], whereas different
protocols to access the FQH regime are being proposed for
both bosonic and fermionic cold atomic gases [23–28].
In the last decade, a new platform has emerged as a

promising candidate to study many-body physics, including
strongly correlated FQH liquids. Starting from microcavity
polaritons in semiconductor microstructures, assemblies of
photons in nonlinear optical devices are presently under
active study as the so-called quantum fluids of light [29,30].
In addition to the effective mass (typically induced by the
spatial confinement) and the binary interactions (mediated by
the optical nonlinearity of themedium), recent developments
have demonstrated synthetic magnetic fields and realized
various topological models for light [31]. The first exper-
imental study of the interplay of strong photon-photon
interactions with a synthetic magnetic field was reported
for a three-site system in Ref. [32]. The realization of a two-
particle Laughlin state was presented in Ref. [33] using the
giant nonlinearity of Rydberg polaritons and the synthetic
magnetic field of a twisted optical cavity [34].
In addition to these exciting experimental advances,

theorists have simultaneously started investigating new
strategies to probe, in an unambiguous way, the anyonic
nature of the excitations of quantum Hall fluids. A Ramsey-
like interferometry scheme to detect the many-body braiding
phase arising upon exchange of two anyonswas proposed for
a cold atom cloud in Ref. [35]. A related proposal exploiting
the peculiarities of driven-dissipative photonic systems was
presented in Ref. [36]. Spectroscopical consequences of the
Haldane exclusion statisticswere pointed out inRef. [37] and
soon translated to the photonic context in Ref. [38]. A subtle
quantitative relation between the density profile of quasi-
holes (QHs) and their anyonic statistics was theoretically put
forward in Refs. [39,40] and numerically confirmed for
discrete lattice geometries in Ref. [41]. Finally, random
unitary techniques to measure the many-body Chern number
were investigated in Ref. [42].
In analogy with polarons arising from the many-body

dressing of an impurity immersed in a cloud of quantum
degenerate atoms [43–45], a series of works [46–48] have
anticipated the possibility of using impurity particles
immersed in a FQH liquid to capture quasihole excitations
(that is, flux tubes) and thus generate new anyonic
molecules that inherit the fractional statistics of the quasi-
hole. Observable consequences of the fractional statistics
were pointed out in the fractional angular momentum of the
impurities and, correspondingly, in their correlation func-
tions and density profiles [46,49]. An interferometric
scheme to measure fractional charges by binding a mobile
impurity to quasiparticles was proposed in Ref. [50].
Alternative models where heavy particles may acquire
fractional statistics by interacting with phonons in the
presence of strong magnetic fields and/or fast rotation
were proposed in Refs. [51,52]. The transport properties of
impurities embedded in a Fermi gas in a (integer) Chern-

insulating state were recently studied in Ref. [53].
Spectroscopic signatures of the fractional statistics were
also anticipated for the threshold behavior of the neutron-
scattering and particle-tunneling cross sections of gapped
quantum spin liquids and fractional Chern insulators [54].
In the present paper, we take inspiration from the afore-

mentioned theoretical works and from the highly developed
experimental techniques that are available to address and
manipulate single atoms in large atomic gases to theoretically
illustrate how such anyonic molecules are a very promising
tool to observe fractional statistics and shine new light on the
microscopic physics of FQH fluids. In particular, we inves-
tigate the quantum mechanical motion of a few anyonic
molecules. Capitalizing on previous works, we provide a
rigorous derivation of the effectiveHamiltonian starting from
a controlled Born-Oppenheimer (BO) approximation
[55,56], where the positions of the impurities play the role
of the slow degrees of freedom, and the surrounding FQH
fluid provides the fast ones. Whereas bare quasiholes
typically do not support motional degrees of freedom
[57], the anyonicmolecule is found to display a fully fledged
spatial dynamics, with a mass determined by the impurity
mass supplemented by a nontrivial correction due to the
quasihole inertia. Binding to the QH also modifies the
effective charge of the impurity by including the Berry
phase [59] that the QH accumulates during its motion in
space. All together, an anyonic molecule then behaves as a
free charged particle in a magnetic field, whose cyclotron
radius provides detailed information on the renormalized
mass and on the fractional charge.
In the presence of two anyonic molecules, the fractional

statistics of the QHs results in a long-range Aharonov-
Bohm-like interaction between them. We illustrate the
consequences of this long-range topological interaction
in the simplest scattering process where two such objects
are made to collide. For both hard-disk and dipolar
interaction potentials, we calculate the differential scatter-
ing cross section for indistinguishable impurities, finding
that for large relative momenta, it features alternate maxima
and minima due to the interference of direct and exchange
scattering channels: Analogously to textbook two-slit
experiments, the interference pattern rigidly shifts when
the statistical phase that the anyonic molecules acquire
upon exchange is varied. This interference effect is instead
suppressed when distinguishable impurities are considered.
Experiments along these lines would therefore allow us to
confirm the existence of particles beyond the traditional
boson-fermion classification and to quantitatively measure
the statistics of the QHs in a direct way.
The structure of the article is the following. In Sec. II, we

review the system Hamiltonian. In Sec. III, we develop the
rigorous Born-Oppenheimer framework that we employ to
study the quantum dynamics of the anyonic molecules: In
Sec. III B, we establish the single-particle parameters of the
anyonic molecule, and in Sec. III C, we recover the
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interaction Hamiltonian between molecules. The theory of
two-body scattering is presented in Sec. IV, where we
summarize our predictions for the angular dependence of
the differential scattering cross section, and we highlight
the qualitative impact of the fractional statistics.
Conclusions are finally drawn in Sec. V.

II. PHYSICAL SYSTEM AND MODEL

We consider a system of quantum particles confined to
the two-dimensional x-y plane and formed by a small
number N of mobile impurities of mass M immersed in a
large bath of n ≫ N atoms of mass m in a FQH state. For
simplicity, in what follows, the former will be indicated as
impurities while the latter will be indicated as atoms. A
transverse and spatially uniform synthetic magnetic field
B ¼ Buz is applied to the whole system (where uz is the
unit vector in the z direction), and we consider that the
impurities and the atoms possess effective (synthetic)
charges Q and q, respectively.
In the particular case in which the magnetic field is

generated by rotating the trap around the z axis, the value of
these quantities is set by the atomic masses and the rotation
frequency of the trap ωrot via qB ¼ 2mωrot and QB ¼
2Mωrot [20,60]. In the spirit of Ref. [61], the corresponding
centrifugal force can be compensated by harmonic trap
potentials acting on each atomic species. Their strength has
to be adjusted to give the same trapping frequency ωhc ¼
ωrot for the two species.
Even though our discussion will be focused on atomic

systems, all our conclusions directly extend to any other
platform where quantum particles are made to experience a
synthetic gauge field and strong interparticle interactions—
for instance, photons in twisted cavity setups where Landau
levels [34] and Laughlin states [33] have recently been
observed. In this case, Rydberg atoms of two different
species giving rise to strongly interacting Rydberg polar-
itons will play the role of the atoms and the impurities.
Keeping this correspondence in mind, the model presented
in this section, as well as the experiments proposed in
Secs. III B and IV, can be directly translated to the optical
platform.
In ℏ ¼ 1 units, the system Hamiltonian reads

H ¼ Ta þ T i þ Vaa þ V ia þ V ii; ð1Þ

where

TaðfrjgÞ ¼
Xn
j¼1

1

2m
½−i∇rj − qAðrjÞ�2; ð2Þ

T iðfRjgÞ ¼
XN
j¼1

1

2M
½−i∇Rj

−QAðRjÞ�2; ð3Þ

VaaðfrjgÞ ¼ gaa
Xn
i<j

δðri − rjÞ; ð4Þ

Viaðfrjg; fRjgÞ ¼
Xn
i¼1

XN
j¼1

viaðri −RjÞ; ð5Þ

V iiðfRjgÞ ¼
XN
i<j

viiðRi −RjÞ: ð6Þ

We denote by rj and −i∇rj the position and canonical
momentum of the jth atom, while Rj and −i∇Rj

represent
those of the jth impurity. Here, AðrjÞ ¼ Bð−yj=2; xj=2; 0Þ
and AðRjÞ ¼ Bð−Yj=2; Xj=2; 0Þ are the vector potentials
corresponding to the synthetic magnetic field (B ¼ ∇ ×A)
at the positions of atoms and impurities, respectively.
The strength of the contact binary interaction between

atoms is quantified by the gaa parameter [62], whereas via
and vii denote the impurity-atom and impurity-impurity
interaction potentials, respectively. When the synthetic
magnetic field is large enough, the number of vortices
nv in the atomic fluid becomes comparable to the number n
of atoms. At low enough temperatures and for sufficiently
strong repulsive atom-atom interactions gaa, the atomic gas
enters the so-called FQH regime described by a rational value
of the filling fraction ν ¼ n=nv [2,3,60]. This incompressible
state is characterized by excitations with fractional charge
and statistics (quasiholes and quasiparticles).
As was first anticipated in Refs. [46–48], a repulsive

interaction potential via between the impurities and the
atoms leads to the pinning of quasihole excitations at the
impurities’ positions. As a result, quasiholes adiabatically
follow the motion of the impurity forming composite
objects that can be regarded as anyonic molecules. By
looking at the density pattern of quasihole excitations
shown in Refs. [63,64], we anticipate that the number of
quasiholes pinned by each impurity can be controlled via the
strength of via: A stronger and/or longer-ranged interaction
will provide space for more quasiholes bound to each
impurity. For the sake of simplicity, in this work, we focus
on the case of a single quasihole per impurity, but generali-
zation to the many-quasihole case is straightforward.
As a final assumption, we focus on impurity-impurity

potentials vii of a far larger range than both the atom-atom
and impurity-atom interactions and the QH extension. This
method will allow us to work with impurities that are
separated enough in space to give independent and non-
overlapping anyonic molecules that interact via the vii
potential with no correction due to the microscopic struc-
ture of the quasiholes. In particular, we focus on interaction
potentials with hard-disk or dipolar spatial shapes.
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III. BORN-OPPENHEIMER APPROXIMATION

Several authors have theoretically addressed the quan-
tum mechanics of mobile impurities immersed in FQH
fluids and have written effective Hamiltonians for the
motion of the resulting charge–flux-tube complexes [46–
48,50–53]. However, most such treatments were based on
heuristic models of the binding mechanism: While this was
sufficient to get an accurate answer for the synthetic charge
and the fractional statistics, it did not provide a quantitative
prediction for the mass of the anyonic molecule, which is,
in fact, determined by the bare mass of the impurity,
supplemented by a correction due to the inertia of the FQH
quasiholes.
To fill this gap, in this section, we summarize a rigorous

approach to this problem. The readers already familiar with
such effective Hamiltonians, and those not interested in the
technical details or the quantitative value of the parameters,
can jump to the experimental remarks in Sec. III B 3 and
then move on to the scattering theory in Sec. IV.

A. General framework

Our theoretical description is based on a Born-
Oppenheimer formalism in which we treat the impurities’
positions as the slowly varying degrees of freedom, while
those of the surrounding atoms play the role of the fast ones
[55,59,65]. For each position of the impurities, the atoms
are assumed to be in their many-body ground state, which
contains quasiholes at the impurities’ positions to minimize
the repulsive interaction energy. Given the spatial coinci-
dence of the impurity and the quasihole, in the following,
the positions of the resulting molecules will be indicated
with the same variablesRi. While our approach is known to
be exact for fixed impurities, it extends to moving impu-
rities as long as their kinetic energy is smaller than the
energy gap between the quasihole state and its first
excited state.
Under this approximation, the total wave function can be

factorized as

ψðfrig; fRig; tÞ ¼ φð0Þ
fRigðfrigÞχðfRig; tÞ; ð7Þ

where the wave function χðfRig; tÞ describes the quantum
motion of the impurities and the atomic wave function

φð0Þ
fRigðfrigÞ is the ground state of the Born-Oppenheimer

atomic Hamiltonian

HBO ¼ Ta þ Vaa þ V ia; ð8Þ

which includes the kinetic and interaction energy of the
atoms and the interaction potential between atoms and
impurities. In what follows, we use the shorthand notation r
and R to denote the sets of atom coordinates frig and of
impurity coordinates fRig.

In our specific FQH case with ν ¼ 1=w with positive and
integer-valued w, the atomic wave function can be written
in terms of the magnetic length lB ¼ 1=

ffiffiffiffiffiffi
qB

p
and the

complex in-plane coordinates z ¼ x − iy of the atoms as a
many-quasihole wave function of the Laughlin form

φð0Þ
R ðrÞ ¼ 1ffiffiffiffiffi

N
p

Yn
i¼1

YN
j¼1

ðzi − ZjÞϕLðfzigÞ: ð9Þ

The positions of the quasiholes are parameterically fixed by
the (complex) positions Z ¼ X − iY of the impurities,
while the last factor ϕL is the well-known Laughlin wave
function of the FQH state [66],

ϕLðfzigÞ ¼
Yn
i<j

ðzi − zjÞ1=νe−
P

n
i¼1

jzij2=4l2B : ð10Þ

In Eq. (9), the normalization constantN is chosen to ensure
the partial normalization conditionZ

d2nrjφð0Þ
R ðrÞj2 ¼ 1: ð11Þ

Provided that the impurities live in the bulk of the atomic

cloud far from its edges and from each other, the energy ϵð0ÞBO
of the Born-Oppenheimer ground state is independent of
the impurities’ positions R and can be safely neglected.
The dynamics of the anyonic molecules will be governed

by an effective Hamiltonian acting on the molecule wave
function χðRÞ,

Heff ¼ hφð0Þ
R jHjφð0Þ

R i; ð12Þ

which, as we discuss in full detail in the following
subsections, takes the form

Heff ¼
XN
j¼1

½−i∇Rj
−QAðRjÞ þAstat;jðRÞ�2

2M
þ V iiðRÞ;

ð13Þ

which combines the properties of impurities and
quasiholes.
Within this picture, each molecule then features a mass

M—only approximately equal to the one of the impurities,
see Sec. III B 1—and a total charge Q ¼ Q − νq resulting
from the sum of the bare charge Q of the impurity and the
one (−νq) of the quasihole—see Sec. III B 2. These values
are of course only accurate as long as the impurities are
located in a region of constant density of the atomic cloud,
that is, apart from each other in the bulk of an incom-
pressible FQH phase. Under this condition, both the BO

energy resulting from the interaction with the atoms ϵð0ÞBO
and the scalar potential arising in the BO approximation
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give spatially constant energy shifts that can be safely
neglected.
In addition to these single-particle properties, the mol-

ecules inherit the interaction potential V iiðRÞ between the
impurities and experience a Berry connection Astat;jðRÞ
that now depends on the position of all molecules and
encodes their quantum statistics. For the Abelian FQH
states under investigation here, we see in Sec. III C that the
effect of the Berry connectionAstat;j can be summarized by
a single statistical parameter determined by the filling ν of
the FQH atomic fluid, which indicates that the statistical
phase picked upon exchange of two molecules is expðiπνÞ.
If more Nqh > 1 quasiholes were pinned to the same
impurity, the statistical phase would grow quadratically
as N2

qhν [2].
Finally, note that we are restricting our attention to

anyonic molecules that are separated enough in space for
their internal structure not to be distorted by the interactions
with the neighboring molecules. This approximation is
expected to be accurate if the interimpurity distance is
much larger than the range of the atom-impurity potential
and the internal size of the quasihole—typically of the
order of the magnetic length lB [2]. Under this approxi-
mation, the values of the renormalized mass and of the
synthetic charge that we obtain for single molecules
directly translate to the many-molecule case, and the
interaction potential reduces to the interimpurity one vii
with no corrections from the microscopic structure of the
molecules.

B. Effective Hamiltonian for a single anyonic molecule

In this subsection, we investigate the parameters in the
effective Hamiltonian (13) that control the single-particle
physics of the molecules, namely, the renormalized mass
M and charge Q. A simple experimental configuration to
extract these values will also be proposed at the end of the
subsection.

1. Mass renormalization

A crucial, yet often disregarded feature of the BO
approximation is the renormalization of the effective mass
of the slow degrees of freedom. In molecular physics, such
a renormalization affects the effective mass of the nuclei
dressed by the electrons and is essential to guarantee
consistency of the description [56,59]. In our case, it
concerns the change of the effective mass of the impurity
when it is dressed by the quasihole excitation in the
surrounding FQH fluid. As far as we know, this feature
was always overlooked in previous literature, even though
it may give a quantitatively significant bias to observable
quantities such as the effective magnetic length considered
in Ref. [46].
In order to obtain a quantitative estimate for the effective

mass M, we generalize the molecular physics approach of

Ref. [56] by including the synthetic magnetic field in the
formalism. As discussed in detail in the Appendix A, one
needs to include the first perturbative correction to the BO
adiabatic approximation, which amounts to taking into
account the distortion of the quasihole profile due to the
motion of the impurity. To this purpose, we expand

φRðr; tÞ ≃ φð0Þ
R ðrÞ þ φð1Þ

R ðr; tÞ, where the BO wave func-

tion φð0Þ
R ðrÞ is obtained as the ground state of the

Hamiltonian (8) in the presence of a single impurity at
R and has the quasihole form (9) with N ¼ 1. While

φð0Þ
R ðrÞ only depends on the coordinate difference r −R,

the first-order perturbative correction φð1Þ
R ðr; tÞ depends on

the impurity speed.
Following the theory of Ref. [56], the mass tensor of the

molecule is then given at first order by

M ¼ M þ ΔM; ð14Þ

where M is the 2 × 2 unity matrix multiplied by the bare
impurity mass and the correction is such that the corre-
sponding kinetic energy

1

2
ΔMαβvαvβ ¼

Z
drφð1Þ�

R ðr; tÞ½HBO − ϵð0ÞBOðRÞ�φð1Þ
R ðr; tÞ

ð15Þ

recovers the increase in the BO energy due to the motion of
the impurity.
The correction φð1Þ

R ðr; tÞ to the atomic wave function is
obtained at the lowest perturbative level in the impurity
speed v ¼ ðvX; vYÞ by applying the inverse of the fast
Hamiltonian

½HBO − ϵð0ÞBO�φð1Þ
R ðr; tÞ ¼ vα∇αφ

ð0Þ
R ðrÞ ð16Þ

to the gradient of the atomic wave function with respect to
the in-plane coordinates of the impurity α ¼ fX; Yg. In
physical terms, this correction is such that the action of the
fast BO Hamiltonian HBO recovers the temporal evolution
of the BO wave function φRðtÞðrÞ due to the spatial
displacement of the impurity.
In our Laughlin case, it is easy to show that the gradient

of the atomic wave function with respect to R is propor-
tional to the wave function of the lowest excited state of
HBO,

∇Rφ
ð0Þ
R ðrÞ ¼ τ

lB
φðeÞ
R ðrÞ: ð17Þ

This excited state corresponds to a chiral ΔL ¼ −1
oscillation of the quasihole around the impurity [67]
and, for the simplest case of a single impurity located at
Z ¼ 0, its wave function [normalized as in Eq. (11)] has the
form
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φðeÞ
R ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi

N ðeÞ
p Xn

io¼1

Yn
i¼1
i≠io

ziϕLðfzigÞ: ð18Þ

While these results are enough to establish that the
correction to the mass tensor is diagonal in the X, Y
coordinates, a quantitative estimation of its magnitude
needs microscopic insight on the overlap numerical factor
τ and on the energy Δω−1 of the excited state under
consideration.
This insight requires microscopic information on the

atomic wave functions and a few technical steps, which
are reported in the Appendixes. It turns out, from the
calculations in Appendix B, that the numerical factor τ is
of order one, in particular, τ ∼ 0.7. As we discuss in
Appendix C, the excitation energy Δω−1 grows for stronger
impurity-atom interaction potentials V ia that reinforce the
internal rigidity of the composite quasihole impurity.
Quantitatively, the excitation energy Δω−1 is at most on
the order of a fraction of the bulk many-body gap above the
fractional quantumHall state, namely, a fraction of the atom-
atom interaction energy scale V0 ¼ gaa=2l2

B [64]. Note also
that the many-body gap cannot exceed the cyclotron energy
associated with the synthetic magnetic field acting on the
atoms, ωcycl ¼ 1=ml2

B ¼ qB=m.
These results can be plugged into Eq. (15), giving a mass

correction

ΔM ¼ 2τ2

Δω−1l2
B
; ð19Þ

which, since 2τ2 ≃ 1, provides the figure of merit

ΔM
M

≃
m
M

ωcycl

Δω−1
ð20Þ

that can be used to quantify its relative importance.
For instance, a small m=M ratio can be obtained in a

cold-atom experiment, embedding heavy atoms like erbium
as impurities in a gas of light atoms such as lithium. This
process already gives m=M ≃ 0.04 and can be further
decreased by replacing the heavy atom with a multiatom
molecule [68]. On the other hand, the Δω−1=ωcycl factor is
typically bound to values below unity but can be maxi-
mized using strong (perhaps Feshbach-enhanced [69])
interactions among atoms and between atoms and impu-
rities, thus pushing the many-body gap towards the cyclo-
tron energy. All together, it is natural to expect that the
correction to the effective impurity mass may be sizable and
important to interpret the experimental observations.

2. Synthetic charge

As in the previous subsection, we consider the simplest
situation in which a single quasihole is bound to a single

impurity located at position R. In this case, the effective
Hamiltonian (12) takes the form

Heff ¼
½−i∇R −QAðRÞ þAðRÞ�2

2M
þΦðRÞ þ ϵð0ÞBOðRÞ;

ð21Þ

where

AðRÞ ¼ −ihφð0Þ
R ðrÞj∇Rjφð0Þ

R ðrÞi ð22Þ

is the Berry connection related to the quasihole motion
across the FQH fluid, which enters the equation above in
the form of an effective vector potential [59,65].
For the Laughlin states under consideration here, the

Berry connectionAðRÞ can be calculated by making use of
the plasma analogy as reviewed in Ref. [2]. This method
gives

AðRÞ ¼ qν
2l2

B
uz ×R ¼ −νqAðRÞ; ð23Þ

which means that the QH feels the synthetic magnetic field
as a fractional charge −νq corresponding to the atomic
density that has been displaced away from its surroundings.
As a result, the effective single-molecule Hamiltonian can
be recast in a compact form,

Heff ¼
½−i∇R − ðQ − νqÞAðRÞ�2

2M
; ð24Þ

in terms of an effective charge

Q ¼ Q − νq ð25Þ

resulting from the sum of the bare charge Q of the impurity
and the fractional charge −νq of the quasihole that is bound
to it.
The effective scalar potential is instead equal to

ΦðRÞ ¼ −1
2M

½hφð0Þ
R ðrÞj∇2

Rjφð0Þ
R ðrÞi þA2ðRÞ�. ð26Þ

As long as the impurity lives in the bulk of the (incom-
pressible) FQH fluid where the fluid density is—to a high
precision—constant, both the BO energy ϵð0ÞB0 and the scalar
potential are constant and can be safely neglected.
In order to facilitate the description of the two-body

scattering process and isolate the features of interest, it will
be beneficial to design an experiment where the effective
charge Q of the anyonic molecules vanishes. From
Eq. (25), one sees that if the gauge field is generated by
rotation, theQ ¼ 0 condition translates into a ratioM=m ¼
ν between the masses of both atomic species, which is not
straightforwardly compatible with the assumptions
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underlying the BO approximation. On the other hand, a
careful design of the optical and magnetic fields applied to
the atoms allows us to tune the strength of the synthetic
magnetic field acting on each of them, so as to satisfy the
required Q ¼ 0 condition.
As an alternative strategy, even though the Q ¼ 0

condition is not naturally fulfilled in the laboratory refer-
ence frame, the effect of the finite Q can be removed by
looking at the system from a reference frame that rotates
around the z axis at an angular frequency Ω̃ such that

Ω̃ ¼ −
QB
2M

: ð27Þ

Under this condition, the Coriolis force associated with the
rotation is equal and opposite to the effective synthetic
Lorentz force acting on the anyonic molecule. Inserting a
value of the impurity mass on the order of the one of a
heavy (e.g., erbium) atom and a synthetic magnetic field
on the order of QB ∼ 1=λ2 with λ in the optical range
λ ∼ 1 μm, one finds a value for Ω̃ in an accessible
100-Hz range.
But one must not forget that moving to the rotating frame

not only introduces a Coriolis force but also transforms the
velocity appearing in the synthetic magnetic Lorentz force,
which results in an additional force to be added to the usual
centrifugal force of rotating reference frames. In the system
under consideration here, all such centrifugal or centripetal
forces can be compensated in the rotating frame by
introducing an additional antiharmonic trapping potential
V iðRÞ ¼ − 1

2
MΩ̃2R2 acting on each impurity. Combining

all the different terms, the dynamics of isolated anyonic
molecules in the rotating reference frame is then the desired
one of free particles moving along straight lines [70] for
which the scattering process will be the simplest.
Before concluding, it is worth stressing that the rotation

at Ω̃ considered here is just a way of looking at the effective
dynamics of the anyonic molecules, and it does not affect
the underlying atoms that form a FQH state in the
laboratory frame in the presence of the synthetic magnetic
field [71].

3. Experimental remarks

Since the Hamiltonian (24) describes a free particle in a
magnetic field, we can envisage a simple experiment to
measure the fractional charge and the renormalized mass of
the molecule from the radius of its cyclotron orbit, as
sketched in Fig. 1. Once the molecule receives a momen-
tum kick p (e.g., by applying a time-dependent force to the
impurity), it starts describing a cyclotron orbit. For a given
value of the momentum kick, the molecular massM can be
directly obtained from the actual speed via p ¼ Mv. The
charge is then extracted from the cyclotron radius via the
textbook formula

rcycl ¼
Mv
QB

: ð28Þ

In order to determine the fractional charge, it is useful to
consider the ratio Q=Q, which is obtained by comparing
the cyclotron radius for a molecule immersed in the FQH
fluid with the one of the bare impurity in the absence of the
surrounding FQH fluid. The relation (25) then allows us to
relate the observed charge Q to the fractional charge of the
quasiholes in the FQH fluid. If the synthetic magnetic field
is generated by rotating the system, its calibration is made
even simpler by the fact that the product qB (QB) is
determined by the rotation speed ωrot via qB ¼ 2mωrot
(QB ¼ 2Mωrot) [20,21].
Taking advantage of the different nature of the impurity

particle as compared to the atoms forming the FQH fluid,
reconstruction of the trajectory of the anyonic molecule can
be done by imaging the position of the impurity at different
evolution times after its deterministic preparation at a given
location with a known momentum imparted, e.g., by an
external potential. In this respect, we can expect that using
impurities with a large mass offers the further advantage of
a more accurate definition of the initial position and
velocity against the Heisenberg indetermination principle.
This issue can be put in quantitative terms by comparing

the maximum kinetic energy of the molecule compatible
with the BO approximation with the cyclotron energy of the
molecule in the synthetic magnetic field, which quantifies
its zero-point motion: In order for the cyclotron motion to
be visible, several Landau levels must, in fact, be popu-
lated. The maximum kinetic energy can be estimated from

B

p

rcycl

FIG. 1. Proposed experiment to measure the renormalized mass
and the fractional charge of an anyonic molecule. An impurity
atom (green circle) is located in the bulk of a fractional quantum
Hall fluid of atoms (blue region). Its repulsive interactions with
the atoms make it bind one or more FQH quasiholes, forming a
composite anyonic molecule with renormalized mass M, frac-
tional (synthetic) charge Q, and anyonic fractional statistics. To
measure the renormalized mass and charge, one can impart a
momentum kick p to a single such molecule initially at rest and
follow the ensuing cyclotron motion.
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Kmax ¼ Mv2max=2 using the velocity vmax at which the

norm of the first-order correction φð1Þ
R in Eq. (16) becomes

of order one, namely,

vmax ¼
Δω−1lB

τ
: ð29Þ

The cyclotron energy is given by the usual formula by
using the effective charge Q of the molecule, namely,
Ωcycl ¼ QB=M. Imposing Kmax ≫ Ωcycl then requires

ffiffiffiffiffiffiffiffiffiffiffi
2τ2Q
q

s
m
M

ωcycl

Δω−1
≪ 1; ð30Þ

which, recalling that 2τ2 ≃ 1, is related to the condition (20)
for a small mass correction and is well satisfied if the
impurity mass is large enough.
In order for the anyonic molecule to behave as a rigid

object and avoid its internal excitation and its dissociation,
one must impose that the cyclotron frequency Ωcycl is
smaller than its lowest excitation mode at Δω−1, which
imposes a similar condition,

Q
q

m
M

ωcycl

Δω−1
≪ 1; ð31Þ

that, again, is well satisfied in the heavy impurity limit. But
it is also important to note that forming the bound impurity-
quasihole state may itself be a nontrivial task since quasi-
holes are associated with a global rotation of the FQH fluid.
In Refs. [41,64], it was shown that the quasihole state
naturally forms when the atomic fluid is cooled to its
ground state in the presence of the impurity, provided that
the atoms are able to exchange angular momentum with the
external world. Alternatively, a quasihole can be created by
inserting a localized flux through the cloud and then
introducing the impurity particle at its location [72,73].
Finally, a speculative strategy yet to be fully explored may
consist of inserting the impurity into the FQH fluid through
its edge: Provided the impurity’s motion is slow enough,
one can reasonably expect that it will be energetically
favorable for the impurity to capture a quasihole from the
edge and bring it into the bulk of the FQH cloud.
Besides these technical difficulties, we anticipate that our

proposed experiment for the measurement of the fractional
charge will have great conceptual advantages over the shot-
noise measurements of electronic currents that were first
used to detect charge fractionalization [12]. These experi-
ments involve, in fact, complex mechanisms for charge
transport and charge injection or extraction into or from the
edge of the electron gas. On the other hand, we foresee that
our proposed experiment has the potential to provide a
direct and unambiguous characterization of the fractional
charge of the quasihole excitations in the bulk of a
fractional quantum Hall fluid.

C. Effective Hamiltonian for two anyonic molecules

After completing the calculation of the single-particle
parameters M and Q, we can now move on to the many-
particle case. The two-molecule case is already of particular
interest as it allows us to obtain information about the
fractional statistics of the anyonic molecules. In the follow-
ing, we focus on this case, and we leave the complexities
of the three- and more-particle cases [10] to future
investigations.
As already stated, we assume that the two impurities are

located in the bulk of the FQH cloud, far apart from the
edges, and they are well separated by a distance much
larger than the magnetic length. The effective molecule
Hamiltonian is now given by

Heff ¼
X2
j¼1

½−i∇Rj
−QAðRjÞ þAjðRÞ�2

2M

þΦðRÞ þ ϵð0ÞBOðRÞ þ V iiðRÞ; ð32Þ

whereR is, again, a shorthand notation for the whole set of
impurity positions, fRkg. The Berry connection experi-
enced by the jth particle now contains two terms,

AjðRÞ ¼ AqðRjÞ þAstat;jðRÞ

¼ Bq

2
uz ×Rj þ ð−1Þj ν

R2
rel

uz ×Rrel: ð33Þ

The former term Aq is of single-particle nature and only
depends on the position of the specific particle. Its Berry
curvature Bq ¼ ν=l2

B accounts for the synthetic magnetic
field felt by each quasihole via their fractional charge −νq,
as discussed in the previous section. The latter term Astat
has a two-body nature and depends on the relative position
of the two impurities, Rrel ¼ ðXrel; YrelÞ ¼ R1 −R2: Each
impurity experiences the vector potential corresponding to
ν quanta of magnetic flux spatially localized on the other
impurity. Since ∇ ×Astat;j ¼ 0, there is no Berry curvature
involved in the interaction between spatially separated
impurities, and the effect can be viewed as an
Aharonov-Bohm-like interaction [74].
Since the impurities are assumed to be located in the bulk

of the FQH cloud and to be spatially separated to avoid any
overlap, the Born-Oppenheimer energy ϵð0ÞBO does not
depend on the positions and can be neglected [75]. The
two-body generalization of the scalar potential Φ in
Eq. (26) involves derivatives of the Laughlin wave function
with respect to the impurity positions [76]. As discussed
around Eq. (16), such derivatives only involve localized
excitations in the atomic fluid around the quasihole. On this
basis, for sufficiently separated impurities, we can safely
approximate the two-body scalar potential with a relative-
coordinate-independent energy shift that can be safely
neglected in what follows.
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Grouping the single-particle Berry connection due to the
effective charge of each quasihole with the synthetic
magnetic field directly felt by each impurity as done in
the previous section, we can write the Hamiltonian in the
compact form

Heff ¼
X2
j¼1

½−i∇Rj
−QAðRjÞ þAstat;jðRÞ�2

2M

þ V iiðRÞ; ð34Þ

in terms of the effective charge Q ¼ Q − νq of each
molecule. According to this Hamiltonian, the molecules
interact via the interaction potential V ii between the bare
impurities and via the Aharonov-Bohm interaction encoded
by the two-body vector potential Astat;j that depends on the
relative position R1 −R2 between the two molecules.
Given the translational invariance of the configuration,

we can separate the center of mass and the relative motion
of the two molecules. Assuming a central impurity-
impurity interaction V iiðRi −RjÞ ¼ V iiðRrelÞ, we define
the reduced and the total mass as usual as

Mrel ¼ M=2; MCM ¼ 2M; ð35Þ

the relative and center-of-mass positions

Rrel ¼ R1 −R2; ð36Þ

RCM ¼ R1 þR2

2
; ð37Þ

the corresponding momenta

Prel ¼
P1 − P2

2
; ð38Þ

PCM ¼ P1 þ P2; ð39Þ

and the vector potentials

ArelðRrelÞ ¼
Q
2
AðRrelÞ þ

Astat;1ðR1Þ −Astat;2ðR2Þ
2

¼ Q
2
AðRrelÞ þ

ν

R2
rel

ð−Yrel; XrelÞ; ð40Þ

ACMðRCMÞ ¼ 2QAðRCMÞ; ð41Þ

to be included in the center-of-mass and relative
Hamiltonians

HCM ¼ ½PCM −ACMðRCMÞ�2
2MCM

; ð42Þ

Hrel ¼
½Prel þArelðRrelÞ�2

2Mrel
þ V iiðRrelÞ: ð43Þ

The center-of-mass Hamiltonian (42) describes a free
particle motion of total mass 2M and charge 2Q. On
the other hand, the relative Hamiltonian (43) contains the
uniform magnetic field experienced by the reduced charge
Q=2 plus a nontrivial vector potential corresponding to ν
quanta of magnetic flux localized at Rrel ¼ 0.
As discussed in the seminal works [5–10], the presence

of this latter vector potential is the key feature that encodes
the fractional statistics of the anyonic molecules. In the rest
of this work, we study the effect of this vector potential
onto the scattering cross section of two molecules. This
measurable quantity can serve as a probe of the statistical
parameter of the molecules.
Depending on the bosonic-vs-fermionic nature of the

impurities, the effective Hamiltonian (34) will act on the
Hilbert space of symmetric or antisymmetric wave func-
tions under the exchange of the two molecules, that is,
R1 ↔ R2 (or Rrel ↔ −Rrel). The combination of the
intrinsic statistics of the impurities and the one inherited
by the quasiholes can be encoded in the single statistical
parameter α ¼ αi þ ν, where the intrinsic contribution is
αi ¼ 0 (αi ¼ 1) for bosonic (fermionic) impurities. In the
next section, we see how the scattering properties only
depend on α and not on αi and ν separately.

IV. SCATTERING OF ANYONIC MOLECULES
AND FRACTIONAL STATISTICS

In the previous section, we have summarized the con-
ceptual framework to study the quantum mechanical
motion and the interactions of anyonic molecules. Based
on this complete and flexible framework, we can now
attack the core subject of this work, namely, the observable
consequences of the fractional statistics. As a simplest and
most exciting example, we consider the differential cross
section for the scattering of two anyonic molecules; in
particular, we highlight a simple relation between the
angular position of its maxima and minima and the frac-
tional statistics.
To simplify our discussion, from now on, we assume that

the process underlying the synthetic magnetic field is
designed in a way to have a vanishing effective charge
Q ¼ 0 of the molecule. This condition is beneficial to have
rectilinear trajectories in the asymptotic states of the
scattering molecules. The only vector potential remaining
in Eq. (34) will then be the Aharonov-Bohm interaction
Arel, which enormously simplifies the study of the scatter-
ing process.
A scheme of the proposed experimental strategy can be

found in Fig. 2. If one prepares a pair of identical molecules
inside the bulk of the FQH droplet, each one composed of
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the same kind of impurity and a bound quasihole excitation,
and then makes them collide—e.g., by pushing them
against each other via a suitable external potential—the
angular dependence of the differential scattering cross
section will show a pattern of maxima and minima whose
angular position can be directly related to the fractional
statistics of the molecules, as we show in Sec. IV D.

A. General scattering theory

In order to study the two-molecule scattering, we focus
on the relative Hamiltonian (43) in 2D cylindrical coor-
dinates, and we consider the time-independent Schrödinger
equation

� ∂2

∂r2 þ
1

r
∂
∂rþ

1

r2

� ∂
∂ϕ − iν

�
2

− 2μV iiðrÞ þ k2
�
ψðr;ϕÞ

¼ 0; ð44Þ

where k2 ¼ 2μE is related to the energy E of the scattering
process. For the sake of notational simplicity, we use the
shorthand notation r, μ in place of Rrel,Mrel. Equation (44)
represents the scattering of a particle of mass μ by a
flux tube of radius r0 → 0 giving a vector potential
Arel ¼ νuϕ=r, which incorporates the fractional statistics
(uϕ is a unit vector in the ϕ coordinate). For a short-

range potential [i.e., such that rV iiðrÞ → 0 when r → ∞],
the solution far from the origin can be written as the sum of
an incoming plane wave [77] and an outgoing cylindrical
wave [80,81],

ψðrÞ ¼ eik·r þ fðk;ϕÞ e
ikrffiffiffi
r

p ; ð45Þ

where fðk;ϕÞ is the scattering amplitude.
We solve Eq. (44) using the method of partial waves.

Given the cylindrical symmetry of the problem, we can
look for factorized solutions ψðr;ϕÞ ¼ eimϕum;νðrÞ=

ffiffiffi
r

p
of

angular momentum m, with a radial function satisfying

d2um;ν

dr2
þ um;νðrÞ

4r2
−
ðm − νÞ2

r2
um;νðrÞ

− 2μV iiðrÞum;νðrÞ þ k2um;νðrÞ ¼ 0: ð46Þ

In contrast to the usual scattering problems, for any
noninteger value of ν, the centrifugal barrier is present
here for all values of m, which guarantees that the wave
function vanishes for r ¼ 0 when the two particles over-
lap [10].
The general solution of Eq. (46) in the free case V ii ¼ 0

with ν ¼ 0 has the form

umðrÞ ∝
ffiffiffi
r

p
JmðkrÞ; ð47Þ

in terms of the cylindrical Bessel function JmðkrÞ. In the
r → ∞ limit, the expression above tends to

umðrÞ ¼
ffiffiffiffiffi
2

πk

r
cos

�
kr −m

π

2
−
π

4

�
: ð48Þ

For any short-range potential V ii, the solution of Eq. (46) in
the r → ∞ limit can be written with respect to the
asymptotic form of the free solution (48) as

um;νðrÞ ¼ Am;νðkÞ cos
�
krþ δm;νðkÞ −m

π

2
−
π

4

�
; ð49Þ

where δm;ν are the phase shifts.
As usual, the scattering amplitude in Eq. (45) can be

related to the phase shifts δm;νðkÞ of this asymptotic
expansion: Using the fact that the cylindrical harmonics
are a complete basis and replacing all cylindrical Bessel
functions with their asymptotic form at r → ∞, we can
write the wave function in Eq. (45) as

B

P1 P2

B

P1 P2

FIG. 2. Scattering of two anyonic molecules. Similarly to
Fig. 1, two indistinguishable anyonic molecules (green circles)
formed by the binding of the same number of quasiholes to a pair
of identical impurities in the bulk of a FQH fluid (blue region) are
considered. The two molecules are given momentum kicks
against each other (P1 and P2, respectively). Because of their
indistinguishability, two scattering channels contribute to the
differential scattering cross section at an angle ϕ [see Eq. (62)]:
The two channels are labeled as “direct” (red, solid trajectories)
and “exchange” (yellow, dashed ones) and involve a relative
phase determined by the anyonic statistics. As one can guess from
textbook two-slit interference, information about the statistics can
be extracted from the global position of the interference fringe
pattern, which is illustrated in the next figures.
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ψðrÞ ¼
� Xþ∞

m¼−∞
im

ffiffiffiffiffiffiffiffi
2

πkr

r
cos

�
kr −m

π

2
−
π

4

�
eimϕ

�

þ
� X∞
m¼−∞

am;νðkÞeimϕ

�
eikrffiffiffi
r

p

¼
Xþ∞

m¼−∞
Am;νðkÞ cos

�
krþ δm;νðkÞ −m

π

2
−
π

4

�
eimϕffiffiffi

r
p ;

ð50Þ

with

Am;νðkÞ ¼
ffiffiffiffiffi
2

πk

r
imeiδm;νðkÞ; ð51Þ

from which it is easy to obtain an expression of the
scattering amplitude in terms of the phase shifts:

fðk;ϕÞ ¼
X∞

m¼−∞
am;νðkÞeimϕ; ð52Þ

with

am;νðkÞ ¼
ffiffiffiffiffi
2i
πk

r
eiδm;νðkÞ sin δm;νðkÞ: ð53Þ

B. General result for short-range potentials

For a nonvanishing and noninteger ν, the free solution of
Eq. (46) changes to

um;νðrÞ ∝
ffiffiffi
r

p
Jjm−νjðkrÞ; ð54Þ

which approaches

um;νðrÞ ¼ C

ffiffiffiffiffi
2

πk

r
cos

�
kr − jm − νj π

2
−
π

4

�
ð55Þ

in the r → ∞ limit.
For any short-range potential V ii, the total phase shift in

the cosine cosðkrþ ΔÞ in the asymptotic limit r → ∞ can
be referred to the fully free case with V ii ¼ 0 and ν ¼ 0 [as
done for δm;νðkÞ in Eq. (49)] or to the noninteracting case
V ii ¼ 0 with ν ≠ 0 considered in Eq. (55). These two
choices give

Δ ¼ δm;νðkÞ −m
π

2
−
π

4
; ð56Þ

Δ ¼ ΔV
m;ν − jm − νj π

2
−
π

4
; ð57Þ

respectively, where ΔV
m;ν is the phase shift exclusively due

to the intermolecular potential Vii. Combining these equa-
tions, we obtain

δm;νðkÞ ¼ m
π

2
− jm − νj π

2
þ ΔV

m;νðkÞ; ð58Þ

where the total phase shift δm;νðkÞ is decomposed as the
sum of the phase shift due to the topological flux attached
to the impurities plus the one ΔV

m;νðkÞ due to the interaction
potential. In the noninteracting V ii ¼ 0 case, this process
yields the same result as calculated in the original work by
Aharonov and Bohm [74].
In the general case, assuming 0 < ν < 1, we can

combine Eqs. (53) and (58) and decompose the scattering
amplitude as

fðk;ϕÞ ¼ fABðk;ϕÞ þ fVðk;ϕÞ

¼ 1ffiffiffiffiffiffiffiffiffi
2πik

p
��X∞

m¼1

eimϕðeiπν − 1Þ

þ
X0

m¼−∞
eimϕðe−iπν − 1Þ

�

þ
�
eiπν

X∞
m¼1

eimϕðe2iΔV
m;ν − 1Þ

þ e−iπν
X0

m¼−∞
eimϕðe2iΔV

m;ν − 1Þ
��

: ð59Þ

The terms on the first two lines are geometric series
that can be analytically summed up to m ¼ ∞. They
give the Aharonov-Bohm contribution to the scattering
amplitude [74],

fABðk;ϕÞ ¼
Xþ∞

m¼−∞
aðABÞm;ν ðkÞeimϕ ¼ −

sin ðπνÞffiffiffiffiffiffiffiffiffi
2πik

p eiϕ=2

sin ϕ
2

; ð60Þ

and carry all information on the particle statistics. The
terms on the third and fourth lines summarize, instead, the
contribution fVðk;ϕÞ of the interaction potential V ii to
the scattering amplitude. These terms must be evaluated by
numerically summing the series.
This decomposition is of crucial technical importance as

it enables us to isolate the Aharonov-Bohm contribution
fAB that can be analytically computed and restrict the
numerical calculation to the potential contribution fV only,
for which convergence on the high-angular-momentum
side is straightforward. However, this process is much more
than just a mathematical trick since it tells us about the
different physical nature of the two contributions to the
scattering amplitude. The statistical part of the scattering
amplitude fAB originates from a vector potential Arel that
extends to infinity. As a result, it affects all angular-
momentum components. Its divergent behavior for
ϕ → 0 can be physically related to the steplike jump of
the geometric phase that is accumulated when passing in
the close vicinity of r ¼ 0 on opposite sides. On the other
hand, for a short-range interaction potential, the particles
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only see each other up to a certain distance, and therefore,
one only needs to sum up to a finite number of partial
waves to achieve convergence in fV.

C. Distinguishable and indistinguishable impurities

For distinguishable impurities, the differential scattering
cross section is calculated directly from the scattering
amplitude as

dσD
dϕ

¼ jfðk;ϕÞj2: ð61Þ

Nevertheless, the scattering process is most interesting
when the impurities are indistinguishable particles. In this
case, the differential scattering cross section involves a sum
over exchange processes according to

dσB;F
dϕ

¼ jfðk;ϕÞ � fðk;ϕþ πÞj2 ð62Þ

and may thus allow for interesting interference features in
the angular dependence. As usual, the � signs here
correspond to bosonic and fermionic impurities, respec-
tively. Indistinguishability guarantees that the cross section
has the same value for ϕ and ϕþ π.
Repeating the same calculation leading to Eq. (59) in the

1 < ν < 2 case and noting that ΔV
m;ν is a function of m − ν

only, one can show that

f1þνðk;ϕÞ ¼ −eiϕfνðk;ϕÞ ð63Þ

holds for any 0 < ν < 1. It can then be immediately
deduced that the scattering cross sections in the bosonic
and fermionic cases are related by [82]

dσB;1þν

dϕ
ðϕÞ ¼ dσF;ν

dϕ
ðϕÞ: ð64Þ

Noting the scattering cross sections are of period 2 in ν, one
can thus summarize the statistics into a single statistical
parameter α, defined as α ¼ αi þ ν with αi ¼ 0 (αi ¼ 1) for
bosonic (fermionic) impurities, which fully determines the
scattering properties as a general scattering cross sec-
tion dσα=dϕ.
A similar reasoning leads to the interesting relation

f1−νðk;ϕÞ ¼ −eiϕfνðk;−ϕÞ; ð65Þ

from which one extracts the symmetry relation

dσB;ν
dϕ

ðπ − ϕÞ ¼ dσF;1−ν
dϕ

ðϕÞ; ð66Þ

which translates into the compact form

dσα
dϕ

ðπ − ϕÞ ¼ dσ2−α
dϕ

ðϕÞ: ð67Þ

D. Numerical results for the differential
scattering cross section

The key feature of the Aharonov-Bohm contribution (60)
to the scattering amplitude in the absence of interaction
potential V ii is a divergent behavior in the forward direction
for any noninteger ν. This feature was traced back, by
Ref. [83], to the infinite-range nature of the Aharonov-
Bohm interaction and is known to pose mathematical
difficulties related to the optical theorem. In the following,
we focus on the scattering at finite angles ϕ, where such
problems do not arise.
The situation gets much more interesting when the

interaction potential V ii is included. This potential intro-
duces a more complex angular dependence of the scattering
amplitude fVðk;ϕÞ and clear features in the differential
scattering cross section. Keeping an eye on possible
experimental realizations of this work, we choose a dipolar
form of the repulsive interaction potential [84], V ii ¼ b=r3,
for which a dipolar length can be defined as aD ¼ μb. As
we see more clearly in Sec. IV E, this specific choice of the
interaction potential is motivated by the extremely strong
dipolar potentials that can be obtained using heteronuclear
molecules. As an additional check, we have also calculated
the differential scattering cross section for the case of a
hard-wall potential of radius aHD,

VðrÞ ¼
�∞ if r ≤ aHD
0 if r > aHD;

ð68Þ

for which we can benchmark our predictions against the
semianalytical results available in Ref. [85].
In order to calculate the differential cross sectiondσ=dϕ in

the different cases, we first have to calculate the phase shift
δm;νðkÞ by solving the radial Schrödinger equation (46) in the
presence of the interaction potential V ii and the vector
potential Arel. This calculation was done numerically,
employing Numerov’s method [86], which gives a global
error of order Oðh4Þ, with h ¼ riþ1 − ri the numerical step
size in the r coordinate. Identifying the interaction contri-
bution ΔV

m;ν to the phase shift, one can separate the different
terms in Eq. (59): The first two lines are analytically
computed, giving fAB of Eq. (60). The interaction-induced
amplitude fV is evaluated by numerically performing the
sum in the last two lines up to large values of m until
convergence is reached. The desired differential cross section
dσ=dϕ is finally obtained by summing the resulting fV to the
analytically computed fAB and plugging the outcome
into Eq. (62).
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Figures 3 and 4 show the differential scattering cross
section as a function of the scattering angle ϕ for a hard-
disk and a dipolar interaction between bosonic impurities,
respectively. The filling fraction of the FQH bath is fixed in
both cases to ν ¼ 0.5, while the different solid curves
represent different values of the relative incident momen-
tum kaHD;D for indistinguishable impurities. The qualitative
behavior of dσ=dϕ is identical for the two potentials: For
small momenta (kaHD;D ≪ 1), the only effect of the frac-
tional statistics beyond the divergences in ϕ ¼ 0; π is the
slight breaking of the ϕ ↔ π − ϕ symmetry (or, equiv-
alently, of the ϕ ↔ −ϕ symmetry), so the minimum of the
curve is displaced to angles larger than ϕ ¼ π=2, as was
first found in Ref. [85]. For larger momenta kaHD;D ≳ 1, the
peaks around ϕ ¼ 0; π persist, and marked oscillations
appear in the angular dependence because of interference
effects, with a strong suppression of the differential
scattering cross section occurring at some particular
angles ϕmin.
This oscillating behavior is reached for smaller kaHD;D in

the case of hard-disk interactions. For kaHD ¼ 5 (the largest
value of the momentum considered here), four periods of
oscillations are clearly visible. For dipolar interactions, a
larger value of kaD is required to develop a comparable
oscillating pattern. For instance, for kaD ¼ 5, the curve
only shows a single oscillation period between ϕ ¼ 0 and
π. However, an oscillating behavior is recovered for far
larger momenta; for instance, the curve for kaD ¼ 50
features four well-developed minima.
This seeming difference can be reconciled by drawing a

qualitative analogy with the textbook double-slit experi-
ment, where, for a fixed incident wave vector, the larger the
separation between the slits, the smaller the angular
separation between the fringes observed in the screen. In
our case, the role of the slit separation is played by the
effective radius of the repulsive potential: In the hard-disk
case, the wave function is restricted to the outer r > aHD
region, setting the effective radius to r̄HD ¼ aHD. For the
smoother dipolar potential, the wave function has a finite
tail in the inner region, but we can estimate the radius as the
inversion point r̄D at which the kinetic energy equals the
dipolar potential, i.e., the distance at which

k2

2m
¼ aD

mr̄3D
: ð69Þ

One can expect that the differential cross section for the two
potentials should display oscillations of comparable period
if the two effective radii are equal, r̄D ¼ r̄HD. This case
implies that the incident momenta are related by

2kaD ¼ ðkaHDÞ3: ð70Þ

The different powers appearing on either side of this
equation explain why a much larger kaD is needed to
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FIG. 3. Differential scattering cross section dσ=dϕ in units of
the hard-core radius aHD as a function of the scattering angle ϕ for
a hard-disk interaction potential V ii between bosonic impurities
immersed in a ν ¼ 0.5 FQH fluid. The different solid curves
correspond to indistinguishable impurities with different values
of the relative incident momentum kaHD. The larger kaHD, the
more visible is the fringe pattern resulting from the interference of
direct and exchange scattering channels. For comparison, the
dashed curve shows distinguishable impurities at kaHD ¼ 5: In
this case, no interference fringe is visible.
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FIG. 4. Differential scattering cross section dσ=dϕ in units of
the dipolar length aD as a function of the scattering angle ϕ for a
dipole interaction potential V ii between bosonic impurities
immersed in a ν ¼ 0.5 FQH fluid. The different solid curves
correspond to indistinguishable impurities with different values
of the relative incident momentum kaD. The larger kaD, the more
visible is the fringe pattern resulting from the interference of
direct and exchange scattering channels. For comparison, the
dashed curve shows distinguishable impurities at kaD ¼ 50: In
this case, no interference fringe is visible.
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recover a kaHD > 1 oscillatory pattern. Quite remarkably,
this relation is approximately satisfied by the pair kaD ¼ 50
and kaHD ¼ 5: By comparing the solid cyan lines in Figs. 3
and 4, one sees that the oscillations of these curves indeed
have a very similar angular period. The same reasoning on
the effective radii r̄HD;D suggests that the angular period of
the oscillations should scale as ðkaHDÞ−1 and ðkaDÞ−1=3,
respectively. We can hint at such a dependence in the plots
of Figs. 3 and 4, and a quantitative confirmation of this
scaling law is provided in Appendix D.
To better highlight the role of indistinguishability in

determining the differential cross section, Figs. 3 and 4 also
show, as dashed curves, the angular dependence of the
differential scattering cross section for distinguishable
impurities. In this case, a single scattering channel con-
tributes to the scattering cross section in each direction;
therefore, the oscillating behavior is absent, and the differ-
ential cross section has a rather flat and featureless angular
dependence. The small oscillations that are visible in the
vicinity of the forward scattering direction ϕ ¼ 0; 2π for
the hard-disk case are due to diffraction effects from the
sharp edges of the potential and do not have a statistical
origin, as they are visible also for α ¼ 0, as we explicitly
show in Fig. 10 of Appendix D. Still, the same figure shows
that the position of the maxima and minima of these
oscillations depends on the value of α, giving an asymmetry
for values different than α ¼ 0.5. While the divergence at
ϕ ¼ 0 due to the Aharonov-Bohm contribution (60) is still
present, the one at ϕ ¼ π is no longer present since the
forward and backward directions are no longer equivalent.
For curves displaying the same angular period in the
indistinguishable case (e.g., the cyan lines in Figs. 3 and
4), the larger contrast of the fringes observed for a hard-disk
potential with respect to the dipolar potential can be related
to the flatter angular dependence of the distinguishable
differential scattering cross section in the first case, which
enhances the destructive interference.
As a next step, it is interesting to compare the two cases

of bosonic and fermionic impurities (from now on, we
always consider the indistinguishable case). Figure 5 dis-
plays dσ=dϕ for hard-disk bosonic and fermionic impu-
rities with the same value kaHD ¼ 1 of the relative incident
momentum and a range of values of ν. The most visible
feature is a drift of the minimum towards small angles as ν
is increased, with a smooth connection of the bosonic case
for ν → 1 and the fermionic case for ν → 0. The Bose-
Fermi symmetry relations, Eqs. (66) and (67), also manifest
in this plot.
Figure 6 gives more details of the dependence of the

differential scattering cross section on the statistical param-
eter ν. The different panels correspond to dipolar [in panels
(a) and (b)] and hard-disk [in panels (c) and (d)] inter-
actions and to different (fixed) values of kaHD;D ¼ 0.1 [in
panels (a) and (c)] and kaHD;D ¼ 5 [in panels (b) and (d)].
For standard bosons and fermions at ν ¼ 0, we recover a

symmetric and smooth cross section with no peaks at
ϕ ¼ 0; π. For bosons at intermediate values of 0 < ν < 1,
the peaks at ϕ → 0; π appear, and more interestingly, the
oscillation pattern at large kaHD;D features a global shift
towards smaller angles for growing ν, with, again, a smooth
recovery to the fermionic case when ν → 1.
The linearity of this shift as a function of ν is illustrated

in Fig. 7 for both choices of interaction potential. In order to
have a good contrast in the oscillations, a relatively large
kaHD;D is chosen. The deviations that are visible for the
dipolar case disappear when even larger values of kaD are
chosen. For α ¼ 1, the minimum recovers the usual
location at ϕmin ¼ π=2 of standard ν ¼ 0 fermions. The
smaller slope of the hard-disk case is a consequence of the
faster angular periodicity of the oscillations that is visible
when comparing the panels in Figs. 6(b) and 6(d), both
plotted for kaD;HD ¼ 5.
This simple dependence on ν of the angular interference

pattern shown in Fig. 7 is a key conclusion of our study.
From an experimental perspective, it provides a quantita-
tively accurate way to extract the fractional statistics of the
quasiholes in the FQH cloud just by detecting the oscil-
lations in the angular dependence of the differential cross
section and measuring the position of the minimum (ϕmin)
in different conditions. For instance, a quantitative value of
ν for a given FQH liquid can be interpolated by repeating
the measurement of ϕmin with bosonic impurities in the
presence and in the absence (i.e., ν ¼ 0) of the FQH liquid,
keeping in mind that for ν ¼ 1, the minimum is at an angle
ϕmin ¼ π=2 and assuming the linear dependence on ν ¼ α
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FIG. 5. Differential scattering cross section dσ=dϕ in units of
the hard-core radius aHD as a function of the scattering angle ϕ for
a hard-disk interaction potential V ii between indistinguishable
impurities, a relative incident momentum kaHD ¼ 1, and different
values of the statistical parameter α, defined as α ¼ ν for bosons
and α ¼ 1þ ν for fermions. Solid (dashed) lines correspond to
bosonic (fermionic) impurities inside a FQH bath of filling
fraction 0 < ν < 1.
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shown in Fig. 7. Perhaps less challenging, a qualitative
signature of the fractional statistics for 0 < ν < 1 is already
offered by the asymmetry of the differential cross section for
ϕ ↔ π − ϕ (or, equivalently, for ϕ ↔ −ϕ or ϕ ↔ 2π − ϕ),
which indicates a preferential chirality in the scattering
process.
From a conceptual viewpoint, the linear dependence of

the fringe position on ν suggests an intuitive understanding
of the underlying physical mechanism: The oscillations can
be interpreted as an interference pattern for the two
scattering channels contributing to the scattering in a given
direction, say, at an angle ϕ. In one channel, each particle is

deflected by an angle ϕ during the scattering process. In the
other channel, each particle is deflected by π þ ϕ. Because
of indistinguishability, the two processes have to be
summed up with a relative phase α resulting from the
sum of the intrinsic statistics αi ¼ 0, 1 of the bosonic or
fermionic impurities and of the fractional statistics ν of the
attached quasiholes. As it happens in generic interference
experiments—e.g., two-slit interference—a phase shift on
one of the two arms results in a rigid shift of the whole
fringe pattern. This intuitive interpretation is further con-
firmed by the complete disappearance of the fringe pattern
when distinguishable impurities are considered.
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FIG. 6. Differential scattering cross section dσ=dϕ as a function of the scattering angle ϕ for several values of the statistical parameter
ν. The different panels refer to different values of the relative incident momentum k and different forms of the interaction potential V ii
between the impurities: (a) dipolar interactions and kaD ¼ 0.1, (b) dipolar interactions and kaD ¼ 5, (c) hard-disk interactions and
kaHD ¼ 0.1, and (d) hard-disk interactions and kaHD ¼ 5. The different curves refer to different values of the statistical parameter as
indicated in the legend in panel (a): α ¼ 0, 0.25, 0.5, 0.75 correspond to bosonic impurities at growing values of ν, while α ¼ 1 is the
fermionic case with ν ¼ 0. To avoid overcrowding the figure, no other curve for fermionic impurities is displayed. As it was shown in
Fig. 5, such curves are immediately obtained from the bosonic ones via the symmetry relations in Eqs. (66) and (67).
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E. Experimental remarks

In practice, a scattering experiment will begin with the
simultaneous generation of a pair of anyonic molecules at
different and controlled spatial locations. The two molecules
then have to be pushed against each other at a controlled
speed with suitable potentials, which can be done following
one of the schemes discussed in Sec. III B 3.
The angular dependence of their differential scattering

cross section can finally be extracted by repeating the
experiment many times and collecting the statistical dis-
tribution of the trajectories of the scattering products. For
instance, the position of the impurities after the scattering
event can be measured using absorption imaging as in
Ref. [87]. In order to directly access the differential
scattering cross section in a single shot, one may follow
the route of Ref. [88] and consider the collision between
two clouds of independent impurities embedded in the
FQH droplet. A possible alternative is to follow a similar
strategy to that of neutron scattering in liquid helium [89]
and make use of a detector placed at several angular
positions outside the FQH droplet. This method, of course,
has the inconvenience that the impurities may excite
undesired edge modes on their way out, thus modifying
their energy and momentum. In all cases, as we have
mentioned at the beginning of Sec. IV, the analysis of the
scattering experiment could be made simpler if the system
parameters were chosen in such a way as to give a
vanishing effective charge Q for the anyonic molecules.
To check the actual feasibility of our proposal, it is

important to estimate the maximum value of kaD that one
can realistically obtain in experiments. Combining the
definition of aD with the results of Sec. III B 3 for the

maximum momentum kmax ¼ Mvmax that is compatible
with the Born-Oppenheimer approach, one gets

kmaxaD ¼ M
mτ

Δω−1

ωcycl

aD
lB

: ð71Þ

As we have seen in the previous subsection, a large value of
this quantity is needed to see a well-developed system of
fringes in the differential scattering cross section.
As a first concrete example,we can consider the case of the

magnetic interaction between twomagnetic atoms, e.g., 166Er
atoms with a relatively large magnetic dipole of 7μB [90].
EstimatingM=m ≃ 25, lB ≃ 1 μm, andΔω−1=ωcycl ¼ 0.1,
we obtain a not-so-optimistic value kmaxaD ≃ 0.02.
However, a huge enhancement of the dipolar interaction is
found if electric rather than magnetic interactions are used,
e.g., between ground-state, heteronuclear, diatomic mole-
cules [68]. For a typical dipole moment dE ∼ 1 Debye, an
enhancement on the order of approximately 200 can be
obtained, leading to a promisingvalueofkmaxaD ≈ 5. Thanks
to the quadratic dependence of the dipolar force on the dipole
moment dE, a sizable further increase is achievable with
specific choices of molecules that display larger dipole
moments of several Debye [91]—e.g., 1.25 Debye for
RbCs, 2.4 Debye for NaK, up to 5.5 Debye for LiCs—
and are presently under active experimental investigation in
the ultracold quantum gases community [92–97]. Note that a
large value of aD is also essential to fulfill (for a given kaD)
the condition

Δω−1

ωcycl

M
m

�
aD
lB

�
2

≫ ðkaDÞ2; ð72Þ

which guarantees, according to our discussion in Sec. III B 3,
that the kinetic energy is low enough for the anyonic
molecule to behave as a rigid object during the collision
process.

V. CONCLUSIONS

In this work, we have shown how the quantum dynamics
of impurity atoms immersed in a two-dimensional FQH
fluid of ultracold atoms may reveal crucial information
about the fractional charge and statistics of the FQH
quasihole excitations. Even though the discussion was
carried out with special attention to realizations in ultracold
atomic gas platforms, equally promising candidates for
experimental observation of the fractional charge and
statistics are offered by FQH fluids of photons [31,33]
or hybrid electronic-optical systems [98,99].
We considered impurities that repulsively interact with

the atoms of the FQH fluid. In this case, for suitable
parameters, the impurities can form bound states with
quasihole excitations, the so-called anyonic molecules. A
rigorous Born-Oppenheimer [55,56] framework was set up
to derive the effective charge and statistics of the anyonic
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FIG. 7. Angular position ϕmin of the minimum of the differ-
ential scattering cross section extracted from Figs. 6(b) and 6(d)
for a dipolar and a hard-disk interaction potential, respectively, as
a function of the statistical parameter α ¼ ν of anyonic molecules
formed by bosonic impurities bound to a single quasihole in a
FQH fluid at filling ν. The dashed lines are linear fits.
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molecules. Quite remarkably, this same formalism provides
a quantitative prediction for the effective mass of the
molecules, which combines the bare impurity mass with
a correction due to the quasihole inertia.
As a main result of our work, we proposed and

characterized specific configurations where the fractional
charge and statistics can be experimentally highlighted with
state-of-the-art technology. If a single anyonic molecule is
prepared inside the FQH fluid with some initial momen-
tum, the values of the renormalized mass and of the
fractional charge can be extracted from the experimentally
accessible cyclotron orbit that it describes as a free charged
particle in a magnetic field. This result provides direct and
unambiguous information on the fractional charge of FQH
quasiholes.
In the case of two anyonic molecules, the fractional

statistics of the quasiholes provides a long-range
Aharonov-Bohm-like interaction between the molecules,
with dramatic consequences on two-body scattering proc-
esses. For sufficiently large values of the relative incident
momentum, the differential cross section displays a clear
oscillatory pattern due to the interference of direct and
exchange processes, and the nontrivial fractional statistical
phase that the quasiholes acquire upon exchange is directly
observable as a rigid shift of the angular interference pattern.
As future perspectives, we envision extending our

approach to the case of impurities binding with different
numbers of quasiholes, leading to molecules with different
anyonic statistics, and to the case of a larger number of
molecules forming few-body complexes with a richer

structure of eigenstates determined by the interplay of
the interimpurity interaction and the fractional statistics
[10]. An even more intriguing development will be to
extend our treatment to more subtle FQH fluids supporting
non-Abelian excitations [2] and explore the consequences
of the topological degeneracy on the quantum dynamics of
the non-Abelian anyonic molecules [47,100].
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braiding statistics in an electronic ν ¼ 1=3 fractional
quantum Hall state via edge-state interferometry.

APPENDIX A: MASS RENORMALIZATION FOR
PARTICLES INSIDE A MAGNETIC FIELD

In this Appendix, we show how the BO approach of
Ref. [56] can be straightforwardly extended to include
synthetic magnetic fields.
We start by writing the full action functional

S½φ�
R;φR; χ�; χ� ¼ hψ jH − i∂tjψi ¼

Z
tf

ti

dt
Z

dR
Z

dr

�
jχj2φ�

R

�
HBO þ

XN
j¼1

ð−i∇Rj
Þ2

2M
− i∂t

�
φR

þ jφRj2χ�
�XN

j¼1

ð−i∇Rj
−QAðRjÞÞ2
2M

− i∂t

�
χ þ jχj2φ�

R

XN
j¼1

1

M

ð−i∇Rj
−QAðRjÞÞχ
χ

· ð−i∇jÞφR

�
;

ðA1Þ

in terms of the atom and impurity wave functions φRðtÞ and
χðtÞ. The time dependence of the former is a finite-order
contribution, and we drop it when referring to the zeroth-

order ground state φð0Þ
R . As in the main text, the shorthand

notations R and r refer to the set of impurity and atom
positions fRig and frig, respectively. Here, AðRjÞ is the
vector potential (not present in the original formulation of
Ref. [56]) evaluated at the position of the impurity j.
Requiring

δS½φ�
R;φR; χ�; χ�
δφ�

R
¼ 0;

δS½φ�
R;φR; χ�; χ�
δχ�

¼ 0; ðA2Þ

and using Eqs. (7) and (11), we obtain the expressions to be
satisfied by the factorized wave functions,

½HBO þUia½φR; χ� − ϵðR; tÞ�φR ¼ i∂tφR; ðA3Þ

�ð−i∇Rj
−QAðRjÞ þAjðR; tÞÞ2

2M
þ ϵðR; tÞ

�
χ ¼ i∂tχ;

ðA4Þ

where
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Uia½φR; χ� ¼
XN
j¼1

1

M

�ð−i∇Rj
−AjðR; tÞÞ2
2

þ
�ð−i∇Rj

−QAðRjÞÞχ
χ

þAjðR; tÞ
�
· ð−i∇Rj

−AjðR; tÞÞ
�

ðA5Þ

is the impurity-bath coupling operator,

AjðR; tÞ ¼ −ihφRðtÞj∇Rj
jφRðtÞi ðA6Þ

is the Berry connection arising from the parametric
dependence of the bath wave function on the position of
the impurities, and

ϵðR; tÞ ¼ hφRðtÞjHBO þ Uia − i∂tjφRðtÞi ðA7Þ

is the BO potential energy surface experienced by the
moving impurities, which mediates the exact coupling
between fast and slow degrees of freedom.
We see that the complete expressions in Eqs. (A3)–(A7)

do not include any additional first-order modification
beyond those calculated in Ref. [56]. Therefore, the
renormalized mass of the molecule keeps the same form
as in the case without vector potential AðRjÞ, which we
show in Eqs. (14)–(16).

APPENDIX B: CALCULATION
OF THE τ COEFFICIENT

In this Appendix, we report the calculations leading to
the numerical value τ ≃ 0.7 for the coefficient τ introduced
in Eq. (17) and used to quantitatively estimate the mass
correction ΔM in Eq. (19).
We denote with jφð0Þ

Z i the quantum state of the atomic
fluid with one quasihole at the positionR corresponding to
the complex variable Z ¼ X − iY. We then expand the
Z-dependent state vector around Z ¼ 0 as

jφð0Þ
Z i ¼ jφð0Þ

Z¼0i þ Zð∂Zjφð0Þ
Z iÞ þ Z�ð∂Z� jφð0Þ

Z iÞ

þ Z2

2
ð∂2

Zjφð0Þ
Z iÞ þ Z�2

2
ð∂2

Z� jφð0Þ
Z iÞ

þ jZj2ð∂Z∂Z� jφð0Þ
Z iÞ þOðZ3Þ;

where all derivatives are evaluated at Z ¼ 0.
We consider the atomic density operator n̂ðrÞ evaluated

at position r, indicated by the complex variable z. Taking
advantage of the fact that

n̂ðz ¼ ZÞjφð0Þ
Z i ¼ 0; ðB1Þ

ð∂Z� jφð0Þ
Z iÞZ¼0 ¼ 0; ðB2Þ

∂Zjφð0Þ
Z i ¼ τ

lB

			φðeÞ
Z i; ðB3Þ

we obtain

hφð0Þ
Z jn̂ðz ¼ 0Þjφð0Þ

Z i
≃ jZj2ð∂Z�hφð0Þ

Z jÞn̂ðz ¼ 0Þð∂Zjφð0Þ
Z iÞ

¼ jZj2 τ
2

l2
B
hφðeÞ

Z jn̂ðz ¼ 0ÞjðφðeÞ
Z i: ðB4Þ

For a quasihole living in the bulk of the FQH droplet, we
can take advantage of the local homogeneity of the atomic
fluid to write

hφð0Þ
Z¼0jn̂ðzÞjφð0Þ

Z¼0i ¼ hφð0Þ
Z¼zjn̂ðz ¼ 0Þjφð0Þ

Z¼zi

≃ jzj2 τ
2

l2
B
hφðeÞ

Z jn̂ðz ¼ 0ÞjφðeÞ
Z i

¼ jzj2 τ
2

l2
B
hφðeÞ

Z¼0jn̂ðzÞjφðeÞ
Z¼0i: ðB5Þ

This expression relates the value of τ to the (normalized)

radial density distribution n0ðrÞ of the ground state φð0Þ
R and

the distribution neðrÞ in the first excited φðeÞ
R state. These

two distributions can be numerically calculated using the

expansion of φð0Þ
R and φðeÞ

R in terms of Jack polynomials
developed in Ref. [64]. The results for a mesoscopic cloud
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FIG. 8. Density of the ground state φð0Þ and the first excited
state φðeÞ as a function of the distance to the quasihole located at
R ¼ 0 in the φð0Þ case. Both curves were calculated for n ¼ 10
particles in the FQH bath and converge with respect to n.
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of n ¼ 10 particles are displayed in Fig. 8, and we have
made sure that our results for the inner part of the profile are
converged with respect to the number of particles n. In
particular, we see in the figure that n0ðlB=2Þ ≃ 0.028=l2

B,
while neð0Þ ≃ 0.245=l2

B. Substituting these values into
Eq. (19), one obtains τ ≃ 0.7.

APPENDIX C: ENERGY GAP AND IMPURITY-
ATOM INTERACTION

In this Appendix, we offer quantitative evidence of the
binding of impurities to FQH quasiholes in the presence of
a repulsive interaction between the impurity and the atoms.
To this purpose, we calculate the dependence of the

energy difference between the ground state φð0Þ displaying
a quasihole located at the impurity’s position (taken as the
origin, i.e., R ¼ 0) and the lowest excited state φðeÞ with
the quasihole orbiting around the impurity with ΔL ¼ −1
with respect to the impurity-atom interaction. For simplic-
ity, we employ a steplike interaction potential between the
impurity and the atoms of the FQH fluid of the form

V ia ¼ v̄ia
Xn
i¼1

Θða − jrijÞ; ðC1Þ

where n is the number of atoms, v̄ia > 0, and a is the step
radius.
We first compute the states of interest using a Jack

polynomials expansion [64] and then calculate the expect-
ation values of the atom-impurity potentials in the ground
and lowest excited states for different values of the step
radius a. We have checked that the density profiles of the
relevant many-body states in the vicinity of the impurity
(i.e., for distances less than or equal to a) do not depend on
the total number n of atoms in the FQH state.
The expectation values in the ground state and in the

lowest excited state for several values of a are shown in
Fig. 9 as blue squares and red circles, respectively. While
the ground state is almost insensitive to the presence of the
impurity as long as the radius a of the interaction potential
is much smaller than the spatial extension of the density
depletion of the quasihole (on the order of the magnetic
length lB, as shown by the blue curve in Fig. 8), the density
in the excited state always has a significant overlap with the
impurity (as shown in the red curve in Fig. 8), which gives a
sizable energy shift of this state that grows quadratically
with a and has a finite limit in the contact limit a → 0 at a
constant v̄iaa2.
The significant resulting energy gap Δω−1 between the

two states then leads to an efficient binding of the QH to the
impurity. As the step radius or the potential strength is
increased, its magnitude increases, thus reinforcing the
rigidity of the impurity-quasihole molecule and reducing
the importance of the Born-Oppenheimer mass correction
ΔM in Eq. (19).

APPENDIX D: OSCILLATIONS OF THE
DIFFERENTIAL SCATTERING CROSS SECTION

In this Appendix, we provide additional quantitative
evidence on the oscillatory behavior of the differential
scattering cross section described in Sec. IV D.
Figure 10 shows the angular dependence of the differ-

ential scattering cross section for distinguishable bosons
(α ¼ 0; black curve) and for distinguishable anyonic
molecules with α ¼ 0.1 (dark blue curve) and α ¼ 0.5
(cyan curve) interacting via a hard-disk potential for a fixed
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FIG. 9. Expectation value of the steplike interaction between
impurities and atoms V ia in the ground state φð0Þ (blue squares)
and in the lowest excited state φðeÞ (red circles) in units of v̄ia as a
function of its step radius a (in units of lB).
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FIG. 10. Differential scattering cross section dσ=dϕ in units of
the hard-core radius aHD as a function of the scattering angle ϕ for
a hard-disk interaction potential V ii between distinguishable
impurities with a relative incident momentum kaHD ¼ 5, and
for three values of the statistical parameter α.
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relative incident momentum kaHD ¼ 5. The latter case was
previously displayed as the dashed line in Fig. 3.
The two curves present a very similar and featureless

behavior for angles 0.5π < ϕ < 1.5π, confirming the
crucial role of indistinguishability and of interference
between the direct and exchange scattering channels.
The oscillations displayed in the vicinity of the forward

scattering direction for ϕ ¼ 0; 2π are instead due to
diffraction effects around the hard-disk potential and do
not have any statistical origin. They are, in fact, present in
the three curves with a comparable angular period. Of
course, the anyonic curves show the expected divergence
for ϕ → 0, which is not present in the bosonic case. Apart
from this divergence, a finite α introduces a phase shift of
the diffraction pattern and, for values of α ≠ 0.5, an
asymmetry between the oscillations to the left and to the
right of the forward direction (see the dark blue curve).
In Fig. 11, we compare the angular dependence of the

differential scattering cross section for the hard-disk (left
panel) and dipolar (central panel) cases for several param-
eter choices that pairwise satisfy the relation Eq. (70)
between the incident wave vectors. As expected, the oscil-
lation periods are almost identical within each pair (repre-
sented by the same color in Fig. 11). As a further illustration,
panel (c) demonstrates the linear dependence of the oscil-
lation period with respect to ðkaHDÞ−1 and ð2kaDÞ−1=3 in
each case, which confirms our intuitive interpretation in
terms of the textbook double-slit experiment.
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